WO2022045468A1 - System for integrated measurement and management of sensing data for detection of collapse within mine pit - Google Patents

System for integrated measurement and management of sensing data for detection of collapse within mine pit Download PDF

Info

Publication number
WO2022045468A1
WO2022045468A1 PCT/KR2020/017590 KR2020017590W WO2022045468A1 WO 2022045468 A1 WO2022045468 A1 WO 2022045468A1 KR 2020017590 W KR2020017590 W KR 2020017590W WO 2022045468 A1 WO2022045468 A1 WO 2022045468A1
Authority
WO
WIPO (PCT)
Prior art keywords
collapse
mine
data
measurement
sensing data
Prior art date
Application number
PCT/KR2020/017590
Other languages
French (fr)
Korean (ko)
Inventor
김영민
김용광
곽승준
박지웅
정지훈
Original Assignee
주식회사 이에스피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이에스피 filed Critical 주식회사 이에스피
Publication of WO2022045468A1 publication Critical patent/WO2022045468A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission

Definitions

  • the present invention relates to sensing data for detecting collapse in a mine mine.
  • the underground mine tunnel consists of a room, which is a space generated after excavation, and a pillar, which is not mined to prevent collapse. It consists of a floor and an upper ceiling.
  • three-dimensional lidar has a problem in that it is not possible to acquire forecast and warning data through real-time continuous measurement because measuring equipment is expensive, measuring irregularly, and observing displacement after various data processing.
  • the present invention has been devised to solve such a problem, and transmits data measured by various types of sensors installed according to the mine mine environment as standardized data according to a predefined data format, and transmits the data measured from various sensors to users or users.
  • the purpose of this is to provide an integrated measurement and management system for sensing data for the detection of collapse in a mine so that it can be processed and provided in the form required by the manager.
  • the sensing data integrated measurement and management system for detecting the collapse of a mine mine for achieving the above object, it is installed on the ground surface, side wall, or ceiling of the mine according to the environment of the mine and is installed for each cell unit of a predetermined area.
  • a plurality of decay detection sensors that measure the pre-symptoms of the collapse of a sensor node for receiving in real time the data of pre-symptoms of collapse measured from the plurality of collapse detection sensors; a gateway for collecting pre-symptom measurement data of collapse in each cell area measured by the plurality of collapse detection sensors from the sensor node; a sensing data integrated measurement management server for receiving and integratedly managing the pre-collapse pre-sign measurement data in each cell area collected by the gateway through a network in real time; and an alarm device that transmits an alarm sound when receiving an alarm signal notifying the start of collapse of a mine mine from the sensing data integrated measurement management server.
  • the collapse detection sensor is any one of a displacement sensor, an inclinometer sensor, and an Internet of Things-based geophone sensor according to the environment of the mine, and may measure the pre-signs of collapse appearing in the rock in the mine.
  • pre-collapse measurement data in each cell area transmitted from the gateway may be standardized according to a predefined data format through a data collection and measurement program and transmitted to the sensing data integrated measurement management server.
  • the sensing data integrated measurement management server analyzes the pre-symptom status of collapse appearing in the bedrock based on the pre-symptom measurement data of collapse in each cell area collected by the gateway. As a result, the pre-symptom state value of collapse in a specific cell area When this preset reference value is exceeded, it may be determined that the collapse of the mine has started.
  • data measured by various types of sensors installed according to the mine environment are transmitted as standardized data according to a predefined data format, and data measured from various sensors are processed into a form required by a user or manager. This has the effect of allowing users or managers to intuitively recognize the mine environment and real-time situation in real time, and to respond immediately when an abnormal signal occurs.
  • FIG. 1 is a diagram showing the overall configuration of a sensing data integrated measurement management system for detecting collapse in a mine mine according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a detailed configuration of a data collection and measurement program of the gateway-side middleware in FIG. 1 .
  • 3 is a diagram illustrating a definition of a format of measurement data transmitted from a gateway.
  • FIG. 4 is a view showing the detailed configuration of a user program and a server program of the sensing data integrated measurement management server in FIG. 1 .
  • FIG. 5 is a diagram illustrating an example of a communication method between an anchor and a tag for recognizing an object location in the object location recognition unit of FIG. 3 .
  • FIG. 6 is a diagram showing three strings when three anchors receive position data from a tag.
  • FIGS. 7 and 8 are diagrams illustrating an integrated measurement and management method of sensing data for detecting collapse in a mine mine according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing the overall configuration of a sensing data integrated measurement management system for detecting collapse in a mine mine according to an embodiment of the present invention.
  • the sensing data integrated measurement and management system for detecting collapse in a mine shaft of the present invention includes a plurality of collapse detection sensors 100 installed in a mine shaft, a sensor node 200, a gateway 300, and an alarm.
  • the device 500 and the sensing data integrated measurement management server 400 for transmitting and receiving data communication and control signals to and from the gateway 300 and the alarm device 500 through the network network may be included.
  • the collapse detection sensor 100 is installed for each cell unit of a predetermined area on the ground surface, sidewall, or ceiling of the mine shaft, and it can measure the pre-signs of collapse that appear in the rock before the collapse or rockfall of the rock in the mine occurs. Pre-signal measurement data of collapse in each cell area may be transmitted to the gateway 300 by a short-range wireless communication method.
  • the collapse detection sensor 100 uses a displacement meter, inclinometer sensor, ICT, IoT-based geophone sensor, etc. depending on the environment in the mine to measure the pre-signs of collapse appearing in the rock before the collapse or rockfall of the rock in the mine occurs. can
  • the collapse detection sensor 100 is installed on the ground surface, side wall, or ceiling in the mine to measure the pre-signs of collapse appearing in the rock before rock collapse or rock fall occurs, and the rock collapse and collapse to managers and workers through management standard setting It can be used as a main element to provide an alert according to the change of the state of the pre-symptom of
  • the measurement range of the collapse detection sensor used in the present invention may vary depending on the frequency of the sensor used, the specification of the sensor, the arrangement of the sensor, the ground characteristics of the target area, and the like.
  • a broadband seismometer, a general geophone, or an accelerometer can be installed in consideration of the frequency band detected according to the distance between the sensors from the origin of the map.
  • the selection of the range is related to the required accuracy of the epicenter, so that the accuracy can be improved by increasing the sensor array area.
  • the sensor node 200 may receive the pre-signal measurement data of collapse in each cell area measured by the collapse detection sensor 100 in real time and transmit it to the gateway 300 by a short-range wireless communication method.
  • the pre-signal measurement data of the collapse in each cell area measured by the collapse detection sensor 100 can be received and stored in real time, or the stored data can be transmitted to the gateway 300. there is.
  • the gateway 300 may receive and collect the pre-signal measurement data of the collapse in each cell area respectively measured by the plurality of collapse detection sensors 100 by a short-distance wireless communication method, and each cell collected collectively It is possible to transmit the measurement data of the pre-signs of collapse in the area to the sensing data integrated measurement management server 400 through the network.
  • the gateway 300 may transmit the integratedly collected pre-sign measurement data of collapse in each cell area to the sensing data integrated measurement management server 400 through a network using the gateway-side middleware.
  • the gateway-side middleware can transmit the collected data to the server by standardizing the data through the measurement/collection program.
  • the measurement/collection program may be configured in a modular way, and the modular configuration of the measurement/collection program will be described in more detail below.
  • the gateway 300 has a function of transmitting the sensing information collected from the sensor node 200 to the server through the installation of commercial network LTE-R, and is configured to mutually transmit and receive data through ZigBee wireless communication between each node and the gateway can have
  • transmission/reception validation is required to determine the accuracy of the transmission/reception process of sensing information between the gateway 300 and the sensor node 200.
  • CRC16 Cyclic Redundancy Check
  • the accelerometer and gyro sensor mounted on the integrated sensor can be configured to enable real-time information transmission in the event of a disaster through a sensor node composed of a mesh.
  • the communication operation mode of the wireless communication device between the gateway 300 and the sensor node 200 is set to the API mode of the gateway 300, and the sensor node 200 is set to the transparent mode, according to each role. It can be configured to facilitate communication.
  • the gateway 300 unlike the sensor node 200, should be compatible between devices for a wireless system other than the wireless communication device of the present invention, so communication operation setting in API mode should be set, and the sensor node 200
  • the gateway 300 When configuring the Digi-Mesh Network by constructing an internal network, it is necessary to configure the communication method to maintain the interconnection of links without limiting the role of each node, so the application of transparent mode may be essential.
  • the sensing data integrated measurement management server 400 receives the pre-signal measurement data of collapse in each cell area integratedly collected by the gateway 300 in real time through the network, and the collapse of the rock on the ground surface, sidewall or ceiling of the mine. , it is possible to analyze the state of pre-signs of collapse appearing in the bedrock before rockfall, etc. occurs. As a result of the analysis, when the state value of the pre-signs of collapse in a specific cell region exceeds a preset reference value, it is determined that the collapse or collapse of the mine mine has started, and an alarm signal can be generated.
  • the network refers to a connection structure capable of exchanging information between each module.
  • Examples of such a network include a 3rd Generation Partnership Project (3GPP) network, a Long Term Evolution (LTE) network, and a World Interoperability for (WIMAX) network.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • WIMAX World Interoperability for
  • Microwave Access Internet
  • LAN Local Area Network
  • Wireless LAN Wireless Local Area Network
  • WAN Wide Area Network
  • PAN Personal Area Network
  • Bluetooth Bluetooth
  • satellite broadcasting network analog broadcasting networks
  • DMB Digital Multimedia Broadcasting
  • WiFi V2V, V2I, V2X, DSRC, and the like.
  • the sensing data integrated measurement management server 400 may integrally manage the pre-significant measurement data of collapse in each cell area transmitted from the gateway 300 through the network.
  • a user program 600 and a server program 700 for monitoring and managing location information of various types of sensors installed in the mine and sensing data measured by the sensors may be modularly installed in the server. The modular configuration of the user program 600 and the server program 700 will be described in more detail below.
  • the alarm device 500 is connected to the sensing data integrated measurement and management server 400 through a network network to receive an alarm signal notifying the collapse or start of collapse of the mine mine from the sensing data integrated measurement management server 400.
  • An alarm sound indicating the start of the collapse may be transmitted at periodic intervals for a predetermined period of time. Accordingly, workers who are working in the mine can quickly evacuate from the mine by recognizing the alarm sound that is periodically transmitted at a predetermined time interval from the alarm device 500 .
  • FIG. 2 is a diagram illustrating a detailed configuration of a data collection and measurement program of the gateway-side middleware in FIG. 1
  • FIG. 3 is a diagram illustrating a definition of a measurement data format transmitted from the gateway.
  • the wireless sensor node and gateway connected to various sensors installed in the mine may transmit data through wireless communication such as LoRa or ZigBee, and transmit the collected information to the server through wired communication.
  • the wireless communication method may be configured differently depending on the field environment, but the gateway-side middleware can standardize the data through the data collection and measurement program and transmit the collected data to the server.
  • the data collection and measurement program it can be determined whether the data measured from the sensor is transmitted normally according to the data format defined in FIG. 3 from the gateway, and the data processing process can be checked through the script.
  • the data collection and measurement program of the gateway 300 for integrating the sensing data collected in the gateway and transmitting it to the server includes a gateway setting unit 301, a sensor information setting unit 302, and a sensing data integration unit ( 303 ), a real-time sensing data processing unit 304 , and a sensing data storage unit 305 may include a modular configuration.
  • the gateway setting unit 301 may collect measurement data and set a gateway, for example, may collect measurement data and set a gateway model name.
  • communication method TCP/IP, etc.
  • connection information of the sensor node or data logger such as IP address and port can be set.
  • DB access information such as IP address, SID, user name and password can be set.
  • the sensor information setting unit 302 may set a unique number of each sensor installed in the mine, a channel number, a temperature channel number, and the like.
  • the measurement data collection interval can be set, and the measurement interval can be controlled by the data logger and gateway.
  • the sensing data integrator 303 may set communication for connection to a sensor node, data logger, and gateway using TCP/IP, and may receive measurement data stored in the sensor node, data logger, and gateway.
  • the sensing data real-time processing unit 304 may post-process the measurement data, for example, may convert the measurement data into a physical quantity or process validity checks such as a measurement maximum range check in real time.
  • the sensing data storage unit 305 may store measured data (raw data) and filtered physical quantity data respectively measured from various types of sensors in a database.
  • the function of acquiring sensor information can check whether the database is connected to the database according to the data format defined for various sensors through a query.
  • the integrated measurement management middleware program can be applied as sensing data monitoring measurement management software. That is, in the measurement and management of the mine safety management system, various sensors and location information in the mine can be provided to the end user through the web or CS program-based UI software.
  • the integrated measurement management middleware integrates the data collected from each sensor device to the gateway through a measurement program, and can play a role in transmitting the data to the server and process the data in real time.
  • FIG. 4 is a view showing the detailed configuration of a user program and a server program of the sensing data integrated measurement management server in FIG. 1 .
  • the sensing data integrated measurement management server 400 of the present invention includes a management standard setting unit 401, a warning target setting unit 402, a measurement data inquiry unit 403, and a sensor information additional inquiry unit. 404 , communication unit 405 , control unit 406 , sensor measurement database 407 , project setting unit 408 , measurement data backup unit 409 , object location recognition unit 410 and alarm A signal generator 411 may be included.
  • the user program may include a modular configuration into a management standard setting unit 401 , a warning target setting unit 402 , a measurement data inquiry unit 403 , and a sensor information addition inquiry unit 404 .
  • the server program may include a modular configuration into a project setting unit 408 , a measurement data backup unit 409 , an object position recognition unit 410 , and an alarm signal generator 411 .
  • the management standard setting unit 401 may set management standards of the user program.
  • the user program management standard setting can be divided into management stage setting, warning setting and release, and management standard copying.
  • the warning (maximum and minimum) stage can be set, and the standard character string, change rate interval, saving/modifying/deleting alarm type, etc. can be set.
  • the management standard copy the management standards defined in advance for each sensor can be copied.
  • the warning target setting unit 402 may set a warning target in the user program.
  • the warning target setting may be divided into alarm target management for each sensor, alarm sender management, and warning standard copy.
  • the sensor-specific alert target management administrator information to send a warning text can be input, and e-mail/cell phone information can be stored/modified/deleted and managed.
  • the alert sender management the alert sender can be managed by inputting the alert sender mobile phone number.
  • the alarm target can be copied for each sensor.
  • the measurement data inquiry unit 403 may inquire measurement data in the user program.
  • the measurement data inquiry can be divided into data inquiry, graph inquiry, report inquiry, map information display, and display interval designation.
  • data inquiry measurement data can be displayed in a table.
  • graph inquiry measurement data can be expressed as a graph with multiple legends.
  • report inquiry measurement data and graphs can be expressed as a report with multiple legends.
  • map information display the map information can be expressed on the tunnel modeling map.
  • the display interval designation the display time interval such as seconds, minutes, hours, days can be specified.
  • the sensor information addition inquiry unit 404 may add and inquire sensor information in a user program.
  • sensor information addition and inquiry can be divided into sensor addition, sensor deletion, and sensor event history management.
  • sensor information such as a sensor name, manufacturer, installation date/location/number/depth, and coordinates may be added or modified.
  • sensor deletion all related data such as sensor data and sensor specifications can be deleted and the sensor can be deleted.
  • sensor event history management sensor event history management can be performed through addition/modification/deletion of sensor events, and maintenance and inspection of abnormal data can be displayed on a graph.
  • the communication unit 405 may communicate with each component of the sensing data integrated measurement and management system for detecting collapse in a mine to transmit/receive information necessary for integrated measurement and management of sensing data for detecting collapse in a mine or transmit a control signal.
  • the control unit 406 transmits and receives a control signal to and from each component of the sensing data integrated measurement and management system for detecting collapse in a mine to perform a series of overall control related to the integrated measurement and management of sensing data for detecting collapse in a mine.
  • the sensor measurement database 407 may store data measured from each sensor installed in each cell area within the mine as a database. That is, it is possible to store the measurement data of the pre-signs of collapse that appear in the rock before the collapse or rockfall of the rock in the mine measured by the collapse detection sensor installed in each cell area in the mine shaft. At this time, the collapse detection sensor installed in each cell area in the mine mine can be assigned a unique number, and can store the pre-signal measurement data of the collapse measured in real time by each sensor for each assigned unique number.
  • the project setting unit 408 may set a project for the mine work, and may be set on site. For example, it is possible to add/modify/delete worksite names, site codes, location additions, etc. in the mine pit.
  • the measurement data backup unit 409 may back up at least one or more measurement data measured from various sensors in the mine. With this measurement data backup, the backed-up measurement data can be utilized when the previously stored measurement data is destroyed.
  • the object location recognition unit 410 may recognize location information of a worker or a work vehicle working in a mine shaft.
  • an anchor installed at a predetermined distance within the mine shaft area communicates with a tag installed in the worker's work hat or work vehicle to recognize the location of the object.
  • the warning signal generating unit 411 may determine a sensor warning based on the mine mine measurement data. For example, it is determined whether the measurement data exceeds the management standard value, and when the measurement data exceeds the management standard value, an alarm signal can be generated. For example, if the change value of the pre-sign of collapse measurement data for each cell area subject to collapse monitoring exceeds the preset reference value, it is determined that the collapse of the mine has started and an alarm signal is issued. can cause In addition, it is possible to generate an alarm message such as a short message or e-mail and transmit the alarm message to a field manager or operator terminal.
  • the alarm signal generator 411 may receive location information of an object, such as a worker or a work vehicle, recognized by the object location recognition unit 410 when an alarm signal is generated, and based on the received location information of the object, the area in which the object in the mine is located An alarm device placed in the pit can send out an alarm signal to indicate the start of the collapse of the mine. Accordingly, the workers working in the mine can evacuate from the work site in the mine as soon as possible after hearing the warning signal indicating the start of collapse of the mine.
  • an object such as a worker or a work vehicle
  • FIG. 5 is a diagram illustrating an example of a communication method between an anchor and a tag for object position recognition in the object position recognition unit of FIG. It is a drawing showing
  • the present invention can provide a location tracking and distance calculation algorithm using the measurement system distance information as a real-time location analysis and proximity detection algorithm. That is, in the communication flow between the anchor and the tag for calculating the location (distance), data communication with the anchor may be sequentially performed according to the order defined in the MCU firmware of the tag, and a plurality of anchors installed in the mine The distance information can be calculated by sequentially performing data communication once at a time. Considering the length of the tunnel, the anchor is fixed and multiple equipment can be installed in series and parallel, and the tag is mounted on the inside and outside of the work vehicle and on the worker's smart helmet, so that a plurality of location information can be transmitted to the anchor (leader) side in a movable manner. there is.
  • a real-time location tracking algorithm in a mine may be applied in order to locate the location of a vehicle and an operator in the mine in real time.
  • each anchor (leader) installed on the sidewall or ceiling of the mine receives location-related data from the tag, and processes an algorithm based on the received data to determine the exact location of the tag.
  • the number of anchors (readers) capable of receiving data from the tag varies according to the location of the tag attached to the vehicle or the operator, and different positioning algorithms can be applied according to the number of anchors that have received the location data of the tag. That is, the number of anchors that have received the location information of the tag can be divided into two, three, or more, respectively, and the applied positioning algorithms are as follows.
  • the tag positioning algorithm using the Pythagorean theorem and the equation of the common chord is as follows. For example, you can define the center of a tag as the (0,0) coordinate, where (x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3 ) are the values of the predefined anchors. coordinates, (x, y) is the coordinate of the tag to be obtained, and (r 1 , r 2 , r 3 ) may be the distance from each anchor measured to the tag. In other words, it is possible to classify the case where there are two, three, or four or more anchors that have received the tag's data, and measure the position of the tag by applying the calculation algorithm.
  • Equation 1 the equation of a common string applied when data of a tag is received from two anchors may be expressed as Equation 1 below.
  • Equation 2 the equation of the common string applied when the data of the tag is received from the three anchors.
  • Equation 3 the equation of the common string applied when receiving tag data from four or more anchors.
  • the center coordinates of the result value can be calculated after positioning by selecting a combination of 3 anchors.
  • the case where the two circles do not meet may be divided into a case where they do not meet outside, are contained within, or are concentric circles, and the case where two circles meet at a point may be divided into a circumscribed or inscribed case.
  • Table 1 the distance between the centers of two circles is denoted as d, and the length of the radius is denoted as r, r' (r > r'), respectively.
  • N tag coordinates may be obtained according to a combination of three anchors among four or more anchors receiving distance information from a tag, and a value calculated by calculating the center coordinates of the N coordinates may be determined as the final positioning value.
  • the final calculated position result of the tag may have a large error from the actual position. Therefore, in order to reduce such an error, the accuracy of each intersection is checked, and the intersection below the reference point is excluded from the calculation of the tag coordinates so that the accuracy can be secured.
  • the real-time location tracking algorithm of vehicles and workers in the mine is the same as the binary common chord equation based on the tags you have, but only the intersection point outside the anchor can be displayed as coordinates.
  • the location of the detection anchor and the tag location can be displayed in the same way, and the distance can be expressed in units of m.
  • Equation 4 a basic equation such as Equation 4 below may be applied.
  • FIGS. 7 and 8 are diagrams illustrating an integrated measurement and management method of sensing data for detecting collapse in a mine mine according to an embodiment of the present invention.
  • the sensing data integrated measurement management server may determine whether it has received pre-signal measurement data of collapse in each cell area to be monitored for collapse in a mine that is integrated and transmitted in real time from the gateway (S10).
  • the pre-symptom measurement data of collapse in each cell area to be monitored for collapse in the mine may include at least one or more data measured by various types of sensors for detecting collapse in the mine, such as a displacement sensor and an inclination sensor.
  • the sensing data integrated measurement management server receives the pre-symptom measurement data that is collected and transmitted in real time from the gateway, at least one or more received pre-symptom measurement data can be stored in the sensor measurement database (S11). there is.
  • the pre-symptom measurement data of collapse that is integratedly collected and transmitted in real time by the gateway may be transmitted to the server side only when it matches the data format predefined by the gateway-side middleware data collection and measurement program.
  • the sensing data integrated measurement management server may back up at least one or more pre-collapse pre-sign measurement data stored in the database in step S11 to a separate storage space (S12).
  • a separate storage space S12
  • the sensing data integrated measurement management server may display (S13) each measurement data of the mine tunnel modeling map map information and the sensor when an inquiry request is generated from a user or an administrator.
  • the expression time interval may be expressed at a predetermined time interval.
  • measurement data can be expressed as a table or as a graph with multiple legends at the request of a user or administrator, and measurement data and graphs can be expressed as a report with multiple legends.
  • the sensing data integrated measurement management server may display (S14) the generated sensor event abnormal data when abnormal sensor event data is generated from any one sensor during tunnel monitoring.
  • the location where the actual sensor event abnormal data is generated may be displayed by matching it on the tunnel modeling map.
  • a user or an administrator can check and repair the occurrence of abnormal data, and display the inspection and repair result information on the corresponding location on the map.
  • the sensing data integrated measurement management server analyzes at least one or more pre-signs of collapse measurement data, and as a result of the analysis of at least one pre-symptom of collapse measurement data, the change value of the pre-signs of collapse measurement data for each cell area to be monitored for collapse in the mine is set. It may be determined whether the reference value is exceeded (S15).
  • the sensing data integrated measurement management server analyzes at least one or more pre-signs of collapse measurement data, and as a result of the analysis of at least one pre-symptom of collapse measurement data, the change value of the pre-signs of collapse measurement data for each cell area to be monitored for collapse in the mine is set. When a case exceeding the reference value occurs, it may be determined that the collapse of the mine mine has started (S16).
  • the sensing data integrated measurement management server may recognize object location information such as a worker or a work vehicle working in a mine pit (S17).
  • object location information such as a worker or a work vehicle working in a mine pit (S17).
  • an anchor installed at a predetermined distance within the mine shaft area communicates with a tag installed on the worker's work hat or work vehicle to recognize the location of the object.
  • the sensed data integrated measurement management server collects and transmits integrated data from the gateway in real time.
  • the change value of the pre-symptom of collapse measurement exceeds a preset reference value.
  • an alarm signal may be generated (S18).
  • the generated warning signal for notifying the start of the mine mine collapse may be transmitted through an alarm device installed in the mine mine through a network network.
  • the sensing data integrated measurement management server can receive location information of an object, such as a worker or a work vehicle, recognized in step S17 when an alarm signal is generated, and based on the location information of the received object, an alarm placed in the area where the object in the mine is located
  • the device can send out an alarm signal to inform the start of the collapse of the mine. Accordingly, the workers working in the mine can evacuate from the work site in the mine as soon as possible after hearing an alarm signal indicating the start of collapse in the mine.

Abstract

The present invention relates to a system for integrated measurement and management of sensing data for the detection of a collapse within a mine pit and, more specifically, to a system for integrated measurement and management of sensing data for the detection of a collapse within a mine pit, which integrally manages collapse pre-sign measurement data measured by a collapse detection sensor installed on the ground surface, sidewall or ceiling of the mine pit. According to the present invention, there is an effect of transmitting, as standardised data according to a predefined data format, data being measured by various types of sensors installed according to the environment within the mine pit, and processing and providing, in a form required by a user or a manager, the data measured from the various types of sensors, such that the user or the manager can intuitively recognize in real time the environment and real-time situation within the mine pit to immediately cope with the occurrence of an abnormal signal.

Description

광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템Sensing data integrated measurement management system to detect collapse in mines
본 발명은 광산 갱내 붕락 감지를 위한 센싱 데이터 에 관한 것이다.The present invention relates to sensing data for detecting collapse in a mine mine.
일반적으로 지하광산의 갱도는 굴착 후 발생되는 공간인 주방(Room)과 붕괴를 방지하기 위해 채굴하지 않은 기둥 역할의 암주(Piller)로 이루어져 있으며, 주방은 각각의 굴착된 갱도 편(층)의 하부 바닥과 상부 천장으로 이루어져 있다.In general, the underground mine tunnel consists of a room, which is a space generated after excavation, and a pillar, which is not mined to prevent collapse. It consists of a floor and an upper ceiling.
지하 굴착이 진행됨에 따라 주방과 암주는 응력을 받아 변위가 지속되며, 임계치를 넘으면 취성 파괴가 발생되어 갱도의 붕괴와 인명피해를 유발할 수 있다. 이러한 변위는 주로 암주에 집중되고, 천장, 벽면 및 바닥이 미세하게 부풀어 오르는 변위를 발생시키며, 암반에 다수의 절리와 단층이 존재할 경우 임계 응력 전에 변위가 발생하기도 한다.As the underground excavation progresses, the kitchen and arm poles are subjected to stress and the displacement continues. If the threshold is exceeded, brittle fracture may occur, which may cause the collapse of the tunnel and human casualties. This displacement is mainly concentrated on the rock column and causes the ceiling, wall, and floor to slightly swell, and when there are many joints and faults in the rock, displacement may occur before the critical stress.
종래의 변위측정 방식은 1차원적 단일 게이지를 통한 계측 혹은 측량용 라이다를 현장에서 장비를 구성하여 비정기적으로 측정한 후 그 차이를 보는 방식이 대부분을 이루고 있다. 1차원적 계측은 넓은 범위를 대표할 수 없으며, 다수의 계측 시 경제성이 낮고, 관리의 어려움이 존재한다.Most of the conventional displacement measurement methods consist of measuring through a one-dimensional single gauge or measuring lidar for surveying at the site, measuring irregularly, and then looking at the difference. One-dimensional measurement cannot represent a wide range, and economical efficiency is low when multiple measurements are performed, and there are difficulties in management.
또한, 3차원적인 라이다는 측정 장비가 고가이며, 비정기적으로 측정하고, 다양한 자료처리 후 변위를 관측하므로 실시간 연속측정을 통한 예보 및 경보 자료를 획득하지 못하는 문제점이 있다.In addition, three-dimensional lidar has a problem in that it is not possible to acquire forecast and warning data through real-time continuous measurement because measuring equipment is expensive, measuring irregularly, and observing displacement after various data processing.
특히, 종래에는 광산 갱내에 설치된 다양한 종류의 센서의 환경을 설정하고 센서로부터 측정된 데이터를 사용자나 관리자가 필요로 하는 형태로 가공하여 제공할 수 없는 문제점이 있었다.In particular, in the related art, there is a problem in that the environment of various types of sensors installed in a mine mine cannot be set and the data measured from the sensors cannot be processed and provided in a form required by a user or an administrator.
본 발명은 이와 같은 문제점을 해결하기 위해 창안된 것으로서, 광산 갱내 환경에 따라 설치된 다양한 종류의 센서에서 측정되는 데이터를 기 정의된 데이터 포맷에 의한 표준화 데이터로 전송하고 각종 센서로부터 측정된 데이터를 사용자나 관리자가 필요로 하는 형태로 가공하여 제공할 수 있도록 한 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템을 제공함을 목적으로 한다.The present invention has been devised to solve such a problem, and transmits data measured by various types of sensors installed according to the mine mine environment as standardized data according to a predefined data format, and transmits the data measured from various sensors to users or users. The purpose of this is to provide an integrated measurement and management system for sensing data for the detection of collapse in a mine so that it can be processed and provided in the form required by the manager.
상기한 목적을 달성하기 위한 본 발명에 따른 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템의 일측면에 따르면, 광산 갱내 환경에 따라 갱내 지표면이나 측벽 또는 천장에 소정 영역의 셀 단위마다 설치되어 암반의 붕락 사전징후를 측정하는 다수개의 붕락감지센서; 상기 다수개의 붕락감지센서로부터 측정된 붕락 사전징후 측정 데이터를 실시간으로 수신하는 센서노드; 상기 센서노드로부터 상기 다수개의 붕락감지센서에서 각각 측정된 각 셀 영역에서의 붕락 사전징후 측정 데이터를 수집하는 게이트웨이; 상기 게이트웨이에서 수집한 각 셀 영역에서의 붕락 사전징후 측정 데이터를 네트워크망을 통해 실시간으로 수신하여 통합적으로 관리하는 센싱 데이터 통합계측관리 서버; 및 상기 센싱 데이터 통합계측관리 서버로부터 광산 갱내 붕락 시작을 알리는 경보 신호를 수신하는 경우 경보음을 송출하는 경보 장치를 포함할 수 있다.According to one aspect of the sensing data integrated measurement and management system for detecting the collapse of a mine mine according to the present invention for achieving the above object, it is installed on the ground surface, side wall, or ceiling of the mine according to the environment of the mine and is installed for each cell unit of a predetermined area. A plurality of decay detection sensors that measure the pre-symptoms of the collapse of a sensor node for receiving in real time the data of pre-symptoms of collapse measured from the plurality of collapse detection sensors; a gateway for collecting pre-symptom measurement data of collapse in each cell area measured by the plurality of collapse detection sensors from the sensor node; a sensing data integrated measurement management server for receiving and integratedly managing the pre-collapse pre-sign measurement data in each cell area collected by the gateway through a network in real time; and an alarm device that transmits an alarm sound when receiving an alarm signal notifying the start of collapse of a mine mine from the sensing data integrated measurement management server.
또한, 상기 붕락감지센서는 갱내 환경에 따라 변위 센서, 경사계 센서 및 사물인터넷 기반의 지오폰 센서 중 어느 하나의 센서로서 갱내 암반에서 나타나는 붕락의 사전징후를 측정할 수 있다.In addition, the collapse detection sensor is any one of a displacement sensor, an inclinometer sensor, and an Internet of Things-based geophone sensor according to the environment of the mine, and may measure the pre-signs of collapse appearing in the rock in the mine.
또한, 상기 게이트웨이에서 전송되는 각 셀 영역에서의 붕락 사전징후 측정 데이터는 데이터 수집 및 측정 프로그램을 통해서 기 정의된 데이터 포맷에 따라 표준화되어 상기 센싱 데이터 통합계측관리 서버로 전송될 수 있다.In addition, pre-collapse measurement data in each cell area transmitted from the gateway may be standardized according to a predefined data format through a data collection and measurement program and transmitted to the sensing data integrated measurement management server.
또한, 상기 센싱 데이터 통합계측관리 서버는 상기 게이트웨이에서 수집한 각 셀 영역에서의 붕락 사전징후 측정 데이터에 기초하여 암반에서 나타나는 붕락의 사전징후 상태를 분석한 결과 특정 셀 영역에서의 붕락 사전징후 상태값이 기설정된 기준값을 초과하는 경우 광산 갱내 붕락이 시작된 것으로 판단할 수 있다.In addition, the sensing data integrated measurement management server analyzes the pre-symptom status of collapse appearing in the bedrock based on the pre-symptom measurement data of collapse in each cell area collected by the gateway. As a result, the pre-symptom state value of collapse in a specific cell area When this preset reference value is exceeded, it may be determined that the collapse of the mine has started.
본 발명에 의하면, 광산 갱내 환경에 따라 설치된 다양한 종류의 센서에서 측정되는 데이터를 기 정의된 데이터 포맷에 의한 표준화 데이터로 전송하고 각종 센서로부터 측정된 데이터를 사용자나 관리자가 필요로 하는 형태로 가공하여 제공함으로써 사용자나 관리자가 실시간으로 갱내 환경 및 실시간 상황을 직관적으로 인식하여 이상신호 발생시 즉시 대처할 수 있는 효과가 있다.According to the present invention, data measured by various types of sensors installed according to the mine environment are transmitted as standardized data according to a predefined data format, and data measured from various sensors are processed into a form required by a user or manager. This has the effect of allowing users or managers to intuitively recognize the mine environment and real-time situation in real time, and to respond immediately when an abnormal signal occurs.
도 1은 본 발명의 일실시예에 따른 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템의 전체 구성을 나타내는 도면이다.1 is a diagram showing the overall configuration of a sensing data integrated measurement management system for detecting collapse in a mine mine according to an embodiment of the present invention.
도 2는 도 1에서 게이트웨이측 미들웨어의 데이터 수집 및 측정 프로그램 세부 구성을 나타내는 도면이다.FIG. 2 is a diagram illustrating a detailed configuration of a data collection and measurement program of the gateway-side middleware in FIG. 1 .
도 3은 게이트웨이로부터 전송되는 측정 데이터 포맷의 정의를 나타내는 도면이다.3 is a diagram illustrating a definition of a format of measurement data transmitted from a gateway.
도 4는 도 1에서 센싱 데이터 통합계측관리 서버의 사용자 프로그램 및 서버 프로그램 세부 구성을 나타내는 도면이다.4 is a view showing the detailed configuration of a user program and a server program of the sensing data integrated measurement management server in FIG. 1 .
도 5는 도 3의 객체위치 인식부에서의 객체위치 인식을 위한 앵커와 태그 간 통신방법의 일예를 나타내는 도면이다.5 is a diagram illustrating an example of a communication method between an anchor and a tag for recognizing an object location in the object location recognition unit of FIG. 3 .
도 6은 3개의 앵커가 태그로부터 위치 데이터를 수신하는 경우의 3개의 현을 나타내는 도면이다.6 is a diagram showing three strings when three anchors receive position data from a tag.
도 7 및 도 8은 본 발명의 일실시예에 따른 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 방법을 나타내는 도면이다.7 and 8 are diagrams illustrating an integrated measurement and management method of sensing data for detecting collapse in a mine mine according to an embodiment of the present invention.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in the present specification and claims should not be construed as being limited to conventional or dictionary meanings, and the inventor should properly understand the concept of the term in order to best describe his invention. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined. Therefore, the configuration shown in the embodiments and drawings described in the present specification is only the most preferred embodiment of the present invention and does not represent all of the technical spirit of the present invention, so at the time of the present application, various It should be understood that there may be equivalents and variations.
도 1은 본 발명의 일실시예에 따른 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템의 전체 구성을 나타내는 도면이다.1 is a diagram showing the overall configuration of a sensing data integrated measurement management system for detecting collapse in a mine mine according to an embodiment of the present invention.
도시된 바와 같이, 본 발명의 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템은 광산 갱내에 설치되는 다수개의 붕락감지센서(100)와, 센서노드(200)와, 게이트웨이(300)와, 경보 장치(500) 및 네트워크망을 통해 게이트웨이(300)와 경보 장치(500)와 데이터 통신 및 제어신호를 송수신하는 센싱 데이터 통합계측관리 서버(400)를 포함할 수 있다.As shown, the sensing data integrated measurement and management system for detecting collapse in a mine shaft of the present invention includes a plurality of collapse detection sensors 100 installed in a mine shaft, a sensor node 200, a gateway 300, and an alarm. The device 500 and the sensing data integrated measurement management server 400 for transmitting and receiving data communication and control signals to and from the gateway 300 and the alarm device 500 through the network network may be included.
붕락감지센서(100)는 광산 갱내의 지표면이나 측벽 또는 천장에 소정 영역의 셀 단위마다 설치되어 갱내 암의 붕락, 낙석 등이 발생하기전 암반에서 나타나는 붕락의 사전징후를 측정할 수 있으며, 측정된 각 셀 영역에서의 붕락의 사전징후 측정 데이터는 근거리 무선통신 방식에 의해 게이트웨이(300)로 전송될 수 있다. 여기서, 붕락감지센서(100)는 갱내 환경에 따라 변위계, 경사계 센서 및 ICT, IoT 기반 지오폰 센서 등을 이용하여 갱내 암의 붕락, 낙석 등이 발생하기전 암반에서 나타나는 붕락의 사전징후를 측정할 수 있다.The collapse detection sensor 100 is installed for each cell unit of a predetermined area on the ground surface, sidewall, or ceiling of the mine shaft, and it can measure the pre-signs of collapse that appear in the rock before the collapse or rockfall of the rock in the mine occurs. Pre-signal measurement data of collapse in each cell area may be transmitted to the gateway 300 by a short-range wireless communication method. Here, the collapse detection sensor 100 uses a displacement meter, inclinometer sensor, ICT, IoT-based geophone sensor, etc. depending on the environment in the mine to measure the pre-signs of collapse appearing in the rock before the collapse or rockfall of the rock in the mine occurs. can
붕락감지센서(100)는 갱내 지표면이나 측벽 또는 천장에 설치되어 암의 붕락, 낙석 등이 발생하기전 암반에서 나타나는 붕락의 사전징후를 측정할 수 있으며, 관리 기준치 설정을 통해 관리자 및 작업자에게 암반 붕락의 사전징후 상태 변화에 따른 경보를 제공하기 위한 주요 요소로서 사용될 수 있다.The collapse detection sensor 100 is installed on the ground surface, side wall, or ceiling in the mine to measure the pre-signs of collapse appearing in the rock before rock collapse or rock fall occurs, and the rock collapse and collapse to managers and workers through management standard setting It can be used as a main element to provide an alert according to the change of the state of the pre-symptom of
또한, 본 발명에서 사용하는 붕락감지센서의 계측범위는 사용되는 센서의 주파수, 센서의 사양, 센서의 배치, 대상지역의 지반특성 등에 따라 달라질 수 있음은 물론이다.In addition, of course, the measurement range of the collapse detection sensor used in the present invention may vary depending on the frequency of the sensor used, the specification of the sensor, the arrangement of the sensor, the ground characteristics of the target area, and the like.
또한, 지도 원점에서 센서간의 거리에 따라 감지되는 주파수 대역을 고려하여 광대역 지진계나 일반 지오폰, 가속도계 등을 설치할 수 있으며, 감지되는 주파수 대역을 고려 알리아싱 현상 억제를 위한 24bit의 넓은 동작범위를 갖도록 할 수 있다. 특히, 지표에 센서를 배치하는 경우 그 범위 선정은 필요한 진원 위치의 정확도와 연관되므로 센서 배열 면적을 넓게 하여 정확도가 향상될 수 있도록 할 수 있다.In addition, a broadband seismometer, a general geophone, or an accelerometer can be installed in consideration of the frequency band detected according to the distance between the sensors from the origin of the map. can In particular, in the case of arranging the sensor on the surface, the selection of the range is related to the required accuracy of the epicenter, so that the accuracy can be improved by increasing the sensor array area.
센서노드(200)는 붕락감지센서(100)에서 측정된 각 셀 영역에서의 붕락의 사전징후 측정 데이터를 실시간으로 수신하여 근거리 무선통신 방식에 의해 게이트웨이(300)로 전송할 수 있다. 여기서, 센서노드(200) 이외에 데이터로거를 이용하여 붕락감지센서(100)에서 측정된 각 셀 영역에서의 붕락의 사전징후 측정 데이터를 실시간으로 수신하여 저장하거나 저장된 데이터를 게이트웨이(300)로 전송할 수도 있다.The sensor node 200 may receive the pre-signal measurement data of collapse in each cell area measured by the collapse detection sensor 100 in real time and transmit it to the gateway 300 by a short-range wireless communication method. Here, in addition to the sensor node 200, using a data logger, the pre-signal measurement data of the collapse in each cell area measured by the collapse detection sensor 100 can be received and stored in real time, or the stored data can be transmitted to the gateway 300. there is.
게이트웨이(300)는 다수개의 붕락감지센서(100)에서 각각 측정된 각 셀 영역에서의 붕락의 사전징후 측정 데이터를 근거리 무선통신 방식에 의해 수신하여 통합적으로 수집할 수 있으며, 통합적으로 수집된 각 셀 영역에서의 붕락의 사전징후 측정 데이터를 네트워크망을 통해 센싱 데이터 통합계측관리 서버(400)로 전송할 수 있다.The gateway 300 may receive and collect the pre-signal measurement data of the collapse in each cell area respectively measured by the plurality of collapse detection sensors 100 by a short-distance wireless communication method, and each cell collected collectively It is possible to transmit the measurement data of the pre-signs of collapse in the area to the sensing data integrated measurement management server 400 through the network.
게이트웨이(300)는 통합적으로 수집된 각 셀 영역에서의 붕락의 사전징후 측정 데이터를 게이트웨이측 미들웨어를 이용하여 네트워크망을 통해 센싱 데이터 통합계측관리 서버(400)로 전송할 수 있다. 특히, 게이트웨이측 미들웨어는 측정/수집 프로그램을 통해 데이터를 표준화하여 수집된 데이터를 서버로 전송할 수 있다. 여기서, 측정/수집 프로그램은 모듈화되어 구성될 수 있으며, 측정/수집 프로그램의 모듈화 구성에 대해서는 하기에서 보다 구체적으로 설명하기로 한다.The gateway 300 may transmit the integratedly collected pre-sign measurement data of collapse in each cell area to the sensing data integrated measurement management server 400 through a network using the gateway-side middleware. In particular, the gateway-side middleware can transmit the collected data to the server by standardizing the data through the measurement/collection program. Here, the measurement/collection program may be configured in a modular way, and the modular configuration of the measurement/collection program will be described in more detail below.
또한, 게이트웨이(300)는 상용망 LTE-R의 장착을 통해 센서 노드(200)로부터 수집된 센싱 정보를 서버로 전송하는 기능을 가지며, 각 노드와 게이트웨이 간에는 지그비 무선통신을 통해 데이터를 상호 송수신하는 구성을 가질 수 있다.In addition, the gateway 300 has a function of transmitting the sensing information collected from the sensor node 200 to the server through the installation of commercial network LTE-R, and is configured to mutually transmit and receive data through ZigBee wireless communication between each node and the gateway can have
따라서, 게이트웨이(300)와 센서 노드(200)간 센싱 정보의 송수신 과정의 정확성을 판단하기 위한 송수신 유효성 검증이 필요하며, 이를 위해 본 발명에서는 CRC16(Cyclic Redundancy Check)을 프로토콜에 적용하여 상호간 데이터 전송시의 전송오류 상태를 체크하는 기능을 제공할 수 있다. 또한, 일체형 센서에 장착된 가속도계와 자이로 센서는 메쉬로 구성된 센서 노드를 통해 재난 발생시 실시간 정보 전송이 가능하도록 구성할 수 있다.Therefore, transmission/reception validation is required to determine the accuracy of the transmission/reception process of sensing information between the gateway 300 and the sensor node 200. For this, in the present invention, CRC16 (Cyclic Redundancy Check) is applied to the protocol to transmit data between each other. It is possible to provide a function to check the transmission error status of the city. In addition, the accelerometer and gyro sensor mounted on the integrated sensor can be configured to enable real-time information transmission in the event of a disaster through a sensor node composed of a mesh.
또한, 게이트웨이(300)와 센서 노드(200)간 무선통신장치의 통신운용모드는 게이트웨이(300)의 API 모드로, 센서 노드(200)는 트랜스페어런트(transparent) 모드로 설정하여 각각의 역할에 따른 통신이 원활하도록 구성할 수 있다.In addition, the communication operation mode of the wireless communication device between the gateway 300 and the sensor node 200 is set to the API mode of the gateway 300, and the sensor node 200 is set to the transparent mode, according to each role. It can be configured to facilitate communication.
또한, 게이트웨이(300)는 센서 노드(200)와 달리 본 발명의 무선통신장치 이외의 무선 시스템에 대해서도 장치간 호환이 가능하여야 하므로, API 모드로의 통신운용 설정이 되어야 하며, 센서 노드(200)는 내부망 구축으로 Digi-Mesh Network의 구성을 할 때 노드별 역할의 제한을 두지 않고 상호간 링크의 연결을 지속하기 위한 통신방식의 구성이 필요하므로 트랜스페어런트 모드의 적용이 필수적일 수 있다.In addition, the gateway 300, unlike the sensor node 200, should be compatible between devices for a wireless system other than the wireless communication device of the present invention, so communication operation setting in API mode should be set, and the sensor node 200 When configuring the Digi-Mesh Network by constructing an internal network, it is necessary to configure the communication method to maintain the interconnection of links without limiting the role of each node, so the application of transparent mode may be essential.
센싱 데이터 통합계측관리 서버(400)는 게이트웨이(300)에서 통합적으로 수집한 각 셀 영역에서의 붕락의 사전징후 측정 데이터를 네트워크망을 통해 실시간으로 수신하여 갱내 지표면이나 측벽 또는 천장에서의 암의 붕락, 낙석 등이 발생하기전 암반에서 나타나는 붕락의 사전징후 상태를 분석할 수 있다. 분석 결과, 특정 셀 영역에서의 붕락의 사전징후 상태값이 기설정된 기준값을 초과하는 경우에는 광산 갱내 붕락이나 붕괴가 시작된 것으로 판단하여 이에 대한 경보 신호를 발생시킬 수 있다. 여기서, 네트워크는 각각의 모듈 간에 정보 교환이 가능한 연결 구조를 의미하는 것으로, 이러한 네트워크(network)의 일 예에는 3GPP(3rd Generation Partnership Project) 네트워크, LTE(Long Term Evolution) 네트워크, WIMAX(World Interoperability for Microwave Access) 네트워크, 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 블루투스(Bluetooth) 네트워크, 위성 방송 네트워크, 아날로그 방송 네트워크, DMB(Digital Multimedia Broadcasting) 네트워크, WiFi, V2V, V2I, V2X, DSRC 등이 포함되나 이에 한정되지는 않는다.The sensing data integrated measurement management server 400 receives the pre-signal measurement data of collapse in each cell area integratedly collected by the gateway 300 in real time through the network, and the collapse of the rock on the ground surface, sidewall or ceiling of the mine. , it is possible to analyze the state of pre-signs of collapse appearing in the bedrock before rockfall, etc. occurs. As a result of the analysis, when the state value of the pre-signs of collapse in a specific cell region exceeds a preset reference value, it is determined that the collapse or collapse of the mine mine has started, and an alarm signal can be generated. Here, the network refers to a connection structure capable of exchanging information between each module. Examples of such a network include a 3rd Generation Partnership Project (3GPP) network, a Long Term Evolution (LTE) network, and a World Interoperability for (WIMAX) network. Microwave Access) network, Internet, LAN (Local Area Network), Wireless LAN (Wireless Local Area Network), WAN (Wide Area Network), PAN (Personal Area Network), Bluetooth (Bluetooth) network, satellite broadcasting network, analog broadcasting networks, Digital Multimedia Broadcasting (DMB) networks, WiFi, V2V, V2I, V2X, DSRC, and the like.
센싱 데이터 통합계측관리 서버(400)는 네트워크망을 통해 게이트웨이(300)에서 전송되는 각 셀 영역에서의 붕락의 사전징후 측정 데이터를 통합적으로 관리할 수 있다. 또한, 서버에는 갱내 설치된 다양한 종류의 센서의 위치정보와 센서에서 측정되는 센싱 데이터를 모니터링하여 관리하기 위한 사용자 프로그램(600) 및 서버 프로그램(700)이 모듈화되어 설치될 수 있다. 이에 대한 사용자 프로그램(600) 및 서버 프로그램(700)의 모듈화 구성에 대해서는 하기에서 보다 구체적으로 설명하기로 한다.The sensing data integrated measurement management server 400 may integrally manage the pre-significant measurement data of collapse in each cell area transmitted from the gateway 300 through the network. In addition, a user program 600 and a server program 700 for monitoring and managing location information of various types of sensors installed in the mine and sensing data measured by the sensors may be modularly installed in the server. The modular configuration of the user program 600 and the server program 700 will be described in more detail below.
경보 장치(500)는 센싱 데이터 통합계측관리 서버(400)와 네트워크망을 통해 연결되어 센싱 데이터 통합계측관리 서버(400)로부터 광산 갱내 붕락이나 붕괴 시작을 알리는 경보 신호를 수신하는 경우 광산 갱내 붕락이나 붕괴 시작을 알리는 경보음을 소정 시간동안 주기적인 간격을 두고 송출할 수 있다. 이에 따라, 갱내에서 작업중인 작업자들은 경보 장치(500)에서 소정 시간 간격을 두고 주기적으로 송출되는 경보음을 인지함으로써 신속하게 갱내에서 대피할 수 있다.The alarm device 500 is connected to the sensing data integrated measurement and management server 400 through a network network to receive an alarm signal notifying the collapse or start of collapse of the mine mine from the sensing data integrated measurement management server 400. An alarm sound indicating the start of the collapse may be transmitted at periodic intervals for a predetermined period of time. Accordingly, workers who are working in the mine can quickly evacuate from the mine by recognizing the alarm sound that is periodically transmitted at a predetermined time interval from the alarm device 500 .
도 2는 도 1에서 게이트웨이측 미들웨어의 데이터 수집 및 측정 프로그램 세부 구성을 나타내는 도면이고, 도 3은 게이트웨이로부터 전송되는 측정 데이터 포맷의 정의를 나타내는 도면이다.FIG. 2 is a diagram illustrating a detailed configuration of a data collection and measurement program of the gateway-side middleware in FIG. 1 , and FIG. 3 is a diagram illustrating a definition of a measurement data format transmitted from the gateway.
도시된 바와 같이, 광산 갱내에 설치된 각종 센서와 연결된 무선센서노드 및 게이트웨이는 로라나 지그비 등의 무선통신을 통해 데이터가 전송되고, 수집된 정보를 유선통신을 통해 서버로 전송할 수 있다. 무선통신방식 현장환경에 따라 달리 구성될 수 있으나 게이트웨이측 미들웨어는 데이터 수집 및 측정 프로그램을 통해 데이터를 표준화하여 수집된 데이터를 서버로 전송할 수 있다. 또한, 데이터 수집 및 측정 프로그램에서는 센서로부터 측정된 데이터를 수집하는 게이트웨이로부터 도 3에 정의된 데이터 포맷에 맞게 정상적으로 전송되었는지를 판단할 수 있으며, 스크립트를 통해 이의 데이터 처리 과정을 확인할 수 있다.As shown, the wireless sensor node and gateway connected to various sensors installed in the mine may transmit data through wireless communication such as LoRa or ZigBee, and transmit the collected information to the server through wired communication. The wireless communication method may be configured differently depending on the field environment, but the gateway-side middleware can standardize the data through the data collection and measurement program and transmit the collected data to the server. In addition, in the data collection and measurement program, it can be determined whether the data measured from the sensor is transmitted normally according to the data format defined in FIG. 3 from the gateway, and the data processing process can be checked through the script.
구체적으로, 게이트웨이에 수집된 센싱데이터를 통합하여 서버로 전송하기 위한 게이트웨이(300)의 데이터 수집 및 측정 프로그램은 게이트웨이 설정부(301)와, 센서정보 설정부(302)와, 센싱 데이터 통합부(303)와, 센싱 데이터 실시간 처리부(304) 및 센싱 데이터 저장부(305)로 모듈화된 구성을 포함할 수 있다.Specifically, the data collection and measurement program of the gateway 300 for integrating the sensing data collected in the gateway and transmitting it to the server includes a gateway setting unit 301, a sensor information setting unit 302, and a sensing data integration unit ( 303 ), a real-time sensing data processing unit 304 , and a sensing data storage unit 305 may include a modular configuration.
게이트웨이 설정부(301)는 측정 데이터 수집 및 게이트웨이 설정이 가능하며, 예를 들어 측정 데이터 수집 및 게이트웨이 모델명을 설정할 수 있다. 또한, 통신방법(TCP/IP 등)을 선택할 수 있으며, IP 주소, 포트 등 센서노드나 데이터로거의 접속정보를 설정할 수 있다. 또한, IP 주소, SID, 사용자 이름 및 패스워드 등 DB 접속정보를 설정할 수 있다.The gateway setting unit 301 may collect measurement data and set a gateway, for example, may collect measurement data and set a gateway model name. In addition, communication method (TCP/IP, etc.) can be selected, and connection information of the sensor node or data logger such as IP address and port can be set. In addition, DB access information such as IP address, SID, user name and password can be set.
센서정보 설정부(302)는 갱내에 설치된 개별 각 센서고유번호, 채널번호, 온도채널번호 등을 설정할 수 있다. 또한, 측정 데이터 수집간격을 설정할 수 있으며, 측정간격은 데이터로거 및 게이트웨이에서 제어할 수 있다. 또한, 전압을 각도 등으로 변환하는 등 로우데이터를 물리량으로 변환하기 위한 변환식을 설정할 수 있다.The sensor information setting unit 302 may set a unique number of each sensor installed in the mine, a channel number, a temperature channel number, and the like. In addition, the measurement data collection interval can be set, and the measurement interval can be controlled by the data logger and gateway. Also, it is possible to set a conversion expression for converting raw data into a physical quantity, such as converting a voltage into an angle or the like.
센싱 데이터 통합부(303)는 TCP/IP를 이용하여 센서노드나 데이터로거 및 게이트웨이 접속을 위한 통신 설정을 할 수 있으며, 센서노드나 데이터로거 및 게이트웨이에 저장된 측정데이터를 수신할 수 있다.The sensing data integrator 303 may set communication for connection to a sensor node, data logger, and gateway using TCP/IP, and may receive measurement data stored in the sensor node, data logger, and gateway.
센싱 데이터 실시간 처리부(304)는 측정데이터를 후처리할 수 있으며, 예를 들어, 측정데이터를 물리량으로 변환하거나 측정최대범위 체크 등 유효성 체크 등을 실시간으로 처리할 수 있다.The sensing data real-time processing unit 304 may post-process the measurement data, for example, may convert the measurement data into a physical quantity or process validity checks such as a measurement maximum range check in real time.
센싱 데이터 저장부(305)는 다양한 종류의 센서로부터 각각 측정된 측정데이터(로우데이터) 및 필터된 물리량 데이터를 데이터베이스에 저장할 수 있다. 특히, 센서정보를 취득하는 기능은 다양한 센서들에 대해 정의된 데이터 형식에 맞게 데이터베이스로 연결되는지를 쿼리를 통해 확인할 수 있다.The sensing data storage unit 305 may store measured data (raw data) and filtered physical quantity data respectively measured from various types of sensors in a database. In particular, the function of acquiring sensor information can check whether the database is connected to the database according to the data format defined for various sensors through a query.
이와 같이 본 발명에서는 광산 안전관리시스템 통합 계측관리 미들웨어에 있어서, 센싱 데이터 모니터링 계측관리 소프트웨어로서 통합계측관리 미들웨어 프로그램을 적용할 수 있다. 즉, 광산 안전관리시스템의 계측관리에 있어서 최종사용자에게 웹 또는 CS프로그램 기반의 UI 소프트웨어를 통해 광산 갱내의 다양한 센서 및 위치정보를 제공할 수 있다. 통합계측관리 미들웨어는 각 센서 디바이스로부터 게이트웨이에 수집된 데이터를 측정프로그램을 통해 통합하여 서버로 데이터를 전송하는 역할을 담당할 수 있으며 실시간으로 데이터를 처리할 수 있다.As described above, in the present invention, in the mine safety management system integrated measurement management middleware, the integrated measurement management middleware program can be applied as sensing data monitoring measurement management software. That is, in the measurement and management of the mine safety management system, various sensors and location information in the mine can be provided to the end user through the web or CS program-based UI software. The integrated measurement management middleware integrates the data collected from each sensor device to the gateway through a measurement program, and can play a role in transmitting the data to the server and process the data in real time.
도 4는 도 1에서 센싱 데이터 통합계측관리 서버의 사용자 프로그램 및 서버 프로그램 세부 구성을 나타내는 도면이다.4 is a view showing the detailed configuration of a user program and a server program of the sensing data integrated measurement management server in FIG. 1 .
도시된 바와 같이, 본 발명의 센싱 데이터 통합계측관리 서버(400)는 관리기준 설정부(401)와, 경고대상 설정부(402)와, 측정자료 조회부(403)와, 센서정보 추가 조회부(404), 통신부(405)와, 제어부(406)와, 센서측정 데이터베이스(407)와, 프로젝트 설정부(408)와, 측정 데이터 백업부(409)와, 객체위치 인식부(410) 및 경보신호 발생부(411)를 포함할 수 있다. 여기서, 사용자 프로그램은 관리기준 설정부(401)와, 경고대상 설정부(402)와, 측정자료 조회부(403)와, 센서정보 추가 조회부(404)로 모듈화된 구성을 포함할 수 있다. 또한, 서버 프로그램은 프로젝트 설정부(408)와, 측정 데이터 백업부(409)와, 객체위치 인식부(410) 및 경보신호 발생부(411)로 모듈화된 구성을 포함할 수 있다.As shown, the sensing data integrated measurement management server 400 of the present invention includes a management standard setting unit 401, a warning target setting unit 402, a measurement data inquiry unit 403, and a sensor information additional inquiry unit. 404 , communication unit 405 , control unit 406 , sensor measurement database 407 , project setting unit 408 , measurement data backup unit 409 , object location recognition unit 410 and alarm A signal generator 411 may be included. Here, the user program may include a modular configuration into a management standard setting unit 401 , a warning target setting unit 402 , a measurement data inquiry unit 403 , and a sensor information addition inquiry unit 404 . In addition, the server program may include a modular configuration into a project setting unit 408 , a measurement data backup unit 409 , an object position recognition unit 410 , and an alarm signal generator 411 .
관리기준 설정부(401)는 사용자 프로그램의 관리기준을 설정할 수 있다. 여기서, 사용자 프로그램 관리기준 설정은 관리단계 설정, 경고 설정 및 해제, 관리기준 복사로 구분될 수 있다. 구체적으로, 관리단계 설정에서는 경고(최대 및 최소) 단계를 설정할 수 있으며, 표준문자열, 변화율간격, 경보종류의 저장/수정/삭제 등을 설정할 수 있다. 또한, 경고 설정 및 해제에서는 단문문자, 송출간격, 감시간격의 저장/수정/삭제 등을 설정할 수 있다. 또한, 관리기준 복사에서는 센서별로 사전에 정의한 관리기준을 복사할 수 있다.The management standard setting unit 401 may set management standards of the user program. Here, the user program management standard setting can be divided into management stage setting, warning setting and release, and management standard copying. Specifically, in the management stage setting, the warning (maximum and minimum) stage can be set, and the standard character string, change rate interval, saving/modifying/deleting alarm type, etc. can be set. In addition, in setting and canceling the warning, it is possible to set saving/modification/deletion of short text, transmission interval, and monitoring interval. In addition, in the management standard copy, the management standards defined in advance for each sensor can be copied.
경고대상 설정부(402)는 사용자 프로그램에서의 경고 대상을 설정할 수 있다. 여기서, 경고 대상 설정은 센서별 경보대상 관리, 경보송신자 관리, 경고기준 복사로 구분될 수 있다. 구체적으로, 센서별 경보대상 관리에서는 경고 문자를 송신할 관리자 정보를 입력할 수 있고 이메일/핸드폰 정보를 저장/수정/삭제하여 관리할 수 있다. 또한, 경보송신자 관리에서는 경보송신자 핸드폰 번호를 입력하여 경보송신자를 관리할 수 있다. 또한, 경고기준 복사에서는 센서별로 경보대상을 복사할 수 있다.The warning target setting unit 402 may set a warning target in the user program. Here, the warning target setting may be divided into alarm target management for each sensor, alarm sender management, and warning standard copy. Specifically, in the sensor-specific alert target management, administrator information to send a warning text can be input, and e-mail/cell phone information can be stored/modified/deleted and managed. In addition, in the alert sender management, the alert sender can be managed by inputting the alert sender mobile phone number. Also, in the warning standard copy, the alarm target can be copied for each sensor.
측정자료 조회부(403)는 사용자 프로그램에서 측정자료를 조회할 수 있다. 여기서, 측정자료 조회는 자료 조회, 그래프 조회, 보고서 조회, 지도정보 표출, 표출간격지정으로 구분될 수 있다. 구체적으로, 자료 조회에서는 측정 데이터를 표로 표출할 수 있다. 또한, 그래프 조회에서는 측정 데이터를 다수범례로 그래프로 표출할 수 있다. 또한, 보고서 조회에서는 측정 데이터와 그래프를 다수범례로 보고서로 표출할 수 있다. 또한, 지도정보 표출에서는 갱도 모델링 맵에 지도정보를 표출할 수 있다. 또한, 표출간격지정에서는 초, 분, 시, 일 등 표출시간 간격을 지정할 수 있다.The measurement data inquiry unit 403 may inquire measurement data in the user program. Here, the measurement data inquiry can be divided into data inquiry, graph inquiry, report inquiry, map information display, and display interval designation. Specifically, in data inquiry, measurement data can be displayed in a table. In addition, in the graph inquiry, measurement data can be expressed as a graph with multiple legends. In addition, in the report inquiry, measurement data and graphs can be expressed as a report with multiple legends. In addition, in the map information display, the map information can be expressed on the tunnel modeling map. In addition, in the display interval designation, the display time interval such as seconds, minutes, hours, days can be specified.
센서정보 추가 조회부(404)는 사용자 프로그램에서 센서 정보를 추가하고 조회할 수 있다. 여기서, 센서 정보 추가 및 조회는 센서 추가, 센서 삭제, 센서이벤트 이력관리로 구분될 수 있다. 구체적으로, 센서 추가에서는 센서명, 제조사, 설치일자/위치/번호/심도, 좌표 등의 센서 정보를 추가하거나 수정할 수 있다. 또한, 센서 삭제에서는 센서데이터, 센서제원 등 관련 데이터를 모두 삭제하고 센서를 삭제할 수 있다. 또한, 센서 이벤트 이력관리에서는 센서 이벤트에 대한 추가/수정/삭제를 통해서 센서 이벤트 이력관리를 수행할 수 있으며, 이상 데이터에 대하여 보수, 점검 등을 그래프에 표시할 수 있다.The sensor information addition inquiry unit 404 may add and inquire sensor information in a user program. Here, sensor information addition and inquiry can be divided into sensor addition, sensor deletion, and sensor event history management. Specifically, in adding a sensor, sensor information such as a sensor name, manufacturer, installation date/location/number/depth, and coordinates may be added or modified. In addition, in the sensor deletion, all related data such as sensor data and sensor specifications can be deleted and the sensor can be deleted. In addition, in sensor event history management, sensor event history management can be performed through addition/modification/deletion of sensor events, and maintenance and inspection of abnormal data can be displayed on a graph.
통신부(405)는 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템의 각 구성요소와 통신하여 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리에 필요한 정보를 송수신하거나 제어신호를 전송할 수 있다.The communication unit 405 may communicate with each component of the sensing data integrated measurement and management system for detecting collapse in a mine to transmit/receive information necessary for integrated measurement and management of sensing data for detecting collapse in a mine or transmit a control signal.
제어부(406)는 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템의 각 구성요소와 제어신호를 송수신하여 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리에 관련된 일련의 전반적인 제어를 수행할 수 있다.The control unit 406 transmits and receives a control signal to and from each component of the sensing data integrated measurement and management system for detecting collapse in a mine to perform a series of overall control related to the integrated measurement and management of sensing data for detecting collapse in a mine.
센서측정 데이터베이스(407)는 광산 갱내 각 셀 영역에 설치된 각 센서로부터 측정되는 데이터를 데이터베이스화하여 저장할 수 있다. 즉, 광산 갱내 각 셀 영역에 설치된 붕락감지센서에서 각각 측정되는 갱내 암의 붕락, 낙석 등이 발생하기전 암반에서 나타나는 붕락의 사전징후 측정 데이터를 저장할 수 있다. 이때 광산 갱내 각 셀 영역에 설치된 붕락감지센서는 각각 고유 번호가 할당될 수 있으며, 할당된 고유 번호별로 각 센서에서 실시간으로 측정되는 붕락의 사전징후 측정 데이터를 저장할 수 있다.The sensor measurement database 407 may store data measured from each sensor installed in each cell area within the mine as a database. That is, it is possible to store the measurement data of the pre-signs of collapse that appear in the rock before the collapse or rockfall of the rock in the mine measured by the collapse detection sensor installed in each cell area in the mine shaft. At this time, the collapse detection sensor installed in each cell area in the mine mine can be assigned a unique number, and can store the pre-signal measurement data of the collapse measured in real time by each sensor for each assigned unique number.
프로젝트 설정부(408)는 광산 갱내 작업에 대한 프로젝트를 설정할 수 있으며, 현장 설정이 가능할 수 있다. 예를 들어, 광산 갱내 작업 현장명, 현장 코드, 위치 추가 등을 추가/수정/삭제할 수 있다.The project setting unit 408 may set a project for the mine work, and may be set on site. For example, it is possible to add/modify/delete worksite names, site codes, location additions, etc. in the mine pit.
측정 데이터 백업부(409)는 광산 갱내 각종 센서로부터 측정된 적어도 하나이상의 측정데이터를 백업할 수 있다. 이러한 측정데이터 백업으로 기 저장된 측정데이터 소멸시에 백업된 측정데이터를 활용할 수 있다.The measurement data backup unit 409 may back up at least one or more measurement data measured from various sensors in the mine. With this measurement data backup, the backed-up measurement data can be utilized when the previously stored measurement data is destroyed.
객체위치 인식부(410)는 광산 갱내에서 작업중인 작업자나 작업 차량의 위치정보를 인식할 수 있다. 이러한 작업자나 작업 차량 등 광산 갱내에 위치한 객체위치 파악은 광산 갱내 구역 내에 소정 거리마다 설치된 앵커가 작업자의 작업모나 작업 차량에 설치된 태그와 통신하여 객체의 위치를 인식할 수 있다. 이러한 객체 인식 방법에 대해서는 하기의 첨부된 도 5 및 도 6을 참조하여 보다 구체적으로 설명하기로 한다.The object location recognition unit 410 may recognize location information of a worker or a work vehicle working in a mine shaft. In the identification of the location of an object located in the mine shaft, such as a worker or a work vehicle, an anchor installed at a predetermined distance within the mine shaft area communicates with a tag installed in the worker's work hat or work vehicle to recognize the location of the object. Such an object recognition method will be described in more detail with reference to FIGS. 5 and 6 attached below.
경보신호 발생부(411)는 광산 갱내 측정데이터에 의한 센서경고 판정을 할 수 있다. 예를 들어, 측정데이터의 관리기준치 초과 여부를 판정하여 측정데이터가 관리기준치를 초과하는 경우에는 경보신호를 발생시킬 수 있다. 예를 들어, 갱내 붕괴 감시 대상 각 셀 영역에 대한 붕락의 사전징후 측정 데이터 중에서 붕락의 사전징후 측정 데이터 변화값이 기설정된 기준값을 초과한 경우가 발생되면 광산 갱내 붕괴가 시작된 것으로 판단하여 경보신호를 발생시킬 수 있다. 또한, 단문메시지나 이메일 등 경보메시지를 생성하여 현장 관리자나 작업자 단말로 경보메시지를 전송할 수 있다.The warning signal generating unit 411 may determine a sensor warning based on the mine mine measurement data. For example, it is determined whether the measurement data exceeds the management standard value, and when the measurement data exceeds the management standard value, an alarm signal can be generated. For example, if the change value of the pre-sign of collapse measurement data for each cell area subject to collapse monitoring exceeds the preset reference value, it is determined that the collapse of the mine has started and an alarm signal is issued. can cause In addition, it is possible to generate an alarm message such as a short message or e-mail and transmit the alarm message to a field manager or operator terminal.
경보신호 발생부(411)는 경보신호 발생시 객체위치 인식부(410)에서 인식된 작업자나 작업 차량 등 객체의 위치정보를 전달받을 수 있으며, 전달받은 객체의 위치정보에 기초하여 갱내 객체가 위치한 구역에 배치된 경보 장치로 갱내 붕괴 시작을 알리기 위한 경보신호를 송출할 수 있다. 이에 따라, 광산 갱내에서 작업중인 작업자들은 광산 갱내 붕괴 시작을 알리는 경보신호를 듣고서 최대한 빠른 시간 내에 갱내 작업 현장에서 대피할 수 있다.The alarm signal generator 411 may receive location information of an object, such as a worker or a work vehicle, recognized by the object location recognition unit 410 when an alarm signal is generated, and based on the received location information of the object, the area in which the object in the mine is located An alarm device placed in the pit can send out an alarm signal to indicate the start of the collapse of the mine. Accordingly, the workers working in the mine can evacuate from the work site in the mine as soon as possible after hearing the warning signal indicating the start of collapse of the mine.
도 5는 도 3의 객체위치 인식부에서의 객체위치 인식을 위한 앵커와 태그 간 통신방법의 일예를 나타내는 도면이고, 도 6은 3개의 앵커가 태그로부터 위치 데이터를 수신하는 경우의 3개의 현을 나타내는 도면이다.5 is a diagram illustrating an example of a communication method between an anchor and a tag for object position recognition in the object position recognition unit of FIG. It is a drawing showing
도시된 바와 같이, 본 발명에서는 실시간 위치분석 및 근접탐지 알고리즘으로서 측정시스템 거리정보를 이용한 위치추적 및 거리 산출 알고리즘을 제공할 수 있다. 즉, 위치(거리) 산출을 위한 앵커(Anchor)와 태그(Tag)간 통신 흐름에서, 태그의 MCU 펌웨어에 정의된 순서에 따라 순차적으로 앵커와의 데이터 통신이 이루어질 수 있으며, 갱내 설치된 다수의 앵커에 순차적으로 1회씩 데이터 통신을 수행하여 거리정보를 산출할 수 있다. 갱도의 길이를 고려할 때 앵커는 고정식으로 직병렬 다수개의 장비가 설치될 수 있으며, 태그는 작업차량 내외부 및 작업자 스마트 헬맷에 장착되어 이동식으로 다수개의 위치정보를 각각 앵커(리더)측에 송신할 수 있다.As shown, the present invention can provide a location tracking and distance calculation algorithm using the measurement system distance information as a real-time location analysis and proximity detection algorithm. That is, in the communication flow between the anchor and the tag for calculating the location (distance), data communication with the anchor may be sequentially performed according to the order defined in the MCU firmware of the tag, and a plurality of anchors installed in the mine The distance information can be calculated by sequentially performing data communication once at a time. Considering the length of the tunnel, the anchor is fixed and multiple equipment can be installed in series and parallel, and the tag is mounted on the inside and outside of the work vehicle and on the worker's smart helmet, so that a plurality of location information can be transmitted to the anchor (leader) side in a movable manner. there is.
또한, 본 발명에서는 광산 갱내 차량 및 작업자의 위치를 실시간 측위하기 위해서 갱내 실시간 위치추적 알고리즘을 적용할 수 있다. 측위 기능은 갱내 측벽 또는 천장에 설치된 각 앵커(리더)가 태그로부터 위치 관련 데이터를 수신하고, 수신한 데이터를 바탕으로 알고리즘을 처리해 태그의 정확한 위치를 판단할 수 있다.In addition, in the present invention, a real-time location tracking algorithm in a mine may be applied in order to locate the location of a vehicle and an operator in the mine in real time. In the positioning function, each anchor (leader) installed on the sidewall or ceiling of the mine receives location-related data from the tag, and processes an algorithm based on the received data to determine the exact location of the tag.
특히, 차량 또는 작업자에게 부착된 태그의 위치에 따라 태그로부터 데이터 수신이 가능한 앵커(리더)의 수가 달라지는데 태그의 위치 데이터를 수신한 앵커의 수에 따라 각각 다른 측위 알고리즘을 적용할 수 있다. 즉, 태그의 위치정보를 수신한 앵커의 수를 각각 2개, 3개 또는 그 이상인 경우로 구분할 수 있으며, 이때 각각 적용한 측위 알고리즘은 아래와 같다.In particular, the number of anchors (readers) capable of receiving data from the tag varies according to the location of the tag attached to the vehicle or the operator, and different positioning algorithms can be applied according to the number of anchors that have received the location data of the tag. That is, the number of anchors that have received the location information of the tag can be divided into two, three, or more, respectively, and the applied positioning algorithms are as follows.
피타고라스 정리 및 공통현의 방정식을 이용한 태그 측위 알고리즘은 다음과 같다. 예를 들어, 태그의 중심을 (0,0) 좌표로 정의할 수 있으며, (x1, y1), (x2, y2), (x3, y3)는 사전에 정의된 앵커의 좌표이고, (x, y)는 구하고자 하는 태그의 좌표이며, (r1, r2, r3)는 각 앵커가 측정한 태그와의 거리일 수 있다. 즉, 태그의 데이터를 수신한 앵커가 2개, 3개, 4개 이상인 경우로 구분하고 연산 알고리즘을 적용해 태그의 위치를 측정할 수 있다.The tag positioning algorithm using the Pythagorean theorem and the equation of the common chord is as follows. For example, you can define the center of a tag as the (0,0) coordinate, where (x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3 ) are the values of the predefined anchors. coordinates, (x, y) is the coordinate of the tag to be obtained, and (r 1 , r 2 , r 3 ) may be the distance from each anchor measured to the tag. In other words, it is possible to classify the case where there are two, three, or four or more anchors that have received the tag's data, and measure the position of the tag by applying the calculation algorithm.
먼저, 2개의 앵커로부터 태그의 데이터 수신 시 적용한 공통현의 방정식은 하기의 수학식 1과 같이 표기될 수 있다.First, the equation of a common string applied when data of a tag is received from two anchors may be expressed as Equation 1 below.
Figure PCTKR2020017590-appb-M000001
Figure PCTKR2020017590-appb-M000001
또한, 3개의 앵커로부터 태그의 데이터 수신 시 적용한 공통현의 방정식은 하기의 수학식 2와 같이 표기될 수 있다.In addition, the equation of the common string applied when the data of the tag is received from the three anchors may be expressed as Equation 2 below.
Figure PCTKR2020017590-appb-M000002
Figure PCTKR2020017590-appb-M000002
또한, 4개 이상의 앵커로부터 태그의 데이터 수신 시 적용한 공통현의 방정식은 하기의 수학식 3과 같이 표기될 수 있다.In addition, the equation of the common string applied when receiving tag data from four or more anchors may be expressed as Equation 3 below.
Figure PCTKR2020017590-appb-M000003
Figure PCTKR2020017590-appb-M000003
4개 이상의 앵커로부터 태그의 데이터를 수신한 경우에는 3개 앵커 조합을 선택해 각각 측위 후 결과값의 중심좌표를 계산할 수 있다.When tag data is received from 4 or more anchors, the center coordinates of the result value can be calculated after positioning by selecting a combination of 3 anchors.
즉, 2개의 앵커가 태그로부터 위치 데이터를 수신하는 경우에는, 2개의 앵커로부터 태그와의 거리 데이터가 수신된 경우 앵커와 태그간 측정거리에 따라 두 원이 만나지 않는 경우와 한 점에서 만나는 경우 및 두 점에서 만나는 경우에 대한 각각의 경우를 고려하여 연산 처리할 수 있다. 여기서, 두 원이 만나지 않는 경우는 외부에서 만나지 않거나 내부에 포함되거나 동심원인 경우로 구분될 수 있으며, 두 원이 한 점에서 만나는 경우는 외접하거나 내접하는 경우로 구분될 수 있다. 표 1에서 두 원의 중심 사이의 거리를 d, 반지름의 길이를 각각 r,r'(r > r')으로 표기함.That is, when two anchors receive location data from a tag, when distance data with a tag is received from two anchors, a case where two circles do not meet or a case where they meet at a point according to the measurement distance between the anchor and a tag, and The calculation can be processed by considering each case of the case where two points meet. Here, the case where the two circles do not meet may be divided into a case where they do not meet outside, are contained within, or are concentric circles, and the case where two circles meet at a point may be divided into a circumscribed or inscribed case. In Table 1, the distance between the centers of two circles is denoted as d, and the length of the radius is denoted as r, r' (r > r'), respectively.
한편, 3개의 앵커가 태그로부터 위치 데이터를 수신하는 경우에는, 3개의 앵커로부터 태그와의 거리 데이터가 수신된 경우 앵커와 태그간 측정거리에 따라 도 5에서와 같이 3개의 현이 그려질 수 있으며, 태그의 위치는 3개의 현이 만나는 지점으로 연산할 수 있다.On the other hand, when three anchors receive location data from the tag, when distance data with the tag is received from the three anchors, three strings can be drawn as shown in FIG. 5 according to the measured distance between the anchor and the tag, The position of the tag can be calculated as the point where three strings meet.
한편, 4개 이상의 앵커가 태그로부터 위치 데이터를 수신하는 경우, 4개 이상의 앵커로부터 각각 태그와의 거리 정보를 수신한 경우에는 3개 앵커를 선택하여 태그와의 각 거리 정보를 이용해 연산 수식에 따라 측위할 수 있다. 태그와의 거리 정보를 수신한 4개 이상의 앵커 중 앵커 3개의 조합에 따라 N개의 태그 좌표가 취득될 수 있으며, N개 좌표의 중심 좌표를 계산한 값을 최종 측위값으로 결정할 수 있다.On the other hand, when 4 or more anchors receive location data from a tag, and when distance information from each tag is received from 4 or more anchors, 3 anchors are selected and each distance information from the tag is used according to the calculation formula can be positioned N tag coordinates may be obtained according to a combination of three anchors among four or more anchors receiving distance information from a tag, and a value calculated by calculating the center coordinates of the N coordinates may be determined as the final positioning value.
특히, 측위 교점간 거리가 멀어 측위 정확도가 의심되는 경우, 3개의 앵커로 계산된 좌표값(교점)간 거리가 먼 경우 최종 계산된 태그의 위치결과는 실제 위치와 오차가 커지게 될 수 있다. 따라서, 이러한 오차를 줄이기 위해 각 교점의 정확도를 확인하여 기준 이하의 교점은 태그 좌표 계산시 제외 처리하여 정확도를 확보할 수 있도록 할 수 있다.In particular, when the positioning accuracy is questioned because the distance between the positioning intersections is long, when the distance between the coordinate values (intersections) calculated by the three anchors is long, the final calculated position result of the tag may have a large error from the actual position. Therefore, in order to reduce such an error, the accuracy of each intersection is checked, and the intersection below the reference point is excluded from the calculation of the tag coordinates so that the accuracy can be secured.
하기에서는 본 발명의 실시간 위치추적 알고리즘에 대해 설명하기로 한다.Hereinafter, the real-time location tracking algorithm of the present invention will be described.
갱내 차량 및 작업자의 실시간 위치 추적 알고리즘은 소지한 태그를 기준으로 한 2원 공통현 방정식과 동일하며, 다만 앵커 외곽 방향 교점만 좌표로 표시할 수 있다.The real-time location tracking algorithm of vehicles and workers in the mine is the same as the binary common chord equation based on the tags you have, but only the intersection point outside the anchor can be displayed as coordinates.
1개의 앵커(RF Reader)에서만 차량 및 작업자와의 거리정보를 검출한 경우 검출 앵커의 위치 및 태그 위치를 동일하게 표시할 수 있으며 거리는 검출된 거리값을 m 단위로 표현할 수 있다.If only one anchor (RF Reader) detects distance information between the vehicle and the operator, the location of the detection anchor and the tag location can be displayed in the same way, and the distance can be expressed in units of m.
또한, 2개의 앵커가 추적체와의 거리를 검출한 경우에는 하기의 수학식 4와 같은 기본 방정식을 적용할 수 있다.In addition, when the two anchors detect the distance to the tracker, a basic equation such as Equation 4 below may be applied.
Figure PCTKR2020017590-appb-M000004
Figure PCTKR2020017590-appb-M000004
도 7 및 도 8은 본 발명의 일실시예에 따른 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 방법을 나타내는 도면이다.7 and 8 are diagrams illustrating an integrated measurement and management method of sensing data for detecting collapse in a mine mine according to an embodiment of the present invention.
도시된 바와 같이, 센싱 데이터 통합계측관리 서버는 게이트웨이에서 실시간으로 통합적으로 수집되어 전송되는 갱내 붕괴 감시 대상 각 셀 영역에서의 붕락의 사전징후 측정 데이터를 수신하였는지를 판단(S10)할 수 있다. 이때, 갱내 붕괴 감시 대상 각 셀 영역에서의 붕락 사전징후 측정 데이터는 변위 센서, 경사도 센서 등 갱내 붕락을 감지하기 위한 다양한 종류의 센서에 의해 측정되는 적어도 하나 이상의 데이터를 포함할 수 있다.As shown, the sensing data integrated measurement management server may determine whether it has received pre-signal measurement data of collapse in each cell area to be monitored for collapse in a mine that is integrated and transmitted in real time from the gateway (S10). In this case, the pre-symptom measurement data of collapse in each cell area to be monitored for collapse in the mine may include at least one or more data measured by various types of sensors for detecting collapse in the mine, such as a displacement sensor and an inclination sensor.
이어서, 센싱 데이터 통합계측관리 서버는 게이트웨이에서 실시간으로 통합적으로 수집되어 전송되는 붕락 사전징후 측정 데이터를 수신한 경우에는 수신한 적어도 하나 이상의 붕락 사전징후 측정 데이터를 센서 측정 데이터베이스에 저장(S11)할 수 있다. 이때, 게이트웨이에서 실시간으로 통합적으로 수집되어 전송되는 붕락 사전징후 측정 데이터는 게이트웨이측 미들웨어 데이터 수집 및 측정 프로그램에 의해 기 정의된 데이터 포맷과 일치하는 경우에만 서버 측으로 전송될 수 있다.Then, when the sensing data integrated measurement management server receives the pre-symptom measurement data that is collected and transmitted in real time from the gateway, at least one or more received pre-symptom measurement data can be stored in the sensor measurement database (S11). there is. In this case, the pre-symptom measurement data of collapse that is integratedly collected and transmitted in real time by the gateway may be transmitted to the server side only when it matches the data format predefined by the gateway-side middleware data collection and measurement program.
이어서, 센싱 데이터 통합계측관리 서버는 S11단계에서 데이터베이스에 저장된 적어도 하나 이상의 붕락 사전징후 측정 데이터를 별도의 저장 공간에 백업(S12)할 수 있다. 이와 같이, 데이터베이스에 저장된 데이터를 별도의 저장 공간에 백업해 놓음으로써 만약의 사고에 의해 데이터베이스에 저장된 데이터가 소실되더라도 백업된 데이터를 사용하여 문제가 발생되지 않도록 할 수 있다.Subsequently, the sensing data integrated measurement management server may back up at least one or more pre-collapse pre-sign measurement data stored in the database in step S11 to a separate storage space (S12). As such, by backing up the data stored in the database in a separate storage space, even if the data stored in the database is lost due to an accident, it is possible to prevent a problem from occurring using the backed up data.
이어서, 센싱 데이터 통합계측관리 서버는 사용자 또는 관리자로부터 조회 요청이 발생된 경우에는 광산 갱도 모델링 맵 지도 정보 및 센서의 각 측정 데이터를 표출(S13)할 수 있다. 이때, 표출 시간 간격은 기 지정된 시간 간격으로 표출될 수 있다. 또한, 측정 데이터 표출은 사용자 또는 관리자의 요청에 따라 표로 표출하거나 다수범례로 그래프로 표출할 수 있으며, 측정 데이터와 그래프를 다수범례로 보고서로 표출할 수 있다.Subsequently, the sensing data integrated measurement management server may display (S13) each measurement data of the mine tunnel modeling map map information and the sensor when an inquiry request is generated from a user or an administrator. In this case, the expression time interval may be expressed at a predetermined time interval. In addition, measurement data can be expressed as a table or as a graph with multiple legends at the request of a user or administrator, and measurement data and graphs can be expressed as a report with multiple legends.
이어서, 센싱 데이터 통합계측관리 서버는 갱도 모니터링 중에 어느 하나의 센서로부터 센서 이벤트 이상 데이터가 발생되면 발생된 센서 이벤트 이상 데이터를 표시(S14)할 수 있다. 이때 실제 센서 이벤트 이상 데이터가 발생된 위치를 갱도 모델링 맵 상에 정합하여 표시할 수 있다. 또한, 사용자나 관리자는 이상 데이터 발생에 대한 점검 및 보수를 실시할 수 있으며, 이에 대한 점검 및 보수 결과 정보를 맵 상의 해당 위치에 표시할 수도 있다.Subsequently, the sensing data integrated measurement management server may display (S14) the generated sensor event abnormal data when abnormal sensor event data is generated from any one sensor during tunnel monitoring. In this case, the location where the actual sensor event abnormal data is generated may be displayed by matching it on the tunnel modeling map. In addition, a user or an administrator can check and repair the occurrence of abnormal data, and display the inspection and repair result information on the corresponding location on the map.
이어서, 센싱 데이터 통합계측관리 서버는 적어도 하나 이상의 붕락 사전징후 측정 데이터를 분석한 결과 통합적으로 수신되는 갱내 붕괴 감시 대상 각 셀 영역에 대한 붕락 사전징후 측정 데이터 중에서 붕락 사전징후 측정 데이터 변화값이 기설정된 기준값을 초과하는지를 판단(S15)할 수 있다.Next, the sensing data integrated measurement management server analyzes at least one or more pre-signs of collapse measurement data, and as a result of the analysis of at least one pre-symptom of collapse measurement data, the change value of the pre-signs of collapse measurement data for each cell area to be monitored for collapse in the mine is set. It may be determined whether the reference value is exceeded (S15).
이어서, 센싱 데이터 통합계측관리 서버는 적어도 하나 이상의 붕락 사전징후 측정 데이터를 분석한 결과 통합적으로 수신되는 갱내 붕괴 감시 대상 각 셀 영역에 대한 붕락 사전징후 측정 데이터 중에서 붕락 사전징후 측정 데이터 변화값이 기설정된 기준값을 초과한 경우가 발생되면 광산 갱내 붕락이 시작된 것으로 판단(S16)할 수 있다.Next, the sensing data integrated measurement management server analyzes at least one or more pre-signs of collapse measurement data, and as a result of the analysis of at least one pre-symptom of collapse measurement data, the change value of the pre-signs of collapse measurement data for each cell area to be monitored for collapse in the mine is set. When a case exceeding the reference value occurs, it may be determined that the collapse of the mine mine has started (S16).
이어서, 센싱 데이터 통합계측관리 서버는 광산 갱내에서 작업중인 작업자나 작업 차량 등의 객체 위치정보를 인식(S17)할 수 있다. 이때, 작업자나 작업 차량 등 광산 갱내에 위치한 객체위치 파악은 광산 갱내 구역 내에 소정 거리마다 설치된 앵커가 작업자의 작업모나 작업 차량에 설치된 태그와 통신하여 객체의 위치를 인식할 수 있다.Subsequently, the sensing data integrated measurement management server may recognize object location information such as a worker or a work vehicle working in a mine pit (S17). In this case, in order to determine the location of an object located in the mine shaft, such as a worker or a work vehicle, an anchor installed at a predetermined distance within the mine shaft area communicates with a tag installed on the worker's work hat or work vehicle to recognize the location of the object.
이어서, 센싱 데이터 통합계측관리 서버는 게이트웨이에서 실시간으로 통합적으로 수집되어 전송되는 갱내 붕괴 감시 대상 각 셀 영역에 대한 붕락 사전징후 측정 데이터 중에서 붕락 사전징후 측정 데이터 변화값이 기설정된 기준값을 초과한 경우가 발생되어 광산 갱내 붕락 시작 신호로 판단된 경우에는 경보신호를 발생(S18)시킬 수 있다. 이때, 발생된 광산 갱내 붕락 시작을 알리기 위한 경보신호는 네트워크망을 통해서 광산 갱내에 설치된 경보 장치를 통해 송출될 수 있다.Then, the sensed data integrated measurement management server collects and transmits integrated data from the gateway in real time. Among the measured data for each cell area subject to collapse monitoring, the change value of the pre-symptom of collapse measurement exceeds a preset reference value. When it is determined that the mine mine collapse start signal is generated, an alarm signal may be generated (S18). At this time, the generated warning signal for notifying the start of the mine mine collapse may be transmitted through an alarm device installed in the mine mine through a network network.
특히, 센싱 데이터 통합계측관리 서버는 경보신호 발생시 S17단계에서 인식된 작업자나 작업 차량 등 객체의 위치정보를 전달받을 수 있으며, 전달받은 객체의 위치정보에 기초하여 갱내 객체가 위치한 구역에 배치된 경보 장치로 갱내 붕락 시작을 알리기 위한 경보신호를 송출할 수 있다. 이에 따라, 광산 갱내에서 작업중인 작업자들은 광산 갱내 붕락 시작을 알리는 경보신호를 듣고서 최대한 빠른 시간 내에 갱내 작업 현장에서 대피할 수 있다.In particular, the sensing data integrated measurement management server can receive location information of an object, such as a worker or a work vehicle, recognized in step S17 when an alarm signal is generated, and based on the location information of the received object, an alarm placed in the area where the object in the mine is located The device can send out an alarm signal to inform the start of the collapse of the mine. Accordingly, the workers working in the mine can evacuate from the work site in the mine as soon as possible after hearing an alarm signal indicating the start of collapse in the mine.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (4)

  1. 광산 갱내 환경에 따라 갱내 지표면이나 측벽 또는 천장에 소정 영역의 셀 단위마다 설치되어 암반의 붕락 사전징후를 측정하는 다수개의 붕락감지센서;A plurality of collapse detection sensors that are installed for each cell unit of a predetermined area on the ground surface, side wall, or ceiling of the mine according to the mine environment, and measure the pre-signs of rock collapse;
    상기 다수개의 붕락감지센서로부터 측정된 붕락 사전징후 측정 데이터를 실시간으로 수신하는 센서노드;a sensor node for receiving in real time the collapse pre-sign measurement data measured from the plurality of collapse detection sensors;
    상기 센서노드로부터 상기 다수개의 붕락감지센서에서 각각 측정된 각 셀 영역에서의 붕락 사전징후 측정 데이터를 수집하는 게이트웨이;a gateway for collecting pre-collapse measurement data in each cell area measured by the plurality of collapse detection sensors from the sensor node;
    상기 게이트웨이에서 수집한 각 셀 영역에서의 붕락 사전징후 측정 데이터를 네트워크망을 통해 실시간으로 수신하여 통합적으로 관리하는 센싱 데이터 통합계측관리 서버; 및a sensing data integrated measurement and management server for receiving and integratedly managing the measurement data of pre-fall signs in each cell area collected by the gateway in real time through a network; and
    상기 센싱 데이터 통합계측관리 서버로부터 광산 갱내 붕락 시작을 알리는 경보 신호를 수신하는 경우 경보음을 송출하는 경보 장치를 포함하는 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템.The sensing data integrated measurement and management system for detecting the collapse of a mine mine comprising an alarm device that transmits an alarm sound when receiving an alarm signal notifying the start of collapse of the mine mine from the sensing data integrated measurement management server.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 붕락감지센서는,The collapse detection sensor,
    갱내 환경에 따라 변위 센서, 경사계 센서 및 사물인터넷 기반의 지오폰 센서 중 어느 하나의 센서로서 갱내 암반에서 나타나는 붕락의 사전징후를 측정하는 것을 특징으로 하는 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템.Sensing data integrated measurement management system for detecting collapse in a mine, characterized in that it measures the pre-signs of collapse appearing in the rock bed of the mine as any one of a displacement sensor, an inclinometer sensor, and an Internet of Things-based geophone sensor according to the environment of the mine .
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 게이트웨이에서 전송되는 각 셀 영역에서의 붕락 사전징후 측정 데이터는 데이터 수집 및 측정 프로그램을 통해서 기 정의된 데이터 포맷에 따라 표준화되어 상기 센싱 데이터 통합계측관리 서버로 전송되는 것을 특징으로 하는 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템.Collapse detection in a mine mine, characterized in that the measurement data for pre-fall signs in each cell area transmitted from the gateway are standardized according to a data format predefined through a data collection and measurement program and transmitted to the sensing data integrated measurement management server Sensing data integrated measurement management system for
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 센싱 데이터 통합계측관리 서버는,The sensing data integrated measurement management server,
    상기 게이트웨이에서 수집한 각 셀 영역에서의 붕락 사전징후 측정 데이터에 기초하여 암반에서 나타나는 붕락의 사전징후 상태를 분석한 결과 특정 셀 영역에서의 붕락 사전징후 상태값이 기설정된 기준값을 초과하는 경우 광산 갱내 붕락이 시작된 것으로 판단하는 것을 특징으로 하는 광산 갱내 붕락 감지를 위한 센싱 데이터 통합계측관리 시스템.As a result of analyzing the condition of pre-signs of collapse in the bedrock based on the measurement data of pre-signs of collapse in each cell area collected by the gateway, if the state of pre-signs of collapse in a specific cell area exceeds a preset reference value, Sensing data integrated measurement management system for detecting collapse in a mine, characterized in that it is determined that the collapse has started.
PCT/KR2020/017590 2020-08-25 2020-12-04 System for integrated measurement and management of sensing data for detection of collapse within mine pit WO2022045468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200106643A KR102290182B1 (en) 2020-08-25 2020-08-25 Sensing data total monitoring system for sensing collapse of mine pit
KR10-2020-0106643 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022045468A1 true WO2022045468A1 (en) 2022-03-03

Family

ID=77466135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017590 WO2022045468A1 (en) 2020-08-25 2020-12-04 System for integrated measurement and management of sensing data for detection of collapse within mine pit

Country Status (2)

Country Link
KR (1) KR102290182B1 (en)
WO (1) WO2022045468A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115600909A (en) * 2022-10-21 2023-01-13 宿州学院(Cn) Calculation and analysis system for repairing earthwork and stone engineering quantity of quarry mine
CN116629809A (en) * 2023-07-24 2023-08-22 长春工程学院 Intelligent mine management method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366068B2 (en) * 2016-11-14 2022-06-21 Koh Young Technology Inc. Inspection apparatus and operating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110004176A (en) * 2009-07-07 2011-01-13 한국건설기술연구원 System for safety measure of structure using inclinometer
KR20110086997A (en) * 2010-01-25 2011-08-02 경남정보대학산학협력단 Remote control system of structure
KR20110125046A (en) * 2010-05-12 2011-11-18 한국시설안전공단 Method for remotely monitoring variety facilities using sensors
KR20180009093A (en) * 2016-07-18 2018-01-26 연세대학교 산학협력단 Wireless sensor network measurring system and method for forcasting landslide
KR20200082766A (en) * 2018-12-31 2020-07-08 주식회사 네오세미텍 Monitoring system for smart factory

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102026643B1 (en) 2018-06-22 2019-11-04 코탐(주) Ict-based real-time mine internal displacement monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110004176A (en) * 2009-07-07 2011-01-13 한국건설기술연구원 System for safety measure of structure using inclinometer
KR20110086997A (en) * 2010-01-25 2011-08-02 경남정보대학산학협력단 Remote control system of structure
KR20110125046A (en) * 2010-05-12 2011-11-18 한국시설안전공단 Method for remotely monitoring variety facilities using sensors
KR20180009093A (en) * 2016-07-18 2018-01-26 연세대학교 산학협력단 Wireless sensor network measurring system and method for forcasting landslide
KR20200082766A (en) * 2018-12-31 2020-07-08 주식회사 네오세미텍 Monitoring system for smart factory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115600909A (en) * 2022-10-21 2023-01-13 宿州学院(Cn) Calculation and analysis system for repairing earthwork and stone engineering quantity of quarry mine
CN116629809A (en) * 2023-07-24 2023-08-22 长春工程学院 Intelligent mine management method and system
CN116629809B (en) * 2023-07-24 2023-09-19 长春工程学院 Intelligent mine management method and system

Also Published As

Publication number Publication date
KR102290182B1 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2022045468A1 (en) System for integrated measurement and management of sensing data for detection of collapse within mine pit
US7692540B2 (en) Perimeter security system
CN1786422A (en) Method and system for monitoring gas in mine
KR102290183B1 (en) System for monitoring a collapse of mine pit using ground deformation sensor
WO2019245146A1 (en) Ict-based system for monitoring, in real time, displacements in mine
CN102007426A (en) Position-monitoring device for persons
CN110398571A (en) The method for inspecting and system of detection device
WO2017171281A2 (en) Manhole cover for monitoring state of underground facility on basis of low-power wide-area (lpwa) network
CN111382195B (en) Foundation pit safety monitoring data analysis method and system
KR102225146B1 (en) Mine Vehicle V2X System and Method for Management of Mine Safety
JP6972868B2 (en) Safety judgment program, safety judgment method and safety judgment device
CN108230624A (en) Mountain landslide supervision system based on CC2530
US8352191B2 (en) Seismic detection in electricity meters
KR102365368B1 (en) System for monitoring displacement of slope
CN113935859A (en) Intelligent construction site system based on BIM model
CN108280971A (en) A kind of Distributed seismic sensing alerting techniques
WO2007117579A1 (en) Distributed perimeter security threat evaluation
CN112367397A (en) Monitoring and early warning method and system for field work, computer equipment and storage medium
Fernandez-Steeger et al. SLEWS–A prototype system for flexible real time monitoring of landslides using an open spatial data infrastructure and wireless sensor networks
CN105448014A (en) Fence perimeter security protection system-based integrated wiring method and intrusion early warning method
CN206074032U (en) A kind of body of wall vibration detecting system
KR101962921B1 (en) System and method for managing construction
WO2016076532A1 (en) Augmented reality based smart greenhouse structure monitoring system and method
WO2018147546A1 (en) System for maintaining and safety-managing infrastructure measurement instrument by using mobile application
KR101904072B1 (en) Switchboard System for Sensing Sink Hole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951698

Country of ref document: EP

Kind code of ref document: A1