WO2022048029A1 - 背光模组和显示装置 - Google Patents

背光模组和显示装置 Download PDF

Info

Publication number
WO2022048029A1
WO2022048029A1 PCT/CN2020/129950 CN2020129950W WO2022048029A1 WO 2022048029 A1 WO2022048029 A1 WO 2022048029A1 CN 2020129950 W CN2020129950 W CN 2020129950W WO 2022048029 A1 WO2022048029 A1 WO 2022048029A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
power supply
potential signal
emitting device
signal
Prior art date
Application number
PCT/CN2020/129950
Other languages
English (en)
French (fr)
Inventor
刘幸一
梅文淋
郝思坤
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/252,310 priority Critical patent/US20220319451A1/en
Publication of WO2022048029A1 publication Critical patent/WO2022048029A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other

Definitions

  • the present application relates to the field of display technology, and in particular, to a backlight module and a display device.
  • mini-LED backlight Because of its small size, mini-LED backlight can realize ultra-thin and multi-partition driving, etc., it has been widely used as a backlight source for liquid crystal display panels.
  • the Mini-LED backlight modules used in the existing large-size display devices are usually formed by splicing multiple backplanes. However, since the spacing between the Mini-LEDs in the splicing area between adjacent backplanes is larger than the spacing between the Mini-LEDs in the plane, it will cause The overall brightness of the splicing area is lower than the in-plane, which affects the display effect.
  • the existing Mini LED backlight module has a technical problem of low brightness in the splicing area, and needs to be improved.
  • Embodiments of the present application provide a backlight module and a display device, which are used to alleviate the technical problem of low brightness in a splicing area in an existing Mini LED backlight module.
  • the present application provides a backlight module, comprising a plurality of backplanes spliced together, wherein a plurality of light-emitting devices arranged in an array are arranged in the backplane, and the light-emitting devices are used for power supply high-potential signals and power supply low-potential signals.
  • Light-emitting under control wherein the light-emitting device includes a first light-emitting device located in a splicing area of an adjacent backplane, and a second light-emitting device located in other areas of the backplane.
  • the first light-emitting device The corresponding first power high potential signal is greater than the second power high potential signal corresponding to the second light emitting device.
  • the first power supply high-potential signal corresponding to any one of the backplanes is greater than the second power supply high-potential signal.
  • the high potential signals of the first power supply corresponding to the two backplanes are equal.
  • the first power high potential signal corresponding to one of the backplanes is greater than the second power high potential signal, and the first power high potential signal of the other backplane is equal to The second power supply high potential signal.
  • the same column of light-emitting devices is connected to the same power high-potential signal line, and the power high-potential signal line inputs the same power high-potential signal to the corresponding column of light-emitting devices.
  • the power low-potential signals corresponding to each light-emitting device are all equal.
  • the plurality of backplanes are respectively connected to corresponding driving chips, and the driving chips input the first power supply high-potential signal and the second power supply high-potential signal to the light-emitting device .
  • the driver chip is used to obtain the voltage compensation value corresponding to the luminance difference from a locally stored voltage compensation comparison table according to the luminance difference between the splicing area and the other areas , superimposing the voltage compensation value and the second power supply high potential signal to obtain the first power supply high potential signal.
  • the driving chip is used to calculate the voltage compensation value corresponding to the luminance difference according to the luminance difference between the splicing area and the other areas, and compare the voltage compensation value with the The second power high potential signal is superimposed to obtain the first power high potential signal.
  • the backplane further includes a backlight drive circuit for driving the light-emitting device to emit light
  • the backlight drive circuit includes:
  • the data signal input module is used to input the data signal under the control of the scanning signal
  • a driving module connected to the data signal input module, for driving the light-emitting device to emit light under the control of the data signal and the high-potential signal of the power supply;
  • the storage module is connected with the data signal input module and the driving module, and is used for storing the data signal.
  • the light-emitting device includes a plurality of Mini LED lamps connected in series.
  • the present application also provides a display device, including a liquid crystal display panel and a backlight module, the backlight module includes a plurality of spliced backplanes, the backplane is provided with a plurality of light-emitting devices arranged in an array, and the light-emitting devices are arranged in an array.
  • the device is used to emit light under the control of a power high potential signal and a power low potential signal, wherein the light-emitting device includes a first light-emitting device located in the splicing area of the adjacent backplane, and a second light-emitting device located in other areas of the backplane In at least one backplane, the first power high potential signal corresponding to the first light emitting device is greater than the second power high potential signal corresponding to the second light emitting device.
  • the first power supply high-potential signal corresponding to any one of the backplanes is greater than the second power supply high-potential signal.
  • the first power supply high potential signal corresponding to one of the backplanes is greater than the second power supply high potential signal, and the first power supply high potential signal of the other backplane is equal to the first power supply high potential signal of the other backplane.
  • Two power supply high potential signals are provided among two adjacent backplanes.
  • the power low potential signals corresponding to each light-emitting device are all equal.
  • the plurality of backplanes are respectively connected to corresponding driving chips, and the driving chips input the first power supply high potential signal and the second power supply high potential signal to the light emitting device.
  • the driver chip is configured to, according to the brightness difference between the splicing area and the other areas, query the voltage compensation value corresponding to the brightness difference from a locally stored voltage compensation comparison table,
  • the first power supply high level signal is obtained by superimposing the voltage compensation value and the second power supply high level signal.
  • the driving chip is configured to calculate a voltage compensation value corresponding to the luminance difference according to the luminance difference between the splicing area and the other areas, and compare the voltage compensation value with the The second power high potential signal is superimposed to obtain the first power high potential signal.
  • the backplane further includes a backlight drive circuit for driving the light-emitting device to emit light
  • the backlight drive circuit includes:
  • the data signal input module is used to input the data signal under the control of the scanning signal
  • a driving module connected to the data signal input module, for driving the light-emitting device to emit light under the control of the data signal and the high-potential signal of the power supply;
  • the storage module is connected with the data signal input module and the driving module, and is used for storing the data signal.
  • the light-emitting device includes a plurality of Mini LED lamps connected in series.
  • the present application provides a backlight module and a display device.
  • the backlight module includes a plurality of light-sensing circuits and a position detection circuit, and a plurality of light-sensing circuits are arranged in an array in the backlight module.
  • the sensing circuit includes a photosensitive transistor, the photosensitive transistor includes a substrate, a metal oxide active layer, a gate layer, a source and drain layer and a quantum dot layer, the quantum dot layer and the metal oxide active layer are Contact, the quantum dot layer is used for absorbing the alternating light irradiated by the alternating light source, the wavelength of the alternating light is greater than the maximum absorption wavelength of the metal oxide active layer, and the photosensitive transistor is used for absorbing the alternating light.
  • the light intensity signal is converted into an electrical signal; the position detection circuit is electrically connected with the light sensing circuit, and is used for determining the irradiation position of the interactive light according to the electrical signal.
  • the interactive light with longer wavelength can be absorbed and its light intensity signal can be converted into an electrical signal, and then the position detection circuit can determine the interactive light Therefore, the interaction with the light with longer wavelength can be realized, and the existing technical problem of the narrow wavelength range of the interactable light can be alleviated.
  • FIG. 1 is a schematic diagram of a first input mode of a power high potential signal in a backlight module provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second input mode of a power high potential signal in a backlight module provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a backlight driving circuit in a backlight module provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • Embodiments of the present application provide a backlight module and a display device, which are used to alleviate the technical problem of low brightness in a splicing area in an existing Mini LED backlight module.
  • the present application provides a backlight module, comprising a plurality of backplanes spliced together, and a plurality of light-emitting devices arranged in an array are arranged in the backplane, and the light-emitting devices are used to emit light under the control of a high-potential power supply signal and a low-potential power supply signal,
  • the light-emitting device includes a first light-emitting device located in the splicing area of the adjacent backplane, and a second light-emitting device located in other areas of the backplane.
  • the first power supply high potential signal corresponding to the first light-emitting device is greater than the second light-emitting device.
  • the second power source high potential signal corresponding to the two light-emitting devices are provided.
  • the backlight module of the present application provides backlight for medium and large-sized liquid crystal display panels, and the backlight module uses a plurality of backplanes 10 for splicing, and the backplane 10 is provided with a plurality of light-emitting devices 100 arranged in an array.
  • each light-emitting device 100 may further include a plurality of Mini LED lamps or Micro LED lamps arranged in series.
  • the backlight driving circuit in each backplane 10 individually drives the light-emitting devices 100 in the backplane 10, controls the light emission individually, and provides backlight for the pixels in each partition of the liquid crystal display panel. Modules, partition-driven backlight module brightness control is more flexible, and the lighting effect is better.
  • the light emitting device 100 located in the splicing region 11 of the adjacent backplane 10 is the first light emitting device 110
  • the light emitting device 100 located in the other regions 12 is the second light emitting device 120 . Since the backlight module is formed by splicing a plurality of backplanes 10, the distance a between the two rows of the first light-emitting devices 110 located in the splicing area 11 in the two adjacent backplanes 10 is larger than that in other areas.
  • the spacing b of the second light-emitting devices 120 in any adjacent columns in 12 is equal to the spacing b of the second light-emitting devices 120 in any adjacent column.
  • the mixed light of the first light-emitting devices 110 in different columns in the splicing area 11 The overall brightness is low, and the overall brightness of the second light-emitting devices 120 in other areas 12 after mixing light is low, so that there will be patchwork shadows in the splicing area 11, and the subsequent backlighting for the liquid crystal display panel will affect the liquid crystal display.
  • the display effect of the display panel is not limited to, but not limited to, but not limited to the light-emitting brightness of the first light-emitting device 110 and the second light-emitting device 120 are the same, the mixed light of the first light-emitting devices 110 in different columns in the splicing area 11
  • the overall brightness is low, and the overall brightness of the second light-emitting devices 120 in other areas 12 after mixing light is low, so that there will be patchwork shadows in the splicing area 11, and the subsequent backlighting for the liquid crystal display panel will affect the liquid crystal display.
  • the display effect of the display panel is not limited to, the light-e
  • the backplane 10 includes a plurality of light-emitting devices 100 arranged in an array. Each light-emitting device 100 is driven by a backlight driving circuit.
  • the backlight driving circuit includes a data signal input module 101 , a driving module 102 and a storage module 103 , the data signal input module 101 is used for inputting the data signal Data under the control of the scan signal Scan; the driving module 102 is connected to the data signal input module 101 for driving the light-emitting device under the control of the data signal Data and the power high potential signal VDD 100 emits light; the storage module 103 is connected to the data signal input module 101 and the driving module 102 for storing the data signal Data.
  • the data signal input module 101 includes a switch transistor T2, the drive module 102 includes a drive transistor T1, the storage module 103 includes a storage capacitor Cs, the gate of the switch transistor T2 is connected to the scan signal Scan, and the first electrode of the switch transistor T2 is connected to For the data signal Data, the second electrode of the switching transistor T2 is connected to the gate of the driving transistor T1 and the first electrode plate of the storage capacitor Cs, the second electrode plate of the storage capacitor Cs is grounded, and the first electrode of the driving transistor T1 is connected to the power supply With the high potential signal VDD, the second electrode of the driving transistor T1 is connected to the power supply low potential signal VSS.
  • the working stage of the light-emitting device 100 includes a data writing stage t1 and a light-emitting stage t2.
  • the scan signal Scan is at a high potential
  • the switching transistor T2 is turned on
  • the data signal Data is input to the gate of the driving transistor T1
  • Stored in the storage capacitor Cs the driving transistor T1 is turned on, so that the light-emitting device 100 emits light
  • the scan signal Scan is at a low potential
  • the switching transistor T2 is turned off, and the storage capacitor Cs can maintain the gate potential of the driving transistor T1, so that light-emitting Device 100 continues to emit light.
  • the light emitting brightness of the light emitting device 100 is related to the voltage difference between the power high voltage signal VDD and the power low potential signal VSS. The greater the voltage difference, the greater the light emitting brightness of the light emitting device 100 .
  • the first power supply high potential signal VDD1 is input to the backlight driving circuit corresponding to the first light emitting device 110 in the splicing area 11 , and the second light emitting device 120 corresponding to the other area 12 is input.
  • the backlight driving circuit of the backlight driver input the second power high potential signal VDD2, and the first power high potential signal VDD1 corresponding to at least one backplane 10 is greater than the second power high potential signal VDD2, then for the backplane 10, the power supply is high in the splicing area 11
  • the difference between the potential signal VDD and the power supply low potential signal VSS is larger, and the corresponding light-emitting brightness of the first light-emitting device 110 is greater than that of the second light-emitting device 120, so that the first light-emitting devices 110 with larger spacing in the splicing area 11
  • the overall brightness is equal to the overall brightness of the second light-emitting devices 120 in other areas 12 with smaller spacing, thereby eliminating the shadow of patchwork and improving the display effect of the corresponding display device.
  • the first power supply high-level signal VDD1 corresponding to any one of the backplanes 10 is greater than the second power supply high-level signal VDD2 .
  • the luminous brightness of the two rows of the first light-emitting devices 100 in each splicing area 11 is improved, so the overall brightness in the splicing area 11 is greatly improved, and the effect of improving the shadow of the splicing is better.
  • the first power high potential signals VDD1 corresponding to the two backplanes 10 are equal, the light mixing effect is relatively uniform, and the brightness enhancement effect is better.
  • the first power supply high potential signal VDD1 corresponding to one backplane 10 is greater than the second power supply high potential signal VDD2 , and the first power supply high potential of the other backplane
  • the signal VDD1 is equal to the second power high level signal VDD2.
  • the first power supply high potential signal VDD1 corresponding to the middle backplane 10 is greater than the second power supply high potential signal VDD2 , and the left and right backplanes 10 are in the splicing area 11
  • the second power supply high level signal VDD2 is input to the other regions 12 , which is equivalent to the first power supply high level signal VDD1 being equal to the second power supply high level signal VDD2 .
  • the brightness of one column of the first light-emitting devices 110 remains unchanged, and the brightness of the other column of the first light-emitting devices 110 increases, so the brightness of the first light-emitting devices 110 in the other column may also increase to a certain extent It plays the role of improving the overall brightness of the splicing area 11 .
  • the brightness difference between the splicing area 11 and the other areas 12 is small, only the first power high potential signal VDD1 corresponding to the first light-emitting device 110 in one column can be increased to increase the brightness.
  • this The method brings about less increase in energy consumption and lower cost while improving the brightness.
  • a plurality of backplanes 10 are respectively connected to the corresponding driving chips 30 through the printed circuit board 20.
  • the same column of light-emitting devices 100 is connected to the same high-potential power supply signal line.
  • the high potential signal lines input the same power high potential signal VDD to the corresponding column light emitting devices 100 . Therefore, when the power supply high potential signal VDD in the splicing region 11 is increased, the luminance change of the first light emitting device 110 is always changed in units of columns.
  • the power low potential signals VSS corresponding to the light emitting devices 100 are all equal. Therefore, only by changing the value of the power high potential signal VDD, the voltage difference between the power high potential signal VDD and the power low potential signal VSS can be increased, thereby increasing the brightness of the corresponding light emitting device 100 .
  • each column of light-emitting devices 100 is connected to a power high-potential signal line, and the power high-potential signal VDD in each power high-potential signal line is provided by the driver chip 30 connected to the backplane 10 , that is, The driving chip 30 inputs the first power high potential signal VDD1 and the second power high potential signal VDD2 to the light emitting device 100 .
  • the driving chip 30 inputs the first power high potential signal VDD1 and the second power high potential signal VDD2 to the light emitting device 100 .
  • the driving chip 30 is used to obtain the voltage compensation value corresponding to the luminance difference from a locally stored voltage compensation comparison table according to the luminance difference between the splicing area 11 and other areas 12, and compare the voltage compensation value with the first voltage compensation value.
  • the two power supply high potential signals VDD2 are superimposed to obtain the first power supply high potential signal VDD1 .
  • the voltage compensation comparison table is pre-stored in the driver chip 30, and the table includes a plurality of brightness or brightness ranges. For each brightness value or brightness range value, there is a corresponding voltage compensation value.
  • the voltage compensation value corresponding to the brightness difference is found from the voltage compensation comparison table, then the voltage compensation value is superimposed with the value of the second power supply high potential signal VDD2, and the superimposed value is input to the first power supply.
  • the light-emitting device 110 can increase the light-emitting brightness of the first light-emitting device 110, and the increased light-emitting brightness can just compensate for the aforementioned brightness difference. It is more convenient and quick to use the way of looking up the table to obtain the voltage compensation value.
  • the driving chip 30 is used to calculate a voltage compensation value corresponding to the luminance difference according to the luminance difference between the splicing area 11 and other areas 12, and superimpose the voltage compensation value and the second power supply high potential signal VDD2 to obtain the first voltage compensation value.
  • the driver chip 30 After obtaining the brightness difference between the splicing area 11 and other areas 12, the driver chip 30 directly calculates the voltage compensation value corresponding to the brightness difference, then The voltage compensation value is superimposed with the value of the second power supply high potential signal VDD2, and the superimposed value is input to the first light-emitting device 110, so that the light-emitting brightness of the first light-emitting device 110 can be increased, and the increased light-emitting brightness can just compensate The aforementioned brightness difference. It is more accurate to use the calculation method to obtain the voltage compensation value.
  • the first power supply high potential signal VDD1 is set to be greater than the second power supply high potential signal VDD2 by the above method, then the difference between the power supply high potential signal VDD and the power supply low potential signal VSS in the splicing area 11 is larger, and the corresponding The brightness of one light-emitting device 110 is greater than the brightness of the second light-emitting device 120 , so that the overall brightness of the first light-emitting device 110 in the splicing area 11 with the larger distance and the overall brightness of the second light-emitting device 120 in the other area 12 with the smaller distance Equivalent, the display effect of the corresponding display device is improved.
  • the present application also provides a display device including a liquid crystal display panel 50 and a backlight module, the backlight module including a plurality of backplanes 10 spliced together, a plastic frame 301 , a diffusion plate 302 , a reflection sheet 303 and The optical film 304 is provided with a plurality of light emitting devices 100 arranged in an array on the backplane 10 .
  • the liquid crystal display panel 50 is fixed on the plastic frame 301 of the backlight module through an adhesive layer (not shown in the figure).
  • the light 21 first passes through the lower polarizer of the liquid crystal display panel 50 to become polarized light, and the liquid crystal display panel 50 uses the switching function of the TFT to input input to each pixel respectively.
  • the liquid crystal molecules rotate in different states under different voltages, so the degree of transmission of polarized light is also different, and finally the brightness of the light emitted through the upper polarizer is also different, so as to achieve multi-gray-scale images. show.
  • the backlight module is the backlight module described in any one of the above embodiments.
  • the application provides a backlight module and a display device.
  • the backlight module includes a plurality of backplanes that are spliced together.
  • the backplane is provided with a plurality of light-emitting devices arranged in an array.
  • the light-emitting device emits light under the control of the signal, wherein the light-emitting device includes a first light-emitting device located in the splicing area of the adjacent backplane, and a second light-emitting device located in other areas of the backplane.
  • the first light-emitting device corresponding to the first light-emitting device The power high potential signal is greater than the second power high potential signal corresponding to the second light emitting device.
  • the difference between the power supply high potential signal and the power supply low potential signal in the splicing area is larger, and the brightness of the corresponding first light-emitting device is greater than that of the second power supply high potential signal.
  • the brightness of the light-emitting device is improved, so that the overall brightness of the first light-emitting device with a larger distance in the splicing area is equal to the overall brightness of the second light-emitting device with a smaller distance in other areas, and the display effect of the corresponding display device is improved.
  • a backlight module and a display device provided by the embodiments of the present application have been introduced in detail above.
  • the principles and implementations of the present application are described with specific examples in this article.
  • the technical solution of the application and its core idea; those of ordinary skill in the art should understand that: it can still make modifications to the technical solutions recorded in the foregoing embodiments, or perform equivalent replacements to some of the technical features; and these modifications or replacements,
  • the essence of the corresponding technical solutions does not deviate from the scope of the technical solutions of the embodiments of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本申请提供一种背光模组和显示装置,背光模组包括拼接的多个背板,背板中发光器件用于在电源高电位信号和电源低电位信号的控制下发光,发光器件包括位于相邻背板拼接区域的第一发光器件、位于背板其他区域的第二发光器件,至少一个背板中,第一发光器件对应的第一电源高电位信号大于第二发光器件对应的第二电源高电位信号。

Description

背光模组和显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种背光模组和显示装置。
背景技术
Mini-LED背光因其尺寸较小,可实现超薄及多分区驱动等特点,作为液晶显示面板的背光光源得到较多应用。现有大尺寸显示装置采用的Mini-LED背光模组通常采用多块背板拼接而成,但由于相邻背板间的拼接区域Mini-LED的间距大于面内Mini-LED的间距,会造成拼接区域整体亮度低于面内,影响显示效果。
因此,现有的Mini LED背光模组存在拼接区域亮度较低的技术问题,需要改进。
技术问题
本申请实施例提供一种背光模组和显示装置,用以缓解现有的Mini LED背光模组中拼接区域亮度较低的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种背光模组,包括拼接的多个背板,所述背板中设置有阵列排布的多个发光器件,所述发光器件用于在电源高电位信号和电源低电位信号的控制下发光,其中,所述发光器件包括位于相邻背板拼接区域的第一发光器件、以及位于所述背板其他区域的第二发光器件,至少一个背板中,所述第一发光器件对应的第一电源高电位信号大于所述第二发光器件对应的第二电源高电位信号。
在本申请的背光模组中,相邻的两个背板中,任一背板对应的第一电源高电位信号均大于第二电源高电位信号。
在本申请的背光模组中,所述两个背板对应的第一电源高电位信号相等。
在本申请的背光模组中,相邻的两个背板中,其中一个背板对应的第一电源高电位信号大于第二电源高电位信号,另一个背板的第一电源高电位信号等于第二电源高电位信号。
在本申请的背光模组中,所述背板中,同一列发光器件连接同一条电源高电位信号线,所述电源高电位信号线向对应列发光器件输入相同的电源高电位信号。
在本申请的背光模组中,所述背板中,各发光器件对应的电源低电位信号均相等。
在本申请的背光模组中,所述多个背板分别与对应的驱动芯片连接,所述驱动芯片向所述发光器件输入所述第一电源高电位信号和所述第二电源高电位信号。
在本申请的背光模组中,所述驱动芯片用于,根据所述拼接区域和所述其他区域的亮度差,从本地存储的电压补偿对照表中查询得到所述亮度差对应的电压补偿值,将所述电压补偿值与所述第二电源高电位信号叠加得到所述第一电源高电位信号。
在本申请的背光模组中,所述驱动芯片用于,根据所述拼接区域和所述其他区域的亮度差,计算得到所述亮度差对应的电压补偿值,将所述电压补偿值与所述第二电源高电位信号叠加得到所述第一电源高电位信号。
在本申请的背光模组中,所述背板还包括驱动所述发光器件发光的背光驱动电路,所述背光驱动电路包括:
数据信号输入模块,用于在扫描信号的控制下输入数据信号;
驱动模块,与所述数据信号输入模块连接,用于在所述数据信号和所述电源高电位信号的控制下,驱动所述发光器件发光;
存储模块,与所述数据信号输入模块和所述驱动模块连接,用于存储所述数据信号。
在本申请的背光模组中,所述发光器件包括串联的多个Mini LED灯。
本申请还提供一种显示装置,包括液晶显示面板和背光模组,所述背光模组包括拼接的多个背板,所述背板中设置有阵列排布的多个发光器件,所述发光器件用于在电源高电位信号和电源低电位信号的控制下发光,其中,所述发光器件包括位于相邻背板拼接区域的第一发光器件、以及位于所述背板其他区域的第二发光器件,至少一个背板中,所述第一发光器件对应的第一电源高电位信号大于所述第二发光器件对应的第二电源高电位信号。
在本申请的显示装置中,相邻的两个背板中,任一背板对应的第一电源高电位信号均大于第二电源高电位信号。
在本申请的显示装置中,相邻的两个背板中,其中一个背板对应的第一电源高电位信号大于第二电源高电位信号,另一个背板的第一电源高电位信号等于第二电源高电位信号。
在本申请的显示装置中,所述背板中,各发光器件对应的电源低电位信号均相等。
在本申请的显示装置中,所述多个背板分别与对应的驱动芯片连接,所述驱动芯片向所述发光器件输入所述第一电源高电位信号和所述第二电源高电位信号。
在本申请的显示装置中,所述驱动芯片用于,根据所述拼接区域和所述其他区域的亮度差,从本地存储的电压补偿对照表中查询得到所述亮度差对应的电压补偿值,将所述电压补偿值与所述第二电源高电位信号叠加得到所述第一电源高电位信号。
在本申请的显示装置中,所述驱动芯片用于,根据所述拼接区域和所述其他区域的亮度差,计算得到所述亮度差对应的电压补偿值,将所述电压补偿值与所述第二电源高电位信号叠加得到所述第一电源高电位信号。
在本申请的显示装置中,所述背板还包括驱动所述发光器件发光的背光驱动电路,所述背光驱动电路包括:
数据信号输入模块,用于在扫描信号的控制下输入数据信号;
驱动模块,与所述数据信号输入模块连接,用于在所述数据信号和所述电源高电位信号的控制下,驱动所述发光器件发光;
存储模块,与所述数据信号输入模块和所述驱动模块连接,用于存储所述数据信号。
在本申请的显示装置中,所述发光器件包括串联的多个Mini LED灯。
有益效果
本申请的有益效果:本申请提供一种背光模组和显示装置,背光模组包括多个光感电路和位置检测电路,多个光感电路在所述背光模组内阵列设置,所述光感电路包括光感晶体管,所述光感晶体管包括衬底、金属氧化物有源层、栅极层、源漏极层和量子点层,所述量子点层与所述金属氧化物有源层接触,所述量子点层用于吸收交互光源照射的交互光线,所述交互光线的波长大于所述金属氧化物有源层的最大吸收波长,所述光感晶体管用于将所述交互光线的光强信号转换为电信号;位置检测电路与所述光感电路电性连接,用于根据所述电信号,确定所述交互光线的照射位置。本申请通过在光感晶体管中设置与金属氧化物有源层接触的量子点层,可以吸收波长较长的交互光线并将其光强信号转换为电信号,再通过位置检测电路确定交互光线的照射位置,因此可以实现与波长较长的光线之间的交互,缓解了现有的可交互光线的波长范围较窄的技术问题。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的背光模组中电源高电位信号的第一种输入方式示意图。
图2为本申请实施例提供的背光模组中电源高电位信号的第二种输入方式示意图。
图3为本申请实施例提供的背光模组中背光驱动电路的结构示意图。
图4为本申请实施例提供的显示装置的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相近的单元是用以相同标号表示。
本申请实施例提供一种背光模组和显示装置,用以缓解现有的Mini LED背光模组中拼接区域亮度较低的技术问题。
本申请提供一种背光模组,包括拼接的多个背板,背板中设置有阵列排布的多个发光器件,发光器件用于在电源高电位信号和电源低电位信号的控制下发光,其中,发光器件包括位于相邻背板拼接区域的第一发光器件、以及位于背板其他区域的第二发光器件,至少一个背板中,第一发光器件对应的第一电源高电位信号大于第二发光器件对应的第二电源高电位信号。
如图1所示,本申请的背光模组为中大尺寸的液晶显示面板提供背光,背光模组使用多个背板10进行拼接,背板10上设置有阵列排布的多个发光器件100,每个发光器件100又可以包括串联设置的多个Mini LED灯或Micro LED灯。每块背板10中的背光驱动电路对该背板10中的发光器件100进行单独驱动,单独控制发光,单独为液晶显示面板每个分区内的像素提供背光,相对于采用整面驱动的背光模组,分区驱动的背光模组亮度控制更加灵活,发光效果更好。
位于相邻背板10拼接区域11内的发光器件100为第一发光器件110,位于其他区域12内的发光器件100为第二发光器件120。由于背光模组的采用多个背板10拼接而成,受制造工艺限制,相邻的两个背板10中位于拼接区域11内的两列第一发光器件110的间距a,大于位于其他区域12内任意相邻列第二发光器件120的间距b,因此,在第一发光器件110和第二发光器件120的发光亮度相同时,拼接区域11内不同列第一发光器件110混光后的整体亮度较低,而其他区域12内不同列第二发光器件120混光后的整体亮度较低,从而在拼接区域11内会出现拼缝暗影,后续给液晶显示面板提供背光时,会影响液晶显示面板的显示效果。
如图3所示,背板10中包括阵列设置的多个发光器件100,每个发光器件100均有背光驱动电路进行驱动,背光驱动电路包括数据信号输入模块101、驱动模块102和存储模块103,数据信号输入模块101用于在扫描信号Scan的控制下输入数据信号Data;驱动模块102与数据信号输入模块101连接,用于在数据信号Data和电源高电位信号VDD的控制下,驱动发光器件100发光;存储模块103与数据信号输入模块101和驱动模块102连接,用于存储数据信号Data。
具体地,数据信号输入模块101包括开关晶体管T2,驱动模块102包括驱动晶体管T1,存储模块103包括存储电容Cs,开关晶体管T2的栅极接入扫描信号Scan,开关晶体管T2的第一电极接入数据信号Data,开关晶体管T2的第二电极与驱动晶体管T1的栅极、以及存储电容Cs的第一极板连接,存储电容Cs的第二极板接地,驱动晶体管T1的第一电极接入电源高电位信号VDD,驱动晶体管T1的第二电极接入电源低电位信号VSS。
发光器件100的工作阶段包括数据写入阶段t1和发光阶段t2,在数据写入阶段t1,扫描信号Scan为高电位,开关晶体管T2打开,将数据信号Data输入给驱动晶体管T1的栅极,且存储在存储电容Cs中,驱动晶体管T1打开,使发光器件100发光;在发光阶段t2,扫描信号Scan为低电位,开关晶体管T2关闭,存储电容Cs可以维持驱动晶体管T1的栅极电位,使得发光器件100继续发光。
发光器件100的发光亮度与电源高电压信号VDD与电源低电位信号VSS的压差相关,两者压差越大,发光器件100的发光亮度越大。
如图1所示,在本申请中,对拼接区域11内的第一发光器件110所对应的背光驱动电路输入第一电源高电位信号VDD1,对其他区域12内的第二发光器件120所对应的背光驱动电路输入第二电源高电位信号VDD2,且至少一个背板10对应的第一电源高电位信号VDD1大于第二电源高电位信号VDD2,则对于该背板10,在拼接区域11电源高电位信号VDD和电源低电位信号VSS的差值更大,对应的第一发光器件110的发光亮度大于第二发光器件120的发光亮度,从而使得拼接区域11中间距较大的第一发光器件110的整体亮度与其他区域12中间距较小的第二发光器件120的整体亮度相等,进而消除了拼缝暗影,提升了对应显示装置的显示效果。
在一种实施例中,相邻的两个背板10中,任一背板10对应的第一电源高电位信号VDD1均大于第二电源高电位信号VDD2。此时,如图1所示,每个拼接区域11内的两列第一发光器件100的发光亮度都得到提升,因此拼接区域11内的整体亮度提升较多,改善拼缝暗影的效果较好。当两个背板10对应的第一电源高电位信号VDD1相等时,混光的效果较为均匀,亮度提升的效果更好。
在一种实施例中,相邻的两个背板10中,其中一个背板10对应的第一电源高电位信号VDD1大于第二电源高电位信号VDD2,另一个背板的第一电源高电位信号VDD1等于第二电源高电位信号VDD2。如图2所示,以三个背板10进行拼接为例,中间的背板10对应的第一电源高电位信号VDD1大于第二电源高电位信号VDD2,左右两边的背板10在拼接区域11和其他区域12均输入第二电源高电位信号VDD2,相当于第一电源高电位信号VDD1等于第二电源高电位信号VDD2。此时,在每个拼接区域11内的两列第一发光器件110中,其中一列第一发光器件110的亮度不变,另一列第一发光器件110的亮度增大,因此也可以在一定程度上起到提升拼接区域11整体亮度的作用。在拼接区域11与其他区域12亮度差异较小的场景下,可以仅增大一列第一发光器件110对应的第一电源高电位信号VDD1来提升亮度,相对于图1所对应的实施例,本方法在起到提升亮度的同时,带来的能耗增加较少,成本较低。
如图1和图2所示,多个背板10分别通过印刷电路板20与对应的驱动芯片30连接,每个背板10中,同一列发光器件100连接同一条电源高电位信号线,电源高电位信号线向对应列发光器件100输入相同的电源高电位信号VDD。因此,在增大拼接区域11内电源高电位信号VDD时,第一发光器件110的亮度改变总是以列为单位改变。
此外,在背板10中,各发光器件100对应的电源低电位信号VSS均相等。因此仅需改变电源高电位信号VDD的数值,即可增大电源高电位信号VDD与电源低电位信号VSS的压差,进而增大对应发光器件100的亮度。
在每个背板10中,每列发光器件100对应连接一条电源高电位信号线,各电源高电位信号线中对应的电源高电位信号VDD均有该背板10连接的驱动芯片30提供,即驱动芯片30向发光器件100输入第一电源高电位信号VDD1和第二电源高电位信号VDD2。在确定第一电源高电位信号VDD1的具体数值时,可以有两种方式。
在一种实施例中,驱动芯片30用于,根据拼接区域11和其他区域12的亮度差,从本地存储的电压补偿对照表中查询得到亮度差对应的电压补偿值,将电压补偿值与第二电源高电位信号VDD2叠加得到第一电源高电位信号VDD1。电压补偿对照表预先存储在驱动芯片30中,表中包括多个亮度或亮度范围,对应每个亮度值或亮度范围值,均有一个对应的电压补偿值,在获取到拼接区域11和其他区域12的亮度差后,从电压补偿对照表中查找到该亮度差对应的电压补偿值,则将该电压补偿值与第二电源高电位信号VDD2的数值进行叠加,叠加后的数值输入给第一发光器件110,可以使第一发光器件110的发光亮度增加,且增加的发光亮度刚好可以补偿前述的亮度差。使用查表的方式得到电压补偿值,较为方便快捷。
在一种实施例中,驱动芯片30用于,根据拼接区域11和其他区域12的亮度差,计算得到亮度差对应的电压补偿值,将电压补偿值与第二电源高电位信号VDD2叠加得到第一电源高电位信号VDD1。对应每个亮度值或亮度范围值,均有一个对应的电压补偿值,在获取到拼接区域11和其他区域12的亮度差后,驱动芯片30直接计算得到该亮度差对应的电压补偿值,则将该电压补偿值与第二电源高电位信号VDD2的数值进行叠加,叠加后的数值输入给第一发光器件110,可以使第一发光器件110的发光亮度增加,且增加的发光亮度刚好可以补偿前述的亮度差。使用计算的方式得到电压补偿值,较为准确。
本申请通过上述方式,将第一电源高电位信号VDD1设置为大于第二电源高电位信号VDD2,则在拼接区域11电源高电位信号VDD和电源低电位信号VSS的差值更大,对应的第一发光器件110的亮度大于第二发光器件120的亮度,从而使得拼接区域11中间距较大的第一发光器件110的整体亮度与其他区域12中间距较小的第二发光器件120的整体亮度相等,提升了对应显示装置的显示效果。
如图4所示,本申请还提供一种显示装置,包括液晶显示面板50和背光模组,该背光模组包括拼接的多个背板10、胶框301、扩散板302、反射片303和光学膜片304,背板10上设置有阵列排布的多个发光器件100。液晶显示面板50通过粘结层(图未示出)固定在背光模组的胶框301上,背光模组中设置在背板201上的发光器件110发出的光线21,经由扩散板302、反射片303和光学膜片304后,照射到液晶显示面板50上,光线21先通过液晶显示面板50的下偏光片变成偏振光,液晶显示面板50通过TFT的开关作用,给每个像素分别输入不同大小的数据信号电压,液晶分子在不同电压下旋转的状态不同,因此对偏振光的透过程度也不同,最后经由上偏光片出射的光线亮度也不同,以此来实现多灰阶的画面显示。
在本申请的显示装置中,背光模组为上述任一实施例所述的背光模组。通过将第一电源高电位信号设置为大于第二电源高电位信号,则在拼接区域电源高电位信号和电源低电位信号的差值更大,对应的第一发光器件的亮度大于第二发光器件亮度,从而使得拼接区域中间距较大的第一发光器件的整体亮度与其他区域中间距较小的第二发光器件的整体亮度相等,提升了显示装置的显示效果。
根据以上实施例可知:
本申请提供一种背光模组和显示装置,背光模组包括拼接的多个背板,背板中设置有阵列排布的多个发光器件,发光器件用于在电源高电位信号和电源低电位信号的控制下发光,其中,发光器件包括位于相邻背板拼接区域的第一发光器件、以及位于背板其他区域的第二发光器件,至少一个背板中,第一发光器件对应的第一电源高电位信号大于第二发光器件对应的第二电源高电位信号。本申请通过将第一电源高电位信号设置为大于第二电源高电位信号,则在拼接区域电源高电位信号和电源低电位信号的差值更大,对应的第一发光器件的亮度大于第二发光器件亮度,从而使得拼接区域中间距较大的第一发光器件的整体亮度与其他区域中间距较小的第二发光器件的整体亮度相等,提升了对应显示装置的显示效果。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种背光模组和显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种背光模组,其包括拼接的多个背板,所述背板中设置有阵列排布的多个发光器件,所述发光器件用于在电源高电位信号和电源低电位信号的控制下发光,其中,所述发光器件包括位于相邻背板拼接区域的第一发光器件、以及位于所述背板其他区域的第二发光器件,至少一个背板中,所述第一发光器件对应的第一电源高电位信号大于所述第二发光器件对应的第二电源高电位信号。
  2. 如权利要求1所述的背光模组,其中,相邻的两个背板中,任一背板对应的第一电源高电位信号均大于第二电源高电位信号。
  3. 如权利要求2所述的背光模组,其中,所述两个背板对应的第一电源高电位信号相等。
  4. 如权利要求1所述的背光模组,其中,相邻的两个背板中,其中一个背板对应的第一电源高电位信号大于第二电源高电位信号,另一个背板的第一电源高电位信号等于第二电源高电位信号。
  5. 如权利要求1所述的背光模组,其中,所述背板中,同一列发光器件连接同一条电源高电位信号线,所述电源高电位信号线向对应列发光器件输入相同的电源高电位信号。
  6. 如权利要求1所述的背光模组,其中,所述背板中,各发光器件对应的电源低电位信号均相等。
  7. 如权利要求1所述的背光模组,其中,所述多个背板分别与对应的驱动芯片连接,所述驱动芯片向所述发光器件输入所述第一电源高电位信号和所述第二电源高电位信号。
  8. 如权利要求7所述的背光模组,其中,所述驱动芯片用于,根据所述拼接区域和所述其他区域的亮度差,从本地存储的电压补偿对照表中查询得到所述亮度差对应的电压补偿值,将所述电压补偿值与所述第二电源高电位信号叠加得到所述第一电源高电位信号。
  9. 如权利要求7所述的背光模组,其中,所述驱动芯片用于,根据所述拼接区域和所述其他区域的亮度差,计算得到所述亮度差对应的电压补偿值,将所述电压补偿值与所述第二电源高电位信号叠加得到所述第一电源高电位信号。
  10. 如权利要求1所述的背光模组,其中,所述背板还包括驱动所述发光器件发光的背光驱动电路,所述背光驱动电路包括:
    数据信号输入模块,用于在扫描信号的控制下输入数据信号;
    驱动模块,与所述数据信号输入模块连接,用于在所述数据信号和所述电源高电位信号的控制下,驱动所述发光器件发光;
    存储模块,与所述数据信号输入模块和所述驱动模块连接,用于存储所述数据信号。
  11. 如权利要求1所述的背光模组,其中,所述发光器件包括串联的多个Mini LED灯。
  12. 一种显示装置,其包括液晶显示面板和背光模组,所述背光模组包括拼接的多个背板,所述背板中设置有阵列排布的多个发光器件,所述发光器件用于在电源高电位信号和电源低电位信号的控制下发光,其中,所述发光器件包括位于相邻背板拼接区域的第一发光器件、以及位于所述背板其他区域的第二发光器件,至少一个背板中,所述第一发光器件对应的第一电源高电位信号大于所述第二发光器件对应的第二电源高电位信号。
  13. 如权利要求12所述的显示装置,其中,相邻的两个背板中,任一背板对应的第一电源高电位信号均大于第二电源高电位信号。
  14. 如权利要求12所述的显示装置,其中,相邻的两个背板中,其中一个背板对应的第一电源高电位信号大于第二电源高电位信号,另一个背板的第一电源高电位信号等于第二电源高电位信号。
  15. 如权利要求12所述的显示装置,其中,所述背板中,各发光器件对应的电源低电位信号均相等。
  16. 如权利要求12所述的显示装置,其中,所述多个背板分别与对应的驱动芯片连接,所述驱动芯片向所述发光器件输入所述第一电源高电位信号和所述第二电源高电位信号。
  17. 如权利要求16所述的显示装置,其中,所述驱动芯片用于,根据所述拼接区域和所述其他区域的亮度差,从本地存储的电压补偿对照表中查询得到所述亮度差对应的电压补偿值,将所述电压补偿值与所述第二电源高电位信号叠加得到所述第一电源高电位信号。
  18. 如权利要求16所述的显示装置,其中,所述驱动芯片用于,根据所述拼接区域和所述其他区域的亮度差,计算得到所述亮度差对应的电压补偿值,将所述电压补偿值与所述第二电源高电位信号叠加得到所述第一电源高电位信号。
  19. 如权利要求12所述的显示装置,其中,所述背板还包括驱动所述发光器件发光的背光驱动电路,所述背光驱动电路包括:
    数据信号输入模块,用于在扫描信号的控制下输入数据信号;
    驱动模块,与所述数据信号输入模块连接,用于在所述数据信号和所述电源高电位信号的控制下,驱动所述发光器件发光;
    存储模块,与所述数据信号输入模块和所述驱动模块连接,用于存储所述数据信号。
  20. 如权利要求12所述的显示装置,其中,所述发光器件包括串联的多个Mini LED灯。
PCT/CN2020/129950 2020-09-01 2020-11-19 背光模组和显示装置 WO2022048029A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/252,310 US20220319451A1 (en) 2020-09-01 2020-11-19 Backlight module and display device having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010905373.9A CN112068351A (zh) 2020-09-01 2020-09-01 背光模组和显示装置
CN202010905373.9 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022048029A1 true WO2022048029A1 (zh) 2022-03-10

Family

ID=73665241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129950 WO2022048029A1 (zh) 2020-09-01 2020-11-19 背光模组和显示装置

Country Status (3)

Country Link
US (1) US20220319451A1 (zh)
CN (1) CN112068351A (zh)
WO (1) WO2022048029A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763823B (zh) * 2021-11-10 2022-04-01 Tcl华星光电技术有限公司 拼接显示面板及拼接显示装置
CN114137764B (zh) * 2021-12-02 2024-01-09 惠州华星光电显示有限公司 背光模组及显示装置
CN114594631A (zh) * 2022-03-14 2022-06-07 昆山龙腾光电股份有限公司 背光模组、背光调节方法及显示装置
CN114974142A (zh) * 2022-05-31 2022-08-30 京东方科技集团股份有限公司 显示装置及其背光源的亮度调节方法
CN116597771B (zh) * 2023-05-24 2024-02-02 北京显芯科技有限公司 一种发光基板及其驱动方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056893A (en) * 1989-03-31 1991-10-15 Licentia Patent-Vertwaltungs-Gmbh Display device
CN104778920A (zh) * 2015-04-21 2015-07-15 西安诺瓦电子科技有限公司 Led显示屏的拼接亮暗线补偿方法
CN107742511A (zh) * 2017-11-08 2018-02-27 颜色空间(北京)科技有限公司 显示屏拼接后模块间视觉缝隙消除的方法以及显示方法
CN110061116A (zh) * 2019-04-29 2019-07-26 惠州市华星光电技术有限公司 Mini-LED背光及其制作方法
CN110073432A (zh) * 2016-12-14 2019-07-30 三星电子株式会社 显示装置及其接缝校正方法
CN110853592A (zh) * 2019-11-14 2020-02-28 深圳市华星光电半导体显示技术有限公司 显示面板的驱动电路及驱动方法
CN111999936A (zh) * 2020-08-27 2020-11-27 深圳市华星光电半导体显示技术有限公司 背光模组和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186254B1 (ko) * 2006-05-26 2012-09-27 엘지디스플레이 주식회사 유기 발광다이오드 표시장치와 그의 구동방법
KR102248841B1 (ko) * 2014-05-21 2021-05-06 삼성전자주식회사 디스플레이 장치, 전자 장치 및 전자 장치의 동작 방법
CN104465715B (zh) * 2014-12-30 2017-11-07 上海天马有机发光显示技术有限公司 像素电路、驱动方法、显示面板及显示装置
KR102573744B1 (ko) * 2016-11-23 2023-09-01 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN110580874B (zh) * 2019-08-14 2021-02-26 武汉华星光电技术有限公司 显示面板驱动方法和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056893A (en) * 1989-03-31 1991-10-15 Licentia Patent-Vertwaltungs-Gmbh Display device
CN104778920A (zh) * 2015-04-21 2015-07-15 西安诺瓦电子科技有限公司 Led显示屏的拼接亮暗线补偿方法
CN110073432A (zh) * 2016-12-14 2019-07-30 三星电子株式会社 显示装置及其接缝校正方法
CN107742511A (zh) * 2017-11-08 2018-02-27 颜色空间(北京)科技有限公司 显示屏拼接后模块间视觉缝隙消除的方法以及显示方法
CN110061116A (zh) * 2019-04-29 2019-07-26 惠州市华星光电技术有限公司 Mini-LED背光及其制作方法
CN110853592A (zh) * 2019-11-14 2020-02-28 深圳市华星光电半导体显示技术有限公司 显示面板的驱动电路及驱动方法
CN111999936A (zh) * 2020-08-27 2020-11-27 深圳市华星光电半导体显示技术有限公司 背光模组和显示装置

Also Published As

Publication number Publication date
US20220319451A1 (en) 2022-10-06
CN112068351A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
US11868002B2 (en) Backlight module and display device having same
WO2022048029A1 (zh) 背光模组和显示装置
US7286193B2 (en) Liquid crystal display unit having a field sequential driven backlight unit
WO2018121301A1 (zh) 液晶显示器
US20110273377A1 (en) Backlight for a display
US7924262B2 (en) Light source driving apparatus, display device having the same and method of driving a light source
US11475855B2 (en) Backlight module and display device
KR101323454B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
KR20060123872A (ko) 백라이트 유닛 및 액정 표시 장치
US11217195B2 (en) Display apparatus and shutting-down image-sticking elimination method thereof
KR20070049923A (ko) 액정표시장치용 박막 트랜지스터 기판 및 이를 구비하는액정표시장치
JP2012163581A (ja) 表示装置
KR101123072B1 (ko) 액정표시장치를 이용한 타일드 디스플레이
CN112327529B (zh) 显示装置及显示装置的驱动方法
KR20120021073A (ko) 액정표시장치
JP5649235B2 (ja) 液晶表示装置
KR101818460B1 (ko) 백 라이트 유닛 및 이를 이용한 액정 표시장치
TWI830150B (zh) 疊屏液晶顯示裝置
US11895899B2 (en) Display panel and photosensitive display device
KR20100049826A (ko) 액정표시장치
KR101108296B1 (ko) 액정표시장치 및 그 구동방법
KR20100047590A (ko) 씨오지 타입 액정표시장치
KR20080010108A (ko) 평판 표시 장치
KR20050115463A (ko) 휘도를 개선한 액정표시장치
KR20200043955A (ko) 표시패널 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952270

Country of ref document: EP

Kind code of ref document: A1