WO2022045360A1 - Film - Google Patents

Film Download PDF

Info

Publication number
WO2022045360A1
WO2022045360A1 PCT/JP2021/031951 JP2021031951W WO2022045360A1 WO 2022045360 A1 WO2022045360 A1 WO 2022045360A1 JP 2021031951 W JP2021031951 W JP 2021031951W WO 2022045360 A1 WO2022045360 A1 WO 2022045360A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
resin
polymer
formula
Prior art date
Application number
PCT/JP2021/031951
Other languages
French (fr)
Japanese (ja)
Inventor
勇輔 小沼
宏司 西岡
昌平 莇
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022045360A1 publication Critical patent/WO2022045360A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F132/00Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/08Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having two condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a film that can be used as a substrate material compatible with a printed circuit board for a high frequency band and an antenna substrate, and a composition capable of forming the film.
  • a copper-clad laminate called CCL has a structure in which copper foils are laminated on both surfaces of a resin layer via an adhesive.
  • the transmission loss of the CCL can be suppressed by reducing the dielectric loss of the resin layer serving as the transmission line, particularly the dielectric loss tangent and the relative permittivity.
  • Patent Document 1 discloses a low-dielectric resin composition containing a specific resin (A) and a cycloolefin polymer (B), and a film composed of the composition.
  • an object of the present invention is to provide a film having a lower CTE than a conventional composite film containing a cycloolefin polymer and a composition capable of forming the film.
  • the present inventor has made a glass transition temperature of the cycloolefin polymer (B) in a film containing the resin (A) and the cycloolefin polymer (B) (hereinafter referred to as “the glass transition temperature”). It has been found that the above-mentioned problems can be solved by adjusting at least one of the Tg) and the melting point to 160 ° C. or higher, and the present invention has been completed. That is, the present invention includes the following suitable forms.
  • the cycloolefin polymer (B) has the formula (I) :.
  • m represents an integer of 0 or more
  • R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and when a plurality of R 11 to R 14 are present, they are independently and identical to each other. May be different, and R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded.
  • the content of the monomer unit (I) in the cycloolefin-based polymer (B) is 60 mol% or more with respect to the total molar amount of the repeating units constituting the cycloolefin-based polymer (B).
  • the film according to. [5] The cycloolefin-based polymer (B) is derived from at least one selected from the group consisting of ethylene, a linear ⁇ -olefin having 3 to 20 carbon atoms, and an aromatic vinyl compound having 8 to 20 carbon atoms.
  • the content of the cycloolefin-based polymer (B) is 5 to 50% by mass with respect to the total mass of the resin (A) and the cycloolefin-based polymer (B) contained in the film, [1] to The film according to any one of [8].
  • the resin (A) is at least one resin selected from the group consisting of a polyimide resin, a liquid crystal polymer, a fluororesin, an aromatic polyether resin and a maleimide resin, [1] to [9]. ]
  • the liquid crystal polymer has the formula (a1), the formula (a2) and the formula (a3): -O-Ar 1 -CO- (a1) -CO-Ar 2 -CO- (a2) -X-Ar 3 -Y- (a3) [(In formula (a1), Ar 1 represents a 1,4-phenylene group, a 2,6-naphthylene group or a 4,4'-biphenylene group, and represents. In formula (a2), Ar 2 represents a 1,4-phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group. In formula (a3), Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group.
  • X represents -NH- Y represents -O- or NH-]
  • the cycloolefin polymer (B) has the formula (I) :.
  • m represents an integer of 0 or more
  • R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other
  • R 11 to R 14 If there are a plurality of them, they may be independent of each other, the same or different, and R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded.
  • the content of the monomer unit (I) in the cycloolefin polymer (B) is 60 mol% or more with respect to the total molar amount of the repeating units constituting the cycloolefin polymer (B). 14].
  • the film of the present invention has a lower CTE than the conventional composite film containing a cycloolefin polymer. Therefore, the film of the present invention can be suitably used as a material for a printed wiring board or the like that can be used for a printed circuit board or an antenna board.
  • the film of the present invention contains a resin (A) and a cycloolefin polymer (B).
  • the cycloolefin-based polymer (B) contained in the film of the present invention includes a homopolymer and a copolymer.
  • At least one of the Tg and the melting point of the polymer (B) is 160 ° C. or higher.
  • the present inventor uses a polymer (B) having at least one of Tg and a melting point of 160 ° C. or higher, preferably Tg of 160 ° C. or higher, as compared with a conventional composite film containing a cycloolefin-based polymer.
  • CTE is reduced. This is because when at least one of the Tg and the melting point of the polymer (B) is adjusted to 160 ° C. or higher, the CTE of the polymer (B) itself is reduced, so that the polymer (B) is composited with the resin (A). It is presumed that this is because the CTE of the film is also reduced.
  • CTE means a linear expansion coefficient.
  • the present inventor has also found that when a polymer (B) having at least one of Tg and a melting point of 160 ° C. or higher is used, the bending resistance is unexpectedly improved.
  • Tg or at least one of the melting points is increased, the structure can be rigid, so that the flexibility is inferior and the bending resistance tends to be lowered.
  • the film of the present invention is surprisingly excellent in bending. It can also be resistant.
  • bending resistance is not only resistance when it is bent once (hereinafter, may be referred to as one-time bending resistance), but also resistance when it is repeatedly bent (hereinafter, repeated bending resistance). It is a meaning including).
  • the mechanical property means a mechanical property including bending resistance and elastic modulus, and increasing or improving the mechanical property means, for example, increasing bending resistance and / or elastic modulus.
  • the dielectric property means a property related to dielectric including a dielectric loss, a relative permittivity and a dielectric loss tangent, and when the dielectric property is increased or improved, for example, the dielectric loss, the relative permittivity and / or the dielectric loss tangent is reduced. Show that.
  • the CTE of the polymer (B) can be high, so that the CTE of the obtained composite film tends to increase and the bending resistance tends to decrease. It is in.
  • the Tg of the polymer (B) is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, still more preferably 220 ° C. or higher, still more preferably 240 ° C. or higher, and particularly preferably 260 ° C. or higher.
  • the melting point of the polymer (B) is preferably 180 ° C. or higher, more preferably 200 ° C.
  • At least one of the Tg and the melting point of the polymer (B) is at least one of the above lower limits, the CTE of the film is more likely to be reduced, and the heat resistance and mechanical properties, particularly bending resistance, are more likely to be enhanced.
  • At least one of the Tg and the melting point of the polymer (B) is preferably 500 ° C. or lower, more preferably 400 ° C.
  • the Tg of the polymer (B) is a softening temperature measured by thermomechanical analysis (hereinafter, may be referred to as TMA) based on JIS K 7196, and can be measured by, for example, the method described in Examples.
  • TMA thermomechanical analysis
  • the melting point of the polymer (B) can be determined by measuring the melting peak temperature from the melting curve obtained by using, for example, a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the monomer unit constituting the polymer (B) in the present invention is not particularly limited as long as the Tg and / or melting point of the polymer (B) is 160 ° C. or higher, but it is easy to improve the water absorption resistance and the dielectric property of the film.
  • the polymer (B) is represented by the formula (I) :.
  • m represents an integer of 0 or more
  • R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and when a plurality of R 11 to R 14 are present, they may be the same as each other. They may be different, and R 16 and R 17 may bond to each other and form a ring with the carbon atoms they bond to.
  • m is an integer of 0 or more.
  • the upper limit of m is preferably an integer of 3 or less, more preferably an integer of 2 or less. , More preferably an integer of 1 or less.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms which is a member of the substituents of R 7 to R 18 , include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group and a dodecyl group.
  • An aryl group such as a phenyl group, a trill group, or a naphthyl group; an aralkyl group such as a benzyl group or a phenetyl group; Be done.
  • R 7 to R 18 are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, and are preferably a hydrogen atom or an aralkyl group having 1 to 20 carbon atoms. More preferably, it is an alkyl group of ⁇ 10.
  • Examples of the cycloolefin represented by the formula (I) include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, tetracyclododecene and tricyclodecene. , Tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene and the like.
  • norbornene is preferable from the viewpoint of easy availability of raw material monomer, reduction of CTE, improvement of mechanical properties such as heat resistance and bending resistance.
  • the cycloolefin represented by the formula (I) may be used alone or in combination of two or more.
  • the polymer (B) preferably comprises a two-chain structure of monomeric units (I).
  • the heat resistance is likely to be improved as compared with a polymer having the same content of the monomer unit (I).
  • the presence or absence of the two-chain structure can be determined by 13 C-NMR spectrum analysis. For example, in the case of a tetracyclodecene-ethylene copolymer, signals derived from the ethylene-tetracyclodecene-ethylene chain, which is an isolated chain of tetracyclodecene, appear at around 54.7 ppm and around 51.1 ppm, and endo-exo bond.
  • Ethylene-tetracyclodecene-tetracyclodecene-ethylene chain-derived signals which are two chains of tetracyclodecene, are located near 51.5 ppm and around 50.8 ppm, and are exo-exo-bonded ethylene-tetracyclodecene-tetracyclo. Since the signal derived from the decene-ethylene chain appears at around 55.3 ppm and around 54.3 ppm, it can be determined by the signal pattern around 55 ppm and around 50 ppm.
  • the two-chain structure of the monomer unit (I) includes a meso-type two-chain structure represented by the following structural formula (II-1) or the following structural formula (II-2), and / or the following structural formula (III-). 1) or a racemo type two chain represented by the following structural formula (III-2) is included.
  • the ratio of the meso-type two-chain to the racemo-type two-chain (hereinafter, may be referred to as meso-type two-chain / racemo-type two-chain) is preferably 0.50 or less, more preferably 0.40 or less, still more preferably. It is 0.30 or less, particularly preferably 0.20 or less, preferably 0.01 or more, and more preferably 0.05 or more.
  • the ratio of the meso-type two-chain to the racemic-type two-chain is, for example, using 13 C-NMR in "RA Wendt, G.
  • the content of the monomer unit (I) in the polymer (B) is preferably 60 mol% or more, more preferably 65 mol% or more, still more preferably 65 mol% or more, based on the total molar amount of the repeating units constituting the polymer (B).
  • the content of the monomer unit (I) is at least the above lower limit, it is easy to increase Tg, so that it is easy to reduce the CTE of the film, and it is easy to improve heat resistance and mechanical properties, particularly bending resistance.
  • the content of the monomeric unit (I) is not more than the above upper limit, it is easy to enhance mechanical properties such as bending resistance.
  • the content of the monomeric unit (I) is based on the attribution described in "RA Wendt, G. Fink, Macromol. Chem. Phys., 2001, 202, 3490" using 13 C-NMR. It can be calculated, for example, by the method described in Examples.
  • the polymer (B) has ethylene, a linear ⁇ -olefin having 3 to 20 carbon atoms, and 8 to 20 carbon atoms from the viewpoint of easily reducing the CTE of the film and enhancing mechanical properties such as bending resistance. It preferably contains a monomer unit (II) derived from at least one selected from the group consisting of aromatic vinyl compounds, and more preferably contains a monomer unit (II) derived from ethylene.
  • linear ⁇ -olefin having 3 to 20 carbon atoms examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. .. Among these, propylene, 1-butene, 1-hexene or 1-octene is preferable, and propylene is preferable, from the viewpoint of easily reducing the CTE of the film and easily enhancing the mechanical properties such as bending resistance. More preferred.
  • the linear ⁇ -olefin having 3 to 20 carbon atoms one type may be used alone, or two or more types may be used in combination.
  • the "linear ⁇ -olefin” refers to a linear olefin having a carbon-carbon unsaturated double bond at the ⁇ -position.
  • aromatic vinyl compound having 8 to 20 carbon atoms examples include styrene, methylstyrene, dimethylstyrene, ethylstyrene, tert-butylstyrene, vinylnaphthalene, vinylanthracene, diphenylethylene, isopropenylbenzene, isopropenyltoluene and isopropenyl.
  • Examples thereof include ethylbenzene, isopropenylpropylbenzene, isopropenylbutylbenzene, isopropenylpentylbenzene, isopropenylhexylbenzene, isopropenyloctylbenzene, isopropenylnaphthalene, isopropenylanthracene and the like.
  • styrene, methylstyrene or dimethylstyrene are preferable, and more preferably, from the viewpoint of easy availability of the raw material monomer, easy reduction of CTE of the film, and easy improvement of mechanical properties such as bending resistance.
  • Examples include styrene.
  • the aromatic vinyl compound having 8 to 20 carbon atoms one kind may be used alone, or two or more kinds may be used in combination.
  • the cycloolefin polymer is made from ethylene, propylene and styrene from the viewpoints of easy availability of raw material monomers, easy reduction of CTE of the film, and easy improvement of mechanical properties such as bending resistance. It may contain a monomer unit (II) derived from at least one selected from the group consisting of ethylene and styrene, more preferably a monomer unit (II) derived from at least one selected from the group consisting of ethylene and styrene. preferable.
  • the content of the monomer unit (II) in the polymer (B) is preferably 0 mol% or more, more preferably 0.01 mol% or more, based on the total molar amount of the repeating units constituting the polymer (B). It is more preferably 1 mol% or more, still more preferably 2 mol% or more, preferably 40 mol% or less, more preferably 35 mol% or less, still more preferably 30 mol% or less, and particularly preferably 25 mol% or less.
  • the content of the monomer unit (II) is at least the above lower limit, it is easy to improve mechanical properties such as bending resistance of the film, processability and moldability.
  • the content of the monomer unit (II) is not more than the above upper limit, it is easy to reduce the CTE of the film and to improve the mechanical properties such as heat resistance and bending resistance.
  • the polymer (B) is preferably a cycloolefin-based copolymer from the viewpoint of easily improving mechanical properties such as heat resistance, processability and bending resistance, and easily reducing CTE.
  • it is a cycloolefinic copolymer containing a monomer unit (II) derived from at least one selected, and a monomer unit (I) derived from norbornene and a monomer unit derived from ethylene. It may be an ethylene-norbornene copolymer containing (II) or a styrene-norbornene copolymer containing a monomer unit (I) derived from norbornene and a monomer unit (II) derived from styrene. More preferred.
  • the polymer (B) may contain other monomeric units (III).
  • Other monomeric units (III) include, for example, conjugated diene such as butadiene or isoprene; non-conjugated diene such as 1,4-pentadien; acrylic acid; acrylic acid ester such as methyl acrylate or ethyl acrylate; methacrylic. Acids; methacrylic acid esters such as methyl methacrylate or ethyl methacrylate; vinyl acetate and the like.
  • the other monomer unit (III) can be used alone or in combination of two or more.
  • the polymer (B) can be used alone or in combination of two or more.
  • the weight average molecular weight of the polymer (B) (hereinafter, the weight average molecular weight may be abbreviated as Mw) is preferably 30,000 or more, more preferably 50,000 or more, still more preferably. It is 70,000 or more, particularly preferably 90,000 or more, preferably 2,000,000 or less, more preferably 1,000,000 or less, still more preferably 700,000 or less.
  • Mw is at least the above lower limit, heat resistance is likely to be increased and strength is likely to be improved.
  • Mw is not more than the above upper limit, it is easy to improve mechanical properties such as bending resistance and moldability.
  • the ratio (Mw / Mn) of Mw of the polymer (B) to the number average molecular weight (hereinafter, the number average molecular weight may be abbreviated as Mn) is preferably 2. 5 or less, more preferably 2.2 or less, still more preferably 2.0 or less, even more preferably 1.95 or less, particularly preferably 1.90 or less, preferably 1.30 or more, still more preferably 1. It is 50 or more, more preferably 1.60 or more, and particularly preferably 1.65 or more.
  • Mw and Mn can be determined by gel permeation chromatography (hereinafter, may be abbreviated as GPC) measurement and converted to standard polystyrene, and can be determined, for example, by the method described in Examples.
  • the refractive index of the polymer (B) is preferably 1.600 or less, more preferably 1.570 or less, still more preferably 1. It is 550 or less, preferably 1.500 or more, and more preferably 1.520 or more.
  • the refractive index of the polymer (B) can be measured by a refractometer, for example, by the method described in Examples.
  • the CTE of the polymer (B) is preferably 58 ppm / K or less, more preferably 55 ppm / K or less, still more preferably 50 ppm / K or less, preferably 0 ppm / K or more, more preferably. Is 0.01 ppm / K or more, more preferably 1 ppm / K or more, still more preferably 5 ppm / K or more.
  • the CTE of the polymer (B) is not more than the above upper limit, it is easy to reduce the CTE of the obtained film.
  • the polymer (B) having the optimum CTE can be selected according to the CTE of the resin to be mixed.
  • the CTE can be measured by, for example, TMA, and can be obtained by the method described in Examples.
  • the content of the polymer (B) is usually 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, based on the total mass of the polymer (B) and the resin (A) contained in the film. It is more preferably 15% by mass or more, preferably 65% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less.
  • the content of the polymer (B) is in the above range, it is easy to reduce the CTE of the film, and it is easy to improve the mechanical properties such as the dielectric property and the bending resistance.
  • a particulate polymer (B) (hereinafter, may be referred to as a particulate polymer (B)) is dispersed, it is easy to improve the dispersibility, and as a result, the physical characteristics of the film, for example, thermal conductivity (or thermal diffusivity), are easily enhanced. It is easy to reduce variations such as rate).
  • the form of the polymer (B) contained in the film of the present invention is not particularly limited, and examples thereof include particle-like, fibrous, and sheet-like ones, which are easily uniformly dispersed in the film and have heat resistance and bending resistance. It is preferably in the form of particles from the viewpoint that it is easy to improve the target characteristics and reduce CTE.
  • the method for adjusting the Tg and the melting point of the polymer (B) is not particularly limited, and examples thereof include a method for appropriately adjusting the content of the monomer unit (I), the Mw of the polymer (B), the degree of crystallinity, and the like. ..
  • the method for producing the polymer (B) is not particularly limited, but the monomer forming the polymer (B) in the presence of a catalyst using the transition metal complex ( ⁇ ) represented by the formula (IV) as one component.
  • a catalyst using the transition metal complex ( ⁇ ) represented by the formula (IV) as one component.
  • the transition metal complex ( ⁇ ) represented by the formula (IV) is used, the content of the monomer unit (I) in the polymer (B) is significantly increased. It is easy to adjust Tg within the above range.
  • M represents a Group 4 transition metal element in the Periodic Table of the Elements.
  • Cp represents a group having a cyclopentadienyl skeleton and represents A represents a group 16 atom in the periodic table of elements, T represents an atom of Group 14 in the periodic table of elements.
  • D 1 and D 2 are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 6 to 20 carbon atoms. It represents an aryloxy group or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different.
  • R 1 to R 6 are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms.
  • M is a transition metal element of Group 4 of the Periodic Table of Elements (IUPAC Inorganic Chemistry Naming Method Revised Edition 1989), and examples thereof include a titanium atom, a zirconium atom, and a hafnium atom.
  • Cp is a group having a cyclopentadienyl skeleton, and examples thereof include cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl, substituted fluorenyl and the like. Specific examples include a cyclopentadienyl group, a methylcyclopentadienyl group, a tetramethylcyclopentadienyl group, an n-propylcyclopentadienyl group, an n-butylcyclopentadienyl group, and an isobutylcyclopentadienyl group.
  • Phenylcyclopentadienyl group, indenyl group, methylindenyl group, n-propylindenyl group, n-butylindenyl group, isobutylindenyl group, phenylindenyl group, fluorenyl group, methylfluorenyl group, n -A propylfluorenyl group, a phenylfluorenyl group, a dimethylfluorenyl group and the like can be mentioned.
  • a cyclopentadienyl group preferably a cyclopentadienyl group, a methylcyclopentadienyl group, a tetramethylcyclopentadienyl group, an n-butylcyclopentadienyl group, an isobutylcyclopentadienyl group, an indenyl group, a methylindenyl group.
  • a fluorenyl group may be mentioned.
  • A is an atom of Group 16 in the periodic table of elements, and examples thereof include an oxygen atom and a sulfur atom. Among these, an oxygen atom is preferable.
  • T is an atom of Group 14 of the periodic table of elements, and examples thereof include a carbon atom, a silicon atom, and a germanium atom. Among these, a carbon atom or a silicon atom is preferable.
  • D 1 and D 2 are independent of each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. It is an aryloxy group of 6 to 20 or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different. Among these, a halogen atom is preferable.
  • D 1 and D 2 are halogen atoms include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • D 1 and D 2 are hydrocarbon groups
  • the number of carbon atoms thereof is preferably 1 to 10.
  • the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and n-hexyl.
  • examples thereof include a group, an n-octyl group, a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a naphthyl group, a benzyl group and the like.
  • D 1 and D 2 are halogenated hydrocarbon groups
  • D 1 and D 2 are halogenated hydrocarbon groups
  • D 1 and D 2 are halogenated hydrocarbon groups.
  • D 1 and D 2 are alkoxy groups
  • D 1 and D 2 are alkoxy groups
  • D 1 and D 2 are alkoxy groups
  • examples thereof include a pentoxy group, a neopentoxy group, an n-hexoxy group, an n-octoxy group and the like.
  • D 1 and D 2 are aryloxy groups
  • a phenoxy group a 2-methylphenoxy group, a 3-methylphenoxy group, a 4-methylphenoxy group, a naphthyloxy group and the like.
  • the disubstituted amino group is an amino group in which two substituents are bonded.
  • Specific examples thereof include dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-sec-butylamino group and di-tert-butyl.
  • Examples thereof include an amino group, a di-n-hexyl amino group, a di-n-octyl amino group, and a diphenyl amino group.
  • R 1 to R 6 are independent of each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. It represents an aryloxy group of 6 to 20, a disubstituted amino group of 2 to 20 carbon atoms or a silyl group of 1 to 20 carbon atoms, which may be the same or different, and they may be optionally bonded. May form a ring. Among these, a hydrocarbon group having 1 to 20 carbon atoms is preferable.
  • R 1 to R 6 are hydrocarbon groups, the number of carbon atoms is preferably 1 to 10. Specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and n-hexyl group.
  • N-octyl group phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group , 2,6-dimethylphenyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,3,4,5-tetramethylphenyl Groups, 2,3,4,6-tetramethylphenyl group, pentamethylphenyl group and the like can be mentioned.
  • R 1 to R 6 are a halogen atom, a halogenated hydrocarbon group, an alkoxy group, an aryloxy group, and a disubstituted amino group
  • D 1 and D 2 as a halogen atom and a halogenated hydrocarbon group.
  • an alkoxy group, an aryloxy group, and a disubstituted amino group those exemplified above can be mentioned.
  • R 1 to R 6 are silyl groups
  • a trimethylsilyl group a triethylsilyl group, a tri-n-propylsilyl group, a triisopropylsilyl group, a tri-n-butylsilyl group, a triisobutylsilyl group, and a tri.
  • examples thereof include -sec-butylsilyl group, tri-tert-butylsilyl group and triphenylsilyl group.
  • Such a compound represented by the formula (IV) include isopropanol (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride and isopropyridene (methylcyclo).
  • the compound in which titanium is changed to zirconium or hafnium in the above specific example, and the compound in which isopropridene is changed to dimethylsilylene, diphenylcilylene, and methylene including them can be similarly exemplified.
  • a compound in which dichloride is changed to dibromide, diiodide, dimethyl, dibenzyl, dimethoxydo, or diethoxyde can be similarly exemplified.
  • the transition metal complex ( ⁇ ) represented by the above formula (IV) can be used as a catalyst for producing the polymer (B) according to the embodiment of the present invention in combination with various co-catalysts.
  • the cocatalyst is a compound that interacts with the transition metal complex ( ⁇ ) to produce a polymerization active species for cyclic olefins and alkenyl aromatic hydrocarbons. Examples thereof include organoaluminum compounds ( ⁇ ) and / or boron compounds ( ⁇ ) represented by any of the following formulas ( ⁇ 1) to ( ⁇ 3), and these co-catalysts are used.
  • the structure of the polymerization active species produced by this is not clear.
  • Equation ( ⁇ 1) BQ 1 Q 2 Q 3 Equation ( ⁇ 2) J + (BQ 1 Q 2 Q 3 Q 4 ) - Equation ( ⁇ 3) (L—H) + (BQ 1 Q 2 Q 3 Q 4 ) - [In the formulas ( ⁇ 1) to ( ⁇ 3), B represents a boron atom in a trivalent valence state.
  • Q1 to Q4 are independent of each other, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • J + represents an inorganic or organic cation
  • L represents a neutral Lewis base
  • (L—H) + represents a Bronsted acid.
  • organoaluminum compound ( ⁇ ) a known organoaluminum compound can be used. Specific examples thereof include organoaluminum compounds represented by the formula ( ⁇ 1), cyclic aluminoxane having a structure represented by the formula ( ⁇ 2), and linear aluminoxane having a structure represented by the formula ( ⁇ 3). , These can be used alone or in combination of two or more.
  • Equation ( ⁇ 1) E 1 a AlZ 3-a Equation ( ⁇ 2) ⁇ -Al (E 2 ) -O- ⁇ b Equation ( ⁇ 3) E 3 ⁇ -Al (E 3 ) -O- ⁇ c AlE 3 2
  • E1 , E2 and E3 represent hydrocarbon groups having 1 to 8 carbon atoms independently of each other , and all E1, all E2 and all.
  • E 3 may be the same or different
  • Z may represent hydrogen or halogen
  • all Z may be the same or different
  • a represents an integer of 0-3.
  • B represent an integer of 2 or more
  • c represents an integer of 1 or more.
  • formula ( ⁇ 1) include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum; dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, and the like.
  • Dialkylaluminum chloride such as dihexylaluminum chloride; alkylaluminum dichloride such as methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride; dimethylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, diisobutylaluminum hydride , Dialkylaluminum hydride such as dihexylaluminum hydride and the like. Among these, trialkylaluminum is preferable, and triethylaluminum or triisobutylaluminum is more preferable.
  • E 2 and E 3 in the formula ( ⁇ 2) and the formula ( ⁇ 3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group and neopentyl.
  • Examples thereof include an alkyl group such as a group. Among these, a methyl group or an isobutyl group is preferable.
  • b is an integer of 2 or more, preferably an integer of 2 to 40.
  • c is an integer of 1 or more, preferably an integer of 1 to 40.
  • the above aluminoxane is made by various methods.
  • the method is not particularly limited, and it may be produced according to a known method.
  • a method for making a solution of trialkylaluminum, for example, trimethylaluminum, etc. in a suitable organic solvent, for example, benzene, an aliphatic hydrocarbon, etc. in contact with water, trialkylaluminum, for example, trimethylaluminum, etc.
  • An example is a method of making the solution by contacting it with a metal salt containing water of crystallization, for example, copper sulfate hydrate.
  • any of the boron compounds represented by the formula ( ⁇ 1), the formula ( ⁇ 2) or the formula ( ⁇ 3) can be used.
  • B represents a boron atom in a trivalent valence state
  • Q1 to Q3 are halogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, and carbon atoms 1 to 20 independently of each other.
  • Q1 to Q3 are independent of each other, preferably a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms.
  • boron compound represented by the formula ( ⁇ 1) include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, and tris (2,3,4,5-). Examples thereof include tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like, and tris is preferable. (Pentafluorophenyl) Borane can be mentioned.
  • B represents a boron atom in a trivalent valence state
  • Q1 to Q4 are the same as Q1 to Q3 in the above formula ( ⁇ 1).
  • J + represents an inorganic or organic cation.
  • Examples of the inorganic cation in J + include a ferrosenium cation, an alkyl-substituted ferrosenium cation, and a silver cation.
  • Examples of the organic cation in J + include triphenylmethyl cation and the like.
  • ferrosenium tetrakis (pentafluorophenyl) borate, 1,1'-dimethylferrosenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, and triphenylmethyl tetrakis.
  • Examples thereof include (pentafluorophenyl) borate, triphenylmethyltetrakis (3,5-bistrifluoromethylphenyl) borate, and preferably triphenylmethyltetrakis (pentafluorophenyl) borate.
  • B represents boron in a trivalent valence state
  • Q1 to Q4 are the same as Q1 to Q3 in the above formula ( ⁇ 1).
  • L represents a neutral Lewis base
  • (L—H) + represents a Bronsted acid.
  • examples of the Bronsted acid (L—H) + include trialkyl-substituted ammonium cations, N, N-dialkylanilinium cations, dialkylammonium cations, and triallylphosphonium cations.
  • (BQ 1 Q 2 Q 3 Q 4 ) - the same as described above can be mentioned.
  • organoaluminum compound ( ⁇ ) and compound ( ⁇ ) in combination.
  • the transition metal complex ( ⁇ ) represented by the formula (IV), the organoaluminum compound ( ⁇ ) and / or the compound ( ⁇ ) can be charged and used in any order at the time of polymerization, but any of them can be used. You may use the reaction product obtained by contacting the combination of the above in advance.
  • the molar ratio of the co-catalyst / transition metal complex ( ⁇ ) is preferably 0.01 to 10,000, more preferably 0.5 to 2,000.
  • the concentration of the transition metal complex ( ⁇ ) is preferably 0.0001 to 5 mmol / L, more preferably 0.001 to 1 mmol / L.
  • the amount of the catalyst component used is preferably 0.00001 to 1 mol%, more preferably 0.0001 to 0.1 mol%, based on the total amount of all the monomers used.
  • the polymerization method of the polymer (B) according to the embodiment of the present invention is not particularly limited, and for example, a batch type or continuous type gas phase polymerization method, a bulk polymerization method, or a solution weight using an appropriate solvent is used. Any method such as a legal method or a slurry polymerization method can be adopted.
  • a solvent When a solvent is used, various solvents can be used under the condition that the catalyst is not inactivated, and examples of such a solvent include hydrocarbon solvents such as benzene, toluene, pentane, hexane, heptane, and cyclohexane; Examples thereof include halogenated hydrocarbon solvents such as dichloromethane and ethylene dichloride.
  • hydrocarbon solvents such as benzene, toluene, pentane, hexane, heptane, and cyclohexane
  • halogenated hydrocarbon solvents such as dichloromethane and ethylene dichloride.
  • the ethylene partial pressure in the system during polymerization is, for example, 50 to 400 kPa, preferably 50 to 300 kPa, and the hydrogen partial pressure is preferably 0 to 100 kPa.
  • ethylene and hydrogen are introduced into the system, it is preferable to pressurize with the partial pressure of hydrogen and then pressurize with the partial pressure of ethylene. Further, after the solution of the cycloolefin represented by the formula (I) is charged into the polymerization reaction tank, toluene may be further charged.
  • the polymerization temperature is preferably 50 ° C. or higher, more preferably 50 to 150 ° C., and even more preferably 50 ° C. to 100 ° C.
  • a chain transfer agent such as hydrogen can also be added to adjust the molecular weight of the polymer.
  • the film of the present invention contains the resin (A).
  • the resin (A) is a resin different from the polymer (B).
  • the resin (A) may be a cycloolefin-based resin having a different type from the polymer (B), for example, a different type of monomer unit constituting the resin, its content, and the like.
  • the resin (A) is not particularly limited, and for example, diallyl phthalate resin, silicone resin, phenol resin, unsaturated polyester resin, polyurethane resin, melamine resin, urea resin, xylene resin, furan resin, aniline resin, acetone-formaldehyde resin.
  • Thermocurable resin selected from alkyd resin, maleimide resin, maleimide-cyanic acid ester resin, cyanate ester resin, benzoxazine resin, polybenzimidazole resin, and polycarbodiimide resin; olefin resin; acrylic resin; Styrene-based resin; Rubber-based resin; Fluorine-based resin; Vinyl-based resin; General-purpose engineering plastic; Super-engineering plastic such as liquid crystal polymer and aromatic polyether resin; Polyamide resin; Polygonide resin, Polyethyleneimide resin and other polyimide-based resin; In addition, biodegradable plastics and the like can be mentioned.
  • the resin (A) can be used alone or in combination of two or more.
  • the Tg of the resin (A) is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, particularly preferably 300 ° C. or higher, and particularly more preferably 350 ° C. or higher. It is preferably 550 ° C. or lower.
  • the Tg of the resin (A) is at least the above lower limit, the surface smoothness, particle dispersibility and heat resistance of the obtained film can be easily improved, and the CTE can be easily reduced.
  • the Tg of the resin (A) is not more than the above upper limit, it is easy to enhance mechanical properties such as bending resistance.
  • the Tg of the resin (A) can be obtained, for example, by performing dynamic viscoelasticity measurement (hereinafter, may be abbreviated as DMA measurement), and can be measured by the method described in Examples.
  • the Mw of the resin (A) is preferably 50,000 or more, more preferably 100,000 or more, still more preferably 150,000 or more, still more preferably 200,000 or more, and particularly preferably 250,000 in terms of polystyrene.
  • the above is particularly preferably 300,000 or more, preferably 1,000,000 or less, more preferably 800,000 or less, still more preferably 700,000 or less, still more preferably 500,000 or less, and particularly preferably. It is 450,000 or less.
  • the Mw of the resin (A) is at least the above lower limit, the CTE of the film is likely to be reduced, and mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance are likely to be enhanced.
  • the Mw of the resin (A) is not more than the above upper limit, the formability of the film is likely to be improved.
  • the Mw of the resin (A) can be obtained by, for example, GPC measurement and converted to standard polystyrene, and can be obtained by, for example, the method described in Examples.
  • the polyimide-based resin suitable as the resin (A) includes a resin containing a repeating structural unit containing an imide group (hereinafter, may be referred to as a polyimide resin), and a repeating structural unit containing both an imide group and an amide group. It is meant to include a resin to be used (hereinafter, may be referred to as a polyamide-imide resin) and a precursor before producing a polyimide-based resin by imidization.
  • the precursor before producing the polyimide resin is a polyamic acid.
  • a "repeating structural unit” may be referred to as a "constituent unit”.
  • the "constituent unit derived from” may be simply referred to as "unit", and for example, the constituent unit derived from a compound may be referred to as a compound unit.
  • the film of the present invention has the formula (1): as the resin (A).
  • X represents a divalent organic group.
  • Y represents a tetravalent organic group * Represents a bond
  • X in the formula (1) represents a divalent organic group independently of each other, and preferably represents a divalent organic group having 2 to 100 carbon atoms.
  • the divalent organic group include a divalent aromatic group and a divalent aliphatic group
  • examples of the divalent aliphatic group include a divalent acyclic aliphatic group or a divalent aliphatic group.
  • Cyclic aliphatic groups can be mentioned. Among these, a divalent cyclic aliphatic group and a divalent aromatic group are preferable from the viewpoint of easily reducing the CTE of the film and easily enhancing the mechanical properties such as heat resistance and bending resistance. Aromatic groups are more preferred.
  • the hydrogen atom in the organic group may be substituted with a halogen atom, a hydrocarbon group, an alkoxy group or a halogenated hydrocarbon group, in which case the carbon number of these groups is preferably 1.
  • the divalent aromatic group is a divalent organic group having an aromatic group, and an aliphatic group or another substituent may be contained in a part of the structure thereof.
  • the divalent aliphatic group is a divalent organic group having an aliphatic group, and a part of the structure thereof may contain other substituents, but does not contain an aromatic group.
  • the polyimide-based resin may contain a plurality of types of X, and the plurality of types of X may be the same as or different from each other.
  • X in the formula (1) for example, the group (structure) represented by the formulas (2) to (8); the hydrogen atom in the group represented by the formulas (5) to (8) is a methyl group. , Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, fluoro group, chloro group or trifluoromethyl group substituted group and the like.
  • Ra and R b are independent of each other, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 6 to 12 carbon atoms.
  • the hydrogen atoms contained in Ra and R b may be substituted with halogen atoms independently of each other.
  • W is independent of each other, single bond, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C (CF 3 ).
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a halogen atom.
  • R c is a carbon substituted with a hydrogen atom or a hal
  • X in the formula (1) include, for example, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a propylene group, a 1,2-butanediyl group, and a 1,3-butanediyl group.
  • 1,12-Dodecandyl group, 2-methyl-1,2-propanediyl group, 2-methyl-1,3-propanediyl group and other linear or branched alkylene groups with divalent acyclic Examples include aliphatic groups.
  • the hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, and the carbon atom may be substituted with a hetero atom, for example, an oxygen atom, a nitrogen atom or the like.
  • the polyimide-based resin in the present invention is represented by the formula (2) as X in the formula (1) from the viewpoint of easily achieving low dielectric loss, low CTE, high heat resistance and high mechanical properties of the film. It is preferable to include a structure represented by and / or a structure represented by the formula (3), and it is more preferable to include a structure represented by the formula (2).
  • each benzene ring or cyclohexane ring are at the ortho-position, meta-position, or para-position, or ⁇ -position, ⁇ -position, or ⁇ -position, respectively, based on ⁇ W—. It may be bonded to any of the ⁇ positions, and from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties, the meta position or the para position, or the ⁇ position or the ⁇ position is more preferable. Can bind to the para or ⁇ position.
  • R a and R b independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-pentyl group, and 2 -Methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl group and the like can be mentioned.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group and a hexyloxy group. Examples include a group and a cyclohexyloxy group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a biphenyl group.
  • the hydrogen atom contained in Ra and R b may be substituted with a halogen atom independently of each other, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Ra and R b are independent of each other and have an alkyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms.
  • alkyl fluoride group is preferably an alkyl fluoride group, more preferably an alkyl group having 1 to 3 carbon atoms or an alkyl fluoride group having 1 to 3 carbon atoms, and even more preferably a methyl group or a trifluoromethyl group.
  • t and u are integers of 0 to 4 independently of each other, which is preferable from the viewpoints that the CTE of the film can be easily reduced and the heat resistance and mechanical properties can be easily improved.
  • W is single-bonded independently of each other, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH). 3 ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO- or -N (R c ) -reduces the CTE of the film.
  • Single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 are preferable from the viewpoint of easy to increase heat resistance and mechanical properties, especially bending resistance.
  • R c represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom.
  • Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-.
  • Pentyl group 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group.
  • Etc. which may be substituted with a halogen atom. Examples of the halogen atom include the same as above.
  • n is an integer of 0 to 4, and is preferably 0 from the viewpoint of easily reducing the CTE of the film and easily enhancing the mechanical properties such as heat resistance and bending resistance.
  • n is 2 or more, the plurality of Ws, Ras, and ts may be the same or different from each other, and the positions of the bonds of each benzene ring with respect to ⁇ W— are also the same. It may or may not be different.
  • the polyimide-based resin in the present invention contains both the structure represented by the formula (2) and the structure represented by the formula (3) as X in the formula (1), W and n in the formula (2).
  • R a , R b , t and u may be the same as or different from W, n, R a , R b , t and u in the formula (3) independently of each other.
  • the ring A represents a cycloalkane ring having 3 to 8 carbon atoms.
  • the cycloalkane ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, and a cycloalkane ring having 4 to 6 carbon atoms is preferable.
  • the bonds may or may not be adjacent to each other.
  • the two bonds may be in the positional relationship of the ⁇ -position, the ⁇ -position, or the ⁇ -position, and may be preferably in the positional relationship of the ⁇ -position or the ⁇ -position.
  • R d in the formula (4) represents an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms include those exemplified above as the hydrocarbon group having 1 to 20 carbon atoms in R7 to R18, and preferably represent an alkyl group having 1 to 10 carbon atoms.
  • r represents an integer of 0 or more and (number of carbon atoms of ring A-2) or less. r is preferably 0 or more, and preferably 4 or less.
  • S1 and S2 in the formula (4) represent integers of 0 to 20 independently of each other. S1 and S2 are independent of each other, preferably 0 or more, more preferably 2 or more, and preferably 15 or less.
  • the X in the formula (1) when X in the formula (1) includes a structure represented by the formula (2) and / or the formula (3), the X in the formula (1) is the formula (2). And / or the ratio of the structural unit represented by the formula (3) is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably, with respect to the total molar amount of the structural unit represented by the formula (1). Is 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. When the ratio of the structural unit represented by the formula (2) and / or the formula (3) is in the above range, X in the formula (1) can easily reduce the CTE of the film, and has heat resistance and dielectric properties.
  • the ratio of the structural unit in which Y in the formula (1) is represented by the formula (2) and / or the formula (3) can be measured using, for example, 1 H-NMR, or calculated from the charging ratio of the raw materials. You can also do it.
  • Y represents a tetravalent organic group independently of each other, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 having a cyclic structure and 4 to 40 carbon atoms.
  • the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure.
  • the hydrogen atom in the organic group may be substituted with a halogen atom, a hydrocarbon group, an alkoxy group or a halogenated hydrocarbon group, in which case the carbon number of these groups is preferably 1 to 8. Is.
  • the polyimide-based resin of the present invention may contain a plurality of types of Y, and the plurality of types of Y may be the same as or different from each other.
  • Y the group (structure) represented by the formulas (31) to (38); the hydrogen atom in the group represented by the formulas (34) to (38) is a methyl group, an ethyl group, or n-propyl.
  • R 19 to R 26 have a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 6 to 12 carbon atoms independently of each other. Hydrogen atoms representing an aryl group and contained in R 19 to R 26 may be substituted with halogen atoms independently of each other.
  • V 1 and V 2 are independent of each other, single bond, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C. (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO-, -N (R j )-, formula (a) or formula (b):
  • R 27 to R 30 represent hydrogen atoms or alkyl groups having 1 to 6 carbon atoms independently of each other.
  • Z represents -C (CH 3 ) 2 -or-C (CF 3 ) 2- i is an integer from 1 to 3 * Represents a bond
  • Rj represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom.
  • e and d represent integers from 0 to 2 independently of each other.
  • f represents an integer of 1 to 3 and represents g and h represent integers from 0 to 4 independently of each other. * Represents a bond]
  • the polyimide-based resin in the present invention is represented by the formula (31) as Y in the formula (1) from the viewpoint of easily reducing the CTE of the film and easily improving the heat resistance and mechanical properties. It preferably contains at least one structure selected from the group consisting of a structure, a structure represented by the formula (32) and a structure represented by the formula (33), and preferably includes a structure represented by the formula (31). Is more preferable.
  • R 19 to R 26 are independent of each other, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include the alkyl group having 1 to 6 carbon atoms and the carbon number of carbon atoms in the formulas (2) and (3). Examples of the alkoxy group 1 to 6 and the aryl group having 6 to 12 carbon atoms are mentioned above.
  • R 19 to R 26 may be substituted with halogen atoms independently of each other, and examples of the halogen atoms include those mentioned above.
  • R 19 to R 26 are preferably hydrogen atoms or alkyl groups having 1 to 6 carbon atoms independently of each other, and hydrogen atoms or 1 to 3 carbon atoms are preferable. Alkyl groups are more preferred, and hydrogen atoms are even more preferred.
  • V 1 and V 2 are single-bonded independently of each other, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ). ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO-, -N (R j )-, equation (a) or equation (b) ), Which is preferable from the viewpoint of easily reducing the CTE of the film and easily enhancing the mechanical properties such as heat resistance and bending resistance, preferably single bond, -O-, -CH 2- , -C (CH 3 ) 2 .
  • R j represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom. Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include those exemplified above.
  • f represents an integer of 1 to 3, and is preferably 1 or 2, more preferably 1, from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties.
  • R 27 to R 30 represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms independently of each other.
  • the alkyl group having 1 to 6 carbon atoms include those exemplified above as the alkyl group having 1 to 6 carbon atoms in the formulas (2) and (3).
  • R 27 to R 30 are more preferably hydrogen atoms or alkyl groups having 1 to 3 carbon atoms independently of each other. , Hydrogen atom is more preferable.
  • Z represents -C (CH 3 ) 2- or -C (CF 3 ) 2- .
  • i represents an integer of 1 to 3, and is preferably 1 or 2 from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties.
  • the plurality of Z and R 27 to R 30 may be the same or different from each other independently of each other.
  • Y in the formula (1) when Y in the formula (1) includes at least one selected from the group consisting of the structures represented by the formulas (31) to (33), the formula (1) is used.
  • Y is selected from the group consisting of the structures represented by the formulas (31) to (33), and the ratio of the constituent units represented by at least one is the total mole of the constituent units represented by the formula (1).
  • the amount it is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.
  • the film is formed. It is easy to reduce CTE and to improve heat resistance, dielectric property, water absorption resistance and mechanical property.
  • the ratio of the structural unit represented by at least one selected from the group consisting of the structures represented by the formulas (31) to (33) in the formula (1) is determined by using, for example, 1 H-NMR. It can be measured or calculated from the raw material charge ratio.
  • the polyimide-based resin in the present invention has a structural unit represented by the formula (52), a structural unit represented by the formula (53), and a structural unit represented by the formula (54), in addition to the structural unit represented by the formula (1). It may contain at least one selected from the group consisting of the represented building blocks.
  • Y 1 represents a tetravalent organic group.
  • Y 2 represents a trivalent organic group X 1 and X 2 represent divalent organic groups independently of each other. * Represents a bond.
  • G and X represent divalent organic groups independently of each other. * Represents a bond.
  • Y 1 is synonymous with Y in formula (1)
  • X 1 and X 2 are synonymous with X in formula (1).
  • Y 2 in the formula (53) is a group in which any one of the bonds of Y in the formula (1) is replaced with a hydrogen atom.
  • Y 2 a group in which any one of the bonds of the groups (structures) represented by the formulas (31) to (38) is replaced with a hydrogen atom; a chain hydrocarbon having a trivalent carbon number of 1 to 8 is used.
  • the group etc. can be mentioned.
  • the polyimide-based resin may contain a plurality of types of Y 1 or Y 2 , and the plurality of types of Y 1 or Y 2 may be the same as or different from each other.
  • G is a divalent organic group independently of each other, preferably substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It may be a divalent organic group having 2 to 100 carbon atoms, more preferably substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It represents a good, divalent organic group having a cyclic structure and having 2 to 100 carbon atoms. Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure.
  • Examples of the organic group of G include a group in which two non-adjacent groups are replaced with hydrogen atoms and a divalent chain carbonization having 6 or less carbon atoms among the bonds of the groups represented by the formulas (31) to (38).
  • a hydrogen group can be mentioned, and preferably, among the bonds of the groups represented by the formulas (39) to (51), a group in which two non-adjacent groups are replaced with a hydrogen atom can be mentioned.
  • X in the formula (54) is synonymous with X in the formula (1), and when the polyimide resin contains a structural unit represented by the formula (1) and a structural unit represented by the formula (54), each X in the structural unit may be the same or different.
  • the polyimide-based resin may contain a plurality of types of X or G, and the plurality of types of X or G may be the same as or different from each other.
  • the polyimide resin is a structural unit represented by the formula (1), and in some cases, a structural unit represented by the formula (52), a structural unit represented by the formula (53), and a structural unit represented by the formula (53). It consists of at least one structural unit selected from the structural units represented by the formula (54). Further, from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance, dielectric properties, and water absorption resistance, the ratio of the structural unit represented by the formula (1) in the polyimide resin is the polyimide resin. All the structural units included, for example, the structural unit represented by the formula (1), and in some cases, the structural unit represented by the formula (52), the structural unit represented by the formula (53), and the table by the formula (54).
  • the polyimide resin is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, based on the total molar amount of at least one constituent unit selected from the constituent units.
  • the upper limit of the ratio of the structural unit represented by the formula (1) is 100 mol% or less. The above ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyimide resin in the present invention is preferably a polyimide resin from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance, the dielectric property, and the water absorption resistance.
  • the polyimide-based resin in the present invention may contain a halogen atom, preferably a fluorine atom, which can be introduced by, for example, the above-mentioned halogen-containing atom substituent or the like.
  • a halogen atom preferably a fluorine atom
  • Preferred fluorine-containing substituents for containing a fluorine atom in the polyimide-based resin include, for example, a fluoro group and a trifluoromethyl group.
  • the content of the halogen atom in the polyimide-based resin is preferably 0.1 to 40% by mass, more preferably 1 to 35% by mass, based on the mass of the polyimide-based resin. More preferably, it is 5 to 30% by mass.
  • the content of halogen atoms is at least the above lower limit, the heat resistance and dielectric properties of the film are likely to be improved.
  • the content of the halogen atom is not more than the above upper limit, the CTE can be reduced and the synthesis becomes easy.
  • the imidization ratio of the polyimide resin is preferably 90% or more, more preferably 93% or more, further preferably 95% or more, and usually 100% or less. From the viewpoint of easily improving the optical properties of the film, it is preferable that the imidization ratio is at least the above lower limit.
  • the imidization ratio indicates the ratio of the molar amount of the imide bond in the polyimide-based resin to the value of twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide-based resin.
  • the value is twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin, and the molar amount of the structural unit derived from the tricarboxylic acid compound.
  • the ratio of the molar amount of the imide bond in the polyimide resin to the total of the above is shown.
  • the imidization rate can be determined by an IR method, an NMR method, or the like.
  • the content of the resin (A) is preferably 50% by mass or more, more preferably 60% by mass, based on the total mass of the resin (A) and the polymer (B) contained in the film. % Or more, more preferably 65% by mass or more, usually 99% by mass or less, preferably 95% by mass or less, more preferably 90% by mass or less, still more preferably 85% by mass or less.
  • the content of the resin (A) is in the above range, it is easy to reduce the CTE of the film and to improve the mechanical properties such as bending resistance.
  • the particulate polymer (B) is dispersed, it is easy to improve the dispersibility, and as a result, it is easy to reduce the variation in the physical characteristics of the film, for example, the thermal conductivity.
  • the polyimide-based resin in the present invention includes a precursor before imidizing the polyimide-based resin.
  • the polyimide resin is a polyamic acid
  • the polyamic acid is the formula (1'): [In equation (1'), Y and X represent Y and X in equation (1)] Includes building blocks represented by.
  • the resin (A) contained in the film of the present invention may be a commercially available product or may be produced by a conventional method.
  • the resin (A) is preferably a polyimide resin.
  • the method for producing the polyimide resin is not particularly limited, and the polyimide resin is, for example, by a method including a step of reacting a diamine compound with a tetracarboxylic acid compound to obtain a polyamic acid and a step of imidizing the polyamic acid. Can be manufactured.
  • the resin (A) is a polyamic acid
  • the step of obtaining the polyamic acid may be carried out.
  • a dicarboxylic acid compound or a tricarboxylic acid compound may be reacted.
  • Examples of the tetracarboxylic acid compound used for synthesizing the polyimide resin include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic acid dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic acid dianhydride. Can be mentioned.
  • the tetracarboxylic acid compound may be used alone or in combination of two or more.
  • the tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as an acid chloride compound in addition to the dianhydride.
  • tetracarboxylic acid compound examples include pyromellitic anhydride (hereinafter, may be abbreviated as PMDA), 4,4'-(4,4'-isopropylidene diphenoxy), and diphthalic anhydride (hereinafter, BPADA).
  • PMDA pyromellitic anhydride
  • BPADA diphthalic anhydride
  • 1,4,5,8-naphthalenetetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, may be abbreviated as BPDA), 4,4'-(Hexafluoroisopropylidene) diphthalic acid dianhydride (hereinafter, may be abbreviated as 6FDA), 4,4'-oxydiphthalic acid anhydride (hereinafter, may be abbreviated as ODPA), 2,2 ', 3,3'-, 2,3,3', 4'-or 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,3', 3,4'-biphenyltetracarboxylic Acid dianhydride, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride, 2,3', 3,4'-diphenyl ether t
  • PMDA, BPDA, 6FDA, BPADA, ODPA, HPMDA, CBDA are easy to reduce the CTE of the film and to improve the mechanical properties such as heat resistance, dielectric property, water absorption resistance, and bending resistance.
  • P-Phenylenebis (trimeritate anhydride) is preferred.
  • These tetracarboxylic acid compounds can be used alone or in combination of two or more.
  • diamine compound used for synthesizing the polyimide resin examples include aliphatic diamines, aromatic diamines and mixtures thereof.
  • aromatic diamine represents a diamine having an aromatic ring, and an aliphatic group or another substituent may be contained in a part of the structure thereof.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring, but the aromatic ring is not limited thereto. Among these, a benzene ring is preferable.
  • the "aliphatic diamine” represents a diamine having an aliphatic group, and may contain other substituents as a part of its structure, but does not have an aromatic ring.
  • diamine compound examples include 1,4-diaminocyclohexane, 4,4'-diamino-2,2'-dimethylbiphenyl (hereinafter, may be abbreviated as m-TB), and 4,4'-diamino-3.
  • 1,4-diaminocyclohexane, 4,4'-diaminodiphenyl ether, TFMB, 4 from the viewpoint of easily reducing the CTE of the film and easily improving the heat resistance, water absorption resistance, dielectric property and mechanical property.
  • the polyimide-based resin contains other tetracarboxylic acids, dicarboxylic acids, tricarboxylic acids, and anhydrides thereof, as long as the various physical properties of the film are not impaired.
  • the derivative may be further reacted.
  • Examples of other tetracarboxylic acids include water adducts of the anhydrides of the above tetracarboxylic acid compounds.
  • dicarboxylic acid compound examples include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and two or more of them may be used in combination.
  • Specific examples include a dicarboxylic acid compound of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4'-biphenyldicarboxylic acid; 3,3'-biphenyldicarboxylic acid; a chain hydrocarbon having 8 or less carbon atoms, and 2 Compounds in which one benzoic acid is linked by a single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or a phenylene group, and their compounds.
  • Examples include acid chloride compounds.
  • tricarboxylic acid compound examples include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include anhydrate of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalentricarboxylic acid-2,3-anhydride; a single bond of phthalic anhydride and benzoic acid, -O-. , -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or compounds linked with a phenylene group.
  • the amount of the diamine compound, the tetracarboxylic acid compound, the dicarboxylic acid compound and the tricarboxylic acid compound to be used can be appropriately selected according to the ratio of each structural unit of the desired resin.
  • the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, still more preferably 0.98 mol or more, particularly preferably 0.98 mol or more, relative to 1 mol of the tetracarboxylic acid compound.
  • It is preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, still more preferably 1.05 mol or less, and particularly preferably 1.02 mol or less.
  • the amount of the diamine compound used with respect to the tetracarboxylic acid compound is within the above range, the CTE of the obtained film can be easily reduced, and the mechanical and optical properties such as heat resistance, dielectric properties, water absorption resistance, and bending resistance can be obtained. Easy to raise.
  • the reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited and may be, for example, 5 to 200 ° C.
  • the reaction time is also not particularly limited and may be, for example, about 30 minutes to 72 hours.
  • the reaction temperature is preferably 5-50 ° C, more preferably 10-40 ° C, and the reaction time is preferably 3-24 hours. With such a reaction temperature and reaction time, it is easy to reduce the CTE of the obtained film, and it is easy to improve mechanical properties such as heat resistance, dielectric properties, water absorption resistance, and bending resistance, and optical properties.
  • the reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent.
  • the solvent is not particularly limited as long as it does not affect the reaction, and is, for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, and the like.
  • Alcohol-based solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; phenolic solvents such as phenol and cresol; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone (hereinafter, may be abbreviated as GBL), Ester-based solvents such as ⁇ -valerolactone, propylene glycol methyl ether acetate, ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and methylisobutylketone; fats such as pentane, hexane, and heptane.
  • GBL ⁇ -butyrolactone
  • Ester-based solvents such as ⁇ -valerolactone, propylene glycol methyl ether acetate, ethyl lactate
  • a phenol-based solvent, an amide-based solvent, and a pyrrolidone-based solvent can be preferably used from the viewpoint of solub
  • the reaction between the diamine compound and the tetracarboxylic acid compound may be carried out under conditions of an inert atmosphere (nitrogen atmosphere, argon atmosphere, etc.) or reduced pressure, if necessary, and the reaction may be carried out under the conditions of an inert atmosphere (nitrogen atmosphere, argon atmosphere, etc.), such as an inert atmosphere, for example, a nitrogen atmosphere or an argon atmosphere. It is preferably carried out with stirring in a tightly controlled dehydration solvent.
  • imidization may be performed using an imidization catalyst, imidization may be performed by heating, or a combination thereof may be used.
  • the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidin, N-butylpyrolidin and N-butylpiperidine.
  • alicyclic amines such as N-propylhexahydroazepine (monocyclic); azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and Alicyclic amines such as azabicyclo [3.2.2] nonane (polycyclic); as well as pyridine, 2-methylpyridine (2-picolin), 3-methylpyridine (3-picolin), 4-methylpyridine (4).
  • the imidization step by heating may be carried out in a solvent in which a polyamic acid is dissolved, or may be carried out in a filmed state as described later.
  • the reaction temperature is usually 20 to 250 ° C.
  • the reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours.
  • the polyimide-based resin may be separated and purified by a conventional method, for example, a separation means such as filtration, concentration, extraction, crystallization, recrystallization, or column chromatography, or a separation means combining these, which is preferable. In the embodiment, it can be isolated by adding a large amount of alcohol such as methanol to the reaction solution containing the resin, precipitating the resin, and performing concentration, filtration, drying and the like. It should be noted that a polyimide resin precursor such as polyamic acid may be produced, and a varnish containing the polyimide resin precursor may be used to produce a composition containing the polyimide resin precursor and the polymer (B). ..
  • a film containing the polyimide resin and the polymer (B) may be produced by imidizing the polyimide resin precursor at the same time as drying.
  • the polyimide-based resin precursor may be a solid, preferably powder, or a varnish in which the polyimide-based resin precursor is dissolved in a solvent.
  • Suitable liquid crystal polymers of the resin (A) include liquid crystal polyesters, and preferably liquid crystal polyesters containing structural units represented by the following formulas (a1), (a2) and (a3). .. -O-Ar 1 -CO- (a1) -CO-Ar 2 -CO- (a2) -X-Ar 3 -Y- (a3)
  • Ar 1 represents a 1,4-phenylene group, a 2,6-naphthylene group or a 4,4'-biphenylene group.
  • Ar 2 represents a 1,4-phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group.
  • Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group.
  • X represents -NH- Y represents —O— or NH—.
  • the content of the structural unit represented by the formula (a1) is 30 to 80 mol%, and the content of the structural unit represented by the formula (a2) is 10 to 10 to 100 mol% of the total structural unit of the liquid crystal polyester.
  • Liquid crystal polyester having a content of 35 mol% and a structural unit represented by the formula (a3) of 10 to 35 mol% is preferable.
  • the structural unit represented by the formula (a1) is a structural unit derived from an aromatic hydroxycarboxylic acid
  • the structural unit represented by the formula (a2) is a structural unit derived from an aromatic dicarboxylic acid, represented by the formula (a3).
  • the structural unit is an aromatic diamine or a structural unit derived from an aromatic amine having a phenolic hydroxyl group.
  • Ar 1 is a 2,6-naphthylene group
  • Ar 2 is a 1,3-phenylene group
  • Ar 3 is a 1,4-phenylene group
  • Y is ⁇ O.
  • the liquid crystal polyester which is ⁇ is preferable.
  • Examples of the structural unit represented by the formula (a1) include p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, and structural units derived from 4-hydroxy-4'-biphenylcarboxylic acid.
  • the liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from 2-hydroxy-6-naphthoic acid are preferred.
  • the content of the structural unit represented by the formula (a1) is preferably 30 mol% or more and 80 mol% or less, more preferably 40 mol% or more and 70, with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is mol% or less, more preferably 45 mol% or more and 65 mol% or less.
  • Examples of the structural unit represented by the formula (a2) include terephthalic acid, isophthalic acid, and structural units derived from 2,6-naphthalenedicarboxylic acid.
  • the liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from isophthalic acid are preferred.
  • the content of the structural unit represented by the formula (a2) is preferably 10 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30% with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is 17.5 mol% or more, more preferably 27.5 mol% or less, and more preferably 17.5 mol% or more.
  • Examples of the structural unit represented by the formula (a3) include 3-aminophenol, 4-aminophenol, 1,4-phenylenediamine, 1,3-phenylenediamine, and structural units derived from 4-aminobenzoic acid. ..
  • the liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from 4-aminophenol are preferable.
  • the content of the structural unit represented by the formula (a3) is preferably 10 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30% with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is 17.5 mol% or more, more preferably 27.5 mol% or less, and more preferably 17.5 mol% or more.
  • the liquid crystal polyester used in this embodiment can be produced, for example, by the method described in JP-A-2019-163431.
  • the film of the present invention contains a resin (A) and a polymer (B), and since at least one of the Tg and the melting point of the polymer (B) is 160 ° C. or higher, a composite containing a conventional cycloolefin-based polymer. Compared with film, CTE can be reduced. Furthermore, the film of the present invention can exhibit excellent mechanical properties, particularly bending resistance, despite the fact that at least one of the Tg and the melting point of the polymer (B), particularly Tg, is large. Therefore, the film of the present invention can have both reduced CTE and excellent heat resistance and mechanical properties, particularly bending resistance.
  • the film of the present invention preferably has a distance between the HSP values of the resin (A) and the polymer (B) in a specific range.
  • HSP is a Hansen solubility parameter ( ⁇ ), defined by a three-dimensional parameter of ( ⁇ D, ⁇ P, ⁇ H), and the formula (X) :.
  • ⁇ 2 ( ⁇ D) 2 + ( ⁇ P) 2 + ( ⁇ H) 2 ... (X)
  • ⁇ D represents the L Springfieldnd Authorityn dispersion force term
  • ⁇ P represents the molecular polarization term (dipole interpole force term)
  • ⁇ H represents the hydrogen bond term
  • HSP Hansen solubility parameters ⁇ D, ⁇ P, and ⁇ H can be calculated using HSPiP (Hansen S thoroughlylubility Parameters in Practice), a program developed by Dr. Hansen's group who proposed the Hansen solubility parameter, for example, in Examples.
  • HSPiP Haansen S Welubility Parameters in Practice
  • Dr. Hansen's group who proposed the Hansen solubility parameter, for example, in Examples.
  • the described Ver. 4.1.07 and the like can be used.
  • the details of the Hansen-dissolved sphere method will be described below.
  • the component of interest is dissolved in a solvent having a known HSP value, and the solubility of the component in a specific solvent is evaluated.
  • the solubility is evaluated by visually determining whether or not the target component is dissolved in the solvent. This is done for multiple solvents.
  • the type of the solvent it is preferable to use a solvent having a wide range of ⁇ t, more specifically, 10 kinds or more, more preferably 15 kinds or more, still more preferably 18 kinds or more.
  • the HSP having a composition targeting the center coordinates ( ⁇ d, ⁇ p, ⁇ h) of the Hansen sphere obtained by inputting the obtained solubility evaluation result into HSPiP is used.
  • HSP may be obtained from a structural formula using, for example, numerical values or literature values in a database of HSPiP, or HSPiP may be used.
  • the value of the Hansen solubility parameter is referred to as an HSP value
  • the HSP value represents a value at 25 ° C.
  • the HSP value of the resin (A), the HSP value of the polymer (B), and the HSP value of the solvent may be obtained by any of the above methods, for example, by the method described in Examples. ..
  • the distance between the Hansen solubility parameters (hereinafter, may be abbreviated as HSP) of two substances is called the distance between HSP values.
  • the distance between HSPs (Ra) is an index showing the affinity between the two substances, and the smaller the value, the higher the affinity between the two substances. On the contrary, the larger the Ra value, the lower the affinity between the two substances, that is, the more difficult it is to be compatible.
  • the distance between the HSP values determines the Hansen solubility parameters ⁇ A and ⁇ B of the two substances A and B, respectively.
  • ⁇ A ( ⁇ DA, ⁇ PA, ⁇ HA)
  • ⁇ B ( ⁇ DB, ⁇ PB, ⁇ HB)
  • the distance between HSPs (Ra) is the equation (Y) :.
  • Ra [4 ⁇ ( ⁇ DA- ⁇ DB) 2 + ( ⁇ PA- ⁇ PB) 2 + ( ⁇ HA- ⁇ HB) 2 ] 0.5 ... (Y)
  • HSP value and the distance between the HSP values are as defined above, and can be obtained according to the above method.
  • the film of the present invention has mechanical properties such as heat resistance, dielectric properties and bending resistance even when the distance between the HSP values of the resin (A) and the polymer (B) is relatively large. Excellent and can reduce CTE. Therefore, in the film of the present invention, the distance between the HSP values of the resin (A) and the polymer (B) is preferably 6.0 or more, more preferably 7.0 or more, still more preferably 8.0 or more. The distance between the HSP values of the resin (A) and the polymer (B) is preferably 30 or less, more preferably 25 or less, still more preferably 20 or less, from the viewpoint of the affinity between the resin and the polymer.
  • the total mass of the resin (A) and the particulate polymer (B) contained in the film is preferably 40% by mass or more, more preferably 60% by mass or more, based on the mass of the film. It is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and preferably 100% by mass or less.
  • the CTE of the film can be easily reduced and the mechanical properties such as dielectric properties and bending resistance can be easily enhanced.
  • the particulate polymer (B) is dispersed, it is easy to improve the dispersibility, and as a result, it is easy to reduce the variation in the physical characteristics of the film, for example, the thermal conductivity (or thermal diffusivity).
  • the average primary particle size of the particulate polymer (B) is 15 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, and particularly preferably. It is 0.8 ⁇ m or less, more preferably 0.5 ⁇ m or less, preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, still more preferably 0.05 ⁇ m or more.
  • the average primary particle diameter of the particulate polymer (B) is at least the above lower limit, it is easy to improve the mechanical properties of the film.
  • the average primary particle diameter of the particulate polymer (B) can be determined by image analysis observed with an electron microscope, and can be determined, for example, by the method described in Examples.
  • the film of the present invention preferably contains the resin (A) and the particulate polymer (B), and the particulate polymer (B) is dispersed with respect to the resin (A).
  • a uniformly dispersed composite film Preferably a uniformly dispersed composite film.
  • the composite film has a sea-island structure, the resin (A) is the sea, and the particulate polymer (B) is the island.
  • Such a composite film tends to enhance mechanical properties such as heat resistance, dielectric properties and bending resistance, and tends to reduce CTE.
  • the CTE of the film of the present invention can be appropriately designed according to the intended use.
  • CCL is produced by laminating with a copper film
  • the CTE of the film can be adjusted by the CTE of the resin (A) and the particulate polymer (B) to be mixed, the mixing amount, and the like. From the viewpoint of reducing CTE, it is preferable to mix the particulate polymer (B) having a high Tg.
  • the CTE can be measured by TMA, for example, by the method described in Examples.
  • the bending resistance of the film of the present invention can be evaluated by, for example, the deformation height after the bending test (hereinafter, may be referred to as a mandrel test), and the smaller the deformation height after the bending test, the greater the bending resistance.
  • the film of the present invention has a deformation height of preferably 10 mm or less, more preferably 7 mm or less, still more preferably 4 mm or less, still more preferably 2 mm or less, particularly preferably 2 mm or less after one bending in a mandrel test having a diameter of 2 mm. It is 1 mm or less.
  • the film of the present invention has a deformation height of preferably 15 mm or less, more preferably 13 mm or less, still more preferably 10 mm or less, still more preferably 5 mm or less after repeated bending 10 times. It is particularly preferably 2 mm or less.
  • the deformation height after one bending or the deformation height after 10 times of repeated bending is not more than the above upper limit, excellent bending resistance is likely to be developed.
  • the lower limit of the deformation height after one bending and the deformation height after 10 times of repeated bending is 0 mm or more, respectively.
  • the deformation height after one-time bending and the deformation height after ten-time repeated bending can be measured by, for example, the method described in Examples.
  • the film of the present invention may contain additives, if necessary.
  • Additives include, for example, antioxidants, flame retardants, cross-linking agents, surfactants, compatibilizers, imidization catalysts, weathering agents, lubricants, antiblocking agents, antistatic agents, antifogging agents, drip-free agents, pigments. , Fillers and the like. Additives can be used alone or in combination of two or more.
  • the film of the present invention has low CTE, high heat resistance, and high bending because the particulate polymer (B) exhibits high particle dispersibility even if it does not contain a compatibilizer. Can develop mechanical properties such as resistance. Therefore, in the film of the present invention, the content of the compatibilizer is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.1 part by mass with respect to 100 parts by mass of the resin (A). Below, it is even more preferably less than 0.1 parts by mass, particularly preferably 0.05 parts by mass or less, particularly more preferably 0.01 parts by mass or less, and particularly still more preferably 0.001 parts by mass or less, and most preferably. It may be 0 parts by mass.
  • the resin (A) is a polyimide resin precursor such as polyamic acid and thermal imidization is required at the time of film production
  • inhibition of imidization by a compatibilizer or a compatibilizer by heating may be used.
  • the content of the compatibilizer is preferably less than 0.1 part by mass within the above range.
  • the content of the compatibilizer may be based on 100 parts by mass of the total of the resin (A) and the polymer (B) instead of 100 parts by mass of the resin (A).
  • the thickness of the film of the present invention can be appropriately selected depending on the intended use, and is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably. It is 100 ⁇ m or less, particularly preferably 80 ⁇ m or less.
  • the thickness of the film can be measured using a film thickness meter or the like, and can be measured, for example, by the method described in Examples. When the film of the present invention is a multilayer film, the above thickness represents the thickness of the single layer portion.
  • the film of the present invention may be a single-layer film or a multilayer film containing at least one layer made of the film of the present invention.
  • the multilayer film can include other layers (or other films). Even in such a case, the film of the present invention includes all the layers. Examples of the other layer include a functional layer and the like. Examples of the functional layer include a primer layer, a gas barrier layer, an adhesive layer, and a protective layer.
  • the functional layer can be used alone or in combination of two or more.
  • the film of the present invention may be subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, ozone treatment, etc. by a method usually industrially adopted.
  • the film of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of embodiments other than the above may be arbitrarily adopted and combined, and the configurations and methods according to the above one embodiment are applied to the configurations and methods according to the other embodiments described above. You may.
  • the film according to the embodiment of the present invention has a lower CTE than the conventional composite film containing a cycloolefin polymer. Further, it is excellent in heat resistance and mechanical properties, especially bending resistance. Therefore, it can be suitably used as a substrate material compatible with a printed circuit board for a high frequency band and an antenna substrate.
  • CCL has a structure in which copper foils are laminated on both surfaces of a resin layer via an adhesive. When the film of the present invention is used as the resin layer, since the CTE is reduced, peeling between the copper foil and the resin layer can be effectively suppressed as compared with the conventional film.
  • the film of the present invention is also suitably used for other industrial materials such as automobile parts and electric / electronic parts; optical materials such as lenses, prisms, optical fibers, and recording media.
  • the method for producing the film of the present invention is not particularly limited, but for example, the following steps: (A) Composition preparation step of preparing a composition containing the resin (A), the polymer (B) and the solvent, It is produced by a method including (b) a coating step of applying the composition to a substrate to form a coating film, and (c) a film forming step of drying the applied liquid (coating film) to form a film.
  • the resin (A) is a polyimide resin
  • a step of completing the imidization reaction may be included in the thermal imidization.
  • the composition may be prepared, for example, by mixing the resin (A), the polymer (B) and the solvent, and optionally the additive.
  • the particulate polymer (B) is dispersed with respect to the film containing the resin (A) and the particulate polymer (B), more preferably the resin (A). It is preferable to form the finished film.
  • the composition preparation step for forming a film in such a preferred embodiment is shown below.
  • composition preparation process The composition in a preferred embodiment comprises a resin (A), a particulate polymer (B) and a solvent.
  • the method for producing the composition is a step (1) of dissolving the polymer (B) in a first solvent to obtain a polymer (B) solution. After the polymer (B) solution is brought into contact with the second solvent, the first solvent is distilled off and a dispersion liquid containing the particulate polymer (B) (hereinafter, may be referred to as a particulate polymer (B) dispersion liquid). ); And the step (3) of adding the resin (A) to the particulate polymer (B) dispersion.
  • a particulate polymer (B) dispersion liquid a dispersion liquid containing the particulate polymer (B)
  • the step (3) of adding the resin (A) to the particulate polymer (B) dispersion are examples of adding the resin (A) to the particulate polymer (B) dispersion.
  • the polymer (B) is dissolved in the first solvent to obtain a polymer (B) solution.
  • the form of the polymer (B) to be dissolved in the first solvent is not particularly limited.
  • the first solvent is not particularly limited as long as the polymer (B) can be dissolved, and is, for example, a hydrocarbon solvent such as benzene, toluene, pentane, hexane, heptane, cyclohexane, xylene; a halogen such as dichloromethane and ethylene dichloride. Examples thereof include a hydrocarbon solvent. Of these, hydrocarbon solvents are preferred.
  • the first solvent contains a hydrocarbon solvent
  • the solubility of the polymer (B) and the first solvent is enhanced, so that the particle size of the particulate polymer (B) can be easily reduced and the dispersibility can be easily improved.
  • the first solvent can be used alone or in combination of two or more.
  • the first solvent is a solvent in which the polymer (B) is dissolved.
  • the evaluation of "dissolving” or “not dissolving” can be performed according to the method described in ⁇ Evaluation of solubility> in Examples.
  • the distance between the HSP values of the first solvent and the polymer (B) is preferably 4.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less.
  • the distance between the HSP values is not more than the above upper limit, the solubility of the first solvent and the polymer (B) is increased, so that the particle size of the particulate polymer (B) can be easily reduced and the dispersibility is improved.
  • Cheap The lower limit of the distance between HSP values usually exceeds 0.
  • the distance between the HSP values of the first solvent and the polymer (B) is smaller than the radius of interaction of the polymer (B).
  • the polymer (B) is easily dissolved in the first solvent, so that the particle size of the particulate polymer (B) can be easily reduced and the dispersibility can be easily improved.
  • the interaction radius is a plurality of solvents capable of dissolving a specific polymer, that is, when the Hansen solubility parameter of a good solvent is plotted in a three-dimensional HSP space, the plots of the good solvents are similar to each other.
  • the solubility of the polymer (B) in the first solvent is preferably greater than the solubility of the polymer (B) in the second solvent. With such a relationship, it is easy to obtain a particulate polymer (B) having a small particle size and good dispersibility.
  • the solubility of the polymer (B) in the solvent can be measured by the following method. Add 1,000 mg of polymer (B) and 3 mL of solvent to the sample bottle, and stir at room temperature for 2 hours. Next, the solid phase and the liquid phase were separated by filtration, and the solid phase was dried at 80 ° C.
  • the first solvent is preferably a solvent in which the resin (A) does not dissolve.
  • the particle size of the particulate polymer (B) can be easily reduced and the dispersibility can be easily improved.
  • the distance between the HSP values of the first solvent and the resin (A) is preferably 5.0 or more, more preferably 6.0 or more, still more preferably 7.0 or more, and even more preferably. Is 8.0 or more, particularly preferably 9.0 or more.
  • the upper limit of the distance between the HSP values of the first solvent and the resin (A) is preferably 30.0 or less, more preferably 27.0 or less, still more preferably 25.0 or less, still more preferably 23.0 or less.
  • the distance between the HSP values of the first solvent and the resin (A) is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that the dispersibility of the particles can be easily improved, and the obtained film can be obtained. It is easy to improve the particle dispersibility of.
  • the distance between the HSP values of the first solvent and the resin (A) is preferably larger than the interaction radius of the resin (A).
  • the content of the polymer (B) in the polymer (B) solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, still more preferably. It is 0.5% by mass or more, preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the content of the polymer (B) in the solution is at least the above lower limit, the composition can be easily adjusted. Further, when the content of the polymer (B) in the solution is not more than the above upper limit, it is easy to obtain a dispersion liquid and a film having a small particle size and high dispersibility.
  • the method for dissolving the polymer (B) in the first solvent is not particularly limited, but for example, the first solvent may be added to the polymer (B), or the polymer (B) may be added to the first solvent. It may be either or both. Further, it may be dissolved by heating or the like depending on the solubility of the first solvent in the polymer (B).
  • the step (2) is a step of contacting the polymer (B) solution with the second solvent and then distilling off the first solvent to obtain a particulate polymer (B) dispersion liquid.
  • the second solvent is not particularly limited as long as it is a solvent that can produce the particulate polymer (B) by contact with the polymer (B) solution, and is, for example, an amide solvent such as DMAc or DMF; GBL, ⁇ -valero.
  • lactone-based solvents such as lactones
  • sulfur-containing solvents such as dimethyl sulfoxide, dimethyl sulfoxide and sulfolane
  • carbonate-based solvents such as ethylene carbonate and propylene carbonate
  • pyrrolidone-based solvents such as N-methylpyrrolidone; and combinations thereof.
  • the second solvent has a distance between the HSP values of the polymer (B) of preferably 8.5 or more, more preferably 9.0 or more, still more preferably 10.0 or more, still more preferably. Is 11.0 or more.
  • the distance between the HSP values is at least the above lower limit, it is easy to suppress the aggregation of the particles of the polymer (B), and it is easy to reduce the particle size, so that the dispersibility of the particles is easy to be improved. As a result, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness, heat resistance and bending resistance of the obtained film.
  • the upper limit of the distance between the HSP values of the second solvent and the polymer (B) is preferably 30.0 or less, more preferably 25.0 or less, still more preferably 20.0.
  • the distance between the HSP values of the second solvent and the polymer (B) is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that the dispersibility of the particles can be easily improved. It is easy to improve the particle dispersibility of the film to be obtained.
  • the distance between the HSP values of the second solvent and the polymer (B) is larger than the radius of interaction of the polymer (B).
  • the polymer (B) is difficult to dissolve in the second solvent, so that the particle size of the particulate polymer (B) in the particulate polymer (B) dispersion can be easily reduced and the dispersibility can be improved. Easy to improve.
  • the second solvent is preferably a solvent in which the polymer (B) does not dissolve.
  • a solvent it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles.
  • the second solvent is preferably a solvent in which the resin (A) is dissolved.
  • the particulate polymer (B) is likely to be dispersed in the obtained composition and film with a small particle size.
  • the film tends to form a sea-island structure.
  • the HSP value distance between the second solvent and the resin (A) is preferably 10.0 or less, more preferably 9.5 or less, still more preferably 9.0 or less, and particularly preferably 8. It is 5.5 or less, preferably 0.01 or more, and more preferably 0.1 or more.
  • the distance between the HSP values is not more than the above upper limit, the affinity between the second solvent and the resin (A) can be improved. Therefore, in the obtained composition and film, a particulate polymer (B) having a small particle size is used. ) Is easy to disperse.
  • the distance between the HSP values of the second solvent and the resin (A) is preferably smaller than the interaction radius of the resin (A).
  • the method of contacting the polymer (B) solution with the second solvent is not particularly limited, and examples thereof include a method of mixing the polymer (B) solution and the second solvent. Specifically, a method of adding the polymer (B) solution to the second solvent and a method of adding the second solvent to the polymer (B) solution can be exemplified. By contacting in this way, the particulate polymer (B) having a small particle size can be precipitated or dispersed in the mixed solution of the second solvent and the first solvent. As long as the particulate polymer (B) does not aggregate, a small amount of the resin (A) or other additives may be added at any time during the step (2).
  • the amount of the polymer (B) solution to be brought into contact with the second solvent is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more, still more preferably, with respect to 1 part by mass of the amount of the second solvent used. Is 0.3 parts by mass or more, particularly preferably 0.7 parts by mass or more, preferably 100 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 3 parts by mass or less, and particularly preferably 1.5 parts by mass. It is less than a part.
  • the amount of the polymer (B) solution to be brought into contact with the second solvent is within the above range, it is easy to suppress the aggregation of the particulate polymer (B), so that the particle size is easily reduced and the dispersibility of the particles is improved. It's easy to do.
  • step (2) the polymer (B) solution is brought into contact with the second solvent, and then the first solvent is distilled off. Distillation of the first solvent can enhance the dispersion stability of the particulate polymer (B). Further, the polymer (B) may be further precipitated by distilling off the first solvent. The first solvent may be distilled off or removed at least partially, and the first solvent may remain in the dispersion liquid containing the particulate polymer (B). From the viewpoint of easily suppressing the aggregation of the polymer (B) and easily preparing the dispersion liquid, it is preferable that the first solvent partially remains or is partially contained in the particulate polymer (B) dispersion liquid.
  • the method for distilling off the first solvent is not particularly limited, and a method for distilling off under reduced pressure using an evaporator or the like is exemplified.
  • the pressure and temperature at the time of distillation can be appropriately selected according to the characteristics such as the boiling points of the first solvent and the second solvent.
  • the boiling point of the first solvent is usually lower than the boiling point of the second solvent.
  • the content of the first solvent contained in the particulate polymer (B) dispersion obtained after distilling off the first solvent is preferably 120 parts by mass or less, more preferably 120 parts by mass with respect to 100 parts by mass of the content of the second solvent.
  • the content of the first solvent is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles. As a result, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness and bending resistance of the obtained film. Further, when the content of the first solvent is at least the above lower limit, it is easy to prepare the dispersion liquid.
  • the content of the solvent contained in the particulate polymer (B) dispersion is preferably 50% by mass or more, more preferably 70% by mass or more, and further, with respect to the mass of the dispersion. It is preferably 90% by mass or more, particularly preferably 95% by mass or more, preferably 99.99% by mass or less, more preferably 99.9% by mass or less, still more preferably 99% by mass or less, and particularly preferably 95% by mass. It is as follows. When the content of the solvent is in the above range, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles. As a result, it is easy to improve mechanical properties such as particle dispersibility, surface smoothness and bending resistance of the obtained film.
  • the solvent contained in the particulate polymer (B) dispersion may contain other solvents other than the first solvent and the second solvent as long as the effects of the present invention are not impaired. ..
  • the other solvent is not particularly limited, and a conventional solvent can be used.
  • the total mass of the first solvent and the second solvent is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably, with respect to the mass of the solvent contained in the dispersion liquid. Is 90% by mass or more, more preferably 95% by mass or more, and preferably 100% by mass or less.
  • the total mass of the first solvent and the second solvent is in the above range, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles. As a result, it is easy to improve mechanical properties such as particle dispersibility, surface smoothness, and bending resistance of the obtained film.
  • the content of the particulate polymer (B) contained in the particulate polymer (B) dispersion obtained after distilling off the first solvent is preferably 0.01 with respect to the mass of the particulate polymer (B) dispersion.
  • mass or more more preferably 0.1% by mass or more, still more preferably 1% by mass or more, preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 10% by mass or less, particularly preferably. It is 5% by mass or less.
  • the content of the polymer (B) is in the above range, the dispersibility of the particles is likely to be improved, so that the mechanical properties such as the particle dispersibility, surface smoothness, and bending resistance of the obtained film are likely to be improved.
  • the particulate polymer (B) dispersion liquid contains the particulate polymer (B) having a median diameter of 0.01 to 15 ⁇ m.
  • the median diameter of the particulate polymer (B) is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, still more preferably 0.05 ⁇ m or more, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably. It is 5 ⁇ m or less, more preferably 3 ⁇ m or less, particularly preferably 1 ⁇ m or less, particularly more preferably 0.8 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • the median diameter of the particulate polymer (B) in the dispersion is not less than the above lower limit, it is easy to improve the dielectric properties of the film formed from the composition, and it is easy to manufacture the film, which is not more than the above upper limit. And, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness, water absorption resistance and bending resistance of the film formed from the composition.
  • the median diameter of the particulate polymer (B) in the dispersion can be determined by a scattering type particle size distribution measurement using laser diffraction, for example, by the method described in Examples. In the present specification, the median diameter is also referred to as D50, and indicates a value in which the number of particles of the particulate polymer (B) on the side smaller than the value is equal to the number of particles on the side larger than the value.
  • the step (3) is a step of adding the resin (A) to the particulate polymer (B) dispersion liquid.
  • the resin (A) to be added may be in the form of a solid, preferably powder, or may be in the form of a varnish in which the resin (A) is dissolved in a predetermined solvent, for example, a second solvent.
  • the polyimide resin or polyamic acid can be added in the form of a solid, preferably powder or varnish.
  • the content of the resin (A) in the varnish is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the mass of the varnish.
  • the resin (A) added in the step (3) is preferably 50% by mass or more, more preferably 50% by mass or more, based on the total mass of the polymer (B) and the resin (A) in the particulate polymer (B) dispersion. It is 60% by mass or more, more preferably 65% by mass or more, preferably 95% by mass or less, more preferably 93% by mass or less, still more preferably 90% by mass or less.
  • the content of the resin (A) added in the step (3) is at least the above lower limit, film formation becomes easy, which is advantageous from the viewpoint of film production.
  • the content of the resin (A) added in the step (3) is not more than the above upper limit, the dispersibility of the particulate polymer (B) is likely to be improved, so that the particle dispersibility and surface smoothness of the obtained film are smooth. It is easy to enhance mechanical properties such as properties and bending resistance.
  • the method of adding the resin (A) to the particulate polymer (B) dispersion is not particularly limited, and the resin (A) may be added at once, or the resin (A) may be added in a plurality of times. You may.
  • the composition preparation step according to the embodiment of the present invention may include steps other than the steps (1) to (3) as long as the effects of the present invention are not impaired, and the resin (A) and the polymer (B) may be included. ) Other polymers or additives, such as the additives exemplified above, may be used.
  • the resin (A) is added to the particulate polymer (B) dispersion, but the powder polymer (B) may be added to the varnish of the resin (A). ..
  • the varnish of the resin (A) may be a solution of the resin (A) in a predetermined solvent, for example, a first solvent, or a precursor of the resin (A).
  • the resin solution for synthesizing the above for example, the resin (A) is a polyimide resin, it may be a polyamic acid solution (at least a solution containing a polyamic acid and a synthetic solvent).
  • the content of the particulate polymer (B) contained in the composition obtained in the composition preparation step is usually 1% by mass or more, preferably 1% by mass or more, based on the total mass of the resin (A) and the particulate polymer (B). It is 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less.
  • the content of the particulate polymer (B) contained in the composition is at least the above lower limit, the dispersibility of the particulate polymer (B) is likely to be enhanced, so that the particle dispersibility and surface smoothness of the obtained film can be improved.
  • the content of the particulate polymer (B) contained in the composition is not more than the above upper limit, film formation becomes easy, which is advantageous from the viewpoint of film production. If the dispersibility of the particles in the film is high, the thermal conductivity and the uniformity of CTE are high. Therefore, for example, when the film is used as the resin layer of CCL, it is easy to suppress the peeling of the film and the copper foil. Become.
  • the resin (A) is added to the particulate polymer (B) dispersion, but the powder polymer (B) may be added to the varnish of the resin (A). ..
  • the total mass of the resin (A) and the particulate polymer (B) contained in the composition is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass.
  • the above is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the dispersibility of the particulate polymer (B) is likely to be enhanced, so that the particle dispersibility and the surface of the obtained film are easy to increase. It is easy to improve mechanical properties such as smoothness and bending resistance. Further, since the film can be easily formed, it is advantageous from the viewpoint of film production.
  • the content of the first solvent contained in the composition obtained in the composition preparation step is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 100 parts by mass, based on 100 parts by mass of the second solvent. Is 60 parts by mass or less, more preferably 45 parts by mass or less, particularly preferably 40 parts by mass or less, particularly more preferably 35 parts by mass or less, particularly still more preferably 30 parts by mass or less, and particularly even more preferably less than 30 parts by mass. , Most preferably 25 parts by mass or less, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, still more preferably 0.1 parts by mass or more.
  • the content of the first solvent is not more than the above upper limit, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness and bending resistance in the obtained film. Further, when the content of the first solvent is at least the above lower limit, it is easy to prepare the composition.
  • the content of the solvent contained in the composition obtained in the composition preparation step can be selected from the same range as the content of the solvent contained in the particulate polymer (B) dispersion.
  • the content of the solvent contained in the composition is in the above range, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness and bending resistance in the obtained film.
  • the total mass of the first solvent and the second solvent with respect to the solvent contained in the composition is the first solvent and the second solvent with respect to the solvent contained in the particulate polymer (B) dispersion liquid. It can be selected from the same range as the total mass of. When the total mass of the first solvent and the second solvent contained in the composition is in the above range, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness and bending resistance in the obtained film.
  • the median diameter of the particulate polymer (B) in the composition obtained in the composition preparation step can be selected from the same range as the median diameter of the particulate polymer (B) in the above dispersion liquid.
  • the method for determining the median diameter of the particulate polymer (B) in the composition is not particularly limited, but can be determined by, for example, a centrifugal sedimentation type particle size distribution measuring device or an ultrasonic attenuation type particle size distribution measuring device.
  • the resin (A) is added to the dispersion liquid of the particulate polymer (B) in an amount within a range that does not affect the particle size of the particulate polymer (B) to form a composition, it is dispersed. It is also possible to measure the particle size in the liquid and use this as the particle size in the composition.
  • the coating step is a step of applying the compositions obtained in the above steps (1) to (3) to a substrate to form a coating film.
  • the composition is applied onto the substrate by a known coating method to form a coating film.
  • Known coating methods include, for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen printing coating method, fountain coating method, and dipping method. , Spray method, curtain coating method, slot coating method, hypersalivation forming method and the like.
  • the base material examples include a copper plate (including copper foil), a SUS plate (including SUS foil and SUS belt), a glass substrate, a PET film, a PEN film, another polyimide resin film, a polyamide resin film and the like.
  • copper plate, SUS plate, glass substrate, PET film, PEN film and the like are preferable from the viewpoint of excellent heat resistance, and copper plate, SUS plate, glass substrate and the like are more preferable from the viewpoint of adhesion to the film and cost.
  • a PET film or the like can be mentioned.
  • the film can be formed by drying the coating film and peeling it from the substrate.
  • the base material is a copper foil
  • a film is formed without peeling the coating film from the copper foil, and a laminate in which the film is laminated on the obtained copper foil is copper-clad. It can also be used for laminated boards.
  • a drying step of further drying the film may be performed after the peeling.
  • the drying of the coating film can be appropriately selected depending on the heat resistance of the resin (A) and the like, but in one embodiment of the present invention, the temperature is 50 to 450 ° C, preferably 55 to 400 ° C, more preferably 70 to 380 ° C.
  • the composition can be dried uniformly, and the Tg of the obtained film can be improved, so that it is easy to achieve reduction of CTE and improvement of mechanical properties such as bending resistance.
  • heating may be performed at 200 to 450 ° C., preferably 200 to 350 ° C.
  • the drying or heating time is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours.
  • the coating film may be dried under inert atmosphere conditions such as in nitrogen or argon, under vacuum or reduced pressure conditions, and / or under ventilation.
  • the coating film may be continuously dried after the coating film is peeled off from the base material during the stepwise drying, and after all the drying is completed, the coating film is applied from the base material ( The film) may be peeled off.
  • the coating film may be peeled off from the substrate after the first step of drying to perform the second and subsequent drying steps, or the coating film (film) may be peeled off from the substrate after all the drying steps are completed. good.
  • the first step of drying may be pre-drying.
  • the film may be peeled off from the copper foil as the base material by etching and removing the copper foil with a ferric chloride solution or the like.
  • the resin (A) in the composition is a polyimide resin precursor, for example, a polyamic acid, and a polyimide resin is produced during film production
  • the composition is applied to a substrate and then applied. It is preferably thermally imidized by heating.
  • the drying and imidization temperature is usually in the range of 50 to 450 ° C., and from the viewpoint of easily obtaining a smooth film, it is preferable to perform heating step by step.
  • the solvent may be removed by heating at a relatively low temperature of 50 to 150 ° C., and then gradually heated to a temperature in the range of 300 to 450 ° C.
  • the heating time can be selected from the same range as the above range, for example.
  • the film of the present invention is a multilayer film
  • it can be produced by, for example, a multilayer film forming method such as a coextrusion processing method, an extrusion laminating method, a thermal laminating method, or a dry laminating method.
  • the present invention includes a composition comprising a resin (A), a polymer (B) and a solvent, wherein at least one of the Tg and the melting point of the polymer (B) is 160 ° C. or higher.
  • the composition of the present invention is preferably the composition described in the section [Method for producing a film], and the resin (A), the polymer (B) and the solvent contained in the composition are [film] and [film]. The same as that described in the section of [Manufacturing method].
  • the composition of the present invention contains a resin (A), a polymer (B) and a solvent, and at least one of the Tg and the melting point of the polymer (B) is 160 ° C. or higher, a conventional cycloolefin-based polymer can be used. It is possible to form a film having a reduced CTE as compared with the composite film containing the compound. Furthermore, the composition of the present invention can form a film capable of exhibiting excellent mechanical properties, particularly bending resistance, in spite of having at least one of the Tg and the melting point of the polymer (B), particularly a large Tg. Therefore, the composition of the present invention can form a film having both reduced CTE and excellent heat resistance and mechanical properties, particularly bending resistance.
  • NB content The content of the monomer unit derived from norbornene (also referred to as “NB content”) in the cycloolefin copolymer obtained in the production example was measured using 13 C-NMR. 13 C-NMR measurement conditions are as follows.
  • HSP Hansen solubility parameter
  • HSP solubility parameter
  • ⁇ H was set to 7.2 MPa 0.5
  • ⁇ D of toluene was set to 18.0 MPa 0.5
  • ⁇ P was set to 1.4 MPa 0.5
  • ⁇ H was set to 2.0 MPa 0.5 .
  • HSP of cycloolefin copolymer The solubility of the cycloolefin copolymer in various solvents was evaluated. For the evaluation of solubility, use a solvent with a known solubility parameter in a transparent container (refer to the HSPiP database, solvent used: methyl chloride, 1,4-dichlorobenzene, chloroform, toluene, p-xylene, GBL, DMAc, NMP. , Water, acetone, diiodomethane, butyl benzoate) 10 mL and 0.1 g of cycloolefin copolymer were added to prepare a mixed solution.
  • the obtained mixed solution was subjected to ultrasonic treatment for a total of 6 hours.
  • the appearance of the mixed solution after the ultrasonic treatment was visually observed, and the solubility of each resin in the solvent was evaluated based on the following evaluation criteria from the obtained observation results.
  • evaluation criteria 2 The appearance of the mixed solution is cloudy and precipitates at room temperature, but the appearance of the mixed solution becomes transparent by heating to 50 ° C. and stirring with a stirrer for 30 minutes.
  • 1 The appearance of the mixture is transparent at room temperature.
  • 0 The appearance of the mixed solution is cloudy and precipitates at room temperature, and the appearance of the mixed solution does not become transparent even when heated to 50 ° C. and stirred with a stirrer for 30 minutes.
  • the HSP value was calculated by the above-mentioned Hansen-dissolved sphere method using HSPiP.
  • HSP of polyimide resin The solubility of the polyimide resin in various solvents was evaluated. For evaluation of solubility, use a solvent with known solubility parameters in a transparent container (see HSPiP database, solvents used: acetone, toluene, ethanol, tetrahydrofuran, N, N-dimethylformamide, dimethyl sulfoxide, hexane, GBP, ethyl.
  • the HSP value was calculated by the above-mentioned Hansen-dissolved sphere method using HSPiP.
  • HSP Liquid crystal polyester HSP
  • HSPiP Ver. 4.1.07
  • ⁇ Meso-type two-chain / Racemo-type two-chain> The ratio of the meso-type two-chain of the norbornene two-chain to the racemo-type two-chain (meso-type two-chain / racemo-type two-chain) of the cycloolefin copolymer obtained in the production example is the above-mentioned NB content using 13 C-NMR. It was measured under the same conditions as the measurement of.
  • the meso-type / racemo-type two-chain of the norbornene two-chain is based on 1,1,2,2-tetrachloroethane (74.24 ppm), and is described in “RAWendt, G.Fink, Macromol.Chem.
  • the meso-type two-chain / racemo-type two-chain has a signal integral value observed at a chemical shift value of 27.5-28.4 ppm in the spectrum chart measured using 13 C-NMR: IC5 .
  • the refractive index of the cycloolefin copolymer obtained in the production example was determined by measuring under the following conditions using a sheet-shaped sample formed to a thickness of 100 ⁇ m with a vacuum press.
  • the Tg of the cycloolefin copolymer obtained in the production example was determined by measuring the softening temperature by TMA based on JIS K 7196. Specifically, a sample (thickness: 1.0 mm) obtained by molding a cycloolefin copolymer into a sheet with a vacuum press is measured under the following conditions, and the onset of displacement when the indenter sinks into the sample is defined as the softening temperature. did.
  • Tg of the polyimide resin and the liquid crystal polyester obtained in the production example was determined by the following measurements. Using DMA Q800 manufactured by TA Instrument, measurement under the following samples and conditions was performed to obtain a tan ⁇ curve, which is the ratio of the loss modulus to the storage modulus, and then the peak of the tan ⁇ curve peaked. Tg was calculated from.
  • ⁇ Mw and Mn of cycloolefin copolymer> The polystyrene-equivalent Mw and Mn of the cycloolefin copolymer obtained in the production example were measured using GPC. The GPC measurement was performed under the following conditions, and the peak was specified by defining the baseline on the chromatogram based on the description of ISO16014-1.
  • GPC column TSKgel GMH6-HT with an inner diameter of 7.8 mm and a length of 300 mm (manufactured by Tosoh Corporation) connected in three Mobile phases: Orthodichlorobenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) 2,6- Di-tert-butyl-4-methylphenol (hereinafter, may be referred to as BHT) was added and used at a concentration of 0.1 w / V, that is, 0.1 g / 100 mL.
  • BHT 2,6- Di-tert-butyl-4-methylphenol
  • Example solution preparation conditions Solvent: BHT was added to orthodichlorobenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) at a concentration of 0.1 w / V, that is, 0.1 g / 100 mL.
  • Sample solution concentration 1 mg / mL
  • Automatic shaker for melting DF-8020 (manufactured by Tosoh Corporation)
  • Dissolution conditions A 5 mg sample is enclosed in a 1,000 mesh SUS wire mesh bag, the wire mesh bag containing the sample is placed in a test tube, and 5 mL of orthodichlorobenzene having the same composition as the mobile phase is added to the test tube. The lid was covered with aluminum foil, the test tube was set in DF-8020, and the mixture was stirred at 140 ° C. for 120 minutes at a stirring rate of 60 reciprocating / min. GPC measurement was performed using the stirred solution as a sample.
  • ⁇ Mw of polyimide resin The polystyrene-equivalent Mw of the polyimide resin obtained in the production example was measured using GPC. GPC measurement was performed under the following conditions. GPC measurement (1) Pretreatment method Add DMF eluent (10 mmol / L lithium bromide-added DMF solution) to the sample to a concentration of 2 mg / mL, heat with stirring at 80 ° C. for 30 minutes, cool, and then cool. The solution filtered by a 0.45 ⁇ m membrane filter was used as a measurement solution.
  • DMF eluent 10 mmol / L lithium bromide-added DMF solution
  • ⁇ Thickness of composite film> For the thickness of the composite film obtained in Examples and Comparative Examples, a Digimatic Indicator (ID-C112XBS, manufactured by Mitutoyo Co., Ltd.) was used to measure the thickness of any 5 or more points of the film, and the thickness thereof was measured. The average value was taken as the thickness.
  • ID-C112XBS Digimatic Indicator
  • the median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion obtained in the examples was determined by the scattering type particle size distribution measurement using laser diffraction. Specifically, the particulate cycloolefin copolymer dispersion obtained in the example is placed in a glass cell having a capacity of 3.5 mL, and the same solvent (GBL, DMAc or NMP) as the solvent contained in the dispersion is further added.
  • the mixture was added and diluted 1000-fold to obtain a dispersion sample containing the particulate cycloolefin copolymer.
  • the obtained dispersion sample was measured using a laser diffraction / scattering type particle size distribution measuring device (manufactured by Malvern Panasonic, model: Nan AlbanyZS, refractive index: 1.70-0.20i), and the particulate cycloolefin copolymer was measured. The median diameter was calculated.
  • a polyimide resin, a liquid crystal polyester solution, or a polyamic acid solution was added to the particulate cycloolefin copolymer dispersion in an amount within a range that does not affect the particle size.
  • the particle size of the particulate cycloolefin copolymer in the dispersion measured above was defined as the particle size of the particulate cycloolefin copolymer in the composition.
  • ⁇ Average primary particle size of cycloolefin copolymer in composite film> For the composite film obtained in Examples 1, 6, 7, and 13, a cross-sectional observation of the composite film was performed using a scanning transmission electron microscope (STEM), and particles of 50 or more particles were observed from the observed cross-sectional image. The diameters were measured and the average value thereof was taken as the average primary particle diameter.
  • STEM observation measurement conditions Device name: HeLi AlbanysG4UX (flake making device) manufactured by Japan FEI Co., Ltd. Hitachi High-Tech Co., Ltd. S-5500 (for STEM observation) Acceleration voltage: 30kv Magnification: 20000 times
  • CTE of composite film The CTEs of the composite film, the polyimide film and the liquid crystal polyester film obtained in Examples, Comparative Examples and Reference Examples were measured by TMA, respectively. Specifically, the measurement was performed under the following conditions, and the CTE at 50 ° C to 100 ° C was calculated.
  • CTE of cycloolefin copolymer The CTE of the cycloolefin copolymer was measured using TMA under the following conditions, and the CTE at 50 ° C to 100 ° C was calculated.
  • the one-time bending resistance of the composite films obtained in Examples and Comparative Examples was measured by the following method.
  • the iron core (sometimes called mandrel) was installed, bent so that the center of the film was in contact with the iron core, fixed so that the surfaces of the bent film were parallel, and allowed to stand for 10 seconds.
  • the bent film was fixed to both sides of a glass substrate having a thickness of 2 mm so as to maintain parallelism during the test.
  • the film was allowed to stand for 10 minutes, half of the film was fixed to the floor surface, and the length between the end of the film opposite to the end fixed to the floor surface and the floor surface, that is, the deformation after one bending.
  • the height was measured and evaluated as the one-time bending resistance of the film.
  • Capacitance method (Device: Impedance analyzer (Agilent model: E4991A)) -Electrode model: 16453A -Measurement environment: 23 ° C, 50% RH ⁇ Applied voltage: 1V
  • the flow start temperature of the liquid crystal polyester obtained in Production Example 11 was measured as follows. Using a flow tester (manufactured by Shimadzu Corporation, CFT-500 type), about 2 g of liquid crystal polyester is filled into a cylinder equipped with a die having a nozzle with an inner diameter of 1 mm and a length of 10 mm, and 9.8 MPa (100 kg / 100 kg /). Under the load of cm 2 ), the liquid crystal polyester was melted while raising the temperature at a rate of 4 ° C./min, extruded from the nozzle, and the temperature showing the viscosity of 4800 Pa ⁇ s (48,000 P) was measured, and the flow was started. The temperature was set.
  • Triisobutylaluminum hereinafter referred to as TIBA
  • N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate hereinafter referred to as AB
  • Toluene was dehydrated using Molecular Sieves 13X (manufactured by Union Showa Co., Ltd.) and activated alumina (manufactured by Sumitomo Chemical Co., Ltd., NKHD-24), and then nitrogen gas was blown into the toluene to remove dissolved oxygen. used.
  • NB solution A solution from which dissolved oxygen was removed was used (hereinafter referred to as NB solution).
  • NB solution A solution from which dissolved oxygen was removed was used (hereinafter referred to as NB solution).
  • the NB concentration in the NB solution was measured by using gas chromatography.
  • Isopropyridene (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride (hereinafter referred to as a complex) is synthesized according to the method described in JP-A-9-183809. did.
  • the temperature in the system was kept at 60 ° C., and ethylene was continuously supplied to keep the pressure in the system at the starting value.
  • 5.0 mL of water was added to stop the polymerization, and the solution in the autoclave was withdrawn.
  • 1,500 g of toluene and 100 g of magnesium sulfate were added and stirred, and then 100 mL of water was added and stirred, and the solid was removed by filtration.
  • the obtained liquid was added dropwise to acetone, and the precipitated powder was isolated by filtration. The isolated powder was further washed with acetone and dried under reduced pressure at 120 ° C.
  • the NB content was 84.1 mL
  • the Tg was 293 ° C
  • the Mw was 521,000
  • the Mw / Mn was 1.87.
  • the ⁇ D of the cycloolefin copolymer is 17.7 MPa 0.5
  • the ⁇ P is 2.1 MPa 0.5
  • the ⁇ H is 3.9 MPa 0.5
  • the meso-type two-chain / racemo-type two-chain is.
  • ⁇ Manufacturing example 2> A cycloolefin copolymer and a cycloolefin copolymer solution were obtained in the same manner as in Production Example 1 except that the synthesis conditions were changed to the synthesis conditions shown in Production Example 2 in Table 2.
  • the NB content was 79.2 mL and the Tg was 276 ° C.
  • the meso-type two-chain / racemo-type two-chain of the cycloolefin copolymer was 0.11, the refractive index was 1.527, and the CTE was 48.3 ppm / K.
  • TOPAS6015 (manufactured by Polyplastics Co., Ltd.) was used as the cycloolefin copolymer.
  • the CTE of TOPAS6015 was 60 ppm / K.
  • a cycloolefin copolymer solution was obtained in the same manner as in Production Example 1 except that TOPAS6015 was used as the cycloolefin copolymer.
  • the NB content was 92.3 mol%
  • Tg was 308 ° C.
  • Mw was 852,000
  • Mw / Mn was 1.81.
  • the ⁇ D of the cycloolefin copolymer was 17.7 MPa 0.5
  • the ⁇ P was 2.1 MPa 0.5
  • the ⁇ H was 3.9 MPa 0.5
  • the CTE was 44.5 ppm / K. ..
  • Table 3 This cycloolefin copolymer was pulverized with a counter jet mill manufactured by Hosokawa Micron Co., Ltd. and classified by a filter to obtain a cycloolefin copolymer crushed powder having a median diameter of 2.6 ⁇ m.
  • the temperature in the system was kept at 80 ° C. during the polymerization. After 2 hours from the start of the polymerization, 3.0 mL of water was added to stop the polymerization, and the solution in the autoclave was withdrawn. The obtained liquid was added dropwise to acetone in the extracted solution, and the precipitated powder was isolated by filtration. The isolated powder was further washed with acetone and dried under reduced pressure at 150 ° C. for 2 hours to obtain 198.3 g of a cycloolefin copolymer. In the obtained cycloolefin copolymer, the NB content was 96.3 mol%, Mw was 79,000, Mw / Mn was 1.83, and Tg was more than 300 ° C.
  • the ⁇ D of the cycloolefin copolymer was 17.7 MPa 0.5
  • the ⁇ P was 2.1 MPa 0.5
  • the ⁇ H was 3.9 MPa 0.5
  • Table 3 shows the synthesis conditions of Production Example 2. This cycloolefin copolymer was dissolved in a toluene solution at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the ⁇ D of the obtained polyimide resin was 18.1 MPa 0.5, the ⁇ P was 8.3 MPa 0.5 , and the ⁇ H was 9.3 MPa 0.5 .
  • the Mw of the polyimide resin was 334,300, and the Tg was 361 ° C.
  • the temperature was raised from 150 ° C. to 300 ° C. over 5 hours, held at 300 ° C. for 30 minutes, and then the contents were taken out from the reactor and brought to room temperature. Cooled.
  • the obtained solid matter was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (L1).
  • the flow start temperature of the liquid crystal polyester (L1) measured by the method described above was 193.3 ° C.
  • the liquid crystal polyester (L1) is heated from room temperature to 160 ° C. over 2 hours and 20 minutes under a nitrogen atmosphere, then heated from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and held at 180 ° C. for 5 hours.
  • the flow start temperature of the liquid crystal polyester (L2) measured by the method described above was 220 ° C.
  • the temperature of the liquid crystal polyester (L2) is raised from room temperature to 180 ° C. for 1 hour and 25 minutes under a nitrogen atmosphere, then the temperature is raised from 180 ° C. to 255 ° C. for 6 hours and 40 minutes, and the temperature is maintained at 255 ° C. for 5 hours.
  • the mixture was cooled to obtain a powdery liquid crystal polyester (L).
  • the flow start temperature of the liquid crystal polyester (L) measured by the method described above was 302 ° C.
  • the ⁇ D of the obtained liquid crystal polyester (L) was 20.9 MPa 0.5
  • the ⁇ P was 8.3 MPa 0.5
  • the ⁇ H was 4.7 MPa 0.5 .
  • the liquid crystal polyester had a Mw of 180,000 and a Tg of 190 ° C. 8 parts by mass of liquid crystal polyester (L) was added to 92 parts by mass of NMP, and the mixture was stirred at 140 ° C. for 4 hours under a nitrogen atmosphere to prepare a liquid crystal polyester solution.
  • the viscosity of the liquid crystal polyester solution measured by the method described below was 955 mPa ⁇ s.
  • Example 1 100.0 g of the cycloolefin copolymer solution obtained in Production Example 1 and 98.0 g of GBL were mixed and distilled off at 50 hPa at 80 ° C. for 2 hours under reduced pressure to distill off toluene to obtain a particulate cycloolefin copolymer dispersion. rice field.
  • the toluene content of the obtained dispersion was 0.6 parts by mass with respect to 100 parts by mass of GBL.
  • the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 50 ⁇ m.
  • the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the average primary particle size of the particulate cycloolefin copolymer in the obtained composite film was 0.16 ⁇ m.
  • the distance between the HSP values of the cycloolefin copolymer and the polyimide resin used in Example 1 is 8.3, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and GBP is 2.1.
  • the distance between the HSP values was 14.9, the distance between the HSP values of the polyimide resin and toluene was 10.0, and the distance between the HSP values of the polyimide resin and GBL was 8.5.
  • the cycloolefin copolymer used in Example 1 was dissolved in toluene and not in GBL. Further, the polyimide resin was dissolved in GBL and not in toluene.
  • Example 2 The composition as a polyimide-cycloolefin copolymer mixed solution and the polyimide-cycloolefin copolymer composite film having a thickness of 50 ⁇ m were prepared in the same manner as in Example 1 except that the cycloolefin copolymer solution obtained in Production Example 2 was used. Obtained. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the distance between the HSP values of the cycloolefin copolymer and the polyimide resin used in Example 2 is 8.3, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and GBP is 2.1.
  • the distance between the HSP values was 14.9, the distance between the HSP values of the polyimide resin and toluene was 10.0, and the distance between the HSP values of the polyimide resin and GBL was 8.5.
  • Example 3 A composition as a polyimide-cycloolefin copolymer mixed solution and a polyimide-cycloolefin copolymer composite film having a thickness of 50 ⁇ m were prepared in the same manner as in Example 1 except that the cycloolefin copolymer solution obtained in Production Example 3 was used. Obtained. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the distance between the HSP values of the cycloolefin copolymer and the polyimide resin used in Example 3 is 8.3, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and GBP is 2.1.
  • the distance between the HSP values was 14.9, the distance between the HSP values of the polyimide resin and toluene was 10.0, and the distance between the HSP values of the polyimide resin and GBL was 8.5.
  • Example 4 A composition as a polyimide-cycloolefin copolymer mixed solution and a polyimide-cycloolefin copolymer composite film having a thickness of 50 ⁇ m were prepared in the same manner as in Example 1 except that the cycloolefin copolymer solution obtained in Production Example 4 was used. Obtained. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the distance between the HSP values of the cycloolefin copolymer and the polyimide resin used in Example 4 is 8.3, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and GBP is 2.1.
  • the distance between the HSP values was 14.9, the distance between the HSP values of the polyimide resin and toluene was 10.0, and the distance between the HSP values of the polyimide resin and GBL was 8.5.
  • Example 5 100.0 g of the cycloolefin copolymer solution obtained in Production Example 2 and 98.0 g of DMAc were mixed and distilled off at 50 hPa at 80 ° C. for 2 hours under reduced pressure to distill off toluene to obtain a particulate cycloolefin copolymer dispersion. Obtained. The toluene content of the obtained dispersion was 0.6 parts by mass with respect to 100 parts by mass of DMAc.
  • the polyamic acid-cycloolefin copolymer composite film is peeled off from the glass substrate, the film is fixed with a metal frame, and the polyamic acid-cycloolefin is gradually increased to 360 ° C. in 30 minutes.
  • the polyamic acid was imidized to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 25 ⁇ m.
  • the content of the particulate cycloolefin copolymer was 37.7% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the distance between the HSP values of the cycloolefin copolymer used in Example 5 and the obtained polyimide resin is 6.0 or more, and the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1.
  • the distance between the HSP values of the cycloolefin copolymer and DMAc was 11.5. According to the above solubility evaluation method, the polyamic acid used in Example 5 was dissolved in DMAc and not in toluene.
  • Example 1 A polyimide-cycloolefin copolymer composite film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the cycloolefin copolymer solution obtained in Production Example 5 was used. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • Example 6 The cycloolefin copolymer crushed powder 17.31 g and DMAc 52.03 g obtained in Production Example 6 were mixed and stirred to obtain a dispersion liquid. 100 g of a polyamic acid solution (15% by mass of a polyamic acid) was added to the obtained dispersion to obtain a composition as a polyamic acid-cycloolefin copolymer mixed solution. The median diameter of the particulate cycloolefin copolymer in the dispersion and the composition measured by the above method was 2.6 ⁇ m, respectively. The obtained composition was subjected to salivation molding on a glass substrate to prepare a coating film at a linear speed of 0.4 m / min.
  • the coating film was heated at 50 ° C. for 80 minutes, the polyamic acid-cycloolefin copolymer composite film was peeled off from the glass substrate, the film was fixed with a metal frame, and the film was further heated at 360 ° C. for 15 minutes under a nitrogen atmosphere.
  • the polyamic acid was imidized to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 50 ⁇ m.
  • the content of the particulate cycloolefin copolymer was 32.8% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the average primary particle size of the particulate cycloolefin copolymer in the obtained composite film was 2.7 ⁇ m.
  • the distance between the HSP values of the cycloolefin copolymer and the polyamic acid used in Example 6 was 6.0 or more, and the distance between the HSP values of the cycloolefin copolymer and the DMAc was 11.5. Further, the distance between the HSP values of the cycloolefin copolymer used in Example 6 and the polyimide resin obtained by imidizing the polyamic acid was 6.0 or more.
  • the cycloolefin copolymer used in Example 6 was dissolved in toluene and not in DMAc. Further, the polyamic acid was dissolved in DMAc and not in toluene.
  • Example 7 100.0 g of the cycloolefin copolymer solution obtained in Production Example 1 and 98.0 g of NMP were mixed and distilled off at 50 hPa at 80 ° C. for 2 hours under reduced pressure to distill off toluene to obtain a particulate cycloolefin copolymer dispersion. Obtained. The toluene content of the obtained dispersion was 0.6 parts by mass with respect to 100 parts by mass of NMP.
  • the composition was obtained as a mixed solution of copolymers.
  • the median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion and the composition measured by the above method was 0.14 ⁇ m, respectively.
  • the obtained composition was subjected to salivation molding on a copper foil to prepare a coating film at a linear speed of 0.4 m / min.
  • the coating film was heated at 60 ° C. for 4 hours to obtain a laminate having a copper foil and a liquid crystal polyester precursor-cycloolefin copolymer composite film, and then the laminate was fixed with a metal frame and further under a nitrogen atmosphere, 310. By heating the laminate at ° C. for 4 hours, a laminate having a copper foil and a liquid crystal polyester-cycloolefin copolymer composite film was obtained. The obtained laminate was immersed in a ferric chloride solution for 10 minutes to remove the copper foil by etching to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 30 ⁇ m.
  • the content of the particulate cycloolefin copolymer was 30.0% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
  • the average primary particle size of the particulate cycloolefin copolymer in the composite film was 0.17 ⁇ m.
  • the distance between the HSP values of the cycloolefin copolymer and the liquid crystal polyester used in Example 7 is 8.9, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and NMP is 2.1.
  • the distance between the HSP values was 10.7
  • the distance between the HSP values of the liquid crystal polyester and toluene was 9.4
  • the distance between the HSP values of the liquid crystal polyester and NMP was 7.5.
  • the cycloolefin copolymer used in Example 7 was dissolved in toluene and not in NMP.
  • the liquid crystal polyester used in Example 7 was dissolved in NMP and not in toluene.
  • Example 8 The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 10% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
  • the resulting cycloolefin copolymer crushed powder 2 was mixed, and a composition as a liquid crystal polyester-cycloolefin copolymer mixed solution was obtained using a stirring defoaming device (AR-500, manufactured by Shinky Co., Ltd.).
  • the obtained composition was used with a film applicator with a micrometer (manufactured by Tester Sangyo Co., Ltd.) so that the thickness of the cast film was 260 ⁇ m on the roughened surface of (JXEFL-V2 12 ⁇ m manufactured by JX Nippon Mining & Metals Co., Ltd.).
  • a film applicator with a micrometer manufactured by Tester Sangyo Co., Ltd.
  • the copper foil-attached film was further heat-treated in a hot air oven under a nitrogen atmosphere from room temperature to 310 ° C. for 4 hours and kept at that temperature for 2 hours to obtain a heat-treated copper foil-attached film. rice field.
  • the copper foil-attached film was etched and removed using a ferric chloride solution to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 27 ⁇ m.
  • the obtained composite film had a dielectric constant of 2.90 and a dielectric loss tangent of 0.0032.
  • the distance between the HSP values of the cycloolefin copolymer and the liquid crystal polyester used in Example 8 is 8.9, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and NMP is 2.1.
  • the distance between the HSP values was 10.7, the distance between the HSP values of the liquid crystal polyester and toluene was 9.4, and the distance between the HSP values of the liquid crystal polyester and NMP was 7.5.
  • Example 9 The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 20% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
  • the obtained cycloolefin copolymer crushed powder 2 was mixed to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 28 ⁇ m in the same manner as in Example 8 except that the thickness of the cast film was 240 ⁇ m.
  • the obtained composite film had a dielectric constant of 2.81 and a dielectric loss tangent of 0.0028.
  • Example 10 The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 30% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
  • the obtained cycloolefin copolymer crushed powder 2 was mixed to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 30 ⁇ m in the same manner as in Example 8 except that the thickness of the cast film was 220 ⁇ m.
  • the obtained composite film had a dielectric constant of 2.67 and a dielectric loss tangent of 0.0024.
  • Example 11 The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 50% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
  • the obtained cycloolefin copolymer crushed powder 2 was mixed to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 29 ⁇ m in the same manner as in Example 8 except that the thickness of the cast film was 280 ⁇ m.
  • the obtained composite film had a dielectric constant of 2.54 and a dielectric loss tangent of 0.0017.
  • Example 12 The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 60% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
  • the obtained cycloolefin copolymer crushed powder 2 was mixed to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 33 ⁇ m in the same manner as in Example 8 except that the thickness of the cast film was 280 ⁇ m.
  • the obtained composite film had a dielectric constant of 2.45 and a dielectric loss tangent of 0.0015.
  • Example 13 100.0 g of the cycloolefin copolymer solution obtained in Production Example 8 and 98.0 g of DMAc were mixed, distilled off under reduced pressure at 50 hPa and 80 ° C. for 2 hours, and toluene was distilled off to distill off toluene. Got The toluene content of the obtained dispersion was 0.6 parts by mass with respect to 100 parts by mass of DMAc. To 30.0 g of the obtained particulate cycloolefin copolymer dispersion (2.0% by mass of the particulate cycloolefin copolymer), 8.0 g of the polyamic acid solution (15% by mass) obtained in Production Example 10 was added.
  • the composition was obtained as a mixed solution of polyamic acid-cycloolefin copolymer.
  • the median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion and the composition measured by the above method was 0.13 ⁇ m, respectively.
  • the obtained composition was subjected to salivation molding on a glass substrate to prepare a coating film at a linear speed of 0.4 m / min.
  • the coating film is heated at 70 ° C. for 60 minutes, the polyamic acid-cycloolefin copolymer composite film is peeled off from the glass substrate, the film is fixed with a metal frame, and the polyamic acid is gradually increased to 360 ° C.
  • the polyamic acid was imidized to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 30 ⁇ m.
  • the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the average primary particle size of the particulate cycloolefin copolymer in the composite film was 0.15 ⁇ m.
  • the distance between the HSP values of the cycloolefin copolymer and the polyamic acid used in Example 13 is 6.0 or more, and the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1.
  • the distance between the HSP values with DMAc was 11.5.
  • the distance between the HSP values of the cycloolefin copolymer used in Example 13 and the polyimide resin obtained by imidizing the polyamic acid was 6.0 or more.
  • Example 3 As the composition, the liquid crystal polyester solution obtained in Production Example 11 was used, and a liquid crystal polyester film having a thickness of 27 ⁇ m was obtained in the same manner as in Example 8 except that the thickness of the casting film was set to 300 ⁇ m.
  • the CTE of the obtained liquid crystal polyester film was 33 ppm / K, the dielectric constant was 3.30, and the dielectric loss tangent was 0.0040.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a film having a lower CTE than a composite film containing a conventional cycloolefin-based polymer. The film contains a resin (A) and a cycloolefin-based polymer (B). The glass transition temperature and/or the melting point of the cycloolefin-based polymer (B) is 160°C or higher.

Description

フィルムthe film
 高周波帯域用のプリント回路基板やアンテナ基板に対応可能な基板材料などに利用できるフィルム及び該フィルムを形成可能な組成物に関する。 The present invention relates to a film that can be used as a substrate material compatible with a printed circuit board for a high frequency band and an antenna substrate, and a composition capable of forming the film.
 5Gと称される第5世代移動通信システムの本格的な普及に伴い、高周波帯域に対応できるプリント回路やアンテナに利用可能なプリント配線基板などが要求されている。しかし、高周波帯域になると基板材料由来の伝送損失が顕著に影響してくるため、伝送損失を抑制可能な基板材料の選択が重要となる。例えば、CCLと称される銅張積層板は樹脂層の両表面に接着剤を介して銅箔が積層された構造等を有する。該CCLの伝送損失は、伝送路となる樹脂層の誘電損失、特に誘電正接や比誘電率を低減することにより抑制し得る。
 この誘電正接や比誘電率の低い基板材料としては、シクロオレフィン系ポリマーが知られており、このシクロオレフィン系ポリマーを他の樹脂と複合化させたフィルムが検討されている。例えば、特許文献1には、特定の樹脂(A)と、シクロオレフィンポリマー(B)とを含む低誘電性樹脂組成物及び該組成物からなるフィルムが開示されている。
With the full-scale spread of the 5th generation mobile communication system called 5G, there is a demand for printed circuits that can handle high frequency bands and printed wiring boards that can be used for antennas. However, in the high frequency band, the transmission loss derived from the substrate material has a significant effect, so it is important to select a substrate material that can suppress the transmission loss. For example, a copper-clad laminate called CCL has a structure in which copper foils are laminated on both surfaces of a resin layer via an adhesive. The transmission loss of the CCL can be suppressed by reducing the dielectric loss of the resin layer serving as the transmission line, particularly the dielectric loss tangent and the relative permittivity.
A cycloolefin-based polymer is known as a substrate material having a dielectric loss tangent or a low relative permittivity, and a film in which this cycloolefin-based polymer is composited with another resin has been studied. For example, Patent Document 1 discloses a low-dielectric resin composition containing a specific resin (A) and a cycloolefin polymer (B), and a film composed of the composition.
特開2017-125176号公報Japanese Unexamined Patent Publication No. 2017-125176
 高周波帯域に対応可能なCCL中の樹脂層には、低誘電損失化の他、銅箔との剥がれ等を防止するために、CTEの低減が要求される。しかし、本発明者の検討によれば、特許文献1のような複合フィルムはCTEが高くなる場合があり、特にシクロオレフィンポリマーに改善の余地があることがわかった。
 従って、本発明の目的は、従来のシクロオレフィン系ポリマーを含む複合フィルムよりもCTEが低減されたフィルム及び該フィルムを形成可能な組成物を提供することにある。
The resin layer in the CCL, which can handle the high frequency band, is required to reduce the CTE in order to reduce the dielectric loss and prevent peeling from the copper foil. However, according to the study of the present inventor, it has been found that the composite film as in Patent Document 1 may have a high CTE, and in particular, there is room for improvement in the cycloolefin polymer.
Therefore, an object of the present invention is to provide a film having a lower CTE than a conventional composite film containing a cycloolefin polymer and a composition capable of forming the film.
 本発明者は、上記課題を解決するために鋭意検討した結果、樹脂(A)とシクロオレフィン系ポリマー(B)とを含むフィルムにおいて、該シクロオレフィン系ポリマー(B)のガラス転移温度(以下、Tgと略すことがある)及び融点の少なくともいずれか一方を160℃以上に調整すれば、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明には、以下の好適な形態が含まれる。 As a result of diligent studies to solve the above problems, the present inventor has made a glass transition temperature of the cycloolefin polymer (B) in a film containing the resin (A) and the cycloolefin polymer (B) (hereinafter referred to as “the glass transition temperature”). It has been found that the above-mentioned problems can be solved by adjusting at least one of the Tg) and the melting point to 160 ° C. or higher, and the present invention has been completed. That is, the present invention includes the following suitable forms.
[1]樹脂(A)とシクロオレフィン系ポリマー(B)とを含み、該シクロオレフィン系ポリマー(B)のガラス転移温度及び融点の少なくともいずれか一方は160℃以上である、フィルム。
[2]樹脂(A)とシクロオレフィン系ポリマー(B)とのHSP値間距離は6以上である、[1]に記載のフィルム。
[3]シクロオレフィン系ポリマー(B)は、式(I):
[1] A film containing a resin (A) and a cycloolefin polymer (B), wherein at least one of the glass transition temperature and the melting point of the cycloolefin polymer (B) is 160 ° C. or higher.
[2] The film according to [1], wherein the distance between the HSP values of the resin (A) and the cycloolefin polymer (B) is 6 or more.
[3] The cycloolefin polymer (B) has the formula (I) :.
Figure JPOXMLDOC01-appb-C000003
[式(I)中、mは0以上の整数を表し、
~R18は、互いに独立に、水素原子、ハロゲン原子又は炭素数1~20の炭化水素基を表し、R11~R14が複数存在する場合、それらは互いに独立に、同一であってもよく、異なっていてもよく、R16とR17とは互いに結合し、それらが結合する炭素原子とともに環を形成してもよい]
で表されるシクロオレフィン由来の単量体単位(I)を含む、[1]又は[2]に記載のフィルム。
[4]シクロオレフィン系ポリマー(B)における前記単量体単位(I)の含有量は、シクロオレフィン系ポリマー(B)を構成する繰り返し単位の合計モル量に対して60mol%以上である、[3]に記載のフィルム。
[5]シクロオレフィン系ポリマー(B)は、エチレン、炭素数3~20の直鎖状α-オレフィン及び炭素数8~20の芳香族ビニル化合物からなる群から選択される少なくとも1つに由来する単量体単位(II)を含む、[1]~[4]のいずれかに記載のフィルム。
[6]シクロオレフィン系ポリマー(B)の重量平均分子量(Mw)は30,000以上である、[1]~[5]のいずれかに記載のフィルム。
[7]シクロオレフィン系ポリマー(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.5以下である、[1]~[6]のいずれかに記載のフィルム。
[8]シクロオレフィン系ポリマー(B)は、前記単量体単位(I)の二連鎖構造を含み、該二連鎖構造において、メソ型二連鎖とラセモ型二連鎖との比(メソ型二連鎖/ラセモ型二連鎖)が0.50以下である、[1]~[7]のいずれかに記載のフィルム。
[9]シクロオレフィン系ポリマー(B)の含有量は、前記フィルムに含まれる樹脂(A)及びシクロオレフィン系ポリマー(B)の合計質量に対して5~50質量%である、[1]~[8]のいずれかに記載のフィルム。
[10]樹脂(A)は、ポリイミド系樹脂、液晶ポリマー、フッ素系樹脂、芳香族ポリエーテル系樹脂及びマレイミド系樹脂からなる群から選択される少なくとも1つの樹脂である、[1]~[9]のいずれかに記載のフィルム。
[11]液晶ポリマーは、式(a1)、式(a2)及び式(a3): 
 -O-Ar-CO-   (a1)
 -CO-Ar-CO-  (a2)
 -X-Ar-Y-  (a3)
[(式(a1)中、Arは、1,4-フェニレン基、2,6-ナフチレン基又は4,4’-ビフェニレン基を表し、
式(a2)中、Arは、1,4-フェニレン基、1,3-フェニレン基又は2,6-ナフチレン基を表し、
式(a3)中、Arは、1,4-フェニレン基又は1,3-フェニレン基を表し、
Xは-NH-を表し、
Yは、-O-又はNH-を表す]
で表される構造単位を含む液晶ポリエステルである、[10]に記載のフィルム。
[12]樹脂(A)のガラス転移温度は180℃以上である、[1]~[11]のいずれかに記載のフィルム。
[13]樹脂(A)、シクロオレフィン系ポリマー(B)及び溶媒を含み、該シクロオレフィン系ポリマー(B)のガラス転移温度及び融点の少なくともいずれか一方は160℃以上である、組成物。
[14]シクロオレフィン系ポリマー(B)は、式(I):
Figure JPOXMLDOC01-appb-C000003
[In equation (I), m represents an integer of 0 or more,
R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and when a plurality of R 11 to R 14 are present, they are independently and identical to each other. May be different, and R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded.]
The film according to [1] or [2], which comprises a monomer unit (I) derived from cycloolefin represented by.
[4] The content of the monomer unit (I) in the cycloolefin-based polymer (B) is 60 mol% or more with respect to the total molar amount of the repeating units constituting the cycloolefin-based polymer (B). 3] The film according to.
[5] The cycloolefin-based polymer (B) is derived from at least one selected from the group consisting of ethylene, a linear α-olefin having 3 to 20 carbon atoms, and an aromatic vinyl compound having 8 to 20 carbon atoms. The film according to any one of [1] to [4], which comprises the monomer unit (II).
[6] The film according to any one of [1] to [5], wherein the cycloolefin polymer (B) has a weight average molecular weight (Mw) of 30,000 or more.
[7] The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the cycloolefin polymer (B) is 2.5 or less, any of [1] to [6]. The film described in.
[8] The cycloolefin-based polymer (B) contains the two-chain structure of the monomer unit (I), and in the two-chain structure, the ratio of the meso-type two-chain to the racemic-type two-chain (meso-type two-chain). / The film according to any one of [1] to [7], wherein the racemic type two chains) is 0.50 or less.
[9] The content of the cycloolefin-based polymer (B) is 5 to 50% by mass with respect to the total mass of the resin (A) and the cycloolefin-based polymer (B) contained in the film, [1] to The film according to any one of [8].
[10] The resin (A) is at least one resin selected from the group consisting of a polyimide resin, a liquid crystal polymer, a fluororesin, an aromatic polyether resin and a maleimide resin, [1] to [9]. ] The film described in any of.
[11] The liquid crystal polymer has the formula (a1), the formula (a2) and the formula (a3):
-O-Ar 1 -CO- (a1)
-CO-Ar 2 -CO- (a2)
-X-Ar 3 -Y- (a3)
[(In formula (a1), Ar 1 represents a 1,4-phenylene group, a 2,6-naphthylene group or a 4,4'-biphenylene group, and represents.
In formula (a2), Ar 2 represents a 1,4-phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group.
In formula (a3), Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group.
X represents -NH-
Y represents -O- or NH-]
The film according to [10], which is a liquid crystal polyester containing a structural unit represented by.
[12] The film according to any one of [1] to [11], wherein the glass transition temperature of the resin (A) is 180 ° C. or higher.
[13] A composition containing a resin (A), a cycloolefin polymer (B) and a solvent, wherein at least one of the glass transition temperature and the melting point of the cycloolefin polymer (B) is 160 ° C. or higher.
[14] The cycloolefin polymer (B) has the formula (I) :.
Figure JPOXMLDOC01-appb-C000004
[式(I)中、mは0以上の整数を表し、R~R18は、互いに独立に、水素原子、ハロゲン原子又は炭素数1~20の炭化水素基を表し、R11~R14が複数存在する場合、それらは互いに独立に、同一であってもよく、異なっていてもよく、R16とR17とは互いに結合し、それらが結合する炭素原子とともに環を形成してもよい]
で表されるシクロオレフィン由来の単量体単位(I)を含む、[13]に記載の組成物。
[15]シクロオレフィン系ポリマー(B)における前記単量体単位(I)の含有量は、シクロオレフィン系ポリマー(B)を構成する繰り返し単位の合計モル量に対して60mol%以上である、[14]に記載の組成物。
Figure JPOXMLDOC01-appb-C000004
[In the formula (I), m represents an integer of 0 or more, R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and R 11 to R 14 If there are a plurality of them, they may be independent of each other, the same or different, and R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded. ]
The composition according to [13], which comprises a monomer unit (I) derived from cycloolefin represented by.
[15] The content of the monomer unit (I) in the cycloolefin polymer (B) is 60 mol% or more with respect to the total molar amount of the repeating units constituting the cycloolefin polymer (B). 14].
 本発明のフィルムは、従来のシクロオレフィン系ポリマーを含む複合フィルムよりもCTEが低減されている。そのため、本発明のフィルムはプリント回路基板やアンテナ基板に利用できるプリント配線基板等の材料として好適に使用できる。 The film of the present invention has a lower CTE than the conventional composite film containing a cycloolefin polymer. Therefore, the film of the present invention can be suitably used as a material for a printed wiring board or the like that can be used for a printed circuit board or an antenna board.
[フィルム]
 本発明のフィルムは、樹脂(A)とシクロオレフィン系ポリマー(B)とを含む。
[the film]
The film of the present invention contains a resin (A) and a cycloolefin polymer (B).
 <シクロオレフィン系ポリマー(B)>
 本発明のフィルムに含まれるシクロオレフィン系ポリマー(B)(以下、単にポリマー(B)ということがある)は、単独重合体及び共重合体を含む。
<Cycloolefin polymer (B)>
The cycloolefin-based polymer (B) contained in the film of the present invention (hereinafter, may be simply referred to as polymer (B)) includes a homopolymer and a copolymer.
 ポリマー(B)のTg及び融点の少なくともいずれか一方は160℃以上である。本発明者は、ポリマー(B)として、Tg及び融点の少なくともいずれか一方が160℃以上、好ましくはTgが160℃以上のものを用いると、従来のシクロオレフィン系ポリマーを含む複合フィルムと比べ、CTEが低減されることを見出した。これは、ポリマー(B)のTg及び融点の少なくともいずれか一方を160℃以上に調整するとポリマー(B)自体のCTEが低減されるため、このポリマー(B)を樹脂(A)と複合化させたフィルムのCTEも低減されるからだと推定される。なお、本明細書において、CTEは線膨張係数を意味する。 At least one of the Tg and the melting point of the polymer (B) is 160 ° C. or higher. The present inventor uses a polymer (B) having at least one of Tg and a melting point of 160 ° C. or higher, preferably Tg of 160 ° C. or higher, as compared with a conventional composite film containing a cycloolefin-based polymer. We have found that CTE is reduced. This is because when at least one of the Tg and the melting point of the polymer (B) is adjusted to 160 ° C. or higher, the CTE of the polymer (B) itself is reduced, so that the polymer (B) is composited with the resin (A). It is presumed that this is because the CTE of the film is also reduced. In addition, in this specification, CTE means a linear expansion coefficient.
 さらに本発明者は、Tg及び融点の少なくともいずれか一方が160℃以上のポリマー(B)を用いると、意外なことに屈曲耐性が向上することも見出した。通常、Tg及び融点の少なくともいずれか一方、特にTgが大きくなると剛直な構造となり得るため、柔軟性が劣り、屈曲耐性が低下する傾向にあるが、本発明のフィルムは意外なことに優れた屈曲耐性を有することもできる。なお、本明細書において、屈曲耐性とは、1回屈曲させたときの耐性(以下、1回屈曲耐性と称することがある)だけでなく、反復屈曲させたときの耐性(以下、反復屈曲耐性と称することがある)を含む意味である。また、機械的特性とは、屈曲耐性及び弾性率を含む機械的な特性を意味し、機械的特性が高まる又は向上するとは、例えば、屈曲耐性及び/又は弾性率が高くなることを示す。また、誘電特性とは、誘電損失、比誘電率及び誘電正接を含む誘電に関する特性を意味し、誘電特性が高まる又は向上するとは、例えば、誘電損失、比誘電率及び/又は誘電正接が低減することを示す。 Furthermore, the present inventor has also found that when a polymer (B) having at least one of Tg and a melting point of 160 ° C. or higher is used, the bending resistance is unexpectedly improved. Usually, when Tg or at least one of the melting points is increased, the structure can be rigid, so that the flexibility is inferior and the bending resistance tends to be lowered. However, the film of the present invention is surprisingly excellent in bending. It can also be resistant. In addition, in this specification, bending resistance is not only resistance when it is bent once (hereinafter, may be referred to as one-time bending resistance), but also resistance when it is repeatedly bent (hereinafter, repeated bending resistance). It is a meaning including). Further, the mechanical property means a mechanical property including bending resistance and elastic modulus, and increasing or improving the mechanical property means, for example, increasing bending resistance and / or elastic modulus. Further, the dielectric property means a property related to dielectric including a dielectric loss, a relative permittivity and a dielectric loss tangent, and when the dielectric property is increased or improved, for example, the dielectric loss, the relative permittivity and / or the dielectric loss tangent is reduced. Show that.
 一方、ポリマー(B)のTg及び融点が160℃未満であると、ポリマー(B)のCTEが高くなり得るため、得られる複合フィルムのCTEが上昇する傾向があり、また屈曲耐性も低下する傾向にある。
 ポリマー(B)のTgは、好ましくは180℃以上、より好ましくは200℃以上、さらに好ましくは220℃以上、さらにより好ましくは240℃以上、特に好ましくは260℃以上である。また、ポリマー(B)が融点を有する結晶性ポリマーである場合、ポリマー(B)の融点が、好ましくは180℃以上、より好ましくは200℃以上、さらに好ましくは220℃以上、さらにより好ましくは240℃以上、特に好ましくは260℃以上であり、好ましくは500℃以下、より好ましくは400℃以下、さらに好ましくは320℃以下である。ポリマー(B)のTg及び融点の少なくともいずれか一方が上記の下限以上であると、フィルムのCTEをより低減しやすく、かつ耐熱性及び機械的特性、特に屈曲耐性をより高めやすい。ポリマー(B)のTg及び融点の少なくともいずれか一方は、好ましくは500℃以下、より好ましくは400℃以下、さらに好ましくは320℃以下である。ポリマー(B)のTgが上記の上限以下であると、フィルムの機械的特性、特に反復屈曲耐性を高めやすい。ポリマー(B)のTgは、JIS K 7196に基づき、熱機械分析(以下、TMAと称することがある)により測定した軟化温度であり、例えば実施例に記載の方法により測定できる。ポリマー(B)の融点は、例えば示差走査熱量計(DSC、(株)日立ハイテクサイエンス製)を用いて、これにより得られる融解曲線から融解ピーク温度を測定することにより求めることができる。
On the other hand, when the Tg and the melting point of the polymer (B) are less than 160 ° C., the CTE of the polymer (B) can be high, so that the CTE of the obtained composite film tends to increase and the bending resistance tends to decrease. It is in.
The Tg of the polymer (B) is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, still more preferably 220 ° C. or higher, still more preferably 240 ° C. or higher, and particularly preferably 260 ° C. or higher. When the polymer (B) is a crystalline polymer having a melting point, the melting point of the polymer (B) is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, still more preferably 220 ° C. or higher, still more preferably 240 ° C. or higher. ° C. or higher, particularly preferably 260 ° C. or higher, preferably 500 ° C. or lower, more preferably 400 ° C. or lower, still more preferably 320 ° C. or lower. When at least one of the Tg and the melting point of the polymer (B) is at least one of the above lower limits, the CTE of the film is more likely to be reduced, and the heat resistance and mechanical properties, particularly bending resistance, are more likely to be enhanced. At least one of the Tg and the melting point of the polymer (B) is preferably 500 ° C. or lower, more preferably 400 ° C. or lower, still more preferably 320 ° C. or lower. When the Tg of the polymer (B) is not more than the above upper limit, the mechanical properties of the film, particularly the resistance to repeated bending, are likely to be enhanced. The Tg of the polymer (B) is a softening temperature measured by thermomechanical analysis (hereinafter, may be referred to as TMA) based on JIS K 7196, and can be measured by, for example, the method described in Examples. The melting point of the polymer (B) can be determined by measuring the melting peak temperature from the melting curve obtained by using, for example, a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd.).
 本発明におけるポリマー(B)を構成する単量体単位は、ポリマー(B)のTg及び/又は融点が160℃以上であれば、特に限定されないが、フィルムの耐吸水性や誘電特性を高めやすい他、フィルムのCTEを低減しやすく、かつ屈曲耐性などの機械的特性を高めやすい観点から、ポリマー(B)は、式(I): The monomer unit constituting the polymer (B) in the present invention is not particularly limited as long as the Tg and / or melting point of the polymer (B) is 160 ° C. or higher, but it is easy to improve the water absorption resistance and the dielectric property of the film. In addition, from the viewpoint that the CTE of the film can be easily reduced and the mechanical properties such as bending resistance can be easily enhanced, the polymer (B) is represented by the formula (I) :.
Figure JPOXMLDOC01-appb-C000005

[式(I)中、mは0以上の整数を表し、
~R18は、互いに独立に、水素原子、ハロゲン原子又は炭素数1~20の炭化水素基を表し、R11~R14が複数存在する場合、それらは互いに同一であってもよく、異なっていてもよく、R16とR17とは互いに結合し、それらが結合する炭素原子とともに環を形成してもよい]
で表されるシクロオレフィン由来の単量体単位(I)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000005

[In equation (I), m represents an integer of 0 or more,
R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and when a plurality of R 11 to R 14 are present, they may be the same as each other. They may be different, and R 16 and R 17 may bond to each other and form a ring with the carbon atoms they bond to.]
It is preferable to contain the monomer unit (I) derived from cycloolefin represented by.
 式(I)において、mは0以上の整数である。フィルムのCTEを低減しやすく、かつ耐熱性及び屈曲耐性などの機械的特性を高めやすく、入手も容易である観点からは、mの上限は好ましくは3以下の整数、より好ましくは2以下の整数、さらに好ましくは1以下の整数である。 In equation (I), m is an integer of 0 or more. From the viewpoint that the CTE of the film can be easily reduced, the mechanical properties such as heat resistance and bending resistance can be easily improved, and the film can be easily obtained, the upper limit of m is preferably an integer of 3 or less, more preferably an integer of 2 or less. , More preferably an integer of 1 or less.
 R~R18の置換基の一員である炭素数1~20の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基等のアルキル基;フェニル基、トリル基、ナフチル基等のアリール基;ベンジル基、フェネチール基等のアラルキル基;上記アルキル基、アリール基及びアラルキル基の水素原子の一部がハロゲン原子で置換された基等が挙げられる。これらの中でも、フィルムの耐吸水性、誘電特性、耐熱性及び屈曲耐性などの機械的特性を高めやすく、かつフィルムのCTEを低減しやすい観点から、アルキル基、アリール基又はアラルキル基であることが好ましい。すなわち、R~R18は、水素原子、炭素数1~20のアルキル基、炭素数6~20のアリール基又は炭素数7~20のアラルキル基であることが好ましく、水素原子又は炭素数1~10のアルキル基であることがより好ましい。 Examples of the hydrocarbon group having 1 to 20 carbon atoms, which is a member of the substituents of R 7 to R 18 , include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group and a dodecyl group. An aryl group such as a phenyl group, a trill group, or a naphthyl group; an aralkyl group such as a benzyl group or a phenetyl group; Be done. Among these, an alkyl group, an aryl group or an aralkyl group may be used from the viewpoint of easily enhancing mechanical properties such as water absorption resistance, dielectric property, heat resistance and bending resistance of the film and easily reducing the CTE of the film. preferable. That is, R 7 to R 18 are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, and are preferably a hydrogen atom or an aralkyl group having 1 to 20 carbon atoms. More preferably, it is an alkyl group of ~ 10.
 式(I)で表されるシクロオレフィンとしては、例えば、ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセンなどが挙げられる。これらの中でも、原料モノマーの入手容易性、CTEの低減、耐熱性及び屈曲耐性などの機械的特性向上の観点から、ノルボルネンであることが好ましい。式(I)で表されるシクロオレフィンは、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the cycloolefin represented by the formula (I) include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, tetracyclododecene and tricyclodecene. , Tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene and the like. Among these, norbornene is preferable from the viewpoint of easy availability of raw material monomer, reduction of CTE, improvement of mechanical properties such as heat resistance and bending resistance. The cycloolefin represented by the formula (I) may be used alone or in combination of two or more.
 本発明の一実施形態において、ポリマー(B)は、単量体単位(I)の二連鎖構造を含むことが好ましい。該二連鎖構造を含むことにより、単量体単位(I)の含有量が同程度のポリマーに比べて、耐熱性を向上しやすい。なお、二連鎖構造の有無は、13C-NMRスペクトル分析により判定することができる。例えば、テトラシクロデセン-エチレン共重合体の場合、テトラシクロデセンの孤立鎖であるエチレン-テトラシクロデセン-エチレン連鎖由来のシグナルは、54.7ppm付近及び51.1ppm付近に現れ、endo-exo結合のテトラシクロデセンの二連鎖であるエチレン-テトラシクロデセン-テトラシクロデセン-エチレン連鎖由来のシグナルは、51.5ppm付近及び50.8ppm付近に、exo-exo結合のエチレン-テトラシクロデセン-テトラシクロデセン-エチレン連鎖由来のシグナルは、55.3ppm付近及び54.3ppm付近に現れるので、55ppm近辺及び50ppm近辺のシグナルのパターンで判定することができる。 In one embodiment of the invention, the polymer (B) preferably comprises a two-chain structure of monomeric units (I). By including the two-chain structure, the heat resistance is likely to be improved as compared with a polymer having the same content of the monomer unit (I). The presence or absence of the two-chain structure can be determined by 13 C-NMR spectrum analysis. For example, in the case of a tetracyclodecene-ethylene copolymer, signals derived from the ethylene-tetracyclodecene-ethylene chain, which is an isolated chain of tetracyclodecene, appear at around 54.7 ppm and around 51.1 ppm, and endo-exo bond. Ethylene-tetracyclodecene-tetracyclodecene-ethylene chain-derived signals, which are two chains of tetracyclodecene, are located near 51.5 ppm and around 50.8 ppm, and are exo-exo-bonded ethylene-tetracyclodecene-tetracyclo. Since the signal derived from the decene-ethylene chain appears at around 55.3 ppm and around 54.3 ppm, it can be determined by the signal pattern around 55 ppm and around 50 ppm.
 単量体単位(I)の二連鎖構造には、下記構造式(II-1)又は下記構造式(II-2)で表されるメソ型二連鎖、及び/又は、下記構造式(III-1)又は下記構造式(III-2)で表されるラセモ型二連鎖が含まれる。 The two-chain structure of the monomer unit (I) includes a meso-type two-chain structure represented by the following structural formula (II-1) or the following structural formula (II-2), and / or the following structural formula (III-). 1) or a racemo type two chain represented by the following structural formula (III-2) is included.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 メソ型二連鎖とラセモ型二連鎖との比(以下、メソ型二連鎖/ラセモ型二連鎖と称することがある)は、好ましくは0.50以下、より好ましくは0.40以下、さらに好ましくは0.30以下、特に好ましくは0.20以下であり、好ましくは0.01以上、より好ましくは0.05以上である。メソ型二連鎖とラセモ型二連鎖との比が上記範囲であると、フィルムの機械的特性及び耐熱性を高めやすい。メソ型二連鎖とラセモ型二連鎖との比は、例えば13C-NMRを用いて、「R.A.Wendt,G.Fink,Macromol.Chem.Phys.,2001,202,3490」及び「特開2008-285656号公報」に記載の帰属に基づいて算出でき、具体的には実施例に記載の方法により算出できる。なお、メソ型二連鎖とラセモ型二連鎖を上記範囲に調整する方法としては、モノマーの嵩高さに対して、適切な配位子の広さを持った触媒を選択する方法等がある。前記触媒としては、例えば、特開平9-183809号公報に記載された触媒を用いることができる。 The ratio of the meso-type two-chain to the racemo-type two-chain (hereinafter, may be referred to as meso-type two-chain / racemo-type two-chain) is preferably 0.50 or less, more preferably 0.40 or less, still more preferably. It is 0.30 or less, particularly preferably 0.20 or less, preferably 0.01 or more, and more preferably 0.05 or more. When the ratio of the meso-type two-chain to the racemic-type two-chain is within the above range, the mechanical properties and heat resistance of the film can be easily improved. The ratio of the meso-type two-chain to the racemic-type two-chain is, for example, using 13 C-NMR in "RA Wendt, G. Fink, Macromol. Chem. Phys., 2001, 202, 3490" and "Special. It can be calculated based on the attribution described in "Kai 2008-285656", and specifically, it can be calculated by the method described in Examples. As a method for adjusting the meso-type two-chain and the racemo-type two-chain within the above range, there is a method of selecting a catalyst having an appropriate ligand width with respect to the bulkiness of the monomer. As the catalyst, for example, the catalyst described in JP-A-9-183809 can be used.
 ポリマー(B)における前記単量体単位(I)の含有量は、ポリマー(B)を構成する繰り返し単位の合計モル量に対して、好ましくは60mol%以上、より好ましくは65mol%以上、さらに好ましくは70mol%以上、特に好ましくは75mol%以上であり、好ましくは100mol%以下、より好ましくは99mol%以下、さらに好ましくは98mol%以下である。単量体単位(I)の含有量が上記の下限以上であると、Tgを高めやすいため、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性、特に屈曲耐性を向上しやすい。単量体単位(I)の含有量が上記の上限以下であると、屈曲耐性などの機械的特性を高めやすい。単量体単位(I)の含有量は、13C-NMRを用いて、「R.A.Wendt,G.Fink,Macromol.Chem.Phys.,2001,202,3490」に記載の帰属に基づいて算出でき、例えば実施例に記載の方法により算出できる。 The content of the monomer unit (I) in the polymer (B) is preferably 60 mol% or more, more preferably 65 mol% or more, still more preferably 65 mol% or more, based on the total molar amount of the repeating units constituting the polymer (B). Is 70 mol% or more, particularly preferably 75 mol% or more, preferably 100 mol% or less, more preferably 99 mol% or less, still more preferably 98 mol% or less. When the content of the monomer unit (I) is at least the above lower limit, it is easy to increase Tg, so that it is easy to reduce the CTE of the film, and it is easy to improve heat resistance and mechanical properties, particularly bending resistance. When the content of the monomer unit (I) is not more than the above upper limit, it is easy to enhance mechanical properties such as bending resistance. The content of the monomeric unit (I) is based on the attribution described in "RA Wendt, G. Fink, Macromol. Chem. Phys., 2001, 202, 3490" using 13 C-NMR. It can be calculated, for example, by the method described in Examples.
 ポリマー(B)は、フィルムのCTEを低減しやすく、かつ屈曲耐性などの機械的特性を高めやすい観点から、エチレン、炭素数3~20の直鎖状α-オレフィン、及び炭素数8~20の芳香族ビニル化合物からなる群から選択される少なくとも1つに由来する単量体単位(II)を含むことが好ましく、エチレンに由来する単量体単位(II)を含むことがより好ましい。 The polymer (B) has ethylene, a linear α-olefin having 3 to 20 carbon atoms, and 8 to 20 carbon atoms from the viewpoint of easily reducing the CTE of the film and enhancing mechanical properties such as bending resistance. It preferably contains a monomer unit (II) derived from at least one selected from the group consisting of aromatic vinyl compounds, and more preferably contains a monomer unit (II) derived from ethylene.
 炭素数3~20の直鎖状α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン等が挙げられる。これらの中でも、フィルムのCTEを低減しやすく、かつ屈曲耐性などの機械的特性を高めやすい観点から、プロピレン、1-ブテン、1-ヘキセン又は1-オクテンであることが好ましく、プロピレンであることがより好ましい。炭素数3~20の直鎖状α-オレフィンは、1種を単独で用いてもよいし、2種以上を併用してもよい。なお、「直鎖状α-オレフィン」とは、α位に炭素-炭素不飽和二重結合を有する直鎖状のオレフィンをいう。 Examples of the linear α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. .. Among these, propylene, 1-butene, 1-hexene or 1-octene is preferable, and propylene is preferable, from the viewpoint of easily reducing the CTE of the film and easily enhancing the mechanical properties such as bending resistance. More preferred. As the linear α-olefin having 3 to 20 carbon atoms, one type may be used alone, or two or more types may be used in combination. The "linear α-olefin" refers to a linear olefin having a carbon-carbon unsaturated double bond at the α-position.
 炭素数8~20の芳香族ビニル化合物としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、エチルスチレン、tert-ブチルスチレン、ビニルナフタレン、ビニルアントラセン、ジフェニルエチレン、イソプロペニルベンゼン、イソプロペニルトルエン、イソプロペニルエチルベンゼン、イソプロペニルプロピルベンゼン、イソプロペニルブチルベンゼン、イソプロペニルペンチルベンゼン、イソプロペニルヘキシルベンゼン、イソプロペニルオクチルベンゼン、イソプロペニルナフタレン、イソプロペニルアントラセン等が挙げられる。これらの中でも、原料モノマーの入手容易性、及びフィルムのCTEを低減しやすく、かつ屈曲耐性等の機械的特性を高めやすい観点から、好ましくはスチレン、メチルスチレンまたはジメチルスチレンが挙げられ、より好ましくはスチレンが挙げられる。炭素数8~20の芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the aromatic vinyl compound having 8 to 20 carbon atoms include styrene, methylstyrene, dimethylstyrene, ethylstyrene, tert-butylstyrene, vinylnaphthalene, vinylanthracene, diphenylethylene, isopropenylbenzene, isopropenyltoluene and isopropenyl. Examples thereof include ethylbenzene, isopropenylpropylbenzene, isopropenylbutylbenzene, isopropenylpentylbenzene, isopropenylhexylbenzene, isopropenyloctylbenzene, isopropenylnaphthalene, isopropenylanthracene and the like. Among these, styrene, methylstyrene or dimethylstyrene are preferable, and more preferably, from the viewpoint of easy availability of the raw material monomer, easy reduction of CTE of the film, and easy improvement of mechanical properties such as bending resistance. Examples include styrene. As the aromatic vinyl compound having 8 to 20 carbon atoms, one kind may be used alone, or two or more kinds may be used in combination.
 本発明の一実施形態において、シクロオレフィン系ポリマーは、原料モノマーの入手容易性、及びフィルムのCTEを低減しやすく、かつ屈曲耐性等の機械的特性を高めやすい観点から、エチレン、プロピレン及びスチレンからなる群から選択される少なくとも1つに由来する単量体単位(II)、より好ましくはエチレン及びスチレンからなる群から選択される少なくとも1つに由来する単量体単位(II)を含むことが好ましい。 In one embodiment of the present invention, the cycloolefin polymer is made from ethylene, propylene and styrene from the viewpoints of easy availability of raw material monomers, easy reduction of CTE of the film, and easy improvement of mechanical properties such as bending resistance. It may contain a monomer unit (II) derived from at least one selected from the group consisting of ethylene and styrene, more preferably a monomer unit (II) derived from at least one selected from the group consisting of ethylene and styrene. preferable.
 ポリマー(B)における前記単量体単位(II)の含有量は、ポリマー(B)を構成する繰り返し単位の合計モル量に対して、好ましくは0mol%以上、より好ましくは0.01mol%以上、さらに好ましくは1mol%以上、さらにより好ましくは2mol%以上であり、好ましくは40mol%以下、より好ましくは35mol%以下、さらに好ましくは30mol%以下、特に好ましくは25mol%以下である。単量体単位(II)の含有量が上記の下限以上であると、フィルムの屈曲耐性などの機械的特性、加工性・成形性を高めやすい。単量体単位(II)の含有量が上記の上限以下であると、フィルムのCTEを低減しやすく、かつ耐熱性及び屈曲耐性などの機械的特性を向上しやすい。 The content of the monomer unit (II) in the polymer (B) is preferably 0 mol% or more, more preferably 0.01 mol% or more, based on the total molar amount of the repeating units constituting the polymer (B). It is more preferably 1 mol% or more, still more preferably 2 mol% or more, preferably 40 mol% or less, more preferably 35 mol% or less, still more preferably 30 mol% or less, and particularly preferably 25 mol% or less. When the content of the monomer unit (II) is at least the above lower limit, it is easy to improve mechanical properties such as bending resistance of the film, processability and moldability. When the content of the monomer unit (II) is not more than the above upper limit, it is easy to reduce the CTE of the film and to improve the mechanical properties such as heat resistance and bending resistance.
 本発明の一実施形態において、耐熱性、加工性及び屈曲耐性などの機械的特性を向上しやすく、かつCTEを低減しやすい観点から、ポリマー(B)は、シクロオレフィン系コポリマーであることが好ましく、式(I)で表されるシクロオレフィン由来の単量体単位(I)とエチレン、炭素数3~20の直鎖状α-オレフィン及び炭素数8~20の芳香族ビニル化合物からなる群から選択される少なくとも1つに由来する単量体単位(II)とを含むシクロオレフィン系コポリマーであることがより好ましく、ノルボルネンに由来する単量体単位(I)とエチレンに由来する単量体単位(II)とを含むエチレン-ノルボルネン共重合体、又はノルボルネンに由来する単量体単位(I)とスチレンに由来する単量体単位(II)とを含むスチレン-ノルボルネン共重合体であることがさらに好ましい。 In one embodiment of the present invention, the polymer (B) is preferably a cycloolefin-based copolymer from the viewpoint of easily improving mechanical properties such as heat resistance, processability and bending resistance, and easily reducing CTE. , A group consisting of a monomer unit (I) derived from cycloolefin represented by the formula (I), ethylene, a linear α-olefin having 3 to 20 carbon atoms, and an aromatic vinyl compound having 8 to 20 carbon atoms. More preferably, it is a cycloolefinic copolymer containing a monomer unit (II) derived from at least one selected, and a monomer unit (I) derived from norbornene and a monomer unit derived from ethylene. It may be an ethylene-norbornene copolymer containing (II) or a styrene-norbornene copolymer containing a monomer unit (I) derived from norbornene and a monomer unit (II) derived from styrene. More preferred.
 ポリマー(B)は、その他の単量体単位(III)を含んでいてもよい。その他の単量体単位(III)としては、例えば、ブタジエン又はイソプレン等の共役ジエン;1,4-ペンタジエン等の非共役ジエン;アクリル酸;アクリル酸メチル又はアクリル酸エチル等のアクリル酸エステル;メタクリル酸;メタクリル酸メチル又はメタクリル酸エチル等のメタクリル酸エステル;酢酸ビニル等が挙げられる。その他の単量体単位(III)は単独又は二種以上組合せて使用できる。
 なお、ポリマー(B)は単独又は二種以上組合せて使用できる。
The polymer (B) may contain other monomeric units (III). Other monomeric units (III) include, for example, conjugated diene such as butadiene or isoprene; non-conjugated diene such as 1,4-pentadien; acrylic acid; acrylic acid ester such as methyl acrylate or ethyl acrylate; methacrylic. Acids; methacrylic acid esters such as methyl methacrylate or ethyl methacrylate; vinyl acetate and the like. The other monomer unit (III) can be used alone or in combination of two or more.
The polymer (B) can be used alone or in combination of two or more.
 本発明の一実施形態において、ポリマー(B)の重量平均分子量(以下、重量平均分子量をMwと略すことがある)は、好ましくは30,000以上、より好ましくは50,000以上、さらに好ましくは70,000以上、特に好ましくは90,000以上であり、好ましくは2,000,000以下、より好ましくは1,000,000以下、さらに好ましくは700,000以下である。Mwが上記の下限以上であると、耐熱性を高めやすく、かつ強度を向上しやすい。Mwが上記の上限以下であると、屈曲耐性などの機械的特性及び成形性を高めやすい。 In one embodiment of the present invention, the weight average molecular weight of the polymer (B) (hereinafter, the weight average molecular weight may be abbreviated as Mw) is preferably 30,000 or more, more preferably 50,000 or more, still more preferably. It is 70,000 or more, particularly preferably 90,000 or more, preferably 2,000,000 or less, more preferably 1,000,000 or less, still more preferably 700,000 or less. When Mw is at least the above lower limit, heat resistance is likely to be increased and strength is likely to be improved. When Mw is not more than the above upper limit, it is easy to improve mechanical properties such as bending resistance and moldability.
 本発明の一実施形態において、ポリマー(B)のMwと数平均分子量(以下、数平均分子量をMnと略すことがある)との比(Mw/Mn)は、ポリスチレン換算で、好ましくは2.5以下、より好ましくは2.2以下、さらに好ましくは2.0以下、さらにより好ましくは1.95以下、特に好ましくは1.90以下であり、好ましくは1.30以上、より好ましくは1.50以上、さらに好ましくは1.60以上、特に好ましくは1.65以上である。Mw/Mn比が上記の上限以下であると、フィルムの屈曲耐性などの機械的特性を高めやすく、また上記の下限以上であると成形性を高めやすい。なお、Mw及びMnは、ゲルパーミエーションクロマトグラフィー(以下、GPCと略すことがある)測定を行い、標準ポリスチレン換算により求めることができ、例えば実施例に記載の方法により求められる。 In one embodiment of the present invention, the ratio (Mw / Mn) of Mw of the polymer (B) to the number average molecular weight (hereinafter, the number average molecular weight may be abbreviated as Mn) is preferably 2. 5 or less, more preferably 2.2 or less, still more preferably 2.0 or less, even more preferably 1.95 or less, particularly preferably 1.90 or less, preferably 1.30 or more, still more preferably 1. It is 50 or more, more preferably 1.60 or more, and particularly preferably 1.65 or more. When the Mw / Mn ratio is not more than the above upper limit, it is easy to improve mechanical properties such as bending resistance of the film, and when it is more than the above lower limit, it is easy to improve the moldability. In addition, Mw and Mn can be determined by gel permeation chromatography (hereinafter, may be abbreviated as GPC) measurement and converted to standard polystyrene, and can be determined, for example, by the method described in Examples.
 本発明の一実施形態において、CTEが低減されたフィルムを得られやすい観点から、ポリマー(B)の屈折率は、好ましくは1.600以下、より好ましくは1.570以下、さらに好ましくは1.550以下であり、好ましくは1.500以上、より好ましくは1.520以上である。ポリマー(B)の屈折率は屈折計により測定でき、例えば実施例に記載の方法により測定できる。 In one embodiment of the present invention, the refractive index of the polymer (B) is preferably 1.600 or less, more preferably 1.570 or less, still more preferably 1. It is 550 or less, preferably 1.500 or more, and more preferably 1.520 or more. The refractive index of the polymer (B) can be measured by a refractometer, for example, by the method described in Examples.
 本発明の一実施形態において、ポリマー(B)のCTEは、好ましくは58ppm/K以下、より好ましくは55ppm/K以下、さらに好ましくは50ppm/K以下であり、好ましくは0ppm/K以上、より好ましくは0.01ppm/K以上、さらに好ましくは1ppm/K以上、さらにより好ましくは5ppm/K以上である。ポリマー(B)のCTEが上記の上限以下であると、得られるフィルムのCTEを低減しやすい。また、銅箔と貼り合せてCCLを作製する場合には、積層フィルムの剥がれ防止の観点から、フィルムのCTEを20ppm/K前後に調整することが好ましい。混合する樹脂のCTEに応じて、最適なCTEを有するポリマー(B)を選択することができる。なお、CTEは、例えばTMAにより測定でき、実施例に記載の方法により求められる。 In one embodiment of the present invention, the CTE of the polymer (B) is preferably 58 ppm / K or less, more preferably 55 ppm / K or less, still more preferably 50 ppm / K or less, preferably 0 ppm / K or more, more preferably. Is 0.01 ppm / K or more, more preferably 1 ppm / K or more, still more preferably 5 ppm / K or more. When the CTE of the polymer (B) is not more than the above upper limit, it is easy to reduce the CTE of the obtained film. Further, when CCL is produced by laminating with a copper foil, it is preferable to adjust the CTE of the film to around 20 ppm / K from the viewpoint of preventing the laminated film from peeling off. The polymer (B) having the optimum CTE can be selected according to the CTE of the resin to be mixed. The CTE can be measured by, for example, TMA, and can be obtained by the method described in Examples.
 ポリマー(B)の含有量は、前記フィルムに含まれるポリマー(B)及び樹脂(A)の合計質量に対して、通常1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上であり、好ましくは65質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは35質量%以下である。ポリマー(B)の含有量が上記範囲であると、フィルムのCTEを低減しやすく、かつ誘電特性及び屈曲耐性などの機械的特性を高めやすい。また、粒子状のポリマー(B)(以下、粒子状ポリマー(B)ということがある)が分散したフィルムにおいては、分散性を高めやすく、結果としてフィルムの物性、例えば熱伝導率(又は熱拡散率)等のバラツキを低減しやすい。 The content of the polymer (B) is usually 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, based on the total mass of the polymer (B) and the resin (A) contained in the film. It is more preferably 15% by mass or more, preferably 65% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less. When the content of the polymer (B) is in the above range, it is easy to reduce the CTE of the film, and it is easy to improve the mechanical properties such as the dielectric property and the bending resistance. Further, in a film in which a particulate polymer (B) (hereinafter, may be referred to as a particulate polymer (B)) is dispersed, it is easy to improve the dispersibility, and as a result, the physical characteristics of the film, for example, thermal conductivity (or thermal diffusivity), are easily enhanced. It is easy to reduce variations such as rate).
 本発明のフィルムに含まれるポリマー(B)の形態は特に限定されないが、例えば粒子状、繊維状、シート状などが挙げられ、フィルム中に均一に分散させやすく、耐熱性及び屈曲耐性などの機械的特性を向上しやすく、かつCTEを低減しやすい観点から、粒子状であることが好ましい。 The form of the polymer (B) contained in the film of the present invention is not particularly limited, and examples thereof include particle-like, fibrous, and sheet-like ones, which are easily uniformly dispersed in the film and have heat resistance and bending resistance. It is preferably in the form of particles from the viewpoint that it is easy to improve the target characteristics and reduce CTE.
 ポリマー(B)のTg及び融点を調整する方法は、特に限定されないが、例えば単量体単位(I)の含有量、ポリマー(B)のMw、結晶化度等を適宜調整する方法が挙げられる。単量体単位(I)の含有量、ポリマー(B)のMw、及び結晶化度からなる群から選択される少なくとも1つが大きくなるほど、ポリマー(B)のTg及び融点が高くなる傾向がある。 The method for adjusting the Tg and the melting point of the polymer (B) is not particularly limited, and examples thereof include a method for appropriately adjusting the content of the monomer unit (I), the Mw of the polymer (B), the degree of crystallinity, and the like. .. The larger the content of the monomer unit (I), the Mw of the polymer (B), and at least one selected from the group consisting of the degree of crystallinity, the higher the Tg and melting point of the polymer (B) tend to be.
 <ポリマー(B)の製造方法>
 ポリマー(B)の製造方法は特に限定されないが、式(IV)で表される遷移金属錯体(α)を一成分として使用してなる触媒の存在下、ポリマー(B)を形成する単量体、例えば式(I)で表されるシクロオレフィン、前記エチレン、炭素数3~20の直鎖状α-オレフィン、及び炭素数8~20の芳香族ビニル化合物からなる群から選ばれる少なくとも1つの単量体、及び任意に前記その他の単量体を重合させることにより製造することが好ましい。本発明におけるポリマー(B)の製造では、式(IV)で表される遷移金属錯体(α)を用いるため、ポリマー(B)中の単量体単位(I)の含有量を顕著に増加させやすく、Tgを上記範囲内に調整しやすい。
<Manufacturing method of polymer (B)>
The method for producing the polymer (B) is not particularly limited, but the monomer forming the polymer (B) in the presence of a catalyst using the transition metal complex (α) represented by the formula (IV) as one component. At least one single selected from the group consisting of, for example, a cycloolefin represented by the formula (I), the ethylene, a linear α-olefin having 3 to 20 carbon atoms, and an aromatic vinyl compound having 8 to 20 carbon atoms. It is preferably produced by polymerizing a weight and optionally the other monomer. In the production of the polymer (B) in the present invention, since the transition metal complex (α) represented by the formula (IV) is used, the content of the monomer unit (I) in the polymer (B) is significantly increased. It is easy to adjust Tg within the above range.
Figure JPOXMLDOC01-appb-C000007

[式(IV)中、Mは元素の周期律表の第4族の遷移金属元素を表し、
Cpはシクロペンタジエニル骨格を有する基を表し、
Aは元素の周期律表の第16族の原子を表し、
Tは元素の周期律表の第14族の原子を表し、
及びDは、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基又は炭素数2~20の2置換アミノ基を表し、それらは同一であってもよく、異なってもよい。
~Rは水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~20の2置換アミノ基又は炭素数1~20のシリル基を表し、それらは同一であってもよく、異なってもよく、さらにそれらは任意に結合して環を形成してもよい。]
Figure JPOXMLDOC01-appb-C000007

[In equation (IV), M represents a Group 4 transition metal element in the Periodic Table of the Elements.
Cp represents a group having a cyclopentadienyl skeleton and represents
A represents a group 16 atom in the periodic table of elements,
T represents an atom of Group 14 in the periodic table of elements.
D 1 and D 2 are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 6 to 20 carbon atoms. It represents an aryloxy group or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different.
R 1 to R 6 are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms. Represents an oxy group, a disubstituted amino group having 2 to 20 carbon atoms or a silyl group having 1 to 20 carbon atoms, which may be the same or different, and they may be arbitrarily bonded to form a ring. You may. ]
 Mは、元素の周期律表(IUPAC無機化学命名法改訂版1989)の第4族の遷移金属元素であり、例えば、チタニウム原子、ジルコニウム原子、ハフニウム原子等が挙げられる。 M is a transition metal element of Group 4 of the Periodic Table of Elements (IUPAC Inorganic Chemistry Naming Method Revised Edition 1989), and examples thereof include a titanium atom, a zirconium atom, and a hafnium atom.
 Cpは、シクロペンタジエニル骨格を有する基であり、例えば、シクロペンタジエニル、置換シクロペンタジエニル、インデニル、置換インデニル、フルオレニル、置換フルオレニル等が挙げられる。具体例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、n-プロピルシクロペンタジエニル基、n-ブチルシクロペンタジエニル基、イソブチルシクロペンタジエニル基、フェニルシクロペンタジエニル基、インデニル基、メチルインデニル基、n-プロピルインデニル基、n-ブチルインデニル基、イソブチルインデニル基、フェニルインデニル基、フルオレニル基、メチルフルオレニル基、n-プロピルフルオレニル基、フェニルフルオレニル基、ジメチルフルオレニル基等が挙げられる。これらの中でも、好ましくはシクロペンタジエニル基、メチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、n-ブチルシクロペンタジエニル基、イソブチルシクロペンタジエニル基、インデニル基、メチルインデニル基又はフルオレニル基が挙げられる。 Cp is a group having a cyclopentadienyl skeleton, and examples thereof include cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl, substituted fluorenyl and the like. Specific examples include a cyclopentadienyl group, a methylcyclopentadienyl group, a tetramethylcyclopentadienyl group, an n-propylcyclopentadienyl group, an n-butylcyclopentadienyl group, and an isobutylcyclopentadienyl group. , Phenylcyclopentadienyl group, indenyl group, methylindenyl group, n-propylindenyl group, n-butylindenyl group, isobutylindenyl group, phenylindenyl group, fluorenyl group, methylfluorenyl group, n -A propylfluorenyl group, a phenylfluorenyl group, a dimethylfluorenyl group and the like can be mentioned. Among these, preferably a cyclopentadienyl group, a methylcyclopentadienyl group, a tetramethylcyclopentadienyl group, an n-butylcyclopentadienyl group, an isobutylcyclopentadienyl group, an indenyl group, a methylindenyl group. Alternatively, a fluorenyl group may be mentioned.
 Aは、元素の周期律表の第16族の原子であり、例えば、酸素原子、硫黄原子等が挙げられる。これらの中でも、酸素原子であることが好ましい。 A is an atom of Group 16 in the periodic table of elements, and examples thereof include an oxygen atom and a sulfur atom. Among these, an oxygen atom is preferable.
 Tは、元素の周期律表の第14族の原子であり、例えば、炭素原子、ケイ素原子、ゲルマニウム原子等が挙げられる。これらの中でも、炭素原子又はケイ素原子であることが好ましい。 T is an atom of Group 14 of the periodic table of elements, and examples thereof include a carbon atom, a silicon atom, and a germanium atom. Among these, a carbon atom or a silicon atom is preferable.
 D、Dは、互いに独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基又は炭素数2~20の2置換アミノ基であり、それらは同一であってもよく、異なってもよい。これらの中でも、ハロゲン原子であることが好ましい。 D 1 and D 2 are independent of each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. It is an aryloxy group of 6 to 20 or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different. Among these, a halogen atom is preferable.
 D、Dがハロゲン原子である場合の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Specific examples of cases where D 1 and D 2 are halogen atoms include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 D、Dが炭化水素基である場合、その炭素数は好ましくは1~10である。前記炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-オクチル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、ナフチル基、ベンジル基等が挙げられる。 When D 1 and D 2 are hydrocarbon groups, the number of carbon atoms thereof is preferably 1 to 10. Examples of the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and n-hexyl. Examples thereof include a group, an n-octyl group, a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a naphthyl group, a benzyl group and the like.
 D、Dがハロゲン化炭化水素基である場合の具体例としては、フルオロメチル基、ジフルオロメチル基、1-フルオロエチル基、1,1-ジフルオロエチル基、1,2-ジフルオロエチル基、1,1,2-トリフルオロエチル基、テトラフルオロエチル基、クロロメチル基、ジクロロメチル基、1-クロロエチル基、1,1-ジクロロエチル基、1,2-ジクロロエチル基、1,1,2-トリクロロエチル基、1,1,2,2-テトラクロロエチル基、ブロモメチル基、ジブロモメチル基、1-ブロモエチル基、1,1-ジブロモエチル基、1,2-ジブロモエチル基、1,1,2-トリブロモエチル基、1,1,2,2-テトラブロモエチル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,3,4-トリフルオロフェニル基、2,3,5-トリフルオロフェニル基、2,3,6-トリフルオロフェニル基、2,3,4,5-テトラフルオロフェニル基、2,3,4,6-テトラフルオロフェニル基、ペンタフルオロフェニル基、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、2,3-ジクロロフェニル基、2,4-ジクロロフェニル基、2,5-ジクロロフェニル基、2,6-ジクロロフェニル基、2,3,4-トリクロロフェニル基、2,3,5-トリクロロフェニル基、2,3,6-トリクロロフェニル基、2,3,4,5-テトラクロロフェニル基、2,3,4,6-テトラクロロフェニル基、ペンタクロロフェニル基、2-ブロモフェニル基、3-ブロモフェニル基、4-ブロモフェニル基、2,3-ジブロモフェニル基、2,4-ジブロモフェニル基、2,5-ジブロモフェニル基、2,6-ジブロモフェニル基、2,3,4-トリブロモフェニル基、2,3,5-トリブロモフェニル基、2,3,6-トリブロモフェニル基、2,3,4,5-テトラブロモフェニル基、2,3,4,6-テトラブロモフェニル基、ペンタブロモフェニル基等が挙げられる。 Specific examples of cases where D 1 and D 2 are halogenated hydrocarbon groups include a fluoromethyl group, a difluoromethyl group, a 1-fluoroethyl group, a 1,1-difluoroethyl group, and a 1,2-difluoroethyl group. 1,1,2-trifluoroethyl group, tetrafluoroethyl group, chloromethyl group, dichloromethyl group, 1-chloroethyl group, 1,1-dichloroethyl group, 1,2-dichloroethyl group, 1,1,2 -Trichloroethyl group, 1,1,2,2-tetrachloroethyl group, bromomethyl group, dibromomethyl group, 1-bromoethyl group, 1,1-dibromoethyl group, 1,2-dibromoethyl group, 1,1,2 -Tribromoethyl group, 1,1,2,2-tetrabromoethyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,3-difluorophenyl group, 2,4-difluoro Phenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 2,3,4-trifluorophenyl group, 2,3,5-trifluorophenyl group, 2,3,6-trifluorophenyl Group, 2,3,4,5-tetrafluorophenyl group, 2,3,4,6-tetrafluorophenyl group, pentafluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2, 3-Dichlorophenyl group, 2,4-dichlorophenyl group, 2,5-dichlorophenyl group, 2,6-dichlorophenyl group, 2,3,4-trichlorophenyl group, 2,3,5-trichlorophenyl group, 2,3 6-Trichlorophenyl group, 2,3,4,5-tetrachlorophenyl group, 2,3,4,6-tetrachlorophenyl group, pentachlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl Group, 2,3-dibromophenyl group, 2,4-dibromophenyl group, 2,5-dibromophenyl group, 2,6-dibromophenyl group, 2,3,4-tribromophenyl group, 2,3,5 -Tribromophenyl group, 2,3,6-tribromophenyl group, 2,3,4,5-tetrabromophenyl group, 2,3,4,6-tetrabromophenyl group, pentabromophenyl group and the like. Be done.
 D、Dがアルコキシ基である場合の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、ネオペントキシ基、n-ヘキソキシ基、n-オクトキシ基等が挙げられる。 Specific examples of the cases where D 1 and D 2 are alkoxy groups include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group and n-. Examples thereof include a pentoxy group, a neopentoxy group, an n-hexoxy group, an n-octoxy group and the like.
 D、Dがアリールオキシ基である場合の具体例としては、フェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、ナフチルオキシ基等が挙げられる。 Specific examples of the cases where D 1 and D 2 are aryloxy groups include a phenoxy group, a 2-methylphenoxy group, a 3-methylphenoxy group, a 4-methylphenoxy group, a naphthyloxy group and the like.
 D、Dが2置換アミノ基である場合の2置換アミノ基とは、置換基が2個結合したアミノ基である。その具体例としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジイソブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基、ジ-n-ヘキシルアミノ基、ジ-n-オクチルアミノ基、ジフェニルアミノ基等が挙げられる。 When D 1 and D 2 are disubstituted amino groups, the disubstituted amino group is an amino group in which two substituents are bonded. Specific examples thereof include dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-sec-butylamino group and di-tert-butyl. Examples thereof include an amino group, a di-n-hexyl amino group, a di-n-octyl amino group, and a diphenyl amino group.
 R~Rは、互いに独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~20の2置換アミノ基又は炭素数1~20のシリル基を表し、それらは同一であってもよく、異なってもよく、さらにそれらは任意に結合して環を形成してもよい。これらの中でも、炭素数1~20の炭化水素基であることが好ましい。 R 1 to R 6 are independent of each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. It represents an aryloxy group of 6 to 20, a disubstituted amino group of 2 to 20 carbon atoms or a silyl group of 1 to 20 carbon atoms, which may be the same or different, and they may be optionally bonded. May form a ring. Among these, a hydrocarbon group having 1 to 20 carbon atoms is preferable.
 R~Rが炭化水素基である場合、炭素数は1~10であることが好ましい。その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-オクチル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、2,3,4,6-テトラメチルフェニル基、ペンタメチルフェニル基等が挙げられる。 When R 1 to R 6 are hydrocarbon groups, the number of carbon atoms is preferably 1 to 10. Specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and n-hexyl group. , N-octyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group , 2,6-dimethylphenyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,3,4,5-tetramethylphenyl Groups, 2,3,4,6-tetramethylphenyl group, pentamethylphenyl group and the like can be mentioned.
 R~Rがハロゲン原子、ハロゲン化炭化水素基、アルコキシ基、アリールオキシ基、及び2置換アミノ基である場合の具体例としては、D、Dがハロゲン原子、ハロゲン化炭化水素基、アルコキシ基、アリールオキシ基、及び2置換アミノ基である場合の具体例として上記に例示したものが挙げられる。 Specific examples of cases where R 1 to R 6 are a halogen atom, a halogenated hydrocarbon group, an alkoxy group, an aryloxy group, and a disubstituted amino group include D 1 and D 2 as a halogen atom and a halogenated hydrocarbon group. As specific examples in the case of an alkoxy group, an aryloxy group, and a disubstituted amino group, those exemplified above can be mentioned.
 R~Rがシリル基である場合の具体例としては、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、トリ-n-ブチルシリル基、トリイソブチルシリル基、トリ-sec-ブチルシリル基、トリ-tert-ブチルシリル基、トリフェニルシリル基等が挙げられる。 Specific examples of cases where R 1 to R 6 are silyl groups include a trimethylsilyl group, a triethylsilyl group, a tri-n-propylsilyl group, a triisopropylsilyl group, a tri-n-butylsilyl group, a triisobutylsilyl group, and a tri. Examples thereof include -sec-butylsilyl group, tri-tert-butylsilyl group and triphenylsilyl group.
 このような、式(IV)で表される化合物の具体例としては、イソプロピリデン(シクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(メチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(ジメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(トリメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(テトラメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-プロピルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-ブチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(イソブチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(フェニルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(シクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(メチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(ジメチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(トリメチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(テトラメチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-プロピルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-ブチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(イソブチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(フェニルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(シクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(メチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(ジメチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(トリメチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(テトラメチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-プロピルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-ブチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(イソブチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(フェニルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド等が挙げられる。 Specific examples of such a compound represented by the formula (IV) include isopropanol (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride and isopropyridene (methylcyclo). Pentazienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropylidene (dimethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropi Reden (trimethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropylidene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) ) Titanium dichloride, isopropylidene (n-propylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropylidene (n-butylcyclopentadienyl) (3-tert-butyl -5-Methyl-2-phenoxy) Titanium dichloride, isopropylidene (isobutylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropylidene (phenylcyclopentadienyl) (3) -Tert-Butyl-5-methyl-2-phenoxy) titanium dichloride, isopropylidene (cyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, isopropylidene (methylcyclopentadienyl) (3- tert-Butyl-2-phenoxy) Titanium dichloride, isopropylidene (dimethylcyclopentadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropyridene (trimethylcyclopentadienyl) (3-tert-butyl- 2-Phenoxy) Titanium dichloride, isopropanol (tetramethylcyclopentadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropyridene (n-propylcyclopentadienyl) (3-tert-butyl-2) -Phenoxy) Titanium dichloride, isopropylidene (n-butylcyclopentadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropyridene (isobutylcyclope) Ntadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropylidene (phenylcyclopentadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropylidene (cyclopentadienyl) (2- Phenoxy) Titanium Dichloride, Isopropyridene (Methylcyclopentadienyl) (2-Phenoxy) Titanium Dichloride, Isopropylidene (dimethylcyclopentadienyl) (2-Phenoxy) Titanium Dichloride, Isopropyridene (trimethylcyclopentadienyl) (2) -Phenoxy) Titanium Dichloride, Isopropyridene (Tetramethylcyclopentadienyl) (2-Phenoxy) Titanium Dichloride, Isopropyridene (n-propylcyclopentadienyl) (2-Phenoxy) Titanium Dichloride, Isopropyridene (n-Butylcyclo) Examples thereof include pentadienyl) (2-phenoxy) titanium dichloride, isopropylidene (isobutylcyclopentadienyl) (2-phenoxy) titanium dichloride, isopropyridene (phenylcyclopentadienyl) (2-phenoxy) titanium dichloride and the like.
 また、上記の具体例におけるチタニウムをジルコニウムあるいはハフニウムに変更した化合物、及び、それらを含めイソプロピリデンをジメチルシリレン、ジフェニルシリレン、メチレンに変更した化合物についても同様に例示できる。更に、ジクロライドをジブロマイド、ジアイオダイド、ジメチル、ジベンジル、ジメトキシド、ジエトキシドに変更した化合物についても、同様に例示することができる。 Further, the compound in which titanium is changed to zirconium or hafnium in the above specific example, and the compound in which isopropridene is changed to dimethylsilylene, diphenylcilylene, and methylene including them can be similarly exemplified. Further, a compound in which dichloride is changed to dibromide, diiodide, dimethyl, dibenzyl, dimethoxydo, or diethoxyde can be similarly exemplified.
 上記の式(IV)で表される遷移金属錯体(α)は、種々の助触媒と組合せて、本発明の一実施形態に係るポリマー(B)を製造するための触媒として使用できる。助触媒とは、遷移金属錯体(α)と相互作用をして、環状オレフィン、アルケニル芳香族炭化水素に対する重合活性種を生成せしめる化合物のことである。その例としては、有機アルミニウム化合物(β)及び/又は下記式(γ1)~式(γ3)のいずれかで表されるホウ素化合物(γ)を挙げることができるが、これらの助触媒を使用することにより生成する重合活性種の構造は明らかではない。 The transition metal complex (α) represented by the above formula (IV) can be used as a catalyst for producing the polymer (B) according to the embodiment of the present invention in combination with various co-catalysts. The cocatalyst is a compound that interacts with the transition metal complex (α) to produce a polymerization active species for cyclic olefins and alkenyl aromatic hydrocarbons. Examples thereof include organoaluminum compounds (β) and / or boron compounds (γ) represented by any of the following formulas (γ1) to (γ3), and these co-catalysts are used. The structure of the polymerization active species produced by this is not clear.
式(γ1) BQ
式(γ2) J(BQ
式(γ3) (L-H)(BQ
[式(γ1)~式(γ3)中、Bは3価の原子価状態のホウ素原子を表し、
~Qは、互いに独立に、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20の置換シリル基、炭素数1~20のアルコキシ基又は炭素数2~20の2置換アミノ基を表し、
は、無機又は有機のカチオンを表し、
Lは、中性ルイス塩基を表し、(L-H)はブレンステッド酸を表す。]
Equation (γ1) BQ 1 Q 2 Q 3
Equation (γ2) J + (BQ 1 Q 2 Q 3 Q 4 )
Equation (γ3) (L—H) + (BQ 1 Q 2 Q 3 Q 4 )
[In the formulas (γ1) to (γ3), B represents a boron atom in a trivalent valence state.
Q1 to Q4 are independent of each other, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Represents a 20 alkoxy group or a disubstituted amino group having 2 to 20 carbon atoms.
J + represents an inorganic or organic cation
L represents a neutral Lewis base and (L—H) + represents a Bronsted acid. ]
 前記有機アルミニウム化合物(β)としては、公知の有機アルミニウム化合物が使用できる。具体的には、式(β1)で表される有機アルミニウム化合物、式(β2)で表される構造を有する環状のアルミノキサン及び式(β3)で表される構造を有する線状のアルミノキサンが挙げられ、これらは単独でも、あるいは2種以上を混合して用いることができる。 As the organoaluminum compound (β), a known organoaluminum compound can be used. Specific examples thereof include organoaluminum compounds represented by the formula (β1), cyclic aluminoxane having a structure represented by the formula (β2), and linear aluminoxane having a structure represented by the formula (β3). , These can be used alone or in combination of two or more.
式(β1)E AlZ3-a
式(β2){-Al(E)-O-}
式(β3)E{-Al(E)-O-}AlE
[式(β1)~式(β3)中、E、E及びEは、互いに独立に、炭素数1~8の炭化水素基を表し、全てのE、全てのE及び全てのEは同一であってもよく、異なっていてもよく、Zは水素又はハロゲンを表し、全てのZは同一であってもよく、異なっていてもよく、aは0~3の整数を表し、bは2以上の整数を表し、cは1以上の整数を表す。]
Equation (β1) E 1 a AlZ 3-a
Equation (β2) {-Al (E 2 ) -O-} b
Equation (β3) E 3 {-Al (E 3 ) -O-} c AlE 3 2
[In formulas (β1) to (β3), E1 , E2 and E3 represent hydrocarbon groups having 1 to 8 carbon atoms independently of each other , and all E1, all E2 and all. E 3 may be the same or different, Z may represent hydrogen or halogen, all Z may be the same or different, and a represents an integer of 0-3. , B represent an integer of 2 or more, and c represents an integer of 1 or more. ]
 式(β1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジプロピルアルミニウムクロライド、ジイソブチルアルミニウムクロライド、ジヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、プロピルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライドなどが挙げられる。これらの中でも、好ましくはトリアルキルアルミニウムが挙げられ、より好ましくはトリエチルアルミニウム又はトリイソブチルアルミニウムが挙げられる。 Specific examples of the formula (β1) include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum; dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, and the like. Dialkylaluminum chloride such as dihexylaluminum chloride; alkylaluminum dichloride such as methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride; dimethylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, diisobutylaluminum hydride , Dialkylaluminum hydride such as dihexylaluminum hydride and the like. Among these, trialkylaluminum is preferable, and triethylaluminum or triisobutylaluminum is more preferable.
 式(β2)、式(β3)における、E、Eの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、ネオペンチル基等のアルキル基が挙げられる。これらの中でも、好ましくはメチル基又はイソブチル基が挙げられる。bは2以上の整数であり、好ましくは2~40の整数である。cは1以上の整数であり、好ましくは1~40の整数である。 Specific examples of E 2 and E 3 in the formula (β2) and the formula (β3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group and neopentyl. Examples thereof include an alkyl group such as a group. Among these, a methyl group or an isobutyl group is preferable. b is an integer of 2 or more, preferably an integer of 2 to 40. c is an integer of 1 or more, preferably an integer of 1 to 40.
 上記のアルミノキサンは各種の方法で作られる。その方法については特に限定されず、公知の方法に準じて作ればよい。例えば、トリアルキルアルミニウム、例えば、トリメチルアルミニウム等を適当な有機溶剤、例えば、ベンゼン、脂肪族炭化水素などに溶かした溶液を水と接触させて作る方法、トリアルキルアルミニウム、例えば、トリメチルアルミニウム等を、結晶水を含んでいる金属塩、例えば、硫酸銅水和物等に接触させて作る方法が例示できる。 The above aluminoxane is made by various methods. The method is not particularly limited, and it may be produced according to a known method. For example, a method for making a solution of trialkylaluminum, for example, trimethylaluminum, etc. in a suitable organic solvent, for example, benzene, an aliphatic hydrocarbon, etc., in contact with water, trialkylaluminum, for example, trimethylaluminum, etc. An example is a method of making the solution by contacting it with a metal salt containing water of crystallization, for example, copper sulfate hydrate.
 ホウ素化合物(γ)としては、式(γ1)、式(γ2)又は式(γ3)で表されるホウ素化合物のいずれかを用いることができる。 As the boron compound (γ), any of the boron compounds represented by the formula (γ1), the formula (γ2) or the formula (γ3) can be used.
 式(γ1)において、Bは3価の原子価状態のホウ素原子を表し、Q~Qは、互いに独立に、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20の置換シリル基、炭素数1~20のアルコキシ基又は炭素数2~20の2置換アミノ基を表し、それらは同一であってもよく、異なっていてもよい。Q~Qは、互いに独立に、好ましくはハロゲン原子、炭素数1~20の炭化水素基、又は、炭素数1~20のハロゲン化炭化水素基である。 In the formula (γ1), B represents a boron atom in a trivalent valence state, and Q1 to Q3 are halogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, and carbon atoms 1 to 20 independently of each other. Represents a halogenated hydrocarbon group, a substituted silyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different. May be good. Q1 to Q3 are independent of each other, preferably a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms.
 式(γ1)で表されるホウ素化合物の具体例としては、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6-テトラフルオロフェニル)ボラン、トリス(2,3,4,5-テトラフルオロフェニル)ボラン、トリス(3,4,5-トリフルオロフェニル)ボラン、トリス(2,3,4-トリフルオロフェニル)ボラン、フェニルビス(ペンタフルオロフェニル)ボラン等が挙げられ、好ましくはトリス(ペンタフルオロフェニル)ボランが挙げられる。 Specific examples of the boron compound represented by the formula (γ1) include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, and tris (2,3,4,5-). Examples thereof include tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like, and tris is preferable. (Pentafluorophenyl) Borane can be mentioned.
 式(γ2)において、Bは3価の原子価状態のホウ素原子を表し、Q~Qは上記の式(γ1)におけるQ~Qと同様である。
 また、Jは無機又は有機のカチオンを表す。
In the formula (γ2), B represents a boron atom in a trivalent valence state, and Q1 to Q4 are the same as Q1 to Q3 in the above formula (γ1).
Further, J + represents an inorganic or organic cation.
 Jにおける無機のカチオンとしては、フェロセニウムカチオン、アルキル置換フェロセニウムカチオン、銀陽イオン等が挙げられる。
 Jにおける有機のカチオンとしては、トリフェニルメチルカチオン等が挙げられる。
 (BQとしては、テトラキス(ペンタフルオロフェニル)ボレートアニオン、テトラキス(2,3,5,6-テトラフルオロフェニル)ボレートアニオン、テトラキス(2,3,4,5-テトラフルオロフェニル)ボレートアニオン、テトラキス(3,4,5-トリフルオロフェニル)ボレートアニオン、テトラキス(2,2,4-トリフルオロフェニル)ボレートアニオン、フェニルビス(ペンタフルオロフェニル)ボレートアニオン、テトラキス(3,5-ビストリフルオロメチルフェニル)ボレートアニオン等が挙げられる。
Examples of the inorganic cation in J + include a ferrosenium cation, an alkyl-substituted ferrosenium cation, and a silver cation.
Examples of the organic cation in J + include triphenylmethyl cation and the like.
(BQ 1 Q 2 Q 3 Q 4 ) -As tetrakis (pentafluorophenyl) borate anion, tetrakis (2,3,5,6-tetrafluorophenyl) borate anion, tetrakis (2,3,4,5- Tetrafluorophenyl) borate anion, tetrakis (3,4,5-trifluorophenyl) borate anion, tetrakis (2,2,4-trifluorophenyl) borate anion, phenylbis (pentafluorophenyl) borate anion, tetrakis (3) , 5-Bistrifluoromethylphenyl) Borate anion and the like.
 これらの具体的な組合せとしては、フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、銀テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルメチルテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート等が挙げられ、好ましくはトリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。 Specific combinations thereof include ferrosenium tetrakis (pentafluorophenyl) borate, 1,1'-dimethylferrosenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, and triphenylmethyl tetrakis. Examples thereof include (pentafluorophenyl) borate, triphenylmethyltetrakis (3,5-bistrifluoromethylphenyl) borate, and preferably triphenylmethyltetrakis (pentafluorophenyl) borate.
 式(γ3)において、Bは3価の原子価状態のホウ素を表し、Q~Qは上記の式(γ1)におけるQ~Qと同様である。また、Lは中性ルイス塩基を表し、(L-H)はブレンステッド酸を表す。 In the formula (γ3), B represents boron in a trivalent valence state, and Q1 to Q4 are the same as Q1 to Q3 in the above formula (γ1). Further, L represents a neutral Lewis base, and (L—H) + represents a Bronsted acid.
 式(γ3)において、ブレンステッド酸である(L-H)としては、トリアルキル置換アンモニウムカチオン、N,N-ジアルキルアニリニウムカチオン、ジアルキルアンモニウムカチオン、トリアリ-ルホスホニウムカチオン等が挙げられる。(BQとしては、前述と同様のものが挙げられる。 In the formula (γ3), examples of the Bronsted acid (L—H) + include trialkyl-substituted ammonium cations, N, N-dialkylanilinium cations, dialkylammonium cations, and triallylphosphonium cations. As (BQ 1 Q 2 Q 3 Q 4 ) - , the same as described above can be mentioned.
 これらの具体的な組合せとしては、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、ジ-iso-プロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(メチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ジメチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。これらの中でも、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、又は、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートであることが好ましい。 Specific combinations thereof include triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, and tri (n-butyl). ) Ammonium tetrakis (3,5-bistrifluoromethylphenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-2 , 4,6-Pentamethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (3,5-bistrifluoromethylphenyl) borate, di-iso-propylammonium tetrakis (pentafluorophenyl) borate , Dicyclohexylammonium tetrakis (pentafluorophenyl) borate, triphenylphosphonium tetrakis (pentafluorophenyl) borate, tri (methylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, tri (dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, etc. Can be mentioned. Among these, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate or N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate is preferable.
 助触媒としては、有機アルミニウム化合物(β)及び化合物(γ)を併用することが好ましい。 As the co-catalyst, it is preferable to use organoaluminum compound (β) and compound (γ) in combination.
 式(IV)で表される遷移金属錯体(α)、有機アルミニウム化合物(β)及び/又は化合物(γ)は、重合時に任意の順序で投入し使用することができるが、それらの任意の化合物の組合せを予め接触させて得られた反応物を用いてもよい。 The transition metal complex (α) represented by the formula (IV), the organoaluminum compound (β) and / or the compound (γ) can be charged and used in any order at the time of polymerization, but any of them can be used. You may use the reaction product obtained by contacting the combination of the above in advance.
 助触媒/遷移金属錯体(α)のモル比は、好ましくは0.01~10,000、より好ましくは0.5~2,000である。触媒成分を溶液状態で使用する場合、遷移金属錯体(α)の濃度は、好ましくは0.0001~5mmol/L、より好ましくは0.001~1mmol/Lである。触媒成分の使用量は、使用される全モノマーの合計量に対して、好ましくは0.00001~1mol%、より好ましくは0.0001~0.1mol%である。 The molar ratio of the co-catalyst / transition metal complex (α) is preferably 0.01 to 10,000, more preferably 0.5 to 2,000. When the catalyst component is used in solution, the concentration of the transition metal complex (α) is preferably 0.0001 to 5 mmol / L, more preferably 0.001 to 1 mmol / L. The amount of the catalyst component used is preferably 0.00001 to 1 mol%, more preferably 0.0001 to 0.1 mol%, based on the total amount of all the monomers used.
 本発明の一実施形態に係るポリマー(B)の重合法としては、特に限定されず、例えば、バッチ式又は連続式の気相重合法、塊状重合法、適当な溶媒を使用しての溶液重合法あるいはスラリー重合法等、任意の方法を採用することができる。 The polymerization method of the polymer (B) according to the embodiment of the present invention is not particularly limited, and for example, a batch type or continuous type gas phase polymerization method, a bulk polymerization method, or a solution weight using an appropriate solvent is used. Any method such as a legal method or a slurry polymerization method can be adopted.
 溶媒を使用する場合、触媒を失活させないという条件の各種の溶媒が使用可能であり、このような溶媒の例としては、ベンゼン、トルエン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素系溶媒;ジクロロメタン、二塩化エチレン等のハロゲン化炭化水素系溶媒などが挙げられる。 When a solvent is used, various solvents can be used under the condition that the catalyst is not inactivated, and examples of such a solvent include hydrocarbon solvents such as benzene, toluene, pentane, hexane, heptane, and cyclohexane; Examples thereof include halogenated hydrocarbon solvents such as dichloromethane and ethylene dichloride.
 また、溶媒を使用する場合、重合中の系内のエチレン分圧は、例えば50~400kPa、好ましくは50~300kPaであり、水素分圧は好ましくは0~100kPaである。なお、系内にエチレン及び水素を投入する場合、水素分圧での加圧を実施した後、エチレン分圧での加圧を実施することが好ましい。また、式(I)で表されるシクロオレフィンの溶液を重合反応槽に投入した後、さらにトルエンを投入してもよい。 When a solvent is used, the ethylene partial pressure in the system during polymerization is, for example, 50 to 400 kPa, preferably 50 to 300 kPa, and the hydrogen partial pressure is preferably 0 to 100 kPa. When ethylene and hydrogen are introduced into the system, it is preferable to pressurize with the partial pressure of hydrogen and then pressurize with the partial pressure of ethylene. Further, after the solution of the cycloolefin represented by the formula (I) is charged into the polymerization reaction tank, toluene may be further charged.
 重合温度は、好ましくは50℃以上、より好ましくは50~150℃、さらに好ましくは50℃~100℃である。なお、重合体の分子量を調節するために水素等の連鎖移動剤を添加することもできる。 The polymerization temperature is preferably 50 ° C. or higher, more preferably 50 to 150 ° C., and even more preferably 50 ° C. to 100 ° C. A chain transfer agent such as hydrogen can also be added to adjust the molecular weight of the polymer.
 <樹脂(A)>
 本発明のフィルムは樹脂(A)を含む。樹脂(A)はポリマー(B)とは異なる樹脂である。樹脂(A)がシクロオレフィン系樹脂である場合は、ポリマー(B)とは異なる種類、例えば樹脂を構成する単量体単位の種類やその含有量等が異なるシクロオレフィン系樹脂であればよい。
<Resin (A)>
The film of the present invention contains the resin (A). The resin (A) is a resin different from the polymer (B). When the resin (A) is a cycloolefin-based resin, it may be a cycloolefin-based resin having a different type from the polymer (B), for example, a different type of monomer unit constituting the resin, its content, and the like.
 樹脂(A)としては、特に限定されず、例えばジアリルフタレート樹脂、シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、メラミン樹脂、尿素樹脂、キシレン樹脂、フラン樹脂、アニリン樹脂、アセトン-ホルムアルデヒド樹脂、アルキド樹脂、マレイミド系樹脂、マレイミド-シアン酸エステル樹脂、シアン酸エステル樹脂、ベンゾオキサジン樹脂、ポリベンズイミダゾール樹脂、及びポリカルボジイミド樹脂から選択される熱硬化性樹脂;オレフィン系樹脂;アクリル系樹脂;スチレン系樹脂;ゴム系樹脂;フッ素系樹脂;ビニル系樹脂;汎用エンジニアリングプラスチック;液晶ポリマー、芳香族ポリエーテル系樹脂などのスーパーエンジニアリングプラスチック;ポリアミド樹脂;ポリイミド樹脂、ポリアミドイミド樹脂などのポリイミド系樹脂;並びに生分解性プラスチックなどが挙げられる。これらの中でも、フィルムの耐熱性及び誘電特性を高めやすい観点から、ポリイミド系樹脂、液晶ポリマー、フッ素系樹脂、芳香族ポリエーテル系樹脂及びマレイミド系樹脂からなる群から選択される少なくとも1つの樹脂であることが好ましく、ポリイミド系樹脂及び/又は液晶ポリマーであることがより好ましい。樹脂(A)は単独又は二種以上組合せて使用できる。 The resin (A) is not particularly limited, and for example, diallyl phthalate resin, silicone resin, phenol resin, unsaturated polyester resin, polyurethane resin, melamine resin, urea resin, xylene resin, furan resin, aniline resin, acetone-formaldehyde resin. Thermocurable resin selected from alkyd resin, maleimide resin, maleimide-cyanic acid ester resin, cyanate ester resin, benzoxazine resin, polybenzimidazole resin, and polycarbodiimide resin; olefin resin; acrylic resin; Styrene-based resin; Rubber-based resin; Fluorine-based resin; Vinyl-based resin; General-purpose engineering plastic; Super-engineering plastic such as liquid crystal polymer and aromatic polyether resin; Polyamide resin; Polygonide resin, Polyethyleneimide resin and other polyimide-based resin; In addition, biodegradable plastics and the like can be mentioned. Among these, at least one resin selected from the group consisting of polyimide resins, liquid crystal polymers, fluororesins, aromatic polyether resins and maleimide resins from the viewpoint of easily improving the heat resistance and dielectric properties of the film. It is preferably present, and more preferably a polyimide resin and / or a liquid crystal polymer. The resin (A) can be used alone or in combination of two or more.
 樹脂(A)のTgは、好ましくは100℃以上、より好ましくは150℃以上、さらに好ましくは180℃以上、さらにより好ましくは200℃以上、特に好ましくは300℃以上、特により好ましくは350℃以上であり、好ましくは550℃以下である。樹脂(A)のTgが上記の下限以上であると、得られるフィルムの表面平滑性、粒子分散性及び耐熱性を高めやすく、かつCTEを低減しやすい。樹脂(A)のTgが上記の上限以下であると、屈曲耐性などの機械的特性を高めやすい。樹脂(A)のTgは、例えば動的粘弾性測定(以下、DMA測定と略すことがある)を行うことで求められ、実施例に記載の方法により測定できる。 The Tg of the resin (A) is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, particularly preferably 300 ° C. or higher, and particularly more preferably 350 ° C. or higher. It is preferably 550 ° C. or lower. When the Tg of the resin (A) is at least the above lower limit, the surface smoothness, particle dispersibility and heat resistance of the obtained film can be easily improved, and the CTE can be easily reduced. When the Tg of the resin (A) is not more than the above upper limit, it is easy to enhance mechanical properties such as bending resistance. The Tg of the resin (A) can be obtained, for example, by performing dynamic viscoelasticity measurement (hereinafter, may be abbreviated as DMA measurement), and can be measured by the method described in Examples.
 樹脂(A)のMwは、ポリスチレン換算で、好ましくは50,000以上、より好ましくは100,000以上、さらに好ましくは150,000以上、さらにより好ましくは200,000以上、特に好ましくは250,000以上、特により好ましくは300,000以上であり、好ましくは1,000,000以下、より好ましくは800,000以下、さらに好ましくは700,000以下、さらにより好ましくは500,000以下、特に好ましくは450,000以下である。樹脂(A)のMwが上記の下限以上であると、フィルムのCTEを低減しやすく、かつ表面平滑性、粒子分散性、耐熱性及び屈曲耐性などの機械的特性を高めやすい。樹脂(A)のMwが上記の上限以下であると、フィルムの成形性を高めやすい。なお、樹脂(A)のMwは、例えばGPC測定を行い、標準ポリスチレン換算によって求めることができ、例えば実施例に記載の方法により求められる。 The Mw of the resin (A) is preferably 50,000 or more, more preferably 100,000 or more, still more preferably 150,000 or more, still more preferably 200,000 or more, and particularly preferably 250,000 in terms of polystyrene. The above is particularly preferably 300,000 or more, preferably 1,000,000 or less, more preferably 800,000 or less, still more preferably 700,000 or less, still more preferably 500,000 or less, and particularly preferably. It is 450,000 or less. When the Mw of the resin (A) is at least the above lower limit, the CTE of the film is likely to be reduced, and mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance are likely to be enhanced. When the Mw of the resin (A) is not more than the above upper limit, the formability of the film is likely to be improved. The Mw of the resin (A) can be obtained by, for example, GPC measurement and converted to standard polystyrene, and can be obtained by, for example, the method described in Examples.
 樹脂(A)として好適なポリイミド系樹脂とは、イミド基を含む繰返し構造単位を含有する樹脂(以下、ポリイミド樹脂ということがある)、及びイミド基及びアミド基の両方を含む繰り返し構造単位を含有する樹脂(以下、ポリアミドイミド樹脂ということがある)、並びにイミド化によりポリイミド系樹脂を製造する前の前駆体を含む意味である。該ポリイミド樹脂を製造する前の前駆体はポリアミック酸である。なお、本明細書において、「繰り返し構造単位」を「構成単位」ということがある。また、「由来の構成単位」を単に「単位」ということがあり、例えば化合物由来の構成単位を化合物単位などということがある。 The polyimide-based resin suitable as the resin (A) includes a resin containing a repeating structural unit containing an imide group (hereinafter, may be referred to as a polyimide resin), and a repeating structural unit containing both an imide group and an amide group. It is meant to include a resin to be used (hereinafter, may be referred to as a polyamide-imide resin) and a precursor before producing a polyimide-based resin by imidization. The precursor before producing the polyimide resin is a polyamic acid. In addition, in this specification, a "repeating structural unit" may be referred to as a "constituent unit". Further, the "constituent unit derived from" may be simply referred to as "unit", and for example, the constituent unit derived from a compound may be referred to as a compound unit.
 本発明の好適な実施形態において、本発明のフィルムは、樹脂(A)として、式(1): In a preferred embodiment of the present invention, the film of the present invention has the formula (1): as the resin (A).
Figure JPOXMLDOC01-appb-C000008
[式(1)中、Xは2価の有機基を表し、
Yは4価の有機基を表し、
*は結合手を表す]
で表される構成単位を有するポリイミド系樹脂を含むことが好ましい。このようなポリイミド系樹脂を含むと、フィルムのCTEを低減しやすく、かつ耐熱性及び屈曲耐性などの機械的特性を高めやすい。
Figure JPOXMLDOC01-appb-C000008
[In formula (1), X represents a divalent organic group.
Y represents a tetravalent organic group
* Represents a bond]
It is preferable to contain a polyimide resin having a structural unit represented by. When such a polyimide resin is contained, it is easy to reduce the CTE of the film, and it is easy to improve the mechanical properties such as heat resistance and bending resistance.
 式(1)中のXは、互いに独立に2価の有機基を表し、好ましくは炭素数2~100の2価の有機基を表す。2価の有機基としては、例えば2価の芳香族基、2価の脂肪族基等が挙げられ、2価の脂肪族基としては、例えば2価の非環式脂肪族基又は2価の環式脂肪族基が挙げられる。これらの中でも、フィルムのCTEを低減しやすく、かつ耐熱性及び屈曲耐性などの機械的特性を高めやすい観点から、2価の環式脂肪族基及び2価の芳香族基が好ましく、2価の芳香族基がより好ましい。2価の有機基は、有機基中の水素原子がハロゲン原子、炭化水素基、アルコキシ基又はハロゲン化炭化水素基で置換されていてもよく、その場合、これらの基の炭素数は好ましくは1~8である。なお、本明細書において、2価の芳香族基は芳香族基を有する2価の有機基であり、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。また、2価の脂肪族基は脂肪族基を有する2価の有機基であり、その構造の一部にその他の置換基を含んでいてもよいが、芳香族基は含まない。 X in the formula (1) represents a divalent organic group independently of each other, and preferably represents a divalent organic group having 2 to 100 carbon atoms. Examples of the divalent organic group include a divalent aromatic group and a divalent aliphatic group, and examples of the divalent aliphatic group include a divalent acyclic aliphatic group or a divalent aliphatic group. Cyclic aliphatic groups can be mentioned. Among these, a divalent cyclic aliphatic group and a divalent aromatic group are preferable from the viewpoint of easily reducing the CTE of the film and easily enhancing the mechanical properties such as heat resistance and bending resistance. Aromatic groups are more preferred. In the divalent organic group, the hydrogen atom in the organic group may be substituted with a halogen atom, a hydrocarbon group, an alkoxy group or a halogenated hydrocarbon group, in which case the carbon number of these groups is preferably 1. ~ 8. In the present specification, the divalent aromatic group is a divalent organic group having an aromatic group, and an aliphatic group or another substituent may be contained in a part of the structure thereof. Further, the divalent aliphatic group is a divalent organic group having an aliphatic group, and a part of the structure thereof may contain other substituents, but does not contain an aromatic group.
 本発明の一実施形態において、ポリイミド系樹脂は、複数種のXを含み得、複数種のXは、互いに同一であってもよく、異なっていてもよい。式(1)中のXとしては、例えば式(2)~式(8)で表される基(構造);式(5)~式(8)で表される基中の水素原子がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基などが挙げられる。 In one embodiment of the present invention, the polyimide-based resin may contain a plurality of types of X, and the plurality of types of X may be the same as or different from each other. As X in the formula (1), for example, the group (structure) represented by the formulas (2) to (8); the hydrogen atom in the group represented by the formulas (5) to (8) is a methyl group. , Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, fluoro group, chloro group or trifluoromethyl group substituted group and the like.
Figure JPOXMLDOC01-appb-C000009
[式(2)及び式(3)中、R及びRは、互いに独立に、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表し、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
Wは、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-COO-、-OOC-、-SO-、-S-、-CO-又は-N(R)-を表し、Rは水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、
nは0~4の整数であり、tは0~4の整数であり、uは0~4の整数であり、
*は結合手を表す。
式(4)中、環Aは炭素数3~8のシクロアルカン環を表し、
は炭素数1~20のアルキル基を表し、
rは0以上であって(環Aの炭素数-2)以下の整数を表し、
S1及びS2は、互いに独立に、0~20の整数を表し、
*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000009
[In the formulas (2) and (3 ), Ra and R b are independent of each other, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 6 to 12 carbon atoms. The hydrogen atoms contained in Ra and R b may be substituted with halogen atoms independently of each other.
W is independent of each other, single bond, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C (CF 3 ). 2- , -COO-, -OOC-, -SO 2- , -S-, -CO- or -N (R c )-, where R c is a carbon substituted with a hydrogen atom or a halogen atom. Represents a monovalent hydrocarbon group of numbers 1-12,
n is an integer of 0 to 4, t is an integer of 0 to 4, and u is an integer of 0 to 4.
* Represents a bond.
In formula (4), ring A represents a cycloalkane ring having 3 to 8 carbon atoms.
R d represents an alkyl group having 1 to 20 carbon atoms.
r represents an integer greater than or equal to 0 and less than or equal to (the number of carbon atoms in ring A-2).
S1 and S2 represent integers from 0 to 20 independently of each other.
* Represents a bond. ]
 式(1)中のXの他の例としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、1,12-ドデカンジイル基、2-メチル-1,2-プロパンジイル基、2-メチル-1,3-プロパンジイル基等の直鎖状又は分岐鎖状アルキレン基などの2価の非環式脂肪族基が挙げられる。2価の非環式脂肪族基中の水素原子は、ハロゲン原子で置換されていてもよく、炭素原子はヘテロ原子、例えば酸素原子、窒素原子等で置換されていてもよい。 Other examples of X in the formula (1) include, for example, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a propylene group, a 1,2-butanediyl group, and a 1,3-butanediyl group. , 1,12-Dodecandyl group, 2-methyl-1,2-propanediyl group, 2-methyl-1,3-propanediyl group and other linear or branched alkylene groups with divalent acyclic Examples include aliphatic groups. The hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, and the carbon atom may be substituted with a hetero atom, for example, an oxygen atom, a nitrogen atom or the like.
 これらの中でも、フィルムの低誘電損失化、低CTE、高耐熱性及び高機械的特性を達成しやすい観点から、本発明におけるポリイミド系樹脂は、式(1)中のXとして、式(2)で表される構造及び/又は式(3)で表される構造を含むことが好ましく、式(2)で表される構造を含むことがより好ましい。 Among these, the polyimide-based resin in the present invention is represented by the formula (2) as X in the formula (1) from the viewpoint of easily achieving low dielectric loss, low CTE, high heat resistance and high mechanical properties of the film. It is preferable to include a structure represented by and / or a structure represented by the formula (3), and it is more preferable to include a structure represented by the formula (2).
 式(2)及び式(3)において、各ベンゼン環又はシクロヘキサン環の結合手は、-W-を基準に、それぞれ、オルト位、メタ位、又はパラ位、もしくは、α位、β位、又はγ位のいずれに結合していてもよく、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、好ましくはメタ位又はパラ位、もしくはβ位又はγ位、より好ましくはパラ位、もしくはγ位に結合することができる。R及びRは、互いに独立に、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表す。炭素数1~6のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル基等が挙げられる。炭素数1~6のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基及びシクロヘキシルオキシ基等が挙げられる。炭素数6~12のアリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基及びビフェニル基等が挙げられる。R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、該ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、フィルムのCTEを低減しやすく、かつ耐熱性及び誘電特性を高めやすい観点から、R及びRは、互いに独立に、炭素数1~6のアルキル基又は炭素数1~6のフッ化アルキル基であることが好ましく、炭素数1~3のアルキル基又は炭素数1~3のフッ化アルキル基であることがより好ましく、メチル基又はトリフルオロメチル基であることがさらに好ましい。 In formulas (2) and (3), the bonds of each benzene ring or cyclohexane ring are at the ortho-position, meta-position, or para-position, or α-position, β-position, or β-position, respectively, based on −W—. It may be bonded to any of the γ positions, and from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties, the meta position or the para position, or the β position or the γ position is more preferable. Can bind to the para or γ position. R a and R b independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-pentyl group, and 2 -Methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl group and the like can be mentioned. Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group and a hexyloxy group. Examples include a group and a cyclohexyloxy group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a biphenyl group. The hydrogen atom contained in Ra and R b may be substituted with a halogen atom independently of each other, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Among these, from the viewpoint of easily reducing the CTE of the film and easily improving the heat resistance and the dielectric property, Ra and R b are independent of each other and have an alkyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms. It is preferably an alkyl fluoride group, more preferably an alkyl group having 1 to 3 carbon atoms or an alkyl fluoride group having 1 to 3 carbon atoms, and even more preferably a methyl group or a trifluoromethyl group.
 式(2)及び式(3)において、t及びuは、互いに独立に、0~4の整数であり、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、好ましくは0~2の整数、より好ましくは0又は1である。 In the formulas (2) and (3), t and u are integers of 0 to 4 independently of each other, which is preferable from the viewpoints that the CTE of the film can be easily reduced and the heat resistance and mechanical properties can be easily improved. Is an integer of 0 to 2, more preferably 0 or 1.
 式(2)及び式(3)において、Wは、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-COO-、-OOC-、-SO-、-S-、-CO-又は-N(R)-を表し、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性、特に屈曲耐性を高めやすい観点から、好ましくは単結合、-O-、-CH-、-C(CH-、-C(CF-、-COO-、-OOC-又は-CO-を表し、より好ましくは単結合、-O-、-CH-、-C(CH-又は-C(CF-を表す。Rは水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表す。炭素数1~12の1価の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基及びn-デシル基等が挙げられ、これらはハロゲン原子で置換されていてもよい。ハロゲン原子としては、上記と同様のものが挙げられる。 In equations (2) and (3), W is single-bonded independently of each other, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH). 3 ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO- or -N (R c ) -reduces the CTE of the film. Single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 are preferable from the viewpoint of easy to increase heat resistance and mechanical properties, especially bending resistance. -, -COO-, -OOC- or -CO-, more preferably single bond, -O-, -CH 2- , -C (CH 3 ) 2 -or-C (CF 3 ) 2- .. R c represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom. Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-. Pentyl group, 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group. Etc., which may be substituted with a halogen atom. Examples of the halogen atom include the same as above.
 式(2)及び式(3)において、nは、0~4の整数であり、フィルムのCTEを低減しやすく、かつ耐熱性及び屈曲耐性などの機械的特性を高めやすい観点から、好ましくは0~3の整数、より好ましくは1又は2である。nが2以上の場合、複数のW、R、及びtは互いに同一であってもよく、異なっていてもよく、-W-を基準とした各ベンゼン環の結合手の位置も同一であってもよく、異なっていてもよい。 In the formulas (2) and (3), n is an integer of 0 to 4, and is preferably 0 from the viewpoint of easily reducing the CTE of the film and easily enhancing the mechanical properties such as heat resistance and bending resistance. An integer of ~ 3, more preferably 1 or 2. When n is 2 or more, the plurality of Ws, Ras, and ts may be the same or different from each other, and the positions of the bonds of each benzene ring with respect to −W— are also the same. It may or may not be different.
 本発明におけるポリイミド系樹脂が、式(1)中のXとして、式(2)で表される構造と式(3)で表される構造の両方を含む場合、式(2)におけるW、n、R、R、t及びuは、互いに独立に、式(3)におけるW、n、R、R、t及びuと同一であってもよく、異なっていてもよい。 When the polyimide-based resin in the present invention contains both the structure represented by the formula (2) and the structure represented by the formula (3) as X in the formula (1), W and n in the formula (2). , R a , R b , t and u may be the same as or different from W, n, R a , R b , t and u in the formula (3) independently of each other.
 式(4)において、環Aは炭素数3~8のシクロアルカン環を表す。シクロアルカン環としては、例えばシクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環が挙げられ、好ましくは炭素数4~6のシクロアルカン環が挙げられる。環Aにおいて、各結合手は、互いに隣接していてもよいし、隣接していなくてもよい。例えば、環Aがシクロヘキサン環である場合、2つの結合手はα位、β位又はγ位の位置関係にあってもよく、好ましくはβ位又はγ位の位置関係にあってもよい。 In the formula (4), the ring A represents a cycloalkane ring having 3 to 8 carbon atoms. Examples of the cycloalkane ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, and a cycloalkane ring having 4 to 6 carbon atoms is preferable. In ring A, the bonds may or may not be adjacent to each other. For example, when the ring A is a cyclohexane ring, the two bonds may be in the positional relationship of the α-position, the β-position, or the γ-position, and may be preferably in the positional relationship of the β-position or the γ-position.
 式(4)中のRは炭素数1~20のアルキル基を表す。炭素数1~20のアルキル基としては、R~R18における炭素数1~20の炭化水素基として上記に例示のものが挙げられ、好ましくは炭素数1~10のアルキル基を表す。式(4)中のrは0以上であって(環Aの炭素数-2)以下の整数を表す。rは好ましくは0以上であり、好ましくは4以下である。式(4)中のS1及びS2は、互いに独立に、0~20の整数を表す。S1及びS2は、互いに独立に、好ましくは0以上、より好ましくは2以上であり、好ましくは15以下である。 R d in the formula (4) represents an alkyl group having 1 to 20 carbon atoms. Examples of the alkyl group having 1 to 20 carbon atoms include those exemplified above as the hydrocarbon group having 1 to 20 carbon atoms in R7 to R18, and preferably represent an alkyl group having 1 to 10 carbon atoms. In equation (4), r represents an integer of 0 or more and (number of carbon atoms of ring A-2) or less. r is preferably 0 or more, and preferably 4 or less. S1 and S2 in the formula (4) represent integers of 0 to 20 independently of each other. S1 and S2 are independent of each other, preferably 0 or more, more preferably 2 or more, and preferably 15 or less.
 式(2)~式(4)で表される構造の具体例としては、式(4’)及び式(9)~式(30)で表される構造が挙げられる。なお、これらの式中、*は結合手を表す。 Specific examples of the structures represented by the formulas (2) to (4) include the structures represented by the formulas (4') and the formulas (9) to (30). In these equations, * represents a bond.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 本発明の好適な実施形態において、式(1)中のXとして、式(2)及び/又は式(3)で表される構造を含む場合、式(1)中のXが式(2)及び/又は式(3)で表される構成単位の割合は、式(1)で表される構成単位の総モル量に対して、好ましくは30mol%以上、より好ましくは50mol%以上、さらに好ましくは70mol%以上、特に好ましくは90mol%以上であり、好ましくは100mol%以下である。式(1)中のXが式(2)及び/又は式(3)で表される構成単位の割合が上記の範囲であると、フィルムのCTEを低減しやすく、かつ耐熱性、誘電特性、及び屈曲耐性などの機械的特性を高めやすい。式(1)中のYが式(2)及び/又は式(3)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, when X in the formula (1) includes a structure represented by the formula (2) and / or the formula (3), the X in the formula (1) is the formula (2). And / or the ratio of the structural unit represented by the formula (3) is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably, with respect to the total molar amount of the structural unit represented by the formula (1). Is 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. When the ratio of the structural unit represented by the formula (2) and / or the formula (3) is in the above range, X in the formula (1) can easily reduce the CTE of the film, and has heat resistance and dielectric properties. And it is easy to improve mechanical properties such as bending resistance. The ratio of the structural unit in which Y in the formula (1) is represented by the formula (2) and / or the formula (3) can be measured using, for example, 1 H-NMR, or calculated from the charging ratio of the raw materials. You can also do it.
 式(1)において、Yは、互いに独立に4価の有機基を表し、好ましくは炭素数4~40の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~40の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子がハロゲン原子、炭化水素基、アルコキシ基又はハロゲン化炭化水素基で置換されていてもよく、その場合、これらの基の炭素数は好ましくは1~8である。本発明のポリイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一であってもよく、異なっていてもよい。Yとしては、式(31)~式(38)で表される基(構造);式(34)~式(38)で表される基中の水素原子がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;4価の炭素数1~8の鎖式炭化水素基などが挙げられる。 In the formula (1), Y represents a tetravalent organic group independently of each other, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 having a cyclic structure and 4 to 40 carbon atoms. Represents a valence organic group. Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure. In the organic group, the hydrogen atom in the organic group may be substituted with a halogen atom, a hydrocarbon group, an alkoxy group or a halogenated hydrocarbon group, in which case the carbon number of these groups is preferably 1 to 8. Is. The polyimide-based resin of the present invention may contain a plurality of types of Y, and the plurality of types of Y may be the same as or different from each other. As Y, the group (structure) represented by the formulas (31) to (38); the hydrogen atom in the group represented by the formulas (34) to (38) is a methyl group, an ethyl group, or n-propyl. Group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, fluoro group, chloro group or trifluoromethyl group substituted group; tetravalent chain type with 1 to 8 carbon atoms. Examples include a hydrocarbon group.
Figure JPOXMLDOC01-appb-C000011

[式(31)~式(33)中、R19~R26は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R19~R26に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
及びVは、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-COO-、-OOC-、-SO-、-S-、-CO-、-N(R)-、式(a)又は式(b):
Figure JPOXMLDOC01-appb-C000011

[In formulas (31) to (33), R 19 to R 26 have a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 6 to 12 carbon atoms independently of each other. Hydrogen atoms representing an aryl group and contained in R 19 to R 26 may be substituted with halogen atoms independently of each other.
V 1 and V 2 are independent of each other, single bond, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C. (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO-, -N (R j )-, formula (a) or formula (b):
Figure JPOXMLDOC01-appb-C000012
(式(a)中、R27~R30は、互いに独立に、水素原子又は炭素数1~6のアルキル基を表し、
Zは-C(CH-又は-C(CF-を表し、
iは1~3の整数であり、
*は結合手を表す)を表し、
は、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、
e及びdは、互いに独立に、0~2の整数を表し、
fは1~3の整数を表し、
g及びhは、互いに独立に、0~4の整数を表し、
*は結合手を表す]
Figure JPOXMLDOC01-appb-C000012
(In the formula (a), R 27 to R 30 represent hydrogen atoms or alkyl groups having 1 to 6 carbon atoms independently of each other.
Z represents -C (CH 3 ) 2 -or-C (CF 3 ) 2-
i is an integer from 1 to 3
* Represents a bond)
Rj represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom.
e and d represent integers from 0 to 2 independently of each other.
f represents an integer of 1 to 3 and represents
g and h represent integers from 0 to 4 independently of each other.
* Represents a bond]
 これらの中でも、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、本発明におけるポリイミド系樹脂は、式(1)中のYとして、式(31)で表される構造、式(32)で表される構造及び式(33)で表される構造からなる群から選択される少なくとも1つの構造を含むことが好ましく、式(31)で表される構造を含むことがより好ましい。 Among these, the polyimide-based resin in the present invention is represented by the formula (31) as Y in the formula (1) from the viewpoint of easily reducing the CTE of the film and easily improving the heat resistance and mechanical properties. It preferably contains at least one structure selected from the group consisting of a structure, a structure represented by the formula (32) and a structure represented by the formula (33), and preferably includes a structure represented by the formula (31). Is more preferable.
 式(31)~式(33)において、R19~R26は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表す。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、式(2)及び式(3)における炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基として上記に例示のものが挙げられる。R19~R26に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、ハロゲン原子としては上記に例示のものが挙げられる。これらの中でも、フィルムの耐熱性及び誘電特性を高めやすい観点から、R19~R26は、互いに独立に、水素原子又は炭素数1~6のアルキル基が好ましく、水素原子又は炭素数1~3のアルキル基がより好ましく、水素原子がさらに好ましい。 In formulas (31) to (33), R 19 to R 26 are independent of each other, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms. Represents a group. Examples of the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include the alkyl group having 1 to 6 carbon atoms and the carbon number of carbon atoms in the formulas (2) and (3). Examples of the alkoxy group 1 to 6 and the aryl group having 6 to 12 carbon atoms are mentioned above. The hydrogen atoms contained in R 19 to R 26 may be substituted with halogen atoms independently of each other, and examples of the halogen atoms include those mentioned above. Among these, from the viewpoint of easily improving the heat resistance and dielectric properties of the film, R 19 to R 26 are preferably hydrogen atoms or alkyl groups having 1 to 6 carbon atoms independently of each other, and hydrogen atoms or 1 to 3 carbon atoms are preferable. Alkyl groups are more preferred, and hydrogen atoms are even more preferred.
 式(31)において、V及びVは、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-COO-、-OOC-、-SO-、-S-、-CO-、-N(R)-、式(a)又は式(b)を表し、フィルムのCTEを低減しやすく、かつ耐熱性及び屈曲耐性などの機械的特性を高めやすい観点から、好ましくは単結合、-O-、-CH-、-C(CH-、-C(CF-、-COO-、-OOC-又は-CO-を表し、より好ましくは単結合、-O-、-C(CH-又は-C(CF-を表す。Rは水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表す。炭素数1~12の一価の炭化水素基としては、上記に例示のものが挙げられる。 In formula (31), V 1 and V 2 are single-bonded independently of each other, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ). ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO-, -N (R j )-, equation (a) or equation (b) ), Which is preferable from the viewpoint of easily reducing the CTE of the film and easily enhancing the mechanical properties such as heat resistance and bending resistance, preferably single bond, -O-, -CH 2- , -C (CH 3 ) 2 . -, -C (CF 3 ) 2- , -COO-, -OOC- or -CO-, more preferably single bond, -O-, -C (CH 3 ) 2 -or-C (CF 3 ) Represents 2- . R j represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom. Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include those exemplified above.
 式(31)において、e及びdは、互いに独立に、0~2の整数を表し、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、好ましくは0又は1であり、より好ましくはe+d=1である。 In the formula (31), e and d represent integers of 0 to 2 independently of each other, and are preferably 0 or 1 from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties. Yes, more preferably e + d = 1.
 式(32)において、fは1~3の整数を表し、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、好ましくは1又は2、より好ましくは1である。 In the formula (32), f represents an integer of 1 to 3, and is preferably 1 or 2, more preferably 1, from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties.
 式(33)において、g及びhは、互いに独立に、0~4の整数を表し、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、好ましくは0~2の整数であり、より好ましくは0又は1であり、さらに好ましくはg+h=0~2の整数である。 In the formula (33), g and h represent integers of 0 to 4 independently of each other, and are preferably 0 to 2 from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties. It is an integer, more preferably 0 or 1, and even more preferably an integer of g + h = 0 to 2.
 式(a)において、R27~R30は、互いに独立に、水素原子又は炭素数1~6のアルキル基を表す。炭素数1~6のアルキル基としては、式(2)及び(3)における炭素数1~6のアルキル基として上記に例示のものが挙げられる。これらの中でも、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、R27~R30は、互いに独立に、水素原子又は炭素数1~3のアルキル基がより好ましく、水素原子がさらに好ましい。 In the formula (a), R 27 to R 30 represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms independently of each other. Examples of the alkyl group having 1 to 6 carbon atoms include those exemplified above as the alkyl group having 1 to 6 carbon atoms in the formulas (2) and (3). Among these, from the viewpoint of easily reducing the CTE of the film and easily improving the heat resistance and mechanical properties, R 27 to R 30 are more preferably hydrogen atoms or alkyl groups having 1 to 3 carbon atoms independently of each other. , Hydrogen atom is more preferable.
 式(a)において、Zは-C(CH-又は-C(CF-を表す。Zがこのような構造であると、フィルムの耐熱性、誘電特性、及び機械的特性を高めやすい。iは1~3の整数を表し、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、好ましくは1又は2である。iが2以上の場合、複数のZ及びR27~R30は、互いに独立に、同一であってもよく、異なっていてもよい。 In formula (a), Z represents -C (CH 3 ) 2- or -C (CF 3 ) 2- . When Z has such a structure, it is easy to improve the heat resistance, the dielectric property, and the mechanical property of the film. i represents an integer of 1 to 3, and is preferably 1 or 2 from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties. When i is 2 or more, the plurality of Z and R 27 to R 30 may be the same or different from each other independently of each other.
 式(31)~式(33)で表される構造の具体例としては、式(39)~式(51)で表される構造が挙げられる。なお、これらの式中、*は結合手を表す。 Specific examples of the structures represented by the formulas (31) to (33) include the structures represented by the formulas (39) to (51). In these equations, * represents a bond.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明の一実施形態において、式(1)中のYとして、式(31)~式(33)で表される構造からなる群から選択される少なくとも1つを含む場合、式(1)中のYが式(31)~式(33)で表される構造からなる群から選択される少なくとも1つで表される構成単位の割合は、式(1)で表される構成単位の総モル量に対して、好ましくは30mol%以上、より好ましくは50mol%以上、さらに好ましくは70mol%以上、特に好ましくは90mol%以上であり、好ましくは100mol%以下である。式(1)中のYが式(31)~式(33)で表される構造からなる群から選択される少なくとも1つで表される構成単位の割合が上記の範囲であると、フィルムのCTEを低減しやすく、かつ耐熱性、誘電特性、耐吸水性及び機械的特性を高めやすい。式(1)中のYが式(31)~式(33)で表される構造からなる群から選択される少なくとも1つで表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In one embodiment of the present invention, when Y in the formula (1) includes at least one selected from the group consisting of the structures represented by the formulas (31) to (33), the formula (1) is used. Y is selected from the group consisting of the structures represented by the formulas (31) to (33), and the ratio of the constituent units represented by at least one is the total mole of the constituent units represented by the formula (1). With respect to the amount, it is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. When the ratio of the structural unit represented by at least one selected from the group consisting of the structures represented by the formulas (31) to (33) in the formula (1) is within the above range, the film is formed. It is easy to reduce CTE and to improve heat resistance, dielectric property, water absorption resistance and mechanical property. The ratio of the structural unit represented by at least one selected from the group consisting of the structures represented by the formulas (31) to (33) in the formula (1) is determined by using, for example, 1 H-NMR. It can be measured or calculated from the raw material charge ratio.
 本発明におけるポリイミド系樹脂は、式(1)で表される構成単位の他に、式(52)で表される構成単位、式(53)で表される構成単位、及び式(54)で表される構成単位からなる群から選択される少なくとも1つを含んでいてもよい。 The polyimide-based resin in the present invention has a structural unit represented by the formula (52), a structural unit represented by the formula (53), and a structural unit represented by the formula (54), in addition to the structural unit represented by the formula (1). It may contain at least one selected from the group consisting of the represented building blocks.
Figure JPOXMLDOC01-appb-C000014

[式(52)及び式(53)中、Yは4価の有機基を表し、
は3価の有機基を表し、
及びXは、互いに独立に、2価の有機基を表し、
*は結合手を表す。
式(54)中、G及びXは、互いに独立に、2価の有機基を表し、
*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000014

[In the formula (52) and the formula (53), Y 1 represents a tetravalent organic group.
Y 2 represents a trivalent organic group
X 1 and X 2 represent divalent organic groups independently of each other.
* Represents a bond.
In formula (54), G and X represent divalent organic groups independently of each other.
* Represents a bond. ]
 本発明の好適な実施形態では、式(52)及び式(53)において、Yは式(1)におけるYと同義であり、X及びXは、式(1)におけるXと同義である。式(53)におけるYは式(1)におけるYの結合手のいずれか1つが水素原子に置き換わった基であることが好ましい。Yとしては、式(31)~式(38)で表される基(構造)の結合手のいずれか1つが水素原子に置き換わった基;3価の炭素数1~8の鎖式炭化水素基などが挙げられる。本発明の一実施形態において、ポリイミド系樹脂は、複数種のY又はYを含み得、複数種のY又はYは、互いに同一であってもよく、異なっていてもよい。 In a preferred embodiment of the invention, in formulas (52) and (53), Y 1 is synonymous with Y in formula (1), and X 1 and X 2 are synonymous with X in formula (1). be. It is preferable that Y 2 in the formula (53) is a group in which any one of the bonds of Y in the formula (1) is replaced with a hydrogen atom. As Y 2 , a group in which any one of the bonds of the groups (structures) represented by the formulas (31) to (38) is replaced with a hydrogen atom; a chain hydrocarbon having a trivalent carbon number of 1 to 8 is used. The group etc. can be mentioned. In one embodiment of the present invention, the polyimide-based resin may contain a plurality of types of Y 1 or Y 2 , and the plurality of types of Y 1 or Y 2 may be the same as or different from each other.
 式(54)において、Gは、互いに独立に、2価の有機基であり、好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基で置換されていてもよい、炭素数2~100の2価の有機基であり、より好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基で置換されていてもよい、環状構造を有する炭素数2~100の2価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。Gの有機基としては、例えば式(31)~式(38)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基及び炭素数6以下の2価の鎖式炭化水素基が挙げられ、好ましくは式(39)~式(51)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基などが挙げられる。
 式(54)中のXは式(1)におけるXと同義であり、ポリイミド系樹脂が式(1)で表される構成単位と式(54)で表される構成単位とを含む場合、各構成単位におけるXは同一であってもよく、異なっていてもよい。本発明の一実施形態において、ポリイミド系樹脂は、複数種のX又はGを含み得、複数種のX又はGは、互いに同一であってもよく、異なっていてもよい。
In formula (54), G is a divalent organic group independently of each other, preferably substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It may be a divalent organic group having 2 to 100 carbon atoms, more preferably substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It represents a good, divalent organic group having a cyclic structure and having 2 to 100 carbon atoms. Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure. Examples of the organic group of G include a group in which two non-adjacent groups are replaced with hydrogen atoms and a divalent chain carbonization having 6 or less carbon atoms among the bonds of the groups represented by the formulas (31) to (38). A hydrogen group can be mentioned, and preferably, among the bonds of the groups represented by the formulas (39) to (51), a group in which two non-adjacent groups are replaced with a hydrogen atom can be mentioned.
X in the formula (54) is synonymous with X in the formula (1), and when the polyimide resin contains a structural unit represented by the formula (1) and a structural unit represented by the formula (54), each X in the structural unit may be the same or different. In one embodiment of the present invention, the polyimide-based resin may contain a plurality of types of X or G, and the plurality of types of X or G may be the same as or different from each other.
 本発明の一実施形態において、ポリイミド系樹脂は、式(1)で表される構成単位、並びに、場合により式(52)で表される構成単位、式(53)で表される構成単位及び式(54)で表される構成単位から選択される少なくとも1つの構成単位からなる。また、フィルムのCTEを低減しやすく、かつ耐熱性、誘電特性、耐吸水性を高めやすい観点から、上記ポリイミド系樹脂において、式(1)で表される構成単位の割合は、ポリイミド系樹脂に含まれる全構成単位、例えば式(1)で表される構成単位、並びに、場合により式(52)で表される構成単位、式(53)で表される構成単位及び式(54)で表される構成単位から選択される少なくとも1つの構成単位の総モル量に基づいて、好ましくは80mol%以上、より好ましくは90mol%以上、さらに好ましくは95mol%以上である。なお、ポリイミド系樹脂において、式(1)で表される構成単位の割合の上限は100mol%以下である。なお、上記割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。また、本発明におけるポリイミド系樹脂は、フィルムのCTEを低減しやすく、かつ耐熱性、誘電特性、及び耐吸水性を高めやすい観点から、好ましくはポリイミド樹脂である。 In one embodiment of the present invention, the polyimide resin is a structural unit represented by the formula (1), and in some cases, a structural unit represented by the formula (52), a structural unit represented by the formula (53), and a structural unit represented by the formula (53). It consists of at least one structural unit selected from the structural units represented by the formula (54). Further, from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance, dielectric properties, and water absorption resistance, the ratio of the structural unit represented by the formula (1) in the polyimide resin is the polyimide resin. All the structural units included, for example, the structural unit represented by the formula (1), and in some cases, the structural unit represented by the formula (52), the structural unit represented by the formula (53), and the table by the formula (54). It is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, based on the total molar amount of at least one constituent unit selected from the constituent units. In the polyimide resin, the upper limit of the ratio of the structural unit represented by the formula (1) is 100 mol% or less. The above ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials. Further, the polyimide resin in the present invention is preferably a polyimide resin from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance, the dielectric property, and the water absorption resistance.
 本発明の一実施形態において、本発明におけるポリイミド系樹脂は、例えば上記の含ハロゲン原子置換基等によって導入することができる、ハロゲン原子、好ましくはフッ素原子を含有していてもよい。ポリイミド系樹脂がハロゲン原子、好ましくはフッ素原子を含有する場合、耐熱性及び誘電特性に加え、光学特性を高めやすい。ポリイミド系樹脂にフッ素原子を含有させるために好ましい含フッ素置換基としては、例えばフルオロ基及びトリフルオロメチル基が挙げられる。 In one embodiment of the present invention, the polyimide-based resin in the present invention may contain a halogen atom, preferably a fluorine atom, which can be introduced by, for example, the above-mentioned halogen-containing atom substituent or the like. When the polyimide resin contains a halogen atom, preferably a fluorine atom, it is easy to improve the optical property in addition to the heat resistance and the dielectric property. Preferred fluorine-containing substituents for containing a fluorine atom in the polyimide-based resin include, for example, a fluoro group and a trifluoromethyl group.
 ポリイミド系樹脂がハロゲン原子を含有する場合、ポリイミド系樹脂におけるハロゲン原子の含有量は、ポリイミド系樹脂の質量を基準として、好ましくは0.1~40質量%、より好ましくは1~35質量%、さらに好ましくは5~30質量%である。ハロゲン原子の含有量が上記の下限以上であると、フィルムの耐熱性及び誘電特性を高めやすい。ハロゲン原子の含有量が上記の上限以下であると、CTEを低減でき、また合成がしやすくなる。 When the polyimide-based resin contains a halogen atom, the content of the halogen atom in the polyimide-based resin is preferably 0.1 to 40% by mass, more preferably 1 to 35% by mass, based on the mass of the polyimide-based resin. More preferably, it is 5 to 30% by mass. When the content of halogen atoms is at least the above lower limit, the heat resistance and dielectric properties of the film are likely to be improved. When the content of the halogen atom is not more than the above upper limit, the CTE can be reduced and the synthesis becomes easy.
 ポリイミド系樹脂のイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは95%以上であり、通常100%以下である。フィルムの光学特性を高めやすい観点から、イミド化率が上記の下限以上であることが好ましい。イミド化率は、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。なお、ポリイミド系樹脂がトリカルボン酸化合物を含む場合には、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができる。 The imidization ratio of the polyimide resin is preferably 90% or more, more preferably 93% or more, further preferably 95% or more, and usually 100% or less. From the viewpoint of easily improving the optical properties of the film, it is preferable that the imidization ratio is at least the above lower limit. The imidization ratio indicates the ratio of the molar amount of the imide bond in the polyimide-based resin to the value of twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide-based resin. When the polyimide resin contains a tricarboxylic acid compound, the value is twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin, and the molar amount of the structural unit derived from the tricarboxylic acid compound. The ratio of the molar amount of the imide bond in the polyimide resin to the total of the above is shown. The imidization rate can be determined by an IR method, an NMR method, or the like.
 本発明の一実施形態において、樹脂(A)の含有量は、前記フィルムに含まれる樹脂(A)及びポリマー(B)の合計質量に対して、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上であり、通常99質量%以下、好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下である。樹脂(A)の含有量が上記範囲であると、フィルムのCTEを低減しやすく、かつ屈曲耐性などの機械的特性を高めやすい。また、粒子状ポリマー(B)が分散したフィルムにおいては、分散性を高めやすく、結果としてフィルムの物性、例えば熱伝導率等のバラツキを低減しやすい。 In one embodiment of the present invention, the content of the resin (A) is preferably 50% by mass or more, more preferably 60% by mass, based on the total mass of the resin (A) and the polymer (B) contained in the film. % Or more, more preferably 65% by mass or more, usually 99% by mass or less, preferably 95% by mass or less, more preferably 90% by mass or less, still more preferably 85% by mass or less. When the content of the resin (A) is in the above range, it is easy to reduce the CTE of the film and to improve the mechanical properties such as bending resistance. Further, in the film in which the particulate polymer (B) is dispersed, it is easy to improve the dispersibility, and as a result, it is easy to reduce the variation in the physical characteristics of the film, for example, the thermal conductivity.
 本発明におけるポリイミド系樹脂は、上記の通り、ポリイミド系樹脂をイミド化する前の前駆体を包含する。ポリイミド系樹脂がポリアミック酸の場合、ポリアミック酸は式(1’):
Figure JPOXMLDOC01-appb-I000015
[式(1’)中、Y及びXは、式(1)におけるY及びXを表す]
で表される構成単位を含む。
As described above, the polyimide-based resin in the present invention includes a precursor before imidizing the polyimide-based resin. When the polyimide resin is a polyamic acid, the polyamic acid is the formula (1'):
Figure JPOXMLDOC01-appb-I000015
[In equation (1'), Y and X represent Y and X in equation (1)]
Includes building blocks represented by.
 <樹脂(A)の製造方法>
 本発明のフィルムに含まれる樹脂(A)は、市販品を用いてもよく、慣用の方法により製造してもよい。本発明の一実施形態では、前記樹脂(A)はポリイミド系樹脂であることが好ましい。ポリイミド系樹脂の製造方法は特に限定されないが、例えば、ポリイミド系樹脂は、ジアミン化合物とテトラカルボン酸化合物とを反応させてポリアミック酸を得る工程、及び該ポリアミック酸をイミド化する工程を含む方法により製造できる。また、樹脂(A)がポリアミック酸である場合、ポリアミック酸を得る工程を実施すればよい。なお、テトラカルボン酸化合物の他に、ジカルボン酸化合物、トリカルボン酸化合物を反応させてもよい。
<Manufacturing method of resin (A)>
The resin (A) contained in the film of the present invention may be a commercially available product or may be produced by a conventional method. In one embodiment of the present invention, the resin (A) is preferably a polyimide resin. The method for producing the polyimide resin is not particularly limited, and the polyimide resin is, for example, by a method including a step of reacting a diamine compound with a tetracarboxylic acid compound to obtain a polyamic acid and a step of imidizing the polyamic acid. Can be manufactured. When the resin (A) is a polyamic acid, the step of obtaining the polyamic acid may be carried out. In addition to the tetracarboxylic acid compound, a dicarboxylic acid compound or a tricarboxylic acid compound may be reacted.
 ポリイミド系樹脂の合成に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。 Examples of the tetracarboxylic acid compound used for synthesizing the polyimide resin include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic acid dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic acid dianhydride. Can be mentioned. The tetracarboxylic acid compound may be used alone or in combination of two or more. The tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as an acid chloride compound in addition to the dianhydride.
 テトラカルボン酸化合物の具体例としては、無水ピロメリット酸(以下、PMDAと略すことがある)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(以下、BPADAと略すことがある)、1,4,5,8-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAと略すことがある)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(以下、6FDAと略すことがある)、4,4’-オキシジフタル酸無水物(以下、ODPAと略すことがある)、2,2’,3,3’-、2,3,3’,4’-又は3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3’,3,4’-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3”,4,4”-、2,3,3”,4”-又は2,2”,3,3”-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(以下、HPMDAと略すことがある)、2,3,5,6-シクロヘキサンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下、CBDAと略すことがある)、ノルボルナン-2-スピロ-α’-スピロ-2”-ノルボルナン-5,5’,6,6’-テトラカルボン酸無水物、p-フェニレンビス(トリメリテート無水物)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物などが挙げられる。これらの中でも、フィルムのCTEを低減しやすく、かつ耐熱性、誘電特性、耐吸水性、及び屈曲耐性などの機械的特性を高めやすい観点から、PMDA、BPDA、6FDA、BPADA、ODPA、HPMDA、CBDA、p-フェニレンビス(トリメリテート無水物)が好ましい。これらのテトラカルボン酸化合物は単独又は二種以上組合せて使用できる。 Specific examples of the tetracarboxylic acid compound include pyromellitic anhydride (hereinafter, may be abbreviated as PMDA), 4,4'-(4,4'-isopropylidene diphenoxy), and diphthalic anhydride (hereinafter, BPADA). (May be abbreviated), 1,4,5,8-naphthalenetetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, may be abbreviated as BPDA), 4,4'-(Hexafluoroisopropylidene) diphthalic acid dianhydride (hereinafter, may be abbreviated as 6FDA), 4,4'-oxydiphthalic acid anhydride (hereinafter, may be abbreviated as ODPA), 2,2 ', 3,3'-, 2,3,3', 4'-or 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,3', 3,4'-biphenyltetracarboxylic Acid dianhydride, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride, 2,3', 3,4'-diphenyl ether tetracarboxylic acid dianhydride, bis (2,3-dicarboxyphenyl) ) Ether dianhydride, 3,3 ", 4,4"-, 2,3,3 ", 4"-or 2,2 ", 3,3" -p-terphenyltetracarboxylic acid dianhydride, 2 , 2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-dicarboxyphenyl) methane dianhydride, 1,1-bis (2,3- or 3.4-dicarboxyphenyl) 2,3- or 3,4-dicarboxyphenyl) ethane dianhydride, 1,2,7,8-, 1,2,6,7- or 1,2,9,10-phenanthrene-tetracarboxylic acid di Anhydride, 2,2-bis (3,4-dicarboxyphenyl) tetrafluoropropane dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (hereinafter, may be abbreviated as HPMDA), 2,3,5,6-Cyclohexanetetracarboxylic acid dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, cyclopentane -1,2,3,4-tetracarboxylic acid dianhydride, 4,4'-bis (2,3-dicarboxyphenoxy) diphenylmethane dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (Hereinafter, sometimes abbreviated as CBDA), norbornan-2-spiro-α'-spiro-2 "-norbornan-5,5', 6,6'-tetracarboxylic acid anhydride, p-phenylenebis (trimeritate) Anhydride), 3,3', 4,4'-diphenylsulfonate Tracarboxylic acid dianhydride, 2,3,6,7-anthracentetracarboxylic acid dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5 , 6-Tetracarboxylic acid dianhydride, 2,6- or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, 2,3,6,7-(or 1,4) , 5,8-) Tetrachloronaphthalene-1,4,5,8- (or 2,3,6,7-) Tetracarboxylic acid dianhydride, 2,3,8,9-,3,4,9 , 10-, 4,5,10,11-or 5,6,11,12-perylene-tetracarboxylic acid dianhydride, pyrazine-2,3,5,6-tetracarboxylic acid dianhydride, pyrrolidine-2 , 3,4,5-Tetracarboxylic acid dianhydride, thiophene-2,3,4,5-tetracarboxylic acid dianhydride, bis (2,3- or 3,4-dicarboxyphenyl) sulfonate dianhydride And so on. Among these, PMDA, BPDA, 6FDA, BPADA, ODPA, HPMDA, CBDA are easy to reduce the CTE of the film and to improve the mechanical properties such as heat resistance, dielectric property, water absorption resistance, and bending resistance. , P-Phenylenebis (trimeritate anhydride) is preferred. These tetracarboxylic acid compounds can be used alone or in combination of two or more.
 ポリイミド系樹脂の合成に用いられるジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、芳香環を有するジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、脂肪族基を有するジアミンを表し、その構造の一部にその他の置換基を含んでいてもよいが、芳香環は有しない。 Examples of the diamine compound used for synthesizing the polyimide resin include aliphatic diamines, aromatic diamines and mixtures thereof. In addition, in this embodiment, "aromatic diamine" represents a diamine having an aromatic ring, and an aliphatic group or another substituent may be contained in a part of the structure thereof. The aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring, but the aromatic ring is not limited thereto. Among these, a benzene ring is preferable. Further, the "aliphatic diamine" represents a diamine having an aliphatic group, and may contain other substituents as a part of its structure, but does not have an aromatic ring.
 ジアミン化合物の具体例としては、1,4-ジアミノシクロヘキサン、4,4’-ジアミノ-2,2’-ジメチルビフェニル(以下、m-TBと略すことがある)、4,4’-ジアミノ-3,3’-ジメチルビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(以下、TFMBと略すことがある)、4,4’-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン(以下、1,3-APBと略すことがある)、1,4-ビス(4-アミノフェノキシ)ベンゼン(以下、1,4-APBと略すことがある)、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(4-アミノフェノキシ)]ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)]ベンゾフェノン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、4,4’-メチレンジアニリン、3,3’-メチレンジアニリン、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,3-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、ベンジジン、3,3’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、4,4”-ジアミノ-p-テルフェニル、3,3”-ジアミノ-p-テルフェニル、m-フェニレンジアミン、p-フェニレンジアミン(p-PDAと略すことがある)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPPと略すことがある)、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、レゾルシノール-ビス(3-アミノフェニル)エーテル、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、ピペラジン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4”-ジアミノ-p-ターフェニル、ビス(4-アミノフェニル)テレフタレート、1,4-ビス(4-アミノフェノキシ)-2,5-ジ-tert-ブチルベンゼン、4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、2,4-ジアミノ-3,5-ジエチルトルエン、2,6-ジアミノ-3,5-ジエチルトルエン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-(ヘキサフルオロプロピリデン)ジアニリン、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキンサン、1,2-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、2-メチル-1,2-ジアミノプロパン、2-メチル-1,3-ジアミノプロパン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン、2’-メトキシ-4,4’-ジアミノベンズアニリド、4,4’-ジアミノベンズアニリド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,5-ジアミノ-1,3,4-オキサジアゾール、ビス[4,4’-(4-アミノフェノキシ)]ベンズアニリド、ビス[4,4’-(3-アミノフェノキシ)]ベンズアニリド、2,6-ジアミノピリジン、2,5-ジアミノピリジンなどが挙げられる。これらの中でも、フィルムのCTEを低減しやすく、かつ耐熱性、耐吸水性、誘電特性及び機械的特性を高めやすい観点から、1,4-ジアミノシクロヘキサン、4,4’-ジアミノジフェニルエーテル、TFMB、4,4’-メチレンジアニリン、3,3’-メチレンジアニリン、p-PDA、BAPP、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビシクロヘキサン、m-TB、4,4”-ジアミノ-p-ターフェニル、ビス(4-アミノフェニル)テレフタレート、1,4-ビス(4-アミノフェノキシ)-2,5-ジ-tert-ブチルベンゼン、1,3-APB、1,4-APB、レゾルシノール-ビス(3-アミノフェニル)エーテル、4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、2,4-ジアミノ-3,5-ジエチルトルエン、2,6-ジアミノ-3,5-ジエチルトルエン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-(ヘキサフルオロプロピリデン)ジアニリンなどが好ましい。ジアミン化合物は単独又は二種以上組合せて使用できる。 Specific examples of the diamine compound include 1,4-diaminocyclohexane, 4,4'-diamino-2,2'-dimethylbiphenyl (hereinafter, may be abbreviated as m-TB), and 4,4'-diamino-3. , 3'-dimethylbiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl (hereinafter abbreviated as TFMB), 4,4'-diaminodiphenyl ether, 1,3-bis (3-Aminophenoxy) benzene (hereinafter, may be abbreviated as 1,3-APB), 1,4-bis (4-aminophenoxy) benzene (hereinafter, may be abbreviated as 1,4-APB), 1 , 3-Bis (4-aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3' -Dihydroxy-4,4'-diaminobiphenyl, 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy)] biphenyl, bis [4- (3- (3-aminophenoxy)] Aminophenoxy) Biphenyl, bis [1- (4-aminophenoxy)] biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy) phenyl] methane, bis [4- (4- (4-aminophenoxy)] 3-Aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy)] benzophenone, Bis [4- (3-aminophenoxy)] benzophenone, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3-aminophenoxy) phenyl ] Hexafluoropropane, 4,4'-methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 4,4'-methylenedi. Aniline, 3,3'-methylenedianiline, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4 '-Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethoxybenze Gin, 4,4 "-diamino-p-terphenyl, 3,3" -diamino-p-terphenyl, m-phenylenediamine, p-phenylenediamine (sometimes abbreviated as p-PDA), 2,2- Bis [4- (4-aminophenoxy) phenyl] Propane (sometimes abbreviated as BAPP), 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, resorcinol- Bis (3-aminophenyl) ether, 4,4'-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-[1,3-phenylenebis (1-methylethylidene)] bisaniline , Bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-) Aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino-t-butyl) Toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylene diamine, p-xylylene diamine, piperazine, 4,4'-diamino- 2,2'-bis (trifluoromethyl) bicyclohexane, 4,4'-diaminodicyclohexylmethane, 4,4 "-diamino-p-terphenyl, bis (4-aminophenyl) terephthalate, 1,4-bis ( 4-Aminophenoxy) -2,5-di-tert-butylbenzene, 4,4'-(1,3-phenylenediisopropyridene) bisaniline, 1,4-bis [2- (4-aminophenyl) -2 -Propyl] benzene, 2,4-diamino-3,5-diethyltoluene, 2,6-diamino-3,5-diethyltoluene, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'- (Hexafluoropropyridene) dianiline, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexinsan, 1,2-diaminopropane , 1,2-Diaminobutane, 1,3-diaminobutane, 2-methyl-1,2-diaminopropane, 2-methyl-1,3-diaminopropane, 1,3-bis (aminomethyl) cyclohexane, 1, 4-bis (aminomethyl) cyclohe Xan, norbornenandiamine, 2'-methoxy-4,4'-diaminobenzanilide, 4,4'-diaminobenzanilide, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-amino) Phenoxy) phenyl] sulfone, 9,9-bis [4- (4-aminophenoxy) phenyl] fluorene, 9,9-bis [4- (3-aminophenoxy) phenyl] fluorene, 4,4'-diaminodiphenyl sulfide , 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 2,5-diamino-1,3,4-oxadiazole, bis [4,4' -(4-Aminophenoxy)] benzanilide, bis [4,4'-(3-aminophenoxy)] benzanilide, 2,6-diaminopyridine, 2,5-diaminopyridine and the like. Among these, 1,4-diaminocyclohexane, 4,4'-diaminodiphenyl ether, TFMB, 4 from the viewpoint of easily reducing the CTE of the film and easily improving the heat resistance, water absorption resistance, dielectric property and mechanical property. , 4'-methylenedianiline, 3,3'-methylenedianiline, p-PDA, benzene, 4,4'-diaminodicyclohexylmethane, 4,4'-diamino-2,2'-bis (trifluoromethyl) Bicyclohexane, m-TB, 4,4 "-diamino-p-terphenyl, bis (4-aminophenyl) terephthalate, 1,4-bis (4-aminophenoxy) -2,5-di-tert-butylbenzene , 1,3-APB, 1,4-APB, resorcinol-bis (3-aminophenyl) ether, 4,4'-(1,3-phenylenediisopropyridene) bisaniline, 1,4-bis [2- ( 4-Aminophenyl) -2-propyl] Benzene, 2,4-diamino-3,5-diethyltoluene, 2,6-diamino-3,5-diethyltoluene, 4,4'-bis (3-aminophenoxy) Biphenyl, 4,4'-(hexafluoropropyridene) dianiline and the like are preferable. The diamine compound can be used alone or in combination of two or more.
 なお、上記ポリイミド系樹脂は、フィルムの各種物性を損なわない範囲で、上記の樹脂合成に用いられるテトラカルボン酸化合物に加えて、他のテトラカルボン酸、ジカルボン酸及びトリカルボン酸並びにそれらの無水物及び誘導体をさらに反応させたものであってもよい。 In addition to the tetracarboxylic acid compounds used in the resin synthesis, the polyimide-based resin contains other tetracarboxylic acids, dicarboxylic acids, tricarboxylic acids, and anhydrides thereof, as long as the various physical properties of the film are not impaired. The derivative may be further reacted.
 他のテトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。 Examples of other tetracarboxylic acids include water adducts of the anhydrides of the above tetracarboxylic acid compounds.
 ジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸が単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物並びに、それらの酸クロリド化合物が挙げられる。 Examples of the dicarboxylic acid compound include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include a dicarboxylic acid compound of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4'-biphenyldicarboxylic acid; 3,3'-biphenyldicarboxylic acid; a chain hydrocarbon having 8 or less carbon atoms, and 2 Compounds in which one benzoic acid is linked by a single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or a phenylene group, and their compounds. Examples include acid chloride compounds.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物が挙げられる。 Examples of the tricarboxylic acid compound include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include anhydrate of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalentricarboxylic acid-2,3-anhydride; a single bond of phthalic anhydride and benzoic acid, -O-. , -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or compounds linked with a phenylene group.
 ポリイミド系樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物、ジカルボン酸化合物及びトリカルボン酸化合物の使用量は、所望とする樹脂の各構成単位の比率に応じて適宜選択できる。
 本発明の好適な実施形態においては、ジアミン化合物の使用量は、テトラカルボン酸化合物1molに対して、好ましくは0.94mol以上、より好ましくは0.96mol以上、さらに好ましくは0.98mol以上、特に好ましくは0.99mol以上であり、好ましくは1.20mol以下、より好ましくは1.10mol以下、さらに好ましくは1.05mol以下、特に好ましくは1.02mol以下である。テトラカルボン酸化合物に対するジアミン化合物の使用量が上記の範囲であると、得られるフィルムのCTEを低減しやすく、かつ耐熱性、誘電特性、耐吸水性、屈曲耐性などの機械的特性及び光学特性を高めやすい。
In the production of the polyimide-based resin, the amount of the diamine compound, the tetracarboxylic acid compound, the dicarboxylic acid compound and the tricarboxylic acid compound to be used can be appropriately selected according to the ratio of each structural unit of the desired resin.
In a preferred embodiment of the present invention, the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, still more preferably 0.98 mol or more, particularly preferably 0.98 mol or more, relative to 1 mol of the tetracarboxylic acid compound. It is preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, still more preferably 1.05 mol or less, and particularly preferably 1.02 mol or less. When the amount of the diamine compound used with respect to the tetracarboxylic acid compound is within the above range, the CTE of the obtained film can be easily reduced, and the mechanical and optical properties such as heat resistance, dielectric properties, water absorption resistance, and bending resistance can be obtained. Easy to raise.
 ジアミン化合物とテトラカルボン酸化合物との反応温度は、特に限定されず、例えば5~200℃であってもよく、反応時間も特に限定されず、例えば30分~72時間程度であってもよい。本発明の好適な実施形態においては、反応温度は、好ましくは5~50℃、より好ましくは10~40℃であり、反応時間は、好ましくは3~24時間である。このような反応温度及び反応時間であると、得られるフィルムのCTEを低減しやすく、かつ耐熱性、誘電特性、耐吸水性、屈曲耐性などの機械的特性及び光学特性を高めやすい。 The reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited and may be, for example, 5 to 200 ° C., and the reaction time is also not particularly limited and may be, for example, about 30 minutes to 72 hours. In a preferred embodiment of the invention, the reaction temperature is preferably 5-50 ° C, more preferably 10-40 ° C, and the reaction time is preferably 3-24 hours. With such a reaction temperature and reaction time, it is easy to reduce the CTE of the obtained film, and it is easy to improve mechanical properties such as heat resistance, dielectric properties, water absorption resistance, and bending resistance, and optical properties.
 ジアミン化合物とテトラカルボン酸化合物との反応は、溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;フェノール、クレゾール等のフェノール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン(以下、GBLと略すことがある)、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;N,N-ジメチルアセトアミド(以下、DMAcと略すことがある)、N,N-ジメチルホルムアミド(以下、DMFと略すことがある)等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;N-メチルピロリドン(以下、NMPと略すことがある)等のピロリドン系溶媒;及びそれらの組合せなどが挙げられる。これらの中でも、溶解性の観点から、フェノール系溶媒、アミド系溶媒、ピロリドン系溶媒を好適に使用できる。 The reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent. The solvent is not particularly limited as long as it does not affect the reaction, and is, for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, and the like. Alcohol-based solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; phenolic solvents such as phenol and cresol; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone (hereinafter, may be abbreviated as GBL), Ester-based solvents such as γ-valerolactone, propylene glycol methyl ether acetate, ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, and methylisobutylketone; fats such as pentane, hexane, and heptane. Group hydrocarbon solvent; alicyclic hydrocarbon solvent such as ethylcyclohexane; aromatic hydrocarbon solvent such as toluene and xylene; nitrile solvent such as acetonitrile; ether solvent such as tetrahydrofuran and dimethoxyethane; chlorine such as chloroform and chlorobenzene Containing solvent; Amid-based solvent such as N, N-dimethylacetamide (hereinafter, may be abbreviated as DMAc), N, N-dimethylformamide (hereinafter, may be abbreviated as DMF); Sulfur-containing solvent; carbonate solvent such as ethylene carbonate and propylene carbonate; pyrrolidone solvent such as N-methylpyrrolidone (hereinafter, may be abbreviated as NMP); and combinations thereof. Among these, a phenol-based solvent, an amide-based solvent, and a pyrrolidone-based solvent can be preferably used from the viewpoint of solubility.
 ジアミン化合物とテトラカルボン酸化合物との反応は、必要に応じて、不活性雰囲気(窒素雰囲気、アルゴン雰囲気等)又は減圧の条件下において行ってもよく、不活性雰囲気例えば、窒素雰囲気又はアルゴン雰囲気等の下、厳密に制御された脱水溶媒中で撹拌しながら行うことが好ましい。 The reaction between the diamine compound and the tetracarboxylic acid compound may be carried out under conditions of an inert atmosphere (nitrogen atmosphere, argon atmosphere, etc.) or reduced pressure, if necessary, and the reaction may be carried out under the conditions of an inert atmosphere (nitrogen atmosphere, argon atmosphere, etc.), such as an inert atmosphere, for example, a nitrogen atmosphere or an argon atmosphere. It is preferably carried out with stirring in a tightly controlled dehydration solvent.
 イミド化工程では、イミド化触媒を用いてイミド化しても、加熱によりイミド化しても、これらを組合せてもよい。イミド化工程で使用するイミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。加熱によるイミド化工程は、ポリアミック酸が溶解した溶媒中で行ってもよく、後述のようにフィルム化した状態で行ってもよい。 In the imidization step, imidization may be performed using an imidization catalyst, imidization may be performed by heating, or a combination thereof may be used. Examples of the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidin, N-butylpyrolidin and N-butylpiperidine. And alicyclic amines such as N-propylhexahydroazepine (monocyclic); azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and Alicyclic amines such as azabicyclo [3.2.2] nonane (polycyclic); as well as pyridine, 2-methylpyridine (2-picolin), 3-methylpyridine (3-picolin), 4-methylpyridine (4). -Picolin), 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7, Examples include aromatic amines such as 8-tetrahydroisoquinoline and isoquinoline. Further, from the viewpoint of facilitating the imidization reaction, it is preferable to use an acid anhydride together with the imidization catalyst. Examples of the acid anhydride include conventional acid anhydrides used in the imidization reaction, and specific examples thereof include acetic anhydride, propionic anhydride, aliphatic acid anhydrides such as butyric anhydride, and aromatics such as phthalic acid. Acid anhydride and the like can be mentioned. The imidization step by heating may be carried out in a solvent in which a polyamic acid is dissolved, or may be carried out in a filmed state as described later.
 本発明の一実施形態では、イミド化する場合、反応温度は、通常20~250℃であり、反応時間は好ましくは30分~24時間、より好ましくは1~12時間である。 In one embodiment of the present invention, when imidized, the reaction temperature is usually 20 to 250 ° C., and the reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours.
 ポリイミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により分離精製して単離してもよく、好ましい態様では、樹脂を含む反応液に、多量のメタノール等のアルコールを加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。
 なお、ポリアミック酸等のポリイミド系樹脂前駆体まで製造しておき、ポリイミド系樹脂前駆体を含むワニスを使用し、ポリイミド系樹脂前駆体とポリマー(B)とを含む組成物を製造してもよい。後述のフィルム製造におけるフィルム形成工程において、乾燥の際に同時にポリイミド系樹脂前駆体のイミド化を行うことで、ポリイミド系樹脂とポリマー(B)を含むフィルムを製造してもよい。この場合、ポリイミド系樹脂前駆体は固体、好ましくは粉体であっても、ポリイミド系樹脂前駆体を溶媒に溶解したワニスであってもよい。
The polyimide-based resin may be separated and purified by a conventional method, for example, a separation means such as filtration, concentration, extraction, crystallization, recrystallization, or column chromatography, or a separation means combining these, which is preferable. In the embodiment, it can be isolated by adding a large amount of alcohol such as methanol to the reaction solution containing the resin, precipitating the resin, and performing concentration, filtration, drying and the like.
It should be noted that a polyimide resin precursor such as polyamic acid may be produced, and a varnish containing the polyimide resin precursor may be used to produce a composition containing the polyimide resin precursor and the polymer (B). .. In the film forming step in the film production described later, a film containing the polyimide resin and the polymer (B) may be produced by imidizing the polyimide resin precursor at the same time as drying. In this case, the polyimide-based resin precursor may be a solid, preferably powder, or a varnish in which the polyimide-based resin precursor is dissolved in a solvent.
 樹脂(A)の好適な液晶ポリマーとしては、液晶性ポリエステルが挙げられ、好ましくは以下の式(a1)、式(a2)及び式(a3)で表される構造単位を含む液晶ポリエステルが挙げられる。
 -O-Ar-CO-   (a1)
 -CO-Ar-CO-  (a2)
 -X-Ar-Y-  (a3)
[式(a1)中、Arは、1,4-フェニレン基、2,6-ナフチレン基又は4,4’-ビフェニレン基を表し、
式(a2)中、Arは、1,4-フェニレン基、1,3-フェニレン基又は2,6-ナフチレン基を表し、
式(a3)中、Arは、1,4-フェニレン基又は1,3-フェニレン基を表し、
Xは-NH-を表し、
Yは、-O-又はNH-を表す。]
Suitable liquid crystal polymers of the resin (A) include liquid crystal polyesters, and preferably liquid crystal polyesters containing structural units represented by the following formulas (a1), (a2) and (a3). ..
-O-Ar 1 -CO- (a1)
-CO-Ar 2 -CO- (a2)
-X-Ar 3 -Y- (a3)
[In the formula (a1), Ar 1 represents a 1,4-phenylene group, a 2,6-naphthylene group or a 4,4'-biphenylene group.
In formula (a2), Ar 2 represents a 1,4-phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group.
In formula (a3), Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group.
X represents -NH-
Y represents —O— or NH—. ]
 前記液晶ポリエステルの全構造単位100モル%に対して、式(a1)で表される構造単位の含有量が30~80モル%、式(a2)で表される構造単位の含有量が10~35モル%、式(a3)で表される構造単位の含有量が10~35モル%である液晶ポリエステルが好ましい。 The content of the structural unit represented by the formula (a1) is 30 to 80 mol%, and the content of the structural unit represented by the formula (a2) is 10 to 10 to 100 mol% of the total structural unit of the liquid crystal polyester. Liquid crystal polyester having a content of 35 mol% and a structural unit represented by the formula (a3) of 10 to 35 mol% is preferable.
 式(a1)で表される構造単位は、芳香族ヒドロキシカルボン酸由来の構造単位、式(a2)で表される構造単位は、芳香族ジカルボン酸由来の構造単位、式(a3)で表される構造単位は、芳香族ジアミン、フェノール性水酸基を有する芳香族アミン由来の構造単位である。 The structural unit represented by the formula (a1) is a structural unit derived from an aromatic hydroxycarboxylic acid, and the structural unit represented by the formula (a2) is a structural unit derived from an aromatic dicarboxylic acid, represented by the formula (a3). The structural unit is an aromatic diamine or a structural unit derived from an aromatic amine having a phenolic hydroxyl group.
 本実施形態においては、前記Arが2,6-ナフチレン基であり、前記Arが1,3-フェニレン基であり、前記Arが1,4-フェニレン基であり、前記Yが-O-である液晶ポリエステルが好ましい。 In the present embodiment, Ar 1 is a 2,6-naphthylene group, Ar 2 is a 1,3-phenylene group, Ar 3 is a 1,4-phenylene group, and Y is −O. The liquid crystal polyester which is − is preferable.
 式(a1)で表される構造単位としては、p-ヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、4-ヒドロキシ-4’-ビフェニルカルボン酸由来の構造単位などが挙げられる。液晶ポリエステルは、2種以上の前記構造単位を含んでいてもよい。これらのうち、2-ヒドロキシ-6-ナフトエ酸由来の構造単位が好ましい。
 当該液晶ポリエステルの全構造単位100モル%に対して、式(a1)で表される構造単位の含有量は、好ましくは30モル%以上80モル%以下であり、より好ましくは40モル%以上70モル%以下であり、さらに好ましくは45モル%以上65モル%以下である。
Examples of the structural unit represented by the formula (a1) include p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, and structural units derived from 4-hydroxy-4'-biphenylcarboxylic acid. The liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from 2-hydroxy-6-naphthoic acid are preferred.
The content of the structural unit represented by the formula (a1) is preferably 30 mol% or more and 80 mol% or less, more preferably 40 mol% or more and 70, with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is mol% or less, more preferably 45 mol% or more and 65 mol% or less.
 式(a2)で表される構造単位としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸由来の構造単位などが挙げられる。液晶ポリエステルは、2種以上の前記構造単位を含んでいてもよい。これらのうち、イソフタル酸由来の構造単位が好ましい。
 当該液晶ポリエステルの全構造単位100モル%に対して、式(a2)で表される構造単位の含有量は、好ましくは10モル%以上35モル%以下であり、より好ましくは15モル%以上30モル%以下であり、さらに好ましくは17.5モル%以上27.5モル%以下である。
Examples of the structural unit represented by the formula (a2) include terephthalic acid, isophthalic acid, and structural units derived from 2,6-naphthalenedicarboxylic acid. The liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from isophthalic acid are preferred.
The content of the structural unit represented by the formula (a2) is preferably 10 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30% with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is 17.5 mol% or more, more preferably 27.5 mol% or less, and more preferably 17.5 mol% or more.
 式(a3)で表される構造単位としては、3-アミノフェノール、4-アミノフェノール、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4-アミノ安息香酸由来の構造単位などが挙げられる。液晶ポリエステルは、2種以上の前記構造単位を含んでいてもよい。これらのうち、4-アミノフェノール由来の構造単位が好ましい。
 当該液晶ポリエステルの全構造単位100モル%に対して、式(a3)で表される構造単位の含有量は、好ましくは10モル%以上35モル%以下であり、より好ましくは15モル%以上30モル%以下であり、さらに好ましくは17.5モル%以上27.5モル%以下である。
Examples of the structural unit represented by the formula (a3) include 3-aminophenol, 4-aminophenol, 1,4-phenylenediamine, 1,3-phenylenediamine, and structural units derived from 4-aminobenzoic acid. .. The liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from 4-aminophenol are preferable.
The content of the structural unit represented by the formula (a3) is preferably 10 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30% with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is 17.5 mol% or more, more preferably 27.5 mol% or less, and more preferably 17.5 mol% or more.
 本実施形態で使用される液晶ポリエステルは、例えば、特開2019-163431号公報に記載の方法により製造することができる。 The liquid crystal polyester used in this embodiment can be produced, for example, by the method described in JP-A-2019-163431.
 <フィルム>
 本発明のフィルムは、樹脂(A)とポリマー(B)とを含み、該ポリマー(B)のTg及び融点の少なくともいずれか一方は160℃以上であるため、従来のシクロオレフィン系ポリマーを含む複合フィルムと比べ、CTEを低減することができる。さらに、本発明のフィルムはポリマー(B)のTg及び融点の少なくともいずれか一方、特にTgが大きいにもかかわらず、優れた機械的特性、特に屈曲耐性を発現し得る。そのため、本発明のフィルムは、低減されたCTEと、優れた耐熱性及び機械的特性、特に屈曲耐性とを併せて有することができる。
<Film>
The film of the present invention contains a resin (A) and a polymer (B), and since at least one of the Tg and the melting point of the polymer (B) is 160 ° C. or higher, a composite containing a conventional cycloolefin-based polymer. Compared with film, CTE can be reduced. Furthermore, the film of the present invention can exhibit excellent mechanical properties, particularly bending resistance, despite the fact that at least one of the Tg and the melting point of the polymer (B), particularly Tg, is large. Therefore, the film of the present invention can have both reduced CTE and excellent heat resistance and mechanical properties, particularly bending resistance.
 本発明の一実施形態において、本発明のフィルムは、樹脂(A)とポリマー(B)とのHSP値間距離が特定の範囲であることが好ましい。
 HSPはハンセン溶解度パラメータ(δ)であり、(δD,δP,δH)の3次元のパラメータで定義され、式(X):
δ=(δD)+(δP)+(δH)  ・・・(X)
[式(X)中、δDはLоndоn分散力項を示し、δPは分子分極項(双極子間力項)を示し、δHは水素結合項を表す]
により表される。HSPに係る詳細は、「PROPERTIES OF POLYMERS」(著者:D.W.VANKREVELEN、発行所:ELSEVIER SCIENTFIC PUBLISHING COMPANY、1989年発行、第5版)に記載されている。ハンセン溶解度パラメータのδD,δP、及びδHは、ハンセン溶解度パラメータを提案したハンセン博士のグループによって開発されたプログラムであるHSPiP(Hansen Sоlubility Parameters in Practice)を用いて計算することができ、例えば実施例に記載のVer.4.1.07等を用いることができる。以下にハンセン溶解球法の詳細を説明する。対象となる成分をHSP値が既知の溶媒に溶解させ、当該成分の特定の溶媒に対する溶解性を評価する。溶解性の評価は、それぞれ対象とする成分が溶媒に溶解したか否かを目視で判定して行う。これを複数の溶媒について行う。この溶媒の種類は、δtが幅広く異なる溶媒を用いることが好ましく、より具体的には、好ましくは10種以上、より好ましくは15種以上、さらに好ましくは18種以上である。次に、得られた溶解性の評価結果をHSPiPに入力する事で得られたHansen球の中心座標(δd,δp,δh)を対象とする組成のHSPとする。また、HSPは上記の方法の他、例えばHSPiPのデータベースの数値や文献値を用いてもよく、HSPiPを使用して構造式から求めてもよい。なお、本明細書において、ハンセン溶解度パラメータの値をHSP値と称し、該HSP値は、25℃における値を表す。樹脂(A)のHSP値、ポリマー(B)のHSP値、及び溶媒のHSP値は、ぞれぞれ、上記のいずれかの方法により求めてもよく、例えば実施例に記載の方法により求められる。
In one embodiment of the present invention, the film of the present invention preferably has a distance between the HSP values of the resin (A) and the polymer (B) in a specific range.
HSP is a Hansen solubility parameter (δ), defined by a three-dimensional parameter of (δD, δP, δH), and the formula (X) :.
δ 2 = (δD) 2 + (δP) 2 + (δH) 2 ... (X)
[In equation (X), δD represents the Lоndоn dispersion force term, δP represents the molecular polarization term (dipole interpole force term), and δH represents the hydrogen bond term].
Represented by. Details of HSP are described in "PROPERTIES OF POLYMERS" (Author: WDVANKREVEREN, Publisher: ELSEVIER SCIENTFIC PUBLISHING COMPANY, 1989, 5th edition). The Hansen solubility parameters δD, δP, and δH can be calculated using HSPiP (Hansen Sоlubility Parameters in Practice), a program developed by Dr. Hansen's group who proposed the Hansen solubility parameter, for example, in Examples. The described Ver. 4.1.07 and the like can be used. The details of the Hansen-dissolved sphere method will be described below. The component of interest is dissolved in a solvent having a known HSP value, and the solubility of the component in a specific solvent is evaluated. The solubility is evaluated by visually determining whether or not the target component is dissolved in the solvent. This is done for multiple solvents. As the type of the solvent, it is preferable to use a solvent having a wide range of δt, more specifically, 10 kinds or more, more preferably 15 kinds or more, still more preferably 18 kinds or more. Next, the HSP having a composition targeting the center coordinates (δd, δp, δh) of the Hansen sphere obtained by inputting the obtained solubility evaluation result into HSPiP is used. In addition to the above methods, HSP may be obtained from a structural formula using, for example, numerical values or literature values in a database of HSPiP, or HSPiP may be used. In the present specification, the value of the Hansen solubility parameter is referred to as an HSP value, and the HSP value represents a value at 25 ° C. The HSP value of the resin (A), the HSP value of the polymer (B), and the HSP value of the solvent may be obtained by any of the above methods, for example, by the method described in Examples. ..
 二つの物質のハンセン溶解度パラメータ(以下、HSPと略すことがある)の距離をHSP値間距離という。HSP間距離(Ra)は、両物質の親和性を表す指標であって、その値が小さい程、両物質の親和性が高いことを示す。逆に、Raの値が大きい程、両物質の親和性が低いこと、すなわち、相溶しがたいことを示す。
 HSP値間距離は、二つの物質A及びBのそれぞれのハンセン溶解度パラメータδA及びδBを、
δA=(δDA,δPA,δHA)
δB=(δDB,δPB,δHB)
と仮定すれば、HSP間距離(Ra)は、式(Y):
Ra=[4×(δDA‐δDB)+(δPA‐δPB)+(δHA‐δHB)0.5  ・・・(Y)
により計算することができる。
 なお、本明細書において、HSP値及びHSP値間距離は上記に定義した通りであり、上記方法に従って求めることができる。
The distance between the Hansen solubility parameters (hereinafter, may be abbreviated as HSP) of two substances is called the distance between HSP values. The distance between HSPs (Ra) is an index showing the affinity between the two substances, and the smaller the value, the higher the affinity between the two substances. On the contrary, the larger the Ra value, the lower the affinity between the two substances, that is, the more difficult it is to be compatible.
The distance between the HSP values determines the Hansen solubility parameters δA and δB of the two substances A and B, respectively.
δA = (δDA, δPA, δHA)
δB = (δDB, δPB, δHB)
Assuming that the distance between HSPs (Ra) is the equation (Y) :.
Ra = [4 × (δDA-δDB) 2 + (δPA-δPB) 2 + (δHA-δHB) 2 ] 0.5 ... (Y)
Can be calculated by.
In this specification, the HSP value and the distance between the HSP values are as defined above, and can be obtained according to the above method.
 本発明の好適な実施形態では、本発明のフィルムは、樹脂(A)とポリマー(B)とのHSP値間距離が比較的大きくても、耐熱性、誘電特性及び屈曲耐性などの機械的特性に優れ、かつCTEを低減できる。そのため、本発明のフィルムにおいて、樹脂(A)とポリマー(B)とのHSP値間距離は、好ましくは6.0以上、より好ましくは7.0以上、さらに好ましくは8.0以上である。
 また樹脂(A)とポリマー(B)とのHSP値間距離は、樹脂とポリマー間の親和性の観点から、好ましくは30以下、より好ましくは25以下、さらに好ましくは20以下である。
In a preferred embodiment of the present invention, the film of the present invention has mechanical properties such as heat resistance, dielectric properties and bending resistance even when the distance between the HSP values of the resin (A) and the polymer (B) is relatively large. Excellent and can reduce CTE. Therefore, in the film of the present invention, the distance between the HSP values of the resin (A) and the polymer (B) is preferably 6.0 or more, more preferably 7.0 or more, still more preferably 8.0 or more.
The distance between the HSP values of the resin (A) and the polymer (B) is preferably 30 or less, more preferably 25 or less, still more preferably 20 or less, from the viewpoint of the affinity between the resin and the polymer.
 本発明の一実施形態において、フィルムに含まれる樹脂(A)及び粒子状ポリマー(B)の合計質量は、該フィルムの質量に対して、好ましくは40質量%以上、より好ましくは60質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上であり、好ましくは100質量%以下である。フィルムに含まれる樹脂(A)及び粒子状ポリマー(B)の合計質量が上記の下限以上であると、フィルムのCTEを低減しやすく、かつ誘電特性及び屈曲耐性などの機械的特性を高めやすい。また、粒子状のポリマー(B)が分散したフィルムにおいては、分散性を高めやすく、結果としてフィルムの物性、例えば熱伝導率(又は熱拡散率)等のバラツキを低減しやすい。 In one embodiment of the present invention, the total mass of the resin (A) and the particulate polymer (B) contained in the film is preferably 40% by mass or more, more preferably 60% by mass or more, based on the mass of the film. It is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and preferably 100% by mass or less. When the total mass of the resin (A) and the particulate polymer (B) contained in the film is at least the above lower limit, the CTE of the film can be easily reduced and the mechanical properties such as dielectric properties and bending resistance can be easily enhanced. Further, in the film in which the particulate polymer (B) is dispersed, it is easy to improve the dispersibility, and as a result, it is easy to reduce the variation in the physical characteristics of the film, for example, the thermal conductivity (or thermal diffusivity).
 本発明のフィルムにおいて、粒子状ポリマー(B)の平均一次粒子径は15μm以下であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下、さらにより好ましくは1μm以下、特に好ましくは0.8μm以下、特により好ましくは0.5μm以下であり、好ましくは0.01μm以上、より好ましくは0.03μm以上、さらに好ましくは0.05μm以上である。粒子状ポリマー(B)の平均一次粒子径が上記の下限以上であると、フィルムの機械的特性を高めやすい。粒子状ポリマー(B)の平均一次粒子が上記の上限以下であると、フィルムの粒子分散性、表面平滑性、耐吸水性及び屈曲耐性等の機械的特性を高めやすい。なお、粒子状ポリマー(B)の平均一次粒子径は、電子顕微鏡により観察した画像解析により求めることができ、例えば実施例に記載の方法により求めることができる。 In the film of the present invention, the average primary particle size of the particulate polymer (B) is 15 μm or less, preferably 10 μm or less, more preferably 5 μm or less, still more preferably 3 μm or less, still more preferably 1 μm or less, and particularly preferably. It is 0.8 μm or less, more preferably 0.5 μm or less, preferably 0.01 μm or more, more preferably 0.03 μm or more, still more preferably 0.05 μm or more. When the average primary particle diameter of the particulate polymer (B) is at least the above lower limit, it is easy to improve the mechanical properties of the film. When the average primary particles of the particulate polymer (B) are not more than the above upper limit, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness, water absorption resistance and bending resistance of the film. The average primary particle diameter of the particulate polymer (B) can be determined by image analysis observed with an electron microscope, and can be determined, for example, by the method described in Examples.
 本発明の好適な実施形態において、本発明のフィルムは、樹脂(A)と、粒子状ポリマー(B)とを含むことが好ましく、樹脂(A)に対して、粒子状ポリマー(B)が分散、好ましくは均一分散した複合フィルムであることがより好ましい。例えば、該複合フィルムは海島構造を有し、樹脂(A)が海、粒子状ポリマー(B)が島であることが好ましい。このような複合フィルムは、耐熱性、誘電特性及び屈曲耐性などの機械的特性を高めやすく、かつCTEを低減しやすい。樹脂(A)とポリマー(B)とのHSP値間距離を上記下限値以上とすることで、粒子状ポリマー(B)をフィルム中に均一に分散させやすくすることができる。 In a preferred embodiment of the present invention, the film of the present invention preferably contains the resin (A) and the particulate polymer (B), and the particulate polymer (B) is dispersed with respect to the resin (A). , Preferably a uniformly dispersed composite film. For example, it is preferable that the composite film has a sea-island structure, the resin (A) is the sea, and the particulate polymer (B) is the island. Such a composite film tends to enhance mechanical properties such as heat resistance, dielectric properties and bending resistance, and tends to reduce CTE. By setting the distance between the HSP values of the resin (A) and the polymer (B) to be equal to or higher than the above lower limit, the particulate polymer (B) can be easily dispersed uniformly in the film.
 本発明の一実施形態において、本発明のフィルムのCTEは、用途に合せて適宜設計することができる。銅フィルムと貼り合せてCCLを作製する場合には、積層フィルムの剥がれ防止の観点から、フィルムのCTEを20ppm/K前後に調整することが好ましい。フィルムのCTEは、混合する樹脂(A)及び粒子状ポリマー(B)のCTEや混合量等により、調整可能である。CTE低減の観点からは、Tgの高い粒子状ポリマー(B)を混合することが好ましい。なお、CTEは、TMAにより測定でき、例えば実施例に記載の方法により測定できる。 In one embodiment of the present invention, the CTE of the film of the present invention can be appropriately designed according to the intended use. When CCL is produced by laminating with a copper film, it is preferable to adjust the CTE of the film to around 20 ppm / K from the viewpoint of preventing peeling of the laminated film. The CTE of the film can be adjusted by the CTE of the resin (A) and the particulate polymer (B) to be mixed, the mixing amount, and the like. From the viewpoint of reducing CTE, it is preferable to mix the particulate polymer (B) having a high Tg. The CTE can be measured by TMA, for example, by the method described in Examples.
 本発明のフィルムにおける屈曲耐性は、例えば屈曲試験(以下、マンドレル試験と称することがある)後の変形高さにより評価でき、屈曲試験後の変形高さが小さいほど屈曲耐性が大きいことを示す。本発明のフィルムは、直径2mmのマンドレル試験において、1回屈曲後の変形高さが、好ましくは10mm以下、より好ましくは7mm以下、さらに好ましくは4mm以下、さらにより好ましくは2mm以下、特に好ましくは1mm以下である。また、本発明のフィルムは、直径2mmのマンドレル試験において、10回反復屈曲後の変形高さが、好ましくは15mm以下、より好ましくは13mm以下、さらに好ましくは10mm以下、さらにより好ましくは5mm以下、特に好ましくは2mm以下である。1回屈曲後の変形高さ又は10回反復屈曲後の変形高さが上記の上限以下であると、優れた屈曲耐性を発現しやすい。1回屈曲後の変形高さ及び10回反復屈曲後の変形高さの下限は、それぞれ0mm以上である。なお、1回屈曲後の変形高さ及び10回反復屈曲後の変形高さは、例えば実施例に記載の方法により測定できる。 The bending resistance of the film of the present invention can be evaluated by, for example, the deformation height after the bending test (hereinafter, may be referred to as a mandrel test), and the smaller the deformation height after the bending test, the greater the bending resistance. The film of the present invention has a deformation height of preferably 10 mm or less, more preferably 7 mm or less, still more preferably 4 mm or less, still more preferably 2 mm or less, particularly preferably 2 mm or less after one bending in a mandrel test having a diameter of 2 mm. It is 1 mm or less. Further, in the mandrel test having a diameter of 2 mm, the film of the present invention has a deformation height of preferably 15 mm or less, more preferably 13 mm or less, still more preferably 10 mm or less, still more preferably 5 mm or less after repeated bending 10 times. It is particularly preferably 2 mm or less. When the deformation height after one bending or the deformation height after 10 times of repeated bending is not more than the above upper limit, excellent bending resistance is likely to be developed. The lower limit of the deformation height after one bending and the deformation height after 10 times of repeated bending is 0 mm or more, respectively. The deformation height after one-time bending and the deformation height after ten-time repeated bending can be measured by, for example, the method described in Examples.
 本発明のフィルムは、必要に応じて、添加剤を含むことができる。添加剤としては、例えば酸化防止剤、難燃剤、架橋剤、界面活性剤、相溶化剤、イミド化触媒、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、フィラーなどが挙げられる。添加剤は単独又は二種以上組合せて使用できる。 The film of the present invention may contain additives, if necessary. Additives include, for example, antioxidants, flame retardants, cross-linking agents, surfactants, compatibilizers, imidization catalysts, weathering agents, lubricants, antiblocking agents, antistatic agents, antifogging agents, drip-free agents, pigments. , Fillers and the like. Additives can be used alone or in combination of two or more.
 本発明の一実施形態において、本発明のフィルムは、相溶化剤を含んでいなくても、粒子状ポリマー(B)が高い粒子分散性を示すため、低CTE、高耐熱性、及び高い屈曲耐性などの機械的特性を発現できる。そのため、本発明のフィルムにおいて、相溶化剤の含有量は、樹脂(A)100質量部に対して、好ましくは5質量部以下、より好ましくは1質量部以下、さらに好ましくは0.1質量部以下、さらにより好ましくは0.1質量部未満、特に好ましくは0.05質量部以下、特により好ましくは0.01質量部以下、特にさらに好ましくは0.001質量部以下であり、最も好ましくは0質量部であってもよい。また、例えば樹脂(A)がポリアミック酸のようなポリイミド系樹脂前駆体であり、フィルム製造時に熱イミド化が必要な場合には、相溶化剤によるイミド化の阻害や、加熱による相溶化剤の変質によるフィルムの特性悪化を防ぐ観点からは、相溶化剤の含有量は、上記範囲の中でも、0.1質量部未満であることが好ましい。該相溶化剤の上記含有量は、樹脂(A)100質量部に代えて、樹脂(A)とポリマー(B)との合計100質量部を基準とした含有量としてもよい。 In one embodiment of the present invention, the film of the present invention has low CTE, high heat resistance, and high bending because the particulate polymer (B) exhibits high particle dispersibility even if it does not contain a compatibilizer. Can develop mechanical properties such as resistance. Therefore, in the film of the present invention, the content of the compatibilizer is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.1 part by mass with respect to 100 parts by mass of the resin (A). Below, it is even more preferably less than 0.1 parts by mass, particularly preferably 0.05 parts by mass or less, particularly more preferably 0.01 parts by mass or less, and particularly still more preferably 0.001 parts by mass or less, and most preferably. It may be 0 parts by mass. Further, for example, when the resin (A) is a polyimide resin precursor such as polyamic acid and thermal imidization is required at the time of film production, inhibition of imidization by a compatibilizer or a compatibilizer by heating may be used. From the viewpoint of preventing deterioration of the characteristics of the film due to deterioration, the content of the compatibilizer is preferably less than 0.1 part by mass within the above range. The content of the compatibilizer may be based on 100 parts by mass of the total of the resin (A) and the polymer (B) instead of 100 parts by mass of the resin (A).
 本発明のフィルムの厚さは、用途に応じて適宜選択でき、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上であり、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは100μm以下、特に好ましくは80μm以下である。フィルムの厚さは、膜厚計等を用いて測定でき、例えば実施例に記載の方法により測定できる。なお、本発明のフィルムが多層フィルムである場合、上記厚さは単層部分の厚さを表す。 The thickness of the film of the present invention can be appropriately selected depending on the intended use, and is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 20 μm or more, preferably 500 μm or less, more preferably 300 μm or less, still more preferably. It is 100 μm or less, particularly preferably 80 μm or less. The thickness of the film can be measured using a film thickness meter or the like, and can be measured, for example, by the method described in Examples. When the film of the present invention is a multilayer film, the above thickness represents the thickness of the single layer portion.
 本発明のフィルムは、単層フィルムであってもよく、本発明のフィルムからなる層を少なくとも1層含む多層フィルムであってもよい。該多層フィルムは他の層(又は他のフィルム)を含むことができる。このような場合にも全ての層を含めて本発明のフィルムと称する。他の層としては、例えば機能層などが挙げられる。該機能層としては、プライマー層、ガスバリア層、粘着層、保護層などが例示できる。機能層は単独又は二種以上組合せて使用できる。 The film of the present invention may be a single-layer film or a multilayer film containing at least one layer made of the film of the present invention. The multilayer film can include other layers (or other films). Even in such a case, the film of the present invention includes all the layers. Examples of the other layer include a functional layer and the like. Examples of the functional layer include a primer layer, a gas barrier layer, an adhesive layer, and a protective layer. The functional layer can be used alone or in combination of two or more.
 本発明のフィルムは、通常工業的に採用されている方法によって、コロナ放電処理、火炎処理、プラズマ処理、オゾン処理等の表面処理が施されていてもよい。 The film of the present invention may be subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, ozone treatment, etc. by a method usually industrially adopted.
 本発明のフィルムは、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記以外の実施形態の構成や方法等を任意に採用して組合せてもよく、上記の1つの実施形態に係る構成や方法等を上記の他の実施形態に係る構成や方法等に適用してもよい。 The film of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of embodiments other than the above may be arbitrarily adopted and combined, and the configurations and methods according to the above one embodiment are applied to the configurations and methods according to the other embodiments described above. You may.
 本発明の一実施形態にかかるフィルムは、低誘電損失に加え、従来のシクロオレフィン系ポリマーを含む複合フィルムよりもCTEが低減されている。さらに耐熱性及び機械的特性、特に屈曲耐性にも優れる。そのため、高周波帯域用のプリント回路基板やアンテナ基板に対応可能な基板材料などに好適に利用できる。例えばCCLは、樹脂層の両表面に接着剤を介して銅箔が積層された構造を有する。本発明のフィルムを該樹脂層として使用する場合、CTEが低減されているため、従来のものと比較し、銅箔と樹脂層との剥がれを有効に抑制できる。また、機械的特性、特に屈曲耐性に優れるため、塑性変形に強く、巻き癖が付きにくく、またフレキシブル基板材料にも使用できる。
 本発明のフィルムは、その他、自動車部品、電気・電子部品等の工業材料;レンズ、プリズム、光ファイバー、記録媒体等の光学材料等にも好適に用いられる。
In addition to the low dielectric loss, the film according to the embodiment of the present invention has a lower CTE than the conventional composite film containing a cycloolefin polymer. Further, it is excellent in heat resistance and mechanical properties, especially bending resistance. Therefore, it can be suitably used as a substrate material compatible with a printed circuit board for a high frequency band and an antenna substrate. For example, CCL has a structure in which copper foils are laminated on both surfaces of a resin layer via an adhesive. When the film of the present invention is used as the resin layer, since the CTE is reduced, peeling between the copper foil and the resin layer can be effectively suppressed as compared with the conventional film. Further, since it has excellent mechanical properties, particularly bending resistance, it is resistant to plastic deformation, does not easily have curl, and can be used as a flexible substrate material.
The film of the present invention is also suitably used for other industrial materials such as automobile parts and electric / electronic parts; optical materials such as lenses, prisms, optical fibers, and recording media.
[フィルムの製造方法]
 本発明のフィルムの製造方法は、特に限定されないが、例えば以下の工程:
(a)樹脂(A)、ポリマー(B)及び溶媒を含む組成物を調製する組成物調製工程、
(b)組成物を基材に塗布して塗膜を形成する塗布工程、及び
(c)塗布された液(塗膜)を乾燥させて、フィルムを形成するフィルム形成工程
を含む方法によって製造することができる。樹脂(A)がポリイミド系樹脂である場合、熱イミド化を行う際には、イミド化反応を完了させる工程が含まれてもよい。
[Film manufacturing method]
The method for producing the film of the present invention is not particularly limited, but for example, the following steps:
(A) Composition preparation step of preparing a composition containing the resin (A), the polymer (B) and the solvent,
It is produced by a method including (b) a coating step of applying the composition to a substrate to form a coating film, and (c) a film forming step of drying the applied liquid (coating film) to form a film. be able to. When the resin (A) is a polyimide resin, a step of completing the imidization reaction may be included in the thermal imidization.
 組成物調製工程は、例えば、樹脂(A)、ポリマー(B)及び溶媒、並びに任意に前記添加剤を混合することにより組成物を調整すればよい。 In the composition preparation step, the composition may be prepared, for example, by mixing the resin (A), the polymer (B) and the solvent, and optionally the additive.
 ここで、本発明の好適な実施形態では、上記の通り、樹脂(A)と粒子状ポリマー(B)とを含むフィルム、より好ましくは樹脂(A)に対して粒子状ポリマー(B)が分散されたフィルムを形成することが好ましい。かかる好適な実施形態におけるフィルムを形成する際の組成物調製工程を以下に示す。 Here, in a preferred embodiment of the present invention, as described above, the particulate polymer (B) is dispersed with respect to the film containing the resin (A) and the particulate polymer (B), more preferably the resin (A). It is preferable to form the finished film. The composition preparation step for forming a film in such a preferred embodiment is shown below.
 (組成物調製工程)
 好適な実施形態における組成物は、樹脂(A)、粒子状ポリマー(B)及び溶媒を含む。
(Composition preparation process)
The composition in a preferred embodiment comprises a resin (A), a particulate polymer (B) and a solvent.
 該組成物の製造方法は、ポリマー(B)を第1溶媒に溶解させてポリマー(B)溶液を得る工程(1);
 該ポリマー(B)溶液を第2溶媒に接触させた後、第1溶媒を留去して粒子状ポリマー(B)を含む分散液(以下、粒子状ポリマー(B)分散液と称することがある)を得る工程(2);及び
 該粒子状ポリマー(B)分散液に樹脂(A)を添加する工程(3)を含む。このような製造方法を用いると、ポリマー(B)の粒子の凝集を抑制し得るため、粒子径を低減しやすく、かつ分散性を向上しやすい。そのため、表面平滑性及び高い機械的特性(特に高屈曲耐性)を有するフィルムが得られやすい。
The method for producing the composition is a step (1) of dissolving the polymer (B) in a first solvent to obtain a polymer (B) solution.
After the polymer (B) solution is brought into contact with the second solvent, the first solvent is distilled off and a dispersion liquid containing the particulate polymer (B) (hereinafter, may be referred to as a particulate polymer (B) dispersion liquid). ); And the step (3) of adding the resin (A) to the particulate polymer (B) dispersion. When such a production method is used, the agglomeration of the particles of the polymer (B) can be suppressed, so that the particle size can be easily reduced and the dispersibility can be easily improved. Therefore, it is easy to obtain a film having surface smoothness and high mechanical properties (particularly high bending resistance).
 工程(1)では、ポリマー(B)を第1溶媒に溶解させてポリマー(B)溶液を得る。第1溶媒に溶解させるポリマー(B)の形態は特に限定されない。第1溶媒は、ポリマー(B)が溶解可能であれば、特に限定されず、例えばベンゼン、トルエン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、キシレン等の炭化水素系溶媒;ジクロロメタン、二塩化エチレン等のハロゲン化炭化水素系溶媒などが挙げられる。これらの中でも、炭化水素系溶媒が好ましい。第1溶媒が炭化水素系溶媒を含むと、ポリマー(B)と第1溶媒との溶解性が高まるため、粒子状ポリマー(B)の粒子径を低減しやすく、かつ分散性を向上しやすい。結果として、平滑な表面、高粒子分散性、高耐熱性、高い機械的特性、特に高屈曲耐性及び低CTEを有するフィルムが得られやすい(以下、「結果として」以降の効果の記載を省略することがある)。第1溶媒は単独又は二種以上組合せて使用できる。 In the step (1), the polymer (B) is dissolved in the first solvent to obtain a polymer (B) solution. The form of the polymer (B) to be dissolved in the first solvent is not particularly limited. The first solvent is not particularly limited as long as the polymer (B) can be dissolved, and is, for example, a hydrocarbon solvent such as benzene, toluene, pentane, hexane, heptane, cyclohexane, xylene; a halogen such as dichloromethane and ethylene dichloride. Examples thereof include a hydrocarbon solvent. Of these, hydrocarbon solvents are preferred. When the first solvent contains a hydrocarbon solvent, the solubility of the polymer (B) and the first solvent is enhanced, so that the particle size of the particulate polymer (B) can be easily reduced and the dispersibility can be easily improved. As a result, it is easy to obtain a film having a smooth surface, high particle dispersibility, high heat resistance, high mechanical properties, particularly high bending resistance and low CTE (hereinafter, the description of the effect after "as a result" is omitted. Sometimes). The first solvent can be used alone or in combination of two or more.
 第1溶媒は、上記の通り、ポリマー(B)が溶解する溶媒である。ここで、本明細書では、「溶解する」か「溶解しない」かの評価は、実施例における<溶解性の評価>に記載の方法に従って行うことができる。 As described above, the first solvent is a solvent in which the polymer (B) is dissolved. Here, in the present specification, the evaluation of "dissolving" or "not dissolving" can be performed according to the method described in <Evaluation of solubility> in Examples.
 本発明の一実施形態において、第1溶媒は、ポリマー(B)とのHSP値間距離が好ましくは4.0以下、より好ましくは3.0以下、さらに好ましくは2.5以下である。該HSP値間距離が上記の上限以下であると、第1溶媒とポリマー(B)との溶解性が高まるため、粒子状ポリマー(B)の粒子径を低減しやすく、かつ分散性を向上しやすい。HSP値間距離の下限は通常0を超える。 In one embodiment of the present invention, the distance between the HSP values of the first solvent and the polymer (B) is preferably 4.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less. When the distance between the HSP values is not more than the above upper limit, the solubility of the first solvent and the polymer (B) is increased, so that the particle size of the particulate polymer (B) can be easily reduced and the dispersibility is improved. Cheap. The lower limit of the distance between HSP values usually exceeds 0.
 本発明の一実施形態において、第1溶媒は、ポリマー(B)とのHSP値間距離が、ポリマー(B)の相互作用半径よりも小さいことが好ましい。このような関係であると、ポリマー(B)が第1溶媒に溶解されやすいため、粒子状ポリマー(B)の粒子径を低減しやすく、かつ分散性を向上しやすい。また、本明細書において、相互作用半径とは、ある特定のポリマーを溶解し得る複数の溶媒、すなわち良溶媒のハンセン溶解度パラメータを3次元のHSP空間にプロットすると、各良溶媒のプロットは互いに似たところ、言い換えると、近い位置、すなわち座標に球状に集まる傾向があり、その球、すなわちハンセンの溶解球の半径を指す。相互作用半径が長い溶質は多くの溶媒に溶けやすく、相互作用半径が短い溶質は少数の溶媒に溶けやすく、多数の溶媒に溶け難いといえる。未知の特定のポリマーに対しては、各種の溶媒が良溶媒であるか、貧溶媒であるかを、溶解性試験を行って調べ、その結果をHSPiPに入力することにより、当該ポリマーの相互作用半径が算出される。以下、本明細書において、「相互作用半径」は上記に定義した通りであり、上記方法に従って求めることができる。 In one embodiment of the present invention, it is preferable that the distance between the HSP values of the first solvent and the polymer (B) is smaller than the radius of interaction of the polymer (B). With such a relationship, the polymer (B) is easily dissolved in the first solvent, so that the particle size of the particulate polymer (B) can be easily reduced and the dispersibility can be easily improved. Further, in the present specification, the interaction radius is a plurality of solvents capable of dissolving a specific polymer, that is, when the Hansen solubility parameter of a good solvent is plotted in a three-dimensional HSP space, the plots of the good solvents are similar to each other. In other words, it tends to gather in a spherical shape at a close position, that is, at the coordinates, and refers to the radius of the sphere, that is, the Hansen solubility sphere. It can be said that a solute having a long interaction radius is easily soluble in many solvents, and a solute having a short interaction radius is easily soluble in a small number of solvents and difficult to be soluble in many solvents. For a specific unknown polymer, it is investigated whether various solvents are good solvents or poor solvents by conducting a solubility test, and the results are input to HSPiP to interact with the polymers. The radius is calculated. Hereinafter, in the present specification, the "interaction radius" is as defined above, and can be obtained according to the above method.
 本発明の一実施形態において、ポリマー(B)の第1溶媒に対する溶解度は、ポリマー(B)の第2溶媒に対する溶解度よりも大きいことが好ましい。このような関係であると、粒子径が小さく、かつ分散性が良好な粒子状ポリマー(B)が得られやすい。なお、ポリマー(B)の溶媒に対する溶解度は、以下の方法で測定できる。サンプル瓶にポリマー(B)1,000mgと溶媒3mLとを加え、室温下で2時間撹拌する。次いで、固相と液相とを濾過により分別し、固相を減圧下、80℃で2時間乾燥させた後の質量:X(mg)を測定し、下記式により、溶解度Y(mg/mL)を求めることができる。
   Y=(1,000-X)/3
 なお、例えば上記の定義で、ポリマー(B)が、第1溶媒に「溶解する」に相当し、第2溶媒に「溶解しない」に相当する場合、明らかに第1溶媒に対する溶解度の方が大きいため、溶解度を測定しなくてもよい。
In one embodiment of the present invention, the solubility of the polymer (B) in the first solvent is preferably greater than the solubility of the polymer (B) in the second solvent. With such a relationship, it is easy to obtain a particulate polymer (B) having a small particle size and good dispersibility. The solubility of the polymer (B) in the solvent can be measured by the following method. Add 1,000 mg of polymer (B) and 3 mL of solvent to the sample bottle, and stir at room temperature for 2 hours. Next, the solid phase and the liquid phase were separated by filtration, and the solid phase was dried at 80 ° C. for 2 hours under reduced pressure, and then the mass: X (mg) was measured, and the solubility Y (mg / mL) was measured by the following formula. ) Can be obtained.
Y = (1,000-X) / 3
In addition, for example, in the above definition, when the polymer (B) corresponds to "dissolves" in the first solvent and "insoluble" in the second solvent, the solubility in the first solvent is clearly higher. Therefore, it is not necessary to measure the solubility.
 本発明の一実施形態において、第1溶媒は、樹脂(A)が溶解しない溶媒であることが好ましい。このような溶媒であると、粒子状ポリマー(B)の粒子径を低減しやすく、かつ分散性を向上しやすい。 In one embodiment of the present invention, the first solvent is preferably a solvent in which the resin (A) does not dissolve. With such a solvent, the particle size of the particulate polymer (B) can be easily reduced and the dispersibility can be easily improved.
 本発明の一実施形態において、第1溶媒と樹脂(A)とのHSP値間距離は、好ましくは5.0以上、より好ましくは6.0以上、さらに好ましくは7.0以上、さらにより好ましくは8.0以上、特に好ましくは9.0以上である。該HSP値間距離が上記の下限以上であると、樹脂(A)が第1溶媒に溶解されにくいため、粒子状ポリマー(B)の粒子径を低減しやすく、かつ分散性を向上しやすい。第1溶媒と樹脂(A)とのHSP値間距離の上限は、好ましくは30.0以下、より好ましくは27.0以下、さらに好ましくは25.0以下、さらにより好ましくは23.0以下、特に好ましくは21.0以下である。第1溶媒と樹脂(A)とのHSP値間距離が上記の上限以下であると、粒子状ポリマー(B)の凝集を抑制しやすいことから粒子の分散性を向上しやすく、また得られるフィルムの粒子分散性を高めやすい。 In one embodiment of the present invention, the distance between the HSP values of the first solvent and the resin (A) is preferably 5.0 or more, more preferably 6.0 or more, still more preferably 7.0 or more, and even more preferably. Is 8.0 or more, particularly preferably 9.0 or more. When the distance between the HSP values is not more than the above lower limit, the resin (A) is less likely to be dissolved in the first solvent, so that the particle size of the particulate polymer (B) can be easily reduced and the dispersibility can be easily improved. The upper limit of the distance between the HSP values of the first solvent and the resin (A) is preferably 30.0 or less, more preferably 27.0 or less, still more preferably 25.0 or less, still more preferably 23.0 or less. It is particularly preferably 21.0 or less. When the distance between the HSP values of the first solvent and the resin (A) is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that the dispersibility of the particles can be easily improved, and the obtained film can be obtained. It is easy to improve the particle dispersibility of.
 本発明の一実施形態において、第1溶媒と樹脂(A)とのHSP値間距離は、樹脂(A)の相互作用半径よりも大きいことが好ましい。このような関係であると、樹脂(A)が第1溶媒に溶解されにくいため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、かつ分散性を向上しやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲耐性などの機械的特性を高めやすく、CTEを低減しやすい。 In one embodiment of the present invention, the distance between the HSP values of the first solvent and the resin (A) is preferably larger than the interaction radius of the resin (A). With such a relationship, since the resin (A) is difficult to dissolve in the first solvent, it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film, and it is easy to reduce CTE.
 前記ポリマー(B)溶液中のポリマー(B)の含有量は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、さらにより好ましくは0.5質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。該溶液中のポリマー(B)の含有量が上記の下限以上であると、組成物を調整しやすい。また該溶液中のポリマー(B)の含有量が上記の上限以下であると、粒子径が小さく、かつ分散性が高い分散液及びフィルムが得られやすい。 The content of the polymer (B) in the polymer (B) solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, still more preferably. It is 0.5% by mass or more, preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. When the content of the polymer (B) in the solution is at least the above lower limit, the composition can be easily adjusted. Further, when the content of the polymer (B) in the solution is not more than the above upper limit, it is easy to obtain a dispersion liquid and a film having a small particle size and high dispersibility.
 ポリマー(B)を第1溶媒に溶解させる方法は、特に限定されないが、例えばポリマー(B)に対して第1溶媒を加えてもよいし、第1溶媒に対してポリマー(B)を加えてもよいし、その両方であってもよい。また、ポリマー(B)に対する第1溶媒の溶解度に応じて、加熱等により溶解させてもよい。 The method for dissolving the polymer (B) in the first solvent is not particularly limited, but for example, the first solvent may be added to the polymer (B), or the polymer (B) may be added to the first solvent. It may be either or both. Further, it may be dissolved by heating or the like depending on the solubility of the first solvent in the polymer (B).
 工程(2)は、前記ポリマー(B)溶液を第2溶媒に接触させた後、第1溶媒を留去して、粒子状ポリマー(B)分散液を得る工程である。 The step (2) is a step of contacting the polymer (B) solution with the second solvent and then distilling off the first solvent to obtain a particulate polymer (B) dispersion liquid.
 第2溶媒は、ポリマー(B)溶液との接触により、粒子状ポリマー(B)が生成し得る溶媒であれば、特に限定されず、例えばDMAc、DMF等のアミド系溶媒;GBL、γ-バレロラクトン等のラクトン系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;N―メチルピロリドン等のピロリドン系溶媒;及びそれらの組合せが挙げられる。これらの中でも、粒子状ポリマー(B)の凝集を抑制しやすく、高い粒子分散性、平滑な表面、低いCTE、高耐熱性及び高い機械的特性、特に高屈曲耐性を有するフィルムが得られやすい観点から、アミド系溶媒、ラクトン系溶媒及びピロリドン系溶媒からなる群から選択される少なくとも1つであることが好ましい。これらの溶媒は単独又は二種以上組合せて使用できる。また、粒子状ポリマー(B)分散液には水、アルコール系溶媒、ケトン系溶媒、非環状エステル系溶媒、エーテル系溶媒などが含まれてもよい。 The second solvent is not particularly limited as long as it is a solvent that can produce the particulate polymer (B) by contact with the polymer (B) solution, and is, for example, an amide solvent such as DMAc or DMF; GBL, γ-valero. Examples thereof include lactone-based solvents such as lactones; sulfur-containing solvents such as dimethyl sulfoxide, dimethyl sulfoxide and sulfolane; carbonate-based solvents such as ethylene carbonate and propylene carbonate; pyrrolidone-based solvents such as N-methylpyrrolidone; and combinations thereof. Among these, the viewpoint that it is easy to suppress the aggregation of the particulate polymer (B), and it is easy to obtain a film having high particle dispersibility, smooth surface, low CTE, high heat resistance and high mechanical properties, particularly high bending resistance. Therefore, at least one selected from the group consisting of an amide-based solvent, a lactone-based solvent, and a pyrrolidone-based solvent is preferable. These solvents can be used alone or in combination of two or more. Further, the particulate polymer (B) dispersion liquid may contain water, an alcohol solvent, a ketone solvent, an acyclic ester solvent, an ether solvent and the like.
 本発明の一実施形態において、第2溶媒は、ポリマー(B)とのHSP値間距離が好ましくは8.5以上、より好ましくは9.0以上、さらに好ましくは10.0以上、さらにより好ましくは11.0以上である。該HSP値間距離が上記の下限以上であると、ポリマー(B)の粒子の凝集を抑制しやすく、粒子径を低減しやすいことから粒子の分散性を向上しやすい。結果として、得られるフィルムの粒子分散性、表面平滑性、耐熱性及び屈曲耐性などの機械的特性を高めやすい。第2溶媒とポリマー(B)とのHSP値間距離の上限は、好ましくは30.0以下、より好ましくは25.0以下、さらに好ましくは20.0である。該第2溶媒とポリマー(B)とのHSP値間距離が上記の上限以下であると、粒子状ポリマー(B)の凝集を抑制しやすいことから、粒子の分散性を向上しやすく、また得られるフィルムの粒子分散性を高めやすい。 In one embodiment of the present invention, the second solvent has a distance between the HSP values of the polymer (B) of preferably 8.5 or more, more preferably 9.0 or more, still more preferably 10.0 or more, still more preferably. Is 11.0 or more. When the distance between the HSP values is at least the above lower limit, it is easy to suppress the aggregation of the particles of the polymer (B), and it is easy to reduce the particle size, so that the dispersibility of the particles is easy to be improved. As a result, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness, heat resistance and bending resistance of the obtained film. The upper limit of the distance between the HSP values of the second solvent and the polymer (B) is preferably 30.0 or less, more preferably 25.0 or less, still more preferably 20.0. When the distance between the HSP values of the second solvent and the polymer (B) is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that the dispersibility of the particles can be easily improved. It is easy to improve the particle dispersibility of the film to be obtained.
 本発明の一実施形態において、第2溶媒は、ポリマー(B)とのHSP値間距離が、ポリマー(B)の相互作用半径よりも大きいことが好ましい。このような関係であると、ポリマー(B)が第2溶媒に溶解されにくいため、粒子状ポリマー(B)分散液中の粒子状ポリマー(B)の粒子径を低減しやすく、かつ分散性を向上しやすい。 In one embodiment of the present invention, it is preferable that the distance between the HSP values of the second solvent and the polymer (B) is larger than the radius of interaction of the polymer (B). With such a relationship, the polymer (B) is difficult to dissolve in the second solvent, so that the particle size of the particulate polymer (B) in the particulate polymer (B) dispersion can be easily reduced and the dispersibility can be improved. Easy to improve.
 本発明の一実施形態において、第2溶媒は、ポリマー(B)が溶解しない溶媒であることが好ましい。このような溶媒であると、粒子状ポリマー(B)の凝集を抑制しやすいため、粒子径を低減しやすく、かつ粒子の分散性を向上しやすい。 In one embodiment of the present invention, the second solvent is preferably a solvent in which the polymer (B) does not dissolve. With such a solvent, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles.
 本発明の一実施形態において、第2溶媒は、樹脂(A)が溶解する溶媒であることが好ましい。このような溶媒であると、得られる組成物及びフィルム中に小さい粒子径で粒子状ポリマー(B)が分散しやすい。また、該フィルムは海島構造を形成しやすい。 In one embodiment of the present invention, the second solvent is preferably a solvent in which the resin (A) is dissolved. With such a solvent, the particulate polymer (B) is likely to be dispersed in the obtained composition and film with a small particle size. In addition, the film tends to form a sea-island structure.
 本発明の一実施形態において、第2溶媒と樹脂(A)とのHSP値距離は、好ましくは10.0以下、より好ましくは9.5以下、さらに好ましくは9.0以下、特に好ましくは8.5以下であり、好ましくは0.01以上、より好ましくは0.1以上である。該HSP値間距離が上記の上限以下であると、第2溶媒と樹脂(A)との親和性が向上し得るため、得られる組成物及びフィルム中に、小さい粒子径で粒子状ポリマー(B)が分散しやすい。 In one embodiment of the present invention, the HSP value distance between the second solvent and the resin (A) is preferably 10.0 or less, more preferably 9.5 or less, still more preferably 9.0 or less, and particularly preferably 8. It is 5.5 or less, preferably 0.01 or more, and more preferably 0.1 or more. When the distance between the HSP values is not more than the above upper limit, the affinity between the second solvent and the resin (A) can be improved. Therefore, in the obtained composition and film, a particulate polymer (B) having a small particle size is used. ) Is easy to disperse.
 本発明の一実施形態において、第2溶媒と樹脂(A)とのHSP値間距離は、樹脂(A)の相互作用半径よりも小さいことが好ましい。このような関係であると、樹脂(A)が第2溶媒に溶解されやすいため、得られる組成物及びフィルム中に、小さい粒子径で粒子状ポリマー(B)が分散しやすい。 In one embodiment of the present invention, the distance between the HSP values of the second solvent and the resin (A) is preferably smaller than the interaction radius of the resin (A). With such a relationship, the resin (A) is easily dissolved in the second solvent, so that the particulate polymer (B) is easily dispersed in the obtained composition and film with a small particle size.
 該ポリマー(B)溶液を第2溶媒と接触させる方法は、特に限定されないが、例えばポリマー(B)溶液と第2溶媒とを混合する方法が挙げられる。具体的には、第2溶媒に対して、ポリマー(B)溶液を添加する方法、ポリマー(B)溶液に対して、第2溶媒を添加する方法が例示できる。このように接触させることにより、第2溶媒と第1溶媒との混合液中に、粒子径が小さい粒子状ポリマー(B)を析出又は分散させることができる。なお、粒子状ポリマー(B)の凝集が生じない範囲であれば、工程(2)中、任意のタイミングで樹脂(A)や他の添加剤を少量添加してもよい。 The method of contacting the polymer (B) solution with the second solvent is not particularly limited, and examples thereof include a method of mixing the polymer (B) solution and the second solvent. Specifically, a method of adding the polymer (B) solution to the second solvent and a method of adding the second solvent to the polymer (B) solution can be exemplified. By contacting in this way, the particulate polymer (B) having a small particle size can be precipitated or dispersed in the mixed solution of the second solvent and the first solvent. As long as the particulate polymer (B) does not aggregate, a small amount of the resin (A) or other additives may be added at any time during the step (2).
 第2溶媒と接触させるポリマー(B)溶液の使用量は、第2溶媒の使用量1質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上、さらに好ましくは0.3質量部以上、特に好ましくは0.7質量部以上であり、好ましくは100質量部以下、より好ましくは10質量部以下、さらに好ましくは3質量部以下、特に好ましくは1.5質量部以下である。第2溶媒と接触させるポリマー(B)溶液の使用量が上記の範囲であると、粒子状ポリマー(B)の凝集を抑制しやすいため、粒子径を低減しやすく、かつ粒子の分散性を向上しやすい。 The amount of the polymer (B) solution to be brought into contact with the second solvent is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more, still more preferably, with respect to 1 part by mass of the amount of the second solvent used. Is 0.3 parts by mass or more, particularly preferably 0.7 parts by mass or more, preferably 100 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 3 parts by mass or less, and particularly preferably 1.5 parts by mass. It is less than a part. When the amount of the polymer (B) solution to be brought into contact with the second solvent is within the above range, it is easy to suppress the aggregation of the particulate polymer (B), so that the particle size is easily reduced and the dispersibility of the particles is improved. It's easy to do.
 工程(2)において、ポリマー(B)溶液を第2溶媒と接触させた後、第1溶媒を留去する。第1溶媒の留去により、粒子状ポリマー(B)の分散安定性を高めることができる。また、第1溶媒の留去により、ポリマー(B)がさらに析出してもよい。第1溶媒は少なくとも部分的に留去又は除去すればよく、粒子状ポリマー(B)を含む分散液中に第1溶媒が残存していてもよい。ポリマー(B)の凝集を抑制しやすく、かつ分散液を調製しやすい観点から、粒子状ポリマー(B)分散液中に第1溶媒が部分的に残存又は一部含有していることが好ましい。 In step (2), the polymer (B) solution is brought into contact with the second solvent, and then the first solvent is distilled off. Distillation of the first solvent can enhance the dispersion stability of the particulate polymer (B). Further, the polymer (B) may be further precipitated by distilling off the first solvent. The first solvent may be distilled off or removed at least partially, and the first solvent may remain in the dispersion liquid containing the particulate polymer (B). From the viewpoint of easily suppressing the aggregation of the polymer (B) and easily preparing the dispersion liquid, it is preferable that the first solvent partially remains or is partially contained in the particulate polymer (B) dispersion liquid.
 工程(2)において、第1溶媒を留去する方法としては、特に限定されず、エバポレータ等を用いて減圧留去する方法が例示される。留去時の圧力及び温度については、第1溶媒と第2溶媒の沸点等の特性に応じて適宜選択できる。本製造方法では、第1溶媒と第2溶媒の混合液から第1溶媒を留去するため、通常、第1溶媒の沸点は第2溶媒の沸点よりも低い。 In the step (2), the method for distilling off the first solvent is not particularly limited, and a method for distilling off under reduced pressure using an evaporator or the like is exemplified. The pressure and temperature at the time of distillation can be appropriately selected according to the characteristics such as the boiling points of the first solvent and the second solvent. In this production method, since the first solvent is distilled off from the mixed solution of the first solvent and the second solvent, the boiling point of the first solvent is usually lower than the boiling point of the second solvent.
 第1溶媒留去後に得られる粒子状ポリマー(B)分散液に含まれる第1溶媒の含有量は、第2溶媒の含有量100質量部に対して、好ましくは120質量部以下、より好ましくは100質量部以下、さらに好ましくは60質量部以下、さらにより好ましくは45質量部以下、特に好ましくは40質量部以下、特により好ましくは35質量部以下、特にさらに好ましくは30質量部以下、特にさらにより30質量部未満、最も好ましくは25質量部以下であり、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。第1溶媒の含有量が上記の上限以下であると、粒子状ポリマー(B)の凝集を抑制しやすいため、粒子径を低減しやすく、かつ粒子の分散性を向上しやすい。結果として、得られるフィルムの粒子分散性、表面平滑性及び屈曲耐性などの機械的特性を高めやすい。また、第1溶媒の含有量が上記の下限以上であると、分散液を調製しやすい。 The content of the first solvent contained in the particulate polymer (B) dispersion obtained after distilling off the first solvent is preferably 120 parts by mass or less, more preferably 120 parts by mass with respect to 100 parts by mass of the content of the second solvent. 100 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 45 parts by mass or less, particularly preferably 40 parts by mass or less, particularly more preferably 35 parts by mass or less, particularly still more preferably 30 parts by mass or less, particularly further. It is less than 30 parts by mass, most preferably 25 parts by mass or less, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, still more preferably 0.1 parts by mass or more. When the content of the first solvent is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles. As a result, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness and bending resistance of the obtained film. Further, when the content of the first solvent is at least the above lower limit, it is easy to prepare the dispersion liquid.
 本発明の一実施形態において、粒子状ポリマー(B)分散液に含まれる溶媒の含有量は、該分散液の質量に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上であり、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、さらに好ましくは99質量%以下、特に好ましくは95質量%以下である。溶媒の含有量が上記の範囲であると、粒子状ポリマー(B)の凝集を抑制しやすいため、粒子径を低減しやすく、かつ粒子の分散性を向上しやすい。結果として、得られるフィルムの粒子分散性、表面平滑性及び屈曲耐性などの機械的特性等を高めやすい。 In one embodiment of the present invention, the content of the solvent contained in the particulate polymer (B) dispersion is preferably 50% by mass or more, more preferably 70% by mass or more, and further, with respect to the mass of the dispersion. It is preferably 90% by mass or more, particularly preferably 95% by mass or more, preferably 99.99% by mass or less, more preferably 99.9% by mass or less, still more preferably 99% by mass or less, and particularly preferably 95% by mass. It is as follows. When the content of the solvent is in the above range, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles. As a result, it is easy to improve mechanical properties such as particle dispersibility, surface smoothness and bending resistance of the obtained film.
 本発明の一実施形態において、粒子状ポリマー(B)分散液に含まれる溶媒は、本発明の効果を損なわない範囲で、第1溶媒と第2溶媒以外の他の溶媒を含んでいてもよい。他の溶媒としては、特に限定されず、慣用の溶媒を使用することができる。本発明の一実施形態において、第1溶媒と第2溶媒との合計質量は、分散液に含まれる溶媒の質量に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、さらにより好ましくは95質量%以上であり、好ましくは100質量%以下である。第1溶媒と第2溶媒との合計質量が上記の範囲であると、粒子状ポリマー(B)の凝集を抑制しやすいため、粒子径を低減しやすく、かつ粒子の分散性を向上しやすい。結果として、得られるフィルムの粒子分散性、表面平滑性、及び屈曲耐性などの機械的特性等を高めやすい。 In one embodiment of the present invention, the solvent contained in the particulate polymer (B) dispersion may contain other solvents other than the first solvent and the second solvent as long as the effects of the present invention are not impaired. .. The other solvent is not particularly limited, and a conventional solvent can be used. In one embodiment of the present invention, the total mass of the first solvent and the second solvent is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably, with respect to the mass of the solvent contained in the dispersion liquid. Is 90% by mass or more, more preferably 95% by mass or more, and preferably 100% by mass or less. When the total mass of the first solvent and the second solvent is in the above range, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles. As a result, it is easy to improve mechanical properties such as particle dispersibility, surface smoothness, and bending resistance of the obtained film.
 第1溶媒留去後に得られる粒子状ポリマー(B)分散液に含まれる粒子状ポリマー(B)の含有量は、該粒子状ポリマー(B)分散液の質量に対して、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは1質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは10質量%以下、特に好ましくは5質量%以下である。ポリマー(B)の含有量が上記の範囲であると、粒子の分散性を向上しやすいため、得られるフィルムの粒子分散性、表面平滑性、及び屈曲耐性などの機械的特性を高めやすい。 The content of the particulate polymer (B) contained in the particulate polymer (B) dispersion obtained after distilling off the first solvent is preferably 0.01 with respect to the mass of the particulate polymer (B) dispersion. By mass or more, more preferably 0.1% by mass or more, still more preferably 1% by mass or more, preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 10% by mass or less, particularly preferably. It is 5% by mass or less. When the content of the polymer (B) is in the above range, the dispersibility of the particles is likely to be improved, so that the mechanical properties such as the particle dispersibility, surface smoothness, and bending resistance of the obtained film are likely to be improved.
 前記粒子状ポリマー(B)分散液において、メジアン径が0.01~15μmである粒子状ポリマー(B)を含むことが好ましい。粒子状ポリマー(B)のメジアン径は、好ましくは0.01μm以上、より好ましくは0.03μm以上、さらに好ましくは0.05μm以上であり、好ましくは15μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下、さらにより好ましくは3μm以下、特に好ましくは1μm以下、特により好ましくは0.8μm以下、特にさらに好ましくは0.5μm以下である。分散液中の粒子状ポリマー(B)のメジアン径が、上記の下限以上であると、組成物から形成されるフィルムの誘電特性を高めやすく、またフィルムを製造しやすく、上記の上限以下であると、組成物から形成されるフィルムの粒子分散性、表面平滑性、耐吸水性及び屈曲耐性等の機械的特性を高めやすい。なお、分散液中の粒子状ポリマー(B)のメジアン径は、レーザー回析を用いた散乱式粒度分布測定により求めることができ、例えば実施例に記載の方法により求めることができる。なお、本明細書において、メジアン径とはD50とも称され、その値よりもサイズの小さい側の粒子状ポリマー(B)の粒子数と、大きい側の粒子数とが等しくなる値を示す。 It is preferable that the particulate polymer (B) dispersion liquid contains the particulate polymer (B) having a median diameter of 0.01 to 15 μm. The median diameter of the particulate polymer (B) is preferably 0.01 μm or more, more preferably 0.03 μm or more, still more preferably 0.05 μm or more, preferably 15 μm or less, more preferably 10 μm or less, still more preferably. It is 5 μm or less, more preferably 3 μm or less, particularly preferably 1 μm or less, particularly more preferably 0.8 μm or less, and particularly preferably 0.5 μm or less. When the median diameter of the particulate polymer (B) in the dispersion is not less than the above lower limit, it is easy to improve the dielectric properties of the film formed from the composition, and it is easy to manufacture the film, which is not more than the above upper limit. And, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness, water absorption resistance and bending resistance of the film formed from the composition. The median diameter of the particulate polymer (B) in the dispersion can be determined by a scattering type particle size distribution measurement using laser diffraction, for example, by the method described in Examples. In the present specification, the median diameter is also referred to as D50, and indicates a value in which the number of particles of the particulate polymer (B) on the side smaller than the value is equal to the number of particles on the side larger than the value.
 工程(3)は、前記粒子状ポリマー(B)分散液に樹脂(A)を添加する工程である。添加する樹脂(A)は固体、好ましくは粉体の形態であってもよく、樹脂(A)を所定の溶媒、例えば第2溶媒に溶かしたワニスの形態であってもよい。本発明の一実施形態では、工程(3)において、ポリイミド樹脂又はポリアミック酸を固体、好ましくは粉体の形態又はワニスの形態で添加することができる。樹脂(A)をワニスの形態で添加する場合、ワニス中の樹脂(A)の含有量は、該ワニスの質量に対して、好ましくは0.1質量%以上、より好ましくは1質量%以上、さらに好ましくは5質量%以上、さらにより好ましくは10質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。該ワニス中の樹脂(A)の含有量が上記の範囲であると、膜形成が容易となるため、フィルム製造の観点から有利である。 The step (3) is a step of adding the resin (A) to the particulate polymer (B) dispersion liquid. The resin (A) to be added may be in the form of a solid, preferably powder, or may be in the form of a varnish in which the resin (A) is dissolved in a predetermined solvent, for example, a second solvent. In one embodiment of the invention, in step (3), the polyimide resin or polyamic acid can be added in the form of a solid, preferably powder or varnish. When the resin (A) is added in the form of a varnish, the content of the resin (A) in the varnish is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the mass of the varnish. It is more preferably 5% by mass or more, still more preferably 10% by mass or more, preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less. When the content of the resin (A) in the varnish is in the above range, film formation is facilitated, which is advantageous from the viewpoint of film production.
 工程(3)で添加する樹脂(A)は、粒子状ポリマー(B)分散液中のポリマー(B)と樹脂(A)との合計質量に対して、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上であり、好ましくは95質量%以下、より好ましくは93質量%以下、さらに好ましくは90質量%以下である。工程(3)で添加する樹脂(A)の含有量が上記の下限以上であると、膜形成が容易となるため、フィルム製造の観点から有利である。また、工程(3)で添加する樹脂(A)の含有量が上記の上限以下であると、粒子状ポリマー(B)の分散性が向上しやすいため、得られるフィルムの粒子分散性、表面平滑性及び屈曲耐性などの機械的特性を高めやすい。 The resin (A) added in the step (3) is preferably 50% by mass or more, more preferably 50% by mass or more, based on the total mass of the polymer (B) and the resin (A) in the particulate polymer (B) dispersion. It is 60% by mass or more, more preferably 65% by mass or more, preferably 95% by mass or less, more preferably 93% by mass or less, still more preferably 90% by mass or less. When the content of the resin (A) added in the step (3) is at least the above lower limit, film formation becomes easy, which is advantageous from the viewpoint of film production. Further, when the content of the resin (A) added in the step (3) is not more than the above upper limit, the dispersibility of the particulate polymer (B) is likely to be improved, so that the particle dispersibility and surface smoothness of the obtained film are smooth. It is easy to enhance mechanical properties such as properties and bending resistance.
 該粒子状ポリマー(B)分散液に樹脂(A)を添加する方法は、特に限定されず、樹脂(A)を一度に添加してもよく、樹脂(A)を複数回にわけて添加してもよい。 The method of adding the resin (A) to the particulate polymer (B) dispersion is not particularly limited, and the resin (A) may be added at once, or the resin (A) may be added in a plurality of times. You may.
 本発明の一実施形態にかかる組成物調製工程は、本発明の効果を損なわない範囲で、工程(1)~(3)以外の工程を含んでいてもよく、樹脂(A)及びポリマー(B)以外のポリマー又は添加剤、例えば上記に例示の添加剤などを使用してもよい。
 なお、本発明の好適な実施形態では、粒子状ポリマー(B)分散液に樹脂(A)を添加するが、粉体形態のポリマー(B)を樹脂(A)のワニスに添加してもよい。前記工程(3)に示したように、樹脂(A)のワニスは、樹脂(A)を所定の溶媒、例えば第1溶媒に溶かしたものであってもよいし、樹脂(A)の前駆体を合成した際の樹脂溶液、例えば樹脂(A)がポリイミド系樹脂である場合、ポリアミック酸溶液(少なくともポリアミック酸と合成溶媒を含む溶液)であってもよい。
The composition preparation step according to the embodiment of the present invention may include steps other than the steps (1) to (3) as long as the effects of the present invention are not impaired, and the resin (A) and the polymer (B) may be included. ) Other polymers or additives, such as the additives exemplified above, may be used.
In a preferred embodiment of the present invention, the resin (A) is added to the particulate polymer (B) dispersion, but the powder polymer (B) may be added to the varnish of the resin (A). .. As shown in the step (3), the varnish of the resin (A) may be a solution of the resin (A) in a predetermined solvent, for example, a first solvent, or a precursor of the resin (A). When the resin solution for synthesizing the above, for example, the resin (A) is a polyimide resin, it may be a polyamic acid solution (at least a solution containing a polyamic acid and a synthetic solvent).
 組成物調製工程で得られる組成物に含まれる粒子状ポリマー(B)の含有量は、樹脂(A)と粒子状ポリマー(B)との合計質量に対して、通常1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは35質量%以下である。該組成物に含まれる粒子状ポリマー(B)の含有量が上記の下限以上であると、粒子状ポリマー(B)の分散性が高めやすいため、得られるフィルムの粒子分散性、表面平滑性、及び屈曲耐性などの機械的特性を高めやすい。また、該組成物に含まれる粒子状ポリマー(B)の含有量が上記の上限以下であると、膜形成が容易となるため、フィルム製造の観点から有利である。なお、フィルム中の粒子の分散性が高いと熱伝導率及びCTEの均一性が高くなるため、例えばCCLの樹脂層として該フィルムを使用した場合に、フィルムと銅箔との剥がれを抑制しやすくなる。
 なお、本発明の好適な実施形態では、粒子状ポリマー(B)分散液に樹脂(A)を添加するが、粉体形態のポリマー(B)を樹脂(A)のワニスに添加してもよい。
The content of the particulate polymer (B) contained in the composition obtained in the composition preparation step is usually 1% by mass or more, preferably 1% by mass or more, based on the total mass of the resin (A) and the particulate polymer (B). It is 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less. When the content of the particulate polymer (B) contained in the composition is at least the above lower limit, the dispersibility of the particulate polymer (B) is likely to be enhanced, so that the particle dispersibility and surface smoothness of the obtained film can be improved. And it is easy to improve mechanical properties such as bending resistance. Further, when the content of the particulate polymer (B) contained in the composition is not more than the above upper limit, film formation becomes easy, which is advantageous from the viewpoint of film production. If the dispersibility of the particles in the film is high, the thermal conductivity and the uniformity of CTE are high. Therefore, for example, when the film is used as the resin layer of CCL, it is easy to suppress the peeling of the film and the copper foil. Become.
In a preferred embodiment of the present invention, the resin (A) is added to the particulate polymer (B) dispersion, but the powder polymer (B) may be added to the varnish of the resin (A). ..
 本発明の一実施形態において、組成物に含まれる樹脂(A)及び粒子状ポリマー(B)の合計質量は、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、さらにより好ましくは20質量%以下、特に好ましくは10質量%以下である。組成物に含まれる樹脂(A)及び粒子状ポリマー(B)の合計質量が上記の範囲であると、粒子状ポリマー(B)の分散性が高めやすいため、得られるフィルムの粒子分散性、表面平滑性、及び屈曲耐性などの機械的特性を高めやすい。また、膜形成が容易となるため、フィルム製造の観点から有利である。 In one embodiment of the present invention, the total mass of the resin (A) and the particulate polymer (B) contained in the composition is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass. The above is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 10% by mass or less. When the total mass of the resin (A) and the particulate polymer (B) contained in the composition is in the above range, the dispersibility of the particulate polymer (B) is likely to be enhanced, so that the particle dispersibility and the surface of the obtained film are easy to increase. It is easy to improve mechanical properties such as smoothness and bending resistance. Further, since the film can be easily formed, it is advantageous from the viewpoint of film production.
 組成物調製工程で得られる組成物に含まれる第1溶媒の含有量は、第2溶媒の含有量100質量部に対して、好ましくは120質量部以下、より好ましくは100質量部以下、さらに好ましくは60質量部以下、さらにより好ましくは45質量部以下、特に好ましくは40質量部以下、特により好ましくは35質量部以下、特にさらに好ましくは30質量部以下、特にさらにより好ましくは30質量部未満、最も好ましくは25質量部以下であり、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。第1溶媒の含有量が上記の上限以下であると、得られるフィルム中の粒子分散性、表面平滑性及び屈曲耐性などの機械的特性を高めやすい。また、第1溶媒の含有量が上記の下限以上であると、組成物を調製しやすい。 The content of the first solvent contained in the composition obtained in the composition preparation step is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, still more preferably 100 parts by mass, based on 100 parts by mass of the second solvent. Is 60 parts by mass or less, more preferably 45 parts by mass or less, particularly preferably 40 parts by mass or less, particularly more preferably 35 parts by mass or less, particularly still more preferably 30 parts by mass or less, and particularly even more preferably less than 30 parts by mass. , Most preferably 25 parts by mass or less, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, still more preferably 0.1 parts by mass or more. When the content of the first solvent is not more than the above upper limit, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness and bending resistance in the obtained film. Further, when the content of the first solvent is at least the above lower limit, it is easy to prepare the composition.
 本発明の一実施形態において、組成物調製工程で得られる組成物に含まれる溶媒の含有量は、上記粒子状ポリマー(B)分散液に含まれる溶媒の含有量と同様の範囲から選択できる。組成物に含まれる溶媒の含有量が上記の範囲であると、得られるフィルム中の粒子分散性、表面平滑性及び屈曲耐性などの機械的特性を高めやすい。 In one embodiment of the present invention, the content of the solvent contained in the composition obtained in the composition preparation step can be selected from the same range as the content of the solvent contained in the particulate polymer (B) dispersion. When the content of the solvent contained in the composition is in the above range, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness and bending resistance in the obtained film.
 本発明の一実施形態において、組成物に含まれる溶媒に対する第1溶媒と第2溶媒との合計質量は、上記粒子状ポリマー(B)分散液に含まれる溶媒に対する第1溶媒と第2溶媒との合計質量と同様の範囲から選択できる。組成物に含まれる第1溶媒と第2溶媒との合計質量が上記の範囲であると、得られるフィルム中の粒子分散性、表面平滑性及び屈曲耐性などの機械的特性を高めやすい。 In one embodiment of the present invention, the total mass of the first solvent and the second solvent with respect to the solvent contained in the composition is the first solvent and the second solvent with respect to the solvent contained in the particulate polymer (B) dispersion liquid. It can be selected from the same range as the total mass of. When the total mass of the first solvent and the second solvent contained in the composition is in the above range, it is easy to enhance mechanical properties such as particle dispersibility, surface smoothness and bending resistance in the obtained film.
 組成物調製工程で得られる組成物中の粒子状ポリマー(B)のメジアン径は、上記の分散液中の粒子状ポリマー(B)のメジアン径と同様の範囲から選択できる。組成物中の粒子状ポリマー(B)のメジアン径を求める方法は特に限定されないが、例えば遠心沈式粒度分布測定装置や超音波減衰式粒度分布測定装置により求めることができる。工程(3)において、粒子状ポリマー(B)の粒子径に影響を及ぼさない範囲の量で、樹脂(A)を粒子状ポリマー(B)分散液に添加して組成物を形成する場合、分散液中の粒子径を測定して、これを組成物中の粒子径とすることもできる。 The median diameter of the particulate polymer (B) in the composition obtained in the composition preparation step can be selected from the same range as the median diameter of the particulate polymer (B) in the above dispersion liquid. The method for determining the median diameter of the particulate polymer (B) in the composition is not particularly limited, but can be determined by, for example, a centrifugal sedimentation type particle size distribution measuring device or an ultrasonic attenuation type particle size distribution measuring device. In the step (3), when the resin (A) is added to the dispersion liquid of the particulate polymer (B) in an amount within a range that does not affect the particle size of the particulate polymer (B) to form a composition, it is dispersed. It is also possible to measure the particle size in the liquid and use this as the particle size in the composition.
 (塗布工程及びフィルム形成工程)
 塗布工程は、前記工程(1)~(3)で得られた組成物を基材に塗布して塗膜を形成する工程である。
(Coating process and film forming process)
The coating step is a step of applying the compositions obtained in the above steps (1) to (3) to a substrate to form a coating film.
 塗布工程において、公知の塗布方法により、基材上に組成物を塗布して塗膜を形成する。公知の塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーン印刷コーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、カーテンコート法、スロットコート法、流涎成形法等が挙げられる。 In the coating process, the composition is applied onto the substrate by a known coating method to form a coating film. Known coating methods include, for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen printing coating method, fountain coating method, and dipping method. , Spray method, curtain coating method, slot coating method, hypersalivation forming method and the like.
 基材の例としては、銅板(銅箔含む)、SUS板(SUS箔、SUSベルト含む)、ガラス基板、PETフィルム、PENフィルム、他のポリイミド系樹脂フィルム、ポリアミド系樹脂フィルム等が挙げられる。中でも、耐熱性に優れる観点から、好ましくは銅板、SUS板、ガラス基板、PETフィルム、PENフィルム等が挙げられ、フィルムとの密着性及びコストの観点から、より好ましくは銅板、SUS板、ガラス基板又はPETフィルム等が挙げられる。 Examples of the base material include a copper plate (including copper foil), a SUS plate (including SUS foil and SUS belt), a glass substrate, a PET film, a PEN film, another polyimide resin film, a polyamide resin film and the like. Among them, copper plate, SUS plate, glass substrate, PET film, PEN film and the like are preferable from the viewpoint of excellent heat resistance, and copper plate, SUS plate, glass substrate and the like are more preferable from the viewpoint of adhesion to the film and cost. Alternatively, a PET film or the like can be mentioned.
 フィルム形成工程において、塗膜を乾燥し、基材から剥離することによって、フィルムを形成することができる。本発明の一実施形態において、基材が銅箔の場合には、塗膜を銅箔から剥離することなくフィルムを形成し、得られた銅箔上にフィルムが積層された積層体を銅張積層板に用いることもできる。剥離する場合、剥離後にさらにフィルムを乾燥する乾燥工程を行ってもよい。塗膜の乾燥は、樹脂(A)の耐熱性などに応じて適宜選択できるが、本発明の一実施形態では、50~450℃、好ましくは55~400℃、より好ましくは70~380℃の温度にて行うことができ、本発明の別の実施形態では、50~350℃、好ましくは70~300℃の温度にて行うことができる。本発明の好適な実施形態では、段階的に乾燥を行うことが好ましい。段階的に乾燥を行うことにより、組成物を均一に乾燥することができ、得られるフィルムのTgが向上し得るため、CTEの低減及び屈曲耐性などの機械的特性の向上を達成しやすい。例えば、50~150℃の比較的低温下で加熱した後、200~450℃、好ましくは200~350℃で加熱してもよい。乾燥又は加熱の時間は、好ましくは5分~10時間、より好ましくは10分~5時間である。このような範囲で段階的に低温から高温に加熱することにより、得られるフィルムの光学特性やTgを向上しやすい。必要に応じて、窒素やアルゴン中等の不活性雰囲気条件下、真空もしくは減圧条件下、及び/又は通風下において塗膜の乾燥を行ってもよい。
 段階的に乾燥を行う場合、段階的な乾燥の間で、基材から塗膜を剥離後、塗膜の乾燥を継続してもよく、全ての乾燥が終了してから基材から塗膜(フィルム)を剥離してもよい。例えば1段階目の乾燥後に基材から塗膜を剥離して2段階目以降の乾燥を行ってもよいし、すべての乾燥段階が終了した後に基材から塗膜(フィルム)を剥離してもよい。なお、1段階目の乾燥は予備乾燥であってよい。
In the film forming step, the film can be formed by drying the coating film and peeling it from the substrate. In one embodiment of the present invention, when the base material is a copper foil, a film is formed without peeling the coating film from the copper foil, and a laminate in which the film is laminated on the obtained copper foil is copper-clad. It can also be used for laminated boards. In the case of peeling, a drying step of further drying the film may be performed after the peeling. The drying of the coating film can be appropriately selected depending on the heat resistance of the resin (A) and the like, but in one embodiment of the present invention, the temperature is 50 to 450 ° C, preferably 55 to 400 ° C, more preferably 70 to 380 ° C. It can be carried out at a temperature, and in another embodiment of the present invention, it can be carried out at a temperature of 50 to 350 ° C., preferably 70 to 300 ° C. In a preferred embodiment of the present invention, it is preferable to carry out drying step by step. By performing the drying step by step, the composition can be dried uniformly, and the Tg of the obtained film can be improved, so that it is easy to achieve reduction of CTE and improvement of mechanical properties such as bending resistance. For example, after heating at a relatively low temperature of 50 to 150 ° C., heating may be performed at 200 to 450 ° C., preferably 200 to 350 ° C. The drying or heating time is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours. By gradually heating from a low temperature to a high temperature in such a range, it is easy to improve the optical properties and Tg of the obtained film. If necessary, the coating film may be dried under inert atmosphere conditions such as in nitrogen or argon, under vacuum or reduced pressure conditions, and / or under ventilation.
In the case of stepwise drying, the coating film may be continuously dried after the coating film is peeled off from the base material during the stepwise drying, and after all the drying is completed, the coating film is applied from the base material ( The film) may be peeled off. For example, the coating film may be peeled off from the substrate after the first step of drying to perform the second and subsequent drying steps, or the coating film (film) may be peeled off from the substrate after all the drying steps are completed. good. The first step of drying may be pre-drying.
 基材が銅箔である場合、例えば、銅箔を、第二塩化鉄溶液等でエッチング除去することで、基材である銅箔からフィルムを剥離してよい。 When the base material is a copper foil, for example, the film may be peeled off from the copper foil as the base material by etching and removing the copper foil with a ferric chloride solution or the like.
 本発明の一実施形態において、組成物中の樹脂(A)がポリイミド系樹脂前駆体、例えばポリアミック酸であり、フィルム製造時にポリイミド系樹脂を生成する場合、該組成物を基材に塗布後、加熱により熱イミド化することが好ましい。該加熱により、溶媒を除去する乾燥と熱イミド化を同時に行うことができる。乾燥及びイミド化温度は、通常50~450℃の範囲であり、平滑なフィルムを得やすい観点からは、段階的に加熱を行うことが好ましい。例えば、50~150℃の比較的低温下で加熱して溶媒を除去した後、300~450℃の範囲の温度まで段階的に加熱してもよい。加熱の時間は、例えば上記範囲と同様の範囲から選択できる。 In one embodiment of the present invention, when the resin (A) in the composition is a polyimide resin precursor, for example, a polyamic acid, and a polyimide resin is produced during film production, the composition is applied to a substrate and then applied. It is preferably thermally imidized by heating. By the heating, drying for removing the solvent and thermal imidization can be performed at the same time. The drying and imidization temperature is usually in the range of 50 to 450 ° C., and from the viewpoint of easily obtaining a smooth film, it is preferable to perform heating step by step. For example, the solvent may be removed by heating at a relatively low temperature of 50 to 150 ° C., and then gradually heated to a temperature in the range of 300 to 450 ° C. The heating time can be selected from the same range as the above range, for example.
 本発明のフィルムが多層フィルムである場合には、例えば、共押出加工法、押出ラミネート法、熱ラミネート法、ドライラミネート法等の多層フィルム形成法により製造することができる。 When the film of the present invention is a multilayer film, it can be produced by, for example, a multilayer film forming method such as a coextrusion processing method, an extrusion laminating method, a thermal laminating method, or a dry laminating method.
[組成物]
 本発明は、樹脂(A)、ポリマー(B)及び溶媒を含み、該ポリマー(B)のTg及び融点の少なくともいずれか一方が160℃以上である組成物を包含する。本発明の組成物は、[フィルムの製造方法]の項に記載の組成物であることが好ましく、組成物に含まれる樹脂(A)、ポリマー(B)及び溶媒は、[フィルム]及び[フィルムの製造方法]の項に記載のものと同様である。
[Composition]
The present invention includes a composition comprising a resin (A), a polymer (B) and a solvent, wherein at least one of the Tg and the melting point of the polymer (B) is 160 ° C. or higher. The composition of the present invention is preferably the composition described in the section [Method for producing a film], and the resin (A), the polymer (B) and the solvent contained in the composition are [film] and [film]. The same as that described in the section of [Manufacturing method].
 本発明の組成物は、樹脂(A)、ポリマー(B)及び溶媒を含み、該ポリマー(B)のTg及び融点の少なくともいずれか一方が160℃以上であるため、従来のシクロオレフィン系ポリマーを含む複合フィルムと比べ、CTEが低減されたフィルムを形成できる。さらに、本発明の組成物はポリマー(B)のTg及び融点の少なくともいずれか一方、特にTgが大きいにもかかわらず、優れた機械的特性、特に屈曲耐性を発現し得るフィルムを形成できる。そのため、本発明の組成物は、低減されたCTEと、優れた耐熱性及び機械的特性、特に屈曲耐性とを併せて有するフィルムを形成できる。 Since the composition of the present invention contains a resin (A), a polymer (B) and a solvent, and at least one of the Tg and the melting point of the polymer (B) is 160 ° C. or higher, a conventional cycloolefin-based polymer can be used. It is possible to form a film having a reduced CTE as compared with the composite film containing the compound. Furthermore, the composition of the present invention can form a film capable of exhibiting excellent mechanical properties, particularly bending resistance, in spite of having at least one of the Tg and the melting point of the polymer (B), particularly a large Tg. Therefore, the composition of the present invention can form a film having both reduced CTE and excellent heat resistance and mechanical properties, particularly bending resistance.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。まず測定方法について説明する。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. First, the measurement method will be described.
 <ノルボルネン(NB)含有量>
 製造例で得られたシクロオレフィンコポリマーにおけるノルボルネン由来の単量体単位の含有量(「NB含有量」ともいう)は、13C-NMRを用いて測定した。13C-NMR測定条件は、以下の通りである。
 装置:Bruker社製 AVANCE600、10mmクライオプローブ
 測定温度:135℃
 測定方法:プロトンデカップリング法
 濃度:100mg/mL
 積算回数:1024回
 パルス幅:45度
 パルス繰り返し時間:4秒
 化学シフト値基準:テトラメチルシラン
 溶媒:1,2-ジクロロベンゼン-dと1,1,2,2-テトラクロロエタン-dとの体積比85:15の混合溶媒
 シクロオレフィンコポリマー中のNB含有量は、1,2-ジクロロベンゼン(127.68ppm)を基準とし、「R.A.Wendt,G.Fink,Macromol.Chem.Phys.,2001,202,3490」に記載の帰属に基づいて算出した。具体的には、13C-NMRを用いて測定されたスペクトルチャートのケミカルシフト値44.0-52.0ppmに観測されるシグナル積分値:IC2,C3(ノルボルネン環の2、3位の炭素原子に由来)、ケミカルシフト値27.0-33.0ppmに観測されるシグナル積分値:IC5,C6+ICE(ノルボルネン環の5、6位の炭素原子と、エチレン部の炭素原子とに由来)より、以下の式から求めた。
 NB含有量(mol%)=IC2,C3/(IC5,C6+ICE)×100
<Norbornene (NB) content>
The content of the monomer unit derived from norbornene (also referred to as “NB content”) in the cycloolefin copolymer obtained in the production example was measured using 13 C-NMR. 13 C-NMR measurement conditions are as follows.
Equipment: Bruker AVANCE600, 10mm cryoprobe Measurement temperature: 135 ° C
Measurement method: Proton decoupling method Concentration: 100 mg / mL
Number of integrations: 1024 Pulse width: 45 degrees Pulse repetition time: 4 seconds Chemical shift value Criteria: Tetramethylsilane Solvent: 1,2-dichlorobenzene-d 4 and 1,1,2,2-tetrachloroethane-d 2 The NB content in the mixed solvent cycloolefin copolymer having a volume ratio of 85:15 is based on 1,2-dichlorobenzene (127.68 ppm) as "RA Wendt, G. Fink, Macromol. Chem. Phys. It was calculated based on the attribution described in ", 2001, 202, 3490". Specifically, the signal integral value observed at the chemical shift value of 44.0-52.0 ppm in the spectrum chart measured using 13 C-NMR: IC2, C3 (carbon at the 2nd and 3rd positions of the norbornene ring). (Derived from the atom), signal integrated value observed at a chemical shift value of 27.0-33.0 ppm: IC5 , C6 + ICE (derived from the carbon atom at the 5th and 6th positions of the norbornene ring and the carbon atom of the ethylene part ) From the following formula.
NB content (mol%) = IC2, C3 / ( IC5, C6 + ICE ) x 100
 <ハンセン溶解度パラメータ(HSP)及びHSP値間距離>
 製造例で得られたシクロオレフィンコポリマー、ポリイミド系樹脂、液晶ポリエステル及び溶媒のハンセン溶解度パラメータ(HSP)、並びにHSP値間距離は以下のように求めた。
<Distance between Hansen solubility parameter (HSP) and HSP value>
The Hansen solubility parameter (HSP) of the cycloolefin copolymer, polyimide resin, liquid polyester and solvent obtained in the production example, and the distance between HSP values were determined as follows.
(溶媒のハンセン溶解度パラメータ(HSP))
 溶媒のHSP値は、HSPiP(Ver.4.1.07)のデータベースの数値を用い、GBLのδDは18.0MPa0.5、δPは16.6MPa0.5、δHは7.4MPa0.5とし、DMAcのδDは16.8MPa0.5、δPは11.5MPa0.5、δHは9.4MPa0.5とし、NMPのδDは18.0MPa0.5、δPは12.3MPa0.5、δHは7.2MPa0.5とし、トルエンのδDは18.0MPa0.5、δPは1.4MPa0.5、δHは2.0MPa0.5とした。
(Hansen solubility parameter (HSP) of solvent)
For the HSP value of the solvent, the values in the database of HSPiP (Ver. 4.1.07) were used, and δD of GBL was 18.0 MPa 0.5 , δP was 16.6 MPa 0.5 , and δH was 7.4 MPa 0. The DMAc δD is 16.8 MPa 0.5 , the δP is 11.5 MPa 0.5 , the δH is 9.4 MPa 0.5 , the NMP δD is 18.0 MPa 0.5 , and the δP is 12.3 MPa 0 . 5.5, δH was set to 7.2 MPa 0.5 , δD of toluene was set to 18.0 MPa 0.5 , δP was set to 1.4 MPa 0.5 , and δH was set to 2.0 MPa 0.5 .
(シクロオレフィンコポリマーのHSP)
 シクロオレフィンコポリマーの各種溶媒への溶解性を評価した。溶解性の評価は、透明の容器に溶解度パラメータが既知の溶媒(HSPiPのデータベースを参照、使用した溶媒:塩化メチル、1,4-ジクロロベンゼン、クロロホルム、トルエン、p-キシレン、GBL、DMAc、NMP、水、アセトン、ジヨードメタン、安息香酸ブチル) 10mLとシクロオレフィンコポリマー 0.1gとを入れて混合液を調製した。得られた混合液に対して累計6時間超音波処理を施した。超音波処理後の混合液の外観を目視にて観察し、得られた観察結果から下記の評価基準に基づいて、それぞれの樹脂の溶媒への溶解性を評価した。
(評価基準)
2:室温で混合液の外観は白濁、沈殿が発生しているが、50℃に加温して攪拌子で30分攪拌することで混合液の外観が透明になる。
1:室温で混合液の外観は透明である。
0:室温で混合液の外観は白濁、沈殿が発生しており、50℃に加温して攪拌子で30分攪拌しても混合液の外観が透明にならない。
(HSP of cycloolefin copolymer)
The solubility of the cycloolefin copolymer in various solvents was evaluated. For the evaluation of solubility, use a solvent with a known solubility parameter in a transparent container (refer to the HSPiP database, solvent used: methyl chloride, 1,4-dichlorobenzene, chloroform, toluene, p-xylene, GBL, DMAc, NMP. , Water, acetone, diiodomethane, butyl benzoate) 10 mL and 0.1 g of cycloolefin copolymer were added to prepare a mixed solution. The obtained mixed solution was subjected to ultrasonic treatment for a total of 6 hours. The appearance of the mixed solution after the ultrasonic treatment was visually observed, and the solubility of each resin in the solvent was evaluated based on the following evaluation criteria from the obtained observation results.
(Evaluation criteria)
2: The appearance of the mixed solution is cloudy and precipitates at room temperature, but the appearance of the mixed solution becomes transparent by heating to 50 ° C. and stirring with a stirrer for 30 minutes.
1: The appearance of the mixture is transparent at room temperature.
0: The appearance of the mixed solution is cloudy and precipitates at room temperature, and the appearance of the mixed solution does not become transparent even when heated to 50 ° C. and stirred with a stirrer for 30 minutes.
 得られたシクロオレフィンコポリマーの溶媒への溶解性の評価結果から、HSPiPを用い、上述のハンセン溶解球法によりHSP値を算出した。 From the evaluation results of the solubility of the obtained cycloolefin copolymer in a solvent, the HSP value was calculated by the above-mentioned Hansen-dissolved sphere method using HSPiP.
(ポリイミド系樹脂のHSP)
 ポリイミド系樹脂の各種溶媒への溶解性を評価した。溶解性の評価は、透明の容器に溶解度パラメータが既知の溶媒(HSPiPのデータベースを参照、使用した溶媒:アセトン、トルエン、エタノール、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサン、GBL、エチルアセテート、メチルエチルケトン、プロピレングリコールモノメチルエーテル、1-ブタノール、N-メチルホルムアミド、1-メチルナフタレン、ブロモベンゼン、1-メチルイミダゾール、ピラゾール、酢酸) 10mLとポリイミド樹脂系 0.1gとを入れて混合液を調製した。得られた混合液に対して累計6時間超音波処理を施した。超音波処理後の混合液の外観を目視にて観察し、得られた観察結果から下記の評価基準に基づいて、それぞれの樹脂の溶媒への溶解性を評価した。
(評価基準)
1:混合液の外観は白濁している。
0:混合液の外観は透明である。
(HSP of polyimide resin)
The solubility of the polyimide resin in various solvents was evaluated. For evaluation of solubility, use a solvent with known solubility parameters in a transparent container (see HSPiP database, solvents used: acetone, toluene, ethanol, tetrahydrofuran, N, N-dimethylformamide, dimethyl sulfoxide, hexane, GBP, ethyl. Acetate, methyl ethyl ketone, propylene glycol monomethyl ether, 1-butanol, N-methylformamide, 1-methylnaphthalene, bromobenzene, 1-methylimidazole, pyrazole, acetic acid) Add 10 mL and 0.1 g of polyimide resin to mix. Prepared. The obtained mixed solution was subjected to ultrasonic treatment for a total of 6 hours. The appearance of the mixed solution after the ultrasonic treatment was visually observed, and the solubility of each resin in the solvent was evaluated based on the following evaluation criteria from the obtained observation results.
(Evaluation criteria)
1: The appearance of the mixed solution is cloudy.
0: The appearance of the mixed solution is transparent.
 得られたポリイミド系樹脂の溶媒への溶解性の評価結果から、HSPiPを用い、上述のハンセン溶解球法によりHSP値を算出した。 From the evaluation result of the solubility of the obtained polyimide resin in the solvent, the HSP value was calculated by the above-mentioned Hansen-dissolved sphere method using HSPiP.
(液晶ポリエステルのHSP)
 HSPiP(Ver.4.1.07)を用い、構造式からHSPを求めた。
(Liquid crystal polyester HSP)
Using HSPiP (Ver. 4.1.07), HSP was obtained from the structural formula.
(HSP値間距離)
 二つの物質のHSP値間距離(Ra)は、式(Y)に従って求めた。
(Distance between HSP values)
The distance (Ra) between the HSP values of the two substances was determined according to the formula (Y).
 <メソ型二連鎖/ラセモ型二連鎖>
 製造例で得られたシクロオレフィンコポリマーのノルボルネン二連鎖のメソ型二連鎖とラセモ型二連鎖との比(メソ型二連鎖/ラセモ型二連鎖)は、13C-NMRを用いて上記NB含有量の測定と同様の条件にて測定した。
 前記ノルボルネン二連鎖のメソ型二連鎖/ラセモ型二連鎖は、1,1,2,2-テトラクロロエタン(74.24ppm)を基準とし、「R.A.Wendt,G.Fink,Macromol.Chem.Phys.,2001,202,3490」及び「特開2008-285656号公報」に記載の帰属に基づいて算出した。具体的には、メソ型二連鎖/ラセモ型二連鎖は、13C-NMRを用いて測定されたスペクトルチャートのケミカルシフト値27.5-28.4ppmに観測されるシグナル積分値:IC5,C6-m(メソ型二連鎖のノルボルネン環の5、6位の炭素原子に由来)、ケミカルシフト値28.4-29.6ppmに観測されるシグナル積分値:IC5,C6-r(ラセモ型二連鎖のノルボルネン環の5、6位の炭素原子に由来)より、以下の式から求めた。
   メソ型二連鎖/ラセモ型二連鎖=IC5,C6-m/IC5,C6-r
<Meso-type two-chain / Racemo-type two-chain>
The ratio of the meso-type two-chain of the norbornene two-chain to the racemo-type two-chain (meso-type two-chain / racemo-type two-chain) of the cycloolefin copolymer obtained in the production example is the above-mentioned NB content using 13 C-NMR. It was measured under the same conditions as the measurement of.
The meso-type / racemo-type two-chain of the norbornene two-chain is based on 1,1,2,2-tetrachloroethane (74.24 ppm), and is described in “RAWendt, G.Fink, Macromol.Chem. It was calculated based on the attribution described in "Phys., 2001, 202, 3490" and "Japanese Patent Laid-Open No. 2008-285656". Specifically, the meso-type two-chain / racemo-type two-chain has a signal integral value observed at a chemical shift value of 27.5-28.4 ppm in the spectrum chart measured using 13 C-NMR: IC5 . C6 -m (derived from carbon atoms at positions 5 and 6 of the meso-type two-chain norbornene ring), signal integrated values observed at a chemical shift value of 28.4-29.6 ppm: IC5 , C6 -r (racemo type) It was obtained from the following formula from the carbon atom at the 5th and 6th positions of the two-chain norbornene ring).
Meso-type two-chain / Racemo-type two-chain = IC5 , C6 -m / IC5, C6 -r
 <屈折率>
 製造例で得られたシクロオレフィンコポリマーの屈折率は、真空プレス機で厚さ100μmに成形したシート状の試料を用いて、下記条件で測定することにより求めた。
 機器:(株)アタゴ製 アッベ屈折計、TYPE-3
 光源波長:589.3nm
 中間液:1-ブロモナフタレン
 測定温度:23±1℃
<Refractive index>
The refractive index of the cycloolefin copolymer obtained in the production example was determined by measuring under the following conditions using a sheet-shaped sample formed to a thickness of 100 μm with a vacuum press.
Equipment: Abbe refractometer manufactured by Atago Co., Ltd., TYPE-3
Light source wavelength: 589.3 nm
Intermediate solution: 1-bromonaphthalene Measurement temperature: 23 ± 1 ° C
 <ガラス転移温度>
 (シクロオレフィンコポリマー)
 製造例で得られたシクロオレフィンコポリマーのTgは、JIS K 7196に基づき、TMAにより軟化温度を測定することにより求められた。具体的には、シクロオレフィンコポリマーを真空プレス機でシート状に成型した試料(厚さ:1.0mm)を下記条件で測定し、圧子が試料に沈み込む際の変位のオンセットを軟化温度とした。
 装置:(株)日立ハイテクサイエンス製、「TMA/SS6200」
 圧子径:1mm
 荷重:780mN
 温度プログラム:20℃から380℃まで5℃/分の速度で昇温
<Glass transition temperature>
(Cycloolefin copolymer)
The Tg of the cycloolefin copolymer obtained in the production example was determined by measuring the softening temperature by TMA based on JIS K 7196. Specifically, a sample (thickness: 1.0 mm) obtained by molding a cycloolefin copolymer into a sheet with a vacuum press is measured under the following conditions, and the onset of displacement when the indenter sinks into the sample is defined as the softening temperature. did.
Equipment: "TMA / SS6200" manufactured by Hitachi High-Tech Science Corporation
Indenter diameter: 1 mm
Load: 780mN
Temperature program: Temperature rise from 20 ° C to 380 ° C at a rate of 5 ° C / min
 (ポリイミド系樹脂及び液晶ポリエステル)
 製造例で得られたポリイミド系樹脂及び液晶ポリエステルのTgは、以下の測定により求められた。TA Instrument社製、DMA Q800を用い、次のような試料及び条件下で測定して、損失弾性率と保存弾性率の値の比であるtanδ曲線を得た後、tanδ曲線のピークの最頂点からTgを算出した。
 試料:長さ5-15mm、幅5mm
 実験モード:DMA Multi-Frequency-Strain
 実験モード詳細条件:
 (1)Clamp:Tension:Film
 (2)Amplitude:5μm
 (3)Frequncy:10Hz(全温度区間で変動なし)
 (4)Preload Force:0.01N
 (5)Force Track:125N
  温度条件:(1)昇温範囲:常温~400℃、(2)昇温速度:5℃/分
  主要収集データ:(1)保存弾性率(Storage modulus、E’)、(2)損失弾性率(Loss modulus、E”)、(3)tanδ(E”/E’)
(Polyimide resin and liquid crystal polyester)
The Tg of the polyimide resin and the liquid crystal polyester obtained in the production example was determined by the following measurements. Using DMA Q800 manufactured by TA Instrument, measurement under the following samples and conditions was performed to obtain a tan δ curve, which is the ratio of the loss modulus to the storage modulus, and then the peak of the tan δ curve peaked. Tg was calculated from.
Sample: Length 5-15 mm, Width 5 mm
Experimental mode: DMA Multi-Freequency-Strine
Detailed experimental mode conditions:
(1) Clamp: Tension: Film
(2) Implement: 5 μm
(3) Frequency: 10Hz (no fluctuation in all temperature sections)
(4) Preload Force: 0.01N
(5) Force Track: 125N
Temperature conditions: (1) Temperature rise range: Room temperature to 400 ° C., (2) Temperature rise rate: 5 ° C./min Main collected data: (1) Storage modulus (E'), (2) Loss elastic modulus (Loss modulus, E "), (3) tanδ (E" / E')
 <シクロオレフィンコポリマーのMw及びMn>
 製造例で得られたシクロオレフィンコポリマーのポリスチレン換算のMw及びMnは、GPCを用いて測定した。GPC測定は下記条件で行い、ISO16014-1の記載に基づき、クロマトグラム上のベースラインを規定してピークを指定した。
<Mw and Mn of cycloolefin copolymer>
The polystyrene-equivalent Mw and Mn of the cycloolefin copolymer obtained in the production example were measured using GPC. The GPC measurement was performed under the following conditions, and the peak was specified by defining the baseline on the chromatogram based on the description of ISO16014-1.
 (GPC装置及びソフトウェア)
  装置:HLC-8121GPC/HT(東ソー(株)製)
  測定ソフト:GPC-8020 modelII データ収集 Version 4.32(東ソー(株)製)
  解析ソフト:GPC-8020 modelII データ解析 Version 4.32(東ソー(株)製)
(GPC device and software)
Equipment: HLC-8121GPC / HT (manufactured by Tosoh Corporation)
Measurement software: GPC-8020 modelII data collection Version 4.32 (manufactured by Tosoh Corporation)
Analysis software: GPC-8020 modelII data analysis Version 4.32 (manufactured by Tosoh Corporation)
 (測定条件)
  GPCカラム:TSKgel GMH6-HT 内径7.8mm、長さ300mm(東ソー(株)製)を3本連結
  移動相:オルトジクロロベンゼン(富士フイルム和光純薬(株)製、特級)に2,6-ジ-tert-ブチル-4-メチルフェノール(以下、BHTと記載することがある)を0.1w/V、すなわち0.1g/100mLの濃度で添加して使用した。
  流速:1mL/分
  カラムオーブン温度:140℃
  オートサンプラー温度:140℃
  システムオーブン温度:40℃
  検出:示差屈折率検出器(RID)
  RIDセル温度:140℃
  試料溶液注入量:300μL
  GPCカラム校正用標準物質:東ソー(株)製標準ポリスチレンを下記表1のような組合せで量り取り、組合せごとに移動相と同組成のオルトジクロロベンゼン 5mLを加え、室温で2時間溶解させて調製した。得られたGPCカラム校正用標準物質を用いてカラムの校正を行ってから、以下に示すように、試料の測定を実施した。
(Measurement condition)
GPC column: TSKgel GMH6-HT with an inner diameter of 7.8 mm and a length of 300 mm (manufactured by Tosoh Corporation) connected in three Mobile phases: Orthodichlorobenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) 2,6- Di-tert-butyl-4-methylphenol (hereinafter, may be referred to as BHT) was added and used at a concentration of 0.1 w / V, that is, 0.1 g / 100 mL.
Flow rate: 1 mL / min Column oven temperature: 140 ° C
Autosampler temperature: 140 ° C
System oven temperature: 40 ° C
Detection: Differential Refractometer Detector (RID)
RID cell temperature: 140 ° C
Sample solution injection amount: 300 μL
Standard material for GPC column calibration: Standard polystyrene manufactured by Tosoh Corporation is weighed in the combination shown in Table 1 below, 5 mL of ortodichlorobenzene having the same composition as the mobile phase is added to each combination, and the mixture is dissolved at room temperature for 2 hours to prepare. did. The column was calibrated using the obtained GPC column calibration standard material, and then the sample was measured as shown below.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 (試料溶液調製条件)
  溶媒:オルトジクロロベンゼン(富士フイルム和光純薬(株)製、特級)に、BHTを0.1w/V、すなわち0.1g/100mLの濃度で添加して使用した。
  試料溶液濃度:1mg/mL
  溶解用自動振とう器:DF-8020(東ソー(株)製)
  溶解条件:5mgの試料を1,000meshのSUS製の金網袋に封入し、試料を封入した金網袋を試験管に入れ、さらに前記移動相と同組成のオルトジクロロベンゼン 5mLを加え、試験管にアルミホイルで蓋をし、試験管をDF-8020にセットし、60往復/分の撹拌速度で140℃にて120分間撹拌した。攪拌後の溶液を試料として、GPC測定を行った。
(Sample solution preparation conditions)
Solvent: BHT was added to orthodichlorobenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) at a concentration of 0.1 w / V, that is, 0.1 g / 100 mL.
Sample solution concentration: 1 mg / mL
Automatic shaker for melting: DF-8020 (manufactured by Tosoh Corporation)
Dissolution conditions: A 5 mg sample is enclosed in a 1,000 mesh SUS wire mesh bag, the wire mesh bag containing the sample is placed in a test tube, and 5 mL of orthodichlorobenzene having the same composition as the mobile phase is added to the test tube. The lid was covered with aluminum foil, the test tube was set in DF-8020, and the mixture was stirred at 140 ° C. for 120 minutes at a stirring rate of 60 reciprocating / min. GPC measurement was performed using the stirred solution as a sample.
 <ポリイミド樹脂のMw>
 製造例で得られたポリイミド樹脂のポリスチレン換算のMwは、GPCを用いて測定した。GPC測定は下記条件で行った。
 GPC測定
(1)前処理方法
 サンプルにDMF溶離液(10mmol/L臭化リチウム添加DMF溶液)を濃度2mg/mLとなるように加え、80℃にて30分間攪拌しながら加熱し、冷却後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(2)測定条件
カラム:TSKgel SuperAWM-H×2+SuperAW2500×1(内径6.0mm、長さ150mmを3本連結)
溶離液:DMF(10mmol/Lの臭化リチウム添加)
流量:1.0mL/分
検出器:RI検出器
カラム温度:40℃
注入量:100μL
分子量標準:標準ポリスチレン
<Mw of polyimide resin>
The polystyrene-equivalent Mw of the polyimide resin obtained in the production example was measured using GPC. GPC measurement was performed under the following conditions.
GPC measurement (1) Pretreatment method Add DMF eluent (10 mmol / L lithium bromide-added DMF solution) to the sample to a concentration of 2 mg / mL, heat with stirring at 80 ° C. for 30 minutes, cool, and then cool. The solution filtered by a 0.45 μm membrane filter was used as a measurement solution.
(2) Measurement condition column: TSKgel SuperAWM-H x 2 + SuperAW2500 x 1 (three lines with an inner diameter of 6.0 mm and a length of 150 mm are connected)
Eluent: DMF (10 mmol / L lithium bromide added)
Flow rate: 1.0 mL / min Detector: RI detector Column temperature: 40 ° C
Injection volume: 100 μL
Molecular weight standard: Standard polystyrene
<液晶ポリエステルのMw>
 液晶ポリエステルのMwは、GPCにて、次の条件で測定した。
(1)前処理方法
 試料約 4.86mgにペンタフルオロフェノール 約2mLを加え2時間加熱撹拌し、そのまま撹拌しながら40~50℃に冷却した。撹拌しながらクロロホルム 約4.24mLを加え0.45μmメンブランフィルターでろ過したものを測定溶液とした。
(2)GPC装置
 東ソー(株)製 HLC8220GPC
(3)測定条件
 カラム:TSKgel SuperHM-H×2
 (内径6.0mm、長さ150mmを2本連結)
 溶離液:ペンタフルオロフェノール(PFP)/クロロホルム(質量比35/65)
 流量:0.4mL/分
 検出器:示差屈折率(RI)検出器
 カラム温度:40℃
 注入量:20μL
 分子量標準:標準ポリスチレン
<Liquid crystal polyester Mw>
The Mw of the liquid crystal polyester was measured by GPC under the following conditions.
(1) Pretreatment method About 2 mL of pentafluorophenol was added to about 4.86 mg of the sample, and the mixture was heated and stirred for 2 hours, and then cooled to 40 to 50 ° C. with stirring as it was. Approximately 4.24 mL of chloroform was added with stirring and filtered through a 0.45 μm membrane filter as the measurement solution.
(2) GPC equipment HLC8220GPC manufactured by Tosoh Corporation
(3) Measurement conditions Column: TSKgel SuperHM-H × 2
(Two pieces with an inner diameter of 6.0 mm and a length of 150 mm are connected)
Eluent: Pentafluorophenol (PFP) / chloroform (mass ratio 35/65)
Flow rate: 0.4 mL / min Detector: Differential refractometer (RI) detector Column temperature: 40 ° C
Injection volume: 20 μL
Molecular weight standard: Standard polystyrene
 <溶解性の評価>
 実施例及び比較例で使用した溶媒に、シクロオレフィンコポリマー、ポリイミド樹脂、ポリアミック酸及び液晶ポリエステルが溶解するか否かの評価は以下のように行った。
 まず、30mLのガラス製スクリュー管に溶媒 9.9gを量り取り、さらにマグネチックスターラーを入れて撹拌する。そこにポリマー又は樹脂 0.1gを加え、24℃で24時間攪拌する。24時間撹拌後、目視で固体が確認できない、かつ溶液が透明の場合は「溶解する」と評価した。一方、目視で固体を確認できる、又は、溶液が不透明の場合は「溶解しない」と評価した。
<Evaluation of solubility>
The evaluation of whether or not the cycloolefin copolymer, the polyimide resin, the polyamic acid and the liquid crystal polyester were dissolved in the solvents used in Examples and Comparative Examples was performed as follows.
First, 9.9 g of the solvent is weighed in a 30 mL glass screw tube, and a magnetic stirrer is further added and stirred. 0.1 g of the polymer or resin is added thereto, and the mixture is stirred at 24 ° C. for 24 hours. After stirring for 24 hours, if the solid could not be visually confirmed and the solution was transparent, it was evaluated as "dissolved". On the other hand, if the solid can be visually confirmed or the solution is opaque, it is evaluated as "not soluble".
 <粒子状シクロオレフィンコポリマー分散液中の溶媒含有量>
 実施例及び比較例で得られた粒子状シクロオレフィンコポリマー分散液中の溶媒含有量は、ガスクロマトグラフィーにより測定した。具体的には下記条件で測定を行い、一点検量により粒子状シクロオレフィンコポリマー分散液中の溶媒含有量を算出した。
装置:Agilent 7890Bガスクロマトグラフ(アジレント・テクノロジー(株)製)
カラム:DB-5(アジレント・テクノロジー(株)製)
 キャリアガス:ヘリウム
 注入口温度:200℃
 検出器温度:250℃
 内部標準液:ベンジルアルコール
 溶媒:クロロホルム
<Solvent content in particulate cycloolefin copolymer dispersion>
The solvent content in the particulate cycloolefin copolymer dispersions obtained in Examples and Comparative Examples was measured by gas chromatography. Specifically, the measurement was carried out under the following conditions, and the solvent content in the particulate cycloolefin copolymer dispersion was calculated from one inspection amount.
Equipment: Agilent 7890B gas chromatograph (manufactured by Agilent Technologies)
Column: DB-5 (manufactured by Agilent Technologies, Inc.)
Carrier gas: Helium inlet temperature: 200 ° C
Detector temperature: 250 ° C
Internal standard: Benzyl alcohol Solvent: Chloroform
 <複合フィルムの厚さ>
 実施例及び比較例で得られた複合フィルムの厚さは、デジマチックインジケータ((株)ミツトヨ製、ID-C112XBS)を使用し、フィルムの任意の5点以上の厚さを測定し、それらの平均値を厚さとした。
<Thickness of composite film>
For the thickness of the composite film obtained in Examples and Comparative Examples, a Digimatic Indicator (ID-C112XBS, manufactured by Mitutoyo Co., Ltd.) was used to measure the thickness of any 5 or more points of the film, and the thickness thereof was measured. The average value was taken as the thickness.
 <分散液中及び組成物中の粒子状シクロオレフィンコポリマーの粒子径>
 実施例で得られた粒子状シクロオレフィンコポリマー分散液中の粒子状シクロオレフィンコポリマーのメジアン径を、レーザー回折を用いた散乱式粒度分布測定により求めた。
 具体的には、容量3.5mLのガラス製セルに、実施例で得られた粒子状シクロオレフィンコポリマー分散液を入れ、さらに分散液中に含まれる溶媒と同じ溶媒(GBL、DMAc又はNMP)を添加して1000倍希釈し、粒子状シクロオレフィンコポリマーを含有する分散液試料を得た。得られた分散液試料をレーザー回析/散乱式粒度分布測定装置(Malvern Panalytical社製、型式:NanоZS、屈折率:1.70-0.20i)を用いて測定し、粒子状シクロオレフィンコポリマーのメジアン径を求めた。なお、実施例1、6、7及び13では、粒子状シクロオレフィンコポリマー分散液に対して、その粒子径に影響を及ぼさない範囲の量で、ポリイミド樹脂、液晶ポリエステル溶液、又はポリアミック酸溶液を添加して組成物を形成したため、上記で測定した分散液中の粒子状シクロオレフィンコポリマーの粒子径を、組成物中の粒子状シクロオレフィンコポリマーの粒子径とした。
<Particulate particle size of cycloolefin copolymer in dispersion and composition>
The median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion obtained in the examples was determined by the scattering type particle size distribution measurement using laser diffraction.
Specifically, the particulate cycloolefin copolymer dispersion obtained in the example is placed in a glass cell having a capacity of 3.5 mL, and the same solvent (GBL, DMAc or NMP) as the solvent contained in the dispersion is further added. The mixture was added and diluted 1000-fold to obtain a dispersion sample containing the particulate cycloolefin copolymer. The obtained dispersion sample was measured using a laser diffraction / scattering type particle size distribution measuring device (manufactured by Malvern Panasonic, model: NanоZS, refractive index: 1.70-0.20i), and the particulate cycloolefin copolymer was measured. The median diameter was calculated. In Examples 1, 6, 7 and 13, a polyimide resin, a liquid crystal polyester solution, or a polyamic acid solution was added to the particulate cycloolefin copolymer dispersion in an amount within a range that does not affect the particle size. The particle size of the particulate cycloolefin copolymer in the dispersion measured above was defined as the particle size of the particulate cycloolefin copolymer in the composition.
 <複合フィルム中のシクロオレフィンコポリマーの平均一次粒子径>
 実施例1、6、7、13で得られた複合フィルムは走査型透過電子顕微鏡(STEM)を用いて、複合フィルムの断面観察を行い、観察された断面の画像から50個以上の粒子の粒子径を測定し、それらの平均値を平均一次粒子径とした。
 (STEM観察測定条件)
装置名:日本FEI(株)製 HeLiоsG4UX(剥片作成装置)
    (株)日立ハイテク社製S―5500(STEM観察用)
加速電圧:30kv
倍率:20000倍
<Average primary particle size of cycloolefin copolymer in composite film>
For the composite film obtained in Examples 1, 6, 7, and 13, a cross-sectional observation of the composite film was performed using a scanning transmission electron microscope (STEM), and particles of 50 or more particles were observed from the observed cross-sectional image. The diameters were measured and the average value thereof was taken as the average primary particle diameter.
(STEM observation measurement conditions)
Device name: HeLiоsG4UX (flake making device) manufactured by Japan FEI Co., Ltd.
Hitachi High-Tech Co., Ltd. S-5500 (for STEM observation)
Acceleration voltage: 30kv
Magnification: 20000 times
 <CTE>
(複合フィルムのCTE)
 実施例、比較例及び参考例で得られた複合フィルム、ポリイミドフィルム及び液晶ポリエステルフィルムのCTEはそれぞれ、TMAにより測定した。具体的には、下記条件で測定を行い、50℃から100℃におけるCTEを算出した。
<CTE>
(CTE of composite film)
The CTEs of the composite film, the polyimide film and the liquid crystal polyester film obtained in Examples, Comparative Examples and Reference Examples were measured by TMA, respectively. Specifically, the measurement was performed under the following conditions, and the CTE at 50 ° C to 100 ° C was calculated.
[実施例1~7、実施例13、比較例1及び参考例1、2で得られた複合フィルム、ポリイミドフィルム]
 装置:(株)日立ハイテクサイエンス製 TMA/SS7100
 圧子(プローブ)径:3.5mm
 荷重:50.0mN
 温度プログラム:20℃から130℃まで5℃/分の速度で昇温
 試験片:40mm×10mm×50μm(フィルムの厚みにより変動)の直方体
[Composite film and polyimide film obtained in Examples 1 to 7, Example 13, Comparative Example 1 and Reference Examples 1 and 2]
Equipment: TMA / SS7100 manufactured by Hitachi High-Tech Science Corporation
Indenter (probe) diameter: 3.5 mm
Load: 50.0mN
Temperature program: Temperature rise from 20 ° C to 130 ° C at a rate of 5 ° C / min Specimen: 40 mm × 10 mm × 50 μm (varies depending on film thickness) rectangular parallelepiped
[実施例8~12及び参考例3で得られた複合フィルム、液晶ポリエステルフィルム]
 装置:(株)リガク製 TMA8310
 圧子(プローブ)径:3.5mm
 荷重:25.0mN
 温度プログラム:20℃から250℃まで5℃/分の速度で昇温
 試験片:24mm×5mm×30μm(フィルムの厚みにより変動)の直方体
[Composite film and liquid crystal polyester film obtained in Examples 8 to 12 and Reference Example 3]
Equipment: TMA8310 manufactured by Rigaku Co., Ltd.
Indenter (probe) diameter: 3.5 mm
Load: 25.0mN
Temperature program: Temperature rise from 20 ° C to 250 ° C at a rate of 5 ° C / min Specimen: 24 mm x 5 mm x 30 μm (varies depending on film thickness) rectangular parallelepiped
(シクロオレフィンコポリマーのCTE)
 シクロオレフィンコポリマーのCTEは、TMAを用いて、下記条件で測定を行い、50℃から100℃におけるCTEを算出した。
 装置:(株)日立ハイテクサイエンス製 TMA/SS6200
 圧子(プローブ)径:3.5mm 荷重:38.5mN 温度プログラム:20℃から130℃まで5℃/分の速度で昇温
 試験片:10mm×10mm×1mmの直方体
(CTE of cycloolefin copolymer)
The CTE of the cycloolefin copolymer was measured using TMA under the following conditions, and the CTE at 50 ° C to 100 ° C was calculated.
Equipment: TMA / SS6200 manufactured by Hitachi High-Tech Science Corporation
Indenter (probe) diameter: 3.5 mm Load: 38.5 mN Temperature program: Temperature rise from 20 ° C to 130 ° C at a rate of 5 ° C / min Specimen: 10 mm x 10 mm x 1 mm rectangular parallelepiped
 <複合フィルムの1回屈曲耐性>
 実施例及び比較例で得られた複合フィルムの1回屈曲耐性については、下記の方法にて測定した。
 ダンベルカッターにより切り出した長さ40mm、幅10mmのフィルムの中心、具体的にはフィルムの長さ方向におけるフィルム端部から中心方向に20mmの位置に、フィルムの長さ方向と垂直になるように2mmΦの鉄芯(マンドレルと称されることがある)を設置し、フィルムの中心が鉄芯に接するように折り曲げ、折り曲げたフィルムの面が平行となるように固定し、10秒間静置した。このとき、折り曲げたフィルムは、試験中平行が保たれるように厚さ2mmのガラス基板の両面に固定した。
 上記試験後10分間静置し、フィルムの半分を床面に固定し、床面に固定した端部とは反対のフィルム端部と床面との間の長さ、すなわち1回屈曲後の変形高さを測定し、これをフィルムの1回屈曲耐性として評価した。
<One-time bending resistance of composite film>
The one-time bending resistance of the composite films obtained in Examples and Comparative Examples was measured by the following method.
The center of the film with a length of 40 mm and a width of 10 mm cut out by a dumbbell cutter, specifically, at a position 20 mm from the end of the film in the length direction of the film to the center, and 2 mmΦ so as to be parallel to the length direction of the film. The iron core (sometimes called mandrel) was installed, bent so that the center of the film was in contact with the iron core, fixed so that the surfaces of the bent film were parallel, and allowed to stand for 10 seconds. At this time, the bent film was fixed to both sides of a glass substrate having a thickness of 2 mm so as to maintain parallelism during the test.
After the above test, the film was allowed to stand for 10 minutes, half of the film was fixed to the floor surface, and the length between the end of the film opposite to the end fixed to the floor surface and the floor surface, that is, the deformation after one bending. The height was measured and evaluated as the one-time bending resistance of the film.
 <複合フィルムの反復屈曲耐性>
 実施例及び比較例で得られた複合フィルムの反復屈曲耐性については、1回屈曲耐性と同様にフィルムを固定し、10秒間固定する曲げを10回反復したこと以外は、同様の方法にて、フィルム端部と床面との間の長さ、すなわち10回反復屈曲後の変形高さを測定し、これをフィルムの反復屈曲耐性として評価した。
<Repeat bending resistance of composite film>
Regarding the repeated bending resistance of the composite films obtained in Examples and Comparative Examples, the same method was used except that the film was fixed in the same manner as the one-time bending resistance and the bending for fixing for 10 seconds was repeated 10 times. The length between the edge of the film and the floor surface, that is, the deformation height after 10 times of repeated bending was measured, and this was evaluated as the resistance to repeated bending of the film.
 <複合フィルムの誘電率、誘電正接測定>
 実施例8~12で得られた液晶ポリエステル-シクロオレフィンコポリマー複合フィルム及び参考例3で得られた液晶ポリエステルフィルムの誘電率、誘電正接は、フローテスター((株)島津製作所製、CFT-500型)を用いて350℃で溶融させた後、冷却固化させることにより作製した直径1cm、厚さ0.5cmの錠剤に対して、下記条件にて1GHzにおける比誘電率、誘電正接を測定した。
・測定方法:容量法(装置:インピーダンスアナライザー(Agilent社製 型式:E4991A))
・電極型式:16453A
・測定環境:23℃、50%RH
・印加電圧:1V
<Measurement of permittivity and dielectric loss tangent of composite film>
The permittivity and dielectric loss tangent of the liquid crystal polyester-cycloolefin copolymer composite film obtained in Examples 8 to 12 and the liquid crystal polyester film obtained in Reference Example 3 are CFT-500 type manufactured by Shimadzu Corporation. ) Was melted at 350 ° C., and then cooled and solidified to prepare a tablet having a diameter of 1 cm and a thickness of 0.5 cm, and the relative permittivity and dielectric loss tangent at 1 GHz were measured under the following conditions.
-Measurement method: Capacitance method (Device: Impedance analyzer (Agilent model: E4991A))
-Electrode model: 16453A
-Measurement environment: 23 ° C, 50% RH
・ Applied voltage: 1V
 <液晶ポリエステルの流動開始温度の測定>
 製造例11で得られた液晶ポリエステルの流動開始温度は、以下のように測定した。フローテスター((株)島津製作所製、CFT-500型)を用いて、液晶ポリエステル約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48,000P)の粘度を示す温度を測定し、これを流動開始温度とした。
<Measurement of flow start temperature of liquid crystal polyester>
The flow start temperature of the liquid crystal polyester obtained in Production Example 11 was measured as follows. Using a flow tester (manufactured by Shimadzu Corporation, CFT-500 type), about 2 g of liquid crystal polyester is filled into a cylinder equipped with a die having a nozzle with an inner diameter of 1 mm and a length of 10 mm, and 9.8 MPa (100 kg / 100 kg /). Under the load of cm 2 ), the liquid crystal polyester was melted while raising the temperature at a rate of 4 ° C./min, extruded from the nozzle, and the temperature showing the viscosity of 4800 Pa · s (48,000 P) was measured, and the flow was started. The temperature was set.
 <液晶ポリエステル溶液の粘度測定>
 製造例11で得られた液晶ポリエステル溶液の粘度は、B型粘度計(東機産業(株)製、TV-22)を用いて、下記測定条件により測定した。
 測定条件:温度23℃、ローター回転数20rpm
<Viscosity measurement of liquid crystal polyester solution>
The viscosity of the liquid crystal polyester solution obtained in Production Example 11 was measured using a B-type viscometer (TV-22 manufactured by Toki Sangyo Co., Ltd.) under the following measurement conditions.
Measurement conditions: temperature 23 ° C, rotor speed 20 rpm
 <試薬の詳細>
 シクロオレフィンコポリマーの合成には、住友化学(株)製のトルエン、富士フイルム和光純薬(株)のスチレン、荒川化学工業(株)製の2-ノルボルネン(以下、NBという)、東ソー・ファインケム(株)製のトリイソブチルアルミニウム(以下、TIBAという)、AGC(株)製のN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(以下、ABという)を用いた。
<Details of reagents>
Toluene manufactured by Sumitomo Chemical Industries, Ltd., styrene manufactured by Wako Pure Chemical Industries, Ltd., 2-norbornene manufactured by Arakawa Chemical Industries, Ltd. (hereinafter referred to as NB), and Toso Finechem (hereinafter referred to as NB) are used for the synthesis of cycloolefin copolymers. Triisobutylaluminum (hereinafter referred to as TIBA) manufactured by AGC Inc. and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate (hereinafter referred to as AB) manufactured by AGC Inc. were used.
 トルエンは、モレキュラーシーブス13X(ユニオン昭和(株)製)と活性アルミナ(住友化学(株)製、NKHD-24)とを用いて脱水し、次いで、窒素ガスを吹き込んで溶存酸素を除去したものを使用した。 Toluene was dehydrated using Molecular Sieves 13X (manufactured by Union Showa Co., Ltd.) and activated alumina (manufactured by Sumitomo Chemical Co., Ltd., NKHD-24), and then nitrogen gas was blown into the toluene to remove dissolved oxygen. used.
 NBは、トルエンに溶解させた後、モレキュラーシーブス13X(ユニオン昭和(株)製)と活性アルミナ(住友化学(株)製、NKHD-24)とを用いて脱水し、次いで、窒素ガスを吹き込んで溶存酸素を除去したものを使用した(以下、NB溶液という)。なお、NB溶液中のNB濃度は、ガスクロマトグラフィーを用いて測定した。 After dissolving NB in toluene, it is dehydrated using Molecular Sieves 13X (manufactured by Union Showa Co., Ltd.) and activated alumina (manufactured by Sumitomo Chemical Co., Ltd., NKHD-24), and then nitrogen gas is blown into the NB. A solution from which dissolved oxygen was removed was used (hereinafter referred to as NB solution). The NB concentration in the NB solution was measured by using gas chromatography.
 イソプロピリデン(シクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタンジクロリド(以下、錯体という)は、特開平9-183809号公報に記載の方法に従って合成したものを使用した。 Isopropyridene (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride (hereinafter referred to as a complex) is synthesized according to the method described in JP-A-9-183809. did.
[シクロオレフィンコポリマー溶液の製造]
 <製造例1>
 内部を減圧乾燥したオートクレーブに、NB溶液 1,501mL(NB濃度:3.00mol/L)を加え、60℃に昇温した。系内を攪拌しながら、エチレン分圧:100kPaで加圧した後、TIBAのヘキサン溶液 4.0mL(濃度:1.0mol/L)と、AB 0.16gと、錯体のトルエン溶液 10.0mL(濃度:10mmol/L)とを加え、エチレンとNBとの重合を開始した。重合中は系内の温度を60℃に保ち、また、エチレンを連続的に供給して系内の圧力を開始時の値に保った。重合開始から3時間経過後、水 5.0mLを加えて重合を停止し、オートクレーブ内の溶液を抜き出した。抜き出された溶液に、トルエン 1,500gと、硫酸マグネシウム 100gとを加えて攪拌し、次いで、水 100mLを加えて攪拌し、固体を濾過により除去した。得られた液体をアセトンに滴下し、析出した粉末を濾過により単離した。単離された粉末を更にアセトンで洗浄し、減圧下、120℃で2時間乾燥して、メジアン径335μmのシクロオレフィンコポリマー 210.0gを得た。得られたシクロオレフィンコポリマーにおいて、NB含有量は84.1mоl%であり、Tgは293℃であり、Mwは521,000であり、Mw/Mnは1.87であった。また、該シクロオレフィンコポリマーのδDは17.7MPa0.5であり,δPは2.1MPa0.5であり,δHは3.9MPa0.5であり、メソ型二連鎖/ラセモ型二連鎖は0.19であり、屈折率は1.538であり、CTEは49.4ppm/Kであった。
 製造例1及び後述の製造例2~4の合成条件を表2に示す。このシクロオレフィンコポリマーをトルエン溶液に2質量%の濃度で溶解して、シクロオレフィンコポリマー溶液1を得た。
[Manufacturing of cycloolefin copolymer solution]
<Manufacturing example 1>
To the autoclave whose inside was dried under reduced pressure, 1,501 mL (NB concentration: 3.00 mol / L) of the NB solution was added, and the temperature was raised to 60 ° C. After pressurizing with ethylene partial pressure: 100 kPa while stirring the inside of the system, 4.0 mL (concentration: 1.0 mol / L) of hexane solution of TIBA, 0.16 g of AB, and 10.0 mL of toluene solution of the complex ( Concentration: 10 mmol / L) was added to initiate polymerization of ethylene and NB. During the polymerization, the temperature in the system was kept at 60 ° C., and ethylene was continuously supplied to keep the pressure in the system at the starting value. After 3 hours had passed from the start of the polymerization, 5.0 mL of water was added to stop the polymerization, and the solution in the autoclave was withdrawn. To the extracted solution, 1,500 g of toluene and 100 g of magnesium sulfate were added and stirred, and then 100 mL of water was added and stirred, and the solid was removed by filtration. The obtained liquid was added dropwise to acetone, and the precipitated powder was isolated by filtration. The isolated powder was further washed with acetone and dried under reduced pressure at 120 ° C. for 2 hours to obtain 210.0 g of a cycloolefin copolymer having a median diameter of 335 μm. In the obtained cycloolefin copolymer, the NB content was 84.1 mL, the Tg was 293 ° C, the Mw was 521,000, and the Mw / Mn was 1.87. Further, the δD of the cycloolefin copolymer is 17.7 MPa 0.5 , the δP is 2.1 MPa 0.5 , the δH is 3.9 MPa 0.5 , and the meso-type two-chain / racemo-type two-chain is. It was 0.19, had a refractive index of 1.538, and had a CTE of 49.4 ppm / K.
Table 2 shows the synthesis conditions of Production Example 1 and Production Examples 2 to 4 described later. This cycloolefin copolymer was dissolved in a toluene solution at a concentration of 2% by mass to obtain a cycloolefin copolymer solution 1.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 <製造例2>
 合成条件を表2の製造例2に記載の合成条件に変更したこと以外は製造例1と同様にして、シクロオレフィンコポリマー及びシクロオレフィンコポリマー溶液を得た。得られたシクロオレフィンコポリマーにおいて、NB含有量は79.2mоl%であり、Tgは276℃であった。また、該シクロオレフィンコポリマーのメソ型二連鎖/ラセモ型二連鎖は0.11であり、屈折率は1.527であり、CTEは48.3ppm/Kであった。
<Manufacturing example 2>
A cycloolefin copolymer and a cycloolefin copolymer solution were obtained in the same manner as in Production Example 1 except that the synthesis conditions were changed to the synthesis conditions shown in Production Example 2 in Table 2. In the obtained cycloolefin copolymer, the NB content was 79.2 mL and the Tg was 276 ° C. The meso-type two-chain / racemo-type two-chain of the cycloolefin copolymer was 0.11, the refractive index was 1.527, and the CTE was 48.3 ppm / K.
 <製造例3>
 NB濃度が7.36mol/LのNB溶液にトルエン 852mLを加えた溶液を使用し、合成条件を表2の製造例3に記載の合成条件に変更したこと以外は製造例1と同様にして、シクロオレフィンコポリマー及びシクロオレフィンコポリマー溶液を得た。得られたシクロオレフィンコポリマーのNB含有量は95.1mоl%であり、Tgは330℃を超えていた。
<Manufacturing example 3>
Using a solution obtained by adding 852 mL of toluene to an NB solution having an NB concentration of 7.36 mol / L, the same procedure as in Production Example 1 was applied except that the synthesis conditions were changed to the synthesis conditions described in Production Example 3 in Table 2. Cycloolefin copolymer and cycloolefin copolymer solution were obtained. The NB content of the obtained cycloolefin copolymer was 95.1 mL, and the Tg was over 330 ° C.
 <製造例4>
 NB濃度が7.36mol/LのNB溶液にトルエン 852mLを加えた溶液を使用し、合成条件を表2の製造例4に記載の合成条件に変更したこと以外は製造例1と同様にして、シクロオレフィンコポリマー及びシクロオレフィンコポリマー溶液を得た。得られたシクロオレフィンコポリマーのNB含有量は70.7mоl%であり、Tgは222℃であった。また、該シクロオレフィンコポリマーのメソ型二連鎖/ラセモ型二連鎖は0.11であり、屈折率は1.533であった。
<Manufacturing example 4>
Using a solution obtained by adding 852 mL of toluene to an NB solution having an NB concentration of 7.36 mol / L, the same procedure as in Production Example 1 was applied except that the synthesis conditions were changed to the synthesis conditions described in Production Example 4 in Table 2. Cycloolefin copolymer and cycloolefin copolymer solution were obtained. The NB content of the obtained cycloolefin copolymer was 70.7 mol%, and the Tg was 222 ° C. The meso-type two-chain / racemo-type two-chain of the cycloolefin copolymer was 0.11, and the refractive index was 1.533.
 <製造例5>
 シクロオレフィンコポリマーとしてTOPAS6015(ポリプラスチックス(株)製)を用いた。TOPAS6015のCTEは、60ppm/Kであった。また、シクロオレフィンコポリマーとしてTOPAS6015を用いたこと以外は、製造例1と同様にしてシクロオレフィンコポリマー溶液を得た。
<Manufacturing example 5>
TOPAS6015 (manufactured by Polyplastics Co., Ltd.) was used as the cycloolefin copolymer. The CTE of TOPAS6015 was 60 ppm / K. Further, a cycloolefin copolymer solution was obtained in the same manner as in Production Example 1 except that TOPAS6015 was used as the cycloolefin copolymer.
[シクロオレフィンコポリマー破砕粉1の製造]
 <製造例6>
 内部を減圧乾燥した反応釜に、NB溶液 611.7L(NB濃度:3.00mol/L)を加え、60℃に昇温した。系内を攪拌しながら、エチレン分圧:100kPaで加圧した後、TIBAのヘキサン溶液 0.51L(濃度:0.6mol/L)と、ABのトルエン溶液 40.8L(濃度:1.0mmol/L)と、錯体のトルエン溶液 2.0L(濃度:10mmol/L)とを加え、エチレンとNBとの重合を開始した。重合中は系内の温度を60℃に保ち、また、エチレンを連続的に供給して系内の圧力を開始時の値に保った。重合開始から170分経過し、エチレン消費量が3.0kgに到達した後に、水 1.0Lを加えて重合を停止した。反応釜内にNaOH水溶液 612L(濃度:0.1mol/L)を加え、30分間撹拌した。撹拌を停止し、水溶液を抜き出し、水 612Lを加え30分間撹拌した。さらに水 612Lを加え30分間拌した後、反応釜にトルエン 942Lとアセトン 49.5Lとを混合した溶液を加え、続いてアセトンを 314L加え、析出した粉体を濾過により単離した。単離された粉末を更にアセトンで洗浄し、減圧下、120℃で2時間乾燥して、シクロオレフィンコポリマー 60.0kgを得た。得られたシクロオレフィンコポリマーにおいて、NB含有量は92.3mol%であり、Tgは308℃であり、Mwは852,000であり、Mw/Mnは1.81であった。また、該シクロオレフィンコポリマーのδDは17.7MPa0.5であり、δPは2.1MPa0.5であり、δHは3.9MPa0.5であり、CTEは44.5ppm/Kであった。合成条件を表3に示す。
 このシクロオレフィンコポリマーを、ホソカワミクロン(株)製のカウンタージェットミルで粉砕し、フィルターにより分級することによって、メジアン径が2.6μmの粒子であるシクロオレフィンコポリマー破砕粉を得た。
[Manufacturing of Cycloolefin Copolymer Crushed Powder 1]
<Manufacturing example 6>
611.7 L of NB solution (NB concentration: 3.00 mol / L) was added to the reaction kettle whose inside was dried under reduced pressure, and the temperature was raised to 60 ° C. After pressurizing with ethylene partial pressure: 100 kPa while stirring the inside of the system, 0.51 L (concentration: 0.6 mol / L) of hexane solution of TIBA and 40.8 L (concentration: 1.0 mmol / L) of toluene solution of AB. L) and 2.0 L (concentration: 10 mmol / L) of a toluene solution of the complex were added to initiate polymerization of ethylene and NB. During the polymerization, the temperature in the system was kept at 60 ° C., and ethylene was continuously supplied to keep the pressure in the system at the starting value. After 170 minutes had passed from the start of the polymerization and the ethylene consumption reached 3.0 kg, 1.0 L of water was added to terminate the polymerization. 612 L (concentration: 0.1 mol / L) of an aqueous NaOH solution was added to the reaction vessel, and the mixture was stirred for 30 minutes. Stirring was stopped, the aqueous solution was withdrawn, 612 L of water was added, and the mixture was stirred for 30 minutes. Further, 612 L of water was added and stirred for 30 minutes, then a solution of 942 L of toluene and 49.5 L of acetone was added to the reaction vessel, then 314 L of acetone was added, and the precipitated powder was isolated by filtration. The isolated powder was further washed with acetone and dried under reduced pressure at 120 ° C. for 2 hours to give 60.0 kg of cycloolefin copolymer. In the obtained cycloolefin copolymer, the NB content was 92.3 mol%, Tg was 308 ° C., Mw was 852,000, and Mw / Mn was 1.81. Further, the δD of the cycloolefin copolymer was 17.7 MPa 0.5 , the δP was 2.1 MPa 0.5 , the δH was 3.9 MPa 0.5 , and the CTE was 44.5 ppm / K. .. The synthesis conditions are shown in Table 3.
This cycloolefin copolymer was pulverized with a counter jet mill manufactured by Hosokawa Micron Co., Ltd. and classified by a filter to obtain a cycloolefin copolymer crushed powder having a median diameter of 2.6 μm.
[シクロオレフィンコポリマー破砕粉2の製造]
 <製造例7>
 製造例6で得たシクロオレフィンコポリマーを、ホソカワミクロン(株)製のカウンタージェットミルで粉砕し、フィルターにより分級することによって、メジアン径が10μmの粒子であるシクロオレフィンコポリマー破砕粉2を得た。
[Manufacturing of Cycloolefin Copolymer Crushed Powder 2]
<Manufacturing example 7>
The cycloolefin copolymer obtained in Production Example 6 was pulverized with a counter jet mill manufactured by Hosokawa Micron Co., Ltd. and classified by a filter to obtain cycloolefin copolymer crushed powder 2 having a median diameter of 10 μm.
[シクロオレフィンコポリマー溶液の製造]
 <製造例8>
 内部を減圧乾燥したオートクレーブに、NB溶液 1,427mL(NB濃度:3.00mol/L)、スチレン 55.2mLを加え、80℃に昇温した。系内を攪拌しながら、TIBAのヘキサン溶液 3.0mL(濃度:1.0mol/L)と、AB 0.32gと、錯体のトルエン溶液 15.0mL(濃度:10mmol/L)とを加え、NBとスチレンの重合を開始した。重合中は系内の温度を80℃に保った。重合開始から2時間経過後、水 3.0mLを加えて重合を停止し、オートクレーブ内の溶液を抜き出した。抜き出された溶液に、得られた液体をアセトンに滴下し、析出した粉末を濾過により単離した。単離された粉末を更にアセトンで洗浄し、減圧下、150℃で2時間乾燥して、シクロオレフィンコポリマー 198.3gを得た。得られたシクロオレフィンコポリマーにおいて、NB含有量は96.3mol%であり、Mwは79,000であり、Mw/Mnは1.83であり、Tgは300℃超であった。また、該シクロオレフィンコポリマーのδDは17.7MPa0.5であり、δPは2.1MPa0.5であり、δHは3.9MPa0.5であった。製造例2の合成条件を表3に示す。このシクロオレフィンコポリマーをトルエン溶液に2質量%の濃度で溶解して、シクロオレフィンコポリマー溶液を得た。
[Manufacturing of cycloolefin copolymer solution]
<Manufacturing example 8>
To the autoclave whose inside was dried under reduced pressure, 1,427 mL of NB solution (NB concentration: 3.00 mol / L) and 55.2 mL of styrene were added, and the temperature was raised to 80 ° C. While stirring the inside of the system, add 3.0 mL (concentration: 1.0 mol / L) of hexane solution of TIBA, 0.32 g of AB, and 15.0 mL (concentration: 10 mmol / L) of toluene solution of the complex, and NB. And styrene polymerization was started. The temperature in the system was kept at 80 ° C. during the polymerization. After 2 hours from the start of the polymerization, 3.0 mL of water was added to stop the polymerization, and the solution in the autoclave was withdrawn. The obtained liquid was added dropwise to acetone in the extracted solution, and the precipitated powder was isolated by filtration. The isolated powder was further washed with acetone and dried under reduced pressure at 150 ° C. for 2 hours to obtain 198.3 g of a cycloolefin copolymer. In the obtained cycloolefin copolymer, the NB content was 96.3 mol%, Mw was 79,000, Mw / Mn was 1.83, and Tg was more than 300 ° C. The δD of the cycloolefin copolymer was 17.7 MPa 0.5 , the δP was 2.1 MPa 0.5 , and the δH was 3.9 MPa 0.5 . Table 3 shows the synthesis conditions of Production Example 2. This cycloolefin copolymer was dissolved in a toluene solution at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
[ポリイミド樹脂の合成]
 <製造例9>
 セパラブルフラスコにシリカゲル管、攪拌装置及び温度計を取り付けた反応器と、オイルバスとを準備した。乾燥窒素を用いてこのフラスコ内を窒素雰囲気にした後、6FDA 75.52gと、DMAc 519.84gとを投入した。これを400rpmで攪拌しながらTFMB 54.44gを加え、フラスコの内容物が均一な溶液になるまで攪拌を続けた。続いて、オイルバスを用いて容器内温度が20~30℃の範囲になるように調整しながらさらに20時間攪拌を続け、反応させてポリアミック酸を生成させた。30分後、撹拌速度を100rpmに変更した。20時間攪拌後、反応系温度を室温に戻し、DMAc 649.8gを加えてポリマー濃度が10質量%となるように調整した。さらに、ピリジン 32.27g、無水酢酸 41.65gを加え、室温で10時間攪拌してイミド化を行った。反応容器からポリイミドワニスを取り出した。得られたポリイミドワニスをメタノール中に滴下して再沈殿を行い、得られた粉体を加熱乾燥して溶媒を除去し、固形分としてポリイミド樹脂を得た。得られたポリイミド樹脂のδDは18.1MPa0.5であり、δPは8.3MPa0.5であり、δHは9.3MPa0.5であった。また、該ポリイミド樹脂のMwは334,300であり、Tgは361℃であった。
[Synthesis of polyimide resin]
<Manufacturing example 9>
A reactor equipped with a silica gel tube, a stirrer and a thermometer in a separable flask, and an oil bath were prepared. After making the inside of the flask a nitrogen atmosphere using dry nitrogen, 75.52 g of 6FDA and 519.84 g of DMAc were added. 54.44 g of TFMB was added while stirring this at 400 rpm, and stirring was continued until the contents of the flask became a uniform solution. Subsequently, stirring was continued for another 20 hours while adjusting the temperature inside the container to be in the range of 20 to 30 ° C. using an oil bath, and the reaction was carried out to generate a polyamic acid. After 30 minutes, the stirring speed was changed to 100 rpm. After stirring for 20 hours, the reaction system temperature was returned to room temperature, and 649.8 g of DMAc was added to adjust the polymer concentration to 10% by mass. Further, 32.27 g of pyridine and 41.65 g of acetic anhydride were added, and the mixture was stirred at room temperature for 10 hours for imidization. The polyimide varnish was taken out from the reaction vessel. The obtained polyimide varnish was dropped into methanol for reprecipitation, and the obtained powder was heated and dried to remove the solvent to obtain a polyimide resin as a solid content. The δD of the obtained polyimide resin was 18.1 MPa 0.5, the δP was 8.3 MPa 0.5 , and the δH was 9.3 MPa 0.5 . The Mw of the polyimide resin was 334,300, and the Tg was 361 ° C.
[ポリアミック酸の合成]
 <製造例10>
 セパラブルフラスコにシリカゲル管、攪拌装置及び温度計を取り付けた反応器と、オイルバスとを準備した。このフラスコ内に、BPDA 27.83gと、PMDA 13.76gと、m-TB 34.00gとを投入した。これを400rpmで攪拌しながら、DMAc 428.35gを加え、フラスコの内容物が均一な溶液になるまで攪拌を続けた。続いて、オイルバスを用いて容器内温度が20~30℃の範囲になるように調整しながらさらに3時間攪拌を続け、反応させてポリアミック酸溶液を得た。
[Synthesis of polyamic acid]
<Manufacturing example 10>
A reactor equipped with a silica gel tube, a stirrer and a thermometer in a separable flask, and an oil bath were prepared. 27.83 g of BPDA, 13.76 g of PMDA, and 34.00 g of m-TB were placed in this flask. While stirring this at 400 rpm, 428.35 g of DMAc was added, and stirring was continued until the contents of the flask became a uniform solution. Subsequently, stirring was continued for another 3 hours while adjusting the temperature inside the container to be in the range of 20 to 30 ° C. using an oil bath, and the reaction was carried out to obtain a polyamic acid solution.
[液晶ポリエステル溶液の製造]
 <製造例11>
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸 940.9g、N-アセチル-4-アミノフェノール 377.9g、イソフタル酸 415.3g及び無水酢酸 867.8gを入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から140℃まで60分かけて昇温し、140℃で3時間還流させた。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(L1)を得た。上記に記載の方法で測定した液晶ポリエステル(L1)の流動開始温度は、193.3℃であった。
 液晶ポリエステル(L1)を、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(L2)を得た。上記に記載の方法で測定した液晶ポリエステル(L2)の流動開始温度は、220℃であった。
 液晶ポリエステル(L2)を窒素雰囲気下、室温から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル(L)を得た。上記に記載の方法で測定した液晶ポリエステル(L)の流動開始温度は、302℃であった。得られた液晶ポリエステル(L)のδDは20.9MPa0.5であり、δPは8.3MPa0.5であり、δHは4.7MPa0.5であった。また、該液晶ポリエステルのMwは180,000あり、Tgは190℃であった。
 液晶ポリエステル(L) 8質量部を、NMP 92質量部に加え、窒素雰囲気下、140℃で4時間攪拌して、液晶ポリエステル溶液を調製した。以下に記載の方法で測定した液晶ポリエステル溶液の粘度は、955mPa・sであった。
[Manufacturing of liquid crystal polyester solution]
<Manufacturing example 11>
Reactor equipped with stirrer, torque meter, nitrogen gas introduction tube, thermometer and reflux condenser, 6-hydroxy-2-naphthoic acid 940.9 g, N-acetyl-4-aminophenol 377.9 g, isophthalic acid After adding 415.3 g and 867.8 g of anhydrous acetic acid and replacing the gas in the reactor with nitrogen gas, the temperature was raised from room temperature to 140 ° C. over 60 minutes with stirring under a nitrogen gas stream at 140 ° C. It was refluxed for 3 hours. Then, while distilling off by-product acetic acid and unreacted acetic anhydride, the temperature was raised from 150 ° C. to 300 ° C. over 5 hours, held at 300 ° C. for 30 minutes, and then the contents were taken out from the reactor and brought to room temperature. Cooled. The obtained solid matter was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (L1). The flow start temperature of the liquid crystal polyester (L1) measured by the method described above was 193.3 ° C.
The liquid crystal polyester (L1) is heated from room temperature to 160 ° C. over 2 hours and 20 minutes under a nitrogen atmosphere, then heated from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and held at 180 ° C. for 5 hours. As a result, solid-phase polymerization was carried out, the mixture was cooled, and then the mixture was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (L2). The flow start temperature of the liquid crystal polyester (L2) measured by the method described above was 220 ° C.
The temperature of the liquid crystal polyester (L2) is raised from room temperature to 180 ° C. for 1 hour and 25 minutes under a nitrogen atmosphere, then the temperature is raised from 180 ° C. to 255 ° C. for 6 hours and 40 minutes, and the temperature is maintained at 255 ° C. for 5 hours. After solid-phase polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester (L). The flow start temperature of the liquid crystal polyester (L) measured by the method described above was 302 ° C. The δD of the obtained liquid crystal polyester (L) was 20.9 MPa 0.5, the δP was 8.3 MPa 0.5 , and the δH was 4.7 MPa 0.5 . The liquid crystal polyester had a Mw of 180,000 and a Tg of 190 ° C.
8 parts by mass of liquid crystal polyester (L) was added to 92 parts by mass of NMP, and the mixture was stirred at 140 ° C. for 4 hours under a nitrogen atmosphere to prepare a liquid crystal polyester solution. The viscosity of the liquid crystal polyester solution measured by the method described below was 955 mPa · s.
[実施例1]
 製造例1で得られたシクロオレフィンコポリマー溶液 100.0gとGBL 98.0gを混合し、50hPa、80℃で2時間減圧留去してトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。得られた分散液のトルエン含有量は、GBL100質量部に対して0.6質量部であった。
 得られた分散液 30.0g(粒子状シクロオレフィンコポリマー2.0質量%)に、上記で得られたポリイミド樹脂を1.2g添加して、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。上記方法にて測定した粒子状シクロオレフィンコポリマー分散液中及び組成物中の粒子状シクロオレフィンコポリマーのメジアン径は、それぞれ0.14μmであった。
 得られた組成物をガラス基板上において流涎成形し、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ50μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して33.3質量%であった。また、得られた複合フィルム中の粒子状シクロオレフィンコポリマーの平均一次粒子径は0.16μmであった。実施例1で使用したシクロオレフィンコポリマーとポリイミド樹脂とのHSP値間距離は8.3であり、該シクロオレフィンコポリマーとトルエンとのHSP値間距離は2.1であり、該シクロオレフィンコポリマーとGBLとのHSP値間距離は14.9であり、ポリイミド樹脂とトルエンとのHSP値間距離は10.0であり、ポリイミド樹脂とGBLとのHSP値間距離は8.5であった。
 上記溶解性の評価方法により、実施例1で使用したシクロオレフィンコポリマーはトルエンに溶解し、GBLに溶解しなかった。またポリイミド樹脂は、GBLに溶解し、トルエンに溶解しなかった。
[Example 1]
100.0 g of the cycloolefin copolymer solution obtained in Production Example 1 and 98.0 g of GBL were mixed and distilled off at 50 hPa at 80 ° C. for 2 hours under reduced pressure to distill off toluene to obtain a particulate cycloolefin copolymer dispersion. rice field. The toluene content of the obtained dispersion was 0.6 parts by mass with respect to 100 parts by mass of GBL.
To 30.0 g of the obtained dispersion (2.0% by mass of the particulate cycloolefin copolymer), 1.2 g of the polyimide resin obtained above was added to obtain a composition as a polyimide-cycloolefin copolymer mixed solution. rice field. The median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion and the composition measured by the above method was 0.14 μm, respectively.
The obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 50 μm. Got In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer. The average primary particle size of the particulate cycloolefin copolymer in the obtained composite film was 0.16 μm. The distance between the HSP values of the cycloolefin copolymer and the polyimide resin used in Example 1 is 8.3, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and GBP is 2.1. The distance between the HSP values was 14.9, the distance between the HSP values of the polyimide resin and toluene was 10.0, and the distance between the HSP values of the polyimide resin and GBL was 8.5.
By the above solubility evaluation method, the cycloolefin copolymer used in Example 1 was dissolved in toluene and not in GBL. Further, the polyimide resin was dissolved in GBL and not in toluene.
[実施例2]
 製造例2で得られたシクロオレフィンコポリマー溶液を用いたこと以外は、実施例1と同様にして、ポリイミド-シクロオレフィンコポリマー混合溶液としての組成物及び厚さ50μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して33.3質量%であった。実施例2で使用したシクロオレフィンコポリマーとポリイミド樹脂とのHSP値間距離は8.3であり、該シクロオレフィンコポリマーとトルエンとのHSP値間距離は2.1であり、該シクロオレフィンコポリマーとGBLとのHSP値間距離は14.9であり、ポリイミド樹脂とトルエンとのHSP値間距離は10.0であり、ポリイミド樹脂とGBLとのHSP値間距離は8.5であった。
 上記溶解性の評価方法により、実施例2で使用したシクロオレフィンコポリマーはトルエンに溶解し、GBLに溶解しなかった。
[Example 2]
The composition as a polyimide-cycloolefin copolymer mixed solution and the polyimide-cycloolefin copolymer composite film having a thickness of 50 μm were prepared in the same manner as in Example 1 except that the cycloolefin copolymer solution obtained in Production Example 2 was used. Obtained. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer. The distance between the HSP values of the cycloolefin copolymer and the polyimide resin used in Example 2 is 8.3, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and GBP is 2.1. The distance between the HSP values was 14.9, the distance between the HSP values of the polyimide resin and toluene was 10.0, and the distance between the HSP values of the polyimide resin and GBL was 8.5.
By the above solubility evaluation method, the cycloolefin copolymer used in Example 2 was dissolved in toluene and not in GBL.
[実施例3]
 製造例3で得られたシクロオレフィンコポリマー溶液を用いたこと以外は、実施例1と同様にして、ポリイミド-シクロオレフィンコポリマー混合溶液としての組成物及び厚さ50μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して33.3質量%であった。実施例3で使用したシクロオレフィンコポリマーとポリイミド樹脂とのHSP値間距離は8.3であり、該シクロオレフィンコポリマーとトルエンとのHSP値間距離は2.1であり、該シクロオレフィンコポリマーとGBLとのHSP値間距離は14.9であり、ポリイミド樹脂とトルエンとのHSP値間距離は10.0であり、ポリイミド樹脂とGBLとのHSP値間距離は8.5であった。
 上記溶解性の評価方法により、実施例3で使用したシクロオレフィンコポリマーはトルエンに溶解し、GBLに溶解しなかった。
[Example 3]
A composition as a polyimide-cycloolefin copolymer mixed solution and a polyimide-cycloolefin copolymer composite film having a thickness of 50 μm were prepared in the same manner as in Example 1 except that the cycloolefin copolymer solution obtained in Production Example 3 was used. Obtained. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer. The distance between the HSP values of the cycloolefin copolymer and the polyimide resin used in Example 3 is 8.3, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and GBP is 2.1. The distance between the HSP values was 14.9, the distance between the HSP values of the polyimide resin and toluene was 10.0, and the distance between the HSP values of the polyimide resin and GBL was 8.5.
By the above solubility evaluation method, the cycloolefin copolymer used in Example 3 was dissolved in toluene and not in GBL.
[実施例4]
 製造例4で得られたシクロオレフィンコポリマー溶液を用いたこと以外は、実施例1と同様にして、ポリイミド-シクロオレフィンコポリマー混合溶液としての組成物及び厚さ50μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して33.3質量%であった。実施例4で使用したシクロオレフィンコポリマーとポリイミド樹脂とのHSP値間距離は8.3であり、該シクロオレフィンコポリマーとトルエンとのHSP値間距離は2.1であり、該シクロオレフィンコポリマーとGBLとのHSP値間距離は14.9であり、ポリイミド樹脂とトルエンとのHSP値間距離は10.0であり、ポリイミド樹脂とGBLとのHSP値間距離は8.5であった。
 上記溶解性の評価方法により、実施例4で使用したシクロオレフィンコポリマーはトルエンに溶解し、GBLに溶解しなかった。
[Example 4]
A composition as a polyimide-cycloolefin copolymer mixed solution and a polyimide-cycloolefin copolymer composite film having a thickness of 50 μm were prepared in the same manner as in Example 1 except that the cycloolefin copolymer solution obtained in Production Example 4 was used. Obtained. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer. The distance between the HSP values of the cycloolefin copolymer and the polyimide resin used in Example 4 is 8.3, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and GBP is 2.1. The distance between the HSP values was 14.9, the distance between the HSP values of the polyimide resin and toluene was 10.0, and the distance between the HSP values of the polyimide resin and GBL was 8.5.
By the above solubility evaluation method, the cycloolefin copolymer used in Example 4 was dissolved in toluene and not in GBL.
[実施例5]
 製造例2で得られたシクロオレフィンコポリマー溶液 100.0gとDMAc 98.0gを混合し、50hPa、80℃で2時間減圧留去して、トルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。得られた分散液のトルエン含有量は、DMAc100質量部に対して0.6質量部であった。得られた分散液 30.0g(粒子状シクロオレフィンコポリマー2.0質量%)にポリアミック酸溶液を6.6g(ポリアミック酸15質量%)添加して、ポリアミック酸-シクロオレフィンコポリマー混合溶液としての組成物を得た。
 得られた組成物をガラス基板上において流涎成形により、線速0.4m/分で塗膜を作製した。70℃で60分、塗膜を加熱させ、ガラス基板からポリアミック酸―シクロオレフィンコポリマー複合フィルムを剥離した後、金枠でフィルムを固定し更に360℃まで段階的に30分でポリアミック酸―シクロオレフィンコポリマー複合フィルムを加熱することにより、ポリアミック酸はイミド化され、厚さ25μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して37.7質量%であった。
 実施例5で使用したシクロオレフィンコポリマーと、得られたポリイミド樹脂とのHSP値間距離は6.0以上であり、該シクロオレフィンコポリマーとトルエンとのHSP値間距離は2.1であり、該シクロオレフィンコポリマーとDMAcとのHSP値間距離は11.5であった。
 上記溶解性の評価方法により、実施例5で使用したポリアミック酸は、DMAcに溶解し、トルエンに溶解しなかった。
[Example 5]
100.0 g of the cycloolefin copolymer solution obtained in Production Example 2 and 98.0 g of DMAc were mixed and distilled off at 50 hPa at 80 ° C. for 2 hours under reduced pressure to distill off toluene to obtain a particulate cycloolefin copolymer dispersion. Obtained. The toluene content of the obtained dispersion was 0.6 parts by mass with respect to 100 parts by mass of DMAc. 6.6 g (15% by mass of polyamic acid) of the polyamic acid solution was added to 30.0 g (2.0% by mass of the particulate cycloolefin copolymer) of the obtained dispersion, and the composition as a polyamic acid-cycloolefin copolymer mixed solution was added. I got something.
The obtained composition was subjected to salivation molding on a glass substrate to prepare a coating film at a linear speed of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the polyamic acid-cycloolefin copolymer composite film is peeled off from the glass substrate, the film is fixed with a metal frame, and the polyamic acid-cycloolefin is gradually increased to 360 ° C. in 30 minutes. By heating the copolymer composite film, the polyamic acid was imidized to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 25 μm. In the obtained film, the content of the particulate cycloolefin copolymer was 37.7% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The distance between the HSP values of the cycloolefin copolymer used in Example 5 and the obtained polyimide resin is 6.0 or more, and the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1. The distance between the HSP values of the cycloolefin copolymer and DMAc was 11.5.
According to the above solubility evaluation method, the polyamic acid used in Example 5 was dissolved in DMAc and not in toluene.
[比較例1]
 製造例5で得られたシクロオレフィンコポリマー溶液を用いたこと以外は、実施例1と同様にして、厚さ50μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して33.3質量%であった。
[Comparative Example 1]
A polyimide-cycloolefin copolymer composite film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the cycloolefin copolymer solution obtained in Production Example 5 was used. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
[実施例6]
 製造例6で得たシクロオレフィンコポリマー破砕粉1 7.31g、DMAc 52.03gを混合し、撹拌することで分散液を得た。得られた分散液にポリアミック酸溶液 100g(ポリアミック酸 15質量%)を添加して、ポリアミック酸-シクロオレフィンコポリマー混合溶液としての組成物を得た。上記方法にて測定した分散液及び組成物中の粒子状シクロオレフィンコポリマーのメジアン径は、それぞれ2.6μmであった。
 得られた組成物をガラス基板上において流涎成形により、線速0.4m/分で塗膜を作製した。50℃で80分、塗膜を加熱させ、ガラス基板からポリアミック酸-シクロオレフィンコポリマー複合フィルムを剥離した後、金枠でフィルムを固定し更に窒素雰囲気下、360℃で15分間加熱することにより、ポリアミック酸はイミド化され、厚さ50μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して32.8質量%であった。得られた複合フィルム中の粒子状シクロオレフィンコポリマーの平均一次粒子径は2.7μmであった。
 実施例6で使用したシクロオレフィンコポリマーとポリアミック酸とのHSP値間距離は6.0以上であり、シクロオレフィンコポリマーとDMAcとのHSP値間距離は11.5であった。また、実施例6で使用したシクロオレフィンコポリマーと、ポリアミック酸をイミド化して得られたポリイミド樹脂とのHSP値間距離は6.0以上であった。
 上記溶解性の評価方法により、実施例6で使用したシクロオレフィンコポリマーはトルエンに溶解し、DMAcに溶解しなかった。またポリアミック酸は、DMAcに溶解し、トルエンに溶解しなかった。
[Example 6]
The cycloolefin copolymer crushed powder 17.31 g and DMAc 52.03 g obtained in Production Example 6 were mixed and stirred to obtain a dispersion liquid. 100 g of a polyamic acid solution (15% by mass of a polyamic acid) was added to the obtained dispersion to obtain a composition as a polyamic acid-cycloolefin copolymer mixed solution. The median diameter of the particulate cycloolefin copolymer in the dispersion and the composition measured by the above method was 2.6 μm, respectively.
The obtained composition was subjected to salivation molding on a glass substrate to prepare a coating film at a linear speed of 0.4 m / min. The coating film was heated at 50 ° C. for 80 minutes, the polyamic acid-cycloolefin copolymer composite film was peeled off from the glass substrate, the film was fixed with a metal frame, and the film was further heated at 360 ° C. for 15 minutes under a nitrogen atmosphere. The polyamic acid was imidized to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 50 μm. In the obtained film, the content of the particulate cycloolefin copolymer was 32.8% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer. The average primary particle size of the particulate cycloolefin copolymer in the obtained composite film was 2.7 μm.
The distance between the HSP values of the cycloolefin copolymer and the polyamic acid used in Example 6 was 6.0 or more, and the distance between the HSP values of the cycloolefin copolymer and the DMAc was 11.5. Further, the distance between the HSP values of the cycloolefin copolymer used in Example 6 and the polyimide resin obtained by imidizing the polyamic acid was 6.0 or more.
By the above solubility evaluation method, the cycloolefin copolymer used in Example 6 was dissolved in toluene and not in DMAc. Further, the polyamic acid was dissolved in DMAc and not in toluene.
[実施例7]
 製造例1で得られたシクロオレフィンコポリマー溶液 100.0gとNMP 98.0gを混合し、50hPa、80℃で2時間減圧留去して、トルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。得られた分散液のトルエン含有量は、NMP 100質量部に対して0.6質量部であった。
 得られた粒子状シクロオレフィンコポリマー分散液30.0g(粒子状シクロオレフィンコポリマー2.0質量%)に、製造例11で得られた液晶ポリエステル溶液を17.5g添加して、液晶ポリエステル-シクロオレフィンコポリマー混合溶液として、組成物を得た。上記方法にて測定した粒子状シクロオレフィンコポリマー分散液中及び組成物中の粒子状シクロオレフィンコポリマーのメジアン径は、それぞれ0.14μmであった。
 得られた組成物を銅箔上において流涎成形により、線速0.4m/分で塗膜を作製した。60℃で4時間、塗膜を加熱させ、銅箔と液晶ポリエステル前駆体-シクロオレフィンコポリマー複合フィルムとを有する積層体を得た後、金枠で前記積層体を固定し更に窒素雰囲気下、310℃で4時間、前記積層体を加熱することにより、銅箔と液晶ポリエステル―シクロオレフィンコポリマー複合フィルムとを有する積層体を得た。得られた前記積層体を第二塩化鉄溶液に10分間浸漬させ銅箔をエッチング除去することで、厚さ30μmの液晶ポリエステル-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、液晶ポリエステルと粒子状シクロオレフィンコポリマーとの合計質量に対して30.0質量%であった。複合フィルム中における粒子状シクロオレフィンコポリマーの平均一次粒子径は0.17μmであった。
 実施例7で使用したシクロオレフィンコポリマーと液晶ポリエステルとのHSP値間距離は8.9であり、該シクロオレフィンコポリマーとトルエンとのHSP値間距離は2.1であり、該シクロオレフィンコポリマーとNMPとのHSP値間距離は10.7であり、液晶ポリエステルとトルエンとのHSP値間距離は9.4であり、液晶ポリエステルとNMPとのHSP値間距離は7.5であった。
 上記溶解性の評価方法により、実施例7で使用したシクロオレフィンコポリマーは、トルエンに溶解し、NMPに溶解しなかった。実施例7で使用した液晶ポリエステルは、NMPに溶解し、トルエンに溶解しなかった。
[Example 7]
100.0 g of the cycloolefin copolymer solution obtained in Production Example 1 and 98.0 g of NMP were mixed and distilled off at 50 hPa at 80 ° C. for 2 hours under reduced pressure to distill off toluene to obtain a particulate cycloolefin copolymer dispersion. Obtained. The toluene content of the obtained dispersion was 0.6 parts by mass with respect to 100 parts by mass of NMP.
To 30.0 g of the obtained particulate cycloolefin copolymer dispersion (2.0% by mass of the particulate cycloolefin copolymer), 17.5 g of the liquid crystal polyester solution obtained in Production Example 11 was added, and the liquid crystal polyester-cycloolefin was added. The composition was obtained as a mixed solution of copolymers. The median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion and the composition measured by the above method was 0.14 μm, respectively.
The obtained composition was subjected to salivation molding on a copper foil to prepare a coating film at a linear speed of 0.4 m / min. The coating film was heated at 60 ° C. for 4 hours to obtain a laminate having a copper foil and a liquid crystal polyester precursor-cycloolefin copolymer composite film, and then the laminate was fixed with a metal frame and further under a nitrogen atmosphere, 310. By heating the laminate at ° C. for 4 hours, a laminate having a copper foil and a liquid crystal polyester-cycloolefin copolymer composite film was obtained. The obtained laminate was immersed in a ferric chloride solution for 10 minutes to remove the copper foil by etching to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 30 μm. In the obtained film, the content of the particulate cycloolefin copolymer was 30.0% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer. The average primary particle size of the particulate cycloolefin copolymer in the composite film was 0.17 μm.
The distance between the HSP values of the cycloolefin copolymer and the liquid crystal polyester used in Example 7 is 8.9, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and NMP is 2.1. The distance between the HSP values was 10.7, the distance between the HSP values of the liquid crystal polyester and toluene was 9.4, and the distance between the HSP values of the liquid crystal polyester and NMP was 7.5.
According to the above solubility evaluation method, the cycloolefin copolymer used in Example 7 was dissolved in toluene and not in NMP. The liquid crystal polyester used in Example 7 was dissolved in NMP and not in toluene.
[実施例8]
 粒子状シクロオレフィンコポリマーの含有量が、液晶ポリエステルと粒子状シクロオレフィンコポリマーとの合計質量に対して10質量%となるように、製造例11で得られた液晶ポリエステル溶液と、製造例7で得られたシクロオレフィンコポリマー破砕粉2とを混合し、撹拌脱泡装置((株)シンキー製、AR-500)を用いて、液晶ポリエステル-シクロオレフィンコポリマー混合溶液としての組成物を得た。
 得られた組成物を(JX金属(株)製 JXEFL-V2 12μm)の粗化面に流延膜の厚さが260μmとなるように、マイクロメーター付フィルムアプリケーター(テスター産業(株)製)と自動塗工装置(テスター産業(株)製、型式:PI-1210)とを用いて流延した後、40℃、常圧(1気圧)にて、4時間乾燥することにより、流延膜から溶媒を部分的に除去し、銅箔付きフィルムを得た。当該銅箔付きフィルムに対して、さらに窒素雰囲気下熱風オーブン中で室温から310℃まで4時間で昇温し、その温度で2時間保持する熱処理を行い、熱処理された銅箔付きフィルムが得られた。この銅箔付きフィルムについて、第二塩化鉄溶液を使用して銅箔をエッチング除去することで、厚さ27μmの液晶ポリエステル-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムの誘電率は2.90であり、誘電正接は0.0032であった。
 実施例8で使用したシクロオレフィンコポリマーと液晶ポリエステルとのHSP値間距離は8.9であり、該シクロオレフィンコポリマーとトルエンとのHSP値間距離は2.1であり、該シクロオレフィンコポリマーとNMPとのHSP値間距離は10.7であり、液晶ポリエステルとトルエンとのHSP値間距離は9.4であり、液晶ポリエステルとNMPとのHSP値間距離は7.5であった。
[Example 8]
The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 10% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer. The resulting cycloolefin copolymer crushed powder 2 was mixed, and a composition as a liquid crystal polyester-cycloolefin copolymer mixed solution was obtained using a stirring defoaming device (AR-500, manufactured by Shinky Co., Ltd.).
The obtained composition was used with a film applicator with a micrometer (manufactured by Tester Sangyo Co., Ltd.) so that the thickness of the cast film was 260 μm on the roughened surface of (JXEFL-V2 12 μm manufactured by JX Nippon Mining & Metals Co., Ltd.). After casting using an automatic coating device (manufactured by Tester Sangyo Co., Ltd., model: PI-1210), the film is dried at 40 ° C. and normal pressure (1 atm) for 4 hours to remove the cast film. The solvent was partially removed to obtain a film with a copper foil. The copper foil-attached film was further heat-treated in a hot air oven under a nitrogen atmosphere from room temperature to 310 ° C. for 4 hours and kept at that temperature for 2 hours to obtain a heat-treated copper foil-attached film. rice field. The copper foil-attached film was etched and removed using a ferric chloride solution to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 27 μm. The obtained composite film had a dielectric constant of 2.90 and a dielectric loss tangent of 0.0032.
The distance between the HSP values of the cycloolefin copolymer and the liquid crystal polyester used in Example 8 is 8.9, the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1, and the distance between the cycloolefin copolymer and NMP is 2.1. The distance between the HSP values was 10.7, the distance between the HSP values of the liquid crystal polyester and toluene was 9.4, and the distance between the HSP values of the liquid crystal polyester and NMP was 7.5.
[実施例9]
 粒子状シクロオレフィンコポリマーの含有量が、液晶ポリエステルと粒子状シクロオレフィンコポリマーとの合計質量に対して20質量%となるように、製造例11で得られた液晶ポリエステル溶液と、製造例7で得られたシクロオレフィンコポリマー破砕粉2とを混合し、流延膜の厚さを240μmとしたこと以外は実施例8と同様にして、厚さ28μmの液晶ポリエステル-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムの誘電率は2.81であり、誘電正接は0.0028であった。
[Example 9]
The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 20% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer. The obtained cycloolefin copolymer crushed powder 2 was mixed to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 28 μm in the same manner as in Example 8 except that the thickness of the cast film was 240 μm. The obtained composite film had a dielectric constant of 2.81 and a dielectric loss tangent of 0.0028.
[実施例10]
 粒子状シクロオレフィンコポリマーの含有量が、液晶ポリエステルと粒子状シクロオレフィンコポリマーとの合計質量に対して30質量%となるように、製造例11で得られた液晶ポリエステル溶液と、製造例7で得られたシクロオレフィンコポリマー破砕粉2とを混合し、流延膜の厚さを220μmとしたこと以外は実施例8と同様にして、厚さ30μmの液晶ポリエステル-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムの誘電率は2.67であり、誘電正接は0.0024であった。
[Example 10]
The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 30% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer. The obtained cycloolefin copolymer crushed powder 2 was mixed to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 30 μm in the same manner as in Example 8 except that the thickness of the cast film was 220 μm. The obtained composite film had a dielectric constant of 2.67 and a dielectric loss tangent of 0.0024.
[実施例11]
 粒子状シクロオレフィンコポリマーの含有量が、液晶ポリエステルと粒子状シクロオレフィンコポリマーとの合計質量に対して50質量%となるように、製造例11で得られた液晶ポリエステル溶液と、製造例7で得られたシクロオレフィンコポリマー破砕粉2とを混合し、流延膜の厚さを280μmとしたこと以外は実施例8と同様にして、厚さ29μmの液晶ポリエステル-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムの誘電率は2.54であり、誘電正接は0.0017であった。
[Example 11]
The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 50% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer. The obtained cycloolefin copolymer crushed powder 2 was mixed to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 29 μm in the same manner as in Example 8 except that the thickness of the cast film was 280 μm. The obtained composite film had a dielectric constant of 2.54 and a dielectric loss tangent of 0.0017.
[実施例12]
 粒子状シクロオレフィンコポリマーの含有量が、液晶ポリエステルと粒子状シクロオレフィンコポリマーとの合計質量に対して60質量%となるように、製造例11で得られた液晶ポリエステル溶液と、製造例7で得られたシクロオレフィンコポリマー破砕粉2とを混合し、流延膜の厚さを280μmとしたこと以外は実施例8と同様にして、厚さ33μmの液晶ポリエステル-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムの誘電率は2.45であり、誘電正接は0.0015であった。
[Example 12]
The liquid crystal polyester solution obtained in Production Example 11 and the liquid crystal polyester solution obtained in Production Example 7 so that the content of the particulate cycloolefin copolymer is 60% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer. The obtained cycloolefin copolymer crushed powder 2 was mixed to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 33 μm in the same manner as in Example 8 except that the thickness of the cast film was 280 μm. The obtained composite film had a dielectric constant of 2.45 and a dielectric loss tangent of 0.0015.
[実施例13]
 製造例8で得られたシクロオレフィンコポリマー溶液 100.0gとDMAc 98.0gとを混合し、50hPa、80℃で2時間減圧留去して、トルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。得られた分散液のトルエン含有量は、DMAc 100質量部に対して0.6質量部であった。
 得られた粒子状シクロオレフィンコポリマー分散液30.0g(粒子状シクロオレフィンコポリマー2.0質量%)に、製造例10で得られたポリアミック酸溶液(ポリアミック酸15質量%)を8.0g添加して、ポリアミック酸-シクロオレフィンコポリマー混合溶液として、組成物を得た。上記方法にて測定した粒子状シクロオレフィンコポリマー分散液中及び組成物中の粒子状シクロオレフィンコポリマーのメジアン径は、それぞれ0.13μmであった。
 得られた組成物をガラス基板上において流涎成形により、線速0.4m/分で塗膜を作製した。70℃で60分、塗膜を加熱させ、ガラス基板からポリアミック酸―シクロオレフィンコポリマー複合フィルムを剥離した後、金枠でフィルムを固定し更に窒素雰囲気下、360℃まで段階的に30分でポリアミック酸―シクロオレフィンコポリマー複合フィルムを加熱することにより、ポリアミック酸はイミド化され、厚さ30μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られたフィルムにおいて、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して33.3質量%であった。また、複合フィルム中における粒子状シクロオレフィンコポリマーの平均一次粒子径は0.15μmであった。
 実施例13で使用したシクロオレフィンコポリマーとポリアミック酸とのHSP値間距離は6.0以上であり、該シクロオレフィンコポリマーとトルエンとのHSP値間距離は2.1であり、該シクロオレフィンコポリマーとDMAcとのHSP値間距離は11.5であった。また、実施例13で使用したシクロオレフィンコポリマーと、ポリアミック酸をイミド化して得られたポリイミド樹脂とのHSP値間距離は6.0以上であった。
 上記溶解性の評価方法により、実施例13で使用したシクロオレフィンコポリマーは、トルエンに溶解し、DMAcに溶解しなかった。実施例13で使用したポリアミック酸は、DMAcに溶解し、トルエンに溶解しなかった。
[Example 13]
100.0 g of the cycloolefin copolymer solution obtained in Production Example 8 and 98.0 g of DMAc were mixed, distilled off under reduced pressure at 50 hPa and 80 ° C. for 2 hours, and toluene was distilled off to distill off toluene. Got The toluene content of the obtained dispersion was 0.6 parts by mass with respect to 100 parts by mass of DMAc.
To 30.0 g of the obtained particulate cycloolefin copolymer dispersion (2.0% by mass of the particulate cycloolefin copolymer), 8.0 g of the polyamic acid solution (15% by mass) obtained in Production Example 10 was added. The composition was obtained as a mixed solution of polyamic acid-cycloolefin copolymer. The median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion and the composition measured by the above method was 0.13 μm, respectively.
The obtained composition was subjected to salivation molding on a glass substrate to prepare a coating film at a linear speed of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the polyamic acid-cycloolefin copolymer composite film is peeled off from the glass substrate, the film is fixed with a metal frame, and the polyamic acid is gradually increased to 360 ° C. in 30 minutes under a nitrogen atmosphere. By heating the acid-cycloolefin copolymer composite film, the polyamic acid was imidized to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 30 μm. In the obtained film, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer. The average primary particle size of the particulate cycloolefin copolymer in the composite film was 0.15 μm.
The distance between the HSP values of the cycloolefin copolymer and the polyamic acid used in Example 13 is 6.0 or more, and the distance between the HSP values of the cycloolefin copolymer and toluene is 2.1. The distance between the HSP values with DMAc was 11.5. Further, the distance between the HSP values of the cycloolefin copolymer used in Example 13 and the polyimide resin obtained by imidizing the polyamic acid was 6.0 or more.
By the above solubility evaluation method, the cycloolefin copolymer used in Example 13 was dissolved in toluene and not in DMAc. The polyamic acid used in Example 13 was soluble in DMAc and not in toluene.
 実施例及び比較例で得られたポリイミド-シクロオレフィンコポリマー複合フィルムのCTE、1回屈曲耐性、反復屈曲耐性を上記方法に従い測定した。得られた結果を表3に示す。なお、実施例及び比較例で用いたシクロオレフィンコポリマーのNB含有量、Tg、Mw、及びMw/Mnを表3に示す。 The CTE, single bending resistance and repeated bending resistance of the polyimide-cycloolefin copolymer composite films obtained in Examples and Comparative Examples were measured according to the above method. The obtained results are shown in Table 3. Table 3 shows the NB content, Tg, Mw, and Mw / Mn of the cycloolefin copolymers used in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
[参考例1]
 上記で得られたポリイミド樹脂15gをGBL 85gに溶解し、ポリイミド樹脂溶液を得た。得られた混合溶液をガラス上において流涎成形し、線速0.4m/分で塗膜を作製した。70℃で60分塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱して、厚さ50μmのポリイミドフィルムを得た。得られたポリイミドフィルムのCTEは39ppm/Kであった。
[Reference Example 1]
15 g of the polyimide resin obtained above was dissolved in 85 g of GBL to obtain a polyimide resin solution. The obtained mixed solution was subjected to hypersalivation on glass to prepare a coating film at a linear velocity of 0.4 m / min. The coating film was heated at 70 ° C. for 60 minutes to peel off the film from the glass substrate, and then the film was fixed with a metal frame and further heated at 200 ° C. for 1 hour to obtain a polyimide film having a thickness of 50 μm. The CTE of the obtained polyimide film was 39 ppm / K.
[参考例2]
 製造例10で得たポリアミック酸溶液を組成物として用いたこと以外は実施例6と同様にして、厚さ30μmのポリイミドフィルムを得た。得られたポリイミドフィルムのCTEは9ppm/Kであった。
[Reference Example 2]
A polyimide film having a thickness of 30 μm was obtained in the same manner as in Example 6 except that the polyamic acid solution obtained in Production Example 10 was used as the composition. The CTE of the obtained polyimide film was 9 ppm / K.
[参考例3]
 組成物として、製造例11で得られた液晶ポリエステル溶液を用い、流延膜の厚さを300μmとしたこと以外は実施例8と同様にして、厚さ27μmの液晶ポリエステルフィルムを得た。得られた液晶ポリエステルフィルムのCTEは33ppm/Kであり、誘電率は3.30、誘電正接は0.0040であった。
[Reference Example 3]
As the composition, the liquid crystal polyester solution obtained in Production Example 11 was used, and a liquid crystal polyester film having a thickness of 27 μm was obtained in the same manner as in Example 8 except that the thickness of the casting film was set to 300 μm. The CTE of the obtained liquid crystal polyester film was 33 ppm / K, the dielectric constant was 3.30, and the dielectric loss tangent was 0.0040.
 表3に示されるように、実施例1~13で得られたフィルムは、比較例1と比べ、CTEが低いことがわかった。さらに、実施例1~11及び13で得られたフィルムは、比較例1と比べ、1回屈曲耐性及び反復屈曲耐性に優れていることがわかった。 As shown in Table 3, it was found that the films obtained in Examples 1 to 13 had a lower CTE than that of Comparative Example 1. Furthermore, it was found that the films obtained in Examples 1 to 11 and 13 were excellent in one-time bending resistance and repeated bending resistance as compared with Comparative Example 1.

Claims (15)

  1.  樹脂(A)とシクロオレフィン系ポリマー(B)とを含み、該シクロオレフィン系ポリマー(B)のガラス転移温度及び融点の少なくともいずれか一方は160℃以上である、フィルム。 A film containing a resin (A) and a cycloolefin polymer (B), wherein at least one of the glass transition temperature and the melting point of the cycloolefin polymer (B) is 160 ° C. or higher.
  2.  樹脂(A)とシクロオレフィン系ポリマー(B)とのHSP値間距離は6以上である、請求項1に記載のフィルム。 The film according to claim 1, wherein the distance between the HSP values of the resin (A) and the cycloolefin polymer (B) is 6 or more.
  3.  シクロオレフィン系ポリマー(B)は、式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、mは0以上の整数を表し、R~R18は、互いに独立に、水素原子、ハロゲン原子又は炭素数1~20の炭化水素基を表し、R11~R14が複数存在する場合、それらは互いに独立に、同一であってもよく、異なっていてもよく、R16とR17とは互いに結合し、それらが結合する炭素原子とともに環を形成してもよい]
    で表されるシクロオレフィン由来の単量体単位(I)を含む、請求項1又は2に記載のフィルム。
    The cycloolefin polymer (B) has the formula (I) :.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I), m represents an integer of 0 or more, R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and R 11 to R 14 If there are a plurality of them, they may be independent of each other, the same or different, and R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded. ]
    The film according to claim 1 or 2, which comprises a monomer unit (I) derived from cycloolefin represented by.
  4.  シクロオレフィン系ポリマー(B)における前記単量体単位(I)の含有量は、シクロオレフィン系ポリマー(B)を構成する繰り返し単位の合計モル量に対して60mol%以上である、請求項3に記載のフィルム。 The content of the monomer unit (I) in the cycloolefin polymer (B) is 60 mol% or more with respect to the total molar amount of the repeating units constituting the cycloolefin polymer (B), according to claim 3. The film described.
  5.  シクロオレフィン系ポリマー(B)は、エチレン、炭素数3~20の直鎖状α-オレフィン及び炭素数8~20の芳香族ビニル化合物からなる群から選択される少なくとも1つに由来する単量体単位(II)を含む、請求項1~4のいずれかに記載のフィルム。 The cycloolefin-based polymer (B) is a monomer derived from at least one selected from the group consisting of ethylene, a linear α-olefin having 3 to 20 carbon atoms and an aromatic vinyl compound having 8 to 20 carbon atoms. The film according to any one of claims 1 to 4, which comprises unit (II).
  6.  シクロオレフィン系ポリマー(B)の重量平均分子量(Mw)は30,000以上である、請求項1~5のいずれかに記載のフィルム。 The film according to any one of claims 1 to 5, wherein the cycloolefin polymer (B) has a weight average molecular weight (Mw) of 30,000 or more.
  7.  シクロオレフィン系ポリマー(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.5以下である、請求項1~6のいずれかに記載のフィルム。 The film according to any one of claims 1 to 6, wherein the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the cycloolefin polymer (B) is 2.5 or less.
  8.  シクロオレフィン系ポリマー(B)は、前記単量体単位(I)の二連鎖構造を含み、該二連鎖構造において、メソ型二連鎖とラセモ型二連鎖との比(メソ型二連鎖/ラセモ型二連鎖)が0.50以下である、請求項1~7のいずれかに記載のフィルム。 The cycloolefin polymer (B) contains the two-chain structure of the monomer unit (I), and in the two-chain structure, the ratio of the meso-type two-chain to the racemo-type two-chain (meso-type two-chain / racemo-type). The film according to any one of claims 1 to 7, wherein the two chains) are 0.50 or less.
  9.  シクロオレフィン系ポリマー(B)の含有量は、前記フィルムに含まれる樹脂(A)及びシクロオレフィン系ポリマー(B)の合計質量に対して5~50質量%である、請求項1~8のいずれかに記載のフィルム。 Any of claims 1 to 8, wherein the content of the cycloolefin polymer (B) is 5 to 50% by mass with respect to the total mass of the resin (A) and the cycloolefin polymer (B) contained in the film. The film described in Crab.
  10.  樹脂(A)は、ポリイミド系樹脂、液晶ポリマー、フッ素系樹脂、芳香族ポリエーテル系樹脂及びマレイミド系樹脂からなる群から選択される少なくとも1つの樹脂である、請求項1~9のいずれかに記載のフィルム。 The resin (A) is any one of claims 1 to 9, wherein the resin (A) is at least one resin selected from the group consisting of a polyimide resin, a liquid crystal polymer, a fluororesin, an aromatic polyether resin and a maleimide resin. The film described.
  11.  液晶ポリマーは、式(a1)、式(a2)及び式(a3):
     -O-Ar-CO-   (a1)
     -CO-Ar-CO-  (a2)
     -X-Ar-Y-  (a3)
    [(式(a1)中、Arは、1,4-フェニレン基、2,6-ナフチレン基又は4,4’-ビフェニレン基を表し、
    式(a2)中、Arは、1,4-フェニレン基、1,3-フェニレン基又は2,6-ナフチレン基を表し、
    式(a3)中、Arは、1,4-フェニレン基又は1,3-フェニレン基を表し、
    Xは-NH-を表し、
    Yは、-O-又はNH-を表す]
    で表される構造単位を含む液晶ポリエステルである、請求項10に記載のフィルム。
    The liquid crystal polymer has the formula (a1), the formula (a2) and the formula (a3):
    -O-Ar 1 -CO- (a1)
    -CO-Ar 2 -CO- (a2)
    -X-Ar 3 -Y- (a3)
    [(In formula (a1), Ar 1 represents a 1,4-phenylene group, a 2,6-naphthylene group or a 4,4'-biphenylene group, and represents.
    In formula (a2), Ar 2 represents a 1,4-phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group.
    In formula (a3), Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group.
    X represents -NH-
    Y represents -O- or NH-]
    The film according to claim 10, which is a liquid crystal polyester containing a structural unit represented by.
  12.  樹脂(A)のガラス転移温度は180℃以上である、請求項1~11のいずれかに記載のフィルム。 The film according to any one of claims 1 to 11, wherein the glass transition temperature of the resin (A) is 180 ° C. or higher.
  13.  樹脂(A)、シクロオレフィン系ポリマー(B)及び溶媒を含み、該シクロオレフィン系ポリマー(B)のガラス転移温度及び融点の少なくともいずれか一方は160℃以上である、組成物。 A composition containing a resin (A), a cycloolefin polymer (B) and a solvent, wherein at least one of the glass transition temperature and the melting point of the cycloolefin polymer (B) is 160 ° C. or higher.
  14.  シクロオレフィン系ポリマー(B)は、式(I):
    Figure JPOXMLDOC01-appb-C000002
    [式(I)中、mは0以上の整数を表し、R~R18は、互いに独立に、水素原子、ハロゲン原子又は炭素数1~20の炭化水素基を表し、R11~R14が複数存在する場合、それらは互いに独立に、同一であってもよく、異なっていてもよく、R16とR17とは互いに結合し、それらが結合する炭素原子とともに環を形成してもよい]
    で表されるシクロオレフィン由来の単量体単位(I)を含む、請求項13に記載の組成物。
    The cycloolefin polymer (B) has the formula (I) :.
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (I), m represents an integer of 0 or more, R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and R 11 to R 14 If there are a plurality of them, they may be independent of each other, the same or different, and R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded. ]
    The composition according to claim 13, which comprises the monomer unit (I) derived from cycloolefin represented by.
  15.  シクロオレフィン系ポリマー(B)における前記単量体単位(I)の含有量は、シクロオレフィン系ポリマー(B)を構成する繰り返し単位の合計モル量に対して60mol%以上である、請求項14に記載の組成物。 The content of the monomer unit (I) in the cycloolefin polymer (B) is 60 mol% or more with respect to the total molar amount of the repeating units constituting the cycloolefin polymer (B), according to claim 14. The composition described.
PCT/JP2021/031951 2020-08-31 2021-08-31 Film WO2022045360A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-146415 2020-08-31
JP2020146415 2020-08-31
JP2020-146414 2020-08-31
JP2020146414 2020-08-31
JP2020196313 2020-11-26
JP2020-196313 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022045360A1 true WO2022045360A1 (en) 2022-03-03

Family

ID=80353486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031951 WO2022045360A1 (en) 2020-08-31 2021-08-31 Film

Country Status (3)

Country Link
JP (1) JP2022041945A (en)
TW (1) TW202219178A (en)
WO (1) WO2022045360A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018962A (en) * 2011-06-13 2013-01-31 Polyplastics Co Cyclic olefin resin
JP2017125175A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Curable resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
JP2018041074A (en) * 2016-09-02 2018-03-15 住友ベークライト株式会社 Photosensitive resin composition, photosensitive resin film, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018962A (en) * 2011-06-13 2013-01-31 Polyplastics Co Cyclic olefin resin
JP2017125175A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Curable resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
JP2018041074A (en) * 2016-09-02 2018-03-15 住友ベークライト株式会社 Photosensitive resin composition, photosensitive resin film, and electronic apparatus

Also Published As

Publication number Publication date
JP2022041945A (en) 2022-03-11
TW202219178A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2022045361A1 (en) Method for producing composition
WO2022045357A1 (en) Film
WO2022045356A1 (en) Production method for composition
JP2019510091A (en) Polyimide block copolymer and polyimide film containing the same
US4568715A (en) Aromatic polyimide composition comprising mixed solvent
JP2019506479A (en) Polyimide block copolymer and polyimide film containing the same
WO2022045363A1 (en) Film
WO2022045360A1 (en) Film
WO2022045358A1 (en) Composition
WO2022045362A1 (en) Film
WO2022045359A1 (en) Film
JP2023001896A (en) Composition
JP2023001901A (en) Composition
JP2023001899A (en) Composition
JP2023001898A (en) Composition
WO2022270375A1 (en) Composition
WO2022270373A1 (en) Composition
WO2022270374A1 (en) Composition
CN113348200A (en) Method for producing polyimide resin powder
JP2008063517A (en) Polyesterimide and its manufacturing method
KR20200090043A (en) Preparing method of polyamideimide block copolymer, polyamideimide block copolymer and polymer resin film using the same
KR20200078157A (en) Poly(amide-imide) block copolymer
JP2023083242A (en) Polyimide-based resin powder, and method for producing polyimide-based resin powder
WO2019117445A1 (en) Polyamide-imide copolymer and polyamide-imide film comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861781

Country of ref document: EP

Kind code of ref document: A1