WO2022047634A1 - 参考信号发送方法及通信装置 - Google Patents

参考信号发送方法及通信装置 Download PDF

Info

Publication number
WO2022047634A1
WO2022047634A1 PCT/CN2020/112909 CN2020112909W WO2022047634A1 WO 2022047634 A1 WO2022047634 A1 WO 2022047634A1 CN 2020112909 W CN2020112909 W CN 2020112909W WO 2022047634 A1 WO2022047634 A1 WO 2022047634A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
field
time
information
time information
Prior art date
Application number
PCT/CN2020/112909
Other languages
English (en)
French (fr)
Inventor
刘晓晴
张永平
余政
李铁
张雷鸣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/112909 priority Critical patent/WO2022047634A1/zh
Priority to JP2023514143A priority patent/JP2023539670A/ja
Priority to CN202080103150.9A priority patent/CN115885492A/zh
Priority to EP20951882.8A priority patent/EP4207898A4/en
Publication of WO2022047634A1 publication Critical patent/WO2022047634A1/zh
Priority to US18/177,001 priority patent/US20230209571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a reference signal sending method and a communication device.
  • the fifth-generation wireless access system standard new radio is based on a multiple-input multiple-output (MIMO) system, and network devices can configure terminal devices to send sounding reference signals (SRS) .
  • SRS can support codebook-based uplink transmission, non-codebook-based uplink transmission, beam management, and antenna switching. From the perspective of time domain behavior, SRS can be divided into periodic sounding reference signal (periodic SRS, P-SRS), semi-persistent sounding reference signal (semi-persistent SRS, SP-SRS) and aperiodic sounding reference signal (aperiodic SRS, AP -SRS).
  • the network device can configure the period and offset for the SRS, and the terminal equipment can periodically send the SRS according to the configured period and offset.
  • the network device can configure the period and offset for the SRS, and send an activation or deactivation command to the terminal device through the media access control control element (MAC CE); when the terminal device receives When the activation command is activated, the SRS can be periodically sent according to the configured period and offset. If the deactivation command is received later, the terminal device stops sending the SRS.
  • MAC CE media access control control element
  • the network device triggers the terminal device to send the SRS through the downlink control information (DCI); the terminal device receives the DCI in the time slot n, and determines the SRS according to the offset defined by the high-level parameters and the time slot n. time slot, the SRS is sent on the determined time slot.
  • DCI downlink control information
  • the transmission process of aperiodic SRS has the disadvantages of inflexible transmission, low transmission success rate, and congestion of the physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the present application provides a reference signal RS sending method and communication device, which are beneficial to increase the flexibility of RS triggering, improve the RS sending success rate, and reduce the probability of PDCCH congestion.
  • the present application provides a reference signal (reference signal, RS) sending method.
  • the method may be executed by a terminal device, or may also be executed by a chip configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device acquires downlink control information DCI, determines first time information according to the DCI, determines a time unit for sending RS according to the first time information and the time unit where the DCI is located, and sends the RS at the determined sending location.
  • the RS is sent within the time period of the RS.
  • the downlink control information DCI dynamically indicates the sending time of the RS, which makes the time for sending the RS more flexible, thereby improving the scheduling capacity of the RS and reducing the possibility of PDCCH congestion.
  • the above-mentioned DCI includes a first field, the first field is used to determine the first time information, and there are at least two bit states associated with the same aperiodic state in the bit state corresponding to the first field.
  • RS resource trigger status is used to determine the first time information.
  • the field length of the above-mentioned first field is N bits, and n bits of the N bits are used to determine the first time information, and the N bits are divided by n Bits other than bits are used to determine the RS; wherein, 1 ⁇ n ⁇ N, and N is a positive integer.
  • the first time information is indicated by n bits in the first bits, and the RS is indicated by the remaining bits, which increases the flexibility of RS triggering.
  • the field length of the first field is m bits, and the m bits are used to determine the first time information and to determine the RS; m is greater than or equal to 3 is an odd number; among the 2 m bit states corresponding to the first field, (2 m ⁇ 2)/3 bit states are associated with the same aperiodic RS resource trigger state.
  • the field length of the above-mentioned first field is m bits, and these m bits are used to determine the first time information and to determine the RS; m is an even number greater than or equal to 4 ; Among the 2 m bit states corresponding to the first field, there are (2 m -1)/3 bit states associated with the same aperiodic RS resource trigger state.
  • the field length of the above-mentioned first field is K bits; in the case where k bits in the K bits are used to indicate supplementary uplink or non-supplementary uplink information, this The bits other than the k bits among the K bits are used for determining the first time information and/or determining the RS; in the case where there is no bit for indicating supplementary uplink or non-supplementary uplink information among the K bits , the K bits are used for determining the first time information and/or determining the RS; wherein, 1 ⁇ k ⁇ K, and K is a positive integer.
  • the above-mentioned first time information is included in a first value set, and the first value set is a set configured by the first high-level configuration information or a predefined set.
  • the flexibility of indicating the RS transmission time can be increased, thereby improving the scheduling capacity of the RS and reducing the possibility of PDCCH congestion.
  • the above-mentioned first field is used to indicate the second time information, and the second time information and the first time offset are used to determine the first time information;
  • the second time information includes For the second set of values, the second set of values is a set or a predefined set configured by the configuration information of the second higher layer;
  • the first time offset is configured or predefined by the configuration information of the third higher layer.
  • the first time offset is configured through the third-layer configuration information, and multiple second values are configured through the second-layer configuration information, and the terminal device can determine the second value and the first time offset according to the second value indicated by the first field
  • the first time information effectively reduces the overhead of high-level signaling on the basis of ensuring the flexibility of RS transmission time.
  • the above-mentioned DCI includes an RS request field and a time indication field; the time indication field and the first time offset are used to determine the first time information; the value indicated by the time indication field is included in the The second set of values; the second set of values is a set or a predefined set configured by the second-layer configuration information; the first time offset is configured or predefined by the third-layer configuration information.
  • the RS sending time is determined by the second value indicated by the time indication field and the first time offset configured by the third high layer configuration information, which effectively reduces the overhead of high layer signaling on the basis of ensuring the flexibility of the RS sending time.
  • At least one element in the second value set has a value greater than -4 and less than 5; or, at least one element in the second value set has a value greater than 0 and less than 7; or, the above-mentioned second value set is related to the slot format information.
  • the field length of the first field is m bits, and m is an odd number greater than or equal to 3; in the case where the bit state corresponding to the first field is not a specific value, The number of resources of the RS is the first number; when the bit state corresponding to the first field is a specific value or the terminal device receives the RS resource information switching instruction, the number of resources of the RS is the second number.
  • the resource quantity of the RS is the first quantity or the second quantity, which is configured or pre-defined by the fourth-layer configuration information.
  • the number of RS resources is switched through the specific value indicated by the DCI, thereby increasing the configuration flexibility of the RS, ensuring the accuracy of downlink channel information measurement or reducing the power consumption of the terminal equipment.
  • the field length of the first field is m bits, and m is an odd number greater than or equal to 3; in the case where the bit state corresponding to the first field is not a specific value, The number of ports of the RS is the third number; in the case that the bit state corresponding to the first field is a specific value or the terminal device receives the RS port information switching instruction, the number of ports of the RS is the fourth number.
  • the number of ports of the RS is a third number or a fourth number, which is configured or pre-defined by the fifth-layer configuration information.
  • the number of antenna ports of the RS is switched through the specific value indicated by the DCI, thereby increasing the configuration flexibility of the RS performing the antenna switching function, ensuring the accuracy of downlink channel information measurement or reducing the power consumption of the terminal equipment.
  • the present application provides a method for sending a reference signal RS.
  • the method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: the network device determines the first time information according to the downlink control information DCI, determines the time unit for receiving the RS according to the first time information and the time unit where the DCI is located, and at the determined time for receiving the RS In the unit, the RS is received.
  • the downlink control information DCI dynamically indicates the receiving time of the RS, which makes the time for receiving the RS more flexible, thereby improving the scheduling capacity of the RS and reducing the possibility of PDCCH congestion.
  • the above-mentioned DCI includes a first field, the first field is used to determine the first time information, and there are at least two bit states associated with the same aperiodic state in the bit state corresponding to the first field.
  • RS resource trigger status is used to determine the first time information.
  • the field length of the first field is N bits, and n bits of the N bits are used to determine the first time information, and the N bits are divided by n Bits other than bits are used to determine the RS; wherein, 1 ⁇ n ⁇ N, and N is a positive integer.
  • the field length of the first field is m bits, and the m bits are used to determine the first time information and to determine the RS; m is greater than or equal to 3 is an odd number; among the 2 m bit states corresponding to the first field, (2 m ⁇ 2)/3 bit states are associated with the same aperiodic RS resource trigger state.
  • the field length of the above-mentioned first field is m bits, and these m bits are used to determine the first time information and to determine the RS; m is an even number greater than or equal to 4 ; Among the 2 m bit states corresponding to the first field, there are (2 m -1)/3 bit states associated with the same aperiodic RS resource trigger state.
  • the field length of the first field is K bits; in the case where k bits in the K bits are used to indicate supplementary uplink or non-supplementary uplink information, this The bits other than the k bits among the K bits are used for determining the first time information and/or determining the RS; in the case where there is no bit for indicating supplementary uplink or non-supplementary uplink information among the K bits , the K bits are used for determining the first time information and/or determining the RS; wherein, 1 ⁇ k ⁇ K, and K is a positive integer.
  • the above-mentioned first time information is included in a first set of values, and the first set of values is a set or a predefined set configured by the first high-level configuration information.
  • the flexibility of indicating the RS transmission time can be increased, thereby improving the scheduling capacity of the RS and reducing the possibility of PDCCH congestion.
  • the above-mentioned first field is used to indicate the second time information, and the second time information and the first time offset are used to determine the first time information;
  • the second time information includes For the second set of values, the second set of values is a set or a predefined set configured by the configuration information of the second higher layer; the first time offset is configured or predefined by the configuration information of the third higher layer.
  • the first time offset is configured through the third-layer configuration information, and multiple second values are configured through the second-layer configuration information, and the terminal device can determine the second value and the first time offset according to the second value indicated by the first field
  • the first time information effectively reduces the overhead of high-level signaling on the basis of ensuring the flexibility of RS transmission time.
  • the above-mentioned DCI includes an RS request field and a time indication field; the time indication field and the first time offset are used to determine the first time information; the value indicated by the time indication field is included in the The second set of values; the second set of values is a set or a predefined set configured by the second-layer configuration information; the first time offset is configured or predefined by the third-layer configuration information.
  • the RS sending time is determined by the second value indicated by the time indication field and the first time offset configured by the third high layer configuration information, which effectively reduces the overhead of high layer signaling on the basis of ensuring the flexibility of the RS sending time.
  • At least one element in the second value set has a value greater than -4 and less than 5; or, at least one element in the second value set has a value greater than 0 and less than 7; or, the above-mentioned second value set is related to the slot format information.
  • the field length of the first field is m bits, and m is an odd number greater than or equal to 3; in the case where the bit state corresponding to the first field is not a specific value, The number of resources of the RS is the first number; when the bit state corresponding to the first field is a specific value or the terminal device receives the RS resource information switching instruction, the number of resources of the RS is the second number.
  • the resource quantity of the RS is the first quantity or the second quantity, which is configured or pre-defined by the fourth higher layer configuration information.
  • the number of RS resources is switched through the specific value indicated by the DCI, thereby increasing the configuration flexibility of the RS, ensuring the accuracy of downlink channel information measurement or reducing the power consumption of the terminal equipment.
  • the field length of the first field is m bits, and m is an odd number greater than or equal to 3; in the case where the bit state corresponding to the first field is not a specific value, The number of ports of the RS is the third number; in the case that the bit state corresponding to the first field is a specific value or the terminal device receives the RS port information switching instruction, the number of ports of the RS is the fourth number.
  • the number of ports of the RS is a third number or a fourth number, which is configured or pre-defined by the fifth-layer configuration information.
  • the number of antenna ports of the RS is switched through the specific value indicated by the DCI, thereby increasing the configuration flexibility of the RS performing the antenna switching function, ensuring the accuracy of downlink channel information measurement or reducing the power consumption of the terminal equipment.
  • the present application further provides a communication device.
  • the communication apparatus has part or all of the functions of the terminal device described in the first aspect.
  • the functions of the apparatus may have the functions of some or all of the embodiments of the terminal device in this application, and may also have the functions of independently implementing any one of the embodiments of this application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may also include a storage unit for coupling with the processing unit and the communication unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • the processing unit is used to obtain downlink control information DCI, determines the first time information according to this DCI, determines the time unit that sends the RS according to the time unit where the first time information and this DCI are located;
  • a communication unit configured to send the RS within the determined time for sending the RS.
  • the communication device may include:
  • a processor configured to acquire downlink control information DCI, determine first time information according to the DCI, and determine a time unit for sending RS according to the first time information and the time unit where the DCI is located;
  • a transceiver configured to send the RS within the determined time for sending the RS.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • the present application further provides a communication device.
  • the communication apparatus has part or all of the functions of the network device in the method example described in the second aspect.
  • the function of the communication device may have the function of some or all of the embodiments of the present application, and may also have the function of independently implementing any one of the embodiments of the present application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the processing unit and the sending unit, which stores necessary program instructions and data of the communication device.
  • the communication device includes:
  • a processing unit configured to determine the first time information according to the downlink control information DCI, and determine the time unit for receiving the RS according to the first time information and the time unit where the DCI is located;
  • a communication unit configured to receive the RS within the determined time unit for receiving the RS.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • a processor configured to determine the first time information according to the downlink control information DCI, and determine the time unit for receiving the RS according to the first time information and the time unit where the DCI is located;
  • a transceiver configured to receive the RS within the determined time unit for receiving the RS.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • the present application further provides a processor for executing the above-mentioned various methods.
  • the process of sending and receiving the above-mentioned information in the above-mentioned methods can be understood as the process of outputting the above-mentioned information by the processor and the process of receiving the above-mentioned information input by the processor.
  • the processor When outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. After the above-mentioned information is output by the processor, other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • the sending of the RS mentioned in the foregoing method can be understood as the processor outputting the RS.
  • receiving the RS may be understood as the processor receiving the input RS.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the setting manner of the memory and the processor.
  • the present application further provides a communication system, the system includes at least one terminal device and at least one network device according to the above aspects.
  • the system may further include other devices that interact with the terminal or network device in the solution provided in this application.
  • the present application provides a computer-readable storage medium for storing computer software instructions, and when the instructions are executed by a computer, the method described in the first aspect above is implemented.
  • the present application provides a computer-readable storage medium for storing computer software instructions, which, when executed by a computer, enable a communication device to implement the method described in the second aspect.
  • the present application also provides a computer program product comprising instructions, which, when executed on a computer, cause the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product comprising instructions, which, when executed on a computer, cause the computer to execute the method described in the second aspect above.
  • the present application provides a chip system, the chip system includes a processor and an interface, the interface is used to obtain a program or an instruction, and the processor is used to call the program or instruction to implement or support a terminal device To implement the functions involved in the first aspect, for example, to determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, the chip system includes a processor and an interface, the interface is used to obtain a program or an instruction, and the processor is used to call the program or instruction to implement or support a network device To implement the functions involved in the second aspect, for example, to determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system applying the present application
  • FIG. 2 is a schematic flowchart of a method for sending a reference signal provided by the present application
  • FIG. 3 is an example diagram of a first field provided in Embodiment 1 of the present application.
  • FIG. 4 is an example diagram of a first field provided in Embodiment 2 of the present application.
  • FIG. 5 is an example diagram of a first field provided in Embodiment 3 of the present application.
  • FIG. 6 is an example diagram of a first field provided in Embodiment 4 of the present application.
  • FIG. 7 is an example diagram of a first field provided in Embodiment 5 of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • the network device in the communication system can be any device with a wireless transceiver function or a chip that can be provided in the device, and the device includes but is not limited to: evolved Node B (evolved Node B, eNB), wireless Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC), Base Transceiver Station (Base Transceiver Station, BTS), Home Base Station (for example, Home evolved NodeB , or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), access point (Access Point, AP), wireless relay node, wireless backhaul node, wireless fidelity (Wireless Fidelity, WIFI) system Transmission point (TP) or transmit and receive point (TRP), etc.
  • evolved Node B evolved Node B
  • RNC Radio Network Controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • BTS Base Transceiver Station
  • It can also be a device used in 5G, 6G or even 7G systems, such as NR, gNB in the system, or transmission point (TRP or TP), 5G One or a group (including multiple antenna panels) antenna panels of the base station in the system, or, it can also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU) ), or Picocell, or Femtocell, or, vehicle to everything (V2X) or roadside unit (RSU) in intelligent driving scenarios, etc.
  • BBU baseband unit
  • DU distributed unit
  • Picocell or Femtocell
  • V2X vehicle to everything
  • RSU roadside unit
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless chain
  • the functions of the road control radio link control, RLC
  • media access control media access control, MAC
  • physical (physical, PHY) layers The functions of the road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, which may be installed in the network device.
  • terminal equipment in the communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication device, user agent or user equipment.
  • UE user equipment
  • the terminal device in the embodiments of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in the aforementioned V2X Internet of Vehicles or RSUs of wireless terminal type, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the numbering may start from 0 consecutively.
  • the 0th symbol in a certain time slot may refer to the first symbol of the time slot.
  • the specific implementation is not limited to this.
  • it can also be numbered consecutively from 1.
  • the first symbol in a certain time slot may also refer to the first symbol of the time slot. Since the starting values of the numbers are different, the numbers corresponding to the same symbol in the time slots are also different.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b and c can represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • the embodiments disclosed herein will present various aspects, embodiments or features of the present application around a system including a plurality of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc., and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for an embodiment of the present application.
  • the communication system 100 may include at least one terminal device, such as the terminal device 101 shown in the figure; the communication system 100 may also include at least one network device, such as the network device #1 102 shown in the figure or Network Device #2 103.
  • the terminal device can obtain high-level parameters through the RRC signaling sent by the network device, and obtain the configuration information of the reference signal through the high-level parameters, including but not limited to resource trigger configuration information, time offset configuration information, resource mapping configuration information, etc.
  • the terminal device may also receive downlink control information from the network device, determine the first time information according to the received downlink control information, and determine the time unit for sending the reference signal according to the first time information and the time unit where the downlink control information is located, so as to The reference signal is sent within the determined time unit.
  • the network device may determine the time unit for receiving the reference signal according to the first time information and the time unit where the downlink control information is located, so as to receive the reference signal within the determined time unit.
  • the communication system 100 may include one or more network devices, such as network device #1 102 and network device #2 103 as shown in the figure.
  • the network device #1 102 and the network device #2 103 may be network devices in the same cell, or may be network devices in different cells, which are not limited in this application.
  • the figure is only an example, showing an example in which the network device #1 102 and the network device #2 103 are located in the same cell.
  • reference signals include, for example, but not limited to, channel state information reference signal (CSI-RS), synchronous signal broadcast channel block (synchronous signal/PBCH block, SSB), sounding reference signal (sounding reference signal) reference signal, SRS), etc.
  • CSI-RS channel state information reference signal
  • SSB synchronous signal broadcast channel block
  • SRS sounding reference signal
  • TRS tracking reference signal
  • the reference signal in this application is introduced by taking the SRS as an example, and the reference signal sent by the terminal device is sent by the terminal device sending the SRS as an example.
  • the SRS sent by the terminal device can be understood as a triggered SRS, and the triggered SRS can be understood as at least one of the high-level parameters configured by radio resource control (RRC) signaling, the MAC CE or DCI sent by the network device. species, triggered SRS.
  • RRC radio resource control
  • the SRS is configured as a periodic sounding reference signal (periodic SRS, P-SRS), semi-persistent sounding reference signal (semi-persistent SRS, SP-SRS) or aperiodic sounding reference signal through the resource type resourceType in the high-level parameters. Sounding Reference Signal (aperiodic SRS, AP-SRS).
  • the network device can configure the period and offset for the SRS through high-layer parameters, and the terminal device can periodically send the SRS according to the configured period and offset.
  • Periodic SRS can be understood as the periodic transmission of SRS triggered by high-layer parameters, and its time domain behavior can be understood as sending SRS in periodic time domain behavior.
  • the network device can configure the period and offset for the SRS through high-level parameters, and send an activation or deactivation command to the terminal device through MAC CE; when the terminal device receives the activation command, it can configure the period and offset according to the configured period and offset. , periodically sending SRS, and if a deactivation command is subsequently received, the terminal device stops sending SRS.
  • the semi-persistent SRS can be understood as the transmission of the SRS triggered by the MAC CE, and its time-domain behavior can be understood as sending the SRS in the semi-persistent time-domain behavior.
  • the network device triggers the terminal device to send SRS through DCI; the terminal device receives the DCI in time slot n, and determines the time slot for sending SRS according to the offset defined by the high-level parameters and time slot n, and on the determined time slot Send SRS.
  • Aperiodic SRS can be understood as the transmission of SRS triggered by DCI, and its time domain behavior can be understood as sending SRS in aperiodic time domain behavior.
  • the SRS sent by the terminal device may be the SRS corresponding to the triggered SRS resource set.
  • One SRS resource set may include one or more SRS resources.
  • the network device can configure one or more SRS resource sets for the terminal device through the high-level parameter SRS-ResourceSet. The applicability of each SRS resource set can be configured through the usage in the high-level parameter SRS-ResourceSet.
  • the currently supported usage includes 'codebook', 'nonCodebook', 'beamManagement' and 'antennaSwitching' four use cases, 'codebook' corresponds to SRS supporting codebook-based uplink transmission, 'nonCodebook' corresponds to SRS supporting non-codebook-based uplink transmission, 'beamManagement' corresponds to SRS Beam management is supported, 'antennaSwitching' corresponds to SRS supporting antenna switching.
  • the network device defines the slot-level offset through the high-level parameter slotOffset, and the terminal device receives the DCI or group common DCI or uplink DCI for downlink scheduling, and the SRS in the DCI Among the bit states corresponding to the request (request) field, there is at least one bit state for triggering the configured one or more SRS resource sets.
  • the field length of the SRS request field in the DCI is two bits, and the two bits correspond to four bit states, as shown in Table 1-1, for example.
  • the bit state corresponding to the SRS request field is 01
  • an item in the high-level parameter aperiodicSRS-ResourceTriggerList is configured as an SRS resource set of 1
  • it indicates that the triggered SRS resource set is the high-level parameter aperiodicSRS-ResourceTriggerList is configured as 1 SRS resource set.
  • the bit status corresponding to the SRS request field is 01
  • the first group of usages in the serving cell configured by the high layer is configured as the SRS resource set of 'antennaSwitching'
  • the first group usage in the serving cell is configured as the SRS resource set of 'antennaSwitching'.
  • the field length of the SRS request field in the DCI is three bits.
  • the first bit is used to indicate the non-supplementary uplink/supplementary uplink information.
  • the second bit and the third bit please refer to Table 1 above. -1.
  • the terminal device can transmit the SRS in the time slot shown in equation (1-1) without considering the unaligned frame.
  • the terminal device may transmit the SRS in the time slot shown in (1-2).
  • k represents the slot-level offset configured by the upper layer parameter slotOffset; Indicates the subcarrier spacing based on SRS transmission, the subcarrier spacing configuration of SRS; Indicates the subcarrier spacing based on SRS transmission, the subcarrier spacing configuration of the PDCCH carrying the trigger command; Indicates rounded down.
  • formula (1-2) represents the time slot offset between the primary cell (primary cell, PCell)/primary secondary cell (PScell, PScell) A and the secondary cell (secondary cell, SCell) B; ⁇ offset is expressed as in each cell pair,
  • the upper layer parameter SCS-SpecificCarrierList is the maximum value of the lowest subcarrier interval configuration among all subcarrier intervals configured for each cell.
  • the network device configures the SRS by using the high layer parameter resourceMapping to send the number of consecutive orthogonal frequency division multiplexing (OFDM) symbols of the SRS and the starting symbol position occupied by the SRS in the triggered time slot.
  • OFDM orthogonal frequency division multiplexing
  • the slot format of NR includes downlink symbols, uplink symbols and flexible symbols, and the SRS is sent on the uplink symbols or flexible symbols.
  • a time slot containing downlink symbols is defined as "D”
  • a time slot containing uplink symbols and flexible symbols is defined as "U”
  • a time slot containing both downlink symbols and/or uplink symbols and flexible symbols is defined as " S”
  • the time slot format is configured as "DDDSU”.
  • the control information is used to trigger the terminal equipment to send the reference signal RS.
  • the control information is, for example, but not limited to, downlink control information (DCI), or MAC CE, or RRC signaling, or other high-layer signaling.
  • DCI downlink control information
  • the high layer signaling may be, for example, but not limited to, radio resource control signaling dedicated to terminal equipment, radio resource control signaling dedicated to cell, or one or more of high layer parameters.
  • the high layer configuration information may be RRC signaling or other high layer signaling or MAC CE.
  • the terminal device When the terminal device is configured with the use case type 'antennaSwitching', the terminal device will report the terminal device capability. For the terminal device capability, see Table 1-4 below.
  • the network device configures the terminal device according to the received capabilities of the terminal device.
  • An antenna port is a logical concept, and an antenna port has no direct correspondence with a physical antenna.
  • the antenna port is usually associated with the reference signal, and its meaning can be understood as a transceiving interface on the channel experienced by the reference signal.
  • one antenna port may correspond to one or more antenna elements, these elements jointly send reference signals, and the receiving end can treat them as a whole without distinguishing these elements.
  • the antenna port may correspond to a beam.
  • the receiving end only needs to regard this beam as an interface, and does not need to distinguish each array element.
  • each SRS resource set is configured with two SRS resources, which are transmitted with different symbols.
  • Each SRS resource in an SRS resource set consists of a separate SRS port, and the terminal device antenna port associated with the SRS port of the second resource of the SRS resource set is the terminal device associated with the SRS port of the first SRS resource.
  • Device antenna ports are different.
  • each SRS resource set is configured with two SRS resources, which are transmitted with different symbols.
  • Each SRS resource in an SRS resource set consists of two SRS ports, and the terminal device antenna port pair associated with the SRS port pair of the second SRS resource in the SRS resource set is the same as the SRS port pair of the first SRS resource.
  • the associated end device antenna port pairs are different.
  • 0 or 1 time domain behavior can be configured as periodic or semi-persistent SRS resource sets, wherein each SRS resource set is configured with 4 SRS resources, which are transmitted with different symbols.
  • Each SRS resource in an SRS resource set consists of a separate SRS port, and the terminal equipment antenna ports associated with the SRS port of each SRS resource are different.
  • 0 or 2 SRS resource sets with aperiodic behavior in the time domain can be configured.
  • a total of 4 SRS resources are configured in the 2 SRS resource sets. These 4 SRS resources are transmitted on different symbols in 2 different time slots.
  • the terminal equipment antenna ports associated with the SRS ports of each SRS resource are different.
  • Each SRS resource set may be configured with two SRS resources, or one SRS resource set may be configured with one SRS resource, and another SRS resource set may be configured with three SRS resources.
  • the trigger parameter aperiodicSRS-ResourceTrigger or AperiodicSRS-ResourceTriggerList of the two SRS resource sets has the same value, and the time slot offset parameter slotOffset is different.
  • each SRS resource set includes one SRS resource
  • each SRS resource set contains one SRS resource.
  • the number of SRS ports corresponds to 1, 2, or 4, respectively.
  • the terminal device For the use case type of 'antennaSwitching', the terminal device expects to configure the same number of SRS ports for all SRS resources in an SRS resource set.
  • the terminal device does not expect more than one SRS resource set of use case type 'antennaSwitching' to be configured or triggered in one slot, nor does the terminal device expect to be configured or triggered in one symbol for more than one SRS resource set An SRS resource set with use case type 'antennaSwitching'.
  • configuration is performed in units of SRS resource sets by RRC signaling.
  • a terminal device can configure at most one SRS resource set under the use case. Therefore, for an end device, only one trigger bias can be configured per use case. Since the PDCCH can only be transmitted on the downlink or flexible symbols, and the SRS can only be transmitted on the uplink or flexible symbols, the existing RRC signaling configuration trigger offset mechanism will limit the possible PDCCH positions for triggering the SRS and the SRS. Send location.
  • the network device When the network device sends the DCI for triggering the aperiodic SRS resource set on a certain time slot, if the corresponding SRS resource sending position is the downlink symbol in the time slot calculated according to the time slot offset, the SRS triggering will fail. ;
  • the network device needs to trigger aperiodic SRS on a certain time slot, the time slot position where it can send the DCI for triggering the SRS resource set is fixed, if there is no uplink or downlink scheduling requirement on the corresponding time slot, The network device will not send DCI, which will also cause the trigger to fail.
  • the number of terminal devices increases, the number of aperiodic SRSs that need to be triggered at the same time increases.
  • the slot format indicator (SFI) is dynamically indicated by the DCI, the slot offset configured by the RRC signaling will no longer be applicable.
  • a single configuration of the time domain behavior of an SRS resource set by RRC signaling may bring some problems.
  • aperiodic SRS is used for channel sounding; while for the 'codebook' used for downlink channel measurement
  • For antennaSwitching' use case in order to better support channel estimation and reduce channel aging effects, it is often necessary to use periodic or semi-persistent SRS for channel sounding. This leads to reducing the use case type limitation by reusing the two use cases.
  • the single configuration of the number of antenna ports in one SRS resource set by RRC signaling may bring problems.
  • CSI downlink channel state information
  • the network device since the network device configures a transmit antenna port and the number of receive antenna ports for the terminal device according to the reported terminal device capability, it can only be achieved through semi-static reconfiguration.
  • the configuration of the number of antenna ports can be changed, but the configuration of the number of antenna ports cannot be dynamically changed according to different requirements, thus limiting scheduling.
  • the present application provides a reference signal sending method and communication device, which can flexibly send reference signals, can improve the sending success rate, and reduce the probability of PDCCH congestion.
  • the terminal device takes the UE as an example, and the names of the information or data exchanged between the UE and the network device are used as an example, and do not constitute a limitation to the embodiments of the present application.
  • FIG. 2 is a schematic flowchart of the reference signal method provided by the present application.
  • the process may include but not limited to the following steps:
  • Step 201 the network device sends the DCI to the UE. Accordingly, the UE receives the DCI from the network device.
  • the DCI is used to determine the first time information, and the UE can determine the time unit for sending the RS according to the first time information and the time unit where the DCI is located.
  • the DCI is also used to trigger the UE to send the RS, and specifically can be used to trigger the UE to send the triggered RS.
  • the DCI includes a first field, the first field is used to determine the first time information, and there are at least two bit states in the bit state corresponding to the first field associated with the same aperiodic RS resource trigger state.
  • the aperiodic RS resource triggering state may be an SRS resource set of 1, 2 or 3 configured by the high-level parameter aperiodicSRS-ResourceTrigger; it may also be an item configured in the high-level parameter aperiodicSRS-ResourceTriggerList , this item is the SRS resource set of 1, 2 or 3; it can also be the SRS resource set of the first group, the second group or the third group of usage configured as 'antennaSwitching' in the serving cell configured by the high layer.
  • the SRS resource set configured as 1, 2 or 3 is used as an example, and as the standard evolves, there may also be SRS resources configured as other values.
  • the field length of the first field is 3 bits
  • the first field corresponds to 8 bit states
  • at least 2 bit states in the 8 bit states are associated with the same aperiodicSRS-ResourceTrigger.
  • the bit states "010" and "011" are associated with an SRS resource set of 1 configured by aperiodicSRS-ResourceTrigger.
  • the field length of the first field is N bits
  • n bits of the N bits are used to determine the first time information
  • bits other than the n bits of the N bits are used to determine that the UE will send , which is used to determine the triggered RS.
  • 1 ⁇ n ⁇ N, N is a positive integer.
  • the n bits used to determine the first time information may be continuous n bits, or n bits distributed at equal intervals, or may be n bits without any regularity.
  • the n bits used to determine the first time information may be a subfield in the first field, and the bits other than the n bits among the N bits may be another subfield in the first field .
  • the first time information may be determined by the bit states corresponding to the n bits, for example, one bit state corresponds to one first time information; A bitmap determines the first time information.
  • the first time information is indicated by n bits in the first field, and the RS is indicated by the remaining bits, thereby increasing the flexibility of RS triggering.
  • the field length of the first field is m bits, and the m bits are used to determine the first time information and the RS to be sent by the UE; m is an odd number greater than or equal to 3; 2 m corresponding to the first field Among the bit states, (2 m ⁇ 2)/3 bit states are associated with the same aperiodic RS resource trigger state.
  • bit states “010” and “011” are associated with an SRS resource set of 1 configured by aperiodicSRS-ResourceTrigger; bit states “100” and “101” are associated with an SRS resource set of 2 configured by aperiodicSRS-ResourceTrigger; bit state "110”” and “111” are associated with the SRS resource set of 3 configured by aperiodicSRS-ResourceTrigger.
  • the field length of the first field is m bits, and the m bits are used to determine the first time information and to determine the RS; m is an even number greater than or equal to 4; among the 2 m bit states corresponding to the first field There are (2 m -1)/3 bit states associated with the same aperiodic RS resource trigger state.
  • bit states "0001”, “0010”, “0011”, “0100” and "0101" are associated with an SRS resource set of 1 configured by aperiodicSRS-ResourceTrigger.
  • the RRC signaling or the MAC CE or other higher layer signaling can configure the field length of the first field of the DCI in different time windows.
  • the field length of the first field of the DCI configured in the RRC signaling in the first time window is 3 bits
  • the field length of the first field of the DCI configured in the second time window is 4 bits. It can be understood that the field length of the first field of the DCI can be dynamically configured by high layer signaling.
  • the first time information when m bits are used to determine the first time information, the first time information may be determined by the bit states corresponding to the m bits, for example, one bit state corresponds to one first time information; The first time information may be determined through a bitmap corresponding to m bits.
  • the first time information and the RS are jointly indicated by the first field in the DCI, which increases the flexibility of the RS triggering without increasing the DCI overhead.
  • the field length of the first field is K bits; in the case where k bits in the K bits are used to indicate supplementary uplink or non-supplementary uplink information, the bits other than the k bits in the K bits Used to determine the first time information and/or determine the RS to be sent by the UE; in the case where there is no bit used to indicate supplementary uplink or non-supplementary uplink information among the K bits, these K bits are used to determine the first Time information and/or determination of the RS to be sent; where 1 ⁇ k ⁇ K, where K is a positive integer.
  • the other 3 bits are used to determine the first Time information and/or determine which RS the UE will send.
  • the 1 bit used to indicate supplementary uplink information or non-supplementary uplink information may be the first bit among the 4 bits, so as to be distinguished.
  • these 4 bits are used to determine the first time information and/or determine the RS to be sent by the UE.
  • the determination when determining the first time information, the determination may be performed through a bit state or a bitmap.
  • Manner 4 By aligning the lengths of the DCI indication RS transmission fields with and without the supplementary uplink configured, the processing complexity of the terminal device can be reduced.
  • the first time information in the above several manners is a numerical value, and the numerical value is included in the first value set, and the first value set is a set configured by the first high-level configuration information or a predefined set.
  • the first high-layer configuration information may be a high-layer parameter slotOffsetlist, the list includes multiple values, and the first time information is one of the multiple values.
  • the first field is used to indicate the second time information
  • the second time information and the first time offset are used to determine the first time information.
  • the second time information is included in the second set of values
  • the second set of values is a set or a predefined set configured by the second higher layer configuration information
  • the first time offset is configured or predefined by the third higher layer configuration information.
  • the second high-level configuration information may be configuration information in high-level signaling such as RRC signaling or MAC CE
  • the configuration information is used to configure the second value set
  • the second value set includes multiple values
  • the second time information is one of these multiple values.
  • the third layer configuration information is the high layer parameter slotOffset, which is a value.
  • the DCI includes an RS request field and a time indication field.
  • the time indication field is used to determine the first time information.
  • the time indication field and the first time offset are used to determine the first time information
  • the value indicated by the time indication field is included in the second set of values
  • the second set of values is a set or pre-configured set of the second high-level configuration information.
  • the second high-level configuration information may be configuration information in high-level signaling such as RRC signaling or MAC CE
  • the configuration information is used to configure the second value set
  • the second value set includes multiple values
  • the time indication field indicates is one of these values.
  • the third layer configuration information is the high layer parameter slotOffset, which is a value. It should be noted that the name of the time indication field is used as an example, and does not constitute a limitation to the present application.
  • the RS request field is used to determine the RS to be sent by the UE.
  • the RS request field may be, for example, an SRS request field.
  • the RS request field can also be described as the RS request field.
  • the name of the RS request field is used as an example and does not constitute a limitation to this application. With the evolution of the standard, other names may be used to describe the RS request field, and other names used to describe the essence of the RS request field should fall into the scope of protection of this application.
  • Step 202 the UE determines the first time information according to the DCI.
  • the UE determines the first time information according to the DCI, which can be implemented in one of the following three ways:
  • the first field is used to indicate the first time information, and the UE directly obtains the first time information indicated by the first field.
  • the first time information is a value, and the value is included in the first value set, and the first value set is a set configured by the first high-level configuration information or a predefined set.
  • the first high-layer configuration information may be a high-layer parameter slotOffsetlist, the list includes multiple values, and the first time information is one of the multiple values.
  • the slotOffsetlist includes five values from k 1 to k 5 , the first field is used to indicate k 1 , and k 1 is the first time information.
  • the first field is used to indicate the second time information
  • the UE determines the first time information according to the second time information and the first time offset.
  • the second time information is included in the second set of values
  • the second set of values is a set or a predefined set configured by the second higher layer configuration information
  • the first time offset is configured or predefined by the third higher layer configuration information.
  • the second high-layer configuration information may be configuration information in high-layer signaling such as RRC signaling or MAC CE
  • the configuration information is used to configure the second value set
  • the second value set includes multiple values
  • the second time information is one of these multiple values.
  • the third layer configuration information is the high layer parameter slotOffset, which is a value.
  • the slotOffset is k 0
  • the second value set includes 5 values from l 1 to l 5
  • the first field is used to indicate l 1
  • l 1 is the second time information
  • the two The sum is the first time information.
  • the DCI includes an RS request field and a time indication field, and the time indication field is used to determine the first time information.
  • the UE determines the first time information according to the time indication field and the first time offset.
  • the value indicated by the time indication field is included in the second set of values, the second set of values is a set or a predefined set configured by the second-layer configuration information, and the first time offset is configured or predefined by the third-layer configuration information of.
  • the second high-layer configuration information may be configuration information in high-layer signaling such as RRC signaling or MAC CE, the configuration information is used to configure the second value set, the second value set includes multiple values, and the time indication field indicates is one of these values.
  • the third layer configuration information is the high layer parameter slotOffset, which is a value.
  • the slotOffset is k 0
  • the second value set includes 5 values from l 1 to l 5
  • the time indication field is used to indicate l 1
  • l 1 and k 0 are added together
  • the sum of the two is the first time information .
  • the configuration information of the third layer may be consistent with a time offset configured by the existing slotOffset.
  • configuring multiple candidate time offset values through the high-level configuration information can increase the flexibility of indicating the RS transmission time, thereby improving the scheduling capacity of the RS and reducing the possibility of PDCCH congestion.
  • the second value set may be one of the following situations:
  • Case 1 There is at least one element in the second value set whose value is greater than -4 and less than 5, that is, the elements in the second value set are composed of ⁇ -3,-2,-1,0,1,2,3, 4 ⁇ is composed of one or more values, for example, the second set of values is ⁇ -2,-1,0,1,2 ⁇ .
  • the second value set is ⁇ 0,1 ⁇ ; if there are five optional elements, then the second value set is ⁇ -2,-1,0 ,1,2 ⁇ .
  • Case 2 There is at least one element in the second value set whose value is greater than 0 and less than 7, that is, the elements in the second value set are composed of ⁇ 0,1,2,3,4,5,6,7 ⁇
  • One or more numerical values for example, the second set of values is ⁇ 0,1 ⁇ .
  • the second value set is ⁇ 0,1 ⁇ ; if there are five optional elements, then the second value set is ⁇ -2,-1,0 ,1,2 ⁇ .
  • the second value set is related to the slot format information.
  • the time slot format information can be a commonly used time slot ratio, which can include but is not limited to the ratio between time slot "D" and/or "S" and time slot “U”, and this ratio can be 8: 2; 7:3; or 4:1, etc.
  • the time slot ratio is 8:2 and the second value set is ⁇ -2,-1,0,1,2 ⁇ , then when the time slot where the DCI is located and the first time offset are determined.
  • the second value indicated by the time indication field can be used to adjust the RS sending position so that it can be sent.
  • the simultaneous support of the time slot position, negative offset (ie, the second value of a negative number) and positive offset (ie, the second value of a positive number) can meet the needs of fast triggering.
  • the sending position of the RS can be adjusted to the timeslots that can be sent by using the second value indicated by the time indication field. Location.
  • the sending position of the RS can be adjusted to be sendable through the second value indicated by the time indication field. slot location.
  • the time slot ratio is 4:1 and the second value set is ⁇ 0, 1, 2, 3, 4 ⁇
  • the RS determined according to the time slot where the DCI is located and the first time offset is sent The position is all the time slots in every 5 time slots, and the sending position of the RS can be adjusted to the position of the time slot that can be sent by using the second value indicated by the time indication field.
  • the sending position of the RS can be adjusted to the position of the time slot that can be sent by using the second value indicated by the time indication field, and the requirements of different trigger speeds can be guaranteed at this time.
  • Step 203 the UE determines the time unit for sending the RS according to the first time information and the time unit where the DCI is located.
  • the UE determines the time unit for sending the RS according to the first time information and the time unit where the DCI is located.
  • the first set of values configured by the first higher layer configuration information are k 1 and k 2
  • the time unit for receiving the DCI is time slot n.
  • the first field indicates k 1 : in the case of not considering the unaligned frame, the UE can determine that the time unit for sending the RS is the time slot shown in formula (2-1); in the case of considering the unaligned frame, The UE may determine that the time unit for transmitting the RS is the time slot shown in formula (2-2).
  • the UE may determine that the time unit for sending the RS is the time slot shown in formula (2-3); in the case of considering the unaligned frame, The UE may determine that the time unit for transmitting the RS is the time slot shown in formula (2-4).
  • the first set of values configured by the first high-level configuration information is k 1 and k 2 , and the UE selects k 1 or k 2 according to the first field, and determines the RS to be sent.
  • Time unit; in the next time window, the first set of values configured by the first high layer configuration information is k 3 and k 4 , the UE selects k 3 or k 4 according to the first field, and determines the time to send the RS. Therefore, the network device can flexibly configure the first value set.
  • the UE determines the time unit for sending the RS according to the first time information and the time unit where the DCI is located.
  • the first time offset is k 0
  • the second value set configured by the second high-level configuration information is ⁇ -2, -1, 0, 1, 2 ⁇
  • Step 204 the UE sends the RS within the determined time unit for sending the RS.
  • the number of time units for sending the RS may be one time unit, or may be multiple time units.
  • the time unit can be a slot, a symbol, or a slot+symbol. In this application, the time unit is introduced by taking the slot as an example.
  • the UE determines the number of time units for sending the RS, it can be determined in one of the following ways:
  • Manner a Determine according to the second field in the DCI.
  • each time unit for sending RS is determined according to the slotOffsetlist or predefined slotOffsetlist configured in the high-level configuration information, and the bit state corresponding to the second field in the DCI .
  • the slotOffsetlist includes two sets of values, ⁇ k 1 to k 5 ⁇ and ⁇ k 6 to k 10 ⁇ .
  • the number of time units for sending RS associated with the bit state corresponding to the second field in the DCI is greater than one time unit, and the second The bit state corresponding to the field indicates a set of values of ⁇ k 1 to k 5 ⁇ , then the five time units for transmitting the RS are determined according to ⁇ k 1 to k 5 ⁇ .
  • Manner b The determination is performed according to the configuration information of the fourth higher layer and/or the configuration information of the fifth higher layer.
  • the fourth-layer configuration information is used to indicate the number P of time units for sending RSs, where P is a positive integer, and the fourth-layer configuration information can be RRC signaling or MAC CE with a specially configured number. For example, when configured in the first state, the RS is sent The number of time units is multiple; when the configuration is in the second state, the number of time units for sending RS is one.
  • the fifth layer configuration information is used to instruct to enable or disable multiple time units, for example, the fifth layer configuration information is used to indicate to enable multiple time units, then the UE sends the RS through multiple time units; for another example, The fifth layer configuration information is used to indicate that multiple time units are disabled, then the UE sends the RS through one time unit.
  • the fifth layer configuration information may be RRC signaling or MAC CE.
  • the fourth-layer configuration information and the fifth-layer configuration information can be carried in the same RRC signaling or MAC CE, and have different functions.
  • the bit state corresponding to the DCI is used to indicate the time offset when the RS is sent through multiple time units, so that the UE determines the time unit for sending the RS according to the time offset.
  • Manner c is determined according to the third field in the DCI.
  • the field length of the third field may be one bit or multiple bits, and the bit state corresponding to the third field corresponds to the number of time units in which the RS is sent, which is one or more time units.
  • the field length of the third field is 1 bit. When the bit is "0", the number of time units associated with sending RS is one time unit; when this bit is "1", the number of time units associated with sending RS is multiple time units.
  • each time unit for sending RS is determined according to the slotOffsetlist or predefined slotOffsetlist configured in the high-level configuration information, and the bit state corresponding to the third field in the DCI .
  • slotOffsetlist includes two sets of values ⁇ k 1 to k 5 ⁇ and ⁇ k 6 to k 10 ⁇
  • the number of time units for sending RS associated with the bit state corresponding to the third field in the DCI is multiple time units
  • the third The bit state corresponding to the field indicates a set of values of ⁇ k 1 to k 5 ⁇
  • the five time units for transmitting the RS are determined according to ⁇ k 1 to k 5 ⁇ .
  • the UE may send the RS within the time unit determined in step 203; if the determined time unit for sending the RS is multiple, then the UE repeatedly executes step 203, The RSs are respectively sent in the determined time units.
  • the UE further determines the number of resources of the RS, and the number of resources of the RS may be understood as the number of the triggered RS resources included in the triggered RS resource set, and one RS resource set may include one or more RSs resource.
  • the UE may determine the number of resources of the RS in one of the following ways:
  • the determination is performed according to the fourth field in the DCI.
  • the field length of the fourth field is m bits, and in the 2 m bit states corresponding to the m bits: the number of resources of the RS associated with each of the L bit states is the first number; 2 m ⁇
  • the number of the RS resources associated with each of the last five bit states is 2 RS resources, which means that 2 RS resources in one RS resource set are triggered.
  • the resource quantity of the RS is the first quantity or the second quantity, which can be configured by high-level configuration information or pre-defined.
  • Manner (2) Determine the resource quantity of the RS according to the sixth layer configuration information.
  • the sixth layer configuration information is used to indicate that the resource quantity of the RS is the first quantity or the second quantity.
  • the sixth layer configuration information may be RRC signaling or MAC CE with a specially configured number, for example, when the configuration is in the first state, the number of resources of the RS is the first number; when the configuration is in the second state, the number of resources of the RS for the second quantity.
  • the field length of the first field is an odd number greater than or equal to 3, and when the bit state corresponding to the first field is not a specific value, the number of resources of the RS is the first number; in the first field When the corresponding bit state is a specific value or the RS resource information switching indication is received, the number of resources of the RS is the second number.
  • the resource quantity of the RS is the first quantity or the second quantity configured by the high-level configuration information or pre-defined configuration.
  • the field length of the fifth field may be one bit or multiple bits, and the bit state corresponding to the fifth field is associated with the resource quantity of the RS being the first quantity or the second quantity.
  • the field length of the fifth field is 1 bit.
  • the resource quantity of the RS is the first quantity or the second quantity, which can be configured by high-level configuration information or pre-defined.
  • the number of resources of the RS is indicated by the DCI indication or the high-level configuration information, and the number of resources of the RS is switched, thereby increasing the configuration flexibility of the RS, ensuring the accuracy of downlink channel information measurement or reducing the power consumption of the terminal equipment.
  • the UE also determines the number of ports of the RS, which may be determined in one of the following manners.
  • Manner (1) is determined according to the sixth field in the DCI.
  • the field length of the sixth field is m bits, and among the 2 m bit states corresponding to the m bits: the number of ports of the RS associated with each of the Q bit states is the third number; 2 m ⁇
  • the number of ports of the RS is the third number or the fourth number, which can be configured by high-level configuration information or pre-defined.
  • the number of ports of the RS is determined according to the seventh-layer configuration information.
  • the seventh layer configuration information is used to indicate that the number of ports of the RS is the third number or the fourth number.
  • the seventh-layer configuration information may be RRC signaling or MAC CE with a specially configured number. For example, when configured in the first state, the number of ports of the RS is the third number; when configured in the second state, the number of ports of the RS is the fourth quantity.
  • the field length of the first field is an odd number greater than or equal to 3, and when the bit state corresponding to the first field is not a specific value, the number of ports of the RS is the third number; in the first field When the corresponding bit state is a specific value or the terminal device receives the RS port information switching instruction, the number of ports of the RS is the fourth number.
  • the number of ports of the RS is a third number or a fourth number, which is configured or pre-defined by high-level configuration information.
  • Manner (4) Determine according to the seventh field in the DCI.
  • the field length of the seventh field may be one bit or multiple bits, and the bit state corresponding to the seventh field is associated with the number of ports of the RS being the third number or the fourth number.
  • the field length of the seventh field is 1 bit.
  • the number of ports associated with the RS is the third number; when the bit is "1", the number of ports associated with the RS is the fourth number. quantity.
  • the number of ports of the RS is the third number or the fourth number, which can be configured by high-level configuration information or pre-defined.
  • the number of RS ports is switched through the instructions of the DCI or high-level configuration information, thereby increasing the configuration flexibility of the RS performing the antenna switching function, ensuring the accuracy of downlink channel information measurement or reducing the power consumption of the terminal equipment.
  • Step 205 the network device determines the first time information according to the DCI, and determines the time unit for receiving the RS according to the first time information and the time unit where the DCI is located.
  • the network device determines the first time information according to the DCI, determines the time unit for receiving the RS according to the first time information and the time unit where the DCI is located, and determines the first time information with the UE according to the DCI, and determines the first time information according to the first time information and the DCI.
  • the time unit in which the RS is located determines the time unit for sending the RS, which is similar and will not be repeated here.
  • step 203 and step 204 may determine the time unit for receiving the RS after sending the DCI.
  • Step 206 the network device receives the RS within the determined time unit for receiving the RS.
  • the network device receives the RS within the determined time for receiving the RS. Further, beam management and the like are performed according to the received RS.
  • the transmission time of the RS is dynamically indicated by the DCI, which makes the time for transmitting the RS more flexible, thereby improving the scheduling capacity of the SRS and reducing the possibility of PDCCH congestion.
  • the RS takes the SRS as an example, and is described in the following embodiments.
  • the field length of the first field is three bits, and the last bit of the three bits is used to indicate the first time information.
  • one rectangular block represents one bit.
  • the first two bits are used to determine the SRS.
  • step 201 it also includes step 200, the network device sends high-level configuration information to the UE, the SRS-ResourceSet in the high-level configuration information is used for the configured SRS resource set, and for each SRS resource set, the slotOffsetList in the high-level configuration information is used for Configure the first set of values, which are k 1 and k 2 .
  • the last bit of the three bits is used to indicate k 1 or k 2 , assuming the value of the last bit is '0' to indicate k 1 ; the value of the last bit is '1' to indicate k 2 . Based on this assumption, the bit states corresponding to the first field can be referred to as shown in Table 2-1, which is used as an example and does not constitute a limitation to this application.
  • the UE determines the triggered SRS resource set according to the first two bits of the first field and high-layer parameters, and can refer to Table 1-1 to determine the triggered SRS resource set, which is not repeated here.
  • the SRS can be sent in the time slot shown in formula (2-1) without considering the unaligned frame.
  • the SRS can be sent in the time slot shown in formula (2-3) without considering the unaligned frame.
  • the UE When the value of the first field received by the UE is 000, it indicates that no SRS resource set is triggered or there is no triggered SRS resource set, and the UE does not send SRS.
  • the value of the first field received by the UE when the value of the first field received by the UE is 001, it is a specific value, and the number of SRS resources at this time is the second number.
  • the value of the first field received by the UE is a value other than 000 and 001, the number of SRS resources at this time is the first number.
  • the high-layer configuration information is used to indicate that the resource quantity of the SRS is the first quantity or the second quantity, and the high-layer configuration information is carried in step 200 .
  • the UE switches from sending SRS through the first quantity of SRS resources to sending SRS through the second quantity of SRS resources. For example, switching from triggering all 4 SRS resources in one SRS resource set to triggering on 2 SRS resources in one SRS resource set.
  • the value of the first field received by the UE when the value of the first field received by the UE is 001, it is a specific value, and the number of SRS ports at this time is the third number.
  • the value of the first field received by the UE is a value other than 000 and 001, the number of SRS ports at this time is the fourth number.
  • the high-level configuration information is used to indicate that the number of ports of the SRS is the third number or the fourth number, and the high-level configuration information is carried in step 200 .
  • the third quantity is p1 and the fourth quantity is p2.
  • the UE when the value of the first field is 001 or the SRS port information switching instruction is received, the UE will switch from sending the triggered SRS through the third number of antenna ports to sending the triggered SRS through the fourth number of antenna ports. , for example, switching the triggered SRS sent through the p1 antenna ports to the triggered SRS sent through the p2 antenna ports. Understandably, p1 is the default value.
  • the UE may determine the time unit for sending the SRS according to the default time offset.
  • the default time offset can be specified or predefined by the protocol.
  • the sending time of the RS is dynamically indicated by the DCI, so that the time for sending the RS is more flexible, thereby improving the scheduling capacity of the SRS and reducing the possibility of PDCCH congestion.
  • the number of RS resources is switched according to the specific value indicated by the DCI, thereby increasing the flexibility of configuring the RS resources, ensuring the accuracy of downlink channel information measurement or reducing the power consumption of the terminal equipment.
  • the number of RS transmission ports is switched through the specific value indicated by DCI, thereby increasing the configuration flexibility of the RS performing the antenna switching function, ensuring the accuracy of downlink channel information measurement or reducing the power of the terminal equipment. consumption.
  • the field length of the first field is three bits, and the three bits jointly indicate the first time information and the SRS. Referring to the first field shown in FIG. 4 , in FIG. 4 , the three bits jointly indicate the first time information and the SRS, without distinguishing which bit indicates what.
  • step 201 it also includes step 200, the network device sends high-level configuration information to the UE, the SRS-ResourceSet in the high-level configuration information is used for the configured SRS resource set, and for each SRS resource set, the slotOffsetList in the high-level configuration information is used for Configure the first set of values, which are k 1 and k 2 .
  • the bit state corresponding to the first field see Table 2-2.
  • Table 2-2 is used as an example and does not constitute a limitation to this application.
  • the UE determines the triggered SRS resource set according to the values of the three bits of the first field and the high-level parameters, and can refer to Table 1-1 to determine the triggered SRS resource set, which will not be repeated here.
  • the SRS can be sent in the time slot shown in formula (2-1) without considering the unaligned frame.
  • the SRS can be sent in the time slot shown in formula (2-3) without considering the unaligned frame.
  • the value of the first field received by the UE when the value of the first field received by the UE is 111, it is a specific value, and the number of SRS resources at this time is the second number.
  • the value of the first field received by the UE is a value other than 000 and 111, the number of SRS resources at this time is the first number.
  • the number of ports of the SRS is the third number.
  • the number of SRS ports at this time is the fourth number.
  • the first time information and the SRS are jointly indicated by the first field of three bits, so that the time for sending the RS is more flexible, thereby improving the scheduling capacity of the SRS and reducing the possibility of PDCCH congestion.
  • the field length of the first field is four bits, and the four bits jointly indicate the first time information and the SRS. Referring to the first field shown in FIG. 5 , in FIG. 5 , the four bits jointly indicate the first time information and the SRS, without distinguishing which bit indicates what.
  • step 201 it also includes step 200, the network device sends high-level configuration information to the UE, the SRS-ResourceSet in the high-level configuration information is used for the configured SRS resource set, and for each SRS resource set, the slotOffsetList in the high-level configuration information is used for Configure the first set of values, including k 1 to k 5 .
  • the bit states corresponding to the first field can be referred to as shown in Table 2-3 below. Table 2-3 is used as an example and does not constitute a limitation to this application.
  • the first time information and the SRS are jointly indicated by the four-bit first field, which can indicate more first time information, making the time for sending the RS more flexible, thereby improving the scheduling capacity of the SRS and reducing the possibility of PDCCH congestion. sex.
  • the field length of the first field is N
  • the n bits in the first field are used to indicate the first time information
  • the bits other than the n bits among the N bits are used to indicate the SRS. It is assumed that the last n bits are used to indicate the first time information, and reference may be made to the first field shown in FIG. 6 . In FIG. 6 , the last n bits are used to indicate the first time information, and the first two bits are used to indicate the SRS.
  • the elements in the first value set are explicitly indicated by DCI, which is used for dynamic scheduling of aperiodic SRS, which can improve the flexibility of aperiodic SRS triggering, thereby improving the scheduling capacity of SRS and reducing the possibility of PDCCH congestion. .
  • the first bit of the first field is used to indicate supplementary uplink or non-supplementary uplink information, and the other bits except the first bit in the first field are used to indicate the first time information and the SRS.
  • the first field is four bits, please refer to the first field shown in Figure 7.
  • the first bit is used to indicate supplementary uplink or non-supplementary uplink information, and the last three bits are used to jointly indicate the first time information.
  • SRS when the last three bits are used for joint indication, refer to Embodiment 2.
  • the processing complexity of the terminal device can be reduced.
  • the embodiments of the present application further provide corresponding apparatuses, including corresponding modules for executing the foregoing embodiments.
  • the modules may be software, hardware, or a combination of software and hardware.
  • FIG. 8 is a schematic structural diagram of a communication device.
  • the communication apparatus 800 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the apparatus can be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the communication apparatus 800 may include one or more processors 801, and the processors 801 may also be referred to as processing units or processing modules, etc., and may implement certain control functions.
  • the processor 801 may be a general-purpose processor or a special-purpose processor, or the like.
  • the general-purpose processor may be, for example, a central processing unit
  • the special-purpose processor may be, for example, a baseband processor.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to process communication devices (eg, base stations, baseband chips, terminals, terminal chips, distributed units (DUs) or centralized units (centralized unit, CU), etc.) to control, execute software programs, and process data of software programs.
  • DUs distributed units
  • centralized unit centralized unit, CU
  • the processor 801 may also store instructions 803, and the instructions 803 may be executed by the processor 801, so that the communication apparatus 800 executes the methods described in the foregoing method embodiments.
  • the processor 801 may include a transceiver unit for implementing receiving and transmitting functions.
  • the transceiver unit may be a transceiver circuit, or an interface.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit or interface can be used for reading and writing instructions, or the above-mentioned transceiver circuit or interface can be used for signal transmission.
  • the communication apparatus 800 may include one or more memories 802 on which instructions 804 may be stored, and the instructions 804 may be executed on the processor 801, so that the communication apparatus 800 executes the methods described in the above method embodiments.
  • data may also be stored in the memory 802 .
  • instructions and/or data may also be stored in the processor 801 .
  • the processor 801 and the memory 802 can be provided separately or integrated together. For example, the corresponding relationship described in the above method embodiments may be stored in the memory 802 or in the processor 801 .
  • the communication apparatus 800 may further include a transceiver 805 and/or an antenna 806 .
  • the transceiver 805 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., and is used to implement a transceiver function.
  • the communication apparatus 800 when the communication apparatus 800 is a terminal device, it may include various functional modules for executing steps 201 to 203 in FIG. 2 .
  • the communication apparatus 800 when the communication apparatus 800 is a network device, it can be used to execute step 201 , step 204 and step 205 in FIG. 2 .
  • ICs may include analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), and the like.
  • RFICs radio frequency integrated circuits
  • ASICs application specific integrated circuits
  • PCB printed circuit board
  • the communication apparatus described in the above embodiments may be network equipment or terminal equipment, but the scope of the apparatus described in this application is not limited thereto, and the structure of the communication apparatus may not be limited by FIG. 8 .
  • the communication means may be:
  • Receivers terminals, cellular phones, wireless equipment, handsets, mobile units, in-vehicle equipment, network equipment, cloud equipment, artificial intelligence equipment, machine equipment, home equipment, medical equipment, industrial equipment, etc.
  • FIG. 9 provides a schematic structural diagram of a terminal device.
  • the terminal device 900 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data. deal with.
  • FIG. 9 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
  • the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with a transceiving function can be regarded as the transceiving module 911 of the terminal device 900
  • the processor having a processing function can be regarded as the processing module 912 of the terminal device 900
  • the terminal device 900 includes a transceiver module 911 and a processing module 912 .
  • the transceiver module may also be referred to as a transceiver, a transceiver, a transceiver device, or a transceiver unit.
  • the device for implementing the receiving function in the transceiver module 911 may be regarded as a receiving module, and the device for implementing the transmitting function in the transceiver module 911 may be regarded as a transmitting module, that is, the transceiver module 911 includes a receiving module and a transmitting module.
  • the receiving module may also be called a receiver, a receiver, a receiving circuit or a receiving unit, and the like
  • the sending module may be called a transmitter, a transmitter, a transmitting circuit or a sending unit, and the like.
  • the aforementioned receiving module and sending module may be one integrated module, or may be multiple independent modules.
  • the above-mentioned receiving module and sending module may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the apparatus may be a terminal device, or may be a component of a terminal device (eg, an integrated circuit, a chip, etc.).
  • the apparatus may be a network device or a component of a network device (eg, an integrated circuit, a chip, etc.).
  • the apparatus may also be other communication modules, which are used to implement the methods in the method embodiments of the present application.
  • the communication apparatus 1000 may include: a processing unit 1001 (or referred to as a processing module).
  • a communication unit 1002 (or referred to as a transceiver unit, a receiving unit and/or a sending unit) may also be included.
  • a storage unit (or referred to as a storage module) may also be included.
  • one or more units as in FIG. 10 may be implemented by one or more processors, or by one or more processors and memory; or by one or more processors and a transceiver; or implemented by one or more processors, a memory, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • the communication apparatus 1000 has the function of implementing the terminal equipment described in the embodiments of the present application.
  • the communication apparatus 1000 includes modules or units or means corresponding to the terminal equipment performing the steps involved in the terminal equipment described in the embodiments of the present application, and the functions Or units or means (means) may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
  • the communication apparatus 1000 has the function of implementing the network equipment described in the embodiments of the present application.
  • the communication apparatus 1000 includes modules or units or means corresponding to the terminal equipment performing the UE-related steps described in the embodiments of the present application.
  • Functions or units or means may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware. For details, further reference may be made to the corresponding descriptions in the foregoing corresponding method embodiments.
  • each module in the communication apparatus 1000 in this embodiment of the present application may be used to execute the method described in FIG. 2 in the embodiment of the present application, or may be used to execute the method described in the above two or more of the above figures. combined method.
  • the communication apparatus 1000 is a network device, which may include: a communication unit 1002 and a processing unit 1001 .
  • the communication unit 1002 can be used to perform steps 201 and 206 in the embodiment shown in FIG. 2 ; the processing unit 1001 can be used to perform step 205 in the embodiment shown in FIG. 2 .
  • the communication apparatus 1000 is a terminal device, which may include: a communication unit 1002 and a processing unit 1001 .
  • the communication unit 1002 can be used to perform steps 201 and 204 in the embodiment shown in FIG. 2 ; the processing unit 1001 can be used to perform steps 202 and 203 in the embodiment shown in FIG. 2 .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other possible Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a processing unit for performing the techniques at a communication device may be implemented in one or more general purpose processors, DSPs, digital signal processing devices, ASICs, A programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or alternatively, the general-purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a digital signal processor core, or any other similar configuration. accomplish.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct ram bus RAM direct ram bus RAM
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请提供一种参考信号发送方法及通信装置,可应用于以非周期时域行为发送RS的场景。其中,该方法可包括:终端设备获取DCI,并根据该DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定发送RS的时间单元,并在确定的发送所述RS的时间单元内,发送所述RS;相应的,网络设备根据该DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定接收RS的时间,并在确定的接收所述RS的时间内,接收所述RS。采用本申请,有利于增加RS触发的灵活性,提高RS的发送成功率,以及减少PDCCH拥塞的概率。

Description

参考信号发送方法及通信装置 技术领域
本申请涉及通信技术领域,具体涉及一种参考信号发送方法及通信装置。
背景技术
第五代无线接入系统标准新空口(new radio,NR)基于多输入多输出(multiple-input multiple-output,MIMO)系统,网络设备可以配置终端设备发送探测参考信号(sounding reference signal,SRS)。SRS可以支持基于码本的上行传输、基于非码本的上行传输、波束管理以及天线切换。从时域行为的角度,SRS可以分为周期探测参考信号(periodic SRS,P-SRS),半持续探测参考信号(semi-persistent SRS,SP-SRS)和非周期探测参考信号(aperiodic SRS,AP-SRS)。
对于周期SRS,网络设备可为SRS配置周期和偏置,终端设备可按照配置的周期和偏置,周期性地发送SRS。对于半持续SRS,网络设备可为SRS配置周期和偏置,并通过媒体接入控制层控制元素(media access control control element,MAC CE)向终端设备发送激活或去激活命令;当终端设备接收到激活命令时,可根据配置的周期和偏置,周期性地发送SRS,若之后接收到去激活命令,终端设备停止发送SRS。对于非周期SRS,网络设备通过下行控制信息(downlink control information,DCI)触发终端设备发送SRS;终端设备在时隙n接收到该DCI,根据高层参数定义的偏置和时隙n确定发送SRS的时隙,在确定的时隙上发送SRS。
目前,非周期SRS的发送过程,存在发送不灵活、发送成功率低、物理下行控制信道(physical downlink control channel,PDCCH)拥塞的弊端。
发明内容
本申请提供一种参考信号RS发送方法及通信装置,有利于增加RS触发的灵活性,提高RS的发送成功率,以及减少PDCCH拥塞的概率。
第一方面,本申请提供一种参考信号(reference signal,RS)发送方法。该方法可以由终端设备执行,或者也可以由配置于终端设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:终端设备获取下行控制信息DCI,根据该DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定发送RS的时间单元,并在确定的发送所述RS的时间内,发送所述RS。
可见,通过下行控制信息DCI动态地指示RS的发送时间,使得发送RS的时间更加灵活,进而提高RS的调度容量,降低PDCCH拥塞的可能性。
结合第一方面,在某些可能的实现方式中,上述DCI包括第一字段,第一字段用于确定第一时间信息,第一字段对应的比特状态中存在至少2种比特状态关联同一非周期RS资源触发状态。
结合第一方面,在某些可能的实现方式中,上述第一字段的字段长度为N个比特,这N个比特中的n个比特用于确定第一时间信息,这N个比特中除n个比特之外的比特用于确定所述RS;其中,1≤n≤N,N为正整数。
可见,通过第一比特中的n个比特指示第一时间信息,通过剩余比特指示所述RS,增加RS触发的灵活性。
结合第一方面,在某些可能的实现方式中,上述第一字段的字段长度为m比特,这m个比特用于确定第一时间信息以及用于确定所述RS;m为大于或等于3的奇数;第一字段对应的2 m种比特状态中有(2 m-2)/3种比特状态关联同一非周期RS资源触发状态。
结合第一方面,在某些可能的实现方式中,上述第一字段的字段长度为m比特,这m个比特用于确定第一时间信息以及用于确定RS;m为大于或等于4的偶数;第一字段对应的2 m种比特状态中有(2 m-1)/3种比特状态关联同一非周期RS资源触发状态。
可见,通过DCI中的第一字段对第一时间信息和所述RS进行联合指示,在不过多地增加DCI开销的前提下,增加RS触发的灵活性。
结合第一方面,在某些可能的实现方式中,上述第一字段的字段长度为K比特;在这K个比特中的k个比特用于指示补充上行或非补充上行信息的情况下,这K个比特中除k个比特之外的比特用于确定第一时间信息和/或确定所述RS;在这K个比特中不存在用于指示补充上行或非补充上行信息的比特的情况下,这K个比特用于确定第一时间信息和/或确定所述RS;其中,1≤k≤K,K为正整数。
可见,通过将配置了补充上行链路和未配置补充上行链路的DCI指示RS发送字段长度对齐,可以降低终端设备处理复杂度。
结合第一方面,在某些可能的实现方式中,上述第一时间信息包含于第一取值集合,第一取值集合为第一高层配置信息配置的集合或预定义的集合。
可见,通过第一高层配置信息配置或预定义多个第一取值,可以增加指示RS发送时间的灵活性,进而提高RS的调度容量,降低PDCCH拥塞的可能性。
结合第一方面,在某些可能的实现方式中,上述第一字段用于指示第二时间信息,第二时间信息和第一时间偏置用于确定第一时间信息;该第二时间信息包含于第二取值集合,第二取值集合为第二高层配置信息配置的集合或预定义的集合;第一时间偏置为第三高层配置信息配置的或预定义的。
可见,通过第三高层配置信息配置第一时间偏置,通过第二高层配置信息配置多个第二取值,终端设备根据第一字段指示的第二取值和第一时间偏置,可以确定第一时间信息,在保证RS发送时间灵活性的基础上,有效降低高层信令的开销。
结合第一方面,在某些可能的实现方式中,上述DCI包括RS请求字段和时间指示字段;时间指示字段和第一时间偏置用于确定第一时间信息;时间指示字段指示的值包含于第二取值集合;第二取值集合为第二高层配置信息配置的集合或预定义的集合;第一时间偏置为第三高层配置信息配置的或预定义的。
可见,通过时间指示字段指示的第二取值和第三高层配置信息配置的第一时间偏置确定RS的发送时间,在保证RS发送时间灵活性的基础上,有效降低高层信令的开销。
结合第一方面,在某些可能的实现方式中,上述第二取值集合中存在至少一个元素的值大于-4且小于5;或者,上述第二取值集合中存在至少一个元素的值大于0且小于7;或者,上述第二取值集合与时隙格式信息有关。
结合第一方面,在某些可能的实现方式中,上述第一字段的字段长度为m比特,m为大于或等于3的奇数;在第一字段对应的比特状态不为特定值的情况下,所述RS的资源数量为第一数量;在第一字段对应的比特状态为特定值或终端设备接收到RS资源信息切换指示的情况下,所述RS的资源数量为第二数量。
结合第一方面,在某些可能的实现方式中,所述RS的资源数量为第一数量或第二数量,由第四高层配置信息配置或预定义配置。
可见,通过DCI指示的特定值,对RS的资源数量进行切换,从而增加RS的配置灵活性,保证下行信道信息测量的准确性或降低终端设备功耗。
结合第一方面,在某些可能的实现方式中,上述第一字段的字段长度为m比特,m为大 于或等于3的奇数;在第一字段对应的比特状态不为特定值的情况下,所述RS的端口数量为第三数量;在第一字段对应的比特状态为特定值或终端设备接收到RS端口信息切换指示的情况下,所述RS的端口数量为第四数量。
结合第一方面,在某些可能的实现方式中,所述RS的端口数量为第三数量或第四数量,由第五高层配置信息配置或预定义配置。
可见,通过DCI指示的特定值,对RS的天线端口个数进行切换,从而增加进行天线切换功能的RS的配置灵活性,保证下行信道信息测量的准确性或降低终端设备功耗。
第二方面,本申请提供一种参考信号RS发送方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:网络设备根据下行控制信息DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定接收RS的时间单元,并在确定的接收所述RS的时间单元内,接收所述RS。
可见,通过下行控制信息DCI动态地指示RS的接收时间,使得接收RS的时间更加灵活,进而提高RS的调度容量,降低PDCCH拥塞的可能性。
结合第二方面,在某些可能的实现方式中,上述DCI包括第一字段,第一字段用于确定第一时间信息,第一字段对应的比特状态中存在至少2种比特状态关联同一非周期RS资源触发状态。
结合第二方面,在某些可能的实现方式中,上述第一字段的字段长度为N个比特,这N个比特中的n个比特用于确定第一时间信息,这N个比特中除n个比特之外的比特用于确定所述RS;其中,1≤n≤N,N为正整数。
结合第二方面,在某些可能的实现方式中,上述第一字段的字段长度为m比特,这m个比特用于确定第一时间信息以及用于确定所述RS;m为大于或等于3的奇数;第一字段对应的2 m种比特状态中有(2 m-2)/3种比特状态关联同一非周期RS资源触发状态。
结合第二方面,在某些可能的实现方式中,上述第一字段的字段长度为m比特,这m个比特用于确定第一时间信息以及用于确定RS;m为大于或等于4的偶数;第一字段对应的2 m种比特状态中有(2 m-1)/3种比特状态关联同一非周期RS资源触发状态。
可见,通过DCI中的第一字段对第一时间信息和所述RS进行联合指示,在不过多地增加DCI开销的前提下,增加RS触发的灵活性。
结合第二方面,在某些可能的实现方式中,上述第一字段的字段长度为K比特;在这K个比特中的k个比特用于指示补充上行或非补充上行信息的情况下,这K个比特中除k个比特之外的比特用于确定第一时间信息和/或确定所述RS;在这K个比特中不存在用于指示补充上行或非补充上行信息的比特的情况下,这K个比特用于确定第一时间信息和/或确定所述RS;其中,1≤k≤K,K为正整数。
可见,通过将配置了补充上行链路和未配置补充上行链路的DCI指示RS发送字段长度对齐,可以降低终端设备处理复杂度。
结合第二方面,在某些可能的实现方式中,上述第一时间信息包含于第一取值集合,第一取值集合为第一高层配置信息配置的集合或预定义的集合。
可见,通过第一高层配置信息配置或预定义多个第一取值,可以增加指示RS发送时间的灵活性,进而提高RS的调度容量,降低PDCCH拥塞的可能性。
结合第二方面,在某些可能的实现方式中,上述第一字段用于指示第二时间信息,第二时间信息和第一时间偏置用于确定第一时间信息;该第二时间信息包含于第二取值集合,第 二取值集合为第二高层配置信息配置的集合或预定义的集合;第一时间偏置为第三高层配置信息配置的或预定义的。
可见,通过第三高层配置信息配置第一时间偏置,通过第二高层配置信息配置多个第二取值,终端设备根据第一字段指示的第二取值和第一时间偏置,可以确定第一时间信息,在保证RS发送时间灵活性的基础上,有效降低高层信令的开销。
结合第二方面,在某些可能的实现方式中,上述DCI包括RS请求字段和时间指示字段;时间指示字段和第一时间偏置用于确定第一时间信息;时间指示字段指示的值包含于第二取值集合;第二取值集合为第二高层配置信息配置的集合或预定义的集合;第一时间偏置为第三高层配置信息配置的或预定义的。
可见,通过时间指示字段指示的第二取值和第三高层配置信息配置的第一时间偏置确定RS的发送时间,在保证RS发送时间灵活性的基础上,有效降低高层信令的开销。
结合第二方面,在某些可能的实现方式中,上述第二取值集合中存在至少一个元素的值大于-4且小于5;或者,上述第二取值集合中存在至少一个元素的值大于0且小于7;或者,上述第二取值集合与时隙格式信息有关。
结合第二方面,在某些可能的实现方式中,上述第一字段的字段长度为m比特,m为大于或等于3的奇数;在第一字段对应的比特状态不为特定值的情况下,所述RS的资源数量为第一数量;在第一字段对应的比特状态为特定值或终端设备接收到RS资源信息切换指示的情况下,所述RS的资源数量为第二数量。
结合第二方面,在某些可能的实现方式中,所述RS的资源数量为第一数量或第二数量,由第四高层配置信息配置或预定义配置。
可见,通过DCI指示的特定值,对RS的资源数量进行切换,从而增加RS的配置灵活性,保证下行信道信息测量的准确性或降低终端设备功耗。
结合第二方面,在某些可能的实现方式中,上述第一字段的字段长度为m比特,m为大于或等于3的奇数;在第一字段对应的比特状态不为特定值的情况下,所述RS的端口数量为第三数量;在第一字段对应的比特状态为特定值或终端设备接收到RS端口信息切换指示的情况下,所述RS的端口数量为第四数量。
结合第二方面,在某些可能的实现方式中,所述RS的端口数量为第三数量或第四数量,由第五高层配置信息配置或预定义配置。
可见,通过DCI指示的特定值,对RS的天线端口个数进行切换,从而增加进行天线切换功能的RS的配置灵活性,保证下行信道信息测量的准确性或降低终端设备功耗。
第三方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面所述的终端设备的部分或全部功能。比如,装置的功能可具备本申请中终端设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理单元,用于获取下行控制信息DCI,根据该DCI确定第一时间信息,根据第一时间 信息和该DCI所在的时间单元,确定发送RS的时间单元;
通信单元,用于在确定的发送所述RS的时间内,发送所述RS。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置可包括:
处理器,用于获取下行控制信息DCI,根据该DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定发送RS的时间单元;
收发器,用于在确定的发送所述RS的时间内,发送所述RS。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,本申请还提供一种通信装置。该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能。比如,通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理单元,用于根据下行控制信息DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定接收RS的时间单元;
通信单元,用于在确定的接收所述RS的时间单元内,接收所述RS。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
在另一种实施方式中,所述通信装置包括:
处理器,用于根据下行控制信息DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定接收RS的时间单元;
收发器,用于在确定的接收所述RS的时间单元内,接收所述RS。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基 带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第五方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送所述RS可以理解为处理器输出所述RS。又例如,接收所述RS可以理解为处理器接收输入的所述RS。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第六方面,本申请还提供了一种通信系统,该系统包括上述方面的至少一个终端设备、至少一个网络设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与终端或网络设备进行交互的其他设备。
第七方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被计算机执行时,实现上述第一方面所述的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被计算机执行时,使得通信装置实现上述第二方面所述的方法。
第九方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持网络设备实现第二 方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为应用本申请的通信系统的示意图;
图2为本申请提供的一种参考信号发送方法的流程示意图;
图3为本申请实施例一提供的第一字段的示例图;
图4为本申请实施例二提供的第一字段的示例图;
图5为本申请实施例三提供的第一字段的示例图;
图6为本申请实施例四提供的第一字段的示例图;
图7为本申请实施例五提供的第一字段的示例图;
图8为本申请实施例提供的通信装置的结构示意图;
图9为本申请实施例提供的一种终端设备的结构示意图;
图10为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)。随着通信系统的不断发展,本申请的技术方案还可应用于未来网络,如第五代(5th generation,5G)系统或新无线(new radio,NR);或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(TRP)等,还可以为5G、6G甚至7G系统中使用的设备,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或微微基站(Picocell),或毫微微基站(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构 下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请公开的实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
在本申请公开的实施例中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请公开的实施例提供的技术方案。
还应理解,该通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。本申请的实施例对应用场景不做限定。
此外,为了便于理解本申请实施例,作出以下几点说明。
第一,在本申请中,为便于描述,在涉及编号时,可以从0开始连续编号。例如,某一时隙中的第0个符号,可以是指该时隙的首个符号。当然,具体实现时不限于此。例如,也可以从1开始连续编号。例如,某一时隙中的第1个符号,也可以是指该时隙的首个符号。由于编号的起始值不同,同一个符号在时隙中所对应的编号也不同。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第二,在下文示出的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”描述的技术特征间无先后顺序或者大小顺序。
第三,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第四,在下文示出的实施例中,部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
第五,本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
第六,本申请公开的实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
为便于理解本申请实施例,下面以图1示出的通信系统为例详细说明适用于本申请实施例提供的参考信号发送方法的通信系统。图1示出了适用于本申请实施例的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个终端设备,如图中所示的终端设备101;该通信系统100还可以包括至少一个网络设备,如图中所示的网络设备#1 102或网络设备#2 103。
终端设备与网络设备之间通信时,终端设备可通过网络设备发送的RRC信令,获得高层参数,通过高层参数可获得参考信号的配置信息,包括但不限于资源触发配置信息,时间偏置配置信息,资源映射配置信息等。终端设备还可以接收来自网络设备的下行控制信息,根据接收到的下行控制信息确定第一时间信息,根据第一时间信息和该下行控制信息所在的时间单元,确定发送参考信号的时间单元,以便在确定的时间单元内发送参考信号。相应的,网络设备可以根据第一时间信息和该下行控制信息所在的时间单元,确定接收参考信号的时间单元,以便在确定的时间单元内接收参考信号。
可选地,该通信系统100可以包括一个或多个网络设备,如图中所示的网络设备#1 102和网络设备#2 103。该网络设备#1 102和网络设备#2 103可以是同一个小区中的网络设备,也可以是不同小区中的网络设备,本申请对此不作限定。图中仅为示例,示出了网络设备#1 102和网络设备#2 103位于同一个小区中的示例。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、参考信号(reference signal,RS)
在本申请中,参考信号包括例如但不限于,信道状态信息参考信号(channel state information reference signal,CSI-RS)、同步信号广播信道块(synchronous signal/PBCH block,SSB)、探测参考信号(sounding reference signal,SRS)等。其中,追踪参考信号(tracking reference signal,TRS)也是CSI-RS的一种。
本申请中的参考信号以SRS为例进行介绍,终端设备发送参考信号以终端设备发送SRS为例。终端设备发送的SRS可以理解为被触发的SRS,被触发的SRS可以理解为由无线资源控制(radio resource control,RRC)信令配置的高层参数、网络设备发送的MAC CE或DCI中的至少一种,触发的SRS。从时域行为的角度,通过高层参数中的资源类型resourceType将SRS配置为周期探测参考信号(periodic SRS,P-SRS),半持续探测参考信号(semi-persistent SRS,SP-SRS)或非周期探测参考信号(aperiodic SRS,AP-SRS)。
对于周期SRS,网络设备可通过高层参数为SRS配置周期和偏置,终端设备可按照配置的周期和偏置,周期性地发送SRS。周期SRS,可以理解为由高层参数触发SRS的周期性发送,其时域行为可以理解为以周期时域行为发送SRS。
对于半持续SRS,网络设备可通过高层参数为SRS配置周期和偏置,并通过MAC CE向终端设备发送激活或去激活命令;当终端设备接收到激活命令时,可根据配置的周期和偏置,周期性地发送SRS,若之后接收到去激活命令,终端设备停止发送SRS。半持续SRS可以理解为由MAC CE触发SRS的发送,其时域行为可以理解为以半持续时域行为发送SRS。
对于非周期SRS,网络设备通过DCI触发终端设备发送SRS;终端设备在时隙n接收到该DCI,根据高层参数定义的偏置和时隙n确定发送SRS的时隙,在确定的时隙上发送SRS。非周期SRS,可以理解为由DCI触发SRS的发送,其时域行为可以理解为以非周期时域行为发送SRS。
终端设备发送的SRS,可以是被触发的SRS资源集对应的SRS。一个SRS资源集可以包括一个或多个SRS资源。网络设备通过高层参数SRS-ResourceSet可以为终端设备配置一个或多个SRS资源集,每个SRS资源集的适用性可通过高层参数SRS-ResourceSet中的usage配置,目前支持的usage包括'codebook','nonCodebook','beamManagement'以及'antennaSwitching'四种用例,'codebook'对应于SRS支持基于码本的上行传输,'nonCodebook'对应于SRS支持基于非码本的上行传输,'beamManagement'对应于SRS支持波束管理,'antennaSwitching'对应于SRS支持天线切换。
目前,对于由DCI触发SRS的发送(即非周期SRS),网络设备通过高层参数slotOffset定义时隙级偏置,终端设备接收用于下行调度的DCI或组公共DCI或上行DCI,DCI中的SRS请求(request)字段对应的比特状态中,存在至少一个比特状态用于触发所配置的一个或多个SRS资源集。在没有配置补充上行(supplementaryUplink)信息的情况下,DCI中的SRS请求字段的字段长度为两比特,这两比特对应四种比特状态,例如可参见下表1-1所示。
Figure PCTCN2020112909-appb-000001
表1-1
表1-1中,SRS请求字段对应的比特状态为00时,表示不存在被触发的SRS资源集,即不存在以非周期时域行为发送的SRS。示例性的,对于typeB,SRS请求字段对应的比特状态为01,且高层参数aperiodicSRS-ResourceTrigger配置为1的SRS资源集时,表示被触发的SRS资源集为高层参数aperiodicSRS-ResourceTrigger配置为1的SRS资源集;或,SRS请求字段对应的比特状态为01,且高层参数aperiodicSRS-ResourceTriggerList中的一项配置为1的SRS资源集时,表示被触发的SRS资源集为高层参数aperiodicSRS-ResourceTriggerList中配置为1的SRS资源集。示例性的,对于typeA,SRS请求字段对应的比特状态为01,且高层配置的服务小区中的第1组usage配置为'antennaSwitching'的SRS资源集时,表示被触发的 SRS资源集为高层配置的服务小区中的第1组usage配置为'antennaSwitching'的SRS资源集。
在配置补充上行(supplementaryUplink)信息的情况下,DCI中的SRS请求字段的字段长度为三比特。这三个比特中,第一个比特用于指示非补充上行/补充上行信息,其定义例如可参见下表1-2所示,第二个比特和第三个比特的定义可参考上表1-1。
第一个比特的值 上行
0 非补充上行信息
1 补充上行信息
表1-2
假设终端设备在时隙n接收到用于触发非周期时域行为的DCI,在不考虑非对齐帧的情况下,终端设备可在公式(1-1)所示的时隙内发送SRS。
Figure PCTCN2020112909-appb-000002
在考虑对齐帧的情况下,终端设备可在(1-2)所示的时隙内发送SRS。
Figure PCTCN2020112909-appb-000003
公式(1-1)和公式(1-2)中,k表示高层参数slotOffset配置的时隙级偏置;
Figure PCTCN2020112909-appb-000004
表示基于SRS传输的子载波间隔,SRS的子载波间隔配置;
Figure PCTCN2020112909-appb-000005
表示基于SRS传输的子载波间隔,携带触发命令的PDCCH的子载波间隔配置;
Figure PCTCN2020112909-appb-000006
表示向下取整。公式(1-2)中,
Figure PCTCN2020112909-appb-000007
表示主小区(primary cell,PCell)/主辅小区(primary secondary Cell,PScell)A和辅小区(secondary cell,SCell)B之间的时隙偏置;μ offset表示为在每一个小区对中,高层参数SCS-SpecificCarrierList为每个小区配置的所有子载波间隔中最低子载波间隔配置的最大值。网络设备通过高层参数resourceMapping对SRS配置发送该SRS的连续正交频分复用(orthogonal frequency division multiplexing,OFDM)符号个数以及该SRS在所触发时隙中所占的起始符号位置。
NR的时隙格式中包括下行符号,上行符号和灵活符号,SRS在上行符号或灵活符号上发送。举例来说,假设包含下行符号的时隙定义为“D”,包含上行符号和灵活符号的时隙定义为“U”,同时包含下行符号和/或上行符号和灵活符号的时隙定义为“S”,这里假设“S”中包含的上行符号和灵活符号可以满足以非周期时域行为发送SRS的发送需求。当时隙格式配置为“DDDSU”,对于不同的高层参数slotOffset配置,可能存在的触发情况如下表1-3所示。
slotOffset D D D S U
1     PDCCH SRS  
2   PDCCH   SRS  
2     PDCCH   SRS
3 PDCCH     SRS  
3   PDCCH     SRS
表1-3
表1-3中,当SRS的slotOffset配置为1(即k=1)时,在第三个“D”上发送用于触发该SRS的DCI,此时n=2,k=1,该SRS的发送位置为时隙3,即“S”;当SRS的slotOffset配置为2(即k=2)时,如果在第二个“D”上发送用于触发该SRS的DCI,此时n=1,k=2,该资源集的发送位置为时隙3,即“S”,如果在第三个“D”上发送用于触发该SRS的DCI,此时n=2,k=2,该资源集的发送位置为时隙4,即“U”。
2、控制信息
控制信息用于触发终端设备发送参考信号RS。控制信息为,例如但不限于,下行控制信息(downlink control information,DCI),或为MAC CE,或为RRC信令,或为其他高层信令。其中,高层信令可以为,例如但不限于,终端设备专属的无线资源控制信令,小区专属的无线资源控制信令,或高层参数中的一种或多种。应用在本申请中,高层配置信息可以是RRC信令或其他高层信令或MAC CE。
3、天线端口以及天线切换
当终端设备被配置的用例类型为'antennaSwitching'时,终端设备会上报终端设备能力,终端设备能力可参见下表1-4所示。网络设备根据收到的终端设备能力,为终端设备进行配置。
Figure PCTCN2020112909-appb-000008
Figure PCTCN2020112909-appb-000009
表1-4
天线端口是一个逻辑概念,一个天线端口与一个物理天线没有直接对应关系。天线端口通常和参考信号关联,其意义可以理解为参考信号所经历的信道上的一个收发接口。对于低频,一个天线端口可能对应一个或多个天线阵元,这些阵元联合发送参考信号,接收端可以把它们当作一个整体,不需要区分这些阵元。对于高频系统,天线端口可能对应着一个波束,同样的,接收端只需要将这个波束视为一个接口,不需要区分每个阵元。
对于1T2R,最多可以配置两个资源类型resourceType不同的SRS资源集,其中每个SRS资源集配置有两个SRS资源,用不同的符号传输。一个SRS资源集中的每个SRS资源由一个单独的SRS端口组成,并且该SRS资源集的第二个资源的SRS端口所关联的终端设备天线端口与第一个SRS资源的SRS端口所关联的终端设备天线端口不同。
对于2T4R,最多可以配置两个资源类型resourceType不同的SRS资源集,其中每个SRS资源集配置有两个SRS资源,用不同的符号传输。一个SRS资源集中的每个SRS资源由两个SRS端口组成,并且该SRS资源集的第二个SRS资源的SRS端口对所关联的终端设备天线端口对与第一个SRS资源的SRS端口对所关联的终端设备天线端口对不同。
对于1T4R,可以配置0个或者1个时域行为为周期或者半持续的SRS资源集,其中每个SRS资源集配置有4个SRS资源,用不同的符号传输。一个SRS资源集中的每个SRS资源由一个单独的SRS端口组成,每个SRS资源的SRS端口所关联的终端设备天线端口不同。
对于1T4R,可以配置0个或者2个时域行为为非周期的SRS资源集,2个SRS资源集共配置4个SRS资源,这4个SRS资源在2个不同时隙的不同符号上传输,每个SRS资源的SRS端口所关联的终端设备天线端口都不同。可以是每个SRS资源集配置两个SRS资源,也可以一个SRS资源集配置一个SRS资源,另一个SRS资源集配置三个SRS资源。这两个SRS资源集的触发参数aperiodicSRS-ResourceTrigger或AperiodicSRS-ResourceTriggerList的值相同,且时隙偏移参数slotOffset不同。
对于发射天线端口和接收天线端口相同的情况,即1T=1R,or 2T=2R,或4T=4R,最多配置两个SRS资源集,每个SRS资源集包含一个SRS资源,每个SRS资源的SRS端口数分别对应为1,2,或4。
对于'antennaSwitching'的用例类型,终端设备期望为一个SRS资源集中的所有SRS资源配置个数相同的SRS端口。
对于1T2R,1T4R或2T4R,终端设备不期望在一个时隙内被配置或触发多于一个的用例类型为'antennaSwitching'的SRS资源集,终端设备也不期望在一个符号内被配置或触发多于一个的用例类型为'antennaSwitching'的SRS资源集。
如上所述,在由DCI触发SRS发送的过程中,由RRC信令以SRS资源集为单位进行配置。对于'codebook','nonCodebook'和'antennaSwitching'的用例类型,一个终端设备最多能配置一个该用例下的SRS资源集。因此,对于一个终端设备来说,每个用例只能配置一个触发偏置。由于PDCCH只能在下行或灵活符号上传输,SRS只能在上行或灵活符号上传输,现有的RRC信令配置触发偏置的机制,会限制可能的用于触发SRS的PDCCH位置和SRS的发送位置。当网络设备在某个时隙上发送用于触发非周期SRS资源集的DCI时,如果根据时隙偏置计算出的时隙中,相应的SRS资源发送位置是下行符号,会导致SRS触发失败;当网络设备需要在某个时隙上触非周期SRS时,其可以发送用于触发该SRS资源集的DCI的时隙位置是固定的,如果相应的时隙上没有上行或下行调度需求,网络设备不会发送DCI,这时候也会导致触发失败。另一方面,当终端设备的数量增加,需要在同一时间触发的非周期SRS增加,如果可以触发SRS的DCI时隙位置固定,容易带来PDCCH拥塞的问题。此外,当时隙格式指示(slot format indicator,SFI)由DCI进行动态指示时,RRC信令配置的时隙偏移将不再适用。
此外,在一些场景下,一个SRS资源集的时域行为由RRC信令单一配置会带来一些问题。比如,对于用于上行共享信道(physical uplink share channel,PUSCH)预编码计算的'codebook'用例来说,一般情况下,利用非周期SRS进行信道探测即可;而对于用于下行信道测量的'antennaSwitching'用例来说,为了更好地支持信道估计并降低信道老化效应,往往需要利用周期或半持续SRS进行信道探测。这会导致通过两种用例复用来减少用例类型受限。
再者,在一些场景下,一个SRS资源集的天线端口个数由RRC信令单一配置会带来问题。比如,对于下行信道状态信息(channel state information,CSI)探测过程,由于网络设备根据上报的终端设备能力为终端设备配置一种发射天线端口和接收天线端口个数,只能通过半静态重配才可以改变天线端口个数配置,不能根据需求不同动态改变天线端口个数配置,从而给调度造成限制。
鉴于此,本申请提供一种参考信号发送方法及通信装置,可以灵活性地发送参考信号,可以提高发送成功率,并减少PDCCH拥塞的概率。
下面将结合附图对本申请实施例提供的参考信号发送方法进行介绍。需要说明的是,介绍过程中,终端设备以UE为例,UE与网络设备之间交互的信息或数据的名称用于举例,并不构成对本申请实施例的限定。
请参见图2,为本申请提供的参考信号方法的流程示意图,该流程可以包括但不限于如下步骤:
步骤201,网络设备向UE发送DCI。相应的,UE接收来自网络设备的DCI。
其中,该DCI用于确定第一时间信息,UE根据第一时间信息和该DCI所在的时间单元,可以确定发送RS的时间单元。该DCI还用于触发UE发送RS,具体可用于触发UE发送被 触发的RS。
在一种实现方式中,该DCI包括第一字段,第一字段用于确定第一时间信息,第一字段对应的比特状态中存在至少2种比特状态关联同一非周期RS资源触发状态。其中,在RS为SRS的情况下,非周期RS资源触发状态可以是高层参数aperiodicSRS-ResourceTrigger配置的,为1或2或3的SRS资源集;也可以是高层参数aperiodicSRS-ResourceTriggerList中配置的一项,该项为1或2或3的SRS资源集;还可以是高层配置的服务小区中的第1组或第2组或第3组usage配置为'antennaSwitching'的SRS资源集。需要说明的是,配置为1或2或3的SRS资源集用于举例,随着标准的演进,可能还存在配置为其他值的SRS资源。
示例性的,第一字段的字段长度为3比特,第一字段对应8种比特状态,这8种比特状态中存在至少2种比特状态关联同一aperiodicSRS-ResourceTrigger。例如,比特状态“010”和“011”关联aperiodicSRS-ResourceTrigger配置的为1的SRS资源集。
上述第一字段可以是以下几种方式中的一种:
方式一,第一字段的字段长度为N个比特,这N个比特中的n个比特用于确定第一时间信息,这N个比特中除n个比特之外的比特用于确定UE将要发送的RS,即用于确定被触发的RS。其中,1≤n≤N,N为正整数。用于确定第一时间信息的n个比特,可以是连续的n个比特,也可以是等间隔分布的n个比特,还可以是无任何规律的n个比特。
例如,N=5,n=3,这5个比特中,连续的3个比特用于确定第一时间信息,剩余2个比特用于确定UE将要发送的RS。
可选的,用于确定第一时间信息的n个比特可以是第一字段中的一个子字段,这N个比特中除n个比特之外的比特可以是第一字段中的另一个子字段。
可选的,n个比特用于确定第一时间信息时,可以通过n个比特对应的比特状态确定第一时间信息,例如一个比特状态对应一个第一时间信息;也可以通过n个比特对应的位图(bitmap)确定第一时间信息。
可见,方式一中,通过第一字段中的n个比特指示第一时间信息,通过剩余比特指示RS,增加RS触发的灵活性。
方式二,第一字段的字段长度为m比特,这m个比特用于确定第一时间信息以及用于确定UE将要发送的RS;m为大于或等于3的奇数;第一字段对应的2 m种比特状态中有(2 m-2)/3种比特状态关联同一非周期RS资源触发状态。
示例性的,m=3,第一字段对应8种比特状态,这8种比特状态中存在至少(2 m-2)/3=2种比特状态关联同一aperiodicSRS-ResourceTrigger。例如,比特状态“010”和“011”关联aperiodicSRS-ResourceTrigger配置的为1的SRS资源集;比特状态“100”和“101”关联aperiodicSRS-ResourceTrigger配置的为2的SRS资源集;比特状态“110”和“111”关联aperiodicSRS-ResourceTrigger配置的为3的SRS资源集。
方式三,第一字段的字段长度为m比特,这m个比特用于确定第一时间信息以及用于确定RS;m为大于或等于4的偶数;第一字段对应的2 m种比特状态中有(2 m-1)/3种比特状态关联同一非周期RS资源触发状态。
示例性的,m=4,第一字段对应16种比特状态,这16种比特状态中存在至少(2 m-1)/3=5种比特状态关联同一aperiodicSRS-ResourceTrigger。例如,比特状态“0001”、“0010”、“0011”、“0100”和“0101”关联aperiodicSRS-ResourceTrigger配置的为1的SRS资源集。
方式二和方式三中,RRC信令或MAC CE或其他高层信令可配置在不同时间窗内的DCI的第一字段的字段长度。例如,RRC信令配置在第一时间窗内的DCI的第一字段的字段长度 为3比特,配置在第二时间窗内的DCI的第一字段的字段长度为4比特。可以理解的是,高层信令可动态配置DCI的第一字段的字段长度。
可选的,方式二和方式三中,m个比特用于确定第一时间信息时,可以通过m个比特对应的比特状态确定第一时间信息,例如一个比特状态对应一个第一时间信息;也可以通过m个比特对应的位图确定第一时间信息。
可见,方式二和方式三中,通过DCI中的第一字段对第一时间信息和RS进行联合指示,在不增加DCI开销的前提下,增加RS触发的灵活性。
方式四,第一字段的字段长度为K比特;在这K个比特中的k个比特用于指示补充上行或非补充上行信息的情况下,这K个比特中除k个比特之外的比特用于确定第一时间信息和/或确定UE将要发送的RS;在这K个比特中不存在用于指示补充上行或非补充上行信息的比特的情况下,这K个比特用于确定第一时间信息和/或确定将要发送的RS;其中,1≤k≤K,K为正整数。
示例性的,K=4,k=1,在这4个比特中的1个比特用于指示补充上行或非补充上行信息的情况下,除这个比特之外的3个比特用于确定第一时间信息和/或确定UE将要发送的RS。其中,用于指示补充上行或非补充上行信息的这1个比特可以是这4个比特中的第一个比特,以便进行区分。在这4个比特中不存在用于指示补充上行或非补充上行信息的情况下,这4个比特用于确定第一时间信息和/或确定UE将要发送的RS。
可选的,方式四中,确定第一时间信息时,可通过比特状态或位图进行确定。
方式四,通过将配置了补充上行链路和未配置补充上行链路的DCI指示RS发送字段长度对齐,可以降低终端设备处理复杂度。
可选的,上述几种方式中的第一时间信息为一个数值,该数值包含于第一取值集合,第一取值集合为第一高层配置信息配置的集合或预定义的集合。其中,第一高层配置信息可以是高层参数slotOffsetlist,该list包括多个数值,第一时间信息为这多个数值中的一个。
可选的,上述几种方式中,第一字段用于指示第二时间信息,第二时间信息和第一时间偏置用于确定第一时间信息。第二时间信息包含于第二取值集合,第二取值集合为第二高层配置信息配置的集合或预定义的集合,第一时间偏置为第三高层配置信息配置的或预定义的。其中,第二高层配置信息可以是RRC信令或MAC CE等高层信令中的配置信息,该配置信息用于配置第二取值集合,第二取值集合包括多个数值,第二时间信息为这多个数值中的一个。第三高层配置信息为高层参数slotOffset,为一个数值。
在另一种实现方式中,该DCI包括RS请求字段和时间指示字段。时间指示字段用于确定第一时间信息。具体的,时间指示字段和第一时间偏置用于确定第一时间信息,时间指示字段指示的值包含于第二取值集合,第二取值集合为第二高层配置信息配置的集合或预定义的集合,第一时间偏置为第三高层配置信息配置的或预定义的。其中,第二高层配置信息可以是RRC信令或MAC CE等高层信令中的配置信息,该配置信息用于配置第二取值集合,第二取值集合包括多个数值,时间指示字段指示的值为这多个数值中的一个。第三高层配置信息为高层参数slotOffset,为一个数值。需要说明的是,时间指示字段这个名称用于举例,并不构成对本申请的限定。
其中,RS请求字段用于确定UE将要发送的RS。RS请求字段,例如可以是SRS请求字段。RS请求字段也可以描述为RS请求域。需要说明的是,RS请求字段的名称用于举例,并不构成对本申请的限定,随着标准的演进,可能用其他名称描述RS请求字段,其他用于描述RS请求字段本质的名称理应落入本申请的保护范围。
步骤202,UE根据该DCI确定第一时间信息。
UE根据该DCI确定第一时间信息,可以通过以下三种方式中的一种实现:
方式A,第一字段用于指示第一时间信息,UE直接获取第一字段所指示的第一时间信息。其中,第一时间信息为一个数值,该数值包含于第一取值集合,第一取值集合为第一高层配置信息配置的集合或预定义的集合。其中,第一高层配置信息可以是高层参数slotOffsetlist,该list包括多个数值,第一时间信息为这多个数值中的一个。例如,slotOffsetlist包括k 1至k 55个数值,第一字段用于指示k 1,k 1即为第一时间信息。
方式B,第一字段用于指示第二时间信息,UE根据第二时间信息和第一时间偏置,确定第一时间信息。第二时间信息包含于第二取值集合,第二取值集合为第二高层配置信息配置的集合或预定义的集合,第一时间偏置为第三高层配置信息配置的或预定义的。其中,第二高层配置信息可以是RRC信令或MAC CE等高层信令中的配置信息,该配置信息用于配置第二取值集合,第二取值集合包括多个数值,第二时间信息为这多个数值中的一个。第三高层配置信息为高层参数slotOffset,为一个数值。例如,slotOffset为k 0,第二取值集合包括l 1至l 55个数值,第一字段用于指示l 1,l 1即为第二时间信息,将l 1与k 0相加,两者之和即为第一时间信息。
方式C,DCI包括RS请求字段和时间指示字段,时间指示字段用于确定第一时间信息。UE根据时间指示字段和第一时间偏置,确定第一时间信息。时间指示字段指示的值包含于第二取值集合,第二取值集合为第二高层配置信息配置的集合或预定义的集合,第一时间偏置为第三高层配置信息配置的或预定义的。其中,第二高层配置信息可以是RRC信令或MAC CE等高层信令中的配置信息,该配置信息用于配置第二取值集合,第二取值集合包括多个数值,时间指示字段指示的值为这多个数值中的一个。第三高层配置信息为高层参数slotOffset,为一个数值。例如,slotOffset为k 0,第二取值集合包括l 1至l 55个数值,时间指示字段用于指示l 1,将l 1与k 0相加,两者之和即为第一时间信息。
上述方式B和方式C中,第三高层配置信息可与现有slotOffset配置的一个时间偏置吻合。
可见,通过高层配置信息配置多个待选时间偏置的取值,可以增加指示RS发送时间的灵活性,进而提高RS的调度容量,降低PDCCH拥塞的可能性。
上述方式B和方式C中,第二取值集合可以是以下几种情况中的一种:
情况一:第二取值集合中存在至少一个元素的值大于-4且小于5,即第二取值集合中的元素由{-3,-2,-1,0,1,2,3,4}中的一个或多个数值构成,例如第二取值集合为{-2,-1,0,1,2}。可选的,若存在2个可选的元素,那么第二取值集合为{0,1};若存在五个可选的元素,那么第二取值集合为{-2,-1,0,1,2}。
情况二:第二取值集合中存在至少一个元素的值大于0且小于7,即第二取值集合中的元素由{0,1,2,3,4,5,6,7}中的一个或多个数值构成,例如第二取值集合为{0,1}。可选的,若存在2个可选的元素,那么第二取值集合为{0,1};若存在五个可选的元素,那么第二取值集合为{-2,-1,0,1,2}。
情况三:第二取值集合与时隙格式信息有关。其中,时隙格式信息可以是常用的时隙配比,可以包括但不限于时隙“D”和/或“S”与时隙“U”之间的配比,该配比可以为8:2;7:3;或4:1等。可选的,若时隙配比为8:2,第二取值集合为{-2,-1,0,1,2},那么当根据DCI所在时隙和第一时间偏置确定出的RS发送位置为每10个时隙中的第1、2、6、7、8、9、10个时隙时,可以通过时间指示字段指示的第二取值将RS的发送位置调整为可发送时隙位置,负数 偏置(即为负数的第二取值)和正数偏置(即为正数的第二取值)同时支持的方式可以满足快速触发的需求。可选的,若时隙配比为8:2,第二取值集合为{0,1,2,3,4},那么当根据DCI所在时隙和第一时间偏置确定出的RS发送位置为每10个时隙中的第4、5、6、7、8、9、10个时隙时,可以通过时间指示字段指示的第二取值将RS的发送位置调整为可发送时隙位置。可选的,若时隙配比为7:3,第二取值集合为{0,1,2,3,4},那么当根据DCI所在时隙和第一时间偏置确定出的RS发送位置为每10个时隙中的第3、4、5、6、7、8、9、10个时隙时,可以通过时间指示字段指示的第二取值将RS的发送位置调整为可发送时隙位置。可选的,若时隙配比为4:1,第二取值集合为{0,1,2,3,4},那么当根据DCI所在时隙和第一时间偏置确定出的RS发送位置为每5个时隙中的所有时隙,可以通过时间指示字段指示的第二取值将RS的发送位置调整为可发送时隙位置。可选的,若时隙配比为4:1,第二取值集合为{0,1,3,5,7},那么当根据DCI所在时隙和第一时间偏置确定出的RS发送位置为间隔的时隙时,可以通过时间指示字段指示的第二取值将RS的发送位置调整为可发送时隙位置,此时可以保证不同触发速度的需求。
步骤203,UE根据第一时间信息和该DCI所在的时间单元,确定发送RS的时间单元。
假设发送RS的时间单元为一个:
对于步骤202中的方式A,UE根据第一时间信息和该DCI所在的时间单元,确定发送所述RS的时间单元。例如,第一高层配置信息配置的第一取值集合为k 1和k 2,接收到该DCI的时间单元为时隙n。第一字段指示k 1时:在不考虑非对齐帧的情况下,UE可确定发送所述RS的时间单元为公式(2-1)所示的时隙;在考虑非对齐帧的情况下,UE可确定发送所述RS的时间单元为公式(2-2)所示的时隙。第一字段指示k 2时:在不考虑非对齐帧的情况下,UE可确定发送所述RS的时间单元为公式(2-3)所示的时隙;在考虑非对齐帧的情况下,UE可确定发送所述RS的时间单元为公式(2-4)所示的时隙。
Figure PCTCN2020112909-appb-000010
Figure PCTCN2020112909-appb-000011
Figure PCTCN2020112909-appb-000012
Figure PCTCN2020112909-appb-000013
进一步的,在某个时间窗内中,第一高层配置信息配置的第一取值集合为为k 1和k 2,UE根据第一字段选择k 1或k 2,并确定发送所述RS的时间单元;在下一个时间窗内中,第一高层配置信息配置的第一取值集合为k 3和k 4,UE根据第一字段选择k 3或k 4,并确定发送所述RS的时间。从而网络设备可以灵活地配置第一取值集合。
对于步骤202中的方式B或方式C,UE在确定出第一时间信息的情况下,根据第一时间信息和该DCI所在的时间单元,确定发送所述RS的时间单元。例如,第一时间偏置为k 0,第二高层配置信息配置的第二取值集合为{-2,-1,0,1,2},UE根据第一字段或时间指示字段确定出l=2,那么在不考虑非对齐帧的情况下,UE可确定发送所述RS的时间单元为公式(2-5)所示的时隙。
Figure PCTCN2020112909-appb-000014
步骤204,UE在确定的发送RS的时间单元内,发送所述RS。
其中,发送RS的时间单元的数量可能为1个时间单元,也可能为多个时间单元。时间单元可以是slot,也可以是符号,还可以是slot+符号。本申请中,时间单元以slot为例进行介绍。
UE确定发送RS的时间单元的数量时,可以通过以下几种方式中的一种进行确定:
方式a,根据该DCI中的第二字段进行确定。第二字段的字段长度为m比特,这m个比特对应的2 m种比特状态中:M种比特状态中的每一种比特状态关联的发送RS的时间单元的数量为1个时间单元;2 m-M种比特状态中的每一种比特状态关联的发送RS的时间单元的数量大于1个时间单元。例如,m=3,8种比特状态中,前3种比特状态中的每一种比特状态关联的发送RS的时间单元的数量为1个时间单元,后5种比特状态中的每一种比特状态关联的发送RS的时间单元的数量大于1个时间单元。
其中,m=1,M=1;或者,m>1,M>1;或者,m>1,(2 m-M)>1;或者,m>1,M>1,(2 m-M)>1。
在关联的发送RS的时间单元的数量大于1个时间单元的情况下,根据高层配置信息配置的slotOffsetlist或预定义的slotOffsetlist,以及DCI中第二字段对应的比特状态,确定发送RS的各个时间单元。例如,slotOffsetlist包括{k 1至k 5},{k 6至k 10}两组数值,DCI中第二字段对应的比特状态关联的发送RS的时间单元的数量大于1个时间单元,且第二字段对应的比特状态指示{k 1至k 5}这一组数值,那么根据{k 1至k 5}确定发送RS的五个时间单元。
方式b,根据第四高层配置信息和/或第五高层配置信息进行确定。第四高层配置信息用于指示发送RS的时间单元的数量P,P为正整数,第四高层配置信息可以是专门配置数量的RRC信令或MAC CE,例如配置为第一状态时,发送RS的时间单元的数量为多个;配置为第二状态时,发送RS的时间单元的数量为1个。第五高层配置信息用于指示使能或去使能多个时间单元,例如第五高层配置信息用于指示使能多个时间单元,那么UE通过多个时间单元发送所述RS;再例如,第五高层配置信息用于指示去使能多个时间单元,那么UE通过一个时间单元发送所述RS。其中,第五高层配置信息可以是RRC信令或MAC CE。第四高层配置信息与第五高层配置信息可携带在同一RRC信令或MAC CE中,作用不同。
在第四高层配置信息指示P>1的情况下,DCI对应的比特状态用于指示通过多个时间单元发送RS时的时间偏置,以便UE根据该时间偏置确定发送RS的时间单元。
方式c,根据DCI中的第三字段进行确定。第三字段的字段长度可以为一个比特或多个比特,第三字段对应的比特状态关联发送RS的时间单元的数量为一个或多个时间单元。例如第三字段的字段长度为1个比特,该比特为“0”时,关联发送RS的时间单元的数量为一个时间单元;该比特为“1”时,关联发送RS的时间单元的数量为多个时间单元。
在关联的发送RS的时间单元的数量为多个时间单元的情况下,根据高层配置信息配置的slotOffsetlist或预定义的slotOffsetlist,以及DCI中第三字段对应的比特状态,确定发送RS的各个时间单元。例如,slotOffsetlist包括{k 1至k 5},{k 6至k 10}两组数值,DCI中第三字段对应的比特状态关联的发送RS的时间单元的数量为多个时间单元,且第三字段对应的比特状态指示{k 1至k 5}这一组数值,那么根据{k 1至k 5}确定发送RS的五个时间单元。
若确定的发送所述RS的时间单元为一个,那么UE可在步骤203确定的时间单元内发送所述RS;若确定的发送所述RS的时间单元为多个,那么UE重复执行步骤203,并分别在 确定的时间单元内发送所述RS。
可选的,UE还确定所述RS的资源数量,所述RS的资源数量可以理解为被触发的RS资源集包括的被触发的RS资源的数量,一个RS资源集可以包括一个或多个RS资源。
UE可以通过以下几种方式中的一种确定所述RS的资源数量:
方式(1),根据该DCI中的第四字段进行确定。第四字段的字段长度为m比特,这m个比特对应的2 m种比特状态中:L种比特状态中的每一种比特状态关联的所述RS的资源数量为第一数量;2 m-L种比特状态中的每一种比特状态关联的所述RS的资源数量为第二数量。例如,m=3,8种比特状态中,前3种比特状态中的每一种比特状态关联的所述RS的资源数量为4个RS资源,表示触发一个RS资源集中的4个RS资源;后5种比特状态中的每一种比特状态关联的所述RS的资源数量为2个RS资源,表示触发一个RS资源集中的2个RS资源。
其中,m=1,L=1;或者,m>1,L>1;或者,m>1,(2 m-L)>1;或者,m>1,L>1,(2 m-L)>1。所述RS的资源数量为第一数量或第二数量,可由高层配置信息配置或预定义配置。方式(2),根据第六高层配置信息确定所述RS的资源数量。第六高层配置信息用于指示所述RS的资源数量为第一数量或第二数量。第六高层配置信息可以是专门配置数量的RRC信令或MAC CE,例如配置为第一状态时,所述RS的资源数量为第一数量;配置为第二状态时,所述RS的资源数量为第二数量。
方式(3),第一字段的字段长度为大于或等于3的奇数,在第一字段对应的比特状态不为特定值的情况下,所述RS的资源数量为第一数量;在第一字段对应的比特状态为特定值或接收到RS资源信息切换指示的情况下,所述RS的资源数量为第二数量。其中,所述RS的资源数量为第一数量或第二数量由高层配置信息配置或预定义配置。
方式(4),根据DCI中的第五字段进行确定。第五字段的字段长度可以为一个比特或多个比特,第五字段对应的比特状态关联所述RS的资源数量为第一数量或第二数量。例如第五字段的字段长度为1个比特,该比特为“0”时,关联所述RS的资源数量为第一数量;该比特为“1”时,关联所述RS的资源数量为第二数量。所述RS的资源数量为第一数量或第二数量,可由高层配置信息配置或预定义配置。
可见,通过DCI指示或高层配置信息指示所述RS的资源数量,对RS的资源数量进行切换,从而增加RS的配置灵活性,保证下行信道信息测量的准确性或降低终端设备功耗。
可选的,UE还确定所述RS的端口数量,可以通过以下几种方式中的一种进行确定。
方式(一),根据该DCI中的第六字段进行确定。第六字段的字段长度为m比特,这m个比特对应的2 m种比特状态中:Q种比特状态中的每一种比特状态关联的所述RS的端口数量为第三数量;2 m-Q种比特状态中的每一种比特状态关联的所述RS的资源数量为第四数量。例如,m=3,8种比特状态中,前3种比特状态中的每一种比特状态关联的所述RS的端口数量为4个RS端口,表示可以通过4个RS端口发送所述RS;后5种比特状态中的每一种比特状态关联的所述RS的端口数量为2个RS端口,表示可以通过2个RS端口发送所述RS。
其中,m=1,Q=1;或者,m>1,Q>1;或者,m>1,(2 m-Q)>1;或者,m>1,Q>1,(2 m-Q)>1。所述RS的端口数量为第三数量或第四数量,可由高层配置信息配置或预定义配置。
方式(二),根据第七高层配置信息确定所述RS的端口数量。第七高层配置信息用于指示所述RS的端口数量为第三数量或第四数量。第七高层配置信息可以是专门配置数量的RRC信令或MAC CE,例如配置为第一状态时,所述RS的端口数量为第三数量;配置为第二状 态时,所述RS的端口数量为第四数量。
方式(三),第一字段的字段长度为大于或等于3的奇数,在第一字段对应的比特状态不为特定值的情况下,所述RS的端口数量为第三数量;在第一字段对应的比特状态为特定值或终端设备接收到RS端口信息切换指示的情况下,所述RS的端口数量为第四数量。其中,所述RS的端口数量为第三数量或第四数量,由高层配置信息配置或预定义配置。
方式(四),根据DCI中的第七字段进行确定。第七字段的字段长度可以为一个比特或多个比特,第七字段对应的比特状态关联所述RS的端口数量为第三数量或第四数量。例如第七字段的字段长度为1个比特,该比特为“0”时,关联所述RS的端口数量为第三数量;该比特为“1”时,关联所述RS的端口数量为第四数量。所述RS的端口数量为第三数量或第四数量,可由高层配置信息配置或预定义配置。
可见,通过DCI或高层配置信息的指示,对RS的端口个数进行切换,从而增加进行天线切换功能的RS的配置灵活性,保证下行信道信息测量的准确性或降低终端设备功耗。
步骤205,网络设备根据该DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定接收RS的时间单元。
网络设备根据该DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定接收RS的时间单元,与UE根据该DCI确定第一时间信息,根据第一时间信息和该DCI所在的时间单元,确定发送RS的时间单元,类似,在此不再赘述。
需要说明的是,本申请中不限定步骤203与步骤204执行的先后顺序,网络设备可能在发送该DCI之后,就确定接收所述RS的时间单元。
步骤206,网络设备在确定的接收所述RS的时间单元内,接收所述RS。
网络设备在确定的接收所述RS的时间内,接收所述RS。进一步的,根据接收到的所述RS,进行波束管理等。
在图2中,通过DCI动态地指示RS的发送时间,使得发送RS的时间更加灵活,进而提高SRS的调度容量,降低PDCCH拥塞的可能性。
基于图2,RS以SRS为例,下面分实施例进行介绍。
实施例一,第一字段的字段长度为三比特,这三个比特中的最后一个比特用于指示第一时间信息。可参见图3所示的第一字段,一个矩形块表示一个比特。图3中,前两个比特用于确定SRS。
在步骤201之前,还包括步骤200,网络设备向UE发送高层配置信息,高层配置信息中的SRS-ResourceSet用于配置的SRS资源集,对于每个SRS资源集,高层配置信息中的slotOffsetList用于配置第一取值集合,为k 1和k 2。这三个比特中的最后一个比特用于指示k 1还是k 2,假设最后一个比特的值为‘0’,用于指示k 1;最后一个比特的值为‘1’,用于指示k 2。基于该假设,第一字段对应的比特状态可参见下表2-1所示,表2-1用于举例,并不构成对本申请的限定。
Figure PCTCN2020112909-appb-000015
Figure PCTCN2020112909-appb-000016
表2-1
UE根据第一字段的前两个比特以及高层参数,确定被触发的SRS资源集,可参考表1-1中确定被触发的SRS资源集,在此不再赘述。
UE接收到的第一字段的值为010,100或110时,在不考虑非对齐帧的情况下,可在公式(2-1)所示的时隙内,发送SRS。
UE接收到的第一字段的值为011,101或111时,在不考虑非对齐帧的情况下,可在公式(2-3)所示的时隙内,发送SRS。
UE接收到的第一字段的值为000时,表示无SRS资源集被触发或不存在被触发的SRS资源集,UE不发送SRS。
在一种实现方式中,UE接收到的第一字段的值为001时,即为特定值,此时SRS的资源数量为第二数量。UE接收到的第一字段的值为除000和001之外的值时,此时SRS的资源数量为第一数量。高层配置信息用于指示SRS的资源数量为第一数量或第二数量,该高层配置信息携带在步骤200中。
可以理解的是,第一字段的值为001或接收到SRS资源数量切换指示时,UE将通过第一数量的SRS资源发送SRS切换为通过第二数量的SRS资源发送SRS。例如,将一个SRS资源集中的4个SRS资源全部触发切换为将一个SRS资源集中的2个SRS资源触发。
在另一种实现方式中,UE接收到的第一字段的值为001时,即为特定值,此时SRS的端口数量为第三数量。UE接收到的第一字段的值为除000和001之外的值时,此时SRS的端口数量为第四数量。高层配置信息用于指示SRS的端口数量为第三数量或第四数量,该高层配置信息携带在步骤200中。例如,第三数量为p1,第四数量为p2。
可以理解的是,第一字段的值为001或接收到SRS端口信息切换指示时,UE将通过第三数量的天线端口发送被触发的SRS切换为通过第四数量的天线端口发送被触发的SRS,例如将通过p1个天线端口发送被触发的SRS切换为通过p2个天线端口发送被触发的SRS。可以理解的是,p1是默认值。
可选的,UE在通过第四数量的天线端口发送SRS时,可根据默认的时间偏置,确定发送SRS的时间单元。默认的时间偏置可由协议规定或预定义。
实施例一,通过DCI动态地指示RS的发送时间,使得发送RS的时间更加灵活,进而提高SRS的调度容量,降低PDCCH拥塞的可能性。通过DCI指示的特定值,通过DCI指示的特定值,对RS的资源数量进行切换,从而增加进行RS资源的配置灵活性,保证下行信道信息测量的准确性或降低终端设备功耗。通过DCI指示的特定值,通过DCI指示的特定值,对RS的发送端口个数进行切换,从而增加进行天线切换功能的RS的配置灵活性,保证下行信道信息测量的准确性或降低终端设备功耗。
实施例二,第一字段的字段长度为三比特,这三个比特联合指示第一时间信息和SRS。可参见图4所示的第一字段,图4中,这三个比特联合指示第一时间信息和SRS,不区分具体哪个比特指示什么。
在步骤201之前,还包括步骤200,网络设备向UE发送高层配置信息,高层配置信息中的SRS-ResourceSet用于配置的SRS资源集,对于每个SRS资源集,高层配置信息中的slotOffsetList用于配置第一取值集合,为k 1和k 2。第一字段对应的比特状态可参见下表2-2所示,表2-2用于举例,并不构成对本申请的限定。
Figure PCTCN2020112909-appb-000017
Figure PCTCN2020112909-appb-000018
表2-2
UE根据第一字段的这三个比特的值以及高层参数,确定被触发的SRS资源集,可参考表1-1中确定被触发的SRS资源集,在此不再赘述。
UE接收到的第一字段的值为001,010或011时,在不考虑非对齐帧的情况下,可在公式(2-1)所示的时隙内,发送SRS。
UE接收到的第一字段的值为110,101或100时,在不考虑非对齐帧的情况下,可在公式(2-3)所示的时隙内,发送SRS。
在一种实现方式中,UE接收到的第一字段的值为111时,即为特定值,此时SRS的资源数量为第二数量。UE接收到的第一字段的值为除000和111之外的值时,此时SRS的资源数量为第一数量。
在另一种实现方式中,UE接收到的第一字段的值为111时,即为特定值,此时SRS的端口数量为第三数量。UE接收到的第一字段的值为除000和111之外的值时,此时SRS的端口数量为第四数量。
实施例二,通过三比特的第一字段联合指示第一时间信息和SRS,使得发送RS的时间更加灵活,进而提高SRS的调度容量,降低PDCCH拥塞的可能性。
实施例三,第一字段的字段长度为四比特,这四个比特联合指示第一时间信息和SRS。可参见图5所示的第一字段,图5中,这四个比特联合指示第一时间信息和SRS,不区分具体哪个比特指示什么。
在步骤201之前,还包括步骤200,网络设备向UE发送高层配置信息,高层配置信息中的SRS-ResourceSet用于配置的SRS资源集,对于每个SRS资源集,高层配置信息中的slotOffsetList用于配置第一取值集合,包括k 1至k 5。第一字段对应的比特状态可参见下表2-3所示,表2-3用于举例,并不构成对本申请的限定。
Figure PCTCN2020112909-appb-000019
Figure PCTCN2020112909-appb-000020
表2-3
实施例三,通过四比特的第一字段联合指示第一时间信息和SRS,可以指示更多的第一时间信息,使得发送RS的时间更加灵活,进而提高SRS的调度容量,降低PDCCH拥塞的可能性。
实施例四,第一字段的字段长度为N,第一字段中的n个比特用于指示第一时间信息,N个比特中除n个比特之外的比特用于指示SRS。假设后n个比特用于指示第一时间信息,可参见图6所示的第一字段,图6中,后n个比特用于指示第一时间信息,前两个比特用于指示SRS。
示例性的,假设N=5,n=3,3个比特通过位图方式进行指示。这三个比特分别与第一取值集合中的3个元素对应,这三个比特中的一个比特的值为1,其余比特的值为0,那么比特的值为1对应的元素即为第一时间信息。或,这三个比特中的一个比特的值为0,其余比特的值为1,那么比特的值为0对应的元素即为第一时间信息。
实施例四,通过DCI显式指示第一取值集合中的元素,用于非周期SRS的动态调度,可以提高非周期SRS触发的灵活性,进而提高SRS的调度容量,降低PDCCH拥塞的可能性。
实施例五,第一字段的第一个比特用于指示补充上行或非补充上行信息,第一字段中除第一个比特之外的其它比特用于指示第一时间信息和SRS。假设第一字段为四比特,可参见图7所示的第一字段,图7中,第一个比特用于指示补充上行或非补充上行信息,后三个比特用于联合指示第一时间信息和SRS,后三个比特用于联合指示时可参考实施例二。
实施例五,通过将配置了补充上行链路和未配置补充上行链路的DCI指示SRS发送字段长度对齐,可以降低终端设备处理复杂度。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图8给出了一种通信装置的结构示意图。通信装置800可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置800可以包括一个或多个处理器801,处理器801也可以称为处理单元或处理模块等,可以实现一定的控制功能。处理器801可以是通用处理器或者专用处理器等。通用处理器例如可以是中央处理器,专用处理器例如可以是基带处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,分布式单元(distributed unit,DU)或集中式单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器801也可以存有指令803,所述指令803可以被处理器801运行,使得通信装置800执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器801中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路或接口可以用于指令的读写,或者,上述收发电路或接口可以用于信号的传输。
可选的,通信装置800中可以包括一个或多个存储器802,其上可以存有指令804,指令804可在处理器801上被运行,使得通信装置800执行上述方法实施例中描述的方法。可选的,存储器802中还可以存储有数据。可选的,处理器801中也可以存储指令和/或数据。处理器801和存储器802可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器802中,或者存储在处理器801中。
可选的,通信装置800还可以包括收发器805和/或天线806。收发器805可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中,通信装置800为终端设备时,可以包含各种功能模块,用于执行图2中的步骤201-步骤203。通信装置800为网络设备时,可以用于执行图2中的步骤201、步骤204和步骤205。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)上。IC可以包括模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)等。印刷电路板(printed circuit board,PCB)上印刷电路可以实现IC。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且通信装置的结构可以不受图8的限制。通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或其子系统;
(2)接收机、终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等。
图9提供了一种终端设备的结构示意图。为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备900包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收 到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备900的收发模块911,将具有处理功能的处理器视为终端设备900的处理模块912。如图9所示,终端设备900包括收发模块911和处理模块912。收发模块也可以称为收发器、收发机、收发装置或者收发单元等。可选的,可以将收发模块911中用于实现接收功能的器件视为接收模块,将收发模块911中用于实现发送功能的器件视为发送模块,即收发模块911包括接收模块和发送模块。示例性的,接收模块也可以称为接收机、接收器、接收电路或者接收单元等,发送模块可以称为发射机、发射器、发射电路或者发送单元等。可选的,上述接收模块和发送模块可以是集成在一起的一个模块,也可以是各自独立的多个模块。上述接收模块和发送模块可以在一个地理位置,也可以分散在多个地理位置。
如图10所示,本申请又一实施例提供了一种通信装置1000。该装置可以是终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等)。或者,该装置可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。该通信装置1000可以包括:处理单元1001(或称为处理模块)。可选的,还可以包括通信单元1002(或称为收发单元,接收单元和/或发送单元)。可选的,还可以包括存储单元(或称为存储模块)。
在一种可能的设计中,如图10中的一个或者多个单元可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
通信装置1000具备实现本申请实施例描述的终端设备的功能,比如,通信装置1000包括终端设备执行本申请实施例描述的终端设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。或者,通信装置1000具备实现本申请实施例描述的网络设备的功能,比如,通信装置1000包括终端设备执行本申请实施例描述的UE涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现, 也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的通信装置1000中各个模块可以用于执行本申请实施例中图2描述的方法,也可以用于执行上述两个图或更多个图中描述的方法相互结合的方法。
在一种可能的设计中,通信装置1000为网络设备,可包括:通信单元1002和处理单元1001。通信单元1002可用于执行图2所示实施例中的步骤201和步骤206;处理单元1001可用于执行图2所示实施例中的步骤205。
在一种可能的设计中,通信装置1000为终端设备,可包括:通信单元1002和处理单元1001。通信单元1002可用于执行图2所示实施例中的步骤201和步骤204;处理单元1001可用于执行图2所示实施例中的步骤202和步骤203。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以理解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员对于相应的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的方案可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate  SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram bus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (60)

  1. 一种参考信号RS发送方法,其特征在于,包括:
    获取下行控制信息DCI;
    根据所述DCI确定第一时间信息;
    根据所述第一时间信息和所述DCI所在的时间单元,确定发送RS的时间单元;
    在确定的发送所述RS的时间单元内,发送所述RS。
  2. 根据权利要求1所述的方法,其特征在于,所述DCI包括第一字段,所述第一字段用于确定所述第一时间信息,所述第一字段对应的比特状态中存在至少2种比特状态关联同一非周期RS资源触发状态。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一字段的字段长度为N个比特,所述N个比特中的n个比特用于确定所述第一时间信息,所述N个比特中除所述n个比特之外的比特用于确定所述RS;其中,1≤n≤N,N为正整数。
  4. 根据权利要求2所述的方法,其特征在于,
    所述第一字段的字段长度为m比特,所述m个比特用于确定所述第一时间信息以及用于确定所述RS;所述m为大于或等于3的奇数;
    所述第一字段对应的2 m种比特状态中有(2 m-2)/3种比特状态关联同一非周期RS资源触发状态。
  5. 根据权利要求2所述的方法,其特征在于,
    所述第一字段的字段长度为m比特,所述m个比特用于确定所述第一时间信息以及用于确定所述RS;所述m为大于或等于4的偶数;
    所述第一字段对应的2 m种比特状态中有(2 m-1)/3种比特状态关联同一非周期RS资源触发状态。
  6. 根据权利要求2所述的方法,其特征在于,
    所述第一字段的字段长度为K比特;
    在所述K个比特中的k个比特用于指示补充上行或非补充上行信息的情况下,所述K个比特中除所述k个比特之外的比特用于确定第一时间信息和/或确定所述RS;
    在所述K个比特中不存在用于指示补充上行或非补充上行信息的比特的情况下,所述K个比特用于确定第一时间信息和/或确定所述RS;
    其中,1≤k≤K,K为正整数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一时间信息包含于第一取值集合,所述第一取值集合为第一高层配置信息配置的集合或预定义的集合。
  8. 根据权利要求2-6任一项所述的方法,其特征在于,所述第一字段用于指示第二时间信息,所述第二时间信息和第一时间偏置用于确定所述第一时间信息;所述第二时间信息包含于第二取值集合,所述第二取值集合为第二高层配置信息配置的集合或预定义的集合;所述第一时间偏置为第三高层配置信息配置的或预定义的。
  9. 根据权利要求1所述的方法,其特征在于,所述DCI包括RS请求字段和时间指示字段;所述时间指示字段和第一时间偏置用于确定所述第一时间信息;所述时间指示字段 指示的值包含于第二取值集合;所述第二取值集合为第二高层配置信息配置的集合或预定义的集合;所述第一时间偏置为第三高层配置信息配置的或预定义的。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述第二取值集合中存在至少一个元素的值大于-4且小于5;或者,
    所述第二取值集合中存在至少一个元素的值大于0且小于7;或者,
    所述第二取值集合与时隙格式信息有关。
  11. 根据权利要求4所述的方法,其特征在于,
    在所述第一字段对应的比特状态不为特定值的情况下,所述RS的资源数量为第一数量;
    在所述第一字段对应的比特状态为特定值或接收到RS资源信息切换指示的情况下,所述RS的资源数量为第二数量。
  12. 根据权利要求11所述的方法,其特征在于,所述RS的资源数量为所述第一数量或所述第二数量由第四高层配置信息配置或预定义配置。
  13. 根据权利要求4所述的方法,其特征在于,
    在所述第一字段对应的比特状态不为特定值的情况下,所述RS的端口数量为第三数量;
    在所述第一字段对应的比特状态为特定值或接收到RS端口信息切换指示的情况下,所述RS的端口数量为第四数量。
  14. 根据权利要求13所述的方法,其特征在于,所述RS的端口数量为所述第三数量或所述第四数量由第五高层配置信息配置或预定义配置。
  15. 一种参考信号RS发送方法,其特征在于,包括:
    根据下行控制信息DCI确定第一时间信息;
    根据所述第一时间信息和所述DCI所在的时间单元,确定接收RS的时间单元;
    在确定的接收所述的RS的时间单元内,接收所述RS。
  16. 根据权利要求15所述的方法,其特征在于,所述DCI包括第一字段,所述第一字段用于确定所述第一时间信息,所述第一字段对应的比特状态中存在至少2种比特状态关联同一非周期RS资源触发状态。
  17. 根据权利要求16所述的方法,其特征在于,所述第一字段的字段长度为N个比特,所述N个比特中的n个比特用于确定所述第一时间信息,所述N个比特中除所述n个比特之外的比特用于确定所述RS;其中,1≤n≤N,N为正整数。
  18. 根据权利要求16所述的方法,其特征在于,所述第一字段的字段长度为m比特,所述m个比特用于确定所述第一时间信息以及用于确定所述RS;所述m为大于或等于3的奇数;
    所述第一字段对应的2 m种比特状态中有(2 m-2)/3种比特状态关联同一非周期RS资源触发状态。
  19. 根据权利要求16所述的方法,其特征在于,所述第一字段的字段长度为m比特,所述m个比特用于确定所述第一时间信息以及用于确定所述RS;所述m为大于或等于4的偶数;
    所述第一字段对应的2 m种比特状态中有(2 m-1)/3种比特状态关联同一非周期RS资源触发状态。
  20. 根据权利要求16所述的方法,其特征在于,所述第一字段的字段长度为K比特;
    在所述K个比特中的k个比特用于指示补充上行或非补充上行信息的情况下,所述K个比特中除所述k个比特之外的比特用于确定第一时间信息和/或确定所述RS;
    在所述K个比特中不存在用于指示补充上行或非补充上行信息的比特的情况下,所述K个比特用于确定第一时间信息和/或确定所述RS;
    其中,1≤k≤K,K为正整数。
  21. 根据权利要求15-20任一项所述的方法,其特征在于,所述第一时间信息包含于第一取值集合,所述第一取值集合为第一高层配置信息配置的集合或预定义的集合。
  22. 根据权利要求16-20任一项所述的方法,其特征在于,所述第一字段用于指示第二时间信息,所述第二时间信息和第一时间偏置用于确定所述第一时间信息;所述第二时间信息包含于第二取值集合,所述第二取值集合为第二高层配置信息配置的集合或预定义的集合;所述第一时间偏置为第三高层配置信息配置的或预定义的。
  23. 根据权利要求16所述的方法,其特征在于,所述DCI包括RS请求字段和时间指示字段;所述时间指示字段和第一时间偏置用于确定所述第一时间信息;所述时间指示字段指示的值包含于第二取值集合;所述第二取值集合为第二高层配置信息配置的集合或预定义的集合;所述第一时间偏置为第三高层配置信息配置的或预定义的。
  24. 根据权利要求22或23所述的方法,其特征在于,
    所述第二取值集合中存在至少一个元素的值大于-4且小于5;或者,
    所述第二取值集合中存在至少一个元素的值大于0且小于7;或者,
    所述第二取值集合与时隙格式信息有关。
  25. 根据权利要求18所述的方法,其特征在于,
    在所述第一字段对应的比特状态不为特定值的情况下,所述RS的资源数量为第一数量;
    在所述第一字段对应的比特状态为特定值或接收到RS资源信息切换指示的情况下,所述RS的资源数量为第二数量。
  26. 根据权利要求25所述的方法,其特征在于,所述RS的资源数量为所述第一数量或所述第二数量由第四高层配置信息配置或预定义配置。
  27. 根据权利要求18所述的方法,其特征在于,
    在所述第一字段对应的比特状态不为特定值的情况下,所述RS的端口数量为第三数量;
    在所述第一字段对应的比特状态为特定值或接收到RS端口信息切换指示的情况下,所述RS的端口数量为第四数量。
  28. 根据权利要求27所述的方法,其特征在于,所述RS的端口数量为所述第三数量或所述第四数量由第五高层配置信息配置或预定义配置。
  29. 一种通信装置,其特征在于,包括:
    处理单元,用于获取下行控制信息DCI;根据所述DCI确定第一时间信息;根据所述 第一时间信息和所述DCI所在的时间单元,确定发送RS的时间单元;
    通信单元,用于在确定的发送所述RS的时间单元内,发送所述RS。
  30. 根据权利要求29所述的装置,其特征在于,所述DCI包括第一字段,所述第一字段用于确定所述第一时间信息,所述第一字段对应的比特状态中存在至少2种比特状态关联同一非周期RS资源触发状态。
  31. 根据权利要求30所述的装置,其特征在于,所述第一字段的字段长度为N个比特,所述N个比特中的n个比特用于确定所述第一时间信息,所述N个比特中除所述n个比特之外的比特用于确定所述RS;其中,1≤n≤N,N为正整数。
  32. 根据权利要求30所述的装置,其特征在于,所述第一字段的字段长度为m比特,所述m个比特用于确定所述第一时间信息以及用于确定所述RS;所述m为大于或等于3的奇数;
    所述第一字段对应的2 m种比特状态中有(2 m-2)/3种比特状态关联同一非周期RS资源触发状态。
  33. 根据权利要求30所述的装置,其特征在于,所述第一字段的字段长度为m比特,所述m个比特用于确定所述第一时间信息以及用于确定所述RS;所述m为大于或等于4的偶数;
    所述第一字段对应的2 m种比特状态中有(2 m-1)/3种比特状态关联同一非周期RS资源触发状态。
  34. 根据权利要求30所述的装置,其特征在于,所述第一字段的字段长度为K比特;
    在所述K个比特中的k个比特用于指示补充上行或非补充上行信息的情况下,所述K个比特中除所述k个比特之外的比特用于确定第一时间信息和/或确定所述RS;
    在所述K个比特中不存在用于指示补充上行或非补充上行信息的比特的情况下,所述K个比特用于确定第一时间信息和/或确定所述RS;
    其中,1≤k≤K,K为正整数。
  35. 根据权利要求29-34任一项所述的装置,其特征在于,所述第一时间信息包含于第一取值集合,所述第一取值集合为第一高层配置信息配置的集合或预定义的集合。
  36. 根据权利要求30-34任一项所述的装置,其特征在于,所述第一字段用于指示第二时间信息,所述第二时间信息和第一时间偏置用于确定所述第一时间信息;所述第二时间信息包含于第二取值集合,所述第二取值集合为第二高层配置信息配置的集合或预定义的集合;所述第一时间偏置为第三高层配置信息配置的或预定义的。
  37. 根据权利要求29所述的装置,其特征在于,所述DCI包括RS请求字段和时间指示字段;所述时间指示字段和第一时间偏置用于确定所述第一时间信息;所述时间指示字段指示的值包含于第二取值集合;所述第二取值集合为第二高层配置信息配置的集合或预定义的集合;所述第一时间偏置为第三高层配置信息配置的或预定义的。
  38. 根据权利要求36或37所述的装置,其特征在于,所述第二取值集合中存在至少一个元素的值大于-4且小于5;或者,
    所述第二取值集合中存在至少一个元素的值大于0且小于7;或者,
    所述第二取值集合与时隙格式信息有关。
  39. 根据权利要求32所述的装置,其特征在于,
    在所述第一字段对应的比特状态不为特定值的情况下,所述RS的资源数量为第一数量;
    在所述第一字段对应的比特状态为特定值或接收到RS资源信息切换指示的情况下,所述RS的资源数量为第二数量。
  40. 根据权利要求39所述的装置,其特征在于,所述RS的资源数量为所述第一数量或所述第二数量由第四高层配置信息配置或预定义配置。
  41. 根据权利要求32所述的装置,其特征在于,
    在所述第一字段对应的比特状态不为特定值的情况下,所述RS的端口数量为第三数量;
    在所述第一字段对应的比特状态为特定值或接收到RS端口信息切换指示的情况下,所述RS的端口数量为第四数量。
  42. 根据权利要求41所述的装置,其特征在于,所述RS的端口数量为所述第三数量或所述第四数量由第五高层配置信息配置或预定义配置。
  43. 一种通信装置,其特征在于,包括:
    处理单元,用于根据下行控制信息DCI确定第一时间信息;根据所述第一时间信息和所述DCI所在的时间单元,确定接收RS的时间单元;
    通信单元,用于在确定的接收所述的RS的时间单元内,接收所述RS。
  44. 根据权利要求43所述的装置,其特征在于,所述DCI包括第一字段,所述第一字段用于确定所述第一时间信息,所述第一字段对应的比特状态中存在至少2种比特状态关联同一非周期RS资源触发状态。
  45. 根据权利要求44所述的装置,其特征在于,所述第一字段的字段长度为N个比特,所述N个比特中的n个比特用于确定所述第一时间信息,所述N个比特中除所述n个比特之外的比特用于确定所述RS;其中,1≤n≤N,N为正整数。
  46. 根据权利要求44所述的装置,其特征在于,所述第一字段的字段长度为m比特,所述m个比特用于确定所述第一时间信息以及用于确定所述RS;所述m为大于或等于3的奇数;
    所述第一字段对应的2 m种比特状态中有(2 m-2)/3种比特状态关联同一非周期RS资源触发状态。
  47. 根据权利要求44所述的装置,其特征在于,所述第一字段的字段长度为m比特,所述m个比特用于确定所述第一时间信息以及用于确定所述RS;所述m为大于或等于4的偶数;
    所述第一字段对应的2 m种比特状态中有(2 m-1)/3种比特状态关联同一非周期RS资源触发状态。
  48. 根据权利要求44所述的装置,其特征在于,所述第一字段的字段长度为K比特;
    在所述K个比特中的k个比特用于指示补充上行或非补充上行信息的情况下,所述K个比特中除所述k个比特之外的比特用于确定第一时间信息和/或确定所述RS;
    在所述K个比特中不存在用于指示补充上行或非补充上行信息的比特的情况下,所述 K个比特用于确定第一时间信息和/或确定所述RS;
    其中,1≤k≤K,K为正整数。
  49. 根据权利要求43-48任一项所述的装置,其特征在于,所述第一时间信息包含于第一取值集合,所述第一取值集合为第一高层配置信息配置的集合或预定义的集合。
  50. 根据权利要求44-48任一项所述的装置,其特征在于,所述第一字段用于指示第二时间信息,所述第二时间信息和第一时间偏置用于确定所述第一时间信息;所述第二时间信息包含于第二取值集合,所述第二取值集合为第二高层配置信息配置的集合或预定义的集合;所述第一时间偏置为第三高层配置信息配置的或预定义的。
  51. 根据权利要求43所述的装置,其特征在于,所述DCI包括RS请求字段和时间指示字段;所述时间指示字段和第一时间偏置用于确定所述第一时间信息;所述时间指示字段指示的值包含于第二取值集合;所述第二取值集合为第二高层配置信息配置的集合或预定义的集合;所述第一时间偏置为第三高层配置信息配置的或预定义的。
  52. 根据权利要求50或51所述的装置,其特征在于,
    所述第二取值集合中存在至少一个元素的值大于-4且小于5;或者,
    所述第二取值集合中存在至少一个元素的值大于0且小于7;或者,
    所述第二取值集合与时隙格式信息有关。
  53. 根据权利要求46所述的装置,其特征在于,
    在所述第一字段对应的比特状态不为特定值的情况下,所述RS的资源数量为第一数量;
    在所述第一字段对应的比特状态为特定值或接收到RS资源信息切换指示的情况下,所述RS的资源数量为第二数量。
  54. 根据权利要求53所述的装置,其特征在于,所述RS的资源数量为所述第一数量或所述第二数量由第四高层配置信息配置或预定义配置。
  55. 根据权利要求54所述的装置,其特征在于,
    在所述第一字段对应的比特状态不为特定值的情况下,所述RS的端口数量为第三数量;
    在所述第一字段对应的比特状态为特定值或接收到RS端口信息切换指示的情况下,所述RS的端口数量为第四数量。
  56. 根据权利要求55所述的装置,其特征在于,所述RS的端口数量为所述第三数量或所述第四数量由第五高层配置信息配置或预定义配置。
  57. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述存储器存储的计算机程序,使得所述装置实现如权利要求1至14任一项所述的方法,或,执行如权利要求15至28中任一项所述的方法。
  58. 一种通信装置,包括至少一个处理器和接口,所述至少一个处理器用于执行计算机程序,使得所述装置实现如权利要求1至14中任一项所述的方法,或,执行如权利要求15至28中任一项所述的方法。
  59. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程 序在计算机上运行时,使得所述计算机执行如权利要求1至14中任一项所述的方法,或,执行如权利要求15至28中任一项所述的方法。
  60. 一种计算机程序产品,其特征在于,包括:当所述计算机程序产品在通信设备上运行时,使得所述通信设备执行如权利要求1至14中任一项所述的方法,或,执行如权利要求15至28中任一项所述的方法。
PCT/CN2020/112909 2020-09-01 2020-09-01 参考信号发送方法及通信装置 WO2022047634A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/112909 WO2022047634A1 (zh) 2020-09-01 2020-09-01 参考信号发送方法及通信装置
JP2023514143A JP2023539670A (ja) 2020-09-01 2020-09-01 参照信号送信方法および通信装置
CN202080103150.9A CN115885492A (zh) 2020-09-01 2020-09-01 参考信号发送方法及通信装置
EP20951882.8A EP4207898A4 (en) 2020-09-01 2020-09-01 REFERENCE SIGNAL SENDING METHOD AND COMMUNICATION APPARATUS
US18/177,001 US20230209571A1 (en) 2020-09-01 2023-03-01 Reference signal sending method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112909 WO2022047634A1 (zh) 2020-09-01 2020-09-01 参考信号发送方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/177,001 Continuation US20230209571A1 (en) 2020-09-01 2023-03-01 Reference signal sending method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022047634A1 true WO2022047634A1 (zh) 2022-03-10

Family

ID=80492187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112909 WO2022047634A1 (zh) 2020-09-01 2020-09-01 参考信号发送方法及通信装置

Country Status (5)

Country Link
US (1) US20230209571A1 (zh)
EP (1) EP4207898A4 (zh)
JP (1) JP2023539670A (zh)
CN (1) CN115885492A (zh)
WO (1) WO2022047634A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站
WO2019140666A1 (zh) * 2018-01-19 2019-07-25 Oppo广东移动通信有限公司 探测参考信号传输方法、网络设备和终端设备
CN110139375A (zh) * 2018-02-09 2019-08-16 电信科学技术研究院有限公司 一种进行资源指示和确定资源的方法及设备
WO2019159024A1 (en) * 2018-02-15 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Efficient mac ce indication of spatial relation for semi-persistent srs
CN110650001A (zh) * 2019-10-15 2020-01-03 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696346B (zh) * 2017-11-25 2019-07-12 华为技术有限公司 一种参考信号的配置方法和装置
CN110475264B (zh) * 2018-05-11 2023-10-24 华为技术有限公司 一种测量方法、第一设备和第二设备
CN111416684B (zh) * 2019-01-04 2021-07-27 大唐移动通信设备有限公司 一种信息传输方法、基站及终端
CN111510267B (zh) * 2019-01-31 2021-12-14 成都华为技术有限公司 波束指示的方法和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站
WO2019140666A1 (zh) * 2018-01-19 2019-07-25 Oppo广东移动通信有限公司 探测参考信号传输方法、网络设备和终端设备
CN110139375A (zh) * 2018-02-09 2019-08-16 电信科学技术研究院有限公司 一种进行资源指示和确定资源的方法及设备
WO2019159024A1 (en) * 2018-02-15 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Efficient mac ce indication of spatial relation for semi-persistent srs
CN110650001A (zh) * 2019-10-15 2020-01-03 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207898A4 *

Also Published As

Publication number Publication date
EP4207898A4 (en) 2023-11-22
EP4207898A1 (en) 2023-07-05
US20230209571A1 (en) 2023-06-29
JP2023539670A (ja) 2023-09-15
CN115885492A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
WO2018202181A1 (zh) 信道状态信息处理方法及其装置
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2019233418A1 (zh) 用于波束训练的方法和通信装置
KR20210095692A (ko) 전송 자원 결정 방법 및 장치
CA3053919C (en) Communication method, network device, terminal device, computer readable storage medium, computer program product, processing apparatus and communication system
CN111866959B (zh) 波束失败上报的方法和装置
CN111867086B (zh) 通信方法以及通信装置
CN112020145A (zh) 一种通信方法及装置
US11432295B2 (en) Communication method and communications apparatus
WO2019153259A1 (zh) 通信方法、通信装置和系统
US11381288B2 (en) Communication method, network device, and terminal device
EP4084354A1 (en) Communication method and apparatus
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
WO2022047634A1 (zh) 参考信号发送方法及通信装置
CN114930758B (zh) 多发射和接收点(多trp)增强
CN111757475B (zh) 更新波束的方法与通信装置
CN112564873A (zh) 参考信号传输方法及通信装置
CN113840380A (zh) 一种波束指示方法及通信装置
KR20210116610A (ko) 신호 전송 방법 및 장치
WO2022151597A1 (zh) 一种传输信号的方法及装置
WO2022253049A1 (zh) 一种下行调度方法及装置
EP4301076A1 (en) Communication method and apparatus
WO2022067784A1 (zh) 一种信号传输的指示方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951882

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2023514143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020951882

Country of ref document: EP

Effective date: 20230330