WO2022045805A1 - 플라즈모닉 우물 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법 - Google Patents

플라즈모닉 우물 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법 Download PDF

Info

Publication number
WO2022045805A1
WO2022045805A1 PCT/KR2021/011465 KR2021011465W WO2022045805A1 WO 2022045805 A1 WO2022045805 A1 WO 2022045805A1 KR 2021011465 W KR2021011465 W KR 2021011465W WO 2022045805 A1 WO2022045805 A1 WO 2022045805A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
nanostructure
detection device
acid detection
roll
Prior art date
Application number
PCT/KR2021/011465
Other languages
English (en)
French (fr)
Inventor
리루크
조규진
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2022045805A1 publication Critical patent/WO2022045805A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1861Means for temperature control using radiation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence

Definitions

  • the present invention relates to a plasmonic well-based nucleic acid detection apparatus and a method for manufacturing the nucleic acid detection apparatus using a roll-to-roll process.
  • a roll-to-roll (R2R) process apparatus refers to an apparatus for performing various types of processes on a roll-type film or web.
  • a roll-to-roll process device includes an unwinder that unwinds a film wound in a roll form, process units that perform various processes such as a printing process on a film, and a rewinder that winds the film back into a roll form. And, it may be provided with various transport units for transporting the film between them.
  • a roll-to-roll printing apparatus for forming various patterns on the surface of a film, which is an object to be processed, may be mentioned.
  • a recent roll-to-roll printing apparatus is used in various ways to manufacture various electronic components such as electronic circuits, sensors, and flexible displays.
  • bioassays are performed by attaching a fluorescent tag emitting light of a specific wavelength to the sample.
  • the tag can be illuminated with an excitation light source to cause fluorescence. Fluorescence may be detected by a photodetector, and the presence or absence of a target material present in the sample may be determined by analyzing the signal.
  • bioassays using fluorescent tags involve expensive laser light sources and optics arranged to illuminate the sample.
  • bioassays may involve bulky and expensive collection optics arranged to collect fluorescence from a sample, as well as expensive electronic devices for processing signals.
  • the present inventors amplify and detect nucleic acids present in a sample without a separate labeling process for detecting biological molecules (label free) in an apparatus (eg, PCR chip, biosensor, etc.) for detecting biological molecules (nucleic acids).
  • an apparatus eg, PCR chip, biosensor, etc.
  • the present inventors have completed the present invention by developing a technique for mass-producing the biological molecule detection device as described above more efficiently within a short time and at low-cost.
  • Another object of the present invention is to provide a method for manufacturing the plasmonic well-based nucleic acid detection device using a roll-to-roll process.
  • the present invention is a first nanostructure formed by alternately stacking an insulating layer and a metal layer on top of one end of a substrate arranged in a horizontal direction; a second nanostructure formed by alternately stacking an insulating layer and a metal layer on top of the other end of the substrate; and a space formed between the first nanostructure and the second nanostructure, and a reaction space in which a nucleic acid amplification reaction occurs, to provide a plasmonic well-based nucleic acid detection device.
  • the nucleic acid detection device can be used for molecular diagnosis.
  • the nucleic acid detection device may be manufactured by a Roll-to-Roll process.
  • the substrate may be made of the same material as the insulating layer.
  • the insulating layer may be a polymer.
  • the polymer is PET (Polyethylene terephthalate), PEN (Polyethylene naphthalate), PMMA (Poly (methyl methacrylate)), PE (Polyethylene), PP (Polypropylene), PC (Polycarbonate), PI It may be selected from the group consisting of (Polyimide), Polyethersulfone (PES), Polyester, Polystyrene (PS), Polydimethylsiloxane (PDMS), Polyethylene oxide (PEO), and combinations thereof.
  • the metal layer may be a layer of silver, gold, cobalt or Fe 3 O 4 nanoparticles.
  • each of the first nanostructure and the second nanostructure may have a longitudinal length of 50-300 nm.
  • the space formed between the first nanostructure and the second nanostructure may have a horizontal length of 50-150 nm.
  • the nucleic acid amplification reaction may be a photonic polymerase chain reaction (PCR) by light irradiated to the first nanostructure or the second nanostructure.
  • PCR photonic polymerase chain reaction
  • the nucleic acid detection device may further include a light source for irradiating light to the first nanostructure or the second nanostructure.
  • the nucleic acid detection device may further include a temperature sensor for monitoring the temperature of the nucleic acid molecule.
  • the nucleic acid detection device further comprises a controller coupled to the light source and the temperature sensor, the controller may control the acquisition of one or more data from the temperature sensor and the operation of the light source .
  • a primer having a base sequence complementary to a target nucleic acid molecule, four dNTP molecules and a polymerase are placed in the reaction space, and the nucleic acid molecule is amplified in the reaction space.
  • a target nucleic acid molecule may be detected by detecting a change in the amount or wavelength of fluorescence.
  • a primer having a base sequence complementary to a target nucleic acid molecule, four types of dNTP molecules and a polymerase are placed in the reaction space, and in the process of amplifying the nucleic acid molecule in the reaction space, As the nucleic acid amplification proceeds, the change in intensity and wavelength of light as the dielectric constants of the nanostructure and the reaction space are changed through a CMOS image sensor can be monitored to detect a target nucleic acid molecule without the use of a fluorescence reagent.
  • the present invention comprises the steps of alternately stacking an insulating layer and a metal layer to form a nanostructure; And a substrate is formed at the lowermost end by imprinting the nanostructure with an embossed roll having a structure that can be inserted into the nanostructure in the longitudinal direction, and a first nanostructure disposed at one end and the other end of the substrate spaced apart from each other, respectively And it provides a method for manufacturing the plasmonic well-based nucleic acid detection device using a roll-to-roll device, comprising the step of forming a second nanostructure.
  • the imprinting may be thermal nanoimprinting.
  • the present invention relates to a molecular diagnostic device capable of detecting target nucleic acids (DNA, RNA) present in a sample. Since it can detect nucleic acids, it is expected to be usefully used for detection and diagnosis (point-of-care testing) in the field of pathogenic bacteria and viruses.
  • the nucleic acid detection apparatus of the present invention can be mass-produced at low cost within a short time through a roll-to-roll process.
  • FIG. 1 is a diagram schematically showing a cross-section of a plasmonic well-based nucleic acid detection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a cross-section of a nucleic acid detection apparatus in which a light source is positioned inside the detection apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a process of manufacturing a nucleic acid detection device according to an embodiment of the present invention using a roll-to-roll device.
  • FIG. 1 is a diagram schematically showing a cross-section of a plasmonic well-based nucleic acid detection apparatus according to an embodiment of the present invention.
  • an insulating layer 20a and a metal layer are disposed on top of one end T1 of a substrate 10 arranged in a horizontal direction.
  • the structure 30 and the space formed between the first nanostructure 20 and the second nanostructure 30 include a reaction space S, which is a space in which a nucleic acid amplification reaction occurs.
  • the material of the substrate 10 is not particularly limited, and materials (eg, plastic, glass, etc.) commonly used for manufacturing devices for detecting biomolecules such as biosensors, biochips, and microfluidic chips can be used without limitation.
  • the substrate 10 is a translucent or transparent material (eg, polymethyl meta It can be prepared as a substrate of acrylate (PMMA)).
  • the substrate 10 may be made of the same material as the insulating layers 20a and 30a of the first and second nanostructures 20 and 30 to be described later.
  • the first nanostructure 20 and the second nanostructure 30 have a structure in which insulating layers 20a and 30a and metal layers 20b and 30b are alternately stacked.
  • the insulating layers 20a and 30a may be made of a polymer.
  • PET Polyethylene terephthalate
  • PEN Polyethylene naphthalate
  • PMMA Poly (methyl methacrylate)
  • PE Polyethylene
  • PP Polypropylene
  • PC Polycarbonate
  • PI Polyimide
  • PES Polyethersulfone
  • polyester polystyrene
  • PS polydimethylsiloxane
  • PEO polyethylene oxide
  • a polymer selected from the group consisting of combinations thereof may be used as the insulating layers 20a and 30a.
  • the metal layers 20b and 30b of the first nanostructure 20 and the second nanostructure 30 may be made of silver, gold, cobalt, or Fe 3 O 4 nanoparticles.
  • the size of the first nanostructure 20 and the second nanostructure 30, that is, the length in the vertical direction, is a length of several tens to hundreds of nanometers in the range where amplification and detection of nucleic acid molecules in the reaction space S are possible.
  • each of the first nanostructure 20 and the second nanostructure 30 may have a longitudinal length of 50-300 nm.
  • the length in the longitudinal direction of the first and second nanostructures 20 and 30 is 50-250 nm, 60-250 nm, 70-250 nm, 80-250 nm, 90-250 nm or 100- 250 nm; 50-240 nm, 60-240 nm, 70-240 nm, 80-240 nm, 90-240 nm or 100-240 nm; 50-230 nm, 60-230 nm, 70-230 nm, 80-230 nm, 90-230 nm or 100-230 nm; 50-220 nm, 60-220 nm, 70-220 nm, 80-220 nm, 90-220 nm or 100-220 nm; 50-210 nm, 60-210 nm, 70-210 nm, 80-210 nm, 90-210 nm or 100-210 nm; or 50-200 nm, 60-200 nm, 70-200 nm, 80-250
  • the length of the space between the first nanostructure 20 and the second nanostructure 30 may have a length of several tens to several hundreds of nanometers within a range in which amplification and detection of nucleic acid molecules in the reaction space S are possible. and may be provided with an appropriate length in consideration of the longitudinal length of the first (20) and the second nanostructure (30). In an embodiment, the space between the first nanostructure 20 and the second nanostructure 30 may have a horizontal length of 50-150 nm.
  • the length in the transverse direction of the space between the first 20 and the second nanostructure 30 is 50-130 nm, 50-120 nm, 50-110 nm, or 50-100 nm; 60-130 nm, 60-120 nm, 60-110 nm or 60-100 nm; 70-130 nm, 70-120 nm, 70-110 nm or 70-100 nm; 80-130 nm, 80-120 nm, 80-110 nm or 80-100 nm; or 90-130 nm, 90-120 nm, 90-110 nm or 90-100 nm.
  • the reaction space S is a well-shaped well provided between the first nanostructure 20 and the second nanostructure 30, and a polymerase chain reaction ( It is the space where the nucleic acid amplification reaction takes place.
  • a sample solution for PCR such as a primer having a base sequence complementary to a target nucleic acid molecule, four dNTP molecules, and a polymerase may be placed in the reaction space (S).
  • the nucleic acid sample placed in the reaction space (S) generates heat through a plasmonic phenomenon by light irradiated to the first and second nanostructures 20 and 30 forming a plasmonic well
  • Nucleic acid amplification can be achieved through photonic polymerase chain reaction (PCR) by performing 30 cycles of 91°C (heating) and 60°C (cooling) within a short time ( ⁇ 3 minutes).
  • PCR photonic polymerase chain reaction
  • heat is generated by light-to-heat conversion, and heating and cooling of the nucleic acid and PCR sample solution located in the reaction space (S) occur in a fast cycle, so that the nucleic acid amplification reaction occurs quickly.
  • temperature control for nucleic acid amplification may be performed by controlling light irradiation.
  • the nucleic acid detection apparatus further includes a light source for irradiating light to the first nanostructure 20 and/or the second nanostructure 30 . can do.
  • the light source may be located inside the detection device 100 or outside the device.
  • FIG. 2 shows a nucleic acid detection apparatus according to an embodiment of the present invention in which a light source is located inside the detection apparatus.
  • the light source 40 may be implemented as an LED, diode lasers, diode laser array, quantum well (vertical)-cavity laser, or the like.
  • the emission wavelength of the light source 40 may be ultraviolet (UV) light, visible light or infrared (IR) light.
  • the nucleic acid detection apparatus may further include a temperature sensor for monitoring the temperature of the PCR sample solution for nucleic acid amplification.
  • the temperature sensor may be coupled to or face the platform for measuring the temperature of the sample.
  • Such temperature sensors may include multiple sensor types, such as thermocouples or cameras (eg, IR cameras) facing the platform.
  • the PCR system may be integrated or compatible with a diagnostic device such as a digital camera, photodiode, spectrophotometer, or similar imaging device that detects nucleic acid and/or fluorescence signals in a sample solution in real time.
  • a diagnostic device such as a digital camera, photodiode, spectrophotometer, or similar imaging device that detects nucleic acid and/or fluorescence signals in a sample solution in real time.
  • the camera may be a smartphone camera, and the smartphone includes application software for analyzing a sample solution.
  • the senor and the light source may be coupled to a computing unit for obtaining sensor data and controlling the light source.
  • a computing device obtains data from a sensor, including a processor and a memory stored in application software executable by the processor to drive the light source (eg, to control LED timing, intensity/injection current, etc.) and/or process data from the diagnostic device, such as digital camera real-time detection of fluorescent signals of nucleic acids and/or sample solutions.
  • the computing device may include a separate computer or device, or may be integrated into a microcontroller module having the remaining components.
  • the detection of a target nucleic acid using a nucleic acid detection device is performed by irradiating light having a frequency that resonates with R2R printed nanostructured metal, converting the light into heat, heating it to 91°C, and turning off the light. This can be accomplished by detecting the change in the amount of fluorescence that occurs while cooling to 60°C is performed 30 times while amplifying the nucleic acid molecules in the buffer solution in which the master mix is dissolved in the reaction space (S).
  • RNA or DNA target nucleic acid molecule
  • S reaction space
  • a fluorescence-expressing material such as TaqMan from the master mix solution. Due to the low dielectric nanofilm of the insulating layer (eg, polymer layer; 20a, 30a), the high dielectric nanofilm of the metal layers 20b and 30b, and the interfacial dielectric constant between the well filled with an ionic aqueous solution and the work function of the metal
  • the amount and wavelength of reflected light are changed due to the change.
  • a target nucleic acid can be detected without a separate fluorescent label.
  • FIG 3 shows a process of manufacturing a nucleic acid detection device according to an embodiment of the present invention using a roll-to-roll device.
  • a metal layer is printed on a polymer material (eg, PET, PEN, PMMA, etc.) used as an insulating layer. Thereafter, the insulating layer is printed again on the metal layer, and the insulating layer and the metal layer are alternately stacked in such a way that the metal layer is printed again on the insulating layer to prepare a nanostructure.
  • a polymer material eg, PET, PEN, PMMA, etc.
  • an embossed roll having a structure that can be inserted into the nanostructure in the longitudinal direction, for example, a T-shaped roll
  • a substrate portion is provided at the lowermost end
  • a first nanostructure is respectively provided at both ends on the substrate and a second nanostructure to be formed.
  • the imprinting may be performed by manufacturing an embossed roll according to the required depth and width of the plasmonic well, and the length and the first of the first and second nanostructures according to the length and width of the embossed roll thus prepared and a distance between the second nanostructures is determined.
  • the first and second nanostructures may be manufactured through thermal nanoimprinting.
  • the plasmonic well-based nucleic acid detection device manufactured using the roll-to-roll process of the present invention can be used to conveniently detect a target nucleic acid without a label for detection such as a fluorescent tag, and pathogenic bacteria, viruses, etc. It is expected to be usefully used for detection and diagnosis of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 플라즈모닉 우물(Plasmonic well) 기반의 핵산 검출장치 및 롤투롤 공정을 이용하여 상기 핵산 검출장치를 제조하는 방법에 관한 것이다. 본 발명의 핵산 검출장치를 사용하면 형광 태그와 같은 검출을 위한 표지 없이(Label free) 간편하게 타겟 핵산을 검출할 수 있는바, 병원성 세균, 바이러스 등의 현장에서의 검출 및 진단(Point-of-care testing)에 유용하게 활용될 것으로 기대된다. 또한, 본 발명의 핵산 검출장치는 롤투롤 공정을 통하여 단시간 내에 저렴한 비용으로 대량 생산이 가능하다.

Description

플라즈모닉 우물 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법
본 발명은 플라즈모닉 우물(Plasmonic well) 기반의 핵산 검출장치 및 롤투롤 공정을 이용하여 상기 핵산 검출장치를 제조하는 방법에 관한 것이다.
본 출원은 2020년 08월 27일에 출원된 한국특허출원 제10-2020-0108807호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
일반적으로 롤투롤(Roll-to-Roll, R2R) 공정 장치는 롤(Roll) 형태의 필름(Film) 또는 웹(Web)에 다양한 종류의 공정을 수행하는 장치를 의미한다. 이러한 롤투롤 공정 장치는 롤 형태로 권취된 필름을 풀어주는 언와인더(Unwinder), 필름에 인쇄 공정 등 다양한 공정을 수행하는 공정 유닛들, 필름을 다시 롤 형태로 감아주는 리와인더(Rewinder)를 포함하며, 이들 사이에서 필름을 이송하기 위한 다양한 이송 유닛들을 구비할 수 있다.
롤투롤 공정 장치의 일 예로, 피공정물인 필름의 표면에 다양한 패턴을 형성하는 롤투롤 인쇄 장치를 들 수 있다. 최근의 롤투롤 인쇄 장치는 전자 회로, 센서, 플렉서블 디스플레이(Flexible display) 등의 다양한 전자 부품의 제조에 다양하게 활용되고 있다.
한편, 병원균이나 바이러스 등의 존재를 결정하기 위한 생물학적 시료의 분석은 일반적으로 크고 값비싼 실험실 장비를 이용하여 수행될 수 있고, 그 장비를 조작하고 결과들을 해석하도록 훈련 받은 숙련된 과학자들을 필요로 한다. 일부 경우 특정 파장의 광을 방출하는 형광성 태그를 시료에 부착하여 생물학적 검정(Bioassays)을 수행한다. 여기 광원으로 태그를 조명하여 형광 발광을 일으킬 수 있다. 형광 발광은 광 검출기로 검출되고, 신호를 분석하여 시료에 존재하는 타겟 물질의 존재 여부를 결정할 수 있다.
일반적으로, 형광성 태그를 이용한 생물학적 검정은 시료를 조명하도록 배열된 값비싼 레이저 광원들과 광학 장치(Optics)를 수반한다. 또한, 이러한 생물학적 검정은 시료로부터의 형광 발광을 수집하도록 배열된 부피가 크고 값비싼 수집 광학 장치뿐만 아니라, 신호들을 처리하기 위한 값비싼 전자 기기 장치도 수반할 수 있다.
이에 본 발명자들은 생물학적 분자(핵산) 검출을 위한 장치(예컨대, PCR칩, 바이오센서 등)에 있어서, 생물학적 분자 검출을 위한 별도의 표지 과정 없이(Label free) 시료 내에 존재하는 핵산을 증폭하고 검출할 수 있는 장치를 제조함으로써, 본 발명을 완성하였다. 또한, 본 발명자들은 상기와 같은 생물학적 분자 검출장치를 보다 효율적으로 단시간 내에 저렴한 비용(low-cost)으로 대량 생산하기 위한 기술을 개발함으로써, 본 발명을 완성하였다.
따라서, 본 발명의 목적은 플라즈모닉 우물(Plasmonic well) 기반 핵산 검출장치를 제공하는 것이다.
본 발명의 다른 목적은 롤투롤 공정을 이용하여 상기 플라즈모닉 우물 기반 핵산 검출장치를 제조하는 방법을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 목적을 달성하기 위하여, 본 발명은 가로 방향으로 배치된 기판의 일 말단의 상단에 절연층과 금속층이 교대로 적층되어 형성된 제1나노구조물; 상기 기판의 타 말단의 상단에 절연층과 금속층이 교대로 적층되어 형성된 제2나노구조물; 및 상기 제1나노구조물과 제2나노구조물 사이에 형성된 공간으로서 핵산 증폭반응이 일어나는 반응 공간을 포함하는, 플라즈모닉 우물(Plasmonic well) 기반 핵산 검출장치를 제공한다.
본 발명의 일 구현예에 있어서, 상기 핵산 검출장치는 분자진단에 사용될 수 있다.
본 발명의 다른 구현예에 있어서, 상기 핵산 검출장치는 롤투롤(Roll-to-Roll) 공정으로 제조될 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 기판은 상기 절연층과 동일한 물질로 구현될 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 절연층은 고분자일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 고분자는 PET(Polyethylene terephthalate), PEN(Polyethylene naphthalate), PMMA(Poly(methyl methacrylate)), PE(Polyethylene), PP(Polypropylene), PC(Polycarbonate), PI(Polyimide), PES(Polyethersulfone), 폴리에스테르(Polyester), PS(Polystyrene), PDMS(Polydimethylsiloxane), PEO(Polyethylene oxide) 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 금속층은 은, 금, 코발트 또는 Fe3O4 나노입자층 일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 제1나노구조물 및 제2나노구조물은 각각 세로 방향의 길이가 50-300 nm일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 제1나노구조물과 제2나노구조물 사이에 형성된 공간은 가로 방향의 길이가 50-150 nm일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 핵산 증폭반응은 제1나노구조물 또는 제2나노구조물에 조사된 빛에 의한 광 PCR(Photonic Polymerase Chain Reaction)일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 핵산 검출장치는 제1나노구조물 또는 제2나노구조물에 빛을 조사하기 위한 광원(Light source)을 더 포함할 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 핵산 검출장치는 핵산 분자의 온도를 모니터링 하는 온도 센서를 더 포함할 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 핵산 검출장치는 상기 광원 및 온도 센서에 결합된 컨트롤러를 더 포함하며, 상기 컨트롤러는 상기 온도 센서로부터 하나 이상의 데이터 획득 및 상기 광원의 작동을 제어할 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 반응 공간에는 타겟 핵산 분자에 상보적인 염기서열을 갖는 프라이머, 4종의 dNTP 분자 및 중합효소가 놓여지며, 상기 핵산 분자가 반응 공간에서 증폭되는 과정에서 발생하는 형광의 양 또는 파장의 변화를 감지하여 타겟 핵산 분자를 검출할 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 반응 공간에는 타겟 핵산 분자에 상보적인 염기서열을 갖는 프라이머, 4종의 dNTP 분자 및 중합효소가 놓여지며, 상기 핵산 분자가 반응 공간에서 증폭되는 과정에서, 핵산 증폭이 진행되면서 나노구조물과 반응 공간의 유전상수들이 변화됨에 따른 빛의 강도와 파장 변화를 CMOS 이미지 센서를 통하여 모니터링 하여, 형광 발색 시약의 사용 없이 타겟 핵산 분자를 검출할 수 있다.
또한, 본 발명은 절연층과 금속층을 교대로 적층하여 나노구조물을 형성시키는 단계; 및 상기 나노구조물에 길이 방향으로 삽입될 수 있는 구조를 갖는 양각 롤로 상기 나노구조물을 임프린팅 하여 최하단에 기판이 형성되고, 상기 기판의 일 말단과 타 말단에 각각 서로 이격되어 배치된 제1나노구조물과 제2나노구조물이 형성되도록 하는 단계를 포함하는, 롤투롤 장치를 이용하여 상기 플라즈모닉 우물 기반 핵산 검출장치를 제조하는 방법을 제공한다.
본 발명의 일구현예에 있어서, 상기 임프린팅은 열 나노 임프린팅(Thermal nanoimprinting)일 수 있다.
본 발명은 시료에 존재하는 타겟 핵산(DNA, RNA)을 검출할 수 있는 분자진단 장치에 관한 것으로, 본 발명의 핵산 검출장치를 사용하면 형광 태그와 같은 검출을 위한 표지 없이(Label free) 간편하게 타겟 핵산을 검출할 수 있는바, 병원성 세균, 바이러스 등의 현장에서의 검출 및 진단(Point-of-care testing)에 유용하게 활용될 것으로 기대된다.
또한, 본 발명의 핵산 검출장치는 롤투롤 공정을 통하여 단시간 내에 저렴한 비용으로 대량 생산이 가능하다.
도 1은 본 발명의 일 실시예에 따른 플라즈모닉 우물 기반 핵산 검출장치의 단면을 개략적으로 도시한 도이다.
도 2는 본 발명의 일 실시예에 따른 광원이 검출장치의 내부에 위치하는 핵산 검출장치의 단면을 개략적으로 도시한 도이다.
도 3은 본 발명의 일 실시예에 따른 핵산 검출장치를 롤투롤 장치를 이용하여 제조하는 과정을 도시한 도이다.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되게 도시된 부분도 있다. 또한, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도면을 참조하여 설명할 때 동일 하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 플라즈모닉 우물 기반 핵산 검출장치의 단면을 개략적으로 도시한 도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 플라즈모닉 우물 기반 핵산 검출장치(100)는 가로 방향으로 배치된 기판(10)의 일 말단(T1)의 상단에 절연층(20a)과 금속층(20b)이 교대로 적층되어 형성된 제1나노구조물(20), 상기 기판(10)의 타 말단(T2)의 상단에 절연층(30a)과 금속층(30b)이 교대로 적층되어 형성된 제2나노구조물(30), 및 상기 제1나노구조물(20)과 제2나노구조물 사이(30)에 형성된 공간으로서 핵산 증폭반응이 일어나는 공간인 반응 공간(S)을 포함한다.
상기 기판(10)의 재질은 크게 제한되지 않으며, 바이오센서, 바이오칩, 미세유체칩 등 생체분자의 검출을 위한 장치 제조에 통상적으로 사용되는 소재(예컨대, 플라스틱, 유리 등)를 제한 없이 사용할 수 있다. 예를 들어, 상기 기판(10)은 검출장치의 외부에서 조사된 빛이 상기 제1나노구조물(20)과 제2나노구조물(30)에 도달할 수 있도록 반투명 또는 투명한 소재(예컨대, 폴리메틸메타크릴레이트(PMMA))의 기판으로 제조될 수 있다.
또한, 상기 기판(10)은 후술할 제1 및 제2나노구조물(20, 30)의 절연층(20a, 30a)과 동일한 재질로 제조될 수 있다.
상기 제1나노구조물(20) 및 제2나노구조물(30)은 절연층(20a, 30a)과 금속층(20b, 30b)이 교대로 적층된 구조를 갖는다. 일 실시예에서, 상기 절연층(20a, 30a)은 고분자로 제조될 수 있다. 예를 들어, 본 발명에서는 PET(Polyethylene terephthalate), PEN(Polyethylene naphthalate), PMMA(Poly(methyl methacrylate)), PE(Polyethylene), PP(Polypropylene), PC(Polycarbonate), PI(Polyimide), PES(Polyethersulfone), 폴리에스테르(Polyester), PS(Polystyrene), PDMS(Polydimethylsiloxane, PEO(Polyethylene oxide) 및 이들의 조합으로 이루어진 군으로부터 선택된 고분자를 절연층(20a, 30a)으로서 사용할 수 있다.
일 실시예에서, 상기 제1나노구조물(20) 및 제2나노구조물(30)의 금속층(20b, 30b)은 은, 금, 코발트 또는 Fe3O4 나노입자로 제조될 수 있다.
상기 제1나노구조물(20) 및 제2나노구조물(30)의 크기, 즉 세로 방향의 길이는 반응 공간(S)에서의 핵산 분자의 증폭 및 검출이 가능한 범위에서 수십 내지 수백 나노미터의 길이를 가질 수 있다. 일 실시예에서, 상기 제1나노구조물(20) 및 제2나노구조물(30)은 각각 세로 방향의 길이가 50-300 nm일 수 있다. 예를 들어, 상기 제1 및 제2 나노구조물(20, 30)의 세로 방향의 길이는 50-250 nm, 60-250 nm, 70-250 nm, 80-250 nm, 90-250 nm 또는 100-250 nm; 50-240 nm, 60-240 nm, 70-240 nm, 80-240 nm, 90-240 nm 또는 100-240 nm; 50-230 nm, 60-230 nm, 70-230 nm, 80-230 nm, 90-230 nm 또는 100-230 nm; 50-220 nm, 60-220 nm, 70-220 nm, 80-220 nm, 90-220 nm 또는 100-220 nm; 50-210 nm, 60-210 nm, 70-210 nm, 80-210 nm, 90-210 nm 또는 100-210 nm; 또는 50-200 nm, 60-200 nm, 70-200 nm, 80-200 nm, 90-200 nm 또는 100-200 nm일 수 있다.
또한, 상기 제1나노구조물(20)과 제2나노구조물(30) 사이 공간의 길이는 반응 공간(S)에서의 핵산 분자의 증폭 및 검출이 가능한 범위에서 수십 내지 수백 나노미터의 길이를 가질 수 있으며, 상기 제1(20) 및 제2 나노구조물(30)의 세로 방향의 길이를 고려하여 적절한 길이로 마련될 수 있다. 일 실시예에서, 상기 제1나노구조물(20)과 제2나노구조물(30) 사이의 공간은 가로 방향의 길이가 50-150 nm일 수 있다. 예를 들어, 상기 제1(20) 및 제2나노구조물(30) 사이 공간의 가로 방향의 길이는 50-130 nm, 50-120 nm, 50-110 nm 또는 50-100 nm; 60-130 nm, 60-120 nm, 60-110 nm 또는 60-100 nm; 70-130 nm, 70-120 nm, 70-110 nm 또는 70-100 nm; 80-130 nm, 80-120 nm, 80-110 nm 또는 80-100 nm; 또는 90-130 nm, 90-120 nm, 90-110 nm 또는 90-100 nm일 수 있다.
상기 반응 공간(S)은 제1나노구조물(20)과 제2나노구조물(30) 사이에 마련된 우물 형태의 웰(well)로서, 시료 내에 존재하는 목적하는 핵산을 검출하기 위한 중합효소 연쇄반응(핵산 증폭반응)이 일어나는 공간이다. 상기 핵산 증폭반응을 위하여, 반응 공간(S)에는 타겟 핵산 분자에 상보적인 염기서열을 갖는 프라이머, 4종의 dNTP 분자 및 중합효소 등의 PCR을 위한 시료 용액이 놓여질 수 있다.
일 실시예에서, 상기 반응 공간(S)에 놓인 핵산 시료는 플라즈모닉 우물을 형성한 제1 및 제2나노구조물(20, 30)에 조사된 빛에 의한 플라즈모닉 현상을 통해 열이 발생하여, 91℃(히팅)와 60℃(쿨링)를 짧은 시간(<3분) 내에 30 사이클 수행하여 광 PCR(Photonic Polymerase Chain Reaction)을 통하여 핵산 증폭이 이루어질 수 있다. 빛이 조사되면 광열 변환(light-to-heat conversion)에 의하여 열이 발생하여 반응 공간(S)에 위치하는 핵산 및 PCR 시료 용액의 히팅과 쿨링이 빠른 사이클로 일어나게 되어 핵산 증폭반응이 신속하게 일어나게 된다. 이때 핵산 증폭을 위한 온도 조절은 빛의 조사를 조절하여 이루어질 수 있다.
이와 같은 광 PCR을 위하여, 본 발명의 일 실시예에 따른 핵산 검출장치는 제1나노구조물(20) 및/또는 제2나노구조물(30)에 빛을 조사하기 위한 광원(Light source)을 더 포함할 수 있다. 상기 광원은 검출장치(100)의 내부에 위치할 수도 있고, 장치의 외부에 위치할 수도 있다.
도 2는 광원이 검출장치의 내부에 위치하는 본 발명의 일 실시예에 따른 핵산 검출장치를 보여준다.
상기 광원(40)은 LED, 다이오드 레이저(Diode lasers), 다이오드 레이저 어레이(Diode laser array), 양자 웰(수직)-공동 레이저(Quantum well(vertical)-cavity laser) 등으로 구현될 수 있다. 또한, 광원(40)의 방출 파장은 자외선(UV), 가시광선 또는 적외선(IR) 등 일 수 있다.
본 발명의 일 실시예에 따른 핵산 검출장치는 핵산 증폭을 위한 PCR 시료 용액의 온도를 모니터링 하는 온도 센서를 더 포함할 수 있다. 상기 온도 센서는 시료의 온도를 측정하는 플랫폼에 결합되거나 플랫폼을 향할 수 있다. 이러한 온도 센서는 플랫폼을 향하는 열전대(Thermocouple) 또는 카메라(예를 들어, IR 카메라)와 같이 다수의 센서 타입을 포함할 수 있다.
또한, PCR 시스템이 시료 용액의 핵산 및/또는 형광 신호를 실시간으로 검출하는 디지털 카메라, 포토다이오드(Photodiode), 분광 광도계(Spectrophotometer) 또는 유사한 촬상 장치(Imaging device)와 같은 진단 장치와 통합되거나 호환될 수 있는 것이 이해될 것이다. 예를 들어, 상기 카메라는 스마트폰 카메라 일 수 있으며, 상기 스마트폰은 시료 용액을 분석하는 어플리케이션 소프트웨어를 포함한다.
일 실시예에서, 상기 센서 및 광원은 센서 데이터의 획득 및 광원의 제어를 위한 컴퓨팅 장치(Computing unit)에 결합할 수 있다. 일반적으로, 컴퓨팅 장치는 프로세서 및 광원을 구동하기 위한(예를 들어, LED 타이밍, 강도/주입 전류 등을 제어하기 위한) 프로세서로 실행 가능한 어플리케이션 소프트웨어에 저장되는 메모리를 포함하여, 센서로부터 데이터를 획득하고 및/또는 핵산 및/또는 샘플 용액의 형광 신호의 디지털 카메라 실시간 검출과 같이 진단 장치로부터 데이터를 처리할 수 있다. 컴퓨팅 장치는 별개의 컴퓨터 또는 장치를 포함할 수 있거나, 나머지 구성 요소들을 가지는 마이크로컨트롤러 모듈(Microcontroller module)에 통합될 수 있다.
본 발명의 일 실시예에 따른 핵산 검출장치를 이용한 타겟 핵산의 검출은, R2R 인쇄 나노 구조 금속 메탈에 공명하는 주파수를 지닌 빛을 조사하여 빛을 열로 전환시켜 91℃로 히팅하고, 빛을 소등하여 60℃로 쿨링을 30회 수행하면서 핵산 분자가 반응 공간(S)에서 마스터 믹스가 녹아있는 버퍼용액에서 증폭되는 과정에서 발생하는 형광 양의 변화를 감지하여 이루어질 수 있다. 또한, 이와 별도로, 마스터 믹스 용액에 TaqMan과 같은 형광 발현 물질을 제거하여 핵산이 증폭되면서 형광을 발현시키는 반응 없이도, 반응 공간(S)에서 타겟 핵산 분자(RNA 또는 DNA)가 증폭하면서 발생하는 영향으로 인해 절연층(예컨대, 고분자층; 20a, 30a)의 낮은 유전체 나노막과 금속층(20b, 30b)의 높은 유전체 나노막, 그리고 이온성 수용액으로 채워진 우물(well)과의 계면 유전율과 금속의 일함수 변화로 인해 반사되는 빛의 양과 파장이 변화되는데, 이러한 빛의 양이나 파장의 변화를 CMOS 기반 이미지 센서를 이용하여 검출함으로써 별도의 형광 표지 없이 타겟 핵산을 검출할 수 있다.
도 3은 본 발명의 일 실시예에 따른 핵산 검출장치를 롤투롤 장치를 이용하여 제조하는 과정을 보여준다.
도 3을 참조하면, 먼저 절연층으로 이용되는 고분자 물질(예컨대, PET, PEN, PMMA 등) 위에 금속층을 프린트한다. 이후 상기 금속층 위에 다시 절연층을 프린트하고, 절연층 위에 다시 금속층을 프린트하는 방식으로 절연층과 금속층을 교대로 적층하여 나노구조물을 제조한다.
다음으로, 상기 나노구조물에 길이 방향으로 삽입될 수 있는 구조를 갖는 양각 롤, 예컨대 T자형 롤로 상기 나노구조물을 임프린팅 하여 최하단에 기판 부분이 마련되고, 상기 기판 상의 양 말단에 각각 제1나노구조물과 제2나노구조물이 형성되도록 한다. 상기 임프린팅은 필요로 하는 플라즈모닉 우물의 깊이와 폭에 맞추어 양각 롤을 제조하여 수행될 수 있으며, 이와 같이 제조된 양각 롤의 길이와 폭에 따라 제1 및 제2나노구조물의 길이와 제1 및 제2나노구조물 사이의 거리가 결정된다. 이와 같이 제조된 양각 롤을 이용하여, 예를 들어, 열 나노 임프린팅(Thermal nanoimprinting)을 통하여 제1 및 제2나노구조물을 제조할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
[부호의 설명]
10: 기판
20: 제1나노구조물
20a: 절연층
20b: 금속층
30: 제2나노구조물
30a: 절연층
30b: 금속층
40: 광원
S: 반응 공간
100: 플라즈모닉 우물 기반 핵산 검출장치
본 발명의 롤투롤 공정을 이용하여 제조한 플라즈모닉 우물(Plasmonic well) 기반의 핵산 검출장치는 형광 태그와 같은 검출을 위한 표지 없이 간편하게 타겟 핵산을 검출하는 데 사용될 수 있는 바, 병원성 세균, 바이러스 등의 검출 및 진단에 유용하게 이용될 것으로 기대된다.

Claims (15)

  1. 가로 방향으로 배치된 기판의 일 말단의 상단에 절연층과 금속층이 교대로 적층되어 형성된 제1나노구조물;
    상기 기판의 타 말단의 상단에 절연층과 금속층이 교대로 적층되어 형성된 제2나노구조물; 및
    상기 제1나노구조물과 제2나노구조물 사이에 형성된 공간으로서 핵산 증폭반응이 일어나는 반응 공간을 포함하는, 플라즈모닉 우물(Plasmonic well) 기반 핵산 검출장치.
  2. 제1항에 있어서,
    상기 핵산 검출장치는 롤투롤(Roll-to-Roll) 공정으로 제조된 것을 특징으로 하는, 핵산 검출장치.
  3. 제1항에 있어서,
    상기 절연층은 고분자인 것을 특징으로 하는, 핵산 검출장치.
  4. 제3항에 있어서,
    상기 고분자는 PET(Polyethylene terephthalate), PEN(Polyethylene naphthalate), PMMA(Poly(methyl methacrylate)), PE(Polyethylene), PP(Polypropylene), PC(Polycarbonate), PI(Polyimide), PES(Polyethersulfone), 폴리에스테르(Polyester), PS(Polystyrene), PDMS(Polydimethylsiloxane), PEO(Polyethylene oxide) 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 특징으로 하는, 핵산 검출장치.
  5. 제1항에 있어서,
    상기 금속층은 은, 금, 코발트 또는 Fe3O4 나노입자층인 것을 특징으로 하는, 핵산 검출장치.
  6. 제1항에 있어서,
    상기 제1나노구조물 및 제2나노구조물은 각각 세로 방향의 길이가 50-300 nm인 것을 특징으로 하는, 핵산 검출장치.
  7. 제1항에 있어서,
    상기 제1나노구조물과 제2나노구조물 사이에 형성된 공간은 가로 방향의 길이가 50-150 nm인 것을 특징으로 하는, 핵산 검출장치.
  8. 제1항에 있어서,
    상기 핵산 증폭반응은 상기 제1나노구조물 또는 제2나노구조물에 조사된 빛에 의한 광 PCR(Photonic Polymerase Chain Reaction)인 것을 특징으로 하는, 핵산 검출장치.
  9. 제1항에 있어서,
    상기 핵산 검출장치는 상기 제1나노구조물 또는 제2나노구조물에 빛을 조사하기 위한 광원(Light source)을 더 포함하는 것을 특징으로 하는, 핵산 검출장치.
  10. 제9항에 있어서,
    상기 핵산 검출장치는 핵산 분자의 온도를 모니터링 하는 온도 센서를 더 포함하는 것을 특징으로 하는, 핵산 검출장치.
  11. 제10항에 있어서,
    상기 핵산 검출장치는 상기 광원 및 온도 센서에 결합된 컨트롤러를 더 포함하며, 상기 컨트롤러는 상기 온도 센서로부터 하나 이상의 데이터 획득 및 상기 광원의 작동을 제어하는 것을 특징으로 하는, 핵산 검출장치.
  12. 제1항에 있어서,
    상기 반응 공간에는 타겟 핵산 분자에 상보적인 염기서열을 갖는 프라이머, 4종의 dNTP 분자 및 중합효소가 놓여지며, 상기 핵산 분자가 반응 공간에서 증폭되는 과정에서 발생하는 형광의 양 또는 파장의 변화를 감지하여 타겟 핵산 분자를 검출하는 것을 특징으로 하는, 핵산 검출장치.
  13. 제1항에 있어서,
    상기 반응 공간에는 타겟 핵산 분자에 상보적인 염기서열을 갖는 프라이머, 4종의 dNTP 분자 및 중합효소가 놓여지며, 상기 핵산 분자가 반응 공간에서 증폭되는 과정에서, 핵산 증폭이 진행되면서 나노구조물과 반응 공간의 유전상수들이 변화됨에 따른 빛의 강도와 파장 변화를 CMOS 이미지 센서를 통하여 모니터링 하여, 형광 발색 시약의 사용 없이 타겟 핵산 분자를 검출하는 것을 특징으로 하는, 핵산 검출장치.
  14. 절연층과 금속층을 교대로 적층하여 나노구조물을 형성시키는 단계; 및
    상기 나노구조물에 길이 방향으로 삽입될 수 있는 구조를 갖는 양각 롤로 상기 나노구조물을 임프린팅 하여 최하단에 기판이 형성되고, 상기 기판의 일 말단과 타 말단에 각각 서로 이격되어 배치된 제1나노구조물과 제2나노구조물이 형성되도록 하는 단계를 포함하는, 롤투롤 장치를 이용한 제1항 내지 제13항 중 어느 한 항에 따른 플라즈모닉 우물 기반 핵산 검출장치의 제조방법.
  15. 제14항에 있어서,
    상기 임프린팅은 열 나노 임프린팅(Thermal nanoimprinting)인 것을 특징으로 하는, 제조방법.
PCT/KR2021/011465 2020-08-27 2021-08-26 플라즈모닉 우물 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법 WO2022045805A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200108807A KR102423723B1 (ko) 2020-08-27 2020-08-27 플라즈모닉 우물 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법
KR10-2020-0108807 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022045805A1 true WO2022045805A1 (ko) 2022-03-03

Family

ID=80355428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011465 WO2022045805A1 (ko) 2020-08-27 2021-08-26 플라즈모닉 우물 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법

Country Status (2)

Country Link
KR (1) KR102423723B1 (ko)
WO (1) WO2022045805A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040048754A (ko) * 2002-12-04 2004-06-10 뮤앤바이오 주식회사 온도 제어가 가능한 리얼타임 형광 검색 장치
JP2012020522A (ja) * 2010-07-15 2012-02-02 Maruzen Petrochem Co Ltd 熱ナノインプリント方法
KR20140050446A (ko) * 2012-10-19 2014-04-29 나노바이오시스 주식회사 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
JP2016537998A (ja) * 2013-11-17 2016-12-08 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated 分子をプローブし、検出し、分析するための光学システム及びアッセイ・チップ
KR20170021927A (ko) * 2010-06-11 2017-02-28 인더스트리얼 테크놀로지 리서치 인스티튜트 단일분자 검출장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251955A2 (en) 1999-12-15 2002-10-30 Motorola, Inc. Column and row addressable high density biochip array
JP4997181B2 (ja) * 2008-06-13 2012-08-08 株式会社日立ハイテクノロジーズ 核酸分析デバイス及び核酸分析装置
KR101768146B1 (ko) 2014-11-12 2017-08-16 고려대학교 산학협력단 베타아밀로이드 검출용 나노 플라즈모닉 센서 및 이를 이용한 베타아밀로이드의 검출방법
KR101787013B1 (ko) 2015-08-27 2017-10-19 한밭대학교 산학협력단 롤투롤 인쇄전자 공정 기술을 이용한 미세패턴 형성 장치 및 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040048754A (ko) * 2002-12-04 2004-06-10 뮤앤바이오 주식회사 온도 제어가 가능한 리얼타임 형광 검색 장치
KR20170021927A (ko) * 2010-06-11 2017-02-28 인더스트리얼 테크놀로지 리서치 인스티튜트 단일분자 검출장치
JP2012020522A (ja) * 2010-07-15 2012-02-02 Maruzen Petrochem Co Ltd 熱ナノインプリント方法
KR20140050446A (ko) * 2012-10-19 2014-04-29 나노바이오시스 주식회사 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
JP2016537998A (ja) * 2013-11-17 2016-12-08 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated 分子をプローブし、検出し、分析するための光学システム及びアッセイ・チップ

Also Published As

Publication number Publication date
KR102423723B1 (ko) 2022-07-21
KR20220027660A (ko) 2022-03-08

Similar Documents

Publication Publication Date Title
Contreras-Naranjo et al. Mobile phone-based microscopy, sensing, and diagnostics
US20160231251A1 (en) Assay test device, kit and method of using
WO2008092075A3 (en) System and probe composition for cell counting and analysis
JP2013542730A5 (ko)
US20100041161A1 (en) Detection and quantification system of biological, matter constituted by one or more optical sensors and one or more light sources, associated process and related applications
Van Amerongen et al. Lateral flow immunoassays
US20150369739A1 (en) Semi-synthetic quorum sensors
WO2022045805A1 (ko) 플라즈모닉 우물 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법
Forouhi et al. Applications of CMOS devices for the diagnosis and control of infectious diseases
Bahavarnia et al. Recent progress and challenges on the microfluidic assay of pathogenic bacteria using biosensor technology
He et al. Superhydrophobic rotation-chip for computer-vision identification of drug-resistant bacteria
GB2515490A (en) An aperture array substrate device, a detection system and a method for detecting analytes in a sample
Tharmakulasingam et al. An artificial intelligence-assisted portable low-cost device for the rapid detection of SARS-CoV-2
WO2022045811A1 (ko) 전도성 고분자의 표면 플라즈모닉 현상을 이용한 광 pcr 시스템 및 이를 이용한 타겟 핵산의 실시간 검출
WO2021235797A1 (ko) Tio2 나노구조 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법
US20120070885A1 (en) Integrated device for analyzing aqueous samples using lipid multilayer gratings
KR102539869B1 (ko) 롤투롤 공정으로 제조된 금속-그래핀 기반 표면 플라즈몬 공명 분자진단 장치 및 이의 제조방법
CA2450385C (en) Flat field correction of two-dimensional biochemical assay images
WO2022005146A1 (ko) 롤투롤 공정으로 제조된 금속-그래핀 기반 표면 플라즈몬 공명 분자진단 장치 및 이의 제조방법
WO2021215850A1 (ko) 롤투롤 공정으로 제조된 그래핀 기반 표면 플라즈몬 공명 분자진단 장치 및 이의 제조방법
KR102449073B1 (ko) TiO2 나노구조 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법
JP2023532054A (ja) 超高速pcrサーマルサイクラー
KR102404682B1 (ko) 롤투롤 공정으로 제조된 그래핀 기반 표면 플라즈몬 공명 분자진단 장치 및 이의 제조방법
Zhang et al. The role played by sensors consisting of smartphone and black box in analytical chemistry: Increase the achievability
Nag et al. Printed electronics: present and future opportunities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21862101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21862101

Country of ref document: EP

Kind code of ref document: A1