WO2022045358A1 - Composition - Google Patents

Composition Download PDF

Info

Publication number
WO2022045358A1
WO2022045358A1 PCT/JP2021/031949 JP2021031949W WO2022045358A1 WO 2022045358 A1 WO2022045358 A1 WO 2022045358A1 JP 2021031949 W JP2021031949 W JP 2021031949W WO 2022045358 A1 WO2022045358 A1 WO 2022045358A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solvent
resin
film
mass
Prior art date
Application number
PCT/JP2021/031949
Other languages
French (fr)
Japanese (ja)
Inventor
勇輔 小沼
宏司 西岡
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022045358A1 publication Critical patent/WO2022045358A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a composition capable of forming a film that can be used as a substrate material compatible with a printed circuit board for a high frequency band and an antenna substrate, and the film.
  • a copper-clad laminate called CCL has a structure in which copper foils are laminated on both surfaces of a resin layer via an adhesive.
  • the transmission loss of the CCL can be suppressed by reducing the dielectric loss of the resin layer serving as the transmission line, particularly the dielectric loss tangent and the relative permittivity.
  • a cycloolefin-based polymer is known as a substrate material having a dielectric loss tangent or a low relative permittivity, and a film in which this cycloolefin-based polymer is composited with another resin has been studied.
  • Patent Document 1 describes a composition containing a specific resin (A), a cycloolefin polymer (B), a compatibilizer (C), and a solvent, and a composite film formed from the composition. There is.
  • the resin layer in the CCL which can handle the high frequency band, has a film surface to reduce dielectric loss, increase the density of wiring, improve processing accuracy during miniaturization, and prevent peeling from copper foil. Smoothness is required.
  • the particles may form aggregates in the manufacturing process or the like, and it is difficult to form a film. It turned out that there is.
  • the surface smoothness of the film is not sufficient, and when it is used as a resin layer in CCL, for example, the thickness of the wiring becomes non-uniform, or when it is used with a copper foil. It was found that peeling may occur.
  • an object of the present invention is to provide a composition free of agglomerates of particles.
  • Another object of the present invention is to provide a film having excellent surface smoothness.
  • the present inventor has determined that the solvent is the first solvent and the second solvent in the composition containing the resin (A), the particulate cycloolefin polymer (B) and the solvent.
  • the present invention has been completed by finding that the above problems can be solved when the distance between the HSP values of the second solvent and the cycloolefin polymer (B) is 8.5 or more. That is, the present invention includes the following suitable forms.
  • a composition containing a resin (A), a particulate cycloolefin polymer (B), and a solvent A composition comprising the first solvent and the second solvent, and the distance between the HSP values of the second solvent and the cycloolefin polymer (B) is 8.5 or more.
  • the first solvent is a solvent in which the cycloolefin polymer (B) is dissolved.
  • the second solvent is a solvent in which the cycloolefin polymer (B) is insoluble.
  • [4] The composition according to any one of [1] to [3], wherein the distance between the HSP values of the first solvent and the cycloolefin polymer (B) is 4.0 or less.
  • [5] The composition according to any one of [1] to [4], wherein the second solvent is a solvent in which the resin (A) is dissolved.
  • [6] The composition according to any one of [1] to [5], wherein the distance between the HSP values of the second solvent and the resin (A) is 10.0 or less.
  • [7] The composition according to any one of [1] to [6], wherein the distance between the HSP values of the resin (A) and the cycloolefin polymer (B) is 6 or more.
  • the content of the particulate cycloolefin polymer (B) is 5 to 50% by mass with respect to the total mass of the resin (A) and the particulate cycloolefin polymer (B), [1] to The composition according to any one of [8].
  • the cycloolefin polymer (B) has the formula (I) :.
  • m represents an integer of 0 or more
  • R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and R 11 to R.
  • R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded.
  • the resin (A) is at least one resin selected from the group consisting of a polyimide resin, a liquid crystal polymer, a fluororesin, an aromatic polyether resin and a maleimide resin, [1] to [10]. ] The composition according to any one of. [12] The composition according to any one of [1] to [11], wherein the resin (A) has a glass transition temperature of 180 ° C. or higher. [13] A film containing the resin (A) and the particulate cycloolefin polymer (B). A film in which the standard deviation of the average thickness obtained in each of the 10 measurement regions obtained by dividing a region of a straight line of 1 mm on the surface of the film into 10 equal parts is 2.5 or less.
  • composition of the present invention does not contain agglomerates of particles. Further, the film of the present invention has excellent surface smoothness. Therefore, the film of the present invention can be suitably used as a material for a printed wiring board or the like that can be used for a printed circuit board or an antenna board.
  • composition contains a resin (A), a particulate cycloolefin polymer (B) and a solvent, the solvent containing a first solvent and a second solvent, and a second solvent and a cycloolefin polymer (B). ) And the distance between the HSP values is 8.5 or more.
  • the "cycloolefin polymer (B)” is simply “polymer (B)”
  • the "particulate cycloolefin polymer (B)” is simply “particulate polymer (B)", “particle polymer (B)”.
  • the “particle size of B)" may be simply referred to as “particle size”
  • the "film formed from the composition” may be simply referred to as "film”.
  • the dielectric property means a property related to dielectric including dielectric loss, relative permittivity and dielectric loss tangent, and that the dielectric property is enhanced or improved is, for example, dielectric loss, relative permittivity and / or. It shows that the dielectric loss tangent is reduced.
  • the mechanical property means the mechanical property including the bending resistance and the elastic modulus, and when the mechanical property is enhanced or improved, for example, the bending resistance and / or the elastic modulus is increased. Show that.
  • the present inventors have focused on the relationship between the aggregation of the particulate polymer (B) and the distance between the HSP values of the polymer and the solvent. As a result, two kinds of solvents were used, and among these, two kinds of solvents were used. When a solvent having an HSP value distance of 8.5 or more from the cycloolefin polymer (B) is used as the second solvent, the aggregation of the particulate polymer (B) can be suppressed and the aggregate of the particulate polymer (B) can be suppressed. It has been found that a composition containing no solvent can be formed.
  • the composition of the present invention does not contain an aggregate of the particulate polymer (B) (hereinafter, also simply referred to as an aggregate). Further, since the composition of the present invention does not contain aggregates, a film having excellent surface smoothness can be formed.
  • the composition of the present invention contains a second solvent.
  • the distance between the HSP values of the second solvent and the polymer (B) is 8.5 or more. Therefore, it is possible to form a film having excellent surface smoothness without containing aggregates of the particulate polymer (B). If the distance between the HSP values of the second solvent and the polymer (B) is less than 8.5, aggregates are formed in the manufacturing process, and the obtained composition may contain the aggregates, which makes film formation difficult. Tend to be.
  • the distance between the HSP values of the second solvent and the polymer (B) is preferably 9.0 or more, more preferably 10.0 or more, still more preferably 11.0 or more.
  • the distance between the HSP values is at least the above lower limit, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to form a composition containing no aggregates, and it is easy to improve the surface smoothness of the obtained film. ..
  • the particle size of the particulate polymer (B) can be easily reduced, the dispersibility of the particles can be easily improved. Further, it is easy to improve mechanical properties such as particle dispersibility, heat resistance and bending resistance of the obtained film.
  • the upper limit of the distance between the HSP values of the second solvent and the polymer (B) is preferably 30.0 or less, more preferably 25.0 or less, still more preferably 20.0.
  • the distance between the HSP values of the second solvent and the polymer (B) is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that the dispersibility of the particles can be easily improved and obtained. It is easy to improve the particle dispersibility of the film.
  • HSP is a Hansen solubility parameter ( ⁇ ), defined by a three-dimensional parameter of ( ⁇ D, ⁇ P, ⁇ H), and the formula (X) :.
  • ⁇ 2 ( ⁇ D) 2 + ( ⁇ P) 2 + ( ⁇ H) 2 ...
  • ⁇ D represents the L Springfieldnd Authorityn dispersion force term
  • ⁇ P represents the molecular polarization term (dipole interpole force term)
  • ⁇ H represents the hydrogen bond term
  • the Hansen solubility parameters ⁇ D, ⁇ P, and ⁇ H can be calculated using HSPiP (Hansen S Cincinnatilubility Parameters in Practice), a program developed by Dr. Hansen's group who proposed the Hansen solubility parameter, for example, in Examples. The described Ver. 4.1.07 and the like can be used. The details of the Hansen-dissolved sphere method will be described below.
  • HSPiP Hanesen S Welubility Parameters in Practice
  • the component of interest is dissolved in a solvent having a known HSP value, and the solubility of the component in a specific solvent is evaluated.
  • the solubility is evaluated by visually determining whether or not the target component is dissolved in the solvent. This is done for multiple solvents.
  • the type of the solvent it is preferable to use a solvent having a wide range of ⁇ t, more specifically, 10 kinds or more, more preferably 15 kinds or more, still more preferably 18 kinds or more.
  • HSP having a composition targeting the center coordinates ( ⁇ d, ⁇ p, ⁇ h) of the Hansen sphere obtained by inputting the obtained solubility evaluation result into HSPiP is used.
  • HSP may be obtained from a structural formula using, for example, numerical values or literature values in a database of HSPiP, or HSPiP may be used.
  • the value of the Hansen solubility parameter is referred to as an HSP value
  • the HSP value represents a value at 25 ° C.
  • the HSP value of the resin (A), the HSP value of the polymer (B), and the HSP value of the solvent may be obtained by any of the above methods, for example, by the method described in Examples. ..
  • the distance between the Hansen solubility parameters (hereinafter, may be abbreviated as HSP) of two substances is called the distance between HSP values.
  • the distance between HSPs (Ra) is an index showing the affinity between the two substances, and the smaller the value, the higher the affinity between the two substances. On the contrary, the larger the Ra value, the lower the affinity between the two substances, that is, the more difficult it is to be compatible.
  • the distance between the HSP values determines the Hansen solubility parameters ⁇ A and ⁇ B of the two substances A and B, respectively.
  • ⁇ A ( ⁇ DA, ⁇ PA, ⁇ HA)
  • ⁇ B ( ⁇ DB, ⁇ PB, ⁇ HB)
  • the distance between HSPs (Ra) is the equation (Y) :.
  • Ra [4 ⁇ ( ⁇ DA- ⁇ DB) 2 + ( ⁇ PA- ⁇ PB) 2 + ( ⁇ HA- ⁇ HB) 2 ] 0.5 ... (Y)
  • HSP value and the distance between the HSP values are as defined above, and can be obtained according to the above method.
  • the second solvent is not particularly limited, and is an amide-based solvent such as N, N-dimethylacetamide (hereinafter, may be referred to as DMAc), N-N-dimethylformamide (hereinafter, may be referred to as DMF) and the like.
  • Solvent lactone-based solvent such as ⁇ -butyrolactone (hereinafter, may be referred to as GBL), ⁇ -valerolactone, etc .
  • sulfur-containing solvent such as dimethylsulfone, dimethylsulfoxide, sulfolane
  • carbonate-based solvent such as ethylene carbonate, propylene carbonate, etc.
  • NMP N-methylpyrrolidone
  • CTE pyrrolidone-based solvents
  • the number is one.
  • the polymer (B) dispersion liquid may contain water, an alcohol solvent, a ketone solvent, an acyclic ester solvent, an ether solvent and the like.
  • the second solvent can be used alone or in combination of two or more.
  • the second solvent is preferably a solvent capable of producing the particulate polymer (B) by contact with the polymer (B) solution.
  • the second solvent is preferably a solvent in which the polymer (B) does not dissolve.
  • a solvent in which the polymer (B) does not dissolve.
  • the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved.
  • mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
  • the evaluation of "dissolving" or “not dissolving” can be performed according to the method described in ⁇ Evaluation of solubility> in Examples.
  • the distance between the HSP values of the second solvent and the polymer (B) is larger than the interaction radius of the polymer (B).
  • the polymer (B) is difficult to dissolve in the second solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersion is dispersible. Easy to increase. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
  • the interaction radius is a plurality of solvents capable of dissolving a specific polymer, that is, when the Hansen solubility parameter of a good solvent is plotted in a three-dimensional HSP space, the plots of the good solvents are similar to each other. In other words, it tends to gather in a spherical shape at a close position, that is, at the coordinates, and refers to the radius of the sphere, that is, the Hansen solubility sphere. It can be said that a solute having a large interaction radius is easily soluble in many solvents, and a solute having a small interaction radius is easily soluble in a small number of solvents and difficult to be soluble in many solvents.
  • the second solvent is preferably a solvent in which the resin (A) is dissolved.
  • a solvent in which the resin (A) is dissolved.
  • the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved.
  • the film formed from the composition tends to form the sea-island structure described later.
  • the HSP value distance between the second solvent and the resin (A) is preferably 10.0 or less, more preferably 9.5 or less, still more preferably 9.0 or less, and particularly preferably 8. It is 5.5 or less, preferably 0.01 or more, and more preferably 0.1 or more.
  • the affinity between the second solvent and the resin (A) can be improved, so that the formation of aggregates of the particulate polymer (B) can be easily suppressed, and the formation of aggregates can be easily suppressed. Since the particle size is easily reduced, it is easy to improve the dispersibility. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film, and it is easy to reduce CTE.
  • the distance between the HSP values of the second solvent and the resin (A) is preferably smaller than the interaction radius of the resin (A).
  • the resin (A) is easily dissolved in the second solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is good. Easy to increase. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
  • the composition of the present invention contains a first solvent.
  • the first solvent include hydrocarbon solvents such as benzene, toluene, pentane, hexane, heptane, cyclohexane and xylene; and halogenated hydrocarbon solvents such as dichloromethane and ethylene dichloride. Of these, hydrocarbon solvents are preferred.
  • the solubility of the polymer (B) and the first solvent is increased, so that it is easy to suppress the formation of aggregates of the particulate polymer (B) and the particle size is reduced. It is easy to improve the dispersibility because it is easy to do. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
  • the first solvent can be used alone or in combination of two or more.
  • the first solvent is preferably a solvent in which the polymer (B) is dissolved.
  • a solvent in which the polymer (B) is dissolved.
  • the distance between the HSP values of the first solvent and the polymer (B) is preferably 4.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less.
  • the distance between the HSP values is not more than the above upper limit, the solubility of the first solvent and the polymer (B) is enhanced, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle diameter is also increased. Is easy to reduce, so it is easy to improve the dispersibility. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
  • the lower limit of the distance between HSP values usually exceeds 0.
  • the distance between the HSP values of the first solvent and the polymer (B) is smaller than the interaction radius of the polymer (B).
  • the polymer (B) is easily dissolved in the first solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is good. Easy to increase. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
  • the first solvent is preferably a solvent in which the resin (A) does not dissolve.
  • a solvent in which the resin (A) does not dissolve.
  • the distance between the HSP values of the first solvent and the resin (A) is preferably 5.0 or more, more preferably 6.0 or more, still more preferably 7.0 or more, still more preferably. Is 8.0 or more, particularly preferably 9.0 or more.
  • the resin (A) is difficult to dissolve in the first solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B) and the particle size is reduced. It is easy to improve the dispersibility because it is easy to do. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
  • the upper limit of the distance between the HSP values of the first solvent and the resin (A) is preferably 30.0 or less, more preferably 27.0 or less, still more preferably 25.0 or less, still more preferably 23.0 or less, and particularly. It is preferably 21.0 or less.
  • the distance between the HSP values of the first solvent and the resin (A) is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that the dispersibility of the particles can be easily improved and obtained. It is easy to improve the particle dispersibility of the film.
  • the distance between the HSP values of the first solvent and the resin (A) is larger than the interaction radius of the resin (A).
  • the resin (A) is difficult to dissolve in the first solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersion is dispersible. Easy to increase. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
  • the solubility of the polymer (B) in the first solvent is preferably greater than the solubility of the polymer (B) in the second solvent.
  • the solubility of the polymer (B) in the solvent can be measured by the following method. Add 1,000 mg of polymer (B) and 3 mL of solvent to the sample bottle, and stir at room temperature for 2 hours.
  • the content of the first solvent contained in the composition of the present invention is preferably 120 parts by mass or less, more preferably 100 parts by mass, based on 100 parts by mass of the content of the second solvent.
  • the content of the first solvent is not more than the above upper limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
  • the content of the first solvent is at least the above lower limit, it is easy to prepare the composition.
  • the content of the solvent contained in the composition of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70 with respect to the mass of the composition. It is mass% or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, preferably 99% by mass or less, more preferably 97% by mass or less, still more preferably 95% by mass or less.
  • the content of the solvent is in the above range, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
  • the solvent contained in the composition of the present invention may contain a solvent other than the first solvent and the second solvent as long as the effect of the present invention is not impaired.
  • the other solvent is not particularly limited, and a conventional solvent can be used.
  • the total mass of the first solvent and the second solvent is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably, with respect to the mass of the solvent contained in the composition. Is 90% by mass or more, more preferably 95% by mass or more, and preferably 100% by mass or less.
  • the total mass of the first solvent and the second solvent is in the above range, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. .. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
  • the monomer unit constituting the cycloolefin polymer (B) is not particularly limited, but it is easy to suppress the formation of aggregates of the particulate polymer (B) and the particle size is easily reduced, so that the dispersibility is improved.
  • the polymer (B) is a polymer (B) from the viewpoint of easy improvement, surface smoothness, particle dispersibility, heat resistance, water absorption resistance, dielectric property and mechanical property of the obtained film, and easy reduction of CTE. Equation (I)
  • m represents an integer of 0 or more
  • R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and when a plurality of R 11 to R 14 are present, they are independently and identical to each other. Well, they may be different, and R 16 and R 17 may bond to each other and form a ring with the carbon atoms they bond to.
  • m is an integer of 0 or more. From the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, the surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film are easy.
  • the upper limit of m is preferably an integer of 3 or less, more preferably an integer of 2 or less, and further preferably 1 from the viewpoint of easily enhancing mechanical properties such as, and easily reducing CTE, and also being easily available. It is the following integer.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms which is a member of the substituents of R 7 to R 18 , include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group and a dodecyl group.
  • An aryl group such as a phenyl group, a trill group, or a naphthyl group; an aralkyl group such as a benzyl group or a phenethyl group; a group in which a part of the hydrogen atom of the alkyl group, the aryl group or the aralkyl group is substituted with a halogen atom and the like can be mentioned. Be done. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the surface smoothness and particle dispersibility of the obtained film.
  • R 7 to R 18 are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, and are preferably a hydrogen atom or an aralkyl group having 1 to 20 carbon atoms. More preferably, it is an alkyl group of ⁇ 10.
  • Examples of the cycloolefin represented by the formula (I) include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, tetracyclododecene and tricyclodecene. , Tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene and the like.
  • cycloolefin represented by the formula (I) may be used alone or in combination of two or more.
  • the polymer (B) preferably comprises a two-chain structure of monomeric units (I).
  • the heat resistance is likely to be improved as compared with a polymer having the same content of the monomer unit (I).
  • the presence or absence of the two-chain structure can be determined by 13 C-NMR spectrum analysis. For example, in the case of a tetracyclodecene-ethylene copolymer, signals derived from the ethylene-tetracyclodecene-ethylene chain, which is an isolated chain of tetracyclodecene, appear at around 54.7 ppm and around 51.1 ppm, and endo-exo bond.
  • Ethylene-tetracyclodecene-tetracyclodecene-ethylene chain-derived signals which are two chains of tetracyclodecene, are located near 51.5 ppm and around 50.8 ppm, and are exo-exo-bonded ethylene-tetracyclodecene-tetracyclo. Since the signal derived from the decene-ethylene chain appears at around 55.3 ppm and around 54.3 ppm, it can be determined by the signal pattern around 55 ppm and around 50 ppm.
  • the two-chain structure of the monomer unit (I) includes a meso-type two-chain structure represented by the following structural formula (II-1) or the following structural formula (II-2), and / or the following structural formula (III-). 1) or a racemo type two chain represented by the following structural formula (III-2) is included.
  • the ratio of the meso-type two-chain to the racemo-type two-chain (hereinafter, may be referred to as meso-type two-chain / racemo-type two-chain) is preferably 0.50 or less, more preferably 0.40 or less, still more preferably. It is 0.30 or less, particularly preferably 0.20 or less, preferably 0.01 or more, and more preferably 0.05 or more.
  • the ratio of the meso-type two-chain to the racemic-type two-chain is, for example, using 13 C-NMR in "RA Wendt, G.
  • the content of the monomer unit (I) in the polymer (B) is preferably 60 mol% or more, more preferably 65 mol% or more, still more preferably 65 mol% or more, based on the total molar amount of the repeating units constituting the polymer (B).
  • the content of the monomer unit (I) is at least the above lower limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved.
  • the content of the monomer unit (I) is not more than the above upper limit, it is easy to enhance mechanical properties such as bending resistance.
  • the content of the monomeric unit (I) is based on the attribution described in "RA Wendt, G. Fink, Macromol. Chem. Phys., 2001, 202, 3490" using 13 C-NMR. It can be calculated, for example, by the method described in Examples.
  • the polymer (B) can easily suppress the formation of aggregates of the particulate polymer (B), and can easily improve the dispersibility because the particle size is easily reduced, as well as the surface smoothness of the obtained film and the particles.
  • ethylene linear ⁇ -olefins having 3 to 20 carbon atoms, and aromatic vinyl compounds having 8 to 20 carbon atoms, from the viewpoint of easily enhancing mechanical properties such as dispersibility and bending resistance and easily reducing CTE. It is preferable to contain a monomer unit (II) derived from at least one selected from the group, and more preferably to contain a monomer unit (II) derived from ethylene.
  • linear ⁇ -olefin having 3 to 20 carbon atoms examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. ..
  • linear ⁇ -olefin having 3 to 20 carbon atoms one type may be used alone, or two or more types may be used in combination.
  • the "linear ⁇ -olefin” refers to a linear olefin having a carbon-carbon unsaturated double bond at the ⁇ -position.
  • aromatic vinyl compound having 8 to 20 carbon atoms examples include styrene, methylstyrene, dimethylstyrene, ethylstyrene, tert-butylstyrene, vinylnaphthalene, vinylanthracene, diphenylethylene, isopropenylbenzene, isopropenyltoluene and isopropenyl.
  • Examples thereof include ethylbenzene, isopropenylpropylbenzene, isopropenylbutylbenzene, isopropenylpentylbenzene, isopropenylhexylbenzene, isopropenyloctylbenzene, isopropenylnaphthalene, isopropenylanthracene and the like.
  • styrene, methylstyrene or dimethylstyrene is preferable, and styrene is more preferable, from the viewpoints of easy availability of the raw material monomer, easy reduction of CTE of the film, and easy improvement of mechanical properties such as bending resistance. ..
  • the aromatic vinyl compound having 8 to 20 carbon atoms one kind may be used alone, or two or more kinds may be used in combination.
  • the polymer (B) is made from ethylene, propylene and styrene from the viewpoints of easy availability of a raw material monomer, easy reduction of CTE of a film, and easy improvement of mechanical properties such as bending resistance. It may contain a monomer unit (II) derived from at least one selected from the group consisting of ethylene and styrene, more preferably a monomer unit (II) derived from at least one selected from the group consisting of ethylene and styrene. preferable.
  • the content of the monomer unit (II) in the polymer (B) is preferably 0 mol% or more, more preferably 0.01 mol% or more, based on the total molar amount of the repeating units constituting the polymer (B). It is more preferably 1 mol% or more, still more preferably 2 mol% or more, preferably 40 mol% or less, more preferably 35 mol% or less, still more preferably 30 mol% or less, and particularly preferably 25 mol% or less.
  • the content of the monomer unit (II) is at least the above lower limit, it is easy to improve the mechanical properties such as processability, moldability and bending resistance of the obtained film.
  • the content of the monomer unit (II) is not more than the above upper limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. .. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film, and it is easy to reduce CTE.
  • the formation of aggregates of the particulate polymer (B) is easily suppressed, the particle size is easily reduced, so that the dispersibility is easily improved, and the surface smoothness of the obtained film is smooth.
  • the polymer (B) is preferably a cycloolefin-based copolymer from the viewpoint of easily enhancing mechanical properties such as particle dispersibility, processability, heat resistance and bending resistance, and easily reducing CTE, and formula (I). ), At least selected from the group consisting of the monomer unit (I) derived from the cycloolefin represented by), ethylene, a linear ⁇ -olefin having 3 to 20 carbon atoms, and an aromatic vinyl compound having 8 to 20 carbon atoms.
  • a cycloolefin-based polymer containing a monomer unit (II) derived from one is more preferable, and a monomer unit (I) derived from norbornen and a monomer unit (II) derived from ethylene are used. It is more preferable to use an ethylene-norbornene copolymer containing the above, or a styrene-norbornene copolymer containing a monomer unit (I) derived from norbornen and a monomer unit (II) derived from styrene.
  • the polymer (B) may contain other monomeric units (III).
  • Other monomeric units (III) include, for example, conjugated diene such as butadiene or isoprene; non-conjugated diene such as 1,4-pentadien; acrylic acid; acrylic acid ester such as methyl acrylate or ethyl acrylate; methacrylic. Acids; methacrylic acid esters such as methyl methacrylate or ethyl methacrylate; vinyl acetate and the like.
  • the other monomer unit (III) can be used alone or in combination of two or more.
  • the polymer (B) can be used alone or in combination of two or more.
  • the weight average molecular weight of the polymer (B) (hereinafter, the weight average molecular weight may be abbreviated as Mw) is preferably 30,000 or more, more preferably 50,000 or more, still more preferably. It is 70,000 or more, particularly preferably 90,000 or more, preferably 2,000,000 or less, more preferably 1,000,000 or less, still more preferably 700,000 or less.
  • Mw is at least the above lower limit, the heat resistance of the film is likely to be increased and the strength is likely to be improved.
  • Mw is not more than the above upper limit, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved. Further, it is easy to improve the mechanical properties and moldability of the film.
  • the ratio (Mw / Mn) of Mw of the polymer (B) to the number average molecular weight (hereinafter, the number average molecular weight may be abbreviated as Mn) is preferably 2. 5 or less, more preferably 2.2 or less, still more preferably 2.0 or less, even more preferably 1.95 or less, particularly preferably 1.90 or less, preferably 1.30 or more, still more preferably 1. It is 50 or more, more preferably 1.60 or more, and particularly preferably 1.65 or more.
  • Mw and Mn can be determined by gel permeation chromatography (hereinafter, may be abbreviated as GPC) measurement and converted to standard polystyrene, and can be determined, for example, by the method described in Examples.
  • the refractive index of the polymer (B) is preferably 1.600 or less, more preferably 1.570 or less, still more preferably 1. It is 550 or less, preferably 1.500 or more, and more preferably 1.520 or more.
  • the refractive index of the polymer (B) can be measured by a refractometer, for example, by the method described in Examples.
  • the CTE of the polymer (B) is preferably 58 ppm / K or less, more preferably 55 ppm / K or less, still more preferably 50 ppm / K or less, preferably 0 ppm / K or more, more preferably. Is 0.01 ppm / K or more, more preferably 1 ppm / K or more, still more preferably 5 ppm / K or more.
  • the CTE of the polymer (B) is not more than the above upper limit, it is easy to reduce the CTE of the obtained film.
  • the CTE of the film when a copper-clad laminate is produced by laminating with a copper film, it is preferable to adjust the CTE of the film to around 20 ppm / K from the viewpoint of preventing the laminated film from peeling off.
  • the polymer (B) having the optimum CTE can be selected according to the CTE of the resin to be mixed.
  • the CTE can be measured by, for example, thermomechanical analysis (hereinafter, may be referred to as TMA), and can be obtained by the method described in Examples.
  • At least one of the Tg and the melting point of the polymer (B) is preferably 100 ° C. or higher.
  • the Tg of the polymer (B) is preferably 100 ° C. or higher, more preferably 140 ° C. or higher, still more preferably 160 ° C. or higher, still more preferably 180 ° C. or higher, particularly preferably 200 ° C. or higher, and particularly more preferably 220 ° C. or higher.
  • it is more preferably 240 ° C. or higher, most preferably 260 ° C. or higher, preferably 500 ° C. or lower, more preferably 400 ° C. or lower, still more preferably 320 ° C. or lower.
  • the melting point of the polymer (B) is preferably 100 ° C. or higher, more preferably 140 ° C. or higher, still more preferably 160 ° C. or higher, still more preferably 180 ° C. or higher. ° C. or higher, particularly preferably 200 ° C. or higher, particularly more preferably 220 ° C. or higher, particularly still more preferably 240 ° C. or higher, most preferably 260 ° C. or higher, preferably 500 ° C. or lower, still more preferably 400 ° C. or lower, still more preferable. Is 350 ° C. or lower.
  • the Tg and the melting point of the polymer (B) When at least one of the Tg and the melting point of the polymer (B) is at least one of the above lower limit, it is easy to prevent the coalescence of the particulate polymer (B) and to improve the dispersibility of the particulate polymer (B). It is easy to reduce the CTE of the film and to improve the mechanical properties such as heat resistance and bending resistance.
  • the particulate polymer (B) is uniformly dissolved in the solvent, and it is easy to prevent aggregation and undissolved residue, and the particulate polymer (B) ) It is easy to improve the dispersibility, and it is easy to improve the mechanical properties, especially the resistance to repeated bending.
  • the Tg of the polymer (B) is the softening temperature measured by TMA based on JIS K7196, and can be measured by, for example, the method described in Examples.
  • the method for adjusting the Tg and melting point of the polymer (B) is not particularly limited, but for example, a method for appropriately adjusting the content of the monomer unit (I), the Mw of the polymer (B), the degree of crystallinity, and the like can be used. Can be mentioned. The larger the content of the monomer unit (I), the Mw of the polymer (B), and at least one selected from the group consisting of the degree of crystallinity, the higher the Tg and melting point of the polymer (B) tend to be.
  • the melting point of the polymer (B) can be determined by measuring the melting peak temperature from the melting curve obtained by using, for example, a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Corporation).
  • the median diameter of the particulate polymer (B) in the composition in the present invention is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, still more preferably 0.05 ⁇ m or more, preferably 15 ⁇ m or less, more preferably. Is 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, particularly preferably 1 ⁇ m or less, particularly more preferably 0.8 ⁇ m or less, and particularly still more preferably 0.5 ⁇ m or less.
  • the median diameter of the particulate polymer (B) in the composition is at least the above lower limit, it is easy to improve the dielectric properties of the film formed from the composition, and it is easy to manufacture the film.
  • the method for determining the median diameter of the particulate polymer (B) in the composition is not particularly limited, but can be determined by, for example, a centrifugal sedimentation type particle size distribution measuring device or an ultrasonic attenuation type particle size distribution measuring device. Further, when the resin (A) is added to the particulate polymer (B) dispersion in an amount within a range that does not affect the particle size of the particulate polymer (B) to form a composition, the dispersion is prepared in advance.
  • the median diameter of the particulate polymer (B) in the composition can be measured and used as the median diameter of the particulate polymer (B) in the composition.
  • the median diameter is also referred to as D50, and indicates a value in which the number of particles of the particulate polymer (B) on the side smaller than the value is equal to the number of particles on the side larger than the value.
  • particle diameter means to include the median diameter and / or the average primary particle diameter of the particulate polymer (B) unless otherwise specified.
  • cycloolefin polymer (B) a commercially available product may be used, and the production method is not particularly limited, but the polymer is a polymer in the presence of a catalyst using the transition metal complex ( ⁇ ) represented by the formula (IV) as one component.
  • the monomer forming (B) for example, the cycloolefin represented by the formula (I), the ethylene, the linear ⁇ -olefin having 3 to 20 carbon atoms, and the aromatic vinyl compound having 8 to 20 carbon atoms. It is preferably produced by polymerizing at least one monomer selected from the group, and optionally the other monomer.
  • the transition metal complex ( ⁇ ) represented by the formula (IV) is used, the content of the monomer unit (I) in the polymer (B) is significantly increased. It is easy to adjust Tg within the above range.
  • M represents a Group 4 transition metal element in the Periodic Table of the Elements.
  • Cp represents a group having a cyclopentadienyl skeleton and represents A represents a group 16 atom in the periodic table of elements, T represents an atom of Group 14 in the periodic table of elements.
  • D 1 and D 2 are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 6 to 20 carbon atoms. It represents an aryloxy group or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different.
  • R 1 to R 6 are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms.
  • M is a transition metal element of Group 4 of the Periodic Table of Elements (IUPAC Inorganic Chemistry Naming Method Revised Edition 1989), and examples thereof include a titanium atom, a zirconium atom, and a hafnium atom.
  • Cp is a group having a cyclopentadienyl skeleton, and examples thereof include cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl, substituted fluorenyl and the like. Specific examples include a cyclopentadienyl group, a methylcyclopentadienyl group, a tetramethylcyclopentadienyl group, an n-propylcyclopentadienyl group, an n-butylcyclopentadienyl group, and an isobutylcyclopentadienyl group.
  • Phenylcyclopentadienyl group, indenyl group, methylindenyl group, n-propylindenyl group, n-butylindenyl group, isobutylindenyl group, phenylindenyl group, fluorenyl group, methylfluorenyl group, n -A propylfluorenyl group, a phenylfluorenyl group, a dimethylfluorenyl group and the like can be mentioned.
  • a cyclopentadienyl group preferably a cyclopentadienyl group, a methylcyclopentadienyl group, a tetramethylcyclopentadienyl group, an n-butylcyclopentadienyl group, an isobutylcyclopentadienyl group, an indenyl group, a methylindenyl group.
  • a fluorenyl group may be mentioned.
  • A is an atom of Group 16 in the periodic table of elements, and examples thereof include an oxygen atom and a sulfur atom. Among these, an oxygen atom is preferable.
  • T is an atom of Group 14 of the periodic table of elements, and examples thereof include a carbon atom, a silicon atom, and a germanium atom. Among these, a carbon atom or a silicon atom is preferable.
  • D 1 and D 2 are independent of each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. It is an aryloxy group of 6 to 20 or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different. Among these, a halogen atom is preferable.
  • D 1 and D 2 are halogen atoms include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • D 1 and D 2 are hydrocarbon groups
  • the number of carbon atoms thereof is preferably 1 to 10.
  • the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and n-hexyl.
  • examples thereof include a group, an n-octyl group, a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a naphthyl group, a benzyl group and the like.
  • D 1 and D 2 are halogenated hydrocarbon groups
  • D 1 and D 2 are halogenated hydrocarbon groups
  • D 1 and D 2 are halogenated hydrocarbon groups.
  • D 1 and D 2 are alkoxy groups
  • D 1 and D 2 are alkoxy groups
  • D 1 and D 2 are alkoxy groups
  • examples thereof include a pentoxy group, a neopentoxy group, an n-hexoxy group, an n-octoxy group and the like.
  • D 1 and D 2 are aryloxy groups
  • a phenoxy group a 2-methylphenoxy group, a 3-methylphenoxy group, a 4-methylphenoxy group, a naphthyloxy group and the like.
  • the disubstituted amino group is an amino group in which two substituents are bonded.
  • Specific examples thereof include dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-sec-butylamino group and di-tert-butyl.
  • Examples thereof include an amino group, a di-n-hexylamino group, a di-n-octylamino group, and a diphenylamino group.
  • R 1 to R 6 are independent of each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. It represents an aryloxy group of 6 to 20, a disubstituted amino group of 2 to 20 carbon atoms or a silyl group of 1 to 20 carbon atoms, which may be the same or different, and they may be optionally bonded. May form a ring. Among these, a hydrocarbon group having 1 to 20 carbon atoms is preferable.
  • R 1 to R 6 are hydrocarbon groups
  • the number of carbon atoms is preferably 1 to 10.
  • Specific examples of the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and neopentyl group.
  • R 1 to R 6 are a halogen atom, a halogenated hydrocarbon group, an alkoxy group, an aryloxy group, and a disubstituted amino group
  • D 1 and D 2 as a halogen atom and a halogenated hydrocarbon group.
  • an alkoxy group, an aryloxy group, and a disubstituted amino group those exemplified above can be mentioned.
  • R 1 to R 6 are silyl groups
  • a trimethylsilyl group a triethylsilyl group, a tri-n-propylsilyl group, a triisopropylsilyl group, a tri-n-butylsilyl group, a triisobutylsilyl group, and a tri.
  • examples thereof include -sec-butylsilyl group, tri-tert-butylsilyl group and triphenylsilyl group.
  • Such a compound represented by the formula (IV) include isopropanol (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride and isopropyridene (methylcyclo).
  • the compound in which titanium is changed to zirconium or hafnium in the above specific example, and the compound in which isopropridene is changed to dimethylsilylene, diphenylcilylene, and methylene including them can be similarly exemplified.
  • a compound in which dichloride is changed to dibromide, diiodide, dimethyl, dibenzyl, dimethoxydo, or diethoxyde can be similarly exemplified.
  • the transition metal complex ( ⁇ ) represented by the above formula (IV) can be used as a catalyst for producing the polymer (B) according to the embodiment of the present invention in combination with various co-catalysts.
  • the cocatalyst is a compound that interacts with the transition metal complex ( ⁇ ) to produce a polymerization active species for cyclic olefins and alkenyl aromatic hydrocarbons. Examples thereof include organoaluminum compounds ( ⁇ ) and / or boron compounds ( ⁇ ) represented by any of the following formulas ( ⁇ 1) to ( ⁇ 3), and these co-catalysts are used.
  • the structure of the polymerization active species produced by this is not clear.
  • Equation ( ⁇ 1) BQ 1 Q 2 Q 3 Equation ( ⁇ 2) J + (BQ 1 Q 2 Q 3 Q 4 ) - Equation ( ⁇ 3) (L—H) + (BQ 1 Q 2 Q 3 Q 4 ) - [In the formulas ( ⁇ 1) to ( ⁇ 3), B represents a boron atom in a trivalent valence state.
  • Q1 to Q4 are independent of each other, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • J + represents an inorganic or organic cation
  • L represents a neutral Lewis base
  • (L—H) + represents a Bronsted acid.
  • organoaluminum compound ( ⁇ ) a known organoaluminum compound can be used. Specific examples thereof include organoaluminum compounds represented by the formula ( ⁇ 1), cyclic aluminoxane having a structure represented by the formula ( ⁇ 2), and linear aluminoxane having a structure represented by the formula ( ⁇ 3). , These can be used alone or in combination of two or more.
  • Equation ( ⁇ 1) E 1 a AlZ 3-a Equation ( ⁇ 2) ⁇ -Al (E 2 ) -O- ⁇ b Equation ( ⁇ 3) E 3 ⁇ -Al (E 3 ) -O- ⁇ c AlE 3 2
  • E1 , E2 and E3 represent hydrocarbon groups having 1 to 8 carbon atoms independently of each other , and all E1, all E2 and all.
  • E 3 may be the same or different
  • Z may represent hydrogen or halogen
  • all Z may be the same or different
  • a represents an integer of 0-3.
  • B represent an integer of 2 or more
  • c represents an integer of 1 or more.
  • formula ( ⁇ 1) include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum; dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, and the like.
  • Dialkylaluminum chloride such as dihexylaluminum chloride; alkylaluminum dichloride such as methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride; dimethylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, diisobutylaluminum hydride , Dialkylaluminum hydride such as dihexylaluminum hydride and the like. Among these, trialkylaluminum is preferable, and triethylaluminum or triisobutylaluminum is more preferable.
  • E 2 and E 3 in the formula ( ⁇ 2) and the formula ( ⁇ 3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group and neopentyl.
  • Examples thereof include an alkyl group such as a group. Among these, a methyl group or an isobutyl group is preferable.
  • b is an integer of 2 or more, preferably an integer of 2 to 40.
  • c is an integer of 1 or more, preferably an integer of 1 to 40.
  • the above aluminoxane is made by various methods.
  • the method is not particularly limited, and it may be produced according to a known method.
  • a method for making a solution of trialkylaluminum, for example, trimethylaluminum, etc. in a suitable organic solvent, for example, benzene, an aliphatic hydrocarbon, etc. in contact with water, trialkylaluminum, for example, trimethylaluminum, etc.
  • An example is a method of making the solution by contacting it with a metal salt containing water of crystallization, for example, copper sulfate hydrate.
  • any of the boron compounds represented by the formula ( ⁇ 1), the formula ( ⁇ 2) or the formula ( ⁇ 3) can be used.
  • B represents a boron atom in a trivalent valence state
  • Q1 to Q3 are independent of each other, a halogen atom, a hydrocarbon group containing a carbon atom, and a halogenation having 1 to 20 carbon atoms. It represents a hydrocarbon group, a substituted silyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different.
  • Q1 to Q3 are independent of each other, preferably a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms.
  • boron compound represented by the formula ( ⁇ 1) include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, and tris (2,3,4,5-). Examples thereof include tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like, and tris is preferable. (Pentafluorophenyl) Borane can be mentioned.
  • B represents a boron atom in a trivalent valence state
  • Q1 to Q4 are the same as Q1 to Q3 in the above formula ( ⁇ 1).
  • J + represents an inorganic or organic cation.
  • Examples of the inorganic cation in J + include a ferrosenium cation, an alkyl-substituted ferrosenium cation, and a silver cation.
  • Examples of the organic cation in J + include triphenylmethyl cation and the like.
  • ferrosenium tetrakis (pentafluorophenyl) borate, 1,1'-dimethylferrosenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, and triphenylmethyl tetrakis.
  • Examples thereof include (pentafluorophenyl) borate, triphenylmethyltetrakis (3,5-bistrifluoromethylphenyl) borate, and preferably triphenylmethyltetrakis (pentafluorophenyl) borate.
  • B represents boron in a trivalent valence state
  • Q1 to Q4 are the same as Q1 to Q3 in the above formula ( ⁇ 1).
  • L represents a neutral Lewis base
  • (L—H) + represents a Bronsted acid.
  • examples of the Bronsted acid (L—H) + include trialkyl-substituted ammonium cations, N, N-dialkylanilinium cations, dialkylammonium cations, and triallylphosphonium cations.
  • (BQ 1 Q 2 Q 3 Q 4 ) - the same as described above can be mentioned.
  • organoaluminum compound ( ⁇ ) and compound ( ⁇ ) in combination.
  • the transition metal complex ( ⁇ ) represented by the formula (IV), the organoaluminum compound ( ⁇ ) and / or the compound ( ⁇ ) can be charged and used in any order at the time of polymerization, but any of them can be used. You may use the reaction product obtained by contacting the combination of the above in advance.
  • the molar ratio of the co-catalyst / transition metal complex ( ⁇ ) is preferably 0.01 to 10,000, more preferably 0.5 to 2,000.
  • the concentration of the transition metal complex ( ⁇ ) is preferably 0.0001 to 5 mmol / L, more preferably 0.001 to 1 mmol / L.
  • the amount of the catalyst component used is preferably 0.00001 to 1 mol%, more preferably 0.0001 to 0.1 mol%, based on the total amount of all the monomers used.
  • the polymerization method of the polymer (B) according to the embodiment of the present invention is not particularly limited, and for example, a batch type or continuous type gas phase polymerization method, a bulk polymerization method, or a solution weight using an appropriate solvent is used. Any method such as a legal method or a slurry polymerization method can be adopted.
  • a solvent When a solvent is used, various solvents can be used under the condition that the catalyst is not inactivated, and examples of such a solvent include hydrocarbon solvents such as benzene, toluene, pentane, hexane, heptane, and cyclohexane; Examples thereof include halogenated hydrocarbon solvents such as dichloromethane and ethylene dichloride.
  • hydrocarbon solvents such as benzene, toluene, pentane, hexane, heptane, and cyclohexane
  • halogenated hydrocarbon solvents such as dichloromethane and ethylene dichloride.
  • the ethylene partial pressure in the system during polymerization is, for example, 50 to 400 kPa, preferably 50 to 300 kPa, and the hydrogen partial pressure is preferably 0 to 100 kPa.
  • ethylene and hydrogen are introduced into the system, it is preferable to pressurize with the partial pressure of hydrogen and then pressurize with the partial pressure of ethylene. Further, after the solution of the cycloolefin represented by the formula (I) is charged into the polymerization reaction tank, toluene may be further charged.
  • the polymerization temperature is preferably 50 ° C. or higher, more preferably 50 to 150 ° C., and even more preferably 50 ° C. to 100 ° C.
  • a chain transfer agent such as hydrogen can also be added to adjust the molecular weight of the polymer.
  • the resin (A) is a polymer different from the polymer (B).
  • the resin (A) is a cycloolefin-based resin
  • it may be a cycloolefin-based resin having a different type from the polymer (B), for example, a different type of monomer unit constituting the resin, its content, and the like.
  • the resin (A) is not particularly limited, and for example, diallyl phthalate resin, silicone resin, phenol resin, unsaturated polyester resin, polyurethane resin, melamine resin, urea resin, xylene resin, furan resin, aniline resin, acetone-formaldehyde resin.
  • Thermocurable resin selected from alkyd resin, maleimide resin, maleimide-cyanic acid ester resin, cyanate ester resin, benzoxazine resin, polybenzimidazole resin, and polycarbodiimide resin; olefin resin; acrylic resin; Styrene-based resin; Rubber-based resin; Fluorine-based resin; Vinyl-based resin; General-purpose engineering plastic; Super-engineering plastic such as liquid crystal polymer and aromatic polyether resin; Polyamide resin; Polygonide resin, Polyethyleneimide resin and other polyimide-based resin; In addition, biodegradable plastics and the like can be mentioned.
  • the resin is at least one selected from the group consisting of a polyimide resin, a liquid crystal polymer, a fluororesin, an aromatic polyether resin, and a maleimide resin. , Polyimide-based resin and / or liquid crystal polymer is more preferable.
  • the resin (A) can be used alone or in combination of two or more.
  • the Tg of the resin (A) is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, particularly preferably 300 ° C. or higher, and particularly more preferably 350 ° C. or higher. It is preferably 550 ° C. or lower.
  • the Tg of the resin (A) is at least the above lower limit, the surface smoothness, particle dispersibility and heat resistance of the obtained film can be easily improved, and the CTE can be easily reduced.
  • the Tg of the resin (A) is not more than the above upper limit, the mechanical properties are likely to be enhanced.
  • the Tg of the resin (A) can be obtained, for example, by performing dynamic viscoelasticity measurement (hereinafter, may be abbreviated as DMA measurement), and can be measured by the method described in Examples.
  • DMA measurement dynamic viscoelasticity measurement
  • the Mw of the resin (A) is preferably 30,000 or more, more preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, still more preferably 250,000 in terms of polystyrene.
  • the above is particularly preferably 300,000 or more, preferably 1,000,000 or less, more preferably 800,000 or less, still more preferably 700,000 or less, still more preferably 500,000 or less, and particularly preferably 450. It is less than 000.
  • the Mw of the resin (A) is equal to or higher than the above lower limit, it is easy to suppress the formation of aggregates of the particulate polymer (B) and the particle size is easily reduced, so that the dispersibility can be easily improved.
  • the Mw of the resin (A) can be obtained by, for example, GPC measurement and converted to standard polystyrene, and can be obtained by, for example, the method described in Examples.
  • the polyimide-based resin suitable as the resin (A) includes a resin containing a repeating structural unit containing an imide group (hereinafter, may be referred to as a polyimide resin), and a repeating structural unit containing both an imide group and an amide group. It is meant to include a resin (hereinafter, may be referred to as a polyamide-imide resin) and a precursor before producing a polyimide-based resin by imidization.
  • the precursor before producing the polyimide resin is a polyamic acid.
  • a "repeating structural unit” may be referred to as a "constituent unit”.
  • the "constituent unit derived from” may be simply referred to as "unit", and for example, the constituent unit derived from a compound may be referred to as a compound unit.
  • the resin (A) is represented by the formula (1) :.
  • the polyimide resin has a structural unit represented by. With such a polyimide resin, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film, and it is easy to reduce CTE.
  • X in the formula (1) represents a divalent organic group independently of each other, and preferably represents a divalent organic group having 2 to 100 carbon atoms.
  • the divalent organic group include a divalent aromatic group and a divalent aliphatic group
  • examples of the divalent aliphatic group include a divalent acyclic aliphatic group or a divalent aliphatic group.
  • Cyclic aliphatic groups can be mentioned. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the surface smoothness and particle dispersibility of the obtained film.
  • a divalent cyclic aliphatic group and a divalent aromatic group are preferable, and a divalent aromatic group is more preferable, from the viewpoint of easily enhancing heat resistance, dielectric properties and mechanical properties, and easily reducing CTE. ..
  • the hydrogen atom in the organic group may be substituted with a halogen atom, a hydrocarbon group, an alkoxy group or a halogenated hydrocarbon group, in which case the carbon number of these groups is preferably 1.
  • the divalent aromatic group is a divalent organic group having an aromatic group, and an aliphatic group or another substituent may be contained in a part of the structure thereof.
  • the divalent aliphatic group is a divalent organic group having an aliphatic group, and a part of the structure thereof may contain other substituents, but does not contain an aromatic group.
  • the polyimide-based resin may contain a plurality of types of X, and the plurality of types of X may be the same as or different from each other.
  • X in the formula (1) for example, the group (structure) represented by the formulas (2) to (8); the hydrogen atom in the group represented by the formulas (5) to (8) is a methyl group. , Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, fluoro group, chloro group or trifluoromethyl group substituted group and the like.
  • Ra and R b are independent of each other, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 6 to 12 carbon atoms.
  • the hydrogen atoms contained in Ra and R b may be substituted with halogen atoms independently of each other, and W is independent of each other, single -bonded, -O-, -CH 2- .
  • R c represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom, and n represents 0 to 0 to. 4 is an integer, t is an integer of 0 to 4, u is an integer of 0 to 4, and * represents a bond.
  • ring A represents a cycloalkane ring having 3 to 8 carbon atoms.
  • R d represents an alkyl group having 1 to 20 carbon atoms.
  • r represents an integer greater than or equal to 0 and less than or equal to (the number of carbon atoms in ring A-2).
  • S1 and S2 represent integers from 0 to 20 independently of each other. * Represents a bond. ]
  • X in the formula (1) include, for example, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a propylene group, a 1,2-butanediyl group, and a 1,3-butanediyl group.
  • 1,12-Dodecandyl group, 2-methyl-1,2-propanediyl group, 2-methyl-1,3-propanediyl group and other linear or branched alkylene groups with divalent acyclic Examples include aliphatic groups.
  • the hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, and the carbon atom may be substituted with a hetero atom, for example, an oxygen atom, a nitrogen atom or the like.
  • the polyimide resin in the present invention is represented by the formula (2) as X in the formula (1) from the viewpoint of easily achieving dispersibility, high dielectric properties, low CTE, high heat resistance and high mechanical properties. It is preferable to include a structure and / or a structure represented by the formula (3), and more preferably to include a structure represented by the formula (2).
  • each benzene ring or each cyclohexane ring is at the ortho-position, meta-position or para-position, or ⁇ -position, ⁇ -position or ⁇ -position, respectively, based on ⁇ W—. It may be bonded to any of the above, preferably at the meta-position or the para-position, and more preferably at the para-position from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties.
  • R a and R b independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-pentyl group, and 2 -Methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl group and the like can be mentioned.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group and a hexyloxy group. Examples include a group and a cyclohexyloxy group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a biphenyl group.
  • the hydrogen atom contained in Ra and R b may be substituted with a halogen atom independently of each other, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Ra and R b are independent of each other and have an alkyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms.
  • alkyl fluoride group having 1 to 6 carbon atoms is preferably an alkyl fluoride group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an alkyl fluoride group having 1 to 3 carbon atoms, and a methyl group or a trifluoromethyl group. It is more preferable to have.
  • t and u are independently integers of 0 to 4, and it is easy to improve the particle dispersibility, heat resistance and mechanical properties of the obtained film, and reduce CTE. From the viewpoint of easy operation, it is preferably an integer of 0 to 2, and more preferably 0 or 1.
  • W is single-bonded independently of each other, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH). 3 ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO- or -N (R c )-represented, and the particles of the obtained film.
  • heat resistance and mechanical properties particularly easy to increase bending resistance and easy to reduce CTE, single bond, -O-, -CH 2- , -C (CH 3 ) 2 -,-is preferable.
  • R c represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom.
  • Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-.
  • Etc. which may be substituted with a halogen atom.
  • Examples of the halogen atom include the same as above.
  • n is an integer of 0 to 4, and is preferably an integer of 0 to 3 from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film. More preferably, it is 1 or 2.
  • n is 2 or more, the plurality of Ws, Ras, and ts may be the same or different from each other, and the positions of the bonds of each benzene ring with respect to ⁇ W— are also the same. It may or may not be different.
  • the polyimide-based resin in the present invention contains both the structure represented by the formula (2) and the structure represented by the formula (3) as X in the formula (1), W and n in the formula (2).
  • R a , R b , t and u may be the same as or different from W, n, R a , R b , t and u in the formula (3) independently of each other.
  • the ring A represents a cycloalkane ring having 3 to 8 carbon atoms.
  • the cycloalkane ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, and a cycloalkane ring having 4 to 6 carbon atoms is preferable.
  • the bonds may or may not be adjacent to each other.
  • the two bonds may be in the positional relationship of the ⁇ -position, the ⁇ -position, or the ⁇ -position, and may be preferably in the positional relationship of the ⁇ -position or the ⁇ -position.
  • R d in the formula (4) represents an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms include those exemplified above as the hydrocarbon group having 1 to 20 carbon atoms in R7 to R18, and preferably represent an alkyl group having 1 to 10 carbon atoms.
  • r represents an integer of 0 or more and (number of carbon atoms of ring A-2) or less. r is preferably 0 or more, and preferably 4 or less.
  • S1 and S2 in the formula (4) represent integers of 0 to 20 independently of each other. S1 and S2 are independent of each other, preferably 0 or more, more preferably 2 or more, and preferably 15 or less.
  • the X in the formula (1) when X in the formula (1) includes a structure represented by the formula (2) and / or the formula (3), the X in the formula (1) is the formula (2). And / or the ratio of the structural unit represented by the formula (3) is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably, with respect to the total molar amount of the structural unit represented by the formula (1). Is 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. When the ratio of the structural unit represented by the formula (2) and / or the formula (3) is in the above range, X in the formula (1) is likely to suppress the formation of aggregates of the particulate polymer (B).
  • the ratio of the structural unit in which Y in the formula (1) is represented by the formula (2) and / or the formula (3) can be measured using, for example, 1 H-NMR, or calculated from the charging ratio of the raw materials. You can also do it.
  • Y represents a tetravalent organic group independently of each other, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 having a cyclic structure and 4 to 40 carbon atoms.
  • the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure.
  • the hydrogen atom in the organic group may be substituted with a halogen atom, a hydrocarbon group, an alkoxy group or a halogenated hydrocarbon group, in which case the carbon number of these groups is preferably 1 to 8. Is.
  • the polyimide-based resin in the present invention may contain a plurality of types of Y, and the plurality of types of Y may be the same as or different from each other.
  • Y the group (structure) represented by the formulas (31) to (38); the hydrogen atom in the group represented by the formulas (34) to (38) is a methyl group, an ethyl group, or n-propyl.
  • R 19 to R 26 have a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 6 to 12 carbon atoms independently of each other. Hydrogen atoms representing an aryl group and contained in R 19 to R 26 may be substituted with halogen atoms independently of each other.
  • V 1 and V 2 are independent of each other, single bond, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C. (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO-, -N (R j )-, formula (a) or formula (b)
  • R 27 to R 30 represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms independently of each other.
  • Z represents -C (CH 3 ) 2 -or-C (CF 3 ) 2- i is an integer from 1 to 3, and * represents a bond).
  • Rj represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom.
  • e and d represent integers from 0 to 2 independently of each other.
  • f represents an integer of 1 to 3 and represents g and h represent integers from 0 to 4 independently of each other.
  • * represents a bond]
  • the polyimide-based resin in the present invention is represented by the formula (Y) in the formula (1). It preferably contains at least one structure selected from the group consisting of the structure represented by 31), the structure represented by the formula (32), or the structure represented by the formula (33), and is represented by the formula (31). It is more preferable to include the structure to be used.
  • R 19 to R 26 are independent of each other, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include the alkyl group having 1 to 6 carbon atoms in the formulas (2) and (3), respectively. Examples of the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are mentioned above.
  • R 19 to R 26 may be substituted with halogen atoms independently of each other, and examples of the halogen atoms include those mentioned above.
  • R 19 to R 26 are preferably hydrogen atoms or alkyl groups having 1 to 6 carbon atoms independently of each other, and hydrogen atoms or 1 to 3 carbon atoms are preferable. Alkyl groups are more preferred, and hydrogen atoms are even more preferred.
  • V 1 and V 2 are single-bonded independently of each other, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ). ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO-, -N (R j )-, equation (a) or equation (b) ), Which is preferable from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film and easily reducing the CTE, preferably single bond, —O—, ⁇ CH2- , ⁇ C (CH 3 ).
  • R j represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom. Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include those exemplified above.
  • f represents an integer of 1 to 3, and is preferably 1 or 2 from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film and easily reducing CTE. It is preferably 1.
  • R 27 to R 30 represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms independently of each other.
  • the alkyl group having 1 to 6 carbon atoms include those exemplified above as the alkyl group having 1 to 6 carbon atoms in the formulas (2) and (3).
  • R 27 to R 30 are independent of each other and have hydrogen atoms or 1 to 3 carbon atoms. Alkyl groups are more preferred, and hydrogen atoms are even more preferred.
  • Z represents -C (CH 3 ) 2- or -C (CF 3 ) 2- .
  • Z has such a structure, it is easy to improve the particle dispersibility, heat resistance, dielectric property and mechanical property of the obtained film.
  • i represents an integer of 1 to 3, and is preferably 1 or 2 from the viewpoint of easily enhancing particle dispersibility, heat resistance, and mechanical properties, and easily reducing CTE.
  • the plurality of Z and R 27 to R 30 may be the same as each other or may be different from each other.
  • Y in the formula (1) when Y in the formula (1) includes at least one selected from the group consisting of the structures represented by the formulas (31) to (33), the formula (1) is used.
  • Y is selected from the group consisting of the structures represented by the formulas (31) to (33), and the ratio of the constituent units represented by at least one is the total mole of the constituent units represented by the formula (1).
  • the amount it is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.
  • the ratio of the structural unit represented by at least one of Y in the formula (1) selected from the group consisting of the structures represented by the formulas (31) to (33) is in the above range. It is easy to improve the particle dispersibility, water absorption resistance, dielectric property and mechanical property of the film, and it is easy to reduce CTE.
  • the ratio of the structural unit represented by at least one selected from the group consisting of the structures represented by the formulas (31) to (33) in the formula (1) is determined by using, for example, 1 H-NMR. It can be measured or calculated from the raw material charge ratio.
  • the polyimide-based resin in the present invention has a structural unit represented by the formula (52), a structural unit represented by the formula (53), and a structural unit represented by the formula (54), in addition to the structural unit represented by the formula (1). It may contain at least one selected from the group consisting of the represented building blocks.
  • Y 1 represents a tetravalent organic group.
  • Y 2 represents a trivalent organic group X 1 and X 2 represent divalent organic groups independently of each other. * Represents a bond.
  • G and X represent divalent organic groups independently of each other. * Represents a bond.
  • Y 1 is synonymous with Y in formula (1)
  • X 1 and X 2 are synonymous with X in formula (1).
  • Y 2 in the formula (53) is a group in which any one of the bonds of Y in the formula (1) is replaced with a hydrogen atom.
  • Y 2 a group in which any one of the bonds of the groups (structures) represented by the formulas (31) to (38) is replaced with a hydrogen atom; a chain hydrocarbon having a trivalent carbon number of 1 to 8 is used.
  • the group etc. can be mentioned.
  • the polyimide-based resin may contain a plurality of types of Y 1 or Y 2 , and the plurality of types of Y 1 or Y 2 may be the same as or different from each other.
  • G is a divalent organic group independently of each other, preferably substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It may be a divalent organic group having 2 to 100 carbon atoms, more preferably substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It represents a good, divalent organic group having a cyclic structure and having 2 to 100 carbon atoms. Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure.
  • Examples of the organic group of G include a group in which two non-adjacent groups are replaced with hydrogen atoms and a divalent chain carbonization having 6 or less carbon atoms among the bonds of the groups represented by the formulas (31) to (38).
  • a hydrogen group can be mentioned, and preferably, among the bonds of the groups represented by the formulas (39) to (51), a group in which two non-adjacent groups are replaced with a hydrogen atom can be mentioned.
  • X in the formula (54) is synonymous with X in the formula (1), and when the polyimide resin contains a structural unit represented by the formula (1) and a structural unit represented by the formula (54), each X in the structural unit may be the same or different.
  • the polyimide-based resin may contain a plurality of types of X or G, and the plurality of types of X or G may be the same as or different from each other.
  • the polyimide resin is a structural unit represented by the formula (1), and in some cases, a structural unit represented by the formula (52), a structural unit represented by the formula (53), and a structural unit represented by the formula (53). It consists of at least one structural unit selected from the structural units represented by the formula (54). Further, from the viewpoint that the particle dispersibility, heat resistance, dielectric property and water absorption resistance of the obtained film can be easily improved and the CTE can be easily reduced, the ratio of the structural units represented by the formula (1) in the polyimide resin is described.
  • the polyimide resin is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more.
  • the upper limit of the ratio of the structural unit represented by the formula (1) is 100 mol% or less. The above ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyimide resin in the present invention is preferably a polyimide resin from the viewpoint of easily increasing the particle dispersibility, heat resistance, dielectric properties and water absorption resistance of the obtained film and easily reducing CTE.
  • the polyimide-based resin may contain a halogen atom, preferably a fluorine atom, which can be introduced by, for example, the above-mentioned halogen-containing atom substituent or the like.
  • a halogen atom preferably a fluorine atom
  • Preferred fluorine-containing substituents for containing a fluorine atom in the polyimide-based resin include, for example, a fluoro group and a trifluoromethyl group.
  • the content of the halogen atom in the polyimide-based resin is preferably 0.1 to 40% by mass, more preferably 1 to 35% by mass, based on the mass of the polyimide-based resin. More preferably, it is 5 to 30% by mass.
  • the content of halogen atoms is at least the above lower limit, the heat resistance and dielectric properties of the film are likely to be improved.
  • the content of the halogen atom is not more than the above upper limit, the CTE can be reduced and the synthesis becomes easy.
  • the imidization ratio of the polyimide resin is preferably 90% or more, more preferably 93% or more, further preferably 95% or more, and usually 100% or less. From the viewpoint of easily improving the optical properties, dielectric properties and water absorption resistance of the film, the imidization rate is preferably at least the above lower limit.
  • the imidization ratio indicates the ratio of the molar amount of the imide bond in the polyimide-based resin to the value of twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide-based resin.
  • the value is twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin, and the molar amount of the structural unit derived from the tricarboxylic acid compound.
  • the ratio of the molar amount of the imide bond in the polyimide resin to the total of the above is shown.
  • the imidization rate can be determined by an IR method, an NMR method, or the like.
  • the polyimide-based resin in the present invention includes a precursor before imidization of the polyimide-based resin.
  • the polyimide resin is a polyamic acid
  • the polyamic acid is the formula (1'):
  • the resin (A) may be a commercially available product or may be produced by a conventional method.
  • the resin (A) is preferably a polyimide resin.
  • the method for producing the polyimide resin is not particularly limited, and the polyimide resin is, for example, by a method including a step of reacting a diamine compound with a tetracarboxylic acid compound to obtain a polyamic acid and a step of imidizing the polyamic acid. Can be manufactured.
  • the resin (A) is a polyamic acid
  • the step of obtaining the polyamic acid may be carried out.
  • a dicarboxylic acid compound or a tricarboxylic acid compound may be reacted.
  • Examples of the tetracarboxylic acid compound used for synthesizing the polyimide resin include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic acid dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic acid dianhydride. Can be mentioned.
  • the tetracarboxylic acid compound may be used alone or in combination of two or more.
  • the tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as an acid chloride compound in addition to the dianhydride.
  • tetracarboxylic acid compound examples include pyromellitic anhydride (hereinafter, may be abbreviated as PMDA), 4,4'-(4,4'-isopropylidene diphenoxy), and diphthalic anhydride (hereinafter, BPADA).
  • PMDA pyromellitic anhydride
  • BPADA diphthalic anhydride
  • 1,4,5,8-naphthalenetetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, may be abbreviated as BPDA), 4,4'-(Hexafluoroisopropylidene) diphthalic acid dianhydride (hereinafter, may be abbreviated as 6FDA), 4,4'-oxydiphthalic acid anhydride (hereinafter, may be abbreviated as ODPA), 2,2 ', 3,3'-, 2,3,3', 4'-or 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,3', 3,4'-biphenyltetracarboxylic Acid dianhydride, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride, 2,3', 3,4'-diphenyl ether t
  • PMDA BPDA
  • 6FDA BPADA
  • ODPA ODPA
  • HPMDA HPMDA
  • tetracarboxylic acid compounds can be used alone or in combination of two or more.
  • diamine compound used for synthesizing the polyimide resin examples include aliphatic diamines, aromatic diamines and mixtures thereof.
  • aromatic diamine represents a diamine having an aromatic ring, and an aliphatic group or another substituent may be contained in a part of the structure thereof.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring, but the aromatic ring is not limited thereto. Among these, a benzene ring is preferable.
  • the "aliphatic diamine” represents a diamine having an aliphatic group, and may contain other substituents as a part of its structure, but does not have an aromatic ring.
  • diamine compound examples include 1,4-diaminocyclohexane, 4,4'-diamino-2,2'-dimethylbiphenyl (hereinafter, may be abbreviated as m-TB), and 4,4'-diamino-3.
  • 1,4-Diaminocyclohexane, 4,4'-diaminodiphenyl ether, TFMB, 4,4'-methylene from the viewpoint of easily increasing heat resistance, water absorption resistance, dielectric property and mechanical property, and easily reducing CTE.
  • the polyimide-based resin contains other tetracarboxylic acids, dicarboxylic acids, tricarboxylic acids, and anhydrides thereof, as long as the various physical properties of the film are not impaired.
  • the derivative may be further reacted.
  • Examples of other tetracarboxylic acids include water adducts of the anhydrides of the above tetracarboxylic acid compounds.
  • dicarboxylic acid compound examples include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and they may be used alone or in combination of two or more.
  • Specific examples include a dicarboxylic acid compound of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4'-biphenyldicarboxylic acid; 3,3'-biphenyldicarboxylic acid; a chain hydrocarbon having 8 or less carbon atoms, and 2 Compounds in which one benzoic acid is linked by a single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or a phenylene group, and their compounds.
  • Examples include acid chloride compounds.
  • tricarboxylic acid compound examples include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and they may be used alone or in combination of two or more. Specific examples include anhydrate of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalentricarboxylic acid-2,3-anhydride; a single bond of phthalic anhydride and benzoic acid, -O-. , -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or compounds linked with a phenylene group.
  • the amount of the diamine compound, the tetracarboxylic acid compound, the dicarboxylic acid compound and the tricarboxylic acid compound to be used can be appropriately selected according to the ratio of each structural unit of the desired resin.
  • the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, still more preferably 0.98 mol or more, particularly preferably 0.98 mol or more, relative to 1 mol of the tetracarboxylic acid compound.
  • It is preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, still more preferably 1.05 mol or less, and particularly preferably 1.02 mol or less.
  • amount of the diamine compound used with respect to the tetracarboxylic acid compound is within the above range, it is easy to improve the particle dispersibility, heat resistance, water absorption resistance, mechanical properties, dielectric properties and optical properties of the obtained film, and reduce CTE. It's easy to do.
  • the reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited and may be, for example, 5 to 200 ° C.
  • the reaction time is also not particularly limited and may be, for example, about 30 minutes to 72 hours.
  • the reaction temperature is preferably 5-50 ° C, more preferably 10-40 ° C, and the reaction time is preferably 3-24 hours. With such a reaction temperature and reaction time, it is easy to improve the particle dispersibility, heat resistance, water absorption resistance, mechanical properties, dielectric properties and optical properties of the obtained film, and it is easy to reduce CTE.
  • the reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent.
  • the solvent is not particularly limited as long as it does not affect the reaction, and is, for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, and the like.
  • Alcohol-based solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; phenolic solvents such as phenol and cresol; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, GBL, ⁇ -valerolactone, propylene glycol methyl ether acetate, lactic acid.
  • Ester solvent such as ethyl; Ketone solvent such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon solvent such as pentane, hexane, heptane; alicyclic type such as ethyl cyclohexane Hydrobromide solvent; Aromatic hydrocarbon solvent such as toluene and xylene; nitrile solvent such as acetonitrile; ether solvent such as tetrahydrofuran and dimethoxyethane; chlorine-containing solvent such as chloroform and chlorobenzene; amide solvent such as DMAc and DMF; Sulfur-containing solvents such as dimethyl sulfone, dimethyl sulfoxide and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; pyrrolidone solvents such
  • the reaction between the diamine compound and the tetracarboxylic acid compound may be carried out under conditions of an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere or a reduced pressure, if necessary, and is strictly controlled under a nitrogen atmosphere or an argon atmosphere or the like. It is preferable to carry out the process with stirring in the dehydrated solvent.
  • an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere or a reduced pressure
  • imidization may be performed using an imidization catalyst, imidization may be performed by heating, or a combination thereof may be used.
  • the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidin, N-butylpyrolidin and N-butylpiperidine.
  • alicyclic amines such as N-propylhexahydroazepine (monocyclic); azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and Alicyclic amines such as azabicyclo [3.2.2] nonane (polycyclic); as well as pyridine, 2-methylpyridine (2-picolin), 3-methylpyridine (3-picolin), 4-methylpyridine (4).
  • the imidization step by heating may be carried out in a solvent in which a polyamic acid is dissolved, or may be carried out in a filmed state as described later.
  • the reaction temperature is usually 20 to 250 ° C.
  • the reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours.
  • the polyimide-based resin may be separated and purified by a conventional method, for example, a separation means such as filtration, concentration, extraction, crystallization, recrystallization, or column chromatography, or a separation means combining these, which is preferable.
  • a separation means such as filtration, concentration, extraction, crystallization, recrystallization, or column chromatography, or a separation means combining these, which is preferable.
  • it can be isolated by adding a large amount of alcohol such as methanol to the reaction solution containing the resin, precipitating the resin, and performing concentration, filtration, drying and the like.
  • Suitable liquid crystal polymers of the resin (A) include liquid crystal polyesters, and preferably liquid crystal polyesters containing structural units represented by the following formulas (a1), (a2) and (a3).
  • Ar 1 represents a 1,4-phenylene group, a 2,6-naphthylene group or a 4,4'-biphenylene group.
  • Ar 2 represents a 1,4-phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group.
  • Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group.
  • X represents -NH- Y represents —O— or NH—.
  • the content of the structural unit represented by the formula (a1) is 30 to 80 mol%, and the content of the structural unit represented by the formula (a2) is 10 to 10 to 100 mol% of the total structural unit of the liquid crystal polyester.
  • Liquid crystal polyester having a content of 35 mol% and a structural unit represented by the formula (a3) of 10 to 35 mol% is preferable.
  • the structural unit represented by the formula (a1) is a structural unit derived from an aromatic hydroxycarboxylic acid
  • the structural unit represented by the formula (a2) is a structural unit derived from an aromatic dicarboxylic acid, represented by the formula (a3).
  • the structural unit is an aromatic diamine or a structural unit derived from an aromatic amine having a phenolic hydroxyl group.
  • Ar 1 is a 2,6-naphthylene group
  • Ar 2 is a 1,3-phenylene group
  • Ar 3 is a 1,4-phenylene group
  • Y is ⁇ O.
  • the liquid crystal polyester which is ⁇ is preferable.
  • Examples of the structural unit represented by the formula (a1) include p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, and structural units derived from 4-hydroxy-4'-biphenylcarboxylic acid.
  • the liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from 2-hydroxy-6-naphthoic acid are preferred.
  • the content of the structural unit represented by the formula (a1) is preferably 30 mol% or more and 80 mol% or less, more preferably 40 mol% or more and 70, with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is mol% or less, more preferably 45 mol% or more and 65 mol% or less.
  • Examples of the structural unit represented by the formula (a2) include terephthalic acid, isophthalic acid, and structural units derived from 2,6-naphthalenedicarboxylic acid.
  • the liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from isophthalic acid are preferred.
  • the content of the structural unit represented by the formula (a2) is preferably 10 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30% with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is 17.5 mol% or more, more preferably 27.5 mol% or less, and more preferably 17.5 mol% or more.
  • Examples of the structural unit represented by the formula (a3) include 3-aminophenol, 4-aminophenol, 1,4-phenylenediamine, 1,3-phenylenediamine, and structural units derived from 4-aminobenzoic acid. ..
  • the liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from 4-aminophenol are preferable.
  • the content of the structural unit represented by the formula (a3) is preferably 10 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30% with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is 17.5 mol% or more, more preferably 27.5 mol% or less, and more preferably 17.5 mol% or more.
  • the liquid crystal polyester used in this embodiment can be produced, for example, by the method described in JP-A-2019-163431.
  • the composition of the present invention contains a resin (A), a particulate cycloolefin polymer (B) and a solvent, the solvent containing a first solvent and a second solvent, and a second solvent and a cycloolefin polymer (B). ), Since the distance between the HSP values is 8.5 or more, the aggregation of the particulate polymer (B) can be suppressed, and the aggregate of the particulate polymer (B) is not contained. Further, since the composition of the present invention does not contain aggregates, a film having excellent surface smoothness can be formed.
  • the distance between the HSP values of the resin (A) and the polymer (B) is preferably 6.0 or more, more preferably 7.0 or more, still more preferably 8.0 or more. Is.
  • the distance between the HSP values of the resin (A) and the polymer (B) is preferably 30 or less, more preferably 25 or less, still more preferably 20 or less, still more preferably 20 or less, from the viewpoint of the affinity between the resin and the polymer. It is 15 or less.
  • the content of the particulate polymer (B) contained in the composition of the present invention is usually 1% by mass or more, preferably 5 with respect to the total mass of the resin (A) and the particulate cycloolefin polymer (B). It is 7% by mass or more, more preferably 7% by mass or more, further preferably 10% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less.
  • the content of the particulate polymer (B) contained in the composition is at least the above lower limit, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced. It is easy to increase the dispersibility.
  • the content of the particulate polymer (B) contained in the composition is not more than the above upper limit, film formation becomes easy, which is advantageous from the viewpoint of film production. If the dispersibility of the particles in the film is high, the thermal conductivity and the uniformity of CTE are high. Therefore, for example, when the film is used as the resin layer of CCL, it is easy to suppress the peeling of the film and the copper foil. Become.
  • the total mass of the resin (A) and the particulate polymer (B) contained in the composition is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass.
  • the above is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the total mass of the resin (A) and the particulate polymer (B) contained in the composition is in the above range, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is reduced. Since it is easy, it is easy to improve the dispersibility. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
  • the composition of the present invention may contain additives, if necessary, as long as the effects of the present invention are not impaired.
  • Additives include, for example, antioxidants, flame retardants, cross-linking agents, surfactants, compatibilizers, imidization catalysts, weathering agents, lubricants, antiblocking agents, antistatic agents, antifogging agents, drip-free agents, pigments. , Fillers and the like. Additives can be used alone or in combination of two or more.
  • the composition of the present invention does not contain aggregates because it can effectively suppress the formation of aggregates of the particulate polymer (B) even if it does not contain a compatibilizer. , The particle size of the polymer (B) is small and the dispersibility is excellent.
  • the content of the compatibilizer is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.1 part by mass with respect to 100 parts by mass of the resin (A). More than parts, still more preferably less than 0.1 parts by mass, particularly preferably 0.05 parts by mass or less, particularly more preferably 0.01 parts by mass or less, and even more preferably 0.001 parts by mass or less, most preferably. May be 0 parts by mass.
  • the resin (A) is a polyimide resin precursor such as polyamic acid and thermal imidization is required at the time of film production, inhibition of imidization by a compatibilizer or a compatibilizer by heating may be used.
  • the content of the compatibilizer is preferably less than 0.1 part by mass within the above range.
  • the content of the compatibilizer may be based on 100 parts by mass of the total of the resin (A) and the polymer (B) instead of 100 parts by mass of the resin (A).
  • the method for producing the composition of the present invention is not particularly limited, but for example, the following steps: Step (1) of dissolving the cycloolefin polymer (B) in the first solvent to obtain a cycloolefin polymer (B) solution; after contacting the cycloolefin polymer (B) solution with the second solvent, the first step. Step (2) to obtain a dispersion solution containing the particulate cycloolefin polymer (B) (hereinafter, may be referred to as a particulate polymer (B) dispersion solution) by distilling off one solvent; and a resin in the dispersion solution.
  • a method including the step (3) of adding (A) is preferable.
  • the composition can be easily and efficiently formed.
  • the distance between the HSP values of the second solvent and the cycloolefin polymer (B) is 8.5 or more, so that the aggregate of the particulate polymer (B) is agglomerated.
  • the formation can be suppressed, and an aggregate-free composition can be formed.
  • the composition can form a film having excellent surface smoothness.
  • the step (1) is a step of dissolving the cycloolefin polymer (B) in the first solvent to obtain a cycloolefin polymer (B) solution (hereinafter, may be referred to as a polymer (B) solution).
  • the form of the polymer (B) to be dissolved in the first solvent is not particularly limited, and may be, for example, particulate, fibrous, sheet-like, pellet-like or the like.
  • the polymer (B) solution contains preferably 0.01 to 20% by mass of the polymer (B) with respect to the mass of the solution.
  • the content of the polymer (B) in the polymer (B) solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass, based on the mass of the solution. % Or more, more preferably 0.5% by mass or more, preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less.
  • the content of the polymer (B) in the solution is at least the above lower limit, the composition can be easily adjusted.
  • the content of the polymer (B) in the solution is not more than the above upper limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is improved. Easy to raise. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
  • the method for dissolving the polymer (B) in the first solvent is not particularly limited, but for example, the first solvent may be added to the polymer (B), or the polymer (B) may be added to the first solvent. It may be either or both. Further, it may be dissolved by heating or the like depending on the solubility of the first solvent in the polymer (B).
  • the step (2) is a step of contacting the polymer (B) solution with the second solvent and then distilling off the first solvent to obtain a dispersion liquid containing the particulate polymer (B).
  • the method of contacting the polymer (B) solution with the second solvent is not particularly limited, and examples thereof include a method of mixing the polymer (B) solution and the second solvent. Specifically, a method of adding the polymer (B) solution to the second solvent and a method of adding the second solvent to the polymer (B) solution can be exemplified. By contacting in this way, the particulate polymer (B) having a small particle size can be precipitated or dispersed in the mixed solution of the second solvent and the first solvent. A small amount of the resin (A) may be added at any time during the step (2) as long as the particulate polymer (B) does not aggregate.
  • the amount of the polymer (B) solution to be brought into contact with the second solvent is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more, still more preferably, with respect to 1 part by mass of the amount of the second solvent used. Is 0.3 parts by mass or more, particularly preferably 0.7 parts by mass or more, preferably 100 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 3 parts by mass or less, and particularly preferably 1.5 parts by mass. It is less than a part.
  • the amount of the polymer (B) solution to be brought into contact with the second solvent is within the above range, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersion is dispersible. Easy to increase.
  • step (2) the polymer (B) solution is brought into contact with the second solvent, and then the first solvent is distilled off. Distillation of the first solvent can enhance the dispersion stability of the particulate polymer (B). Further, the polymer (B) may be further precipitated by distilling off the first solvent. The first solvent may be distilled off or removed at least partially, and the first solvent may remain in the particulate polymer (B) dispersion. From the viewpoint that the aggregation of the particulate polymer (B) can be easily suppressed and the dispersion liquid can be easily prepared, the first solvent may be partially left or partially contained in the particulate polymer (B) dispersion liquid. preferable.
  • the method for distilling off the first solvent is not particularly limited, and a method for distilling off under reduced pressure using an evaporator or the like is exemplified.
  • the pressure and temperature at the time of distillation can be appropriately selected according to the characteristics such as the boiling points of the first solvent and the second solvent.
  • the boiling point of the first solvent is usually lower than the boiling point of the second solvent. In this way, it is possible to obtain a particulate polymer (B) dispersion liquid in which the particulate polymer (B) having a small particle size is dispersed without containing the aggregate of the particulate polymer (B).
  • the content of the first solvent contained in the particulate polymer (B) dispersion obtained after distilling off the first solvent is preferably 120 parts by mass or less, more preferably 120 parts by mass with respect to 100 parts by mass of the content of the second solvent.
  • the content of the first solvent is not more than the above upper limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE. Further, when the content of the first solvent is at least the above lower limit, it is easy to prepare the dispersion liquid.
  • the content of the solvent contained in the particulate polymer (B) dispersion is preferably 50% by mass or more, more preferably 70% by mass or more, and further, with respect to the mass of the dispersion. It is preferably 90% by mass or more, particularly preferably 95% by mass or more, preferably 99.99% by mass or less, more preferably 99.9% by mass or less, still more preferably 99% by mass or less, and particularly preferably 95% by mass. It is as follows. When the content of the solvent is in the above range, the aggregation of the particulate polymer (B) is easily suppressed, and the particle size is easily reduced, so that the dispersibility is easily improved. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
  • the solvent contained in the particulate polymer (B) dispersion may contain other solvents other than the first solvent and the second solvent as long as the effects of the present invention are not impaired. ..
  • the other solvent is not particularly limited, and a conventional solvent can be used.
  • the total mass of the first solvent and the second solvent is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably, with respect to the mass of the solvent contained in the dispersion liquid. Is 90% by mass or more, more preferably 95% by mass or more, and preferably 100% by mass or less.
  • the total mass of the first solvent and the second solvent is in the above range, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles. As a result, it is easy to improve the particle dispersibility, surface smoothness, mechanical properties, etc. of the obtained film.
  • the content of the particulate polymer (B) contained in the particulate polymer (B) dispersion obtained after distilling off the first solvent is preferably 0.01% by mass with respect to the mass of the polymer (B) dispersion.
  • the above is more preferably 0.1% by mass or more, further preferably 1% by mass or more, preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 10% by mass or less, and particularly preferably 5% by mass. % Or less.
  • the content of the particulate polymer (B) is in the above range, it is easy to suppress the aggregation of the particulate polymer (B) and to improve the particle dispersibility, so that the particle dispersibility and surface smoothness of the obtained film are easy to be improved. , And it is easy to improve the mechanical properties.
  • the median diameter of the particulate polymer (B) contained in the particulate polymer (B) dispersion can be selected from the same range as the median diameter of the particulate polymer (B) in the above composition of the present invention.
  • the median diameter of the particulate polymer (B) in the composition is at least the above lower limit, it is easy to improve the dielectric properties of the film formed from the composition, and it is easy to manufacture the film.
  • the median diameter of the particulate polymer (B) in the dispersion is not more than the above upper limit, it is easy to improve the particle dispersibility, surface smoothness, water absorption resistance and mechanical properties of the film formed from the composition.
  • the median diameter of the particulate polymer (B) contained in the particulate polymer (B) dispersion can be determined by a scattering type particle size distribution measurement using laser diffraction, for example, by the method described in Examples. be able to.
  • the step (3) is a step of adding the resin (A) to the particulate cycloolefin polymer (B) dispersion liquid.
  • the resin (A) to be added may be in the form of a solid, preferably powder, or may be in the form of a varnish in which the resin (A) is dissolved in a predetermined solvent, for example, a second solvent. good.
  • the polyimide resin or polyamic acid can be added in the form of a solid, preferably powder or varnish.
  • the content of the resin (A) in the varnish is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the mass of the varnish.
  • the resin (A) added in the step (3) is preferably 50% by mass or more, more preferably 50% by mass or more, based on the total mass of the resin (A) and the polymer (B) in the particulate polymer (B) dispersion. It is 60% by mass or more, more preferably 65% by mass or more, preferably 95% by mass or less, more preferably 93% by mass or less, still more preferably 90% by mass or less.
  • the content of the resin (A) added in the step (3) is at least the above lower limit, film formation becomes easy, which is advantageous from the viewpoint of film production.
  • the content of the particulate polymer (B) contained in the composition is not more than the above upper limit, the aggregation of the particulate polymer (B) can be suppressed and the particulate polymer (B) in the composition can be suppressed. Since the dispersibility is easily improved, the particle dispersibility, surface smoothness, heat resistance and mechanical properties of the obtained film are easily improved, and the CTE is easily reduced.
  • the method of adding the resin (A) to the particulate polymer (B) dispersion is not particularly limited, and the resin (A) may be added at once, or the resin (A) may be added in a plurality of times. You may.
  • the above-mentioned production method in the present invention may include steps other than the steps (1) to (3) as long as the effects of the present invention are not impaired, and the polymer or addition other than the resin (A) and the polymer (B) may be included. Agents may be added. Examples of the additive include the additives described above.
  • the resin (A) is added to the granular polymer (B) dispersion, but if the resulting composition can be adjusted to contain the first solvent and the second solvent. ,
  • the polymer (B) in powder form may be added to the varnish of the resin (A).
  • the present invention includes a resin (A) and a particulate cycloolefin polymer (B). It includes a film in which the standard deviation of the average thickness obtained in each of the 10 measurement regions obtained by dividing a region of a straight line of 1 mm on the surface of the film into 10 equal parts is 2.5 or less. Since such a film has excellent surface smoothness, for example, when the film is used as a resin layer of CCL, high processing accuracy at the time of high density and miniaturization of wiring can be achieved, and the film and copper foil can be achieved. It is possible to effectively suppress the peeling of the film. On the other hand, if the standard deviation of the thickness exceeds 2.5, the surface smoothness of the film tends to decrease. Therefore, for example, when the film is used as the resin layer of CCL, the density of wiring is lowered, the processing accuracy at the time of miniaturization is lowered, and the film and the copper foil are likely to be peeled off.
  • the standard deviation of the thickness is preferably 2.0 or less, more preferably 1.70 or less, still more preferably 1.50 or less, still more preferably 1.00 or less, and particularly preferably 0.80 or less. Below, it is particularly more preferably 0.60 or less.
  • the standard deviation of the thickness is not more than the above upper limit, the surface smoothness of the film can be further improved. It is easy to achieve high processing accuracy, and it is easy to suppress peeling between the film and the copper foil.
  • the lower limit of the standard deviation of the thickness is usually 0.01 or more, preferably 0.05 or more, more preferably 0.1 or more, still more preferably 0.2 or more. When the standard deviation of the thickness is not more than the above lower limit, for example, when the film is attached to the copper foil by using an adhesive or the like, the adhesion is easily improved by the anchor effect.
  • a continuous straight 1 mm region of the film surface is arbitrarily selected, the region is divided into 10 equal parts to set 10 measurement regions, and then a contact type or non-contact type film is used. Obtained by measuring the average thickness in each of the 10 measurement areas using a thickness gauge, step meter, surface shape measuring instrument, etc., and calculating the standard deviation of the average thickness in each obtained measurement area. Can be done. For example, it can be obtained by the method described in Examples.
  • the average thickness in each measurement area may be an average value calculated from a plurality of thicknesses measured at arbitrary points in the measurement area.
  • the standard deviation of the film thickness is the composition of the film, for example, the type and / or composition ratio of the constituent units constituting the resin (A) and / or the particulate polymer (B) contained in the optical film, and / or its molecular weight. Can be adjusted within the above range by appropriately adjusting the above; by using a suitable method for producing a film, which will be described later.
  • the standard deviation of the film thickness is described above as likely to enhance the surface smoothness of the film.
  • the content of the resin (A) and the particulate polymer (B) and the like may be appropriately selected; the composition of the present invention may be used for film formation and the like may be adjusted to the above range, and in particular, film formation.
  • the composition of the present invention is used and the ratio of the first solvent to the second solvent in the composition is adjusted to the above range, the standard deviation of the thickness can be easily adjusted to the above range.
  • the average primary particle size of the particulate polymer (B) is 15 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, and particularly preferably. It is 0.8 ⁇ m or less, more preferably 0.5 ⁇ m or less, preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, still more preferably 0.05 ⁇ m or more.
  • the average primary particle diameter of the particulate polymer (B) is at least the above lower limit, it is easy to prevent aggregation of the particulate polymer (B) and improve dispersibility, and it is easy to improve the mechanical properties of the film.
  • the average primary particles of the particulate polymer (B) are not more than the above upper limit, it is easy to prevent the precipitation of the particulate polymer (B) and improve the particle dispersibility in the film, and the surface smoothness, water absorption resistance and bending resistance are easily improved. It is easy to improve mechanical properties such as.
  • the average primary particle diameter of the particulate polymer (B) can be determined by image analysis observed with an electron microscope, and can be determined, for example, by the method described in Examples.
  • the film of the present invention is preferably a composite film in which the particulate cycloolefin polymer (B) is dispersed, preferably uniformly dispersed, with respect to the resin (A).
  • the composite film has a sea-island structure, the resin (A) is the sea, and the particulate polymer (B) is the island.
  • Such a composite film tends to improve heat resistance, dielectric properties and mechanical properties, and tends to reduce CTE.
  • the film of the present invention has particle dispersibility, surface smoothness, heat resistance, dielectric properties, and even if the distance between the HSP values of the resin (A) and the polymer (B) is relatively large. It has excellent mechanical properties and can reduce CTE.
  • the distance between the HSP values of the resin (A) and the polymer (B) is preferably 6 or more, and the distance between the HSP values can be selected from the range described in the above [Composition] section.
  • the film of the invention can have a low CTE.
  • the CTE of the film can be appropriately designed according to the application.
  • CCL is produced by laminating with a copper film
  • the CTE of the film can be adjusted by the CTE of the resin (A) and the particulate polymer (B) to be mixed, the mixing amount, and the like. From the viewpoint of reducing CTE, it is preferable to mix the particulate polymer (B) having a high Tg.
  • the CTE can be measured by TMA, for example, by the method described in Examples.
  • the average thickness of the film in the present invention can be appropriately selected depending on the intended use, and is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, and particularly preferably 40 ⁇ m or more. It is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the average thickness of the film can be measured using a film thickness meter or the like, and can be calculated, for example, by the method described in Examples. When the film of the present invention is a multilayer film, the average thickness represents the average thickness of the single layer portion.
  • the film of the present invention is preferably formed from the above composition of the present invention. Since such a film is preferably formed by removing the solvent from the composition of the present invention, the components contained in the composition of the present invention, such as the resin (A), the particulate polymer (B) and the additive, etc. The types and proportions of are the same.
  • the content of the particulate polymer (B) is usually 1% by mass or more, preferably 5% by mass or more, more preferably, with respect to the total mass of the particulate polymer (B) and the resin (A) contained in the film.
  • the content of the particulate polymer (B) is in the above range, it is easy to improve the particle dispersibility, surface smoothness, dielectric property and mechanical property of the film. Further, in the film in which the particulate polymer (B) is dispersed, the dispersibility of the particulate polymer (B) is high, and as a result, it is easy to reduce the physical characteristics of the film, for example, variations in the surface roughness and thermal conductivity of the film. ..
  • the total mass of the resin (A) and the particulate polymer (B) contained in the film is preferably 40% by mass or more, more preferably 60% by mass or more, based on the mass of the film. It is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and preferably 100% by mass or less.
  • the total mass of the resin (A) and the particulate polymer (B) contained in the film is at least the above lower limit, it is easy to improve the particle dispersibility, surface smoothness, dielectric properties and mechanical properties of the film.
  • the dispersibility of the particulate polymer (B) is high, and as a result, it is easy to reduce the physical characteristics of the film, for example, variations in the surface roughness and thermal conductivity of the film. ..
  • the film of the present invention may be a single-layer film or a multilayer film containing at least one layer made of the film of the present invention.
  • the multilayer film can include other layers (or other films). Even in such a case, the film of the present invention includes all the layers. Examples of the other layer include a functional layer and the like. Examples of the functional layer include a primer layer, a gas barrier layer, an adhesive layer, and a protective layer.
  • the functional layer can be used alone or in combination of two or more.
  • the film of the present invention may be subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, ozone treatment, etc. by a method usually industrially adopted.
  • composition and film of the present invention are not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of embodiments other than the above may be arbitrarily adopted and combined, and the configurations and methods according to the above one embodiment are applied to the configurations and methods according to the other embodiments described above. You may.
  • the film according to the embodiment of the present invention has excellent surface smoothness and can reduce CTE as compared with the conventional composite film containing a cycloolefin polymer. It also has excellent heat resistance and mechanical properties. Therefore, it can be suitably used as a substrate material compatible with a printed circuit board for a high frequency band and an antenna substrate.
  • CCL has a structure in which copper foils are laminated on both surfaces of a resin layer via an adhesive.
  • the film of the present invention is used as the resin layer, the surface smoothness is high and the CTE is reduced, so that peeling between the copper foil and the resin layer can be effectively suppressed as compared with the conventional film.
  • the film of the present invention is also suitably used for other industrial materials such as automobile parts and electric / electronic parts; optical materials such as lenses, prisms, optical fibers, and recording media.
  • the method for producing the film of the present invention is not particularly limited, but for example, the following steps: (A) Composition preparation step for preparing a composition containing the resin (A), the particulate cycloolefin polymer (B) and the solvent. It is produced by a method including (b) a coating step of applying the composition to a substrate to form a coating film, and (c) a film forming step of drying the applied liquid (coating film) to form a film. be able to.
  • the resin (A) is a polyimide resin
  • a step of completing the imidization reaction may be included in the thermal imidization.
  • the composition may be adjusted by, for example, mixing the resin (A), the particulate polymer (B) and the solvent, and optionally the additive. It is preferable to use the composition of the present invention, particularly the composition obtained by using the above-mentioned production method of the composition of the present invention.
  • a film having excellent surface smoothness, particle dispersibility, heat resistance and mechanical properties and a low CTE can be formed.
  • the coating step is a step of applying the composition obtained in the composition preparation step to the substrate to form a coating film.
  • the composition is applied onto the substrate by a known coating method to form a coating film.
  • Known coating methods include, for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen printing coating method, fountain coating method, and dipping method. , Spray method, curtain coating method, slot coating method, hypersalivation forming method and the like.
  • the base material examples include a copper plate (including copper foil), a SUS plate (including SUS foil and SUS belt), a glass substrate, a PET film, a PEN film, another polyimide resin film, a polyamide resin film and the like.
  • copper plate, SUS plate, glass substrate, PET film, PEN film and the like are preferable from the viewpoint of excellent heat resistance, and copper plate, SUS plate, glass substrate and the like are more preferable from the viewpoint of adhesion to the film and cost.
  • a PET film or the like can be mentioned.
  • the film can be formed by drying the coating film and peeling it from the substrate.
  • the base material is a copper foil
  • a film is formed without peeling the coating film from the copper foil, and a laminate in which the film is laminated on the obtained copper foil is copper-clad. It can also be used for laminated boards.
  • peeling a drying step of further drying the film may be performed after the peeling.
  • the composition is applied to a substrate to form a film, the surface of the coating film on the substrate side is almost flat, but the surface opposite to the substrate side (hereinafter, also referred to as an air surface).
  • the surface roughness occurs, the thickness may vary and the surface smoothness of the film may be impaired.
  • the composition of the present invention when used, the formation of such surface roughness is effectively suppressed. Therefore, a film having excellent surface smoothness can be formed.
  • the drying of the coating film can be appropriately selected depending on the heat resistance of the resin (A) and the like, but in one embodiment of the present invention, it is 50 to 450 ° C., preferably 55 to 400 ° C., more preferably 70 ° C. to 380 ° C. In another embodiment of the present invention, it can be carried out at a temperature of 50 to 350 ° C., preferably 70 to 300 ° C. In a preferred embodiment of the present invention, it is preferable to carry out drying step by step.
  • the composition can be uniformly dried and the surface smoothness of the obtained film can be improved. Therefore, when the film is used as the resin layer of CCL, the copper foil and the resin layer are used. Peeling with and can be effectively suppressed.
  • heating may be performed at 200 to 450 ° C., preferably 200 to 350 ° C.
  • the drying or heating time is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours.
  • the coating film may be dried under inert atmosphere conditions such as nitrogen and argon, under vacuum or reduced pressure conditions, and / or under ventilation.
  • the coating film may be continuously dried after the coating film is peeled off from the base material during the stepwise drying, and after all the drying is completed, the coating film is applied from the base material ( The film) may be peeled off.
  • the coating film may be peeled off from the substrate after the first step of drying to perform the second and subsequent drying steps, or the coating film (film) may be peeled off from the substrate after all the drying steps are completed. good.
  • the first step of drying may be pre-drying.
  • the film may be peeled off from the copper foil as the base material by etching and removing the copper foil with a ferric chloride solution or the like.
  • the resin (A) in the composition is a polyimide resin precursor (for example, polyamic acid) and a polyimide resin is produced during film production
  • the composition is applied to a substrate.
  • the heating drying for removing the solvent and thermal imidization can be performed at the same time.
  • the drying and imidization temperature is usually in the range of 50 to 450 ° C., and from the viewpoint of easily obtaining a smooth film, it is preferable to perform heating step by step.
  • the solvent may be removed by heating at a relatively low temperature of 50 to 150 ° C., and then gradually heated to a temperature in the range of 300 to 450 ° C.
  • the heating time can be selected from the same range as the above range, for example.
  • the film of the present invention is a multilayer film
  • it can be produced by, for example, a multilayer film forming method such as a coextrusion processing method, an extrusion laminating method, a thermal laminating method, or a dry laminating method.
  • NB content The content of the monomer unit derived from norbornene (also referred to as “NB content”) in the cycloolefin copolymer obtained in the production example was measured using 13 C-NMR. 13 C-NMR measurement conditions are as follows.
  • HSP Hansen solubility parameter
  • HSP solubility parameter
  • ⁇ H 7.2 MPa 0.5
  • ⁇ D of amyl acetate is 15.3 MPa 0.5
  • ⁇ P is 3.1 MPa 0.5
  • ⁇ H is 7.0 MPa 0.5
  • ⁇ D of xylene is 17. 6MPa 0.5
  • ⁇ P is 1.0MPa 0.5
  • ⁇ H is 3.1MPa 0.5
  • toluene ⁇ D is 18.0MPa 0.5
  • ⁇ P is 1.4MPa 0.5
  • ⁇ H 2.0MPa 0 . It was set to 5.5 .
  • HSP of cycloolefin copolymer The solubility of the cycloolefin copolymer in various solvents was evaluated. For the evaluation of solubility, use a solvent with a known solubility parameter in a transparent container (refer to the HSPiP database, solvent used: methyl chloride, 1,4-dichlorobenzene, chloroform, toluene, p-xylene, GBL, DMAc, NMP. , Water, acetone, diiodomethane, butyl benzoate) 10 mL and 0.1 g of cycloolefin copolymer were added to prepare a mixed solution.
  • the obtained mixed solution was subjected to ultrasonic treatment for a total of 6 hours.
  • the appearance of the mixed solution after the ultrasonic treatment was visually observed, and the solubility of each resin in the solvent was evaluated based on the following evaluation criteria from the obtained observation results.
  • evaluation criteria 2 The appearance of the mixed solution is cloudy and precipitates at room temperature, but the appearance of the mixed solution becomes transparent by heating to 50 ° C. and stirring with a stirrer for 30 minutes.
  • 1 The appearance of the mixture is transparent at room temperature.
  • 0 The appearance of the mixed solution is cloudy and precipitates at room temperature, and the appearance of the mixed solution does not become transparent even when heated to 50 ° C. and stirred with a stirrer for 30 minutes.
  • the HSP value was calculated by the above-mentioned Hansen-dissolved sphere method using HSPiP.
  • HSP of polyimide resin The solubility of the polyimide resin in various solvents was evaluated. For evaluation of solubility, use a solvent with known solubility parameters in a transparent container (see HSPiP database, solvents used: acetone, toluene, ethanol, tetrahydrofuran, N, N-dimethylformamide, dimethyl sulfoxide, hexane, GBP, ethyl.
  • Acetate, methyl ethyl ketone, propylene glycol monomethyl ether, 1-butanol, N-methylformamide, 1-methylnaphthalene, bromobenzene, 1-methylimidazole, pyrazole, acetic acid) 10 mL and 0.1 g of polyimide resin are added to make a mixed solution. Prepared. The resulting mixture was sonicated for a cumulative total of 6 hours. The appearance of the mixed solution after the ultrasonic treatment was visually observed, and the solubility of each resin in the solvent was evaluated based on the following evaluation criteria from the obtained observation results. (Evaluation criteria) 1: The appearance of the mixed solution is cloudy. 0: The appearance of the mixed solution is transparent.
  • the HSP value was calculated by the above-mentioned Hansen-dissolved sphere method using HSPiP.
  • HSP Liquid crystal polyester HSP
  • HSPiP Ver. 4.1.07
  • ⁇ Meso-type two-chain / Racemo-type two-chain> The ratio of the meso-type two-chain of the norbornene two-chain to the racemo-type two-chain (meso-type two-chain / racemo-type two-chain) of the cycloolefin copolymer obtained in the production example is the above-mentioned NB content using 13 C-NMR. It was measured under the same conditions as the measurement of.
  • the meso-type / racemo-type two-chain of the norbornene two-chain is based on 1,1,2,2-tetrachloroethane (74.24 ppm), and is described in “RAWendt, G.Fink, Macromol.Chem.
  • the meso-type two-chain / racemo-type two-chain has a signal integral value observed at a chemical shift value of 27.5-28.4 ppm in the spectrum chart measured using 13 C-NMR: IC5 .
  • the refractive index of the cycloolefin copolymer obtained in the production example was determined by measuring under the following conditions using a sheet-shaped sample formed to a thickness of 100 ⁇ m with a vacuum press.
  • the Tg of the cycloolefin copolymer obtained in the production example was determined by measuring the softening temperature by TMA based on JIS K 7196. Specifically, a sample (thickness: 1.0 mm) obtained by molding a cycloolefin copolymer into a sheet with a vacuum press is measured under the following conditions, and the onset of displacement when the indenter sinks into the sample is defined as the softening temperature. did.
  • Tg of the polyimide resin and the liquid crystal polyester obtained in the production example was determined by the following measurements. Using "DMA Q800" manufactured by TA Instrument, measurement was performed under the following samples and conditions to obtain a tan ⁇ curve, which is the ratio of the loss modulus to the storage modulus, and then the peak of the tan ⁇ curve. Tg was calculated from the highest point.
  • ⁇ Mw and Mn of cycloolefin copolymer> The polystyrene-equivalent Mw and Mn of the cycloolefin copolymer obtained in the production example were measured using GPC. The GPC measurement was performed under the following conditions, and the peak was specified by defining the baseline on the chromatogram based on the description of ISO16014-1.
  • GPC column TSKgel GMH6-HT Inner diameter 7.8 mm, length 300 mm (manufactured by Tosoh Corporation) 3 connected mobile phase: Orthodichlorobenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) 2,6-di -Tert-Butyl-4-methylphenol (hereinafter, may be referred to as BHT) was added and used at a concentration of 0.1 w / V, that is, 0.1 g / 100 mL.
  • BHT 2,6-di -Tert-Butyl-4-methylphenol
  • Example solution preparation conditions Solvent: BHT was added to orthodichlorobenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) at a concentration of 0.1 w / V, that is, 0.1 g / 100 mL.
  • Sample solution concentration 1 mg / mL
  • Automatic shaker for melting DF-8020 (manufactured by Tosoh Corporation)
  • Dissolution conditions A 5 mg sample is enclosed in a 1,000 mesh SUS wire mesh bag, the wire mesh bag containing the sample is placed in a test tube, and 5 mL of orthodichlorobenzene having the same composition as the mobile phase is added to the test tube. The lid was covered with aluminum foil, the test tube was set in DF-8020, and the mixture was stirred at 140 ° C. for 120 minutes at a stirring rate of 60 reciprocating / min. GPC measurement was performed using the stirred solution as a sample.
  • ⁇ Mw of polyimide resin The polystyrene-equivalent Mw of the polyimide resin obtained in the production example was measured using GPC. GPC measurement was performed under the following conditions. GPC measurement (1) Pretreatment method Add DMF eluent (10 mmol / L lithium bromide-added DMF solution) to the sample to a concentration of 2 mg / mL, heat with stirring at 80 ° C. for 30 minutes, cool, and then cool. The solution filtered by a 0.45 ⁇ m membrane filter was used as a measurement solution.
  • DMF eluent 10 mmol / L lithium bromide-added DMF solution
  • ⁇ Thickness of composite film> For the thickness of the composite film obtained in Examples and Comparative Examples, a Digimatic Indicator (ID-C112XBS, manufactured by Mitutoyo Co., Ltd.) was used to measure the thickness of any 5 or more points of the film, and the thickness thereof was measured. The average value was taken as the thickness of the composite film.
  • ID-C112XBS Digimatic Indicator
  • ⁇ Standard deviation of average thickness of composite film> The standard deviation of the average thickness of the composite films obtained in Examples and Comparative Examples was calculated as follows. On the surface of the film fixed so as to be in close contact with the glass substrate, a palpation type surface shape measuring instrument (Dektak XTE Co., Ltd.) is used, and the glass substrate is used as a reference surface in an arbitrary continuous straight line 1 mm region. A thickness profile (height profile) was obtained. The region was divided into 10 equal parts to set 10 measurement regions, and then the average thickness (average height) of each of the 10 measurement regions was determined. Then, the standard deviation was calculated from the average thickness data of 10 points in each of the obtained measurement regions.
  • a palpation type surface shape measuring instrument Dektak XTE Co., Ltd.
  • the polyimide resin was added to the dispersion in an amount not affecting the particle size of the particulate cycloolefin copolymer to form a composition, so that aggregates of the particulate cycloolefin copolymer were contained in the dispersion. If it is not present, the aggregate will not be present in the composition either. Therefore, in the evaluation of whether or not the compositions obtained in Examples and Comparative Examples contain aggregates, it is confirmed whether or not the particulate cycloolefin copolymer dispersion liquid contains aggregates as follows. I went by doing.
  • CTE of cycloolefin copolymer The CTE of the cycloolefin copolymer was measured using TMA under the following conditions, and the CTE at 50 ° C to 100 ° C was calculated.
  • the median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion obtained in the examples was determined by the scattering type particle size distribution measurement using laser diffraction. Specifically, in a glass cell having a capacity of 3.5 mL, the particulate cycloolefin copolymer dispersion obtained in the example was further added 1000 times by GBL, NMP or DMAc (using the same solvent as the dispersion). Diluted to obtain a dispersion sample containing the particulate cycloolefin copolymer.
  • the obtained dispersion sample was measured using a laser diffraction / scattering type particle size distribution measuring device (manufactured by Malvern Panasonic, model: Nan AlbanyZS, refractive index: 1.70-0.20i), and the particulate cycloolefin copolymer was measured.
  • the median diameter was quantified.
  • the particulate cycloolefin in the dispersion liquid was formed.
  • the median diameter of the copolymer was defined as the median diameter of the particulate cycloolefin copolymer in the composition.
  • Triisobutylaluminum hereinafter referred to as TIBA
  • N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate hereinafter referred to as AB
  • Toluene was dehydrated using Molecular Sieves 13X (manufactured by Union Showa Co., Ltd.) and activated alumina ("NKHD-24" manufactured by Sumitomo Chemical Co., Ltd.), and then nitrogen gas was blown into it to remove dissolved oxygen. It was used.
  • NB solution A solution from which dissolved oxygen was removed was used (hereinafter referred to as NB solution).
  • NB solution A solution from which dissolved oxygen was removed was used (hereinafter referred to as NB solution).
  • the NB concentration in the NB solution was measured by using gas chromatography.
  • Isopropyridene (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride (hereinafter referred to as a complex) is synthesized according to the method described in JP-A-9-183809. did.
  • the temperature in the system was kept at 60 ° C., and ethylene was continuously supplied to keep the pressure in the system at the starting value.
  • 5.0 mL of water was added to stop the polymerization, and the solution in the autoclave was withdrawn.
  • 1,500 g of toluene and 100 g of magnesium sulfate were added and stirred, and then 100 mL of water was added and stirred, and the solid was removed by filtration.
  • the obtained liquid was added dropwise to acetone, and the precipitated powder was isolated by filtration. The isolated powder was further washed with acetone and dried under reduced pressure at 120 ° C.
  • a cycloolefin copolymer having a median diameter of 335 ⁇ m In the obtained cycloolefin copolymer, the NB content is 84.1 mol%, Tg is 293 ° C., Mw is 521,000, Mw / Mn is 1.87, and CTE is 49.4 ppm /. K, ⁇ D is 17.7 MPa 0.5 , ⁇ P is 2.1 MPa 0.5 , ⁇ H is 3.9 MPa 0.5 , and meso-type two-chain / racemo-type two-chain is 0.19. The refractive index was 1.538. Table 2 shows the synthesis conditions of Production Example 1.
  • the ⁇ D of the cycloolefin copolymer was 17.7 MPa 0.5
  • the ⁇ P was 2.1 MPa 0.5
  • the ⁇ H was 3.9 MPa 0.5
  • Table 3 shows the synthesis conditions of Production Example 2.
  • the ⁇ D of the obtained polyimide resin was 18.1 MPa 0.5, the ⁇ P was 8.3 MPa 0.5 , and the ⁇ H was 9.3 MPa 0.5 .
  • the Mw of the polyimide resin was 334,300, and the Tg was 361 ° C.
  • the distance between the HSP values of the polyimide resin and the cycloolefin copolymer obtained in Production Example 1 was 8.3.
  • the temperature was raised from 150 ° C. to 300 ° C. over 5 hours, held at 300 ° C. for 30 minutes, and then the contents were taken out from the reactor and brought to room temperature. Cooled.
  • the obtained solid matter was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (L1).
  • the liquid crystal polyester (L1) is heated from room temperature to 160 ° C. over 2 hours and 20 minutes under a nitrogen atmosphere, then heated from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and held at 180 ° C. for 5 hours.
  • the ⁇ D of the obtained liquid crystal polyester (L) was 20.9 MPa 0.5, the ⁇ P was 8.3 MPa 0.5 , and the ⁇ H was 4.7 MPa 0.5 .
  • the Mw of the liquid crystal polyester was 180,000, and the Tg was 190 ° C. 8 parts by mass of liquid crystal polyester (L) was added to 92 parts by mass of NMP, and the mixture was stirred at 140 ° C. for 4 hours under a nitrogen atmosphere to prepare a liquid crystal polyester solution.
  • Example 1 The cycloolefin copolymer obtained in Production Example 1 was dissolved in a toluene solution at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with the same amount of DMAc as the amount of toluene in the solution, and the amount of toluene is 0.6 parts by mass with respect to 100 parts by mass of DMAc at 50 hPa at 80 ° C.
  • Toluene was distilled off under reduced pressure for a period of time to obtain a particulate cycloolefin copolymer dispersion.
  • a composition was obtained as a polyimide-cycloolefin copolymer mixed solution by adding 1.9 g of the polyimide resin obtained above to 30.0 g (cycloolefin copolymer 2.0% by mass) of the obtained dispersion. ..
  • the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C.
  • the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a 70 ⁇ m-thick polyimide-cycloolefin copolymer composite film.
  • Got The CTE of the obtained composite film was 45 ppm / K.
  • Example 2 The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with GBL having the same amount of toluene as the amount of toluene in the solution, and 2 at 50 hPa and 80 ° C. until the amount of toluene becomes 0.6 parts by mass with respect to 100 parts by mass of GBL.
  • Toluene was distilled off under reduced pressure for a period of time to obtain a particulate cycloolefin copolymer dispersion.
  • the median diameter of the particulate cycloolefin copolymer in the dispersion and the composition measured by the above method was 0.14 ⁇ m.
  • a composition was obtained as a polyimide-cycloolefin copolymer mixed solution by adding 1.9 g of the polyimide resin obtained above to 30.0 g (cycloolefin copolymer 2.0% by mass) of the obtained dispersion. ..
  • the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min.
  • the coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 50 ⁇ m.
  • Got The average primary particle size of the particulate cycloolefin copolymer in the obtained composite film was 0.16 ⁇ m.
  • the CTE of the composite film was 44 ppm / K.
  • Example 3 The cycloolefin copolymer obtained in Production Example 1 was dissolved in xylene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with the same amount of DMAc as the amount of xylene in the solution, and toluene is used at 50 hPa and 85 ° C. until the amount of xylene becomes 0.6 parts by mass with respect to 100 parts by mass of DMAc. was distilled off to obtain a particulate cycloolefin copolymer dispersion.
  • a composition was obtained as a polyimide-cycloolefin copolymer mixed solution by adding 1.9 g of the polyimide resin obtained above to 30.0 g (cycloolefin copolymer 2.0% by mass) of the obtained dispersion. ..
  • the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C.
  • the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 60 ⁇ m.
  • Got The CTE of the obtained composite film was 45 ppm / K.
  • Example 4 The cycloolefin copolymer obtained in Production Example 1 was dissolved in xylene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with GBL having the same amount of xylene as the amount of xylene in the solution, and xylene at 50 hPa and 85 ° C. until the amount of xylene becomes 0.6 parts by mass with respect to 100 parts by mass of GBL.
  • a composition was obtained as a polyimide-cycloolefin copolymer mixed solution by adding 1.9 g of the polyimide resin obtained above to 30.0 g (cycloolefin copolymer 2.0% by mass) of the obtained dispersion. ..
  • the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C.
  • the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 60 ⁇ m.
  • Got The CTE of the obtained composite film was 45 ppm / K.
  • Example 5 The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with the same amount of GBL as the amount of toluene in the solution, and toluene is retained at 50 hPa and 85 ° C. until the amount of toluene becomes 7 parts by mass with respect to 100 parts by mass of GBL.
  • the mixture was removed to obtain a particulate cycloolefin copolymer dispersion.
  • the median diameter of the particulate cycloolefin copolymer in the dispersion measured by the above method was 0.15 ⁇ m.
  • a composition was obtained as a polyimide-cycloolefin copolymer mixed solution.
  • the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the obtained composition was subjected to salivation molding on a glass substrate to form a coating film at a linear speed of 0.4 m / min.
  • the coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 60 ⁇ m.
  • Got The CTE of the obtained composite film was 44 ppm / K.
  • Example 6 The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with the same amount of GBL as the amount of toluene in the solution, and toluene is retained at 50 hPa and 85 ° C. until the amount of toluene reaches 20 parts by mass with respect to 100 parts by mass of GBL.
  • the mixture was removed to obtain a particulate cycloolefin copolymer dispersion.
  • the median diameter of the particulate cycloolefin copolymer in the dispersion measured by the above method was 0.14 ⁇ m.
  • a composition was obtained as a polyimide-cycloolefin copolymer mixed solution.
  • the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the obtained composition was subjected to salivation molding on a glass substrate to form a coating film at a linear speed of 0.4 m / min.
  • the coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a 60 ⁇ m-thick polyimide-cycloolefin copolymer composite film.
  • Got The CTE of the obtained composite film was 44 ppm / K.
  • Example 7 The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with the same amount of GBL as the amount of toluene in the solution, and toluene is retained at 50 hPa and 85 ° C. until the amount of toluene becomes 40 parts by mass with respect to 100 parts by mass of GBL.
  • the mixture was removed to obtain a particulate cycloolefin copolymer dispersion.
  • the median diameter of the particulate cycloolefin copolymer in the dispersion measured by the above method was 0.13 ⁇ m.
  • a composition was obtained as a polyimide-cycloolefin copolymer mixed solution.
  • the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the obtained mixed solution was subjected to salivation molding on glass to form a coating film at a linear speed of 0.4 m / min.
  • the coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 60 ⁇ m.
  • Got The CTE of the obtained composite film was 44 ppm / K.
  • Example 8 The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with the same amount of NMP as the amount of toluene in the solution, and toluene is added at 50 hPa and 85 ° C. until the amount of toluene becomes 0.6 parts by mass with respect to 100 parts by mass of NMP.
  • the median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion measured by the above method was 0.14 ⁇ m.
  • 17.5 g of a liquid crystal polyester solution was added to 30.0 g (2.0% by mass of the particulate cycloolefin copolymer) of the obtained particulate cycloolefin copolymer dispersion liquid to prepare a composition as a liquid crystal polyester-cycloolefin copolymer mixed solution. Obtained.
  • the content of the particulate cycloolefin copolymer was 30.0% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
  • the obtained composition was subjected to salivation molding on a copper foil to prepare a coating film at a linear speed of 0.4 m / min.
  • the coating film was heated at 60 ° C. for 4 hours to obtain a laminate having a copper foil and a liquid crystal polyester precursor-cycloolefin copolymer composite film, and then the laminate was fixed with a metal frame and further under a nitrogen atmosphere, 310. By heating the laminate at ° C.
  • a laminate having a copper foil and a liquid crystal polyester-cycloolefin copolymer composite film was obtained.
  • the obtained laminate was immersed in a ferric chloride solution for 10 minutes to remove the copper foil by etching to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 30 ⁇ m.
  • the CTE of the obtained composite film was 47 ppm / K.
  • the distance between the HSP values of the liquid crystal polyester obtained in Production Example 5 and the cycloolefin copolymer obtained in Production Example 1 was 8.9.
  • Example 9 The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with the same amount of NMP as the amount of toluene in the solution, and toluene is retained at 50 hPa and 85 ° C. until the amount of toluene becomes 40 parts by mass with respect to 100 parts by mass of NMP.
  • the mixture was removed to obtain a particulate cycloolefin copolymer dispersion.
  • the median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion measured by the above method was 0.14 ⁇ m. 17.1 g of a liquid crystal polyester solution was added to 41.8 g (1.4% by mass of the cycloolefin copolymer) of the obtained particulate cycloolefin copolymer dispersion liquid to obtain a composition as a liquid crystal polyester-cycloolefin copolymer mixed solution. .. In the composition, the content of the particulate cycloolefin copolymer was 30.0% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
  • the obtained composition was subjected to salivation molding on a copper foil to prepare a coating film at a linear speed of 0.4 m / min.
  • the coating film was heated at 60 ° C. for 4 hours to obtain a laminate having a copper foil and a liquid crystal polyester precursor-cycloolefin copolymer composite film, and then the laminate was fixed with a metal frame and further under a nitrogen atmosphere, 310.
  • a laminate having a copper foil and a liquid crystal polyester-cycloolefin copolymer composite film was obtained.
  • the obtained laminate was immersed in a ferric chloride solution for 10 minutes to remove the copper foil by etching to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 30 ⁇ m.
  • the CTE of the obtained composite film was 48 ppm / K.
  • Example 10 The cycloolefin copolymer obtained in Production Example 2 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with GBL having the same amount of toluene as the amount of toluene in the solution, and the amount of toluene is 0.6 parts by mass with respect to 100 parts by mass of GBL at 50 hPa at 80 ° C.
  • Toluene was distilled off under reduced pressure for a period of time to obtain a particulate cycloolefin copolymer dispersion.
  • the median diameter of the particulate cycloolefin copolymer in the dispersion and the composition measured by the above method was 0.13 ⁇ m.
  • a polyimide-cycloolefin copolymer mixed solution can be obtained.
  • the composition was obtained.
  • the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
  • the obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min.
  • the coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a 60 ⁇ m-thick polyimide-cycloolefin copolymer composite film.
  • Got The CTE of the obtained composite film was 45 ppm / K.
  • the distance between the HSP values of the polyimide resin obtained in Production Example 3 and the cycloolefin copolymer obtained in Production Example 2 was 8.3.
  • Example 11 The cycloolefin copolymer obtained in Production Example 2 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
  • the obtained cycloolefin copolymer solution is mixed with the same amount of DMAc as the amount of toluene in the solution, and the amount of toluene is 0.6 parts by mass with respect to 100 parts by mass of DMAc at 50 hPa at 80 ° C.
  • Toluene was distilled off under reduced pressure for a period of time to obtain a particulate cycloolefin copolymer dispersion.
  • the median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion measured by the above method was 0.13 ⁇ m.
  • 8.0 g of a polyamic acid solution was added to 30.0 g of the obtained particulate cycloolefin copolymer dispersion (2.0% by mass of the particulate cycloolefin copolymer) to prepare a composition as a polyamic acid-cycloolefin copolymer mixed solution. Obtained.
  • the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyamic acid and the particulate cycloolefin copolymer.
  • the obtained composition was subjected to salivation molding on a glass substrate to prepare a coating film at a linear speed of 0.4 m / min.
  • the coating film is heated at 70 ° C. for 60 minutes, the polyamic acid-cycloolefin copolymer composite film is peeled off from the glass substrate, the film is fixed with a metal frame, and the polyamic acid is gradually increased to 360 ° C. in 30 minutes under a nitrogen atmosphere.
  • the polyamic acid was imidized to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 30 ⁇ m.
  • the CTE of the obtained composite film was 21 ppm / K.
  • the distance between the HSP values of the polyamic acid obtained in Production Example 4 and the cycloolefin copolymer obtained in Production Example 2 was 6.0 or more. Further, in the film, the distance between the HSP values of the polyimide resin formed by imidizing the polyamic acid and the cycloolefin copolymer obtained in Production Example 2 was 6.0 or more.
  • the results of measuring the standard deviation are shown in Table 4. Further, the content ratio of the first solvent to 100 parts by mass of the second solvent in the dispersion liquid and the composition, the distance between the HSP values of each solvent and the polyimide resin, the polyamic acid, the liquid crystal polyester, or the cycloolefin copolymer, and each solvent. Table 4 also shows the evaluation results of the solubility of the polyimide resin, polyamic acid, liquid crystal polyester or cycloolefin copolymer in the solvent.
  • HSP distance first solvent pair (A)
  • HSP distance first solvent vs. COC
  • second solvent the first solvent indicates toluene or xylene
  • the second solvent indicates GBL, DMAc, NMP or amyl acetate.
  • compositions obtained in Examples 1 to 11 did not contain aggregates. Further, the films obtained in Examples 1 to 11 had a low standard deviation in thickness and were excellent in surface smoothness. On the other hand, the composition obtained in Comparative Example 1 contained aggregates, and it was difficult to form a film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided is a composition not containing aggregates of particles. The composition contains a resin (A), a particulate cycloolefin-based polymer (B), and a solvent. The solvent contains a first solvent and a second solvent. The HSP value distance between the second solvent and the cycloolefin-based polymer (B) is 8.5 or more.

Description

組成物Composition
 高周波帯域用のプリント回路基板やアンテナ基板に対応可能な基板材料などに利用できるフィルムを形成可能な組成物、及び該フィルムに関する。 The present invention relates to a composition capable of forming a film that can be used as a substrate material compatible with a printed circuit board for a high frequency band and an antenna substrate, and the film.
 5Gと称される第5世代移動通信システムの本格的な普及に伴い、高周波帯域に対応できるプリント回路やアンテナに利用可能なプリント配線基板などが要求されている。しかし、高周波帯域になると基板材料由来の伝送損失が顕著に影響してくるため、伝送損失を抑制可能な基板材料の選択が重要となる。例えば、CCLと称される銅張積層板は樹脂層の両表面に接着剤を介して銅箔が積層された構造等を有する。該CCLの伝送損失は、伝送路となる樹脂層の誘電損失、特に誘電正接や比誘電率を低減することにより抑制し得る。
 この誘電正接や比誘電率の低い基板材料としては、シクロオレフィン系ポリマーが知られており、このシクロオレフィン系ポリマーを他の樹脂と複合化させたフィルムが検討されている。例えば、特許文献1には、特定の樹脂(A)、シクロオレフィンポリマー(B)、相溶化剤(C)、及び溶媒を含む組成物、並びに該組成物から形成された複合フィルムが記載されている。
With the full-scale spread of the 5th generation mobile communication system called 5G, there is a demand for printed circuits that can handle high frequency bands and printed wiring boards that can be used for antennas. However, in the high frequency band, the transmission loss derived from the substrate material has a significant effect, so it is important to select a substrate material that can suppress the transmission loss. For example, a copper-clad laminate called CCL has a structure in which copper foils are laminated on both surfaces of a resin layer via an adhesive. The transmission loss of the CCL can be suppressed by reducing the dielectric loss of the resin layer serving as the transmission line, particularly the dielectric loss tangent and the relative permittivity.
A cycloolefin-based polymer is known as a substrate material having a dielectric loss tangent or a low relative permittivity, and a film in which this cycloolefin-based polymer is composited with another resin has been studied. For example, Patent Document 1 describes a composition containing a specific resin (A), a cycloolefin polymer (B), a compatibilizer (C), and a solvent, and a composite film formed from the composition. There is.
特開2017-125176号公報Japanese Unexamined Patent Publication No. 2017-125176
 高周波帯域に対応可能なCCL中の樹脂層には、誘電損失の低減化の他、配線の高密度化、微細化時の加工精度向上や銅箔との剥がれ等防止のために、フィルムの表面平滑性が要求される。しかし、本発明者の検討によれば、樹脂及び溶媒に加え、粒子形態のシクロオレフィンポリマーを含む組成物は、製造過程等で粒子が凝集体を形成することがあり、フィルム化が困難な場合があることがわかった。さらに、フィルム化が可能であっても、該フィルムの表面平滑性が十分ではなく、例えばCCL中の樹脂層として用いた場合に、配線の厚さが不均一化する場合や、銅箔との剥がれが生じる場合があることがわかった。 The resin layer in the CCL, which can handle the high frequency band, has a film surface to reduce dielectric loss, increase the density of wiring, improve processing accuracy during miniaturization, and prevent peeling from copper foil. Smoothness is required. However, according to the study of the present inventor, in a composition containing a cycloolefin polymer in the form of particles in addition to a resin and a solvent, the particles may form aggregates in the manufacturing process or the like, and it is difficult to form a film. It turned out that there is. Further, even if it is possible to form a film, the surface smoothness of the film is not sufficient, and when it is used as a resin layer in CCL, for example, the thickness of the wiring becomes non-uniform, or when it is used with a copper foil. It was found that peeling may occur.
 従って、本発明の目的は、粒子の凝集体を含まない組成物を提供することにある。
 また、本発明の他の目的は、表面平滑性に優れたフィルムを提供することにある。
Therefore, an object of the present invention is to provide a composition free of agglomerates of particles.
Another object of the present invention is to provide a film having excellent surface smoothness.
 本発明者は、上記課題を解決するために鋭意検討した結果、樹脂(A)、粒子状シクロオレフィン系ポリマー(B)及び溶媒を含む組成物において、該溶媒が第1溶媒と第2溶媒とを含み、第2溶媒とシクロオレフィン系ポリマー(B)とのHSP値間距離が8.5以上であると、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明には、以下の好適な形態が含まれる。 As a result of diligent studies to solve the above problems, the present inventor has determined that the solvent is the first solvent and the second solvent in the composition containing the resin (A), the particulate cycloolefin polymer (B) and the solvent. The present invention has been completed by finding that the above problems can be solved when the distance between the HSP values of the second solvent and the cycloolefin polymer (B) is 8.5 or more. That is, the present invention includes the following suitable forms.
[1]樹脂(A)、粒子状シクロオレフィン系ポリマー(B)及び溶媒を含む組成物であって、
 該溶媒は第1溶媒と第2溶媒とを含み、第2溶媒とシクロオレフィン系ポリマー(B)とのHSP値間距離が8.5以上である、組成物。
[2]第1溶媒は、シクロオレフィン系ポリマー(B)が溶解する溶媒である、[1]に記載の組成物。
[3]第2溶媒は、シクロオレフィン系ポリマー(B)が溶解しない溶媒である、[1]又は[2]に記載の組成物。
[4]第1溶媒とシクロオレフィン系ポリマー(B)とのHSP値間距離は4.0以下である、[1]~[3]のいずれかに記載の組成物。
[5]第2溶媒は、樹脂(A)が溶解する溶媒である、[1]~[4]のいずれかに記載の組成物。
[6]第2溶媒と樹脂(A)とのHSP値間距離は10.0以下である、[1]~[5]のいずれかに記載の組成物。
[7]樹脂(A)とシクロオレフィン系ポリマー(B)とのHSP値間距離は6以上である、[1]~[6]のいずれかに記載の組成物。
[8]第1溶媒の含有量は、第2溶媒100質量部に対して120質量部以下である、[1]~[7]のいずれかに記載の組成物。
[9]粒子状シクロオレフィン系ポリマー(B)の含有量は、樹脂(A)と粒子状シクロオレフィン系ポリマー(B)との合計質量に対して5~50質量%である、[1]~[8]のいずれかに記載の組成物。
[10]シクロオレフィン系ポリマー(B)は、式(I):
[1] A composition containing a resin (A), a particulate cycloolefin polymer (B), and a solvent.
A composition comprising the first solvent and the second solvent, and the distance between the HSP values of the second solvent and the cycloolefin polymer (B) is 8.5 or more.
[2] The composition according to [1], wherein the first solvent is a solvent in which the cycloolefin polymer (B) is dissolved.
[3] The composition according to [1] or [2], wherein the second solvent is a solvent in which the cycloolefin polymer (B) is insoluble.
[4] The composition according to any one of [1] to [3], wherein the distance between the HSP values of the first solvent and the cycloolefin polymer (B) is 4.0 or less.
[5] The composition according to any one of [1] to [4], wherein the second solvent is a solvent in which the resin (A) is dissolved.
[6] The composition according to any one of [1] to [5], wherein the distance between the HSP values of the second solvent and the resin (A) is 10.0 or less.
[7] The composition according to any one of [1] to [6], wherein the distance between the HSP values of the resin (A) and the cycloolefin polymer (B) is 6 or more.
[8] The composition according to any one of [1] to [7], wherein the content of the first solvent is 120 parts by mass or less with respect to 100 parts by mass of the second solvent.
[9] The content of the particulate cycloolefin polymer (B) is 5 to 50% by mass with respect to the total mass of the resin (A) and the particulate cycloolefin polymer (B), [1] to The composition according to any one of [8].
[10] The cycloolefin polymer (B) has the formula (I) :.
Figure JPOXMLDOC01-appb-C000002
[式(I)中、mは0以上の整数を表し、R~R18は、互いに独立に、水素原子、ハロゲン原子又は炭素原子数1~20の炭化水素基を表し、R11~R14が複数存在する場合、それらは互いに独立に同一であってもよく、異なっていてもよく、R16とR17とは互いに結合し、それらが結合する炭素原子とともに環を形成してもよい]
で表されるシクロオレフィン由来の単量体単位(1)を含む、[1]~[9]のいずれかに記載の組成物。
[11]樹脂(A)は、ポリイミド系樹脂、液晶ポリマー、フッ素系樹脂、芳香族ポリエーテル系樹脂及びマレイミド系樹脂からなる群から選択される少なくとも1つの樹脂である、[1]~[10]のいずれかに記載の組成物。
[12]樹脂(A)は、ガラス転移温度が180℃以上である、[1]~[11]のいずれかに記載の組成物。
[13]樹脂(A)及び粒子状シクロオレフィン系ポリマー(B)を含むフィルムであって、
 該フィルム表面の直線1mmの領域を10等分割した10個の各測定領域において求めた平均厚さの標準偏差は2.5以下である、フィルム。
[14]樹脂(A)とシクロオレフィン系ポリマー(B)とのHSP値間距離は6以上である、[13]に記載のフィルム。
[15]粒子状シクロオレフィン系ポリマー(B)の平均一次粒子径は15μm以下である、[13]又は[14]に記載のフィルム。
Figure JPOXMLDOC01-appb-C000002
[In the formula (I), m represents an integer of 0 or more, R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and R 11 to R. When a plurality of 14 are present, they may be independently the same or different from each other, and R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded. ]
The composition according to any one of [1] to [9], which comprises a monomer unit (1) derived from cycloolefin represented by.
[11] The resin (A) is at least one resin selected from the group consisting of a polyimide resin, a liquid crystal polymer, a fluororesin, an aromatic polyether resin and a maleimide resin, [1] to [10]. ] The composition according to any one of.
[12] The composition according to any one of [1] to [11], wherein the resin (A) has a glass transition temperature of 180 ° C. or higher.
[13] A film containing the resin (A) and the particulate cycloolefin polymer (B).
A film in which the standard deviation of the average thickness obtained in each of the 10 measurement regions obtained by dividing a region of a straight line of 1 mm on the surface of the film into 10 equal parts is 2.5 or less.
[14] The film according to [13], wherein the distance between the HSP values of the resin (A) and the cycloolefin polymer (B) is 6 or more.
[15] The film according to [13] or [14], wherein the particulate cycloolefin polymer (B) has an average primary particle diameter of 15 μm or less.
 本発明の組成物は粒子の凝集体を含まない。また本発明のフィルムは表面平滑性に優れている。そのため、本発明のフィルムはプリント回路基板やアンテナ基板に利用できるプリント配線基板等の材料として好適に使用できる。 The composition of the present invention does not contain agglomerates of particles. Further, the film of the present invention has excellent surface smoothness. Therefore, the film of the present invention can be suitably used as a material for a printed wiring board or the like that can be used for a printed circuit board or an antenna board.
 [組成物]
 本発明の組成物は、樹脂(A)、粒子状シクロオレフィン系ポリマー(B)及び溶媒を含み、該溶媒が第1溶媒と第2溶媒とを含み、第2溶媒とシクロオレフィン系ポリマー(B)とのHSP値間距離が8.5以上である。本明細書において、「シクロオレフィン系ポリマー(B)」を単に「ポリマー(B)」、「粒子状シクロオレフィン系ポリマー(B)」を単に「粒子状ポリマー(B)」、「粒子状ポリマー(B)の粒子径」を単に「粒子径」、「組成物から形成されたフィルム」を単に「フィルム」ということがある。また、本明細書において、誘電特性とは、誘電損失、比誘電率及び誘電正接を含む誘電に関する特性を意味し、誘電特性が高まる又は向上するとは、例えば、誘電損失、比誘電率及び/又は誘電正接が低減することを示す。また、本明細書において、機械的特性とは、屈曲耐性及び弾性率を含む機械的な特性を意味し、機械的特性が高まる又は向上するとは、例えば、屈曲耐性及び/又は弾性率が高くなることを示す。
[Composition]
The composition of the present invention contains a resin (A), a particulate cycloolefin polymer (B) and a solvent, the solvent containing a first solvent and a second solvent, and a second solvent and a cycloolefin polymer (B). ) And the distance between the HSP values is 8.5 or more. In the present specification, the "cycloolefin polymer (B)" is simply "polymer (B)", and the "particulate cycloolefin polymer (B)" is simply "particulate polymer (B)", "particle polymer (B)". The "particle size of B)" may be simply referred to as "particle size", and the "film formed from the composition" may be simply referred to as "film". Further, in the present specification, the dielectric property means a property related to dielectric including dielectric loss, relative permittivity and dielectric loss tangent, and that the dielectric property is enhanced or improved is, for example, dielectric loss, relative permittivity and / or. It shows that the dielectric loss tangent is reduced. Further, in the present specification, the mechanical property means the mechanical property including the bending resistance and the elastic modulus, and when the mechanical property is enhanced or improved, for example, the bending resistance and / or the elastic modulus is increased. Show that.
 本発明者らは、粒子状ポリマー(B)の凝集と、該ポリマー及び溶媒のHSP値間距離との関係に着目して検討を進めたところ、2種類の溶媒を使用し、これらのうち、第2溶媒としてシクロオレフィン系ポリマー(B)とのHSP値間距離が8.5以上である溶媒を用いると、粒子状ポリマー(B)の凝集を抑制でき、粒子状ポリマー(B)の凝集体を含まない組成物を形成できることを見出した。従って、本発明の組成物は粒子状ポリマー(B)の凝集体(以下、単に凝集体ともいう)を含まない。さらに本発明の組成物は、凝集体を含まないため、表面平滑性に優れたフィルムを形成できる。 The present inventors have focused on the relationship between the aggregation of the particulate polymer (B) and the distance between the HSP values of the polymer and the solvent. As a result, two kinds of solvents were used, and among these, two kinds of solvents were used. When a solvent having an HSP value distance of 8.5 or more from the cycloolefin polymer (B) is used as the second solvent, the aggregation of the particulate polymer (B) can be suppressed and the aggregate of the particulate polymer (B) can be suppressed. It has been found that a composition containing no solvent can be formed. Therefore, the composition of the present invention does not contain an aggregate of the particulate polymer (B) (hereinafter, also simply referred to as an aggregate). Further, since the composition of the present invention does not contain aggregates, a film having excellent surface smoothness can be formed.
 <第2溶媒>
 本発明の組成物は第2溶媒を含有する。第2溶媒はポリマー(B)とのHSP値間距離が8.5以上である。そのため、粒子状ポリマー(B)の凝集体を含まず、表面平滑性に優れたフィルムを形成できる。第2溶媒とポリマー(B)とのHSP値間距離が8.5未満であると、製造過程で凝集体が形成し、得られる組成物に凝集体が含まれ得るため、フィルム化が困難となる傾向がある。
<Second solvent>
The composition of the present invention contains a second solvent. The distance between the HSP values of the second solvent and the polymer (B) is 8.5 or more. Therefore, it is possible to form a film having excellent surface smoothness without containing aggregates of the particulate polymer (B). If the distance between the HSP values of the second solvent and the polymer (B) is less than 8.5, aggregates are formed in the manufacturing process, and the obtained composition may contain the aggregates, which makes film formation difficult. Tend to be.
 本発明の組成物において、第2溶媒とポリマー(B)とのHSP値間距離は、好ましくは9.0以上、より好ましくは10.0以上、さらに好ましくは11.0以上である。該HSP値間距離が上記の下限以上であると、粒子状ポリマー(B)の凝集を抑制しやすいため、凝集体を含まない組成物を形成しやすく、得られるフィルムの表面平滑性を高めやすい。また、粒子状ポリマー(B)の粒子径を低減しやすいことから粒子の分散性を向上しやすい。さらに、得られるフィルムの粒子分散性、耐熱性及び屈曲耐性等の機械的特性を高めやすい。第2溶媒とポリマー(B)とのHSP値間距離の上限は、好ましくは30.0以下、より好ましくは25.0以下、さらに好ましくは20.0である。該第2溶媒とポリマー(B)とのHSP値間距離が上記の上限以下であると、粒子状ポリマー(B)の凝集を抑制しやすいことから粒子の分散性を向上しやすく、また得られるフィルムの粒子分散性を高めやすい。 In the composition of the present invention, the distance between the HSP values of the second solvent and the polymer (B) is preferably 9.0 or more, more preferably 10.0 or more, still more preferably 11.0 or more. When the distance between the HSP values is at least the above lower limit, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to form a composition containing no aggregates, and it is easy to improve the surface smoothness of the obtained film. .. Further, since the particle size of the particulate polymer (B) can be easily reduced, the dispersibility of the particles can be easily improved. Further, it is easy to improve mechanical properties such as particle dispersibility, heat resistance and bending resistance of the obtained film. The upper limit of the distance between the HSP values of the second solvent and the polymer (B) is preferably 30.0 or less, more preferably 25.0 or less, still more preferably 20.0. When the distance between the HSP values of the second solvent and the polymer (B) is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that the dispersibility of the particles can be easily improved and obtained. It is easy to improve the particle dispersibility of the film.
 HSPはハンセン溶解度パラメータ(δ)であり、(δD,δP,δH)の3次元のパラメータで定義され、式(X):
δ=(δD)+(δP)+(δH)  ・・・(X)
[式(X)中、δDはLоndоn分散力項を示し、δPは分子分極項(双極子間力項)を示し、δHは水素結合項を表す]
により表される。HSPに係る詳細は、「PROPERTIES OF POLYMERS」(著者:D.W.VANKREVELEN、発行所:ELSEVIER SCIENTFIC PUBLISHING COMPANY、1989年発行、第5版)に記載されている。ハンセン溶解度パラメータのδD,δP、及びδHは、ハンセン溶解度パラメータを提案したハンセン博士のグループによって開発されたプログラムであるHSPiP(Hansen Sоlubility Parameters in Practice)を用いて計算することができ、例えば実施例に記載のVer.4.1.07等を用いることができる。以下にハンセン溶解球法の詳細を説明する。対象となる成分をHSP値が既知の溶媒に溶解させ、当該成分の特定の溶媒に対する溶解性を評価する。溶解性の評価は、それぞれ対象とする成分が溶媒に溶解したか否かを目視で判定して行う。これを複数の溶媒について行う。この溶媒の種類は、δtが幅広く異なる溶媒を用いることが好ましく、より具体的には、好ましくは10種以上、より好ましくは15種以上、さらに好ましくは18種以上である。次に、得られた溶解性の評価結果をHSPiPに入力する事で得られたHansen球の中心座標(δd,δp,δh)を対象とする組成のHSPとする。また、HSPは上記の方法の他、例えばHSPiPのデータベースの数値や文献値を用いてもよく、HSPiPを使用して構造式から求めてもよい。なお、本明細書において、ハンセン溶解度パラメータの値をHSP値と称し、該HSP値は、25℃における値を表す。樹脂(A)のHSP値、ポリマー(B)のHSP値、及び溶媒のHSP値は、ぞれぞれ、上記のいずれかの方法により求めてもよく、例えば実施例に記載の方法により求められる。
HSP is a Hansen solubility parameter (δ), defined by a three-dimensional parameter of (δD, δP, δH), and the formula (X) :.
δ 2 = (δD) 2 + (δP) 2 + (δH) 2 ... (X)
[In equation (X), δD represents the Lоndоn dispersion force term, δP represents the molecular polarization term (dipole interpole force term), and δH represents the hydrogen bond term].
Represented by. Details of HSP are described in "PROPERTIES OF POLYMERS" (Author: WDVANKREVEREN, Publisher: ELSEVIER SCIENTFIC PUBLISHING COMPANY, 1989, 5th edition). The Hansen solubility parameters δD, δP, and δH can be calculated using HSPiP (Hansen Sоlubility Parameters in Practice), a program developed by Dr. Hansen's group who proposed the Hansen solubility parameter, for example, in Examples. The described Ver. 4.1.07 and the like can be used. The details of the Hansen-dissolved sphere method will be described below. The component of interest is dissolved in a solvent having a known HSP value, and the solubility of the component in a specific solvent is evaluated. The solubility is evaluated by visually determining whether or not the target component is dissolved in the solvent. This is done for multiple solvents. As the type of the solvent, it is preferable to use a solvent having a wide range of δt, more specifically, 10 kinds or more, more preferably 15 kinds or more, still more preferably 18 kinds or more. Next, the HSP having a composition targeting the center coordinates (δd, δp, δh) of the Hansen sphere obtained by inputting the obtained solubility evaluation result into HSPiP is used. In addition to the above methods, HSP may be obtained from a structural formula using, for example, numerical values or literature values in a database of HSPiP, or HSPiP may be used. In the present specification, the value of the Hansen solubility parameter is referred to as an HSP value, and the HSP value represents a value at 25 ° C. The HSP value of the resin (A), the HSP value of the polymer (B), and the HSP value of the solvent may be obtained by any of the above methods, for example, by the method described in Examples. ..
 二つの物質のハンセン溶解度パラメータ(以下、HSPと略すことがある)の距離をHSP値間距離という。HSP間距離(Ra)は、両物質の親和性を表す指標であって、その値が小さい程、両物質の親和性が高いことを示す。逆に、Raの値が大きい程、両物質の親和性が低いこと、すなわち、相溶しがたいことを示す。
 HSP値間距離は、二つの物質A及びBのそれぞれのハンセン溶解度パラメータδA及びδBを、
δA=(δDA,δPA,δHA)
δB=(δDB,δPB,δHB)
と仮定すれば、HSP間距離(Ra)は、式(Y):
Ra=[4×(δDA-δDB)+(δPA-δPB)+(δHA-δHB)0.5  ・・・(Y)
により計算することができる。
 なお、本明細書において、HSP値及びHSP値間距離は上記に定義した通りであり、上記方法に従って求めることができる。
The distance between the Hansen solubility parameters (hereinafter, may be abbreviated as HSP) of two substances is called the distance between HSP values. The distance between HSPs (Ra) is an index showing the affinity between the two substances, and the smaller the value, the higher the affinity between the two substances. On the contrary, the larger the Ra value, the lower the affinity between the two substances, that is, the more difficult it is to be compatible.
The distance between the HSP values determines the Hansen solubility parameters δA and δB of the two substances A and B, respectively.
δA = (δDA, δPA, δHA)
δB = (δDB, δPB, δHB)
Assuming that the distance between HSPs (Ra) is the equation (Y) :.
Ra = [4 × (δDA-δDB) 2 + (δPA-δPB) 2 + (δHA-δHB) 2 ] 0.5 ... (Y)
Can be calculated by.
In this specification, the HSP value and the distance between the HSP values are as defined above, and can be obtained according to the above method.
 第2溶媒は、特に限定されず、例えばN,N-ジメチルアセトアミド(以下、DMAcと記載することがある)、N-N-ジメチルホルムアミド(以下、DMFと記載することがある)等のアミド系溶媒;γ-ブチロラクトン(以下、GBLと記載することがある)、γ-バレロラクトン等のラクトン系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;N-メチルピロリドン(以下、NMPと略すことがある)等のピロリドン系溶媒;及びそれらの組合せが挙げられる。これらの中でも、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、線膨張係数(以下、CTEと称することがある)を低減しやすい観点から、アミド系溶媒、ラクトン系溶媒及びピロリドン系溶媒からなる群から選択される少なくとも1つであることが好ましい。また、ポリマー(B)分散液には水、アルコール系溶媒、ケトン系溶媒、非環状エステル系溶媒、エーテル系溶媒などが含まれてもよい。第2溶媒は単独又は二種以上を組合せて使用できる。なお、後述の好ましい方法で組成物を製造する場合、第2溶媒はポリマー(B)溶液との接触により、粒子状ポリマー(B)が生成し得る溶媒であることが好ましい。 The second solvent is not particularly limited, and is an amide-based solvent such as N, N-dimethylacetamide (hereinafter, may be referred to as DMAc), N-N-dimethylformamide (hereinafter, may be referred to as DMF) and the like. Solvent; lactone-based solvent such as γ-butyrolactone (hereinafter, may be referred to as GBL), γ-valerolactone, etc .; sulfur-containing solvent such as dimethylsulfone, dimethylsulfoxide, sulfolane; carbonate-based solvent such as ethylene carbonate, propylene carbonate, etc. Solvents; pyrrolidone-based solvents such as N-methylpyrrolidone (hereinafter, may be abbreviated as NMP); and combinations thereof may be mentioned. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the surface smoothness and particle dispersibility of the obtained film. At least one selected from the group consisting of an amide-based solvent, a lactone-based solvent, and a pyrrolidone-based solvent from the viewpoint of easily increasing heat resistance and mechanical properties and easily reducing the linear expansion coefficient (hereinafter, may be referred to as CTE). It is preferable that the number is one. Further, the polymer (B) dispersion liquid may contain water, an alcohol solvent, a ketone solvent, an acyclic ester solvent, an ether solvent and the like. The second solvent can be used alone or in combination of two or more. When the composition is produced by the preferred method described later, the second solvent is preferably a solvent capable of producing the particulate polymer (B) by contact with the polymer (B) solution.
 本発明の一実施形態において、第2溶媒は、ポリマー(B)が溶解しない溶媒であることが好ましい。このような溶媒であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、CTEを低減しやすい。ここで、本明細書では、「溶解する」か「溶解しない」かの評価は、実施例における<溶解性の評価>に記載の方法に従って行うことができる。 In one embodiment of the present invention, the second solvent is preferably a solvent in which the polymer (B) does not dissolve. With such a solvent, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE. Here, in the present specification, the evaluation of "dissolving" or "not dissolving" can be performed according to the method described in <Evaluation of solubility> in Examples.
 本発明の一実施形態において、第2溶媒とポリマー(B)とのHSP値間距離が、ポリマー(B)の相互作用半径よりも大きいことが好ましい。このような関係であると、ポリマー(B)が第2溶媒に溶解されにくいため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、CTEを低減しやすい。なお、本明細書において、相互作用半径とは、ある特定のポリマーを溶解し得る複数の溶媒、すなわち良溶媒のハンセン溶解度パラメータを3次元のHSP空間にプロットすると、各良溶媒のプロットは互いに似たところ、言い換えると、近い位置、すなわち座標に球状に集まる傾向があり、その球、すなわちハンセンの溶解球の半径を指す。相互作用半径が大きい溶質は多くの溶媒に溶けやすく、相互作用半径が小さい溶質は少数の溶媒に溶けやすく、多数の溶媒に溶け難いといえる。未知の特定のポリマーに対しては、各種の溶媒が良溶媒であるか、貧溶媒であるかを、溶解性試験を行って調べ、その結果をHSPiPに入力することにより、当該ポリマーの相互作用半径が算出される。本明細書において、「相互作用半径」は上記に定義した通りであり、上記方法に従って求めることができる。 In one embodiment of the present invention, it is preferable that the distance between the HSP values of the second solvent and the polymer (B) is larger than the interaction radius of the polymer (B). With such a relationship, the polymer (B) is difficult to dissolve in the second solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersion is dispersible. Easy to increase. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE. In addition, in this specification, the interaction radius is a plurality of solvents capable of dissolving a specific polymer, that is, when the Hansen solubility parameter of a good solvent is plotted in a three-dimensional HSP space, the plots of the good solvents are similar to each other. In other words, it tends to gather in a spherical shape at a close position, that is, at the coordinates, and refers to the radius of the sphere, that is, the Hansen solubility sphere. It can be said that a solute having a large interaction radius is easily soluble in many solvents, and a solute having a small interaction radius is easily soluble in a small number of solvents and difficult to be soluble in many solvents. For a specific unknown polymer, it is investigated whether various solvents are good solvents or poor solvents by conducting a solubility test, and the results are input to HSPiP to interact with the polymers. The radius is calculated. In the present specification, the "radius of interaction" is as defined above and can be determined according to the above method.
 本発明の一実施形態において、第2溶媒は、樹脂(A)が溶解する溶媒であることが好ましい。このような溶媒であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、かつCTEを低減しやすい。また、該組成物から形成されたフィルムは後述の海島構造を形成しやすい。 In one embodiment of the present invention, the second solvent is preferably a solvent in which the resin (A) is dissolved. With such a solvent, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE. In addition, the film formed from the composition tends to form the sea-island structure described later.
 本発明の一実施形態において、第2溶媒と樹脂(A)とのHSP値距離は、好ましくは10.0以下、より好ましくは9.5以下、さらに好ましくは9.0以下、特に好ましくは8.5以下であり、好ましくは0.01以上、より好ましくは0.1以上である。該HSP値間距離が上記の上限以下であると、第2溶媒と樹脂(A)との親和性が向上し得るため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲耐性等の機械的特性を高めやすく、かつCTEを低減しやすい。 In one embodiment of the present invention, the HSP value distance between the second solvent and the resin (A) is preferably 10.0 or less, more preferably 9.5 or less, still more preferably 9.0 or less, and particularly preferably 8. It is 5.5 or less, preferably 0.01 or more, and more preferably 0.1 or more. When the distance between the HSP values is not more than the above upper limit, the affinity between the second solvent and the resin (A) can be improved, so that the formation of aggregates of the particulate polymer (B) can be easily suppressed, and the formation of aggregates can be easily suppressed. Since the particle size is easily reduced, it is easy to improve the dispersibility. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film, and it is easy to reduce CTE.
 本発明の一実施形態において、第2溶媒と樹脂(A)とのHSP値間距離は、樹脂(A)の相互作用半径よりも小さいことが好ましい。このような関係であると、樹脂(A)が第2溶媒に溶解されやすいため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、かつCTEを低減しやすい。 In one embodiment of the present invention, the distance between the HSP values of the second solvent and the resin (A) is preferably smaller than the interaction radius of the resin (A). With such a relationship, the resin (A) is easily dissolved in the second solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is good. Easy to increase. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
 <第1溶媒>
 本発明の組成物は第1溶媒を含有する。第1溶媒としては、例えばベンゼン、トルエン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、キシレン等の炭化水素系溶媒;ジクロロメタン、二塩化エチレン等のハロゲン化炭化水素系溶媒などが挙げられる。これらの中でも、炭化水素系溶媒が好ましい。第1溶媒が炭化水素系溶媒を含むと、ポリマー(B)と第1溶媒との溶解性が高まるため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。第1溶媒は単独又は二種以上を組合せて使用できる。
<First solvent>
The composition of the present invention contains a first solvent. Examples of the first solvent include hydrocarbon solvents such as benzene, toluene, pentane, hexane, heptane, cyclohexane and xylene; and halogenated hydrocarbon solvents such as dichloromethane and ethylene dichloride. Of these, hydrocarbon solvents are preferred. When the first solvent contains a hydrocarbon solvent, the solubility of the polymer (B) and the first solvent is increased, so that it is easy to suppress the formation of aggregates of the particulate polymer (B) and the particle size is reduced. It is easy to improve the dispersibility because it is easy to do. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE. The first solvent can be used alone or in combination of two or more.
 本発明の一実施形態において、第1溶媒はポリマー(B)が溶解する溶媒であることが好ましい。このような溶媒であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、かつCTEを低減しやすい。 In one embodiment of the present invention, the first solvent is preferably a solvent in which the polymer (B) is dissolved. With such a solvent, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
 本発明の一実施形態において、第1溶媒とポリマー(B)とのHSP値間距離が好ましくは4.0以下、より好ましくは3.0以下、さらに好ましくは2.5以下である。該HSP値間距離が上記の上限以下であると、第1溶媒とポリマー(B)との溶解性が高まるため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、かつCTEを低減しやすい。HSP値間距離の下限は通常0を超える。 In one embodiment of the present invention, the distance between the HSP values of the first solvent and the polymer (B) is preferably 4.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less. When the distance between the HSP values is not more than the above upper limit, the solubility of the first solvent and the polymer (B) is enhanced, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle diameter is also increased. Is easy to reduce, so it is easy to improve the dispersibility. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE. The lower limit of the distance between HSP values usually exceeds 0.
 本発明の一実施形態において、第1溶媒とポリマー(B)とのHSP値間距離が、ポリマー(B)の相互作用半径よりも小さいことが好ましい。このような関係であると、ポリマー(B)が第1溶媒に溶解されやすいため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、かつCTEを低減しやすい。 In one embodiment of the present invention, it is preferable that the distance between the HSP values of the first solvent and the polymer (B) is smaller than the interaction radius of the polymer (B). With such a relationship, the polymer (B) is easily dissolved in the first solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is good. Easy to increase. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
 本発明の一実施形態において、第1溶媒は、樹脂(A)が溶解しない溶媒であることが好ましい。このような溶媒であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、CTEを低減しやすい。 In one embodiment of the present invention, the first solvent is preferably a solvent in which the resin (A) does not dissolve. With such a solvent, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
 本発明の一実施形態において、第1溶媒と樹脂(A)とのHSP値間距離が、好ましくは5.0以上、より好ましくは6.0以上、さらに好ましくは7.0以上、さらにより好ましくは8.0以上、特に好ましくは9.0以上である。該HSP値間距離が上記の下限以上であると、樹脂(A)が第1溶媒に溶解されにくいため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、CTEを低減しやすい。第1溶媒と樹脂(A)とのHSP値間距離の上限は好ましくは30.0以下、より好ましくは27.0以下、さらに好ましくは25.0以下、さらにより好ましくは23.0以下、特に好ましくは21.0以下である。第1溶媒と樹脂(A)とのHSP値間距離が上記の上限以下であると、粒子状ポリマー(B)の凝集を抑制しやすいことから、粒子の分散性を向上しやすく、また得られるフィルムの粒子分散性を高めやすい。 In one embodiment of the present invention, the distance between the HSP values of the first solvent and the resin (A) is preferably 5.0 or more, more preferably 6.0 or more, still more preferably 7.0 or more, still more preferably. Is 8.0 or more, particularly preferably 9.0 or more. When the distance between the HSP values is not less than the above lower limit, the resin (A) is difficult to dissolve in the first solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B) and the particle size is reduced. It is easy to improve the dispersibility because it is easy to do. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE. The upper limit of the distance between the HSP values of the first solvent and the resin (A) is preferably 30.0 or less, more preferably 27.0 or less, still more preferably 25.0 or less, still more preferably 23.0 or less, and particularly. It is preferably 21.0 or less. When the distance between the HSP values of the first solvent and the resin (A) is not more than the above upper limit, it is easy to suppress the aggregation of the particulate polymer (B), so that the dispersibility of the particles can be easily improved and obtained. It is easy to improve the particle dispersibility of the film.
 本発明の一実施形態において、第1溶媒と樹脂(A)とのHSP値間距離が、樹脂(A)の相互作用半径よりも大きいことが好ましい。このような関係であると、樹脂(A)が第1溶媒に溶解されにくいため、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、CTEを低減しやすい。 In one embodiment of the present invention, it is preferable that the distance between the HSP values of the first solvent and the resin (A) is larger than the interaction radius of the resin (A). With such a relationship, the resin (A) is difficult to dissolve in the first solvent, so that it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersion is dispersible. Easy to increase. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE.
 本発明の一実施形態において、ポリマー(B)の第1溶媒に対する溶解度は、ポリマー(B)の第2溶媒に対する溶解度よりも大きいことが好ましい。このような関係であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲性等の機械的特性を高めやすく、かつCTEを低減しやすい。なお、ポリマー(B)の溶媒に対する溶解度は、以下の方法で測定できる。サンプル瓶にポリマー(B)1,000mgと溶媒3mLとを加え、室温下で2時間撹拌する。次いで、固相と液相とを濾過により分別し、固相を減圧下、80℃で2時間乾燥させた後の質量:X(mg)を測定し、下記式により、溶解度Y(mg/mL)を求めることができる。
   Y=(1,000-X)/3
 なお、例えば本明細書の定義で、ポリマー(B)が、第1溶媒に「溶解する」に相当し、第2溶媒に「溶解しない」に相当する場合、明らかに第1溶媒に対する溶解度の方が大きいため、溶解度を測定しなくてもよい。
In one embodiment of the present invention, the solubility of the polymer (B) in the first solvent is preferably greater than the solubility of the polymer (B) in the second solvent. With such a relationship, it is easy to suppress the formation of aggregates of the particulate polymer (B), and it is easy to reduce the particle size, so that it is easy to improve the dispersibility. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and flexibility of the obtained film, and it is easy to reduce CTE. The solubility of the polymer (B) in the solvent can be measured by the following method. Add 1,000 mg of polymer (B) and 3 mL of solvent to the sample bottle, and stir at room temperature for 2 hours. Next, the solid phase and the liquid phase were separated by filtration, and the solid phase was dried at 80 ° C. for 2 hours under reduced pressure, and then the mass: X (mg) was measured, and the solubility Y (mg / mL) was measured by the following formula. ) Can be obtained.
Y = (1,000-X) / 3
In addition, for example, in the definition of the present specification, when the polymer (B) corresponds to "soluble" in the first solvent and "insoluble" in the second solvent, the solubility in the first solvent is clearly higher. Therefore, it is not necessary to measure the solubility.
 本発明の一実施形態において、本発明の組成物に含まれる第1溶媒の含有量は、第2溶媒の含有量100質量部に対して、好ましくは120質量部以下、より好ましくは100質量部以下、さらに好ましくは60質量部以下、さらにより好ましくは45質量部以下、特に好ましくは40質量部以下、特により好ましくは35質量部以下、特にさらに好ましくは30質量部以下、特にさらにより好ましくは30質量部未満、最も好ましくは25質量部以下であり、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。第1溶媒の含有量が上記の上限以下であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。また、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。第1溶媒の含有量が上記の下限以上であると、組成物を調製しやすい。 In one embodiment of the present invention, the content of the first solvent contained in the composition of the present invention is preferably 120 parts by mass or less, more preferably 100 parts by mass, based on 100 parts by mass of the content of the second solvent. Below, more preferably 60 parts by mass or less, even more preferably 45 parts by mass or less, particularly preferably 40 parts by mass or less, particularly more preferably 35 parts by mass or less, particularly still more preferably 30 parts by mass or less, and particularly even more preferably. It is less than 30 parts by mass, most preferably 25 parts by mass or less, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, still more preferably 0.1 parts by mass or more. When the content of the first solvent is not more than the above upper limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE. When the content of the first solvent is at least the above lower limit, it is easy to prepare the composition.
 本発明の一実施形態において、本発明の組成物に含まれる溶媒の含有量は、該組成物の質量に対して、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは80質量%以上、特に好ましくは90質量%以上であり、好ましくは99質量%以下、より好ましくは97質量%以下、さらに好ましくは95質量%以下である。溶媒の含有量が上記の範囲であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。 In one embodiment of the present invention, the content of the solvent contained in the composition of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70 with respect to the mass of the composition. It is mass% or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, preferably 99% by mass or less, more preferably 97% by mass or less, still more preferably 95% by mass or less. When the content of the solvent is in the above range, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
 本発明の組成物に含まれる溶媒は、本発明の効果を損なわない範囲で、第1溶媒と第2溶媒以外の他の溶媒を含んでいてもよい。他の溶媒としては、特に限定されず、慣用の溶媒を使用することができる。本発明の一実施形態において、第1溶媒と第2溶媒との合計質量は、組成物に含まれる溶媒の質量に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、さらにより好ましくは95質量%以上であり、好ましくは100質量%以下である。第1溶媒と第2溶媒との合計質量が上記の範囲であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。 The solvent contained in the composition of the present invention may contain a solvent other than the first solvent and the second solvent as long as the effect of the present invention is not impaired. The other solvent is not particularly limited, and a conventional solvent can be used. In one embodiment of the present invention, the total mass of the first solvent and the second solvent is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably, with respect to the mass of the solvent contained in the composition. Is 90% by mass or more, more preferably 95% by mass or more, and preferably 100% by mass or less. When the total mass of the first solvent and the second solvent is in the above range, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. .. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
 <粒子状シクロオレフィン系ポリマー(B)>
 シクロオレフィン系ポリマー(B)を構成する単量体単位は、特に限定されないが、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、粒子分散性、耐熱性、耐吸水性、誘電特性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、ポリマー(B)は、式(I)
<Particulate cycloolefin polymer (B)>
The monomer unit constituting the cycloolefin polymer (B) is not particularly limited, but it is easy to suppress the formation of aggregates of the particulate polymer (B) and the particle size is easily reduced, so that the dispersibility is improved. The polymer (B) is a polymer (B) from the viewpoint of easy improvement, surface smoothness, particle dispersibility, heat resistance, water absorption resistance, dielectric property and mechanical property of the obtained film, and easy reduction of CTE. Equation (I)
Figure JPOXMLDOC01-appb-C000003
[式(I)中、mは0以上の整数を表し、
~R18は、互いに独立に、水素原子、ハロゲン原子又は炭素数1~20の炭化水素基を表し、R11~R14が複数存在する場合、それらは互いに独立に同一であってもよく、異なっていてもよく、R16とR17とは互いに結合し、それらが結合する炭素原子とともに環を形成してもよい]
で表されるシクロオレフィン由来の単量体単位(I)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000003
[In equation (I), m represents an integer of 0 or more,
R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and when a plurality of R 11 to R 14 are present, they are independently and identical to each other. Well, they may be different, and R 16 and R 17 may bond to each other and form a ring with the carbon atoms they bond to.]
It is preferable to contain the monomer unit (I) derived from cycloolefin represented by.
 式(I)において、mは0以上の整数である。粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲耐性等の機械的特性を高めやすく、かつCTEを低減しやすい観点、並びに入手も容易である観点からは、mの上限は好ましくは3以下の整数、より好ましくは2以下の整数、さらに好ましくは1以下の整数である。 In equation (I), m is an integer of 0 or more. From the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, the surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film are easy. The upper limit of m is preferably an integer of 3 or less, more preferably an integer of 2 or less, and further preferably 1 from the viewpoint of easily enhancing mechanical properties such as, and easily reducing CTE, and also being easily available. It is the following integer.
 R~R18の置換基の一員である炭素数1~20の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基等のアルキル基;フェニル基、トリル基、ナフチル基等のアリール基;ベンジル基、フェネチール基等のアラルキル基;上記アルキル基、アリール基及びアラルキル基の水素原子の一部がハロゲン原子で置換された基等が挙げられる。これらの中でも、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、粒子分散性、耐熱性、耐吸水性、誘電特性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、アルキル基、アリール基又はアラルキル基であることが好ましい。すなわち、R~R18は、水素原子、炭素数1~20のアルキル基、炭素数6~20のアリール基又は炭素数7~20のアラルキル基であることが好ましく、水素原子又は炭素数1~10のアルキル基であることがより好ましい。 Examples of the hydrocarbon group having 1 to 20 carbon atoms, which is a member of the substituents of R 7 to R 18 , include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group and a dodecyl group. An aryl group such as a phenyl group, a trill group, or a naphthyl group; an aralkyl group such as a benzyl group or a phenethyl group; a group in which a part of the hydrogen atom of the alkyl group, the aryl group or the aralkyl group is substituted with a halogen atom and the like can be mentioned. Be done. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the surface smoothness and particle dispersibility of the obtained film. Alkyl groups, aryl groups or aralkyl groups are preferable from the viewpoints that heat resistance, water absorption resistance, dielectric properties and mechanical properties can be easily enhanced and CTE can be easily reduced. That is, R 7 to R 18 are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, and are preferably a hydrogen atom or an aralkyl group having 1 to 20 carbon atoms. More preferably, it is an alkyl group of ~ 10.
 式(I)で表されるシクロオレフィンとしては、例えば、ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセンなどが挙げられる。これらの中でも、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲耐性等の機械的特性を高めやすく、かつCTEを低減しやすい観点、並びに原料モノマーの入手容易性の観点から、ノルボルネンであることが好ましい。式(I)で表されるシクロオレフィンは、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the cycloolefin represented by the formula (I) include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, tetracyclododecene and tricyclodecene. , Tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene and the like. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, the surface smoothness, the particle dispersibility, and the heat resistance of the obtained film are easy. Norbornene is preferable from the viewpoint of easily enhancing mechanical properties such as properties and bending resistance, easily reducing CTE, and easily obtaining a raw material monomer. The cycloolefin represented by the formula (I) may be used alone or in combination of two or more.
 本発明の一実施形態において、ポリマー(B)は、単量体単位(I)の二連鎖構造を含むことが好ましい。該二連鎖構造を含むことにより、単量体単位(I)の含有量が同程度のポリマーに比べて、耐熱性を向上しやすい。なお、二連鎖構造の有無は、13C-NMRスペクトル分析により判定することができる。例えば、テトラシクロデセン-エチレン共重合体の場合、テトラシクロデセンの孤立鎖であるエチレン-テトラシクロデセン-エチレン連鎖由来のシグナルは、54.7ppm付近及び51.1ppm付近に現れ、endo-exo結合のテトラシクロデセンの二連鎖であるエチレン-テトラシクロデセン-テトラシクロデセン-エチレン連鎖由来のシグナルは、51.5ppm付近及び50.8ppm付近に、exo-exo結合のエチレン-テトラシクロデセン-テトラシクロデセン-エチレン連鎖由来のシグナルは、55.3ppm付近及び54.3ppm付近に現れるので、55ppm近辺及び50ppm近辺のシグナルのパターンで判定することができる。 In one embodiment of the invention, the polymer (B) preferably comprises a two-chain structure of monomeric units (I). By including the two-chain structure, the heat resistance is likely to be improved as compared with a polymer having the same content of the monomer unit (I). The presence or absence of the two-chain structure can be determined by 13 C-NMR spectrum analysis. For example, in the case of a tetracyclodecene-ethylene copolymer, signals derived from the ethylene-tetracyclodecene-ethylene chain, which is an isolated chain of tetracyclodecene, appear at around 54.7 ppm and around 51.1 ppm, and endo-exo bond. Ethylene-tetracyclodecene-tetracyclodecene-ethylene chain-derived signals, which are two chains of tetracyclodecene, are located near 51.5 ppm and around 50.8 ppm, and are exo-exo-bonded ethylene-tetracyclodecene-tetracyclo. Since the signal derived from the decene-ethylene chain appears at around 55.3 ppm and around 54.3 ppm, it can be determined by the signal pattern around 55 ppm and around 50 ppm.
 単量体単位(I)の二連鎖構造には、下記構造式(II-1)又は下記構造式(II-2)で表されるメソ型二連鎖、及び/又は、下記構造式(III-1)又は下記構造式(III-2)で表されるラセモ型二連鎖が含まれる。 The two-chain structure of the monomer unit (I) includes a meso-type two-chain structure represented by the following structural formula (II-1) or the following structural formula (II-2), and / or the following structural formula (III-). 1) or a racemo type two chain represented by the following structural formula (III-2) is included.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 メソ型二連鎖とラセモ型二連鎖との比(以下、メソ型二連鎖/ラセモ型二連鎖と称することがある)は、好ましくは0.50以下、より好ましくは0.40以下、さらに好ましくは0.30以下、特に好ましくは0.20以下であり、好ましくは0.01以上、より好ましくは0.05以上である。メソ型二連鎖とラセモ型二連鎖との比が上記範囲であると、得られるフィルムの機械的特性及び耐熱性を高めやすい。メソ型二連鎖とラセモ型二連鎖との比は、例えば13C-NMRを用いて、「R.A.Wendt,G.Fink,Macromol.Chem.Phys.,2001,202,3490」及び「特開2008-285656号公報」に記載の帰属に基づいて算出でき、具体的には実施例に記載の方法により算出できる。なお、メソ型二連鎖とラセモ型二連鎖を上記範囲に調整する方法としては、モノマーの嵩高さに対して、適切な配位子の広さを持った触媒を選択する方法等がある。前記触媒としては、例えば、特開平9-183809号公報に記載された触媒を用いることができる。 The ratio of the meso-type two-chain to the racemo-type two-chain (hereinafter, may be referred to as meso-type two-chain / racemo-type two-chain) is preferably 0.50 or less, more preferably 0.40 or less, still more preferably. It is 0.30 or less, particularly preferably 0.20 or less, preferably 0.01 or more, and more preferably 0.05 or more. When the ratio of the meso-type two-chain to the racemic-type two-chain is within the above range, the mechanical properties and heat resistance of the obtained film can be easily improved. The ratio of the meso-type two-chain to the racemic-type two-chain is, for example, using 13 C-NMR in "RA Wendt, G. Fink, Macromol. Chem. Phys., 2001, 202, 3490" and "Special. It can be calculated based on the attribution described in "Kai 2008-285656", and specifically, it can be calculated by the method described in Examples. As a method for adjusting the meso-type two-chain and the racemo-type two-chain within the above range, there is a method of selecting a catalyst having an appropriate ligand width with respect to the bulkiness of the monomer. As the catalyst, for example, the catalyst described in JP-A-9-183809 can be used.
 ポリマー(B)における前記単量体単位(I)の含有量は、ポリマー(B)を構成する繰り返し単位の合計モル量に対して、好ましくは60mol%以上、より好ましくは65mol%以上、さらに好ましくは70mol%以上、特に好ましくは75mol%以上であり、好ましくは100mol%以下、より好ましくは99mol%以下、さらに好ましくは98mol%以下である。単量体単位(I)の含有量が上記の下限以上であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすいため、得られるフィルムの表面平滑性を向上しやすい。さらに、ガラス転移温度(以下、Tgと称することがある)を高めやすいため、得られるフィルムのCTEを低減しやすく、かつ耐熱性及び屈曲耐性等の機械的特性を高めやすい。単量体単位(I)の含有量が上記の上限以下であると、屈曲耐性等の機械的特性を高めやすい。単量体単位(I)の含有量は、13C-NMRを用いて、「R.A.Wendt,G.Fink,Macromol.Chem.Phys.,2001,202,3490」に記載の帰属に基づいて算出でき、例えば実施例に記載の方法により算出できる。 The content of the monomer unit (I) in the polymer (B) is preferably 60 mol% or more, more preferably 65 mol% or more, still more preferably 65 mol% or more, based on the total molar amount of the repeating units constituting the polymer (B). Is 70 mol% or more, particularly preferably 75 mol% or more, preferably 100 mol% or less, more preferably 99 mol% or less, still more preferably 98 mol% or less. When the content of the monomer unit (I) is at least the above lower limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. Therefore, it is easy to improve the surface smoothness of the obtained film. Further, since it is easy to raise the glass transition temperature (hereinafter, may be referred to as Tg), it is easy to reduce the CTE of the obtained film, and it is easy to improve the mechanical properties such as heat resistance and bending resistance. When the content of the monomer unit (I) is not more than the above upper limit, it is easy to enhance mechanical properties such as bending resistance. The content of the monomeric unit (I) is based on the attribution described in "RA Wendt, G. Fink, Macromol. Chem. Phys., 2001, 202, 3490" using 13 C-NMR. It can be calculated, for example, by the method described in Examples.
 ポリマー(B)は、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、粒子分散性及び屈曲耐性等の機械的特性を高めやすく、かつCTEを低減しやすい観点から、エチレン、炭素数3~20の直鎖状α-オレフィン、及び炭素数8~20の芳香族ビニル化合物からなる群から選択される少なくとも1つに由来する単量体単位(II)を含むことが好ましく、エチレンに由来する単量体単位(II)を含むことがより好ましい。 The polymer (B) can easily suppress the formation of aggregates of the particulate polymer (B), and can easily improve the dispersibility because the particle size is easily reduced, as well as the surface smoothness of the obtained film and the particles. From ethylene, linear α-olefins having 3 to 20 carbon atoms, and aromatic vinyl compounds having 8 to 20 carbon atoms, from the viewpoint of easily enhancing mechanical properties such as dispersibility and bending resistance and easily reducing CTE. It is preferable to contain a monomer unit (II) derived from at least one selected from the group, and more preferably to contain a monomer unit (II) derived from ethylene.
 炭素数3~20の直鎖状α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン等が挙げられる。これらの中でも、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、粒子分散性及び屈曲耐性等の機械的特性を高めやすく、かつCTEを低減しやすい観点から、プロピレン、1-ブテン、1-ヘキセン又は1-オクテンであることが好ましく、プロピレンであることがより好ましい。炭素数3~20の直鎖状α-オレフィンは、1種を単独で用いてもよいし、2種以上を併用してもよい。なお、「直鎖状α-オレフィン」とは、α位に炭素-炭素不飽和二重結合を有する直鎖状のオレフィンをいう。 Examples of the linear α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. .. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the surface smoothness and particle dispersibility of the obtained film. And, from the viewpoint of easily enhancing mechanical properties such as bending resistance and easily reducing CTE, propylene, 1-butene, 1-hexene or 1-octene is preferable, and propylene is more preferable. As the linear α-olefin having 3 to 20 carbon atoms, one type may be used alone, or two or more types may be used in combination. The "linear α-olefin" refers to a linear olefin having a carbon-carbon unsaturated double bond at the α-position.
 炭素数8~20の芳香族ビニル化合物としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、エチルスチレン、tert-ブチルスチレン、ビニルナフタレン、ビニルアントラセン、ジフェニルエチレン、イソプロペニルベンゼン、イソプロペニルトルエン、イソプロペニルエチルベンゼン、イソプロペニルプロピルベンゼン、イソプロペニルブチルベンゼン、イソプロペニルペンチルベンゼン、イソプロペニルヘキシルベンゼン、イソプロペニルオクチルベンゼン、イソプロペニルナフタレン、イソプロペニルアントラセン等が挙げられる。これらの中でも、原料モノマーの入手容易性、及びフィルムのCTEを低減しやすく、かつ屈曲耐性等の機械的特性を高めやすい観点から、好ましくはスチレン、メチルスチレンまたはジメチルスチレン、より好ましくはスチレンである。炭素数8~20の芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the aromatic vinyl compound having 8 to 20 carbon atoms include styrene, methylstyrene, dimethylstyrene, ethylstyrene, tert-butylstyrene, vinylnaphthalene, vinylanthracene, diphenylethylene, isopropenylbenzene, isopropenyltoluene and isopropenyl. Examples thereof include ethylbenzene, isopropenylpropylbenzene, isopropenylbutylbenzene, isopropenylpentylbenzene, isopropenylhexylbenzene, isopropenyloctylbenzene, isopropenylnaphthalene, isopropenylanthracene and the like. Among these, styrene, methylstyrene or dimethylstyrene is preferable, and styrene is more preferable, from the viewpoints of easy availability of the raw material monomer, easy reduction of CTE of the film, and easy improvement of mechanical properties such as bending resistance. .. As the aromatic vinyl compound having 8 to 20 carbon atoms, one kind may be used alone, or two or more kinds may be used in combination.
 本発明の一実施形態において、ポリマー(B)は、原料モノマーの入手容易性、及びフィルムのCTEを低減しやすく、かつ屈曲耐性等の機械的特性を高めやすい観点から、エチレン、プロピレン及びスチレンからなる群から選択される少なくとも1つに由来する単量体単位(II)、より好ましくはエチレン及びスチレンからなる群から選択される少なくとも1つに由来する単量体単位(II)を含むことが好ましい。 In one embodiment of the present invention, the polymer (B) is made from ethylene, propylene and styrene from the viewpoints of easy availability of a raw material monomer, easy reduction of CTE of a film, and easy improvement of mechanical properties such as bending resistance. It may contain a monomer unit (II) derived from at least one selected from the group consisting of ethylene and styrene, more preferably a monomer unit (II) derived from at least one selected from the group consisting of ethylene and styrene. preferable.
 ポリマー(B)における前記単量体単位(II)の含有量は、ポリマー(B)を構成する繰り返し単位の合計モル量に対して、好ましくは0mol%以上、より好ましくは0.01mol%以上、さらに好ましくは1mol%以上、さらにより好ましくは2mol%以上であり、好ましくは40mol%以下、より好ましくは35mol%以下、さらに好ましくは30mol%以下、特に好ましくは25mol%以下である。単量体単位(II)の含有量が上記の下限以上であると、得られるフィルムの加工性、成形性及び屈曲耐性等の機械的特性を高めやすい。単量体単位(II)の含有量が上記の上限以下であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲耐性等の機械的特性を高めやすく、かつCTEを低減しやすい。 The content of the monomer unit (II) in the polymer (B) is preferably 0 mol% or more, more preferably 0.01 mol% or more, based on the total molar amount of the repeating units constituting the polymer (B). It is more preferably 1 mol% or more, still more preferably 2 mol% or more, preferably 40 mol% or less, more preferably 35 mol% or less, still more preferably 30 mol% or less, and particularly preferably 25 mol% or less. When the content of the monomer unit (II) is at least the above lower limit, it is easy to improve the mechanical properties such as processability, moldability and bending resistance of the obtained film. When the content of the monomer unit (II) is not more than the above upper limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. .. Further, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film, and it is easy to reduce CTE.
 本発明の一実施形態において、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、粒子分散性、加工性、耐熱性及び屈曲耐性等の機械的特性を高めやすく、かつCTEを低減しやすい観点から、ポリマー(B)は、シクロオレフィン系コポリマーであることが好ましく、式(I)で表されるシクロオレフィン由来の単量体単位(I)とエチレン、炭素数3~20の直鎖状α-オレフィン及び炭素数8~20の芳香族ビニル化合物からなる群から選択される少なくとも1つに由来する単量体単位(II)とを含むシクロオレフィン系コポリマーであることがより好ましく、ノルボルネンに由来する単量体単位(I)とエチレンに由来する単量体単位(II)とを含むエチレン-ノルボルネン共重合体、又はノルボルネンに由来する単量体単位(I)とスチレンに由来する単量体単位(II)とを含むスチレン-ノルボルネン共重合体であることがさらに好ましい。 In one embodiment of the present invention, the formation of aggregates of the particulate polymer (B) is easily suppressed, the particle size is easily reduced, so that the dispersibility is easily improved, and the surface smoothness of the obtained film is smooth. The polymer (B) is preferably a cycloolefin-based copolymer from the viewpoint of easily enhancing mechanical properties such as particle dispersibility, processability, heat resistance and bending resistance, and easily reducing CTE, and formula (I). ), At least selected from the group consisting of the monomer unit (I) derived from the cycloolefin represented by), ethylene, a linear α-olefin having 3 to 20 carbon atoms, and an aromatic vinyl compound having 8 to 20 carbon atoms. A cycloolefin-based polymer containing a monomer unit (II) derived from one is more preferable, and a monomer unit (I) derived from norbornen and a monomer unit (II) derived from ethylene are used. It is more preferable to use an ethylene-norbornene copolymer containing the above, or a styrene-norbornene copolymer containing a monomer unit (I) derived from norbornen and a monomer unit (II) derived from styrene.
 ポリマー(B)は、その他の単量体単位(III)を含んでいてもよい。その他の単量体単位(III)としては、例えば、ブタジエン又はイソプレン等の共役ジエン;1,4-ペンタジエン等の非共役ジエン;アクリル酸;アクリル酸メチル又はアクリル酸エチル等のアクリル酸エステル;メタクリル酸;メタクリル酸メチル又はメタクリル酸エチル等のメタクリル酸エステル;酢酸ビニル等が挙げられる。その他の単量体単位(III)は単独又は二種以上を組合せて使用できる。
 なお、ポリマー(B)は単独又は二種以上を組合せて使用できる。
The polymer (B) may contain other monomeric units (III). Other monomeric units (III) include, for example, conjugated diene such as butadiene or isoprene; non-conjugated diene such as 1,4-pentadien; acrylic acid; acrylic acid ester such as methyl acrylate or ethyl acrylate; methacrylic. Acids; methacrylic acid esters such as methyl methacrylate or ethyl methacrylate; vinyl acetate and the like. The other monomer unit (III) can be used alone or in combination of two or more.
The polymer (B) can be used alone or in combination of two or more.
 本発明の一実施形態において、ポリマー(B)の重量平均分子量(以下、重量平均分子量をMwと略すことがある)は、好ましくは30,000以上、より好ましくは50,000以上、さらに好ましくは70,000以上、特に好ましくは90,000以上であり、好ましくは2,000,000以下、より好ましくは1,000,000以下、さらに好ましくは700,000以下である。Mwが上記の下限以上であると、フィルムの耐熱性を高めやすく、かつ強度を向上しやすい。Mwが上記の上限以下であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。さらに、フィルムの機械的特性及び成形性を高めやすい。 In one embodiment of the present invention, the weight average molecular weight of the polymer (B) (hereinafter, the weight average molecular weight may be abbreviated as Mw) is preferably 30,000 or more, more preferably 50,000 or more, still more preferably. It is 70,000 or more, particularly preferably 90,000 or more, preferably 2,000,000 or less, more preferably 1,000,000 or less, still more preferably 700,000 or less. When Mw is at least the above lower limit, the heat resistance of the film is likely to be increased and the strength is likely to be improved. When Mw is not more than the above upper limit, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced, so that the dispersibility is likely to be improved. Further, it is easy to improve the mechanical properties and moldability of the film.
 本発明の一実施形態において、ポリマー(B)のMwと数平均分子量(以下、数平均分子量をMnと略すことがある)との比(Mw/Mn)は、ポリスチレン換算で、好ましくは2.5以下、より好ましくは2.2以下、さらに好ましくは2.0以下、さらにより好ましくは1.95以下、特に好ましくは1.90以下であり、好ましくは1.30以上、より好ましくは1.50以上、さらに好ましくは1.60以上、特に好ましくは1.65以上である。Mw/Mn比が上記の上限以下であると、フィルムの機械的特性を高めやすい。また、Mw/Mn比が上記の下限以上であると成形性を高めやすい。なお、Mw及びMnは、ゲルパーミエーションクロマトグラフィー(以下、GPCと略すことがある)測定を行い、標準ポリスチレン換算により求めることができ、例えば実施例に記載の方法により求められる。 In one embodiment of the present invention, the ratio (Mw / Mn) of Mw of the polymer (B) to the number average molecular weight (hereinafter, the number average molecular weight may be abbreviated as Mn) is preferably 2. 5 or less, more preferably 2.2 or less, still more preferably 2.0 or less, even more preferably 1.95 or less, particularly preferably 1.90 or less, preferably 1.30 or more, still more preferably 1. It is 50 or more, more preferably 1.60 or more, and particularly preferably 1.65 or more. When the Mw / Mn ratio is not more than the above upper limit, it is easy to improve the mechanical properties of the film. Further, when the Mw / Mn ratio is at least the above lower limit, the moldability is likely to be improved. In addition, Mw and Mn can be determined by gel permeation chromatography (hereinafter, may be abbreviated as GPC) measurement and converted to standard polystyrene, and can be determined, for example, by the method described in Examples.
 本発明の一実施形態において、CTEが低減されたフィルムが得られやすい観点から、ポリマー(B)の屈折率は、好ましくは1.600以下、より好ましくは1.570以下、さらに好ましくは1.550以下であり、好ましくは1.500以上、より好ましくは1.520以上である。ポリマー(B)の屈折率は屈折計により測定でき、例えば実施例に記載の方法により測定できる。 In one embodiment of the present invention, the refractive index of the polymer (B) is preferably 1.600 or less, more preferably 1.570 or less, still more preferably 1. It is 550 or less, preferably 1.500 or more, and more preferably 1.520 or more. The refractive index of the polymer (B) can be measured by a refractometer, for example, by the method described in Examples.
 本発明の一実施形態において、ポリマー(B)のCTEは、好ましくは58ppm/K以下、より好ましくは55ppm/K以下、さらに好ましくは50ppm/K以下であり、好ましくは0ppm/K以上、より好ましくは0.01ppm/K以上、さらに好ましくは1ppm/K以上、さらにより好ましくは5ppm/K以上である。ポリマー(B)のCTEが上記の上限以下であると、得られるフィルムのCTEを低減しやすい。また、銅フィルムと貼り合せて銅張積層板を作製する場合には、積層フィルムの剥がれ防止の観点から、フィルムのCTEを20ppm/K前後に調整することが好ましい。混合する樹脂のCTEに応じて、最適なCTEを有するポリマー(B)を選択することができる。なお、CTEは、例えば熱機械分析(以下、TMAと称することがある)により測定でき、実施例に記載の方法により求められる。 In one embodiment of the present invention, the CTE of the polymer (B) is preferably 58 ppm / K or less, more preferably 55 ppm / K or less, still more preferably 50 ppm / K or less, preferably 0 ppm / K or more, more preferably. Is 0.01 ppm / K or more, more preferably 1 ppm / K or more, still more preferably 5 ppm / K or more. When the CTE of the polymer (B) is not more than the above upper limit, it is easy to reduce the CTE of the obtained film. Further, when a copper-clad laminate is produced by laminating with a copper film, it is preferable to adjust the CTE of the film to around 20 ppm / K from the viewpoint of preventing the laminated film from peeling off. The polymer (B) having the optimum CTE can be selected according to the CTE of the resin to be mixed. The CTE can be measured by, for example, thermomechanical analysis (hereinafter, may be referred to as TMA), and can be obtained by the method described in Examples.
 本発明の一実施形態において、ポリマー(B)のTg及び融点の少なくともいずれか一方は100℃以上であることが好ましい。ポリマー(B)のTgは、好ましくは100℃以上、より好ましくは140℃以上、さらに好ましくは160℃以上、さらにより好ましくは180℃以上、特に好ましくは200℃以上、特により好ましくは220℃以上、特にさらに好ましくは240℃以上、最も好ましくは260℃以上であり、好ましくは500℃以下、より好ましくは400℃以下、さらに好ましくは320℃以下である。また、ポリマー(B)が融点を有する結晶性ポリマーである場合、ポリマー(B)の融点が、好ましくは100℃以上、より好ましくは140℃以上、さらに好ましくは160℃以上、さらにより好ましくは180℃以上、特に好ましくは200℃以上、特により好ましくは220℃以上、特にさらに好ましくは240℃以上、最も好ましくは260℃以上であり、好ましくは500℃以下、より好ましくは400℃以下、さらに好ましくは350℃以下である。ポリマー(B)のTg及び融点の少なくともいずれか一方が上記の下限以上であると、粒子状のポリマー(B)の合一を防ぎやすく、粒子状ポリマー(B)の分散性を高めやすいため、フィルムのCTEを低減しやすく、かつ耐熱性及び屈曲耐性等の機械的特性を高めやすい。ポリマー(B)のTg及び融点の少なくともいずれか一方が上記の上限以下であると、粒子状のポリマー(B)が溶媒に均一に溶解し、凝集や溶け残りを防ぎやすく、粒子状ポリマー(B)分散性を高めやすく、かつ機械的特性、特に反復屈曲耐性が高めやすい。ポリマー(B)のTgは、JIS K 7196に基づき、TMAにより測定した軟化温度であり、例えば実施例に記載の方法により測定できる。なお、ポリマー(B)のTg及び融点を調整する方法は、特に限定されないが、例えば単量体単位(I)の含有量、ポリマー(B)のMw、結晶化度等を適宜調整する方法が挙げられる。単量体単位(I)の含有量、ポリマー(B)のMw、及び結晶化度からなる群から選択される少なくとも1つが大きくなるほど、ポリマー(B)のTg及び融点が高くなる傾向がある。ポリマー(B)の融点は、例えば示差走査熱量計(DSC、株式会社日立ハイテクサイエンス製)を用いて、これにより得られる融解曲線から融解ピーク温度を測定することにより求めることができる。 In one embodiment of the present invention, at least one of the Tg and the melting point of the polymer (B) is preferably 100 ° C. or higher. The Tg of the polymer (B) is preferably 100 ° C. or higher, more preferably 140 ° C. or higher, still more preferably 160 ° C. or higher, still more preferably 180 ° C. or higher, particularly preferably 200 ° C. or higher, and particularly more preferably 220 ° C. or higher. In particular, it is more preferably 240 ° C. or higher, most preferably 260 ° C. or higher, preferably 500 ° C. or lower, more preferably 400 ° C. or lower, still more preferably 320 ° C. or lower. When the polymer (B) is a crystalline polymer having a melting point, the melting point of the polymer (B) is preferably 100 ° C. or higher, more preferably 140 ° C. or higher, still more preferably 160 ° C. or higher, still more preferably 180 ° C. or higher. ° C. or higher, particularly preferably 200 ° C. or higher, particularly more preferably 220 ° C. or higher, particularly still more preferably 240 ° C. or higher, most preferably 260 ° C. or higher, preferably 500 ° C. or lower, still more preferably 400 ° C. or lower, still more preferable. Is 350 ° C. or lower. When at least one of the Tg and the melting point of the polymer (B) is at least one of the above lower limit, it is easy to prevent the coalescence of the particulate polymer (B) and to improve the dispersibility of the particulate polymer (B). It is easy to reduce the CTE of the film and to improve the mechanical properties such as heat resistance and bending resistance. When at least one of the Tg and the melting point of the polymer (B) is not more than the above upper limit, the particulate polymer (B) is uniformly dissolved in the solvent, and it is easy to prevent aggregation and undissolved residue, and the particulate polymer (B) ) It is easy to improve the dispersibility, and it is easy to improve the mechanical properties, especially the resistance to repeated bending. The Tg of the polymer (B) is the softening temperature measured by TMA based on JIS K7196, and can be measured by, for example, the method described in Examples. The method for adjusting the Tg and melting point of the polymer (B) is not particularly limited, but for example, a method for appropriately adjusting the content of the monomer unit (I), the Mw of the polymer (B), the degree of crystallinity, and the like can be used. Can be mentioned. The larger the content of the monomer unit (I), the Mw of the polymer (B), and at least one selected from the group consisting of the degree of crystallinity, the higher the Tg and melting point of the polymer (B) tend to be. The melting point of the polymer (B) can be determined by measuring the melting peak temperature from the melting curve obtained by using, for example, a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Corporation).
 本発明における組成物中の粒子状ポリマー(B)のメジアン径は、好ましくは0.01μm以上、より好ましくは0.03μm以上、さらに好ましくは0.05μm以上であり、好ましくは15μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下、さらにより好ましくは3μm以下、特に好ましくは1μm以下、特により好ましくは0.8μm以下、特にさらに好ましくは0.5μm以下である。組成物中の粒子状ポリマー(B)のメジアン径が上記の下限以上であると、組成物から形成されるフィルムの誘電特性を高めやすく、またフィルムを製造しやすい。組成物中の粒子状ポリマー(B)のメジアン径が上記の上限以下であると、組成物から形成されるフィルムの粒子分散性、表面平滑性、耐吸水性及び屈曲耐性等の機械的特性を高めやすい。組成物中の粒子状ポリマー(B)のメジアン径を求める方法は特に限定されないが、例えば遠心沈式粒度分布測定装置や超音波減衰式粒度分布測定装置により求めることができる。また、粒子状ポリマー(B)の粒子径に影響を及ぼさない範囲の量で、樹脂(A)を粒子状ポリマー(B)分散液に添加して組成物を形成する場合、予め、該分散液中の粒子状ポリマー(B)のメジアン径を測定し、これを該組成物中の粒子状ポリマー(B)のメジアン径とすることができる。なお、本明細書において、メジアン径とはD50とも称され、その値よりもサイズの小さい側の粒子状ポリマー(B)の粒子数と、大きい側の粒子数とが等しくなる値を示す。また、本明細書において、「粒子径」は、特記しない限り、粒子状ポリマー(B)のメジアン径及び/又は平均一次粒子径を含む意味である。 The median diameter of the particulate polymer (B) in the composition in the present invention is preferably 0.01 μm or more, more preferably 0.03 μm or more, still more preferably 0.05 μm or more, preferably 15 μm or less, more preferably. Is 10 μm or less, more preferably 5 μm or less, still more preferably 3 μm or less, particularly preferably 1 μm or less, particularly more preferably 0.8 μm or less, and particularly still more preferably 0.5 μm or less. When the median diameter of the particulate polymer (B) in the composition is at least the above lower limit, it is easy to improve the dielectric properties of the film formed from the composition, and it is easy to manufacture the film. When the median diameter of the particulate polymer (B) in the composition is not more than the above upper limit, mechanical properties such as particle dispersibility, surface smoothness, water absorption resistance and bending resistance of the film formed from the composition are deteriorated. Easy to raise. The method for determining the median diameter of the particulate polymer (B) in the composition is not particularly limited, but can be determined by, for example, a centrifugal sedimentation type particle size distribution measuring device or an ultrasonic attenuation type particle size distribution measuring device. Further, when the resin (A) is added to the particulate polymer (B) dispersion in an amount within a range that does not affect the particle size of the particulate polymer (B) to form a composition, the dispersion is prepared in advance. The median diameter of the particulate polymer (B) in the composition can be measured and used as the median diameter of the particulate polymer (B) in the composition. In the present specification, the median diameter is also referred to as D50, and indicates a value in which the number of particles of the particulate polymer (B) on the side smaller than the value is equal to the number of particles on the side larger than the value. Further, in the present specification, "particle diameter" means to include the median diameter and / or the average primary particle diameter of the particulate polymer (B) unless otherwise specified.
 <シクロオレフィン系ポリマー(B)の製造方法>
 ポリマー(B)は、市販品を用いてもよく、製造方法は特に限定されないが、式(IV)で表される遷移金属錯体(α)を一成分として使用してなる触媒の存在下、ポリマー(B)を形成する単量体、例えば式(I)で表されるシクロオレフィン、前記エチレン、炭素数3~20の直鎖状α-オレフィン、及び炭素数8~20の芳香族ビニル化合物からなる群から選ばれる少なくとも1つの単量体、及び任意に前記その他の単量体を重合させることにより製造することが好ましい。本発明におけるポリマー(B)の製造では、式(IV)で表される遷移金属錯体(α)を用いるため、ポリマー(B)中の単量体単位(I)の含有量を顕著に増加させやすく、Tgを上記範囲内に調整しやすい。
<Manufacturing method of cycloolefin polymer (B)>
As the polymer (B), a commercially available product may be used, and the production method is not particularly limited, but the polymer is a polymer in the presence of a catalyst using the transition metal complex (α) represented by the formula (IV) as one component. From the monomer forming (B), for example, the cycloolefin represented by the formula (I), the ethylene, the linear α-olefin having 3 to 20 carbon atoms, and the aromatic vinyl compound having 8 to 20 carbon atoms. It is preferably produced by polymerizing at least one monomer selected from the group, and optionally the other monomer. In the production of the polymer (B) in the present invention, since the transition metal complex (α) represented by the formula (IV) is used, the content of the monomer unit (I) in the polymer (B) is significantly increased. It is easy to adjust Tg within the above range.
Figure JPOXMLDOC01-appb-C000005

[式(IV)中、Mは元素の周期律表の第4族の遷移金属元素を表し、
Cpはシクロペンタジエニル骨格を有する基を表し、
Aは元素の周期律表の第16族の原子を表し、
Tは元素の周期律表の第14族の原子を表し、
及びDは、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基又は炭素数2~20の2置換アミノ基を表し、それらは同一であってもよく、異なってもよい。
~Rは水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~20の2置換アミノ基又は炭素数1~20のシリル基を表し、それらは同一であってもよく、異なってもよく、さらにそれらは任意に結合して環を形成してもよい。]
Figure JPOXMLDOC01-appb-C000005

[In equation (IV), M represents a Group 4 transition metal element in the Periodic Table of the Elements.
Cp represents a group having a cyclopentadienyl skeleton and represents
A represents a group 16 atom in the periodic table of elements,
T represents an atom of Group 14 in the periodic table of elements.
D 1 and D 2 are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 6 to 20 carbon atoms. It represents an aryloxy group or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different.
R 1 to R 6 are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms. Represents an oxy group, a disubstituted amino group having 2 to 20 carbon atoms or a silyl group having 1 to 20 carbon atoms, which may be the same or different, and they may be arbitrarily bonded to form a ring. You may. ]
 Mは、元素の周期律表(IUPAC無機化学命名法改訂版1989)の第4族の遷移金属元素であり、例えば、チタニウム原子、ジルコニウム原子、ハフニウム原子等が挙げられる。 M is a transition metal element of Group 4 of the Periodic Table of Elements (IUPAC Inorganic Chemistry Naming Method Revised Edition 1989), and examples thereof include a titanium atom, a zirconium atom, and a hafnium atom.
 Cpは、シクロペンタジエニル骨格を有する基であり、例えば、シクロペンタジエニル、置換シクロペンタジエニル、インデニル、置換インデニル、フルオレニル、置換フルオレニル等が挙げられる。具体例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、n-プロピルシクロペンタジエニル基、n-ブチルシクロペンタジエニル基、イソブチルシクロペンタジエニル基、フェニルシクロペンタジエニル基、インデニル基、メチルインデニル基、n-プロピルインデニル基、n-ブチルインデニル基、イソブチルインデニル基、フェニルインデニル基、フルオレニル基、メチルフルオレニル基、n-プロピルフルオレニル基、フェニルフルオレニル基、ジメチルフルオレニル基等が挙げられる。これらの中でも、好ましくはシクロペンタジエニル基、メチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、n-ブチルシクロペンタジエニル基、イソブチルシクロペンタジエニル基、インデニル基、メチルインデニル基又はフルオレニル基が挙げられる。 Cp is a group having a cyclopentadienyl skeleton, and examples thereof include cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl, substituted fluorenyl and the like. Specific examples include a cyclopentadienyl group, a methylcyclopentadienyl group, a tetramethylcyclopentadienyl group, an n-propylcyclopentadienyl group, an n-butylcyclopentadienyl group, and an isobutylcyclopentadienyl group. , Phenylcyclopentadienyl group, indenyl group, methylindenyl group, n-propylindenyl group, n-butylindenyl group, isobutylindenyl group, phenylindenyl group, fluorenyl group, methylfluorenyl group, n -A propylfluorenyl group, a phenylfluorenyl group, a dimethylfluorenyl group and the like can be mentioned. Among these, preferably a cyclopentadienyl group, a methylcyclopentadienyl group, a tetramethylcyclopentadienyl group, an n-butylcyclopentadienyl group, an isobutylcyclopentadienyl group, an indenyl group, a methylindenyl group. Alternatively, a fluorenyl group may be mentioned.
 Aは、元素の周期律表の第16族の原子であり、例えば、酸素原子、硫黄原子等が挙げられる。これらの中でも、酸素原子であることが好ましい。 A is an atom of Group 16 in the periodic table of elements, and examples thereof include an oxygen atom and a sulfur atom. Among these, an oxygen atom is preferable.
 Tは、元素の周期律表の第14族の原子であり、例えば、炭素原子、ケイ素原子、ゲルマニウム原子等が挙げられる。これらの中でも、炭素原子又はケイ素原子であることが好ましい。 T is an atom of Group 14 of the periodic table of elements, and examples thereof include a carbon atom, a silicon atom, and a germanium atom. Among these, a carbon atom or a silicon atom is preferable.
 D、Dは、互いに独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基又は炭素数2~20の2置換アミノ基であり、それらは同一であってもよく、異なってもよい。これらの中でも、ハロゲン原子であることが好ましい。 D 1 and D 2 are independent of each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. It is an aryloxy group of 6 to 20 or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different. Among these, a halogen atom is preferable.
 D、Dがハロゲン原子である場合の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Specific examples of cases where D 1 and D 2 are halogen atoms include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 D、Dが炭化水素基である場合、その炭素数は好ましくは1~10である。前記炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-オクチル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、ナフチル基、ベンジル基等が挙げられる。 When D 1 and D 2 are hydrocarbon groups, the number of carbon atoms thereof is preferably 1 to 10. Examples of the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and n-hexyl. Examples thereof include a group, an n-octyl group, a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a naphthyl group, a benzyl group and the like.
 D、Dがハロゲン化炭化水素基である場合の具体例としては、フルオロメチル基、ジフルオロメチル基、1-フルオロエチル基、1,1-ジフルオロエチル基、1,2-ジフルオロエチル基、1,1,2-トリフルオロエチル基、テトラフルオロエチル基、クロロメチル基、ジクロロメチル基、1-クロロエチル基、1,1-ジクロロエチル基、1,2-ジクロロエチル基、1,1,2-トリクロロエチル基、1,1,2,2-テトラクロロエチル基、ブロモメチル基、ジブロモメチル基、1-ブロモエチル基、1,1-ジブロモエチル基、1,2-ジブロモエチル基、1,1,2-トリブロモエチル基、1,1,2,2-テトラブロモエチル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,3,4-トリフルオロフェニル基、2,3,5-トリフルオロフェニル基、2,3,6-トリフルオロフェニル基、2,3,4,5-テトラフルオロフェニル基、2,3,4,6-テトラフルオロフェニル基、ペンタフルオロフェニル基、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、2,3-ジクロロフェニル基、2,4-ジクロロフェニル基、2,5-ジクロロフェニル基、2,6-ジクロロフェニル基、2,3,4-トリクロロフェニル基、2,3,5-トリクロロフェニル基、2,3,6-トリクロロフェニル基、2,3,4,5-テトラクロロフェニル基、2,3,4,6-テトラクロロフェニル基、ペンタクロロフェニル基、2-ブロモフェニル基、3-ブロモフェニル基、4-ブロモフェニル基、2,3-ジブロモフェニル基、2,4-ジブロモフェニル基、2,5-ジブロモフェニル基、2,6-ジブロモフェニル基、2,3,4-トリブロモフェニル基、2,3,5-トリブロモフェニル基、2,3,6-トリブロモフェニル基、2,3,4,5-テトラブロモフェニル基、2,3,4,6-テトラブロモフェニル基、ペンタブロモフェニル基等が挙げられる。 Specific examples of cases where D 1 and D 2 are halogenated hydrocarbon groups include a fluoromethyl group, a difluoromethyl group, a 1-fluoroethyl group, a 1,1-difluoroethyl group, and a 1,2-difluoroethyl group. 1,1,2-trifluoroethyl group, tetrafluoroethyl group, chloromethyl group, dichloromethyl group, 1-chloroethyl group, 1,1-dichloroethyl group, 1,2-dichloroethyl group, 1,1,2 -Trichloroethyl group, 1,1,2,2-tetrachloroethyl group, bromomethyl group, dibromomethyl group, 1-bromoethyl group, 1,1-dibromoethyl group, 1,2-dibromoethyl group, 1,1,2 -Tribromoethyl group, 1,1,2,2-tetrabromoethyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,3-difluorophenyl group, 2,4-difluoro Phenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 2,3,4-trifluorophenyl group, 2,3,5-trifluorophenyl group, 2,3,6-trifluorophenyl Group, 2,3,4,5-tetrafluorophenyl group, 2,3,4,6-tetrafluorophenyl group, pentafluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2, 3-Dichlorophenyl group, 2,4-dichlorophenyl group, 2,5-dichlorophenyl group, 2,6-dichlorophenyl group, 2,3,4-trichlorophenyl group, 2,3,5-trichlorophenyl group, 2,3 6-Trichlorophenyl group, 2,3,4,5-tetrachlorophenyl group, 2,3,4,6-tetrachlorophenyl group, pentachlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl Group, 2,3-dibromophenyl group, 2,4-dibromophenyl group, 2,5-dibromophenyl group, 2,6-dibromophenyl group, 2,3,4-tribromophenyl group, 2,3,5 -Tribromophenyl group, 2,3,6-tribromophenyl group, 2,3,4,5-tetrabromophenyl group, 2,3,4,6-tetrabromophenyl group, pentabromophenyl group and the like. Be done.
 D、Dがアルコキシ基である場合の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、ネオペントキシ基、n-ヘキソキシ基、n-オクトキシ基等が挙げられる。 Specific examples of the cases where D 1 and D 2 are alkoxy groups include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group and n-. Examples thereof include a pentoxy group, a neopentoxy group, an n-hexoxy group, an n-octoxy group and the like.
 D、Dがアリールオキシ基である場合の具体例としては、フェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、ナフチルオキシ基等が挙げられる。 Specific examples of the cases where D 1 and D 2 are aryloxy groups include a phenoxy group, a 2-methylphenoxy group, a 3-methylphenoxy group, a 4-methylphenoxy group, a naphthyloxy group and the like.
 D、Dが2置換アミノ基である場合の2置換アミノ基とは、置換基が2個結合したアミノ基である。その具体例としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジイソブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基、ジ-n-ヘキシルアミノ基、ジ-n-オクチルアミノ基、ジフェニルアミノ基等が挙げられる。 When D 1 and D 2 are disubstituted amino groups, the disubstituted amino group is an amino group in which two substituents are bonded. Specific examples thereof include dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-sec-butylamino group and di-tert-butyl. Examples thereof include an amino group, a di-n-hexylamino group, a di-n-octylamino group, and a diphenylamino group.
 R~Rは、互いに独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~20の2置換アミノ基又は炭素数1~20のシリル基を表し、それらは同一であってもよく、異なってもよく、さらにそれらは任意に結合して環を形成してもよい。これらの中でも、炭素数1~20の炭化水素基であることが好ましい。 R 1 to R 6 are independent of each other, a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms. It represents an aryloxy group of 6 to 20, a disubstituted amino group of 2 to 20 carbon atoms or a silyl group of 1 to 20 carbon atoms, which may be the same or different, and they may be optionally bonded. May form a ring. Among these, a hydrocarbon group having 1 to 20 carbon atoms is preferable.
 R~Rが炭化水素基である場合、炭素数は好ましくは1~10である。該炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-オクチル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、2,3,4,6-テトラメチルフェニル基、ペンタメチルフェニル基等が挙げられる。 When R 1 to R 6 are hydrocarbon groups, the number of carbon atoms is preferably 1 to 10. Specific examples of the hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and neopentyl group. n-hexyl group, n-octyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5 -Dimethylphenyl group, 2,6-dimethylphenyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,3,4,5 -Tetramethylphenyl group, 2,3,4,6-tetramethylphenyl group, pentamethylphenyl group and the like can be mentioned.
 R~Rがハロゲン原子、ハロゲン化炭化水素基、アルコキシ基、アリールオキシ基、及び2置換アミノ基である場合の具体例としては、D、Dがハロゲン原子、ハロゲン化炭化水素基、アルコキシ基、アリールオキシ基、及び2置換アミノ基である場合の具体例として上記に例示したものが挙げられる。 Specific examples of cases where R 1 to R 6 are a halogen atom, a halogenated hydrocarbon group, an alkoxy group, an aryloxy group, and a disubstituted amino group include D 1 and D 2 as a halogen atom and a halogenated hydrocarbon group. As specific examples in the case of an alkoxy group, an aryloxy group, and a disubstituted amino group, those exemplified above can be mentioned.
 R~Rがシリル基である場合の具体例としては、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、トリ-n-ブチルシリル基、トリイソブチルシリル基、トリ-sec-ブチルシリル基、トリ-tert-ブチルシリル基、トリフェニルシリル基等が挙げられる。 Specific examples of cases where R 1 to R 6 are silyl groups include a trimethylsilyl group, a triethylsilyl group, a tri-n-propylsilyl group, a triisopropylsilyl group, a tri-n-butylsilyl group, a triisobutylsilyl group, and a tri. Examples thereof include -sec-butylsilyl group, tri-tert-butylsilyl group and triphenylsilyl group.
 このような、式(IV)で表される化合物の具体例としては、イソプロピリデン(シクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(メチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(ジメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(トリメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(テトラメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-プロピルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-ブチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(イソブチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(フェニルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(シクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(メチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(ジメチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(トリメチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(テトラメチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-プロピルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-ブチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(イソブチルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(フェニルシクロペンタジエニル)(3-tert-ブチル-2-フェノキシ)チタニウムジクロライド、イソプロピリデン(シクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(メチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(ジメチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(トリメチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(テトラメチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-プロピルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(n-ブチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(イソブチルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド、イソプロピリデン(フェニルシクロペンタジエニル)(2-フェノキシ)チタニウムジクロライド等が挙げられる。 Specific examples of such a compound represented by the formula (IV) include isopropanol (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride and isopropyridene (methylcyclo). Pentazienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropylidene (dimethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropi Reden (trimethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropylidene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) ) Titanium dichloride, isopropylidene (n-propylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropylidene (n-butylcyclopentadienyl) (3-tert-butyl -5-Methyl-2-phenoxy) Titanium dichloride, isopropylidene (isobutylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride, isopropylidene (phenylcyclopentadienyl) (3) -Tert-Butyl-5-methyl-2-phenoxy) titanium dichloride, isopropylidene (cyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, isopropylidene (methylcyclopentadienyl) (3- tert-Butyl-2-phenoxy) Titanium dichloride, isopropylidene (dimethylcyclopentadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropyridene (trimethylcyclopentadienyl) (3-tert-butyl- 2-Phenoxy) Titanium dichloride, isopropanol (tetramethylcyclopentadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropyridene (n-propylcyclopentadienyl) (3-tert-butyl-2) -Phenoxy) Titanium dichloride, isopropylidene (n-butylcyclopentadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropyridene (isobutylcyclope) Ntadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropylidene (phenylcyclopentadienyl) (3-tert-butyl-2-phenoxy) Titanium dichloride, isopropylidene (cyclopentadienyl) (2- Phenoxy) Titanium Dichloride, Isopropyridene (Methylcyclopentadienyl) (2-Phenoxy) Titanium Dichloride, Isopropylidene (dimethylcyclopentadienyl) (2-Phenoxy) Titanium Dichloride, Isopropyridene (trimethylcyclopentadienyl) (2) -Phenoxy) Titanium Dichloride, Isopropyridene (Tetramethylcyclopentadienyl) (2-Phenoxy) Titanium Dichloride, Isopropyridene (n-propylcyclopentadienyl) (2-Phenoxy) Titanium Dichloride, Isopropyridene (n-Butylcyclo) Examples thereof include pentadienyl) (2-phenoxy) titanium dichloride, isopropylidene (isobutylcyclopentadienyl) (2-phenoxy) titanium dichloride, isopropyridene (phenylcyclopentadienyl) (2-phenoxy) titanium dichloride and the like.
 また、上記の具体例におけるチタニウムをジルコニウムあるいはハフニウムに変更した化合物、及び、それらを含めイソプロピリデンをジメチルシリレン、ジフェニルシリレン、メチレンに変更した化合物についても同様に例示できる。更に、ジクロライドをジブロマイド、ジアイオダイド、ジメチル、ジベンジル、ジメトキシド、ジエトキシドに変更した化合物についても、同様に例示することができる。 Further, the compound in which titanium is changed to zirconium or hafnium in the above specific example, and the compound in which isopropridene is changed to dimethylsilylene, diphenylcilylene, and methylene including them can be similarly exemplified. Further, a compound in which dichloride is changed to dibromide, diiodide, dimethyl, dibenzyl, dimethoxydo, or diethoxyde can be similarly exemplified.
 上記の式(IV)で表される遷移金属錯体(α)は、種々の助触媒と組合せて、本発明の一実施形態に係るポリマー(B)を製造するための触媒として使用できる。助触媒とは、遷移金属錯体(α)と相互作用をして、環状オレフィン、アルケニル芳香族炭化水素に対する重合活性種を生成せしめる化合物のことである。その例としては、有機アルミニウム化合物(β)及び/又は下記式(γ1)~式(γ3)のいずれかで表されるホウ素化合物(γ)を挙げることができるが、これらの助触媒を使用することにより生成する重合活性種の構造は明らかではない。 The transition metal complex (α) represented by the above formula (IV) can be used as a catalyst for producing the polymer (B) according to the embodiment of the present invention in combination with various co-catalysts. The cocatalyst is a compound that interacts with the transition metal complex (α) to produce a polymerization active species for cyclic olefins and alkenyl aromatic hydrocarbons. Examples thereof include organoaluminum compounds (β) and / or boron compounds (γ) represented by any of the following formulas (γ1) to (γ3), and these co-catalysts are used. The structure of the polymerization active species produced by this is not clear.
式(γ1) BQ
式(γ2) J(BQ
式(γ3) (L-H)(BQ
[式(γ1)~式(γ3)中、Bは3価の原子価状態のホウ素原子を表し、
~Qは、互いに独立に、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20の置換シリル基、炭素数1~20のアルコキシ基又は炭素数2~20の2置換アミノ基を表し、
は、無機又は有機のカチオンを表し、
Lは、中性ルイス塩基を表し、(L-H)はブレンステッド酸を表す。]
Equation (γ1) BQ 1 Q 2 Q 3
Equation (γ2) J + (BQ 1 Q 2 Q 3 Q 4 )
Equation (γ3) (L—H) + (BQ 1 Q 2 Q 3 Q 4 )
[In the formulas (γ1) to (γ3), B represents a boron atom in a trivalent valence state.
Q1 to Q4 are independent of each other, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. Represents a 20 alkoxy group or a disubstituted amino group having 2 to 20 carbon atoms.
J + represents an inorganic or organic cation
L represents a neutral Lewis base and (L—H) + represents a Bronsted acid. ]
 前記有機アルミニウム化合物(β)としては、公知の有機アルミニウム化合物が使用できる。具体的には、式(β1)で表される有機アルミニウム化合物、式(β2)で表される構造を有する環状のアルミノキサン及び式(β3)で表される構造を有する線状のアルミノキサンが挙げられ、これらは単独でも、あるいは2種以上を混合して用いることができる。 As the organoaluminum compound (β), a known organoaluminum compound can be used. Specific examples thereof include organoaluminum compounds represented by the formula (β1), cyclic aluminoxane having a structure represented by the formula (β2), and linear aluminoxane having a structure represented by the formula (β3). , These can be used alone or in combination of two or more.
式(β1)E AlZ3-a
式(β2){-Al(E)-O-}
式(β3)E{-Al(E)-O-}AlE
[式(β1)~式(β3)中、E、E及びEは、互いに独立に、炭素数1~8の炭化水素基を表し、全てのE、全てのE及び全てのEは同一であってもよく、異なっていてもよく、Zは水素又はハロゲンを表し、全てのZは同一であってもよく、異なっていてもよく、aは0~3の整数を表し、bは2以上の整数を表し、cは1以上の整数を表す。]
Equation (β1) E 1 a AlZ 3-a
Equation (β2) {-Al (E 2 ) -O-} b
Equation (β3) E 3 {-Al (E 3 ) -O-} c AlE 3 2
[In formulas (β1) to (β3), E1 , E2 and E3 represent hydrocarbon groups having 1 to 8 carbon atoms independently of each other , and all E1, all E2 and all. E 3 may be the same or different, Z may represent hydrogen or halogen, all Z may be the same or different, and a represents an integer of 0-3. , B represent an integer of 2 or more, and c represents an integer of 1 or more. ]
 式(β1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジプロピルアルミニウムクロライド、ジイソブチルアルミニウムクロライド、ジヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、プロピルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライドなどが挙げられる。これらの中でも、好ましくはトリアルキルアルミニウムが挙げられ、より好ましくはトリエチルアルミニウム又はトリイソブチルアルミニウムが挙げられる。 Specific examples of the formula (β1) include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum; dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, and the like. Dialkylaluminum chloride such as dihexylaluminum chloride; alkylaluminum dichloride such as methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride; dimethylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, diisobutylaluminum hydride , Dialkylaluminum hydride such as dihexylaluminum hydride and the like. Among these, trialkylaluminum is preferable, and triethylaluminum or triisobutylaluminum is more preferable.
 式(β2)、式(β3)における、E、Eの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、ネオペンチル基等のアルキル基が挙げられる。これらの中でも、好ましくはメチル基又はイソブチル基が挙げられる。bは2以上の整数であり、好ましくは2~40の整数である。cは1以上の整数であり、好ましくは1~40の整数である。 Specific examples of E 2 and E 3 in the formula (β2) and the formula (β3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group and neopentyl. Examples thereof include an alkyl group such as a group. Among these, a methyl group or an isobutyl group is preferable. b is an integer of 2 or more, preferably an integer of 2 to 40. c is an integer of 1 or more, preferably an integer of 1 to 40.
 上記のアルミノキサンは各種の方法で作られる。その方法については特に限定されず、公知の方法に準じて作ればよい。例えば、トリアルキルアルミニウム、例えば、トリメチルアルミニウム等を適当な有機溶剤、例えば、ベンゼン、脂肪族炭化水素などに溶かした溶液を水と接触させて作る方法、トリアルキルアルミニウム、例えば、トリメチルアルミニウム等を、結晶水を含んでいる金属塩、例えば、硫酸銅水和物等に接触させて作る方法が例示できる。 The above aluminoxane is made by various methods. The method is not particularly limited, and it may be produced according to a known method. For example, a method for making a solution of trialkylaluminum, for example, trimethylaluminum, etc. in a suitable organic solvent, for example, benzene, an aliphatic hydrocarbon, etc., in contact with water, trialkylaluminum, for example, trimethylaluminum, etc. An example is a method of making the solution by contacting it with a metal salt containing water of crystallization, for example, copper sulfate hydrate.
 ホウ素化合物(γ)としては、式(γ1)、式(γ2)又は式(γ3)で表されるホウ素化合物のいずれかを用いることができる。 As the boron compound (γ), any of the boron compounds represented by the formula (γ1), the formula (γ2) or the formula (γ3) can be used.
 式(γ1)において、Bは3価の原子価状態のホウ素原子を表し、Q~Qは、互いに独立に、ハロゲン原子、炭素原子を含む炭化水素基、炭素数1~20のハロゲン化炭化水素基、炭素数1~20の置換シリル基、炭素数1~20のアルコキシ基又は炭素数2~20の2置換アミノ基を表し、それらは同一であってもよく、異なっていてもよい。Q~Qは、互いに独立に、好ましくはハロゲン原子、炭素数1~20の炭化水素基、又は、炭素数1~20のハロゲン化炭化水素基である。 In the formula (γ1), B represents a boron atom in a trivalent valence state, and Q1 to Q3 are independent of each other, a halogen atom, a hydrocarbon group containing a carbon atom, and a halogenation having 1 to 20 carbon atoms. It represents a hydrocarbon group, a substituted silyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or a disubstituted amino group having 2 to 20 carbon atoms, which may be the same or different. .. Q1 to Q3 are independent of each other, preferably a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms.
 式(γ1)で表されるホウ素化合物の具体例としては、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6-テトラフルオロフェニル)ボラン、トリス(2,3,4,5-テトラフルオロフェニル)ボラン、トリス(3,4,5-トリフルオロフェニル)ボラン、トリス(2,3,4-トリフルオロフェニル)ボラン、フェニルビス(ペンタフルオロフェニル)ボラン等が挙げられ、好ましくはトリス(ペンタフルオロフェニル)ボランが挙げられる。 Specific examples of the boron compound represented by the formula (γ1) include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, and tris (2,3,4,5-). Examples thereof include tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like, and tris is preferable. (Pentafluorophenyl) Borane can be mentioned.
 式(γ2)において、Bは3価の原子価状態のホウ素原子を表し、Q~Qは上記の式(γ1)におけるQ~Qと同様である。また、Jは無機又は有機のカチオンを表す。 In the formula (γ2), B represents a boron atom in a trivalent valence state, and Q1 to Q4 are the same as Q1 to Q3 in the above formula (γ1). Further, J + represents an inorganic or organic cation.
 Jにおける無機のカチオンとしては、フェロセニウムカチオン、アルキル置換フェロセニウムカチオン、銀陽イオン等が挙げられる。
 Jにおける有機のカチオンとしては、トリフェニルメチルカチオン等が挙げられる。
 (BQとしては、テトラキス(ペンタフルオロフェニル)ボレートアニオン、テトラキス(2,3,5,6-テトラフルオロフェニル)ボレートアニオン、テトラキス(2,3,4,5-テトラフルオロフェニル)ボレートアニオン、テトラキス(3,4,5-トリフルオロフェニル)ボレートアニオン、テトラキス(2,2,4-トリフルオロフェニル)ボレートアニオン、フェニルビス(ペンタフルオロフェニル)ボレートアニオン、テトラキス(3,5-ビストリフルオロメチルフェニル)ボレートアニオン等が挙げられる。
Examples of the inorganic cation in J + include a ferrosenium cation, an alkyl-substituted ferrosenium cation, and a silver cation.
Examples of the organic cation in J + include triphenylmethyl cation and the like.
(BQ 1 Q 2 Q 3 Q 4 ) -As tetrakis (pentafluorophenyl) borate anion, tetrakis (2,3,5,6-tetrafluorophenyl) borate anion, tetrakis (2,3,4,5- Tetrafluorophenyl) borate anion, tetrakis (3,4,5-trifluorophenyl) borate anion, tetrakis (2,2,4-trifluorophenyl) borate anion, phenylbis (pentafluorophenyl) borate anion, tetrakis (3) , 5-Bistrifluoromethylphenyl) Borate anion and the like.
 これらの具体的な組合せとしては、フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、銀テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルメチルテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート等が挙げられ、好ましくはトリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。 Specific combinations thereof include ferrosenium tetrakis (pentafluorophenyl) borate, 1,1'-dimethylferrosenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, and triphenylmethyl tetrakis. Examples thereof include (pentafluorophenyl) borate, triphenylmethyltetrakis (3,5-bistrifluoromethylphenyl) borate, and preferably triphenylmethyltetrakis (pentafluorophenyl) borate.
 式(γ3)において、Bは3価の原子価状態のホウ素を表し、Q~Qは上記の式(γ1)におけるQ~Qと同様である。また、Lは中性ルイス塩基を表し、(L-H)はブレンステッド酸を表す。 In the formula (γ3), B represents boron in a trivalent valence state, and Q1 to Q4 are the same as Q1 to Q3 in the above formula (γ1). Further, L represents a neutral Lewis base, and (L—H) + represents a Bronsted acid.
 式(γ3)において、ブレンステッド酸である(L-H)としては、トリアルキル置換アンモニウムカチオン、N,N-ジアルキルアニリニウムカチオン、ジアルキルアンモニウムカチオン、トリアリ-ルホスホニウムカチオン等が挙げられる。
 (BQとしては、前述と同様のものが挙げられる。
In the formula (γ3), examples of the Bronsted acid (L—H) + include trialkyl-substituted ammonium cations, N, N-dialkylanilinium cations, dialkylammonium cations, and triallylphosphonium cations.
As (BQ 1 Q 2 Q 3 Q 4 ) - , the same as described above can be mentioned.
 これらの具体的な組合せとしては、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、ジ-iso-プロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(メチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ジメチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。これらの中でも、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、又は、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートであることが好ましい。 Specific combinations thereof include triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, and tri (n-butyl). ) Ammonium tetrakis (3,5-bistrifluoromethylphenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-2 , 4,6-Pentamethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (3,5-bistrifluoromethylphenyl) borate, di-iso-propylammonium tetrakis (pentafluorophenyl) borate , Dicyclohexylammonium tetrakis (pentafluorophenyl) borate, triphenylphosphonium tetrakis (pentafluorophenyl) borate, tri (methylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, tri (dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, etc. Can be mentioned. Among these, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate or N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate is preferable.
 助触媒としては、有機アルミニウム化合物(β)及び化合物(γ)を併用することが好ましい。 As the co-catalyst, it is preferable to use organoaluminum compound (β) and compound (γ) in combination.
 式(IV)で表される遷移金属錯体(α)、有機アルミニウム化合物(β)及び/又は化合物(γ)は、重合時に任意の順序で投入し使用することができるが、それらの任意の化合物の組合せを予め接触させて得られた反応物を用いてもよい。 The transition metal complex (α) represented by the formula (IV), the organoaluminum compound (β) and / or the compound (γ) can be charged and used in any order at the time of polymerization, but any of them can be used. You may use the reaction product obtained by contacting the combination of the above in advance.
 助触媒/遷移金属錯体(α)のモル比は、好ましくは0.01~10,000、より好ましくは0.5~2,000である。触媒成分を溶液状態で使用する場合、遷移金属錯体(α)の濃度は、好ましくは0.0001~5mmol/L、より好ましくは0.001~1mmol/Lである。触媒成分の使用量は、使用される全モノマーの合計量に対して、好ましくは0.00001~1mol%、より好ましくは0.0001~0.1mol%である。 The molar ratio of the co-catalyst / transition metal complex (α) is preferably 0.01 to 10,000, more preferably 0.5 to 2,000. When the catalyst component is used in solution, the concentration of the transition metal complex (α) is preferably 0.0001 to 5 mmol / L, more preferably 0.001 to 1 mmol / L. The amount of the catalyst component used is preferably 0.00001 to 1 mol%, more preferably 0.0001 to 0.1 mol%, based on the total amount of all the monomers used.
 本発明の一実施形態に係るポリマー(B)の重合法としては、特に限定されず、例えば、バッチ式又は連続式の気相重合法、塊状重合法、適当な溶媒を使用しての溶液重合法あるいはスラリー重合法等、任意の方法を採用することができる。 The polymerization method of the polymer (B) according to the embodiment of the present invention is not particularly limited, and for example, a batch type or continuous type gas phase polymerization method, a bulk polymerization method, or a solution weight using an appropriate solvent is used. Any method such as a legal method or a slurry polymerization method can be adopted.
 溶媒を使用する場合、触媒を失活させないという条件の各種の溶媒が使用可能であり、このような溶媒の例としては、ベンゼン、トルエン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素系溶媒;ジクロロメタン、二塩化エチレン等のハロゲン化炭化水素系溶媒などが挙げられる。 When a solvent is used, various solvents can be used under the condition that the catalyst is not inactivated, and examples of such a solvent include hydrocarbon solvents such as benzene, toluene, pentane, hexane, heptane, and cyclohexane; Examples thereof include halogenated hydrocarbon solvents such as dichloromethane and ethylene dichloride.
 また、溶媒を使用する場合、重合中の系内のエチレン分圧は、例えば50~400kPa、好ましくは50~300kPaであり、水素分圧は好ましくは0~100kPaである。なお、系内にエチレン及び水素を投入する場合、水素分圧での加圧を実施した後、エチレン分圧での加圧を実施することが好ましい。また、式(I)で表されるシクロオレフィンの溶液を重合反応槽に投入した後、さらにトルエンを投入してもよい。 When a solvent is used, the ethylene partial pressure in the system during polymerization is, for example, 50 to 400 kPa, preferably 50 to 300 kPa, and the hydrogen partial pressure is preferably 0 to 100 kPa. When ethylene and hydrogen are introduced into the system, it is preferable to pressurize with the partial pressure of hydrogen and then pressurize with the partial pressure of ethylene. Further, after the solution of the cycloolefin represented by the formula (I) is charged into the polymerization reaction tank, toluene may be further charged.
 重合温度は、好ましくは50℃以上、より好ましくは50~150℃、さらに好ましくは50℃~100℃である。なお、重合体の分子量を調節するために水素等の連鎖移動剤を添加することもできる。 The polymerization temperature is preferably 50 ° C. or higher, more preferably 50 to 150 ° C., and even more preferably 50 ° C. to 100 ° C. A chain transfer agent such as hydrogen can also be added to adjust the molecular weight of the polymer.
 <樹脂(A)>
 樹脂(A)はポリマー(B)とは異なるポリマーである。樹脂(A)がシクロオレフィン系樹脂である場合は、ポリマー(B)とは異なる種類、例えば樹脂を構成する単量体単位の種類やその含有量等が異なるシクロオレフィン系樹脂であればよい。
<Resin (A)>
The resin (A) is a polymer different from the polymer (B). When the resin (A) is a cycloolefin-based resin, it may be a cycloolefin-based resin having a different type from the polymer (B), for example, a different type of monomer unit constituting the resin, its content, and the like.
 樹脂(A)としては、特に限定されず、例えばジアリルフタレート樹脂、シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、メラミン樹脂、尿素樹脂、キシレン樹脂、フラン樹脂、アニリン樹脂、アセトン-ホルムアルデヒド樹脂、アルキド樹脂、マレイミド系樹脂、マレイミド-シアン酸エステル樹脂、シアン酸エステル樹脂、ベンゾオキサジン樹脂、ポリベンズイミダゾール樹脂、及びポリカルボジイミド樹脂から選択される熱硬化性樹脂;オレフィン系樹脂;アクリル系樹脂;スチレン系樹脂;ゴム系樹脂;フッ素系樹脂;ビニル系樹脂;汎用エンジニアリングプラスチック;液晶ポリマー、芳香族ポリエーテル系樹脂などのスーパーエンジニアリングプラスチック;ポリアミド樹脂;ポリイミド樹脂、ポリアミドイミド樹脂などのポリイミド系樹脂;並びに生分解性プラスチックなどが挙げられる。これらの中でも、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、粒子分散性、誘電特性及び耐熱性を高めやすい観点から、ポリイミド系樹脂、液晶ポリマー、フッ素系樹脂、芳香族ポリエーテル系樹脂、及びマレイミド系樹脂からなる群から選択される少なくとも1つの樹脂であることが好ましく、ポリイミド系樹脂及び/又は液晶ポリマーであることがより好ましい。樹脂(A)は単独又は二種以上を組合せて使用できる。 The resin (A) is not particularly limited, and for example, diallyl phthalate resin, silicone resin, phenol resin, unsaturated polyester resin, polyurethane resin, melamine resin, urea resin, xylene resin, furan resin, aniline resin, acetone-formaldehyde resin. Thermocurable resin selected from alkyd resin, maleimide resin, maleimide-cyanic acid ester resin, cyanate ester resin, benzoxazine resin, polybenzimidazole resin, and polycarbodiimide resin; olefin resin; acrylic resin; Styrene-based resin; Rubber-based resin; Fluorine-based resin; Vinyl-based resin; General-purpose engineering plastic; Super-engineering plastic such as liquid crystal polymer and aromatic polyether resin; Polyamide resin; Polygonide resin, Polyethyleneimide resin and other polyimide-based resin; In addition, biodegradable plastics and the like can be mentioned. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the surface smoothness and particle dispersibility of the obtained film. From the viewpoint of easily enhancing the dielectric property and heat resistance, it is preferable that the resin is at least one selected from the group consisting of a polyimide resin, a liquid crystal polymer, a fluororesin, an aromatic polyether resin, and a maleimide resin. , Polyimide-based resin and / or liquid crystal polymer is more preferable. The resin (A) can be used alone or in combination of two or more.
 樹脂(A)のTgは、好ましくは100℃以上、より好ましくは150℃以上、さらに好ましくは180℃以上、さらにより好ましくは200℃以上、特に好ましくは300℃以上、特により好ましくは350℃以上であり、好ましくは550℃以下である。樹脂(A)のTgが上記の下限以上であると、得られるフィルムの表面平滑性、粒子分散性及び耐熱性を高めやすく、かつCTEを低減しやすい。樹脂(A)のTgが上記の上限以下であると機械的特性を高めやすい。樹脂(A)のTgは、例えば動的粘弾性測定(以下、DMA測定と略すことがある)を行うことで求められ、実施例に記載の方法により測定できる。 The Tg of the resin (A) is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, particularly preferably 300 ° C. or higher, and particularly more preferably 350 ° C. or higher. It is preferably 550 ° C. or lower. When the Tg of the resin (A) is at least the above lower limit, the surface smoothness, particle dispersibility and heat resistance of the obtained film can be easily improved, and the CTE can be easily reduced. When the Tg of the resin (A) is not more than the above upper limit, the mechanical properties are likely to be enhanced. The Tg of the resin (A) can be obtained, for example, by performing dynamic viscoelasticity measurement (hereinafter, may be abbreviated as DMA measurement), and can be measured by the method described in Examples.
 樹脂(A)のMwは、ポリスチレン換算で、好ましくは30,000以上、より好ましくは100,000以上、より好ましくは150,000以上、さらに好ましくは200,000以上、さらにより好ましくは250,000以上、特に好ましくは300,000以上であり、好ましくは1,000,000以下、より好ましくは800,000以下、さらに好ましくは700,000以下、さらにより好ましくは500,000以下、とりわけ好ましくは450,000以下である。樹脂(A)のMwが上記の下限以上であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、機械的特性、粒子分散性及び耐熱性を高めやすく、かつCTEを低減しやすい。樹脂(A)のMwが上記の上限以下であると成形性を高めやすい。なお、樹脂(A)のMwは、例えばGPC測定を行い、標準ポリスチレン換算によって求めることができ、例えば実施例に記載の方法により求められる。 The Mw of the resin (A) is preferably 30,000 or more, more preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more, still more preferably 250,000 in terms of polystyrene. The above is particularly preferably 300,000 or more, preferably 1,000,000 or less, more preferably 800,000 or less, still more preferably 700,000 or less, still more preferably 500,000 or less, and particularly preferably 450. It is less than 000. When the Mw of the resin (A) is equal to or higher than the above lower limit, it is easy to suppress the formation of aggregates of the particulate polymer (B) and the particle size is easily reduced, so that the dispersibility can be easily improved. It is easy to improve the surface smoothness, mechanical properties, particle dispersibility and heat resistance of the film, and it is easy to reduce CTE. When the Mw of the resin (A) is not more than the above upper limit, the moldability is likely to be improved. The Mw of the resin (A) can be obtained by, for example, GPC measurement and converted to standard polystyrene, and can be obtained by, for example, the method described in Examples.
 樹脂(A)として好適なポリイミド系樹脂とは、イミド基を含む繰返し構造単位を含有する樹脂(以下、ポリイミド樹脂ということがある)、及びイミド基及びアミド基の両方を含む繰り返し構造単位を含有する樹脂(以下、ポリアミドイミド樹脂ということがある)、並びにイミド化によりポリイミド系樹脂を製造する前の前駆体を含む意味である。該ポリイミド樹脂を製造する前の前駆体はポリアミック酸である。なお、本明細書において、「繰り返し構造単位」を「構成単位」ということがある。また、「由来の構成単位」を単に「単位」ということがあり、例えば化合物由来の構成単位を化合物単位などということがある。 The polyimide-based resin suitable as the resin (A) includes a resin containing a repeating structural unit containing an imide group (hereinafter, may be referred to as a polyimide resin), and a repeating structural unit containing both an imide group and an amide group. It is meant to include a resin (hereinafter, may be referred to as a polyamide-imide resin) and a precursor before producing a polyimide-based resin by imidization. The precursor before producing the polyimide resin is a polyamic acid. In addition, in this specification, a "repeating structural unit" may be referred to as a "constituent unit". Further, the "constituent unit derived from" may be simply referred to as "unit", and for example, the constituent unit derived from a compound may be referred to as a compound unit.
 本発明の好適な実施形態において、樹脂(A)は、式(1): In a preferred embodiment of the present invention, the resin (A) is represented by the formula (1) :.
Figure JPOXMLDOC01-appb-C000006
[式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、*は結合手を表す]
で表される構成単位を有するポリイミド系樹脂であることが好ましい。このようなポリイミド系樹脂であると、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び屈曲耐性等の機械的特性を高めやすく、かつCTEを低減しやすい。
Figure JPOXMLDOC01-appb-C000006
[In formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, and * represents a bond].
It is preferable that the polyimide resin has a structural unit represented by. With such a polyimide resin, it is easy to improve mechanical properties such as surface smoothness, particle dispersibility, heat resistance and bending resistance of the obtained film, and it is easy to reduce CTE.
 式(1)中のXは、互いに独立に2価の有機基を表し、好ましくは炭素数2~100の2価の有機基を表す。2価の有機基としては、例えば2価の芳香族基、2価の脂肪族基等が挙げられ、2価の脂肪族基としては、例えば2価の非環式脂肪族基又は2価の環式脂肪族基が挙げられる。これらの中でも、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、粒子分散性、耐熱性、誘電特性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、2価の環式脂肪族基及び2価の芳香族基が好ましく、2価の芳香族基がより好ましい。2価の有機基は、有機基中の水素原子がハロゲン原子、炭化水素基、アルコキシ基又はハロゲン化炭化水素基で置換されていてもよく、その場合、これらの基の炭素数は好ましくは1~8である。なお、本明細書において、2価の芳香族基は芳香族基を有する2価の有機基であり、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。また、2価の脂肪族基は脂肪族基を有する2価の有機基であり、その構造の一部にその他の置換基を含んでいてもよいが、芳香族基は含まない。 X in the formula (1) represents a divalent organic group independently of each other, and preferably represents a divalent organic group having 2 to 100 carbon atoms. Examples of the divalent organic group include a divalent aromatic group and a divalent aliphatic group, and examples of the divalent aliphatic group include a divalent acyclic aliphatic group or a divalent aliphatic group. Cyclic aliphatic groups can be mentioned. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the surface smoothness and particle dispersibility of the obtained film. A divalent cyclic aliphatic group and a divalent aromatic group are preferable, and a divalent aromatic group is more preferable, from the viewpoint of easily enhancing heat resistance, dielectric properties and mechanical properties, and easily reducing CTE. .. In the divalent organic group, the hydrogen atom in the organic group may be substituted with a halogen atom, a hydrocarbon group, an alkoxy group or a halogenated hydrocarbon group, in which case the carbon number of these groups is preferably 1. ~ 8. In the present specification, the divalent aromatic group is a divalent organic group having an aromatic group, and an aliphatic group or another substituent may be contained in a part of the structure thereof. Further, the divalent aliphatic group is a divalent organic group having an aliphatic group, and a part of the structure thereof may contain other substituents, but does not contain an aromatic group.
 本発明の一実施形態において、ポリイミド系樹脂は、複数種のXを含み得、複数種のXは、互いに同一であってもよく、異なっていてもよい。式(1)中のXとしては、例えば式(2)~式(8)で表される基(構造);式(5)~式(8)で表される基中の水素原子がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基などが挙げられる。 In one embodiment of the present invention, the polyimide-based resin may contain a plurality of types of X, and the plurality of types of X may be the same as or different from each other. As X in the formula (1), for example, the group (structure) represented by the formulas (2) to (8); the hydrogen atom in the group represented by the formulas (5) to (8) is a methyl group. , Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, fluoro group, chloro group or trifluoromethyl group substituted group and the like.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(2)及び式(3)中、R及びRは、互いに独立に、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表し、R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Wは、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-COO-、-OOC-、-SO-、-S-、-CO-又は-N(R)-を表し、Rは水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、nは0~4の整数であり、tは0~4の整数であり、uは0~4の整数であり、*は結合手を表す。
式(4)中、環Aは炭素数3~8のシクロアルカン環を表し、
は炭素数1~20のアルキル基を表し、
rは0以上であって(環Aの炭素数-2)以下の整数を表し、
S1及びS2は、互いに独立に、0~20の整数を表し、
*は結合手を表す。]
[In the formulas (2) and (3 ), Ra and R b are independent of each other, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 6 to 12 carbon atoms. The hydrogen atoms contained in Ra and R b may be substituted with halogen atoms independently of each other, and W is independent of each other, single -bonded, -O-, -CH 2- . , -CH 2 -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S -, -CO- or -N (R c )-, R c represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom, and n represents 0 to 0 to. 4 is an integer, t is an integer of 0 to 4, u is an integer of 0 to 4, and * represents a bond.
In formula (4), ring A represents a cycloalkane ring having 3 to 8 carbon atoms.
R d represents an alkyl group having 1 to 20 carbon atoms.
r represents an integer greater than or equal to 0 and less than or equal to (the number of carbon atoms in ring A-2).
S1 and S2 represent integers from 0 to 20 independently of each other.
* Represents a bond. ]
 式(1)中のXの他の例としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、1,12-ドデカンジイル基、2-メチル-1,2-プロパンジイル基、2-メチル-1,3-プロパンジイル基等の直鎖状又は分岐鎖状アルキレン基などの2価の非環式脂肪族基が挙げられる。2価の非環式脂肪族基中の水素原子は、ハロゲン原子で置換されていてもよく、炭素原子はヘテロ原子、例えば酸素原子、窒素原子等で置換されていてもよい。 Other examples of X in the formula (1) include, for example, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a propylene group, a 1,2-butanediyl group, and a 1,3-butanediyl group. , 1,12-Dodecandyl group, 2-methyl-1,2-propanediyl group, 2-methyl-1,3-propanediyl group and other linear or branched alkylene groups with divalent acyclic Examples include aliphatic groups. The hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, and the carbon atom may be substituted with a hetero atom, for example, an oxygen atom, a nitrogen atom or the like.
 これらの中でも、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの高い表面平滑性、高い粒子分散性、高い誘電特性、低いCTE、高い耐熱性及び高い機械的特性を達成しやすい観点から、本発明におけるポリイミド系樹脂は、式(1)中のXとして、式(2)で表される構造及び/又は式(3)で表される構造を含むことが好ましく、式(2)で表される構造を含むことがより好ましい。 Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the high surface smoothness and high particles of the obtained film. The polyimide resin in the present invention is represented by the formula (2) as X in the formula (1) from the viewpoint of easily achieving dispersibility, high dielectric properties, low CTE, high heat resistance and high mechanical properties. It is preferable to include a structure and / or a structure represented by the formula (3), and more preferably to include a structure represented by the formula (2).
 式(2)及び式(3)において、各ベンゼン環又は各シクロヘキサン環の結合手は、-W-を基準に、それぞれ、オルト位、メタ位又はパラ位、もしくはα位、β位又はγ位のいずれに結合していてもよく、フィルムのCTEを低減しやすく、かつ耐熱性及び機械的特性を高めやすい観点から、好ましくはメタ位又はパラ位、より好ましくはパラ位に結合することができる。R及びRは、互いに独立に、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基を表す。炭素数1~6のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル基等が挙げられる。炭素数1~6のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基及びシクロヘキシルオキシ基等が挙げられる。炭素数6~12のアリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基及びビフェニル基等が挙げられる。R及びRに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、該ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、得られるフィルムの表面平滑性、誘電特性及び耐熱性を高めやすく、かつCTEを低減しやすい観点から、R及びRは、互いに独立に、炭素数1~6のアルキル基又は炭素数1~6のフッ化アルキル基であることが好ましく、炭素数1~3のアルキル基又は炭素数1~3のフッ化アルキル基であることがより好ましく、メチル基又はトリフルオロメチル基であることがさらに好ましい。 In formulas (2) and (3), the bond of each benzene ring or each cyclohexane ring is at the ortho-position, meta-position or para-position, or α-position, β-position or γ-position, respectively, based on −W—. It may be bonded to any of the above, preferably at the meta-position or the para-position, and more preferably at the para-position from the viewpoint of easily reducing the CTE of the film and easily increasing the heat resistance and mechanical properties. .. R a and R b independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-pentyl group, and 2 -Methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl group and the like can be mentioned. Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group and a hexyloxy group. Examples include a group and a cyclohexyloxy group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a biphenyl group. The hydrogen atom contained in Ra and R b may be substituted with a halogen atom independently of each other, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Among these, from the viewpoint of easily improving the surface smoothness, dielectric properties and heat resistance of the obtained film and easily reducing CTE, Ra and R b are independent of each other and have an alkyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms. It is preferably an alkyl fluoride group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an alkyl fluoride group having 1 to 3 carbon atoms, and a methyl group or a trifluoromethyl group. It is more preferable to have.
 式(2)及び式(3)において、t及びuは、互いに独立に、0~4の整数であり、得られるフィルムの粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、好ましくは0~2の整数、より好ましくは0又は1である。 In the formulas (2) and (3), t and u are independently integers of 0 to 4, and it is easy to improve the particle dispersibility, heat resistance and mechanical properties of the obtained film, and reduce CTE. From the viewpoint of easy operation, it is preferably an integer of 0 to 2, and more preferably 0 or 1.
 式(2)及び式(3)において、Wは、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-COO-、-OOC-、-SO-、-S-、-CO-又は-N(R)-を表し、得られるフィルムの粒子分散性、耐熱性及び機械的特性、特に屈曲耐性を高めやすく、かつCTEを低減しやすい観点から、好ましくは単結合、-O-、-CH-、-C(CH-、-C(CF-、-COO-、-OOC-又は-CO-を表し、より好ましくは単結合、-O-、-CH-、-C(CH-又は-C(CF-を表す。Rは水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表す。炭素数1~12の1価の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基及びn-デシル基等が挙げられ、これらはハロゲン原子で置換されていてもよい。ハロゲン原子としては、上記と同様のものが挙げられる。 In equations (2) and (3), W is single-bonded independently of each other, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH). 3 ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO- or -N (R c )-represented, and the particles of the obtained film. From the viewpoint of dispersibility, heat resistance and mechanical properties, particularly easy to increase bending resistance and easy to reduce CTE, single bond, -O-, -CH 2- , -C (CH 3 ) 2 -,-is preferable. Represents C (CF 3 ) 2- , -COO-, -OOC- or -CO-, more preferably single bond, -O-, -CH 2- , -C (CH 3 ) 2- or -C (CF). 3 ) Represents 2- . R c represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom. Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-. Pentyl group, 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group. Etc., which may be substituted with a halogen atom. Examples of the halogen atom include the same as above.
 式(2)及び式(3)において、nは、0~4の整数であり、得られるフィルムの粒子分散性、耐熱性及び機械的特性を高めやすい観点から、好ましくは0~3の整数、より好ましくは1又は2である。nが2以上の場合、複数のW、R、及びtは互いに同一であってもよく、異なっていてもよく、-W-を基準とした各ベンゼン環の結合手の位置も同一であってもよく、異なっていてもよい。 In the formulas (2) and (3), n is an integer of 0 to 4, and is preferably an integer of 0 to 3 from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film. More preferably, it is 1 or 2. When n is 2 or more, the plurality of Ws, Ras, and ts may be the same or different from each other, and the positions of the bonds of each benzene ring with respect to −W— are also the same. It may or may not be different.
 本発明におけるポリイミド系樹脂が、式(1)中のXとして、式(2)で表される構造と式(3)で表される構造の両方を含む場合、式(2)におけるW、n、R、R、t及びuは、互いに独立に、式(3)におけるW、n、R、R、t及びuと同一であってもよく、異なっていてもよい。 When the polyimide-based resin in the present invention contains both the structure represented by the formula (2) and the structure represented by the formula (3) as X in the formula (1), W and n in the formula (2). , R a , R b , t and u may be the same as or different from W, n, R a , R b , t and u in the formula (3) independently of each other.
 式(4)において、環Aは炭素数3~8のシクロアルカン環を表す。シクロアルカン環としては、例えばシクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環が挙げられ、好ましくは炭素数4~6のシクロアルカン環が挙げられる。環Aにおいて、各結合手は、互いに隣接していてもよいし、隣接していなくてもよい。例えば、環Aがシクロヘキサン環である場合、2つの結合手はα位、β位又はγ位の位置関係にあってもよく、好ましくはβ位又はγ位の位置関係にあってもよい。 In the formula (4), the ring A represents a cycloalkane ring having 3 to 8 carbon atoms. Examples of the cycloalkane ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, and a cycloalkane ring having 4 to 6 carbon atoms is preferable. In ring A, the bonds may or may not be adjacent to each other. For example, when the ring A is a cyclohexane ring, the two bonds may be in the positional relationship of the α-position, the β-position, or the γ-position, and may be preferably in the positional relationship of the β-position or the γ-position.
 式(4)中のRは炭素数1~20のアルキル基を表す。炭素数1~20のアルキル基としては、R~R18における炭素数1~20の炭化水素基として上記に例示のものが挙げられ、好ましくは炭素数1~10のアルキル基を表す。式(4)中のrは0以上であって(環Aの炭素数-2)以下の整数を表す。rは好ましくは0以上であり、好ましくは4以下である。式(4)中のS1及びS2は、互いに独立に、0~20の整数を表す。S1及びS2は、互いに独立に、好ましくは0以上、より好ましくは2以上であり、好ましくは15以下である。 R d in the formula (4) represents an alkyl group having 1 to 20 carbon atoms. Examples of the alkyl group having 1 to 20 carbon atoms include those exemplified above as the hydrocarbon group having 1 to 20 carbon atoms in R7 to R18, and preferably represent an alkyl group having 1 to 10 carbon atoms. In equation (4), r represents an integer of 0 or more and (number of carbon atoms of ring A-2) or less. r is preferably 0 or more, and preferably 4 or less. S1 and S2 in the formula (4) represent integers of 0 to 20 independently of each other. S1 and S2 are independent of each other, preferably 0 or more, more preferably 2 or more, and preferably 15 or less.
 式(2)~式(4)で表される構造の具体例としては、式(4’)及び式(9)~式(30)で表される構造が挙げられる。なお、これらの式中、*は結合手を表す。 Specific examples of the structures represented by the formulas (2) to (4) include the structures represented by the formulas (4') and the formulas (9) to (30). In these equations, * represents a bond.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明の好適な実施形態において、式(1)中のXとして、式(2)及び/又は式(3)で表される構造を含む場合、式(1)中のXが式(2)及び/又は式(3)で表される構成単位の割合は、式(1)で表される構成単位の総モル量に対して、好ましくは30mol%以上、より好ましくは50mol%以上、さらに好ましくは70mol%以上、特に好ましくは90mol%以上であり、好ましくは100mol%以下である。式(1)中のXが式(2)及び/又は式(3)で表される構成単位の割合が上記の範囲であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。また、得られるフィルムの表面平滑性、粒子分散性、耐熱性、誘電特性及び機械的特性を高めやすく、かつCTEを低減しやすい。式(1)中のYが式(2)及び/又は式(3)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In a preferred embodiment of the present invention, when X in the formula (1) includes a structure represented by the formula (2) and / or the formula (3), the X in the formula (1) is the formula (2). And / or the ratio of the structural unit represented by the formula (3) is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably, with respect to the total molar amount of the structural unit represented by the formula (1). Is 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. When the ratio of the structural unit represented by the formula (2) and / or the formula (3) is in the above range, X in the formula (1) is likely to suppress the formation of aggregates of the particulate polymer (B). In addition, since the particle size is easily reduced, it is easy to improve the dispersibility. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance, dielectric property and mechanical property of the obtained film, and it is easy to reduce CTE. The ratio of the structural unit in which Y in the formula (1) is represented by the formula (2) and / or the formula (3) can be measured using, for example, 1 H-NMR, or calculated from the charging ratio of the raw materials. You can also do it.
 式(1)において、Yは、互いに独立に4価の有機基を表し、好ましくは炭素数4~40の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~40の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子がハロゲン原子、炭化水素基、アルコキシ基又はハロゲン化炭化水素基で置換されていてもよく、その場合、これらの基の炭素数は好ましくは1~8である。本発明におけるポリイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一であってもよく、異なっていてもよい。Yとしては、式(31)~式(38)で表される基(構造);式(34)~式(38)で表される基中の水素原子がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;4価の炭素数1~8の鎖式炭化水素基などが挙げられる。 In the formula (1), Y represents a tetravalent organic group independently of each other, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 having a cyclic structure and 4 to 40 carbon atoms. Represents a valence organic group. Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure. In the organic group, the hydrogen atom in the organic group may be substituted with a halogen atom, a hydrocarbon group, an alkoxy group or a halogenated hydrocarbon group, in which case the carbon number of these groups is preferably 1 to 8. Is. The polyimide-based resin in the present invention may contain a plurality of types of Y, and the plurality of types of Y may be the same as or different from each other. As Y, the group (structure) represented by the formulas (31) to (38); the hydrogen atom in the group represented by the formulas (34) to (38) is a methyl group, an ethyl group, or n-propyl. Group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, fluoro group, chloro group or trifluoromethyl group substituted group; tetravalent chain type with 1 to 8 carbon atoms. Examples include a hydrocarbon group.
Figure JPOXMLDOC01-appb-C000009

[式(31)~式(33)中、R19~R26は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R19~R26に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
及びVは、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-COO-、-OOC-、-SO-、-S-、-CO-、-N(R)-、式(a)又は式(b)
Figure JPOXMLDOC01-appb-C000009

[In formulas (31) to (33), R 19 to R 26 have a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 6 to 12 carbon atoms independently of each other. Hydrogen atoms representing an aryl group and contained in R 19 to R 26 may be substituted with halogen atoms independently of each other.
V 1 and V 2 are independent of each other, single bond, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C. (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO-, -N (R j )-, formula (a) or formula (b)
Figure JPOXMLDOC01-appb-C000010
(式(a)中、R27~R30は、互いに独立に、水素原子又は炭素数1~6のアルキル基を表し、
Zは-C(CH-又は-C(CF-を表し、
iは1~3の整数であり、*は結合手を表す)を表し、
は、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、
e及びdは、互いに独立に、0~2の整数を表し、
fは1~3の整数を表し、
g及びhは、互いに独立に、0~4の整数を表し、
*は結合手を表す]
Figure JPOXMLDOC01-appb-C000010
(In the formula (a), R 27 to R 30 represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms independently of each other.
Z represents -C (CH 3 ) 2 -or-C (CF 3 ) 2-
i is an integer from 1 to 3, and * represents a bond).
Rj represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom.
e and d represent integers from 0 to 2 independently of each other.
f represents an integer of 1 to 3 and represents
g and h represent integers from 0 to 4 independently of each other.
* Represents a bond]
 これらの中でも、得られるフィルムの粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、本発明におけるポリイミド系樹脂は、式(1)中のYとして、式(31)で表される構造、式(32)で表される構造又は式(33)で表される構造からなる群から選択される少なくとも1つの構造を含むことが好ましく、式(31)で表される構造を含むことがより好ましい。 Among these, from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film and easily reducing CTE, the polyimide-based resin in the present invention is represented by the formula (Y) in the formula (1). It preferably contains at least one structure selected from the group consisting of the structure represented by 31), the structure represented by the formula (32), or the structure represented by the formula (33), and is represented by the formula (31). It is more preferable to include the structure to be used.
 式(31)~式(33)において、R19~R26は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表す。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)及び式(3)における炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基として上記に例示のものが挙げられる。R19~R26に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、ハロゲン原子としては上記に例示のものが挙げられる。これらの中でも、フィルムの耐熱性及び誘電特性を高めやすい観点から、R19~R26は、互いに独立に、水素原子又は炭素数1~6のアルキル基が好ましく、水素原子又は炭素数1~3のアルキル基がより好ましく、水素原子がさらに好ましい。 In formulas (31) to (33), R 19 to R 26 are independent of each other, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms. Represents a group. The alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms include the alkyl group having 1 to 6 carbon atoms in the formulas (2) and (3), respectively. Examples of the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are mentioned above. The hydrogen atoms contained in R 19 to R 26 may be substituted with halogen atoms independently of each other, and examples of the halogen atoms include those mentioned above. Among these, from the viewpoint of easily improving the heat resistance and dielectric properties of the film, R 19 to R 26 are preferably hydrogen atoms or alkyl groups having 1 to 6 carbon atoms independently of each other, and hydrogen atoms or 1 to 3 carbon atoms are preferable. Alkyl groups are more preferred, and hydrogen atoms are even more preferred.
 式(31)において、V及びVは、互いに独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-COO-、-OOC-、-SO-、-S-、-CO-、-N(R)-、式(a)又は式(b)を表し、得られるフィルムの粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、好ましくは単結合、-O-、-CH-、-C(CH-、-C(CF-、-COO-、-OOC-又は-CO-を表し、より好ましくは単結合、-O-、-C(CH-又は-C(CF-を表す。Rは水素原子、ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表す。炭素数1~12の一価の炭化水素基としては、上記に例示のものが挙げられる。 In formula (31), V 1 and V 2 are single-bonded independently of each other, -O-, -CH 2-, -CH 2 - CH 2- , -CH (CH 3 )-, -C (CH 3 ). ) 2- , -C (CF 3 ) 2- , -COO-, -OOC-, -SO 2- , -S-, -CO-, -N (R j )-, equation (a) or equation (b) ), Which is preferable from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film and easily reducing the CTE, preferably single bond, —O—, −CH2- , −C (CH 3 ). ) 2- , -C (CF 3 ) 2- , -COO-, -OOC- or -CO-, more preferably single bond, -O-, -C (CH 3 ) 2- or -C (CF) 3 ) Represents 2- . R j represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom. Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include those exemplified above.
 式(31)において、e及びdは、互いに独立に、0~2の整数を表し、得られるフィルムの粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、好ましくは0又は1であり、より好ましくはe+d=1である。 In the formula (31), e and d represent integers of 0 to 2 independently of each other, and from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film and reducing CTE. It is preferably 0 or 1, and more preferably e + d = 1.
 式(32)において、fは1~3の整数を表し、得られるフィルムの粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、好ましくは1又は2、より好ましくは1である。 In the formula (32), f represents an integer of 1 to 3, and is preferably 1 or 2 from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film and easily reducing CTE. It is preferably 1.
 式(33)において、g及びhは、互いに独立に、0~4の整数を表し、得られるフィルムの粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、好ましくは0~2の整数であり、より好ましくは0又は1であり、さらに好ましくはg+h=0~2の整数である。 In the formula (33), g and h represent integers of 0 to 4 independently of each other, and from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film and reducing CTE. It is preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably an integer of g + h = 0 to 2.
 式(a)において、R27~R30は、互いに独立に、水素原子又は炭素数1~6のアルキル基を表す。炭素数1~6のアルキル基としては、式(2)及び(3)における炭素数1~6のアルキル基として上記に例示のものが挙げられる。これらの中でも、得られるフィルムの粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、R27~R30は、互いに独立に、水素原子又は炭素数1~3のアルキル基がより好ましく、水素原子がさらに好ましい。 In the formula (a), R 27 to R 30 represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms independently of each other. Examples of the alkyl group having 1 to 6 carbon atoms include those exemplified above as the alkyl group having 1 to 6 carbon atoms in the formulas (2) and (3). Among these, from the viewpoint of easily improving the particle dispersibility, heat resistance and mechanical properties of the obtained film and easily reducing CTE, R 27 to R 30 are independent of each other and have hydrogen atoms or 1 to 3 carbon atoms. Alkyl groups are more preferred, and hydrogen atoms are even more preferred.
 式(a)において、Zは-C(CH-又は-C(CF-を表す。Zがこのような構造であると、得られるフィルムの粒子分散性、耐熱性、誘電特性及び機械的特性を高めやすい。iは1~3の整数を表し、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、好ましくは1又は2である。iが2以上の場合、複数のZ及びR27~R30は互いに同一であってもよく、異なっていてもよい。 In formula (a), Z represents -C (CH 3 ) 2- or -C (CF 3 ) 2- . When Z has such a structure, it is easy to improve the particle dispersibility, heat resistance, dielectric property and mechanical property of the obtained film. i represents an integer of 1 to 3, and is preferably 1 or 2 from the viewpoint of easily enhancing particle dispersibility, heat resistance, and mechanical properties, and easily reducing CTE. When i is 2 or more, the plurality of Z and R 27 to R 30 may be the same as each other or may be different from each other.
 式(31)~式(33)で表される構造の具体例としては、式(39)~式(51)で表される構造が挙げられる。なお、これらの式中、*は結合手を表す。 Specific examples of the structures represented by the formulas (31) to (33) include the structures represented by the formulas (39) to (51). In these equations, * represents a bond.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明の一実施形態において、式(1)中のYとして、式(31)~式(33)で表される構造からなる群から選択される少なくとも1つを含む場合、式(1)中のYが式(31)~式(33)で表される構造からなる群から選択される少なくとも1つで表される構成単位の割合は、式(1)で表される構成単位の総モル量に対して、好ましくは30mol%以上、より好ましくは50mol%以上、さらに好ましくは70mol%以上、特に好ましくは90mol%以上であり、好ましくは100mol%以下である。式(1)中のYが式(31)~式(33)で表される構造からなる群から選択される少なくとも1つで表される構成単位の割合が上記の範囲であると、得られるフィルムの粒子分散性、耐吸水性、誘電特性及び機械的特性を高めやすく、かつCTEを低減しやすい。式(1)中のYが式(31)~式(33)で表される構造からなる群から選択される少なくとも1つで表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In one embodiment of the present invention, when Y in the formula (1) includes at least one selected from the group consisting of the structures represented by the formulas (31) to (33), the formula (1) is used. Y is selected from the group consisting of the structures represented by the formulas (31) to (33), and the ratio of the constituent units represented by at least one is the total mole of the constituent units represented by the formula (1). With respect to the amount, it is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. It is obtained when the ratio of the structural unit represented by at least one of Y in the formula (1) selected from the group consisting of the structures represented by the formulas (31) to (33) is in the above range. It is easy to improve the particle dispersibility, water absorption resistance, dielectric property and mechanical property of the film, and it is easy to reduce CTE. The ratio of the structural unit represented by at least one selected from the group consisting of the structures represented by the formulas (31) to (33) in the formula (1) is determined by using, for example, 1 H-NMR. It can be measured or calculated from the raw material charge ratio.
 本発明におけるポリイミド系樹脂は、式(1)で表される構成単位の他に、式(52)で表される構成単位、式(53)で表される構成単位、及び式(54)で表される構成単位からなる群から選択される少なくとも1つを含んでいてもよい。 The polyimide-based resin in the present invention has a structural unit represented by the formula (52), a structural unit represented by the formula (53), and a structural unit represented by the formula (54), in addition to the structural unit represented by the formula (1). It may contain at least one selected from the group consisting of the represented building blocks.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(52)及び式(53)中、Yは4価の有機基を表し、
は3価の有機基を表し、
及びXは、互いに独立に、2価の有機基を表し、
*は結合手を表す。
式(54)中、G及びXは、互いに独立に、2価の有機基を表し、
*は結合手を表す。]
[In the formula (52) and the formula (53), Y 1 represents a tetravalent organic group.
Y 2 represents a trivalent organic group
X 1 and X 2 represent divalent organic groups independently of each other.
* Represents a bond.
In formula (54), G and X represent divalent organic groups independently of each other.
* Represents a bond. ]
 本発明の好適な実施形態では、式(52)及び式(53)において、Yは式(1)におけるYと同義であり、X及びXは、式(1)におけるXと同義である。式(53)におけるYは式(1)におけるYの結合手のいずれか1つが水素原子に置き換わった基であることが好ましい。Yとしては、式(31)~式(38)で表される基(構造)の結合手のいずれか1つが水素原子に置き換わった基;3価の炭素数1~8の鎖式炭化水素基などが挙げられる。本発明の一実施形態において、ポリイミド系樹脂は、複数種のY又はYを含み得、複数種のY又はYは、互いに同一であってもよく、異なっていてもよい。 In a preferred embodiment of the invention, in formulas (52) and (53), Y 1 is synonymous with Y in formula (1), and X 1 and X 2 are synonymous with X in formula (1). be. It is preferable that Y 2 in the formula (53) is a group in which any one of the bonds of Y in the formula (1) is replaced with a hydrogen atom. As Y 2 , a group in which any one of the bonds of the groups (structures) represented by the formulas (31) to (38) is replaced with a hydrogen atom; a chain hydrocarbon having a trivalent carbon number of 1 to 8 is used. The group etc. can be mentioned. In one embodiment of the present invention, the polyimide-based resin may contain a plurality of types of Y 1 or Y 2 , and the plurality of types of Y 1 or Y 2 may be the same as or different from each other.
 式(54)において、Gは、互いに独立に、2価の有機基であり、好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基で置換されていてもよい、炭素数2~100の2価の有機基であり、より好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基で置換されていてもよい、環状構造を有する炭素数2~100の2価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。Gの有機基としては、例えば式(31)~式(38)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基及び炭素数6以下の2価の鎖式炭化水素基が挙げられ、好ましくは式(39)~式(51)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基などが挙げられる。
 式(54)中のXは式(1)におけるXと同義であり、ポリイミド系樹脂が式(1)で表される構成単位と式(54)で表される構成単位とを含む場合、各構成単位におけるXは同一であってもよく、異なっていてもよい。本発明の一実施形態において、ポリイミド系樹脂は、複数種のX又はGを含み得、複数種のX又はGは、互いに同一であってもよく、異なっていてもよい。
In formula (54), G is a divalent organic group independently of each other, preferably substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It may be a divalent organic group having 2 to 100 carbon atoms, more preferably substituted with a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It represents a good, divalent organic group having a cyclic structure and having 2 to 100 carbon atoms. Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure. Examples of the organic group of G include a group in which two non-adjacent groups are replaced with hydrogen atoms and a divalent chain carbonization having 6 or less carbon atoms among the bonds of the groups represented by the formulas (31) to (38). A hydrogen group can be mentioned, and preferably, among the bonds of the groups represented by the formulas (39) to (51), a group in which two non-adjacent groups are replaced with a hydrogen atom can be mentioned.
X in the formula (54) is synonymous with X in the formula (1), and when the polyimide resin contains a structural unit represented by the formula (1) and a structural unit represented by the formula (54), each X in the structural unit may be the same or different. In one embodiment of the present invention, the polyimide-based resin may contain a plurality of types of X or G, and the plurality of types of X or G may be the same as or different from each other.
 本発明の一実施形態において、ポリイミド系樹脂は、式(1)で表される構成単位、並びに、場合により式(52)で表される構成単位、式(53)で表される構成単位及び式(54)で表される構成単位から選択される少なくとも1つの構成単位からなる。また、得られるフィルムの粒子分散性、耐熱性、誘電特性及び耐吸水性を高めやすく、かつCTEを低減しやすい観点から、上記ポリイミド系樹脂において、式(1)で表される構成単位の割合は、ポリイミド系樹脂に含まれる全構成単位、例えば式(1)で表される構成単位、並びに、場合により式(52)で表される構成単位、式(53)で表される構成単位及び式(54)で表される構成単位から選択される少なくとも1つの構成単位の総モル量に基づいて、好ましくは80mol%以上、より好ましくは90mol%以上、さらに好ましくは95mol%以上である。なお、ポリイミド系樹脂において、式(1)で表される構成単位の割合の上限は100mol%以下である。なお、上記割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。また、本発明におけるポリイミド系樹脂は、得られるフィルムの粒子分散性、耐熱性、誘電特性及び耐吸水性を高めやすく、かつCTEを低減しやすい観点から、好ましくはポリイミド樹脂である。 In one embodiment of the present invention, the polyimide resin is a structural unit represented by the formula (1), and in some cases, a structural unit represented by the formula (52), a structural unit represented by the formula (53), and a structural unit represented by the formula (53). It consists of at least one structural unit selected from the structural units represented by the formula (54). Further, from the viewpoint that the particle dispersibility, heat resistance, dielectric property and water absorption resistance of the obtained film can be easily improved and the CTE can be easily reduced, the ratio of the structural units represented by the formula (1) in the polyimide resin is described. Is all the structural units contained in the polyimide resin, for example, the structural unit represented by the formula (1), and in some cases, the structural unit represented by the formula (52), the structural unit represented by the formula (53), and Based on the total molar amount of at least one structural unit selected from the structural units represented by the formula (54), it is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more. In the polyimide resin, the upper limit of the ratio of the structural unit represented by the formula (1) is 100 mol% or less. The above ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials. Further, the polyimide resin in the present invention is preferably a polyimide resin from the viewpoint of easily increasing the particle dispersibility, heat resistance, dielectric properties and water absorption resistance of the obtained film and easily reducing CTE.
 本発明の一実施形態において、ポリイミド系樹脂は、例えば上記の含ハロゲン原子置換基等によって導入することができる、ハロゲン原子、好ましくはフッ素原子を含有していてもよい。ポリイミド系樹脂がハロゲン原子、好ましくはフッ素原子を含有する場合、フィルムの耐熱性、誘電特性及び光学特性を高めやすい。ポリイミド系樹脂にフッ素原子を含有させるために好ましい含フッ素置換基としては、例えばフルオロ基及びトリフルオロメチル基が挙げられる。 In one embodiment of the present invention, the polyimide-based resin may contain a halogen atom, preferably a fluorine atom, which can be introduced by, for example, the above-mentioned halogen-containing atom substituent or the like. When the polyimide resin contains a halogen atom, preferably a fluorine atom, it is easy to improve the heat resistance, the dielectric property and the optical property of the film. Preferred fluorine-containing substituents for containing a fluorine atom in the polyimide-based resin include, for example, a fluoro group and a trifluoromethyl group.
 ポリイミド系樹脂がハロゲン原子を含有する場合、ポリイミド系樹脂におけるハロゲン原子の含有量は、ポリイミド系樹脂の質量を基準として、好ましくは0.1~40質量%、より好ましくは1~35質量%、さらに好ましくは5~30質量%である。ハロゲン原子の含有量が上記の下限以上であると、フィルムの耐熱性及び誘電特性を高めやすい。ハロゲン原子の含有量が上記の上限以下であると、CTEを低減でき、また合成がしやすくなる。 When the polyimide-based resin contains a halogen atom, the content of the halogen atom in the polyimide-based resin is preferably 0.1 to 40% by mass, more preferably 1 to 35% by mass, based on the mass of the polyimide-based resin. More preferably, it is 5 to 30% by mass. When the content of halogen atoms is at least the above lower limit, the heat resistance and dielectric properties of the film are likely to be improved. When the content of the halogen atom is not more than the above upper limit, the CTE can be reduced and the synthesis becomes easy.
 ポリイミド系樹脂のイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは95%以上であり、通常100%以下である。フィルムの光学特性、誘電特性及び耐吸水性を高めやすい観点から、イミド化率が上記の下限以上であることが好ましい。イミド化率は、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。なお、ポリイミド系樹脂がトリカルボン酸化合物を含む場合には、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができる。 The imidization ratio of the polyimide resin is preferably 90% or more, more preferably 93% or more, further preferably 95% or more, and usually 100% or less. From the viewpoint of easily improving the optical properties, dielectric properties and water absorption resistance of the film, the imidization rate is preferably at least the above lower limit. The imidization ratio indicates the ratio of the molar amount of the imide bond in the polyimide-based resin to the value of twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide-based resin. When the polyimide resin contains a tricarboxylic acid compound, the value is twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin, and the molar amount of the structural unit derived from the tricarboxylic acid compound. The ratio of the molar amount of the imide bond in the polyimide resin to the total of the above is shown. The imidization rate can be determined by an IR method, an NMR method, or the like.
 本発明におけるポリイミド系樹脂は、上記の通り、ポリイミド系樹脂をイミド化する前の前駆体を包含する。ポリイミド系樹脂がポリアミック酸の場合、ポリアミック酸は式(1’): As described above, the polyimide-based resin in the present invention includes a precursor before imidization of the polyimide-based resin. When the polyimide resin is a polyamic acid, the polyamic acid is the formula (1'):
Figure JPOXMLDOC01-appb-C000013
[式(1’)中、Y及びXはそれぞれ、式(1)におけるY及びXを表す]
で表される構成単位を含む。
Figure JPOXMLDOC01-appb-C000013
[In equation (1'), Y and X represent Y and X in equation (1), respectively]
Includes building blocks represented by.
 <樹脂(A)の製造方法>
 樹脂(A)は、市販品を用いてもよく、慣用の方法により製造してもよい。本発明の一実施形態では、前記樹脂(A)はポリイミド系樹脂であることが好ましい。ポリイミド系樹脂の製造方法は特に限定されないが、例えば、ポリイミド系樹脂は、ジアミン化合物とテトラカルボン酸化合物とを反応させてポリアミック酸を得る工程、及び該ポリアミック酸をイミド化する工程を含む方法により製造できる。また、樹脂(A)がポリアミック酸である場合、ポリアミック酸を得る工程を実施すればよい。なお、テトラカルボン酸化合物の他に、ジカルボン酸化合物、トリカルボン酸化合物を反応させてもよい。
<Manufacturing method of resin (A)>
The resin (A) may be a commercially available product or may be produced by a conventional method. In one embodiment of the present invention, the resin (A) is preferably a polyimide resin. The method for producing the polyimide resin is not particularly limited, and the polyimide resin is, for example, by a method including a step of reacting a diamine compound with a tetracarboxylic acid compound to obtain a polyamic acid and a step of imidizing the polyamic acid. Can be manufactured. When the resin (A) is a polyamic acid, the step of obtaining the polyamic acid may be carried out. In addition to the tetracarboxylic acid compound, a dicarboxylic acid compound or a tricarboxylic acid compound may be reacted.
 ポリイミド系樹脂の合成に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。 Examples of the tetracarboxylic acid compound used for synthesizing the polyimide resin include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic acid dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic acid dianhydride. Can be mentioned. The tetracarboxylic acid compound may be used alone or in combination of two or more. The tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as an acid chloride compound in addition to the dianhydride.
 テトラカルボン酸化合物の具体例としては、無水ピロメリット酸(以下、PMDAと略すことがある)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(以下、BPADAと略すことがある)、1,4,5,8-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAと略すことがある)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(以下、6FDAと略すことがある)、4,4’-オキシジフタル酸無水物(以下、ODPAと略すことがある)、2,2’,3,3’-、2,3,3’,4’-又は3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3’,3,4’-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3”,4,4”-、2,3,3”,4”-又は2,2”,3,3”-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(以下、HPMDAと略すことがある)、2,3,5,6-シクロヘキサンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下、CBDAと略すことがある)、ノルボルナン-2-スピロ-α’-スピロ-2”-ノルボルナン-5,5’,6,6’-テトラカルボン酸無水物、p-フェニレンビス(トリメリテート無水物)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物などが挙げられる。これらの中でも、得られるフィルムの粒子分散性、耐熱性、耐吸水性、誘電特性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、PMDA、BPDA、6FDA、BPADA、ODPA、HPMDA、CBDA、p-フェニレンビス(トリメリテート無水物)が好ましい。これらのテトラカルボン酸化合物は単独又は二種以上を組合せて使用できる。 Specific examples of the tetracarboxylic acid compound include pyromellitic anhydride (hereinafter, may be abbreviated as PMDA), 4,4'-(4,4'-isopropylidene diphenoxy), and diphthalic anhydride (hereinafter, BPADA). (May be abbreviated), 1,4,5,8-naphthalenetetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, may be abbreviated as BPDA), 4,4'-(Hexafluoroisopropylidene) diphthalic acid dianhydride (hereinafter, may be abbreviated as 6FDA), 4,4'-oxydiphthalic acid anhydride (hereinafter, may be abbreviated as ODPA), 2,2 ', 3,3'-, 2,3,3', 4'-or 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,3', 3,4'-biphenyltetracarboxylic Acid dianhydride, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride, 2,3', 3,4'-diphenyl ether tetracarboxylic acid dianhydride, bis (2,3-dicarboxyphenyl) ) Ether dianhydride, 3,3 ", 4,4"-, 2,3,3 ", 4"-or 2,2 ", 3,3" -p-terphenyltetracarboxylic acid dianhydride, 2 , 2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-dicarboxyphenyl) methane dianhydride, 1,1-bis (2,3- or 3.4-dicarboxyphenyl) 2,3- or 3,4-dicarboxyphenyl) ethane dianhydride, 1,2,7,8-, 1,2,6,7- or 1,2,9,10-phenanthrene-tetracarboxylic acid di Anhydride, 2,2-bis (3,4-dicarboxyphenyl) tetrafluoropropane dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (hereinafter, may be abbreviated as HPMDA), 2,3,5,6-Cyclohexanetetracarboxylic acid dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, cyclopentane -1,2,3,4-tetracarboxylic acid dianhydride, 4,4'-bis (2,3-dicarboxyphenoxy) diphenylmethane dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (Hereinafter, sometimes abbreviated as CBDA), norbornan-2-spiro-α'-spiro-2 "-norbornan-5,5', 6,6'-tetracarboxylic acid anhydride, p-phenylenebis (trimeritate) Anhydride), 3,3', 4,4'-diphenylsulfonate Tracarboxylic acid dianhydride, 2,3,6,7-anthracentetracarboxylic acid dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5 , 6-Tetracarboxylic acid dianhydride, 2,6- or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, 2,3,6,7-(or 1,4) , 5,8-) Tetrachloronaphthalene-1,4,5,8- (or 2,3,6,7-) Tetracarboxylic acid dianhydride, 2,3,8,9-,3,4,9 , 10-, 4,5,10,11-or 5,6,11,12-perylene-tetracarboxylic acid dianhydride, pyrazine-2,3,5,6-tetracarboxylic acid dianhydride, pyrrolidine-2 , 3,4,5-Tetracarboxylic acid dianhydride, thiophene-2,3,4,5-tetracarboxylic acid dianhydride, bis (2,3- or 3,4-dicarboxyphenyl) sulfonate dianhydride And so on. Among these, PMDA, BPDA, 6FDA, BPADA, ODPA, HPMDA, from the viewpoint of easily improving the particle dispersibility, heat resistance, water absorption resistance, dielectric property and mechanical property of the obtained film and reducing CTE. CBDA and p-phenylene bis (trimeritate anhydride) are preferable. These tetracarboxylic acid compounds can be used alone or in combination of two or more.
 ポリイミド系樹脂の合成に用いられるジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、芳香環を有するジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、脂肪族基を有するジアミンを表し、その構造の一部にその他の置換基を含んでいてもよいが、芳香環は有しない。 Examples of the diamine compound used for synthesizing the polyimide resin include aliphatic diamines, aromatic diamines and mixtures thereof. In addition, in this embodiment, "aromatic diamine" represents a diamine having an aromatic ring, and an aliphatic group or another substituent may be contained in a part of the structure thereof. The aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring, but the aromatic ring is not limited thereto. Among these, a benzene ring is preferable. Further, the "aliphatic diamine" represents a diamine having an aliphatic group, and may contain other substituents as a part of its structure, but does not have an aromatic ring.
 ジアミン化合物の具体例としては、1,4-ジアミノシクロヘキサン、4,4’-ジアミノ-2,2’-ジメチルビフェニル(以下、m-TBと略すことがある)、4,4’-ジアミノ-3,3’-ジメチルビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(以下、TFMBと略すことがある)、4,4’-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン(以下、1,3-APBと略すことがある)、1,4-ビス(4-アミノフェノキシ)ベンゼン(以下、1,4-APBと略すことがある)、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(4-アミノフェノキシ)]ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)]ベンゾフェノン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、4,4’-メチレンジアニリン、3,3’-メチレンジアニリン、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,3-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、ベンジジン、3,3’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、4,4”-ジアミノ-p-テルフェニル、3,3”-ジアミノ-p-テルフェニル、m-フェニレンジアミン、p-フェニレンジアミン(p-PDAと略すことがある)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPPと略すことがある)、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、レゾルシノール-ビス(3-アミノフェニル)エーテル、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-tert-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-tert-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、ピペラジン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4”-ジアミノ-p-ターフェニル、ビス(4-アミノフェニル)テレフタレート、1,4-ビス(4-アミノフェノキシ)-2,5-ジ-tert-ブチルベンゼン、4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、2,4-ジアミノ-3,5-ジエチルトルエン、2,6-ジアミノ-3,5-ジエチルトルエン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-(ヘキサフルオロプロピリデン)ジアニリン、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキンサン、1,2-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、2-メチル-1,2-ジアミノプロパン、2-メチル-1,3-ジアミノプロパン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン、2’-メトキシ-4,4’-ジアミノベンズアニリド、4,4’-ジアミノベンズアニリド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,5-ジアミノ-1,3,4-オキサジアゾール、ビス[4,4’-(4-アミノフェノキシ)]ベンズアニリド、ビス[4,4’-(3-アミノフェノキシ)]ベンズアニリド、2,6-ジアミノピリジン、2,5-ジアミノピリジンなどが挙げられる。これらの中でも、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい観点、並びに、得られるフィルムの表面平滑性、粒子分散性、耐熱性、耐吸水性、誘電特性及び機械的特性を高めやすく、かつCTEを低減しやすい観点から、1,4-ジアミノシクロヘキサン、4,4’-ジアミノジフェニルエーテル、TFMB、4,4’-メチレンジアニリン、3,3’-メチレンジアニリン、p-PDA、BAPP、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビシクロヘキサン、m-TB、4,4”-ジアミノ-p-ターフェニル、ビス(4-アミノフェニル)テレフタレート、1,4-ビス(4-アミノフェノキシ)-2,5-ジ-tert-ブチルベンゼン、1,3-APB、1,4-APB、レゾルシノール-ビス(3-アミノフェニル)エーテル、4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、2,4-ジアミノ-3,5-ジエチルトルエン、2,6-ジアミノ-3,5-ジエチルトルエン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-(ヘキサフルオロプロピリデン)ジアニリンなどが好ましい。ジアミン化合物は単独又は二種以上を組合せて使用できる。 Specific examples of the diamine compound include 1,4-diaminocyclohexane, 4,4'-diamino-2,2'-dimethylbiphenyl (hereinafter, may be abbreviated as m-TB), and 4,4'-diamino-3. , 3'-dimethylbiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl (hereinafter abbreviated as TFMB), 4,4'-diaminodiphenyl ether, 1,3-bis (3-Aminophenoxy) benzene (hereinafter, may be abbreviated as 1,3-APB), 1,4-bis (4-aminophenoxy) benzene (hereinafter, may be abbreviated as 1,4-APB), 1 , 3-Bis (4-aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3' -Dihydroxy-4,4'-diaminobiphenyl, 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy)] biphenyl, bis [4- (3- (3-aminophenoxy)] Aminophenoxy) Biphenyl, bis [1- (4-aminophenoxy)] biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy) phenyl] methane, bis [4- (4- (4-aminophenoxy)] 3-Aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy)] benzophenone, Bis [4- (3-aminophenoxy)] benzophenone, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3-aminophenoxy) phenyl ] Hexafluoropropane, 4,4'-methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 4,4'-methylenedi. Aniline, 3,3'-methylenedianiline, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4 '-Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethoxybenze Gin, 4,4 "-diamino-p-terphenyl, 3,3" -diamino-p-terphenyl, m-phenylenediamine, p-phenylenediamine (sometimes abbreviated as p-PDA), 2,2- Bis [4- (4-aminophenoxy) phenyl] Propane (sometimes abbreviated as BAPP), 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, resorcinol- Bis (3-aminophenyl) ether, 4,4'-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-[1,3-phenylenebis (1-methylethylidene)] bisaniline , Bis (p-aminocyclohexyl) methane, bis (p-β-amino-tert-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-) Aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino-tert-butyl) Toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylene diamine, p-xylylene diamine, piperazine, 4,4'-diamino- 2,2'-bis (trifluoromethyl) bicyclohexane, 4,4'-diaminodicyclohexylmethane, 4,4 "-diamino-p-terphenyl, bis (4-aminophenyl) terephthalate, 1,4-bis ( 4-Aminophenoxy) -2,5-di-tert-butylbenzene, 4,4'-(1,3-phenylenediisopropyridene) bisaniline, 1,4-bis [2- (4-aminophenyl) -2 -Propyl] benzene, 2,4-diamino-3,5-diethyltoluene, 2,6-diamino-3,5-diethyltoluene, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'- (Hexafluoropropyridene) dianiline, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexinsan, 1,2-diaminopropane , 1,2-Diaminobutane, 1,3-diaminobutane, 2-methyl-1,2-diaminopropane, 2-methyl-1,3-diaminopropane, 1,3-bis (aminomethyl) cyclohexane, 1, 4-Bis (Aminomethi) Le) Cyclohexane, norbornandiamine, 2'-methoxy-4,4'-diaminobenzanilide, 4,4'-diaminobenzanilide, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3) -Aminophenoxy) phenyl] sulfone, 9,9-bis [4- (4-aminophenoxy) phenyl] fluorene, 9,9-bis [4- (3-aminophenoxy) phenyl] fluorene, 4,4'-diamino Diphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 2,5-diamino-1,3,4-oxadiazole, bis [4, Examples thereof include 4'-(4-aminophenoxy)] benzanilide, bis [4,4'-(3-aminophenoxy)] benzanilide, 2,6-diaminopyridine, and 2,5-diaminopyridine. Among these, from the viewpoint that it is easy to suppress the formation of aggregates of the particulate polymer (B) and it is easy to improve the dispersibility because the particle size is easily reduced, and the surface smoothness and particle dispersibility of the obtained film. 1,4-Diaminocyclohexane, 4,4'-diaminodiphenyl ether, TFMB, 4,4'-methylene from the viewpoint of easily increasing heat resistance, water absorption resistance, dielectric property and mechanical property, and easily reducing CTE. Dianiline, 3,3'-methylenedianiline, p-PDA, benzene, 4,4'-diaminodicyclohexylmethane, 4,4'-diamino-2,2'-bis (trifluoromethyl) bicyclohexane, m- TB, 4,4 "-diamino-p-terphenyl, bis (4-aminophenyl) terephthalate, 1,4-bis (4-aminophenoxy) -2,5-di-tert-butylbenzene, 1,3- APB, 1,4-APB, resorcinol-bis (3-aminophenyl) ether, 4,4'-(1,3-phenylenediisopropyridene) bisaniline, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, 2,4-diamino-3,5-diethyltoluene, 2,6-diamino-3,5-diethyltoluene, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4 '-(Hexafluoropropyridene) dianiline and the like are preferable. The diamine compound can be used alone or in combination of two or more.
 なお、上記ポリイミド系樹脂は、フィルムの各種物性を損なわない範囲で、上記の樹脂合成に用いられるテトラカルボン酸化合物に加えて、他のテトラカルボン酸、ジカルボン酸及びトリカルボン酸並びにそれらの無水物及び誘導体をさらに反応させたものであってもよい。 In addition to the tetracarboxylic acid compounds used in the resin synthesis, the polyimide-based resin contains other tetracarboxylic acids, dicarboxylic acids, tricarboxylic acids, and anhydrides thereof, as long as the various physical properties of the film are not impaired. The derivative may be further reacted.
 他のテトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。 Examples of other tetracarboxylic acids include water adducts of the anhydrides of the above tetracarboxylic acid compounds.
 ジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、単独又は2種以上を組合せて用いてもよい。具体例としては、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸が単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物並びに、それらの酸クロリド化合物が挙げられる。 Examples of the dicarboxylic acid compound include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and they may be used alone or in combination of two or more. Specific examples include a dicarboxylic acid compound of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4'-biphenyldicarboxylic acid; 3,3'-biphenyldicarboxylic acid; a chain hydrocarbon having 8 or less carbon atoms, and 2 Compounds in which one benzoic acid is linked by a single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or a phenylene group, and their compounds. Examples include acid chloride compounds.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、単独又は2種以上を組合せて用いてもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物が挙げられる。 Examples of the tricarboxylic acid compound include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and they may be used alone or in combination of two or more. Specific examples include anhydrate of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalentricarboxylic acid-2,3-anhydride; a single bond of phthalic anhydride and benzoic acid, -O-. , -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or compounds linked with a phenylene group.
 ポリイミド系樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物、ジカルボン酸化合物及びトリカルボン酸化合物の使用量は、所望とする樹脂の各構成単位の比率に応じて適宜選択できる。
 本発明の好適な実施形態においては、ジアミン化合物の使用量は、テトラカルボン酸化合物1molに対して、好ましくは0.94mol以上、より好ましくは0.96mol以上、さらに好ましくは0.98mol以上、特に好ましくは0.99mol以上であり、好ましくは1.20mol以下、より好ましくは1.10mol以下、さらに好ましくは1.05mol以下、特に好ましくは1.02mol以下である。テトラカルボン酸化合物に対するジアミン化合物の使用量が上記の範囲であると、得られるフィルムの粒子分散性、耐熱性、耐吸水性、機械的特性、誘電特性及び光学特性を高めやすく、かつCTEを低減しやすい。
In the production of the polyimide-based resin, the amount of the diamine compound, the tetracarboxylic acid compound, the dicarboxylic acid compound and the tricarboxylic acid compound to be used can be appropriately selected according to the ratio of each structural unit of the desired resin.
In a preferred embodiment of the present invention, the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, still more preferably 0.98 mol or more, particularly preferably 0.98 mol or more, relative to 1 mol of the tetracarboxylic acid compound. It is preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, still more preferably 1.05 mol or less, and particularly preferably 1.02 mol or less. When the amount of the diamine compound used with respect to the tetracarboxylic acid compound is within the above range, it is easy to improve the particle dispersibility, heat resistance, water absorption resistance, mechanical properties, dielectric properties and optical properties of the obtained film, and reduce CTE. It's easy to do.
 ジアミン化合物とテトラカルボン酸化合物との反応温度は、特に限定されず、例えば5~200℃であってもよく、反応時間も特に限定されず、例えば30分~72時間程度であってもよい。本発明の好適な実施形態においては、反応温度は、好ましくは5~50℃、より好ましくは10~40℃であり、反応時間は、好ましくは3~24時間である。このような反応温度及び反応時間であると、得られるフィルムの粒子分散性、耐熱性、耐吸水性、機械的特性、誘電特性及び光学特性を高めやすく、かつCTEを低減しやすい。 The reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited and may be, for example, 5 to 200 ° C., and the reaction time is also not particularly limited and may be, for example, about 30 minutes to 72 hours. In a preferred embodiment of the invention, the reaction temperature is preferably 5-50 ° C, more preferably 10-40 ° C, and the reaction time is preferably 3-24 hours. With such a reaction temperature and reaction time, it is easy to improve the particle dispersibility, heat resistance, water absorption resistance, mechanical properties, dielectric properties and optical properties of the obtained film, and it is easy to reduce CTE.
 ジアミン化合物とテトラカルボン酸化合物との反応は、溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;フェノール、クレゾール等のフェノール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、GBL、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;DMAc、DMF等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;N-メチルピロリドン等のピロリドン系溶媒;及びそれらの組合せなどが挙げられる。これらの中でも、溶解性の観点から、フェノール系溶媒、アミド系溶媒、ピロリドン系溶媒を好適に使用できる。 The reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent. The solvent is not particularly limited as long as it does not affect the reaction, and is, for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, and the like. Alcohol-based solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; phenolic solvents such as phenol and cresol; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, GBL, γ-valerolactone, propylene glycol methyl ether acetate, lactic acid. Ester solvent such as ethyl; Ketone solvent such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon solvent such as pentane, hexane, heptane; alicyclic type such as ethyl cyclohexane Hydrobromide solvent; Aromatic hydrocarbon solvent such as toluene and xylene; nitrile solvent such as acetonitrile; ether solvent such as tetrahydrofuran and dimethoxyethane; chlorine-containing solvent such as chloroform and chlorobenzene; amide solvent such as DMAc and DMF; Sulfur-containing solvents such as dimethyl sulfone, dimethyl sulfoxide and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; pyrrolidone solvents such as N-methylpyrrolidone; and combinations thereof can be mentioned. Among these, a phenol-based solvent, an amide-based solvent, and a pyrrolidone-based solvent can be preferably used from the viewpoint of solubility.
 ジアミン化合物とテトラカルボン酸化合物との反応は、必要に応じて、窒素雰囲気、アルゴン雰囲気等の不活性雰囲気又は減圧の条件下において行ってもよく、窒素雰囲気又はアルゴン雰囲気等の下、厳密に制御された脱水溶媒中で撹拌しながら行うことが好ましい。 The reaction between the diamine compound and the tetracarboxylic acid compound may be carried out under conditions of an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere or a reduced pressure, if necessary, and is strictly controlled under a nitrogen atmosphere or an argon atmosphere or the like. It is preferable to carry out the process with stirring in the dehydrated solvent.
 イミド化工程では、イミド化触媒を用いてイミド化しても、加熱によりイミド化しても、これらを組合せてもよい。イミド化工程で使用するイミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。加熱によるイミド化工程は、ポリアミック酸が溶解した溶媒中で行ってもよく、後述のようにフィルム化した状態で行ってもよい。 In the imidization step, imidization may be performed using an imidization catalyst, imidization may be performed by heating, or a combination thereof may be used. Examples of the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidin, N-butylpyrolidin and N-butylpiperidine. And alicyclic amines such as N-propylhexahydroazepine (monocyclic); azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and Alicyclic amines such as azabicyclo [3.2.2] nonane (polycyclic); as well as pyridine, 2-methylpyridine (2-picolin), 3-methylpyridine (3-picolin), 4-methylpyridine (4). -Picolin), 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7, Examples include aromatic amines such as 8-tetrahydroisoquinoline and isoquinoline. Further, from the viewpoint of facilitating the imidization reaction, it is preferable to use an acid anhydride together with the imidization catalyst. Examples of the acid anhydride include conventional acid anhydrides used in the imidization reaction, and specific examples thereof include acetic anhydride, propionic anhydride, aliphatic acid anhydrides such as butyric anhydride, and aromatics such as phthalic acid. Acid anhydride and the like can be mentioned. The imidization step by heating may be carried out in a solvent in which a polyamic acid is dissolved, or may be carried out in a filmed state as described later.
 本発明の一実施形態では、イミド化する場合、反応温度は、通常20~250℃であり、反応時間は好ましくは30分~24時間、より好ましくは1~12時間である。 In one embodiment of the present invention, when imidized, the reaction temperature is usually 20 to 250 ° C., and the reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours.
 ポリイミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により分離精製して単離してもよく、好ましい態様では、樹脂を含む反応液に、多量のメタノール等のアルコールを加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。 The polyimide-based resin may be separated and purified by a conventional method, for example, a separation means such as filtration, concentration, extraction, crystallization, recrystallization, or column chromatography, or a separation means combining these, which is preferable. In the embodiment, it can be isolated by adding a large amount of alcohol such as methanol to the reaction solution containing the resin, precipitating the resin, and performing concentration, filtration, drying and the like.
 樹脂(A)の好適な液晶ポリマーとしては、液晶ポリエステルが挙げられ、好ましくは以下の式(a1)、(a2)及び(a3)で表される構造単位を含む液晶ポリエステルが挙げられる。
 -O-Ar-CO-   (a1)
 -CO-Ar-CO-  (a2)
 -X-Ar-Y-  (a3)
[式(a1)~式(a3)中、Arは、1,4-フェニレン基、2,6-ナフチレン基又は4,4’-ビフェニレン基を表し、
Arは、1,4-フェニレン基、1,3-フェニレン基又は2,6-ナフチレン基を表し、
Arは、1,4-フェニレン基又は1,3-フェニレン基を表し、
Xは-NH-を表し、
Yは、-O-又はNH-を表す。]
Suitable liquid crystal polymers of the resin (A) include liquid crystal polyesters, and preferably liquid crystal polyesters containing structural units represented by the following formulas (a1), (a2) and (a3).
-O-Ar 1 -CO- (a1)
-CO-Ar 2 -CO- (a2)
-X-Ar 3 -Y- (a3)
[In the formulas (a1) to (a3), Ar 1 represents a 1,4-phenylene group, a 2,6-naphthylene group or a 4,4'-biphenylene group.
Ar 2 represents a 1,4-phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group.
Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group.
X represents -NH-
Y represents —O— or NH—. ]
 前記液晶ポリエステルの全構造単位100モル%に対して、式(a1)で表される構造単位の含有量が30~80モル%、式(a2)で表される構造単位の含有量が10~35モル%、式(a3)で表される構造単位の含有量が10~35モル%である液晶ポリエステルが好ましい。 The content of the structural unit represented by the formula (a1) is 30 to 80 mol%, and the content of the structural unit represented by the formula (a2) is 10 to 10 to 100 mol% of the total structural unit of the liquid crystal polyester. Liquid crystal polyester having a content of 35 mol% and a structural unit represented by the formula (a3) of 10 to 35 mol% is preferable.
 式(a1)で表される構造単位は、芳香族ヒドロキシカルボン酸由来の構造単位、式(a2)で表される構造単位は、芳香族ジカルボン酸由来の構造単位、式(a3)で表される構造単位は、芳香族ジアミン、フェノール性水酸基を有する芳香族アミン由来の構造単位である。 The structural unit represented by the formula (a1) is a structural unit derived from an aromatic hydroxycarboxylic acid, and the structural unit represented by the formula (a2) is a structural unit derived from an aromatic dicarboxylic acid, represented by the formula (a3). The structural unit is an aromatic diamine or a structural unit derived from an aromatic amine having a phenolic hydroxyl group.
 本実施形態においては、前記Arが2,6-ナフチレン基であり、前記Arが1,3-フェニレン基であり、前記Arが1,4-フェニレン基であり、前記Yが-O-である液晶ポリエステルが好ましい。 In the present embodiment, Ar 1 is a 2,6-naphthylene group, Ar 2 is a 1,3-phenylene group, Ar 3 is a 1,4-phenylene group, and Y is −O. The liquid crystal polyester which is − is preferable.
 式(a1)で表される構造単位としては、p-ヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、4-ヒドロキシ-4’-ビフェニルカルボン酸由来の構造単位などが挙げられる。液晶ポリエステルは、2種以上の前記構造単位を含んでいてもよい。これらのうち、2-ヒドロキシ-6-ナフトエ酸由来の構造単位が好ましい。
 当該液晶ポリエステルの全構造単位100モル%に対して、式(a1)で表される構造単位の含有量は、好ましくは30モル%以上80モル%以下であり、より好ましくは40モル%以上70モル%以下であり、さらに好ましくは45モル%以上65モル%以下である。
Examples of the structural unit represented by the formula (a1) include p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, and structural units derived from 4-hydroxy-4'-biphenylcarboxylic acid. The liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from 2-hydroxy-6-naphthoic acid are preferred.
The content of the structural unit represented by the formula (a1) is preferably 30 mol% or more and 80 mol% or less, more preferably 40 mol% or more and 70, with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is mol% or less, more preferably 45 mol% or more and 65 mol% or less.
 式(a2)で表される構造単位としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸由来の構造単位などが挙げられる。液晶ポリエステルは、2種以上の前記構造単位を含んでいてもよい。これらのうち、イソフタル酸由来の構造単位が好ましい。
 当該液晶ポリエステルの全構造単位100モル%に対して、式(a2)で表される構造単位の含有量は、好ましくは10モル%以上35モル%以下であり、より好ましくは15モル%以上30モル%以下であり、さらに好ましくは17.5モル%以上27.5モル%以下である。
Examples of the structural unit represented by the formula (a2) include terephthalic acid, isophthalic acid, and structural units derived from 2,6-naphthalenedicarboxylic acid. The liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from isophthalic acid are preferred.
The content of the structural unit represented by the formula (a2) is preferably 10 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30% with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is 17.5 mol% or more, more preferably 27.5 mol% or less, and more preferably 17.5 mol% or more.
 式(a3)で表される構造単位としては、3-アミノフェノール、4-アミノフェノール、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4-アミノ安息香酸由来の構造単位などが挙げられる。液晶ポリエステルは、2種以上の前記構造単位を含んでいてもよい。これらのうち、4-アミノフェノール由来の構造単位が好ましい。
 当該液晶ポリエステルの全構造単位100モル%に対して、式(a3)で表される構造単位の含有量は、好ましくは10モル%以上35モル%以下であり、より好ましくは15モル%以上30モル%以下であり、さらに好ましくは17.5モル%以上27.5モル%以下である。
Examples of the structural unit represented by the formula (a3) include 3-aminophenol, 4-aminophenol, 1,4-phenylenediamine, 1,3-phenylenediamine, and structural units derived from 4-aminobenzoic acid. .. The liquid crystal polyester may contain two or more kinds of the structural units. Of these, structural units derived from 4-aminophenol are preferable.
The content of the structural unit represented by the formula (a3) is preferably 10 mol% or more and 35 mol% or less, and more preferably 15 mol% or more and 30% with respect to 100 mol% of the total structural unit of the liquid crystal polyester. It is 17.5 mol% or more, more preferably 27.5 mol% or less, and more preferably 17.5 mol% or more.
 本実施形態で使用される液晶ポリエステルは、例えば、特開2019-163431号公報に記載の方法により製造することができる。 The liquid crystal polyester used in this embodiment can be produced, for example, by the method described in JP-A-2019-163431.
 <組成物>
 本発明の組成物は、樹脂(A)、粒子状シクロオレフィン系ポリマー(B)及び溶媒を含み、該溶媒が第1溶媒と第2溶媒とを含み、第2溶媒とシクロオレフィン系ポリマー(B)とのHSP値間距離が8.5以上であるため、粒子状ポリマー(B)の凝集を抑制でき、粒子状ポリマー(B)の凝集体を含まない。さらに本発明の組成物は、凝集体を含まないため、表面平滑性に優れたフィルムを形成できる。
<Composition>
The composition of the present invention contains a resin (A), a particulate cycloolefin polymer (B) and a solvent, the solvent containing a first solvent and a second solvent, and a second solvent and a cycloolefin polymer (B). ), Since the distance between the HSP values is 8.5 or more, the aggregation of the particulate polymer (B) can be suppressed, and the aggregate of the particulate polymer (B) is not contained. Further, since the composition of the present invention does not contain aggregates, a film having excellent surface smoothness can be formed.
 本発明の一実施形態において、本発明では、樹脂(A)とポリマー(B)とのHSP値間距離が比較的大きくても、粒子状ポリマー(B)の凝集を有効に抑制し、粒子状ポリマー(B)の凝集体を含まない組成物が得られるとともに、表面平滑性及び粒子分散性に優れたフィルムを形成できる。そのため、本発明の組成物及びフィルムにおいて、樹脂(A)とポリマー(B)とのHSP値間距離は、好ましくは6.0以上、より好ましくは7.0以上、さらに好ましくは8.0以上である。また樹脂(A)とポリマー(B)とのHSP値間距離は、樹脂とポリマー間の親和性の観点から、好ましくは30以下、より好ましくは25以下、さらに好ましくは20以下、さらにより好ましくは15以下である。 In one embodiment of the present invention, in the present invention, even if the distance between the HSP values of the resin (A) and the polymer (B) is relatively large, the aggregation of the particulate polymer (B) is effectively suppressed and the particulate polymer (B) is in the form of particles. A composition containing no aggregate of the polymer (B) can be obtained, and a film having excellent surface smoothness and particle dispersibility can be formed. Therefore, in the composition and film of the present invention, the distance between the HSP values of the resin (A) and the polymer (B) is preferably 6.0 or more, more preferably 7.0 or more, still more preferably 8.0 or more. Is. The distance between the HSP values of the resin (A) and the polymer (B) is preferably 30 or less, more preferably 25 or less, still more preferably 20 or less, still more preferably 20 or less, from the viewpoint of the affinity between the resin and the polymer. It is 15 or less.
 本発明の組成物に含まれる粒子状ポリマー(B)の含有量は、樹脂(A)と粒子状シクロオレフィン系ポリマー(B)との合計質量に対して、通常1質量%以上、好ましくは5質量%以上、より好ましくは7質量%以上、さらに好ましくは10質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは35質量%以下である。該組成物に含まれる粒子状ポリマー(B)の含有量が上記の下限以上であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。また、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。また、該組成物に含まれる粒子状ポリマー(B)の含有量が上記の上限以下であると、膜形成が容易となるため、フィルム製造の観点から有利である。なお、フィルム中の粒子の分散性が高いと熱伝導率及びCTEの均一性が高くなるため、例えばCCLの樹脂層として該フィルムを使用した場合に、フィルムと銅箔との剥がれを抑制しやすくなる。 The content of the particulate polymer (B) contained in the composition of the present invention is usually 1% by mass or more, preferably 5 with respect to the total mass of the resin (A) and the particulate cycloolefin polymer (B). It is 7% by mass or more, more preferably 7% by mass or more, further preferably 10% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less. When the content of the particulate polymer (B) contained in the composition is at least the above lower limit, the formation of aggregates of the particulate polymer (B) is likely to be suppressed, and the particle size is likely to be reduced. It is easy to increase the dispersibility. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE. Further, when the content of the particulate polymer (B) contained in the composition is not more than the above upper limit, film formation becomes easy, which is advantageous from the viewpoint of film production. If the dispersibility of the particles in the film is high, the thermal conductivity and the uniformity of CTE are high. Therefore, for example, when the film is used as the resin layer of CCL, it is easy to suppress the peeling of the film and the copper foil. Become.
 本発明の一実施形態において、組成物に含まれる樹脂(A)及び粒子状ポリマー(B)の合計質量は、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、さらにより好ましくは20質量%以下、特に好ましくは10質量%以下である。組成物に含まれる樹脂(A)及び粒子状ポリマー(B)の合計質量が上記の範囲であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。また、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。 In one embodiment of the present invention, the total mass of the resin (A) and the particulate polymer (B) contained in the composition is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass. The above is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 10% by mass or less. When the total mass of the resin (A) and the particulate polymer (B) contained in the composition is in the above range, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is reduced. Since it is easy, it is easy to improve the dispersibility. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
 本発明の組成物は、本発明の効果を損なわない範囲で、必要に応じて、添加剤を含んでいてもよい。添加剤としては、例えば酸化防止剤、難燃剤、架橋剤、界面活性剤、相溶化剤、イミド化触媒、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、フィラーなどが挙げられる。添加剤は単独又は二種以上を組合せて使用できる。本発明の一実施形態において、本発明の組成物は、相溶化剤を含んでいなくても、粒子状ポリマー(B)の凝集体の形成を有効に抑制し得るため、凝集体を含まず、ポリマー(B)の粒子径が小さく、かつ分散性に優れている。そのため、本発明における組成物において、相溶化剤の含有量は、樹脂(A)100質量部に対して、好ましくは5質量部以下、より好ましくは1質量部以下、さらに好ましくは0.1質量部以下、さらにより好ましくは0.1質量部未満、特に好ましくは0.05質量部以下、特により好ましくは0.01質量部以下、特にさらに好ましくは0.001質量部以下であり、最も好ましくは0質量部であってもよい。また、例えば樹脂(A)がポリアミック酸のようなポリイミド系樹脂前駆体であり、フィルム製造時に熱イミド化が必要な場合には、相溶化剤によるイミド化の阻害や、加熱による相溶化剤の変質によるフィルムの特性悪化を防ぐ観点から、相溶化剤の含有量は、上記範囲の中でも、0.1質量部未満であることが好ましい。該相溶化剤の上記含有量は、樹脂(A)100質量部に代えて、樹脂(A)とポリマー(B)との合計100質量部を基準とした含有量としてもよい。 The composition of the present invention may contain additives, if necessary, as long as the effects of the present invention are not impaired. Additives include, for example, antioxidants, flame retardants, cross-linking agents, surfactants, compatibilizers, imidization catalysts, weathering agents, lubricants, antiblocking agents, antistatic agents, antifogging agents, drip-free agents, pigments. , Fillers and the like. Additives can be used alone or in combination of two or more. In one embodiment of the present invention, the composition of the present invention does not contain aggregates because it can effectively suppress the formation of aggregates of the particulate polymer (B) even if it does not contain a compatibilizer. , The particle size of the polymer (B) is small and the dispersibility is excellent. Therefore, in the composition of the present invention, the content of the compatibilizer is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.1 part by mass with respect to 100 parts by mass of the resin (A). More than parts, still more preferably less than 0.1 parts by mass, particularly preferably 0.05 parts by mass or less, particularly more preferably 0.01 parts by mass or less, and even more preferably 0.001 parts by mass or less, most preferably. May be 0 parts by mass. Further, for example, when the resin (A) is a polyimide resin precursor such as polyamic acid and thermal imidization is required at the time of film production, inhibition of imidization by a compatibilizer or a compatibilizer by heating may be used. From the viewpoint of preventing deterioration of the characteristics of the film due to deterioration, the content of the compatibilizer is preferably less than 0.1 part by mass within the above range. The content of the compatibilizer may be based on 100 parts by mass of the total of the resin (A) and the polymer (B) instead of 100 parts by mass of the resin (A).
[組成物の製造方法]
 本発明の組成物の製造方法は、特に限定されないが、例えば以下の工程:
 シクロオレフィン系ポリマー(B)を第1溶媒に溶解させてシクロオレフィン系ポリマー(B)溶液を得る工程(1);該シクロオレフィン系ポリマー(B)溶液を第2溶媒に接触させた後、第1溶媒を留去して、粒子状シクロオレフィン系ポリマー(B)を含む分散液(以下、粒子状ポリマー(B)分散液ということがある)を得る工程(2);及び該分散液に樹脂(A)を添加する工程(3)を含む方法が好ましい。このような方法を用いると、簡便かつ効率的に組成物を形成できる。本発明では、このような製造方法を用いても、第2溶媒とシクロオレフィン系ポリマー(B)とのHSP値間距離が8.5以上であるため、粒子状ポリマー(B)の凝集体の形成を抑制でき、凝集体を含まない組成物を形成できる。さらに該組成物は、表面平滑性に優れたフィルムを形成可能である。
[Method for producing composition]
The method for producing the composition of the present invention is not particularly limited, but for example, the following steps:
Step (1) of dissolving the cycloolefin polymer (B) in the first solvent to obtain a cycloolefin polymer (B) solution; after contacting the cycloolefin polymer (B) solution with the second solvent, the first step. Step (2) to obtain a dispersion solution containing the particulate cycloolefin polymer (B) (hereinafter, may be referred to as a particulate polymer (B) dispersion solution) by distilling off one solvent; and a resin in the dispersion solution. A method including the step (3) of adding (A) is preferable. By using such a method, the composition can be easily and efficiently formed. In the present invention, even if such a production method is used, the distance between the HSP values of the second solvent and the cycloolefin polymer (B) is 8.5 or more, so that the aggregate of the particulate polymer (B) is agglomerated. The formation can be suppressed, and an aggregate-free composition can be formed. Further, the composition can form a film having excellent surface smoothness.
 <工程(1)>
 工程(1)は、シクロオレフィン系ポリマー(B)を第1溶媒に溶解させてシクロオレフィン系ポリマー(B)溶液(以下、ポリマー(B)溶液ということがある)を得る工程である。
<Process (1)>
The step (1) is a step of dissolving the cycloolefin polymer (B) in the first solvent to obtain a cycloolefin polymer (B) solution (hereinafter, may be referred to as a polymer (B) solution).
 工程(1)において、第1溶媒に溶解させるポリマー(B)の形態は特に限定されず、例えば粒子状、繊維状、シート状、ペレット状などであってもよい。 In the step (1), the form of the polymer (B) to be dissolved in the first solvent is not particularly limited, and may be, for example, particulate, fibrous, sheet-like, pellet-like or the like.
 ポリマー(B)溶液は、該溶液の質量に対して、好ましくは0.01~20質量%のポリマー(B)を含む。ポリマー(B)溶液中のポリマー(B)の含有量は、該溶液の質量に対して、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、さらにより好ましくは0.5質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。該溶液中のポリマー(B)の含有量が上記の下限以上であると、組成物を調整しやすい。また該溶液中のポリマー(B)の含有量が上記の上限以下であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。また、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。 The polymer (B) solution contains preferably 0.01 to 20% by mass of the polymer (B) with respect to the mass of the solution. The content of the polymer (B) in the polymer (B) solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass, based on the mass of the solution. % Or more, more preferably 0.5% by mass or more, preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less. When the content of the polymer (B) in the solution is at least the above lower limit, the composition can be easily adjusted. Further, when the content of the polymer (B) in the solution is not more than the above upper limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is improved. Easy to raise. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
 ポリマー(B)を第1溶媒に溶解させる方法は、特に限定されないが、例えばポリマー(B)に対して第1溶媒を加えてもよいし、第1溶媒に対してポリマー(B)を加えてもよいし、その両方であってもよい。また、ポリマー(B)に対する第1溶媒の溶解度に応じて、加熱等により溶解させてもよい。 The method for dissolving the polymer (B) in the first solvent is not particularly limited, but for example, the first solvent may be added to the polymer (B), or the polymer (B) may be added to the first solvent. It may be either or both. Further, it may be dissolved by heating or the like depending on the solubility of the first solvent in the polymer (B).
 <工程(2)>
 工程(2)は、ポリマー(B)溶液を第2溶媒に接触させた後、第1溶媒を留去して、粒子状ポリマー(B)を含む分散液を得る工程である。
<Process (2)>
The step (2) is a step of contacting the polymer (B) solution with the second solvent and then distilling off the first solvent to obtain a dispersion liquid containing the particulate polymer (B).
 工程(2)において、ポリマー(B)溶液を第2溶媒と接触させる方法は、特に限定されないが、例えばポリマー(B)溶液と第2溶媒とを混合する方法が挙げられる。具体的には、第2溶媒に対して、ポリマー(B)溶液を添加する方法、ポリマー(B)溶液に対して、第2溶媒を添加する方法が例示できる。このように接触させることにより、第2溶媒と第1溶媒との混合液中に、粒子径が小さい粒子状ポリマー(B)を析出又は分散させることができる。なお、粒子状ポリマー(B)の凝集が生じない範囲であれば、工程(2)中、任意のタイミングで樹脂(A)を少量添加してもよい。 In the step (2), the method of contacting the polymer (B) solution with the second solvent is not particularly limited, and examples thereof include a method of mixing the polymer (B) solution and the second solvent. Specifically, a method of adding the polymer (B) solution to the second solvent and a method of adding the second solvent to the polymer (B) solution can be exemplified. By contacting in this way, the particulate polymer (B) having a small particle size can be precipitated or dispersed in the mixed solution of the second solvent and the first solvent. A small amount of the resin (A) may be added at any time during the step (2) as long as the particulate polymer (B) does not aggregate.
 第2溶媒と接触させるポリマー(B)溶液の使用量は、第2溶媒の使用量1質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上、さらに好ましくは0.3質量部以上、特に好ましくは0.7質量部以上であり、好ましくは100質量部以下、より好ましくは10質量部以下、さらに好ましくは3質量部以下、特に好ましくは1.5質量部以下である。第2溶媒と接触させるポリマー(B)溶液の使用量が上記の範囲であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。 The amount of the polymer (B) solution to be brought into contact with the second solvent is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more, still more preferably, with respect to 1 part by mass of the amount of the second solvent used. Is 0.3 parts by mass or more, particularly preferably 0.7 parts by mass or more, preferably 100 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 3 parts by mass or less, and particularly preferably 1.5 parts by mass. It is less than a part. When the amount of the polymer (B) solution to be brought into contact with the second solvent is within the above range, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersion is dispersible. Easy to increase.
 工程(2)において、ポリマー(B)溶液を第2溶媒と接触させた後、第1溶媒を留去する。第1溶媒の留去により、粒子状ポリマー(B)の分散安定性を高めることができる。また、第1溶媒の留去により、ポリマー(B)がさらに析出してもよい。第1溶媒は少なくとも部分的に留去又は除去すればよく、粒子状ポリマー(B)分散液中に第1溶媒が残存していてもよい。粒子状ポリマー(B)の凝集を抑制しやすく、かつ分散液を調製しやすい観点から、粒子状ポリマー(B)分散液中に第1溶媒が部分的に残存又は一部含有していることが好ましい。 In step (2), the polymer (B) solution is brought into contact with the second solvent, and then the first solvent is distilled off. Distillation of the first solvent can enhance the dispersion stability of the particulate polymer (B). Further, the polymer (B) may be further precipitated by distilling off the first solvent. The first solvent may be distilled off or removed at least partially, and the first solvent may remain in the particulate polymer (B) dispersion. From the viewpoint that the aggregation of the particulate polymer (B) can be easily suppressed and the dispersion liquid can be easily prepared, the first solvent may be partially left or partially contained in the particulate polymer (B) dispersion liquid. preferable.
 工程(2)において、第1溶媒を留去する方法としては、特に限定されず、エバポレータ等を用いて減圧留去する方法が例示される。留去時の圧力及び温度については、第1溶媒と第2溶媒の沸点等の特性に応じて適宜選択できる。本発明の好適な製造方法では、第1溶媒と第2溶媒の混合液から第1溶媒を留去するため、通常、第1溶媒の沸点は第2溶媒の沸点よりも低い。このようにして、粒子状ポリマー(B)の凝集体を含まず、粒子径の小さい粒子状ポリマー(B)が分散した粒子状ポリマー(B)分散液を得ることができる。 In the step (2), the method for distilling off the first solvent is not particularly limited, and a method for distilling off under reduced pressure using an evaporator or the like is exemplified. The pressure and temperature at the time of distillation can be appropriately selected according to the characteristics such as the boiling points of the first solvent and the second solvent. In the preferred production method of the present invention, since the first solvent is distilled off from the mixed solution of the first solvent and the second solvent, the boiling point of the first solvent is usually lower than the boiling point of the second solvent. In this way, it is possible to obtain a particulate polymer (B) dispersion liquid in which the particulate polymer (B) having a small particle size is dispersed without containing the aggregate of the particulate polymer (B).
 第1溶媒留去後に得られる粒子状ポリマー(B)分散液に含まれる第1溶媒の含有量は、第2溶媒の含有量100質量部に対して、好ましくは120質量部以下、より好ましくは100質量部以下、さらに好ましくは60質量部以下、さらにより好ましくは45質量部以下、特に好ましくは40質量部以下、特により好ましくは35質量部以下、特にさらに好ましくは30質量部以下、特にさらにより好ましくは30質量部未満、最も好ましくは25質量部以下であり、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上である。第1溶媒の含有量が上記の上限以下であると、粒子状ポリマー(B)の凝集体の形成を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。また、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。また、第1溶媒の含有量が上記の下限以上であると、分散液を調製しやすい。 The content of the first solvent contained in the particulate polymer (B) dispersion obtained after distilling off the first solvent is preferably 120 parts by mass or less, more preferably 120 parts by mass with respect to 100 parts by mass of the content of the second solvent. 100 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 45 parts by mass or less, particularly preferably 40 parts by mass or less, particularly more preferably 35 parts by mass or less, particularly still more preferably 30 parts by mass or less, particularly further. It is more preferably less than 30 parts by mass, most preferably 25 parts by mass or less, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, still more preferably 0.1 parts by mass or more. When the content of the first solvent is not more than the above upper limit, it is easy to suppress the formation of aggregates of the particulate polymer (B), and the particle size is easily reduced, so that the dispersibility is easily improved. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE. Further, when the content of the first solvent is at least the above lower limit, it is easy to prepare the dispersion liquid.
 本発明の一実施形態において、粒子状ポリマー(B)分散液に含まれる溶媒の含有量は、該分散液の質量に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上であり、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、さらに好ましくは99質量%以下、特に好ましくは95質量%以下である。溶媒の含有量が上記の範囲であると、粒子状ポリマー(B)の凝集を抑制しやすく、また、粒子径が低減されやすいことから分散性を高めやすい。また、得られるフィルムの表面平滑性、粒子分散性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。 In one embodiment of the present invention, the content of the solvent contained in the particulate polymer (B) dispersion is preferably 50% by mass or more, more preferably 70% by mass or more, and further, with respect to the mass of the dispersion. It is preferably 90% by mass or more, particularly preferably 95% by mass or more, preferably 99.99% by mass or less, more preferably 99.9% by mass or less, still more preferably 99% by mass or less, and particularly preferably 95% by mass. It is as follows. When the content of the solvent is in the above range, the aggregation of the particulate polymer (B) is easily suppressed, and the particle size is easily reduced, so that the dispersibility is easily improved. Further, it is easy to improve the surface smoothness, particle dispersibility, heat resistance and mechanical properties of the obtained film, and it is easy to reduce CTE.
 本発明の一実施形態において、粒子状ポリマー(B)分散液に含まれる溶媒は、本発明の効果を損なわない範囲で、第1溶媒と第2溶媒以外の他の溶媒を含んでいてもよい。他の溶媒としては、特に限定されず、慣用の溶媒を使用することができる。本発明の一実施形態において、第1溶媒と第2溶媒との合計質量は、分散液に含まれる溶媒の質量に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、さらにより好ましくは95質量%以上であり、好ましくは100質量%以下である。第1溶媒と第2溶媒との合計質量が上記の範囲であると、粒子状ポリマー(B)の凝集を抑制しやすいため、粒子径を低減しやすく、かつ粒子の分散性を向上しやすい。結果として、得られるフィルムの粒子分散性、表面平滑性及び機械的特性等を高めやすい。 In one embodiment of the present invention, the solvent contained in the particulate polymer (B) dispersion may contain other solvents other than the first solvent and the second solvent as long as the effects of the present invention are not impaired. .. The other solvent is not particularly limited, and a conventional solvent can be used. In one embodiment of the present invention, the total mass of the first solvent and the second solvent is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably, with respect to the mass of the solvent contained in the dispersion liquid. Is 90% by mass or more, more preferably 95% by mass or more, and preferably 100% by mass or less. When the total mass of the first solvent and the second solvent is in the above range, it is easy to suppress the aggregation of the particulate polymer (B), so that it is easy to reduce the particle size and improve the dispersibility of the particles. As a result, it is easy to improve the particle dispersibility, surface smoothness, mechanical properties, etc. of the obtained film.
 第1溶媒留去後に得られる粒子状ポリマー(B)分散液に含まれる粒子状ポリマー(B)の含有量は、該ポリマー(B)分散液の質量に対して、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは1質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは10質量%以下、特に好ましくは5質量%以下である。粒子状ポリマー(B)の含有量が上記の範囲であると、粒子ポリマー(B)の凝集を抑制しやすく、かつ粒子分散性を向上しやすいため、得られるフィルムの粒子分散性、表面平滑性、及び機械的特性等を高めやすい。 The content of the particulate polymer (B) contained in the particulate polymer (B) dispersion obtained after distilling off the first solvent is preferably 0.01% by mass with respect to the mass of the polymer (B) dispersion. The above is more preferably 0.1% by mass or more, further preferably 1% by mass or more, preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 10% by mass or less, and particularly preferably 5% by mass. % Or less. When the content of the particulate polymer (B) is in the above range, it is easy to suppress the aggregation of the particulate polymer (B) and to improve the particle dispersibility, so that the particle dispersibility and surface smoothness of the obtained film are easy to be improved. , And it is easy to improve the mechanical properties.
 粒子状ポリマー(B)分散液に含まれる粒子状ポリマー(B)のメジアン径は、本発明の上記組成物中の粒子状ポリマー(B)のメジアン径と同様の範囲から選択できる。組成物中の粒子状ポリマー(B)のメジアン径が上記の下限以上であると、組成物から形成されるフィルムの誘電特性を高めやすく、またフィルムを製造しやすい。分散液中の粒子状ポリマー(B)のメジアン径が上記の上限以下であると、組成物から形成されるフィルムの粒子分散性、表面平滑性、耐吸水性及び機械的特性を高めやすい。なお、粒子状ポリマー(B)分散液に含まれる粒子状ポリマー(B)のメジアン径は、レーザー回析を用いた散乱式粒度分布測定により求めることができ、例えば実施例に記載の方法により求めることができる。 The median diameter of the particulate polymer (B) contained in the particulate polymer (B) dispersion can be selected from the same range as the median diameter of the particulate polymer (B) in the above composition of the present invention. When the median diameter of the particulate polymer (B) in the composition is at least the above lower limit, it is easy to improve the dielectric properties of the film formed from the composition, and it is easy to manufacture the film. When the median diameter of the particulate polymer (B) in the dispersion is not more than the above upper limit, it is easy to improve the particle dispersibility, surface smoothness, water absorption resistance and mechanical properties of the film formed from the composition. The median diameter of the particulate polymer (B) contained in the particulate polymer (B) dispersion can be determined by a scattering type particle size distribution measurement using laser diffraction, for example, by the method described in Examples. be able to.
 <工程(3)>
 工程(3)は、粒子状シクロオレフィン系ポリマー(B)分散液に樹脂(A)を添加する工程である。
<Process (3)>
The step (3) is a step of adding the resin (A) to the particulate cycloolefin polymer (B) dispersion liquid.
 工程(3)において、添加する樹脂(A)は固体、好ましくは粉体の形態であってもよく、樹脂(A)を所定の溶媒、例えば第2溶媒に溶かしたワニスの形態であってもよい。本発明の一実施形態では、工程(3)において、ポリイミド樹脂又はポリアミック酸を固体、好ましくは粉体の形態又はワニスの形態で添加することができる。樹脂(A)をワニスの形態で添加する場合、ワニス中の樹脂(A)の含有量は、該ワニスの質量に対して、好ましくは0.1質量%以上、より好ましくは1質量%以上、さらに好ましくは5質量%以上、さらにより好ましくは10質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。該ワニス中の樹脂(A)の含有量が上記の範囲であると、膜形成が容易となるため、フィルム製造の観点から有利である。 In the step (3), the resin (A) to be added may be in the form of a solid, preferably powder, or may be in the form of a varnish in which the resin (A) is dissolved in a predetermined solvent, for example, a second solvent. good. In one embodiment of the invention, in step (3), the polyimide resin or polyamic acid can be added in the form of a solid, preferably powder or varnish. When the resin (A) is added in the form of a varnish, the content of the resin (A) in the varnish is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on the mass of the varnish. It is more preferably 5% by mass or more, still more preferably 10% by mass or more, preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less. When the content of the resin (A) in the varnish is in the above range, film formation is facilitated, which is advantageous from the viewpoint of film production.
 工程(3)で添加する樹脂(A)は、粒子状ポリマー(B)分散液中の樹脂(A)とポリマー(B)との合計質量に対して、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上であり、好ましくは95質量%以下、より好ましくは93質量%以下、さらに好ましくは90質量%以下である。工程(3)で添加する樹脂(A)の含有量が上記の下限以上であると、膜形成が容易となるため、フィルム製造の観点から有利である。また、該組成物に含まれる粒子状ポリマー(B)の含有量が上記の上限以下であると、粒子状ポリマー(B)の凝集を抑制できるとともに、組成物中の粒子状ポリマー(B)の分散性が向上しやすいため、得られるフィルムの粒子分散性、表面平滑性、耐熱性及び機械的特性を高めやすく、かつCTEを低減しやすい。 The resin (A) added in the step (3) is preferably 50% by mass or more, more preferably 50% by mass or more, based on the total mass of the resin (A) and the polymer (B) in the particulate polymer (B) dispersion. It is 60% by mass or more, more preferably 65% by mass or more, preferably 95% by mass or less, more preferably 93% by mass or less, still more preferably 90% by mass or less. When the content of the resin (A) added in the step (3) is at least the above lower limit, film formation becomes easy, which is advantageous from the viewpoint of film production. Further, when the content of the particulate polymer (B) contained in the composition is not more than the above upper limit, the aggregation of the particulate polymer (B) can be suppressed and the particulate polymer (B) in the composition can be suppressed. Since the dispersibility is easily improved, the particle dispersibility, surface smoothness, heat resistance and mechanical properties of the obtained film are easily improved, and the CTE is easily reduced.
 該粒子状ポリマー(B)分散液に樹脂(A)を添加する方法は、特に限定されず、樹脂(A)を一度に添加してもよく、樹脂(A)を複数回にわけて添加してもよい。 The method of adding the resin (A) to the particulate polymer (B) dispersion is not particularly limited, and the resin (A) may be added at once, or the resin (A) may be added in a plurality of times. You may.
 本発明における上記製造方法は、本発明の効果を損なわない範囲で、工程(1)~(3)以外の工程を含んでいてもよく、樹脂(A)及びポリマー(B)以外のポリマー又は添加剤を加えてもよい。添加剤としては、上記に記載の添加剤が挙げられる。
 なお、本発明の好適な実施形態では、粒子状ポリマー(B)分散液に樹脂(A)を添加するが、得られる組成物に第1溶媒及び第2溶媒が含まれるように調整し得るなら、粉体形態のポリマー(B)を樹脂(A)のワニスに添加してもよい。
The above-mentioned production method in the present invention may include steps other than the steps (1) to (3) as long as the effects of the present invention are not impaired, and the polymer or addition other than the resin (A) and the polymer (B) may be included. Agents may be added. Examples of the additive include the additives described above.
In a preferred embodiment of the present invention, the resin (A) is added to the granular polymer (B) dispersion, but if the resulting composition can be adjusted to contain the first solvent and the second solvent. , The polymer (B) in powder form may be added to the varnish of the resin (A).
[フィルム]
 本発明は、樹脂(A)及び粒子状シクロオレフィン系ポリマー(B)を含み、
 該フィルム表面の直線1mmの領域を10等分割した10個の各測定領域において求めた平均厚さの標準偏差が2.5以下であるフィルムを包含する。このようなフィルムは、表面平滑性に優れるため、例えばCCLの樹脂層として該フィルムを使用した場合に、配線の高密度化及び微細化時の高い加工精度を達成でき、また、フィルムと銅箔との剥がれを有効に抑制することができる。
 一方、厚さの標準偏差が2.5を超えると、フィルムの表面平滑性が低下する傾向がある。そのため、例えばCCLの樹脂層として該フィルムを使用した場合に、配線の密度の低下、微細化時の加工精度の低下、及びフィルムと銅箔との剥がれが生じやすい。
[the film]
The present invention includes a resin (A) and a particulate cycloolefin polymer (B).
It includes a film in which the standard deviation of the average thickness obtained in each of the 10 measurement regions obtained by dividing a region of a straight line of 1 mm on the surface of the film into 10 equal parts is 2.5 or less. Since such a film has excellent surface smoothness, for example, when the film is used as a resin layer of CCL, high processing accuracy at the time of high density and miniaturization of wiring can be achieved, and the film and copper foil can be achieved. It is possible to effectively suppress the peeling of the film.
On the other hand, if the standard deviation of the thickness exceeds 2.5, the surface smoothness of the film tends to decrease. Therefore, for example, when the film is used as the resin layer of CCL, the density of wiring is lowered, the processing accuracy at the time of miniaturization is lowered, and the film and the copper foil are likely to be peeled off.
 本発明のフィルムにおいて、厚さの標準偏差が好ましくは2.0以下、より好ましくは1.70以下、さらに好ましくは1.50以下、さらにより好ましくは1.00以下、特に好ましくは0.80以下、特により好ましくは0.60以下である。厚さの標準偏差が上記の上限以下であると、フィルムの表面平滑性をより向上し得るため、例えばCCLの樹脂層として該フィルムを使用した場合に、配線の高密度化及び微細化時の高い加工精度を達成しやすく、また、フィルムと銅箔との剥がれを抑制しやすい。厚さの標準偏差の下限は通常0.01以上、好ましくは0.05以上、より好ましくは0.1以上、さらに好ましくは0.2以上である。厚さの標準偏差が上記の下限以上であると、例えば、接着剤等を用いてフィルムを銅箔に貼りつける際に、アンカー効果により密着性を高めやすい。 In the film of the present invention, the standard deviation of the thickness is preferably 2.0 or less, more preferably 1.70 or less, still more preferably 1.50 or less, still more preferably 1.00 or less, and particularly preferably 0.80 or less. Below, it is particularly more preferably 0.60 or less. When the standard deviation of the thickness is not more than the above upper limit, the surface smoothness of the film can be further improved. It is easy to achieve high processing accuracy, and it is easy to suppress peeling between the film and the copper foil. The lower limit of the standard deviation of the thickness is usually 0.01 or more, preferably 0.05 or more, more preferably 0.1 or more, still more preferably 0.2 or more. When the standard deviation of the thickness is not more than the above lower limit, for example, when the film is attached to the copper foil by using an adhesive or the like, the adhesion is easily improved by the anchor effect.
 フィルム厚さの標準偏差は、フィルム表面の連続する直線1mmの領域を任意に選択し、該領域を10等分割して10個の測定領域を設定し、次いで、接触式又は非接触式の膜厚計、段差計、表面形状測定器等を用いて、10個の各測定領域における平均厚さをそれぞれ測定し、得られた各測定領域における平均厚さの標準偏差を算出することにより求めることができる。例えば、実施例に記載の方法により求めることができる。なお、各測定領域における平均厚さはそれぞれ、その測定領域における任意の点で測定した複数の厚さから算出した平均値であってもよい。 For the standard deviation of the film thickness, a continuous straight 1 mm region of the film surface is arbitrarily selected, the region is divided into 10 equal parts to set 10 measurement regions, and then a contact type or non-contact type film is used. Obtained by measuring the average thickness in each of the 10 measurement areas using a thickness gauge, step meter, surface shape measuring instrument, etc., and calculating the standard deviation of the average thickness in each obtained measurement area. Can be done. For example, it can be obtained by the method described in Examples. The average thickness in each measurement area may be an average value calculated from a plurality of thicknesses measured at arbitrary points in the measurement area.
 フィルム厚さの標準偏差は、フィルムの組成、例えば光学フィルムに含まれる樹脂(A)及び/又は粒子状ポリマー(B)を構成する構成単位の種類及び/又はその構成比、及び/又はその分子量を適宜調整すること;後述のフィルムの好適な製造方法を用いることなどにより上記範囲に調整できる。例えば、フィルム厚さの標準偏差は、樹脂(A)及び/又は粒子状ポリマー(B)において、フィルムの表面平滑性を高めやすいと上記に記載された樹脂又は粒子状ポリマー、その構成単位又は比率、樹脂(A)と粒子状ポリマー(B)との含有量等を適宜選択すること;フィルム形成に本発明の組成物を使用することなどにより上記範囲に調整してもよく、特に、フィルム形成に本発明の組成物を使用し、かつ該組成物中の第2溶媒に対する第1溶媒の割合を上記範囲に調整すると、厚さの標準偏差を上記範囲に調整しやすい。 The standard deviation of the film thickness is the composition of the film, for example, the type and / or composition ratio of the constituent units constituting the resin (A) and / or the particulate polymer (B) contained in the optical film, and / or its molecular weight. Can be adjusted within the above range by appropriately adjusting the above; by using a suitable method for producing a film, which will be described later. For example, in the resin (A) and / or the particulate polymer (B), the standard deviation of the film thickness is described above as likely to enhance the surface smoothness of the film. , The content of the resin (A) and the particulate polymer (B) and the like may be appropriately selected; the composition of the present invention may be used for film formation and the like may be adjusted to the above range, and in particular, film formation. When the composition of the present invention is used and the ratio of the first solvent to the second solvent in the composition is adjusted to the above range, the standard deviation of the thickness can be easily adjusted to the above range.
 本発明のフィルムにおいて、粒子状ポリマー(B)の平均一次粒子径は15μm以下であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下、さらにより好ましくは1μm以下、特に好ましくは0.8μm以下、特により好ましくは0.5μm以下であり、好ましくは0.01μm以上、より好ましくは0.03μm以上、さらに好ましくは0.05μm以上である。粒子状ポリマー(B)の平均一次粒子径が上記の下限以上であると、粒子状ポリマー(B)の凝集を防いで分散性を高めやすく、かつフィルムの機械的特性を高めやすい。粒子状ポリマー(B)の平均一次粒子が上記の上限以下であると、粒子状ポリマー(B)の沈降を防いでフィルム中の粒子分散性を高めやすく、表面平滑性、耐吸水性及び屈曲耐性等の機械的特性を高めやすい。なお、粒子状ポリマー(B)の平均一次粒子径は、電子顕微鏡により観察した画像解析により求めることができ、例えば実施例に記載の方法により求めることができる。 In the film of the present invention, the average primary particle size of the particulate polymer (B) is 15 μm or less, preferably 10 μm or less, more preferably 5 μm or less, still more preferably 3 μm or less, still more preferably 1 μm or less, and particularly preferably. It is 0.8 μm or less, more preferably 0.5 μm or less, preferably 0.01 μm or more, more preferably 0.03 μm or more, still more preferably 0.05 μm or more. When the average primary particle diameter of the particulate polymer (B) is at least the above lower limit, it is easy to prevent aggregation of the particulate polymer (B) and improve dispersibility, and it is easy to improve the mechanical properties of the film. When the average primary particles of the particulate polymer (B) are not more than the above upper limit, it is easy to prevent the precipitation of the particulate polymer (B) and improve the particle dispersibility in the film, and the surface smoothness, water absorption resistance and bending resistance are easily improved. It is easy to improve mechanical properties such as. The average primary particle diameter of the particulate polymer (B) can be determined by image analysis observed with an electron microscope, and can be determined, for example, by the method described in Examples.
 本発明の好適な実施形態では、本発明のフィルムは、樹脂(A)に対して、粒子状シクロオレフィン系ポリマー(B)が分散、好ましくは均一分散した複合フィルムであることが好ましい。例えば、該複合フィルムは海島構造を有し、樹脂(A)が海、粒子状ポリマー(B)が島であることが好ましい。このような複合フィルムは、耐熱性、誘電特性及び機械的特性を高めやすく、かつCTEを低減しやすい。 In a preferred embodiment of the present invention, the film of the present invention is preferably a composite film in which the particulate cycloolefin polymer (B) is dispersed, preferably uniformly dispersed, with respect to the resin (A). For example, it is preferable that the composite film has a sea-island structure, the resin (A) is the sea, and the particulate polymer (B) is the island. Such a composite film tends to improve heat resistance, dielectric properties and mechanical properties, and tends to reduce CTE.
 本発明の一実施形態において、本発明のフィルムは、樹脂(A)とポリマー(B)とのHSP値間距離が比較的大きくても、粒子分散性、表面平滑性、耐熱性、誘電特性及び機械的特性に優れ、かつCTEを低減できる。樹脂(A)とポリマー(B)とのHSP値間距離は好ましくは6以上であり、該HSP値間距離は上記[組成物]の項に記載の範囲から選択できる。樹脂(A)とポリマー(B)とのHSP値間距離を上記の下限以上にすることで、粒子状ポリマー(B)の凝集体の形成を有効に抑制し、フィルム中に粒子状ポリマー(B)を均一に分散させやすくすることができる。 In one embodiment of the present invention, the film of the present invention has particle dispersibility, surface smoothness, heat resistance, dielectric properties, and even if the distance between the HSP values of the resin (A) and the polymer (B) is relatively large. It has excellent mechanical properties and can reduce CTE. The distance between the HSP values of the resin (A) and the polymer (B) is preferably 6 or more, and the distance between the HSP values can be selected from the range described in the above [Composition] section. By setting the distance between the HSP values of the resin (A) and the polymer (B) to be equal to or higher than the above lower limit, the formation of aggregates of the particulate polymer (B) is effectively suppressed, and the particulate polymer (B) is contained in the film. ) Can be easily dispersed evenly.
 本発明の一実施形態において、本発明のフィルムは、低いCTEを有することができる。該フィルムのCTEは、用途に合せて適宜設計することができる。銅フィルムと貼り合せてCCLを作製する場合には、積層フィルムの剥がれ防止の観点から、フィルムのCTEを20ppm/K前後に調整することが好ましい。フィルムのCTEは、混合する樹脂(A)及び粒子状ポリマー(B)のCTEや混合量等により、調整可能である。CTE低減の観点からは、Tgの高い粒子状ポリマー(B)を混合することが好ましい。なお、CTEは、TMAにより測定でき、例えば実施例に記載の方法により測定できる。 In one embodiment of the invention, the film of the invention can have a low CTE. The CTE of the film can be appropriately designed according to the application. When CCL is produced by laminating with a copper film, it is preferable to adjust the CTE of the film to around 20 ppm / K from the viewpoint of preventing peeling of the laminated film. The CTE of the film can be adjusted by the CTE of the resin (A) and the particulate polymer (B) to be mixed, the mixing amount, and the like. From the viewpoint of reducing CTE, it is preferable to mix the particulate polymer (B) having a high Tg. The CTE can be measured by TMA, for example, by the method described in Examples.
 本発明におけるフィルムの平均厚さは、用途に応じて適宜選択でき、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上、さらにより好ましくは30μm以上、特に好ましくは40μm以上であり、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは100μm以下、特に好ましくは80μm以下である。フィルムの平均厚さは、膜厚計等を用いて測定でき、例えば実施例に記載の方法により算出できる。なお、本発明のフィルムが多層フィルムである場合、上記平均厚さは単層部分の平均厚さを表す。 The average thickness of the film in the present invention can be appropriately selected depending on the intended use, and is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 20 μm or more, still more preferably 30 μm or more, and particularly preferably 40 μm or more. It is preferably 500 μm or less, more preferably 300 μm or less, still more preferably 100 μm or less, and particularly preferably 80 μm or less. The average thickness of the film can be measured using a film thickness meter or the like, and can be calculated, for example, by the method described in Examples. When the film of the present invention is a multilayer film, the average thickness represents the average thickness of the single layer portion.
 本発明の好適な実施形態において、本発明のフィルムは、本発明の上記組成物から形成されたものであることが好ましい。このようなフィルムは、好ましくは本発明の組成物から溶媒を除去して形成されるため、本発明の組成物と含まれる成分、例えば樹脂(A)、粒子状ポリマー(B)及び添加剤などの種類や割合は同様である。
 例えば、粒子状ポリマー(B)の含有量は、フィルムに含まれる粒子状ポリマー(B)及び樹脂(A)の合計質量に対して、通常1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは35質量%以下である。粒子状ポリマー(B)の含有量が上記範囲であると、フィルムの粒子分散性、表面平滑性、誘電特性及び機械的特性を高めやすい。また、粒子状ポリマー(B)が分散したフィルムにおいては、粒子状ポリマー(B)の分散性が高いため、結果としてフィルムの物性、例えばフィルムの表面荒れや熱伝導率等のバラツキを低減しやすい。
In a preferred embodiment of the present invention, the film of the present invention is preferably formed from the above composition of the present invention. Since such a film is preferably formed by removing the solvent from the composition of the present invention, the components contained in the composition of the present invention, such as the resin (A), the particulate polymer (B) and the additive, etc. The types and proportions of are the same.
For example, the content of the particulate polymer (B) is usually 1% by mass or more, preferably 5% by mass or more, more preferably, with respect to the total mass of the particulate polymer (B) and the resin (A) contained in the film. Is 10% by mass or more, more preferably 15% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less. When the content of the particulate polymer (B) is in the above range, it is easy to improve the particle dispersibility, surface smoothness, dielectric property and mechanical property of the film. Further, in the film in which the particulate polymer (B) is dispersed, the dispersibility of the particulate polymer (B) is high, and as a result, it is easy to reduce the physical characteristics of the film, for example, variations in the surface roughness and thermal conductivity of the film. ..
 本発明の一実施形態において、フィルムに含まれる樹脂(A)及び粒子状ポリマー(B)の合計質量は、該フィルムの質量に対して、好ましくは40質量%以上、より好ましくは60質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上であり、好ましくは100質量%以下である。フィルムに含まれる樹脂(A)及び粒子状ポリマー(B)の合計質量が上記の下限以上であると、フィルムの粒子分散性、表面平滑性、誘電特性及び機械的特性を高めやすい。また、粒子状ポリマー(B)が分散したフィルムにおいては、粒子状ポリマー(B)の分散性が高いため、結果としてフィルムの物性、例えばフィルムの表面荒れや熱伝導率等のバラツキを低減しやすい。 In one embodiment of the present invention, the total mass of the resin (A) and the particulate polymer (B) contained in the film is preferably 40% by mass or more, more preferably 60% by mass or more, based on the mass of the film. It is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and preferably 100% by mass or less. When the total mass of the resin (A) and the particulate polymer (B) contained in the film is at least the above lower limit, it is easy to improve the particle dispersibility, surface smoothness, dielectric properties and mechanical properties of the film. Further, in the film in which the particulate polymer (B) is dispersed, the dispersibility of the particulate polymer (B) is high, and as a result, it is easy to reduce the physical characteristics of the film, for example, variations in the surface roughness and thermal conductivity of the film. ..
 本発明のフィルムは、単層フィルムであってもよく、本発明のフィルムからなる層を少なくとも1層含む多層フィルムであってもよい。該多層フィルムは他の層(又は他のフィルム)を含むことができる。このような場合にも全ての層を含めて本発明のフィルムと称する。他の層としては、例えば機能層などが挙げられる。該機能層としては、プライマー層、ガスバリア層、粘着層、保護層などが例示できる。機能層は単独又は二種以上を組合せて使用できる。 The film of the present invention may be a single-layer film or a multilayer film containing at least one layer made of the film of the present invention. The multilayer film can include other layers (or other films). Even in such a case, the film of the present invention includes all the layers. Examples of the other layer include a functional layer and the like. Examples of the functional layer include a primer layer, a gas barrier layer, an adhesive layer, and a protective layer. The functional layer can be used alone or in combination of two or more.
 本発明のフィルムは、通常工業的に採用されている方法によって、コロナ放電処理、火炎処理、プラズマ処理、オゾン処理等の表面処理が施されていてもよい。 The film of the present invention may be subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, ozone treatment, etc. by a method usually industrially adopted.
 本発明の組成物及びフィルムは、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記以外の実施形態の構成や方法等を任意に採用して組合せてもよく、上記の1つの実施形態に係る構成や方法等を上記の他の実施形態に係る構成や方法等に適用してもよい。 The composition and film of the present invention are not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of embodiments other than the above may be arbitrarily adopted and combined, and the configurations and methods according to the above one embodiment are applied to the configurations and methods according to the other embodiments described above. You may.
 本発明の一実施形態にかかるフィルムは、低誘電損失に加え、従来のシクロオレフィン系ポリマーを含む複合フィルムよりも表面平滑性に優れ、CTEも低減することができる。さらに耐熱性及び機械的特性にも優れる。そのため、高周波帯域用のプリント回路基板やアンテナ基板に対応可能な基板材料などに好適に利用できる。例えばCCLは、樹脂層の両表面に接着剤を介して銅箔が積層された構造を有する。本発明のフィルムを該樹脂層として使用する場合、表面平滑性が高く、またCTEが低減されているため、従来のものと比較し、銅箔と樹脂層との剥がれを有効に抑制できる。また、機械的特性、特に屈曲耐性に優れるため、塑性変形に強く、巻き癖が付きにくく、またフレキシブル基板材料にも使用できる。
 本発明のフィルムは、その他、自動車部品、電気・電子部品等の工業材料;レンズ、プリズム、光ファイバー、記録媒体等の光学材料等にも好適に用いられる。
In addition to the low dielectric loss, the film according to the embodiment of the present invention has excellent surface smoothness and can reduce CTE as compared with the conventional composite film containing a cycloolefin polymer. It also has excellent heat resistance and mechanical properties. Therefore, it can be suitably used as a substrate material compatible with a printed circuit board for a high frequency band and an antenna substrate. For example, CCL has a structure in which copper foils are laminated on both surfaces of a resin layer via an adhesive. When the film of the present invention is used as the resin layer, the surface smoothness is high and the CTE is reduced, so that peeling between the copper foil and the resin layer can be effectively suppressed as compared with the conventional film. Further, since it has excellent mechanical properties, particularly bending resistance, it is resistant to plastic deformation, does not easily have curl, and can be used as a flexible substrate material.
The film of the present invention is also suitably used for other industrial materials such as automobile parts and electric / electronic parts; optical materials such as lenses, prisms, optical fibers, and recording media.
[フィルムの製造方法]
 本発明のフィルムの製造方法は、特に限定されないが、例えば以下の工程:
(a)樹脂(A)、粒子状シクロオレフィン系ポリマー(B)及び溶媒を含む組成物を調製する組成物調製工程、
(b)組成物を基材に塗布して塗膜を形成する塗布工程、及び
(c)塗布された液(塗膜)を乾燥させて、フィルムを形成するフィルム形成工程
を含む方法によって製造することができる。樹脂(A)がポリイミド系樹脂である場合、熱イミド化を行う際には、イミド化反応を完了させる工程が含まれてもよい。
[Film manufacturing method]
The method for producing the film of the present invention is not particularly limited, but for example, the following steps:
(A) Composition preparation step for preparing a composition containing the resin (A), the particulate cycloolefin polymer (B) and the solvent.
It is produced by a method including (b) a coating step of applying the composition to a substrate to form a coating film, and (c) a film forming step of drying the applied liquid (coating film) to form a film. be able to. When the resin (A) is a polyimide resin, a step of completing the imidization reaction may be included in the thermal imidization.
 <組成物調製工程>
 組成物調整工程は、例えば、樹脂(A)、粒子状ポリマー(B)及び溶媒、並びに任意に前記添加剤を混合することにより組成物を調整すればよい。好ましくは本発明の組成物を使用すること、特に本発明の組成物の上記製造方法を用い、これにより得られる組成物を使用することが好ましい。本発明の組成物を用いることで、表面平滑性、粒子分散性、耐熱性及び機械的特性に優れ、低CTEのフィルムを形成できる。
<Composition preparation process>
In the composition adjusting step, the composition may be adjusted by, for example, mixing the resin (A), the particulate polymer (B) and the solvent, and optionally the additive. It is preferable to use the composition of the present invention, particularly the composition obtained by using the above-mentioned production method of the composition of the present invention. By using the composition of the present invention, a film having excellent surface smoothness, particle dispersibility, heat resistance and mechanical properties and a low CTE can be formed.
 <塗布工程及びフィルム形成工程>
 塗布工程は、組成物調製工程で得られた組成物を基材に塗布して塗膜を形成する工程である。
<Coating process and film forming process>
The coating step is a step of applying the composition obtained in the composition preparation step to the substrate to form a coating film.
 塗布工程において、公知の塗布方法により、基材上に組成物を塗布して塗膜を形成する。公知の塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーン印刷コーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、カーテンコート法、スロットコート法、流涎成形法等が挙げられる。 In the coating process, the composition is applied onto the substrate by a known coating method to form a coating film. Known coating methods include, for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen printing coating method, fountain coating method, and dipping method. , Spray method, curtain coating method, slot coating method, hypersalivation forming method and the like.
 基材の例としては、銅板(銅箔含む)、SUS板(SUS箔、SUSベルト含む)、ガラス基板、PETフィルム、PENフィルム、他のポリイミド系樹脂フィルム、ポリアミド系樹脂フィルム等が挙げられる。中でも、耐熱性に優れる観点から、好ましくは銅板、SUS板、ガラス基板、PETフィルム、PENフィルム等が挙げられ、フィルムとの密着性及びコストの観点から、より好ましくは銅板、SUS板、ガラス基板又はPETフィルム等が挙げられる。 Examples of the base material include a copper plate (including copper foil), a SUS plate (including SUS foil and SUS belt), a glass substrate, a PET film, a PEN film, another polyimide resin film, a polyamide resin film and the like. Among them, copper plate, SUS plate, glass substrate, PET film, PEN film and the like are preferable from the viewpoint of excellent heat resistance, and copper plate, SUS plate, glass substrate and the like are more preferable from the viewpoint of adhesion to the film and cost. Alternatively, a PET film or the like can be mentioned.
 フィルム形成工程において、塗膜を乾燥し、基材から剥離することによって、フィルムを形成することができる。本発明の一実施形態において、基材が銅箔の場合には、塗膜を銅箔から剥離することなくフィルムを形成し、得られた銅箔上にフィルムが積層された積層体を銅張積層板に用いることもできる。剥離する場合、剥離後にさらにフィルムを乾燥する乾燥工程を行ってもよい。ここで、組成物を基材に塗布してフィルムを形成する場合、塗膜の基材側の面はほぼ平坦であるものの、基材側とは反対側の面(以下、エア面ともいう)に表面荒れが発生することで、厚さのバラツキが発生し、フィルムの表面平滑性が損なわれることがあるが、本発明の組成物を使用すると、このような表面荒れの形成を有効に抑制できるため、表面平滑性に優れたフィルムを形成できる。
 塗膜の乾燥は、樹脂(A)の耐熱性などに応じて適宜選択できるが、本発明の一実施形態では、50~450℃、好ましくは55~400℃、より好ましくは70℃~380℃の温度にて行うことができ、本発明の別の実施形態では、50~350℃、好ましくは70~300℃の温度にて行うことができる。本発明の好適な実施形態では、段階的に乾燥を行うことが好ましい。段階的に乾燥を行うことにより、組成物を均一に乾燥することができ、得られるフィルムの表面平滑性が向上し得るため、該フィルムをCCLの樹脂層として使用する場合、銅箔と樹脂層との剥がれを有効に抑制できる。例えば、50~150℃の比較的低温下で加熱した後、200~450℃、好ましくは200~350℃で加熱してもよい。乾燥又は加熱の時間は、好ましくは5分~10時間、より好ましくは10分~5時間である。このような範囲で段階的に低温から高温に加熱することにより、得られるフィルムの表面平滑性を向上しやすい。必要に応じて、窒素やアルゴン等の不活性雰囲気条件下、真空もしくは減圧条件下、及び/又は通風下において塗膜の乾燥を行ってもよい。
 段階的に乾燥を行う場合、段階的な乾燥の間で、基材から塗膜を剥離後、塗膜の乾燥を継続してもよく、全ての乾燥が終了してから基材から塗膜(フィルム)を剥離してもよい。例えば1段階目の乾燥後に基材から塗膜を剥離して2段階目以降の乾燥を行ってもよいし、すべての乾燥段階が終了した後に基材から塗膜(フィルム)を剥離してもよい。なお、1段階目の乾燥は予備乾燥であってよい。
In the film forming step, the film can be formed by drying the coating film and peeling it from the substrate. In one embodiment of the present invention, when the base material is a copper foil, a film is formed without peeling the coating film from the copper foil, and a laminate in which the film is laminated on the obtained copper foil is copper-clad. It can also be used for laminated boards. In the case of peeling, a drying step of further drying the film may be performed after the peeling. Here, when the composition is applied to a substrate to form a film, the surface of the coating film on the substrate side is almost flat, but the surface opposite to the substrate side (hereinafter, also referred to as an air surface). When the surface roughness occurs, the thickness may vary and the surface smoothness of the film may be impaired. However, when the composition of the present invention is used, the formation of such surface roughness is effectively suppressed. Therefore, a film having excellent surface smoothness can be formed.
The drying of the coating film can be appropriately selected depending on the heat resistance of the resin (A) and the like, but in one embodiment of the present invention, it is 50 to 450 ° C., preferably 55 to 400 ° C., more preferably 70 ° C. to 380 ° C. In another embodiment of the present invention, it can be carried out at a temperature of 50 to 350 ° C., preferably 70 to 300 ° C. In a preferred embodiment of the present invention, it is preferable to carry out drying step by step. By performing the drying step by step, the composition can be uniformly dried and the surface smoothness of the obtained film can be improved. Therefore, when the film is used as the resin layer of CCL, the copper foil and the resin layer are used. Peeling with and can be effectively suppressed. For example, after heating at a relatively low temperature of 50 to 150 ° C., heating may be performed at 200 to 450 ° C., preferably 200 to 350 ° C. The drying or heating time is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours. By gradually heating from a low temperature to a high temperature in such a range, the surface smoothness of the obtained film can be easily improved. If necessary, the coating film may be dried under inert atmosphere conditions such as nitrogen and argon, under vacuum or reduced pressure conditions, and / or under ventilation.
In the case of stepwise drying, the coating film may be continuously dried after the coating film is peeled off from the base material during the stepwise drying, and after all the drying is completed, the coating film is applied from the base material ( The film) may be peeled off. For example, the coating film may be peeled off from the substrate after the first step of drying to perform the second and subsequent drying steps, or the coating film (film) may be peeled off from the substrate after all the drying steps are completed. good. The first step of drying may be pre-drying.
 基材が銅箔である場合、例えば、銅箔を、第二塩化鉄溶液等でエッチング除去することで、基材である銅箔からフィルムを剥離してよい。 When the base material is a copper foil, for example, the film may be peeled off from the copper foil as the base material by etching and removing the copper foil with a ferric chloride solution or the like.
 本発明の一実施形態において、組成物中の樹脂(A)がポリイミド系樹脂前駆体(例えばポリアミック酸)であり、フィルム製造時にポリイミド系樹脂を生成する場合、該組成物を基材に塗布後、加熱により熱イミド化することが好ましい。該加熱により、溶媒を除去する乾燥と熱イミド化を同時に行うことができる。乾燥及びイミド化温度は、通常50~450℃の範囲であり、平滑なフィルムを得やすい観点からは、段階的に加熱を行うことが好ましい。例えば、50~150℃の比較的低温下で加熱して溶媒を除去した後、300~450℃の範囲の温度まで段階的に加熱してもよい。加熱の時間は、例えば上記範囲と同様の範囲から選択できる。 In one embodiment of the present invention, when the resin (A) in the composition is a polyimide resin precursor (for example, polyamic acid) and a polyimide resin is produced during film production, after the composition is applied to a substrate. , It is preferable to heat imidize by heating. By the heating, drying for removing the solvent and thermal imidization can be performed at the same time. The drying and imidization temperature is usually in the range of 50 to 450 ° C., and from the viewpoint of easily obtaining a smooth film, it is preferable to perform heating step by step. For example, the solvent may be removed by heating at a relatively low temperature of 50 to 150 ° C., and then gradually heated to a temperature in the range of 300 to 450 ° C. The heating time can be selected from the same range as the above range, for example.
 本発明のフィルムが多層フィルムである場合には、例えば、共押出加工法、押出ラミネート法、熱ラミネート法、ドライラミネート法等の多層フィルム形成法により製造することができる。 When the film of the present invention is a multilayer film, it can be produced by, for example, a multilayer film forming method such as a coextrusion processing method, an extrusion laminating method, a thermal laminating method, or a dry laminating method.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。まず測定方法について説明する。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. First, the measurement method will be described.
 <ノルボルネン(NB)含有量>
 製造例で得られたシクロオレフィンコポリマーにおけるノルボルネン由来の単量体単位の含有量(「NB含有量」ともいう)は、13C-NMRを用いて測定した。13C-NMR測定条件は、以下の通りである。
 装置:Bruker社製 AVANCE600、10mmクライオプローブ
 測定温度:135℃
 測定方法:プロトンデカップリング法
 濃度:100mg/mL
 積算回数:1024回
 パルス幅:45度
 パルス繰り返し時間:4秒
 化学シフト値基準:テトラメチルシラン
 溶媒:1,2-ジクロロベンゼン-dと1,1,2,2-テトラクロロエタン-dとの体積比85:15の混合溶媒
 シクロオレフィンコポリマー中のNB含有量は、1,2-ジクロロベンゼン(127.68ppm)を基準とし、「R.A.Wendt,G.Fink,Macromol.Chem.Phys.,2001,202,3490」に記載の帰属に基づいて算出した。具体的には、13C-NMRを用いて測定されたスペクトルチャートのケミカルシフト値44.0-52.0ppmに観測されるシグナル積分値:IC2,C3(ノルボルネン環の2、3位の炭素原子に由来)、ケミカルシフト値27.0-33.0ppmに観測されるシグナル積分値:IC5,C6+ICE(ノルボルネン環の5、6位の炭素原子と、エチレン部の炭素原子とに由来)より、以下の式から求めた。
 NB含有量(mol%)=IC2,C3/(IC5,C6+ICE)×100
<Norbornene (NB) content>
The content of the monomer unit derived from norbornene (also referred to as “NB content”) in the cycloolefin copolymer obtained in the production example was measured using 13 C-NMR. 13 C-NMR measurement conditions are as follows.
Equipment: Bruker AVANCE600, 10mm cryoprobe Measurement temperature: 135 ° C
Measurement method: Proton decoupling method Concentration: 100 mg / mL
Number of integrations: 1024 Pulse width: 45 degrees Pulse repetition time: 4 seconds Chemical shift value Criteria: Tetramethylsilane Solvent: 1,2-dichlorobenzene-d 4 and 1,1,2,2-tetrachloroethane-d 2 The NB content in the mixed solvent cycloolefin copolymer having a volume ratio of 85:15 is based on 1,2-dichlorobenzene (127.68 ppm) as "RA Wendt, G. Fink, Macromol. Chem. Phys. It was calculated based on the attribution described in ", 2001, 202, 3490". Specifically, the signal integral value observed at the chemical shift value of 44.0-52.0 ppm in the spectrum chart measured using 13 C-NMR: IC2, C3 (carbon at the 2nd and 3rd positions of the norbornene ring). (Derived from the atom), signal integrated value observed at a chemical shift value of 27.0-33.0 ppm: IC5 , C6 + ICE (derived from the carbon atom at the 5th and 6th positions of the norbornene ring and the carbon atom of the ethylene part ) From the following formula.
NB content (mol%) = IC2, C3 / ( IC5, C6 + ICE ) x 100
 <ハンセン溶解度パラメータ(HSP)及びHSP値間距離>
 製造例で得られたシクロオレフィンコポリマー、ポリイミド系樹脂、液晶ポリエステル及び溶媒のハンセン溶解度パラメータ(HSP)、並びにHSP値間距離は以下のように求めた。
<Distance between Hansen solubility parameter (HSP) and HSP value>
The Hansen solubility parameter (HSP) of the cycloolefin copolymer, polyimide resin, liquid polyester and solvent obtained in the production example, and the distance between HSP values were determined as follows.
(溶媒のハンセン溶解度パラメータ(HSP))
 溶媒のHSP値は、HSPiP(Ver.4.1.07)のデータベースの数値を用い、GBLのδDは18.0MPa0.5、δPは16.6MPa0.5、δHは7.4MPa0.5とし、DMAcのδDは16.8MPa0.5、δPは11.5MPa0.5、δHは9.4MPa0.5とし、NMPのδDは18.0MPa0.5、δPは12.3MPa0.5、δHは7.2MPa0.5とし、酢酸アミルのδDは15.3MPa0.5、δPは3.1MPa0.5、δHは7.0MPa0.5とし、キシレンのδDは17.6MPa0.5、δPは1.0MPa0.5、δHは3.1MPa0.5とし、トルエンのδDは18.0MPa0.5、δPは1.4MPa0.5、δHは2.0MPa0.5とした。
(Hansen solubility parameter (HSP) of solvent)
For the HSP value of the solvent, the values in the database of HSPiP (Ver. 4.1.07) were used, and δD of GBL was 18.0 MPa 0.5 , δP was 16.6 MPa 0.5 , and δH was 7.4 MPa 0. The DMAc δD is 16.8 MPa 0.5 , the δP is 11.5 MPa 0.5 , the δH is 9.4 MPa 0.5 , the NMP δD is 18.0 MPa 0.5 , and the δP is 12.3 MPa 0 . 5.5, δH is 7.2 MPa 0.5 , δD of amyl acetate is 15.3 MPa 0.5 , δP is 3.1 MPa 0.5 , δH is 7.0 MPa 0.5 , and δD of xylene is 17. 6MPa 0.5 , δP is 1.0MPa 0.5 , δH is 3.1MPa 0.5 , toluene δD is 18.0MPa 0.5 , δP is 1.4MPa 0.5 , and δH is 2.0MPa 0 . It was set to 5.5 .
(シクロオレフィンコポリマーのHSP)
 シクロオレフィンコポリマーの各種溶媒への溶解性を評価した。溶解性の評価は、透明の容器に溶解度パラメータが既知の溶媒(HSPiPのデータベースを参照、使用した溶媒:塩化メチル、1,4-ジクロロベンゼン、クロロホルム、トルエン、p-キシレン、GBL、DMAc、NMP、水、アセトン、ジヨードメタン、安息香酸ブチル) 10mLとシクロオレフィンコポリマー 0.1gとを入れて混合液を調製した。得られた混合液に対して累計6時間超音波処理を施した。超音波処理後の混合液の外観を目視にて観察し、得られた観察結果から下記の評価基準に基づいて、それぞれの樹脂の溶媒への溶解性を評価した。
(評価基準)
2:室温で混合液の外観は白濁、沈殿が発生しているが、50℃に加温して攪拌子で30分攪拌することで混合液の外観が透明になる。
1:室温で混合液の外観は透明である。
0:室温で混合液の外観は白濁、沈殿が発生しており、50℃に加温して攪拌子で30分攪拌しても混合液の外観が透明にならない。
(HSP of cycloolefin copolymer)
The solubility of the cycloolefin copolymer in various solvents was evaluated. For the evaluation of solubility, use a solvent with a known solubility parameter in a transparent container (refer to the HSPiP database, solvent used: methyl chloride, 1,4-dichlorobenzene, chloroform, toluene, p-xylene, GBL, DMAc, NMP. , Water, acetone, diiodomethane, butyl benzoate) 10 mL and 0.1 g of cycloolefin copolymer were added to prepare a mixed solution. The obtained mixed solution was subjected to ultrasonic treatment for a total of 6 hours. The appearance of the mixed solution after the ultrasonic treatment was visually observed, and the solubility of each resin in the solvent was evaluated based on the following evaluation criteria from the obtained observation results.
(Evaluation criteria)
2: The appearance of the mixed solution is cloudy and precipitates at room temperature, but the appearance of the mixed solution becomes transparent by heating to 50 ° C. and stirring with a stirrer for 30 minutes.
1: The appearance of the mixture is transparent at room temperature.
0: The appearance of the mixed solution is cloudy and precipitates at room temperature, and the appearance of the mixed solution does not become transparent even when heated to 50 ° C. and stirred with a stirrer for 30 minutes.
 得られたシクロオレフィンコポリマーの溶媒への溶解性の評価結果から、HSPiPを用い、上述のハンセン溶解球法によりHSP値を算出した。 From the evaluation results of the solubility of the obtained cycloolefin copolymer in a solvent, the HSP value was calculated by the above-mentioned Hansen-dissolved sphere method using HSPiP.
(ポリイミド系樹脂のHSP)
 ポリイミド系樹脂の各種溶媒への溶解性を評価した。溶解性の評価は、透明の容器に溶解度パラメータが既知の溶媒(HSPiPのデータベースを参照、使用した溶媒:アセトン、トルエン、エタノール、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサン、GBL、エチルアセテート、メチルエチルケトン、プロピレングリコールモノメチルエーテル、1-ブタノール、N-メチルホルムアミド、1-メチルナフタレン、ブロモベンゼン、1-メチルイミダゾール、ピラゾール、酢酸) 10mLとポリイミド系樹脂 0.1gとを入れて混合液を調製した。得られた混合物に対して累計6時間超音波処理を施した。超音波処理後の混合液の外観を目視にて観察し、得られた観察結果から下記の評価基準に基づいて、それぞれの樹脂の溶媒への溶解性を評価した。
(評価基準)
1:混合液の外観は白濁している。
0:混合液の外観は透明である。
(HSP of polyimide resin)
The solubility of the polyimide resin in various solvents was evaluated. For evaluation of solubility, use a solvent with known solubility parameters in a transparent container (see HSPiP database, solvents used: acetone, toluene, ethanol, tetrahydrofuran, N, N-dimethylformamide, dimethyl sulfoxide, hexane, GBP, ethyl. Acetate, methyl ethyl ketone, propylene glycol monomethyl ether, 1-butanol, N-methylformamide, 1-methylnaphthalene, bromobenzene, 1-methylimidazole, pyrazole, acetic acid) 10 mL and 0.1 g of polyimide resin are added to make a mixed solution. Prepared. The resulting mixture was sonicated for a cumulative total of 6 hours. The appearance of the mixed solution after the ultrasonic treatment was visually observed, and the solubility of each resin in the solvent was evaluated based on the following evaluation criteria from the obtained observation results.
(Evaluation criteria)
1: The appearance of the mixed solution is cloudy.
0: The appearance of the mixed solution is transparent.
 得られたポリイミド系樹脂の溶媒への溶解性の評価結果から、HSPiPを用い、上述のハンセン溶解球法によりHSP値を算出した。 From the evaluation result of the solubility of the obtained polyimide resin in the solvent, the HSP value was calculated by the above-mentioned Hansen-dissolved sphere method using HSPiP.
(液晶ポリエステルのHSP)
 HSPiP(Ver.4.1.07)を用い、構造式からHSPを求めた。
(Liquid crystal polyester HSP)
Using HSPiP (Ver. 4.1.07), HSP was obtained from the structural formula.
(HSP値間距離)
 二つの物質のHSP値間距離(Ra)は、式(Y)に従って求めた。
(Distance between HSP values)
The distance (Ra) between the HSP values of the two substances was determined according to the formula (Y).
 <メソ型二連鎖/ラセモ型二連鎖>
 製造例で得られたシクロオレフィンコポリマーのノルボルネン二連鎖のメソ型二連鎖とラセモ型二連鎖との比(メソ型二連鎖/ラセモ型二連鎖)は、13C-NMRを用いて上記NB含有量の測定と同様の条件にて測定した。
 前記ノルボルネン二連鎖のメソ型二連鎖/ラセモ型二連鎖は、1,1,2,2-テトラクロロエタン(74.24ppm)を基準とし、「R.A.Wendt,G.Fink,Macromol.Chem.Phys.,2001,202,3490」及び「特開2008-285656号公報」に記載の帰属に基づいて算出した。具体的には、メソ型二連鎖/ラセモ型二連鎖は、13C-NMRを用いて測定されたスペクトルチャートのケミカルシフト値27.5-28.4ppmに観測されるシグナル積分値:IC5,C6-m(メソ型二連鎖のノルボルネン環の5、6位の炭素原子に由来)、ケミカルシフト値28.4-29.6ppmに観測されるシグナル積分値:IC5,C6-r(ラセモ型二連鎖のノルボルネン環の5、6位の炭素原子に由来)より、以下の式から求めた。
   メソ型二連鎖/ラセモ型二連鎖=IC5,C6-m/IC5,C6-r
<Meso-type two-chain / Racemo-type two-chain>
The ratio of the meso-type two-chain of the norbornene two-chain to the racemo-type two-chain (meso-type two-chain / racemo-type two-chain) of the cycloolefin copolymer obtained in the production example is the above-mentioned NB content using 13 C-NMR. It was measured under the same conditions as the measurement of.
The meso-type / racemo-type two-chain of the norbornene two-chain is based on 1,1,2,2-tetrachloroethane (74.24 ppm), and is described in “RAWendt, G.Fink, Macromol.Chem. It was calculated based on the attribution described in "Phys., 2001, 202, 3490" and "Japanese Patent Laid-Open No. 2008-285656". Specifically, the meso-type two-chain / racemo-type two-chain has a signal integral value observed at a chemical shift value of 27.5-28.4 ppm in the spectrum chart measured using 13 C-NMR: IC5 . C6 -m (derived from carbon atoms at positions 5 and 6 of the meso-type two-chain norbornene ring), signal integrated values observed at a chemical shift value of 28.4-29.6 ppm: IC5 , C6 -r (racemo type) It was obtained from the following formula from the carbon atom at the 5th and 6th positions of the two-chain norbornene ring).
Meso-type two-chain / Racemo-type two-chain = IC5 , C6 -m / IC5, C6 -r
 <屈折率>
 製造例で得られたシクロオレフィンコポリマーの屈折率は、真空プレス機で厚さ100μmに成形したシート状の試料を用いて、下記条件で測定することにより求めた。
 機器:(株)アタゴ製 アッベ屈折計「TYPE-3」
 光源波長:589.3nm
 中間液:1-ブロモナフタレン
 測定温度:23±1℃
<Refractive index>
The refractive index of the cycloolefin copolymer obtained in the production example was determined by measuring under the following conditions using a sheet-shaped sample formed to a thickness of 100 μm with a vacuum press.
Equipment: Abbe refractometer "TYPE-3" manufactured by Atago Co., Ltd.
Light source wavelength: 589.3 nm
Intermediate solution: 1-bromonaphthalene Measurement temperature: 23 ± 1 ° C
 <ガラス転移温度>
 (シクロオレフィンコポリマー)
 製造例で得られたシクロオレフィンコポリマーのTgは、JIS K 7196に基づき、TMAにより軟化温度を測定することにより求められた。具体的には、シクロオレフィンコポリマーを真空プレス機でシート状に成型した試料(厚さ:1.0mm)を下記条件で測定し、圧子が試料に沈み込む際の変位のオンセットを軟化温度とした。
 装置:(株)日立ハイテクサイエンス製、「TMA/SS6200」
 圧子径:1mm
 荷重:780mN
 温度プログラム:20℃から380℃まで5℃/分の速度で昇温
<Glass transition temperature>
(Cycloolefin copolymer)
The Tg of the cycloolefin copolymer obtained in the production example was determined by measuring the softening temperature by TMA based on JIS K 7196. Specifically, a sample (thickness: 1.0 mm) obtained by molding a cycloolefin copolymer into a sheet with a vacuum press is measured under the following conditions, and the onset of displacement when the indenter sinks into the sample is defined as the softening temperature. did.
Equipment: "TMA / SS6200" manufactured by Hitachi High-Tech Science Corporation
Indenter diameter: 1 mm
Load: 780mN
Temperature program: Temperature rise from 20 ° C to 380 ° C at a rate of 5 ° C / min
 (ポリイミド系樹脂及び液晶ポリエステル)
 製造例で得られたポリイミド系樹脂及び液晶ポリエステルのTgは、以下の測定により求められた。TA Instrument社製、「DMA Q800」を用い、次のような試料及び条件下で測定して、損失弾性率と保存弾性率の値の比であるtanδ曲線を得た後、tanδ曲線のピークの最頂点からTgを算出した。
 試料:長さ5-15mm、幅5mm
 実験モード:DMA Multi-Frequency-Strain
 実験モード詳細条件:
 (1)Clamp:Tension:Film
 (2)Amplitude:5μm
 (3)Frequncy:10Hz(全温度区間で変動なし)
 (4)Preload Force:0.01N
 (5)Force Track:125N
  温度条件:(1)昇温範囲:常温~400℃、(2)昇温速度:5℃/分
  主要収集データ:(1)保存弾性率(Storage modulus、E’)、(2)損失弾性率(Loss modulus、E”)、(3)tanδ(E”/E’)
(Polyimide resin and liquid crystal polyester)
The Tg of the polyimide resin and the liquid crystal polyester obtained in the production example was determined by the following measurements. Using "DMA Q800" manufactured by TA Instrument, measurement was performed under the following samples and conditions to obtain a tan δ curve, which is the ratio of the loss modulus to the storage modulus, and then the peak of the tan δ curve. Tg was calculated from the highest point.
Sample: length 5-15 mm, width 5 mm
Experimental mode: DMA Multi-Freequency-Strine
Detailed experimental mode conditions:
(1) Clamp: Tension: Film
(2) Implement: 5 μm
(3) Frequency: 10Hz (no fluctuation in all temperature sections)
(4) Preload Force: 0.01N
(5) Force Track: 125N
Temperature conditions: (1) Temperature rise range: Room temperature to 400 ° C., (2) Temperature rise rate: 5 ° C./min Main collected data: (1) Storage modulus (E'), (2) Loss elastic modulus (Loss modulus, E "), (3) tanδ (E" / E')
 <シクロオレフィンコポリマーのMw及びMn>
 製造例で得られたシクロオレフィンコポリマーのポリスチレン換算のMw及びMnは、GPCを用いて測定した。GPC測定は下記条件で行い、ISO16014-1の記載に基づき、クロマトグラム上のベースラインを規定してピークを指定した。
<Mw and Mn of cycloolefin copolymer>
The polystyrene-equivalent Mw and Mn of the cycloolefin copolymer obtained in the production example were measured using GPC. The GPC measurement was performed under the following conditions, and the peak was specified by defining the baseline on the chromatogram based on the description of ISO16014-1.
 (GPC装置及びソフトウェア)
  装置:HLC-8121GPC/HT(東ソー(株)製)
  測定ソフト:GPC-8020 modelII データ収集 Version 4.32(東ソー(株)製)
  解析ソフト:GPC-8020 modelII データ解析 Version 4.32(東ソー(株)製)
(GPC device and software)
Equipment: HLC-8121GPC / HT (manufactured by Tosoh Corporation)
Measurement software: GPC-8020 modelII data collection Version 4.32 (manufactured by Tosoh Corporation)
Analysis software: GPC-8020 modelII data analysis Version 4.32 (manufactured by Tosoh Corporation)
 (測定条件)
  GPCカラム:TSKgel GMH6-HT 内径7.8mm、長さ300mm(東ソー(株)製) 3本連結
  移動相:オルトジクロロベンゼン(富士フイルム和光純薬(株)製、特級)に2,6-ジ-tert-ブチル-4-メチルフェノール(以下、BHTと記載することがある)を0.1w/V、すなわち0.1g/100mLの濃度で添加して使用した。
  流速:1mL/分
  カラムオーブン温度:140℃
  オートサンプラー温度:140℃
  システムオーブン温度:40℃
  検出:示差屈折率検出器(RID)
  RIDセル温度:140℃
  試料溶液注入量:300μL
  GPCカラム校正用標準物質:東ソー(株)製標準ポリスチレンを下記表1のような組合せで量り取り、組合せごとに5mLのオルトジクロロベンゼン(移動相と同じ組成)を加え、室温で2時間溶解させて調製した。得られたGPCカラム校正用標準物質を用いてカラムの校正を行ってから、以下に示すように、試料の測定を実施した。
(Measurement condition)
GPC column: TSKgel GMH6-HT Inner diameter 7.8 mm, length 300 mm (manufactured by Tosoh Corporation) 3 connected mobile phase: Orthodichlorobenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) 2,6-di -Tert-Butyl-4-methylphenol (hereinafter, may be referred to as BHT) was added and used at a concentration of 0.1 w / V, that is, 0.1 g / 100 mL.
Flow rate: 1 mL / min Column oven temperature: 140 ° C
Autosampler temperature: 140 ° C
System oven temperature: 40 ° C
Detection: Differential Refractometer Detector (RID)
RID cell temperature: 140 ° C
Sample solution injection amount: 300 μL
Standard material for GPC column calibration: Standard polystyrene manufactured by Tosoh Corporation is weighed in the combinations shown in Table 1 below, 5 mL of orthodichlorobenzene (same composition as the mobile phase) is added to each combination, and the mixture is dissolved at room temperature for 2 hours. Prepared. The column was calibrated using the obtained GPC column calibration standard material, and then the sample was measured as shown below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (試料溶液調製条件)
  溶媒:オルトジクロロベンゼン(富士フイルム和光純薬(株)製、特級)に、BHTを0.1w/V、すなわち0.1g/100mLの濃度で添加して使用した。
  試料溶液濃度:1mg/mL
  溶解用自動振とう器:DF-8020(東ソー(株)製)
  溶解条件:5mgの試料を1,000meshのSUS製の金網袋に封入し、試料を封入した金網袋を試験管に入れ、さらに前記移動相と同組成のオルトジクロロベンゼン 5mLを加え、試験管にアルミホイルで蓋をし、試験管をDF-8020にセットし、60往復/分の撹拌速度で140℃にて120分間撹拌した。攪拌後の溶液を試料として、GPC測定を行った。
(Sample solution preparation conditions)
Solvent: BHT was added to orthodichlorobenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) at a concentration of 0.1 w / V, that is, 0.1 g / 100 mL.
Sample solution concentration: 1 mg / mL
Automatic shaker for melting: DF-8020 (manufactured by Tosoh Corporation)
Dissolution conditions: A 5 mg sample is enclosed in a 1,000 mesh SUS wire mesh bag, the wire mesh bag containing the sample is placed in a test tube, and 5 mL of orthodichlorobenzene having the same composition as the mobile phase is added to the test tube. The lid was covered with aluminum foil, the test tube was set in DF-8020, and the mixture was stirred at 140 ° C. for 120 minutes at a stirring rate of 60 reciprocating / min. GPC measurement was performed using the stirred solution as a sample.
 <ポリイミド樹脂のMw>
 製造例で得られたポリイミド樹脂のポリスチレン換算のMwは、GPCを用いて測定した。GPC測定は下記条件で行った。
 GPC測定
(1)前処理方法
 サンプルにDMF溶離液(10mmol/L臭化リチウム添加DMF溶液)を濃度2mg/mLとなるように加え、80℃にて30分間攪拌しながら加熱し、冷却後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(2)測定条件
カラム:TSKgel SuperAWM-H×2+SuperAW2500×1(6.0mm I.D.×150mm×3本)
溶離液:DMF(10mmol/Lの臭化リチウム添加)
流量:1.0mL/分
検出器:RI検出器
カラム温度:40℃
注入量:100μL
分子量標準:標準ポリスチレン
<Mw of polyimide resin>
The polystyrene-equivalent Mw of the polyimide resin obtained in the production example was measured using GPC. GPC measurement was performed under the following conditions.
GPC measurement (1) Pretreatment method Add DMF eluent (10 mmol / L lithium bromide-added DMF solution) to the sample to a concentration of 2 mg / mL, heat with stirring at 80 ° C. for 30 minutes, cool, and then cool. The solution filtered by a 0.45 μm membrane filter was used as a measurement solution.
(2) Measurement condition column: TSKgel SuperAWM-H x 2 + SuperAW2500 x 1 (6.0 mm ID x 150 mm x 3)
Eluent: DMF (10 mmol / L lithium bromide added)
Flow rate: 1.0 mL / min Detector: RI detector Column temperature: 40 ° C
Injection volume: 100 μL
Molecular weight standard: Standard polystyrene
<液晶ポリエステルのMw>
 液晶ポリエステルのMwは、GPCにて、次の条件で測定した。
(1)前処理方法
 試料約4.86mgにペンタフルオロフェノール約2mLを加え2時間加熱撹拌し、そのまま撹拌しながら40~50℃に冷却した。撹拌しながらクロロホルム約4.24mLを加え0.45μmメンブランフィルターでろ過したものを測定溶液とした。
(2)GPC装置
 東ソー(株)製 HLC8220GPC
(3)測定条件
 カラム:TSKgel SuperHM-H×2
 (内径6.0mm、長さ150mmを2本連結)
 溶離液:ペンタフルオロフェノール(PFP)/クロロホルム(質量比35/65)
 流量:0.4mL/分
 検出器:示差屈折率(RI)検出器
 カラム温度:40℃
 注入量:20μL
 分子量標準:標準ポリスチレン
<Liquid crystal polyester Mw>
The Mw of the liquid crystal polyester was measured by GPC under the following conditions.
(1) Pretreatment method About 2 mL of pentafluorophenol was added to about 4.86 mg of the sample, and the mixture was heated and stirred for 2 hours, and then cooled to 40 to 50 ° C. while stirring as it was. Approximately 4.24 mL of chloroform was added with stirring, and the solution was filtered through a 0.45 μm membrane filter as the measurement solution.
(2) GPC equipment HLC8220GPC manufactured by Tosoh Corporation
(3) Measurement conditions Column: TSKgel SuperHM-H × 2
(Two pieces with an inner diameter of 6.0 mm and a length of 150 mm are connected)
Eluent: Pentafluorophenol (PFP) / chloroform (mass ratio 35/65)
Flow rate: 0.4 mL / min Detector: Differential refractometer (RI) detector Column temperature: 40 ° C
Injection volume: 20 μL
Molecular weight standard: Standard polystyrene
 <溶解性の評価>
 実施例及び比較例で使用した溶媒に、シクロオレフィンコポリマー、ポリイミド樹脂及び液晶ポリエステルが溶解するか否かの評価は以下のように行った。
 まず、30mLのガラス製スクリュー管に溶媒9.9gを量り取り、さらにマグネチックスターラーを入れて撹拌する。そこにポリマー又は樹脂を0.1g加え、24℃で24時間攪拌する。24時間撹拌後、目視で固体が確認できない、かつ溶液が透明の場合は「溶解する」と評価した。一方、目視で固体を確認できる、又は、溶液が不透明の場合は「溶解しない」と評価した。
<Evaluation of solubility>
The evaluation of whether or not the cycloolefin copolymer, the polyimide resin and the liquid crystal polyester were dissolved in the solvents used in Examples and Comparative Examples was performed as follows.
First, 9.9 g of the solvent is weighed in a 30 mL glass screw tube, and a magnetic stirrer is further added and stirred. 0.1 g of the polymer or resin is added thereto, and the mixture is stirred at 24 ° C. for 24 hours. After stirring for 24 hours, if the solid could not be visually confirmed and the solution was transparent, it was evaluated as "dissolved". On the other hand, if the solid can be visually confirmed or the solution is opaque, it is evaluated as "not soluble".
<複合フィルムの厚さ>
 実施例及び比較例で得られた複合フィルムの厚さは、デジマチックインジケータ((株)ミツトヨ製、ID-C112XBS)を使用し、フィルムの任意の5点以上の厚さを測定し、それらの平均値を複合フィルムの厚さとした。
<Thickness of composite film>
For the thickness of the composite film obtained in Examples and Comparative Examples, a Digimatic Indicator (ID-C112XBS, manufactured by Mitutoyo Co., Ltd.) was used to measure the thickness of any 5 or more points of the film, and the thickness thereof was measured. The average value was taken as the thickness of the composite film.
<粒子状シクロオレフィンコポリマー分散液中の溶媒含有量>
 実施例及び比較例で得られた粒子状シクロオレフィンコポリマー分散液中の溶媒含有量は、ガスクロマトグラフィーにより測定した。具体的には下記条件で測定を行い、一点検量により粒子状シクロオレフィンコポリマー分散液中の溶媒含有量を算出した。
 装置:Agilent 7890Bガスクロマトグラフ(アジレント・テクノロジー(株)製)
 カラム:DB-5(アジレント・テクノロジー(株)製)
 キャリアガス:ヘリウム
 注入口温度:200℃
 検出器温度:250℃
 内部標準液:ベンジルアルコール
 溶媒:クロロホルム
<Solvent content in particulate cycloolefin copolymer dispersion>
The solvent content in the particulate cycloolefin copolymer dispersions obtained in Examples and Comparative Examples was measured by gas chromatography. Specifically, the measurement was carried out under the following conditions, and the solvent content in the particulate cycloolefin copolymer dispersion was calculated from one inspection amount.
Equipment: Agilent 7890B gas chromatograph (manufactured by Agilent Technologies)
Column: DB-5 (manufactured by Agilent Technologies, Inc.)
Carrier gas: Helium inlet temperature: 200 ° C
Detector temperature: 250 ° C
Internal standard: Benzyl alcohol Solvent: Chloroform
 <複合フィルムの平均厚さの標準偏差>
 実施例及び比較例で得られた複合フィルムの平均厚さの標準偏差は、以下のように算出した。
 ガラス基板上に密着するように固定したフィルム表面において、触診式表面形状測定器(ブルカージャパン(株) Dektak XTE)を用いて、任意の連続する直線1mmの領域における、ガラス基板を基準面とする厚さプロファイル(高さプロファイル)を得た。該領域を10等分割して10個の測定領域を設定し、次いで、10個の各測定領域におけるそれぞれの平均厚さ(平均高さ)を求めた。そして、得られた各測定領域における10点の平均厚さデータから標準偏差を算出した。
<Standard deviation of average thickness of composite film>
The standard deviation of the average thickness of the composite films obtained in Examples and Comparative Examples was calculated as follows.
On the surface of the film fixed so as to be in close contact with the glass substrate, a palpation type surface shape measuring instrument (Dektak XTE Co., Ltd.) is used, and the glass substrate is used as a reference surface in an arbitrary continuous straight line 1 mm region. A thickness profile (height profile) was obtained. The region was divided into 10 equal parts to set 10 measurement regions, and then the average thickness (average height) of each of the 10 measurement regions was determined. Then, the standard deviation was calculated from the average thickness data of 10 points in each of the obtained measurement regions.
 <凝集体の評価>
 実施例及び比較例では粒子状シクロオレフィンコポリマーの粒子径に影響しない範囲の量でポリイミド樹脂を分散液に添加して組成物を形成したため、該分散液中に粒子状シクロオレフィンコポリマーの凝集体が存在していなければ、組成物中にも該凝集体が存在しないことになる。そのため、実施例及び比較例で得られた組成物に凝集体が含まれているか否かの評価は、以下の通り、粒子状シクロオレフィンコポリマー分散液に凝集体が含まれているか否かを確認することにより行った。
 粒子状シクロオレフィンコポリマー分散液を光学顕微鏡((株)キーエンス製 VHX-7000)により観察し1mmを超えるシクロオレフィンコポリマーの凝集体が含まれている場合は、凝集体が「有り」と評価し、1mmを超えるシクロオレフィンコポリマーの凝集体が含まれていない場合は、凝集体が「なし」と評価した。
<Evaluation of aggregates>
In Examples and Comparative Examples, the polyimide resin was added to the dispersion in an amount not affecting the particle size of the particulate cycloolefin copolymer to form a composition, so that aggregates of the particulate cycloolefin copolymer were contained in the dispersion. If it is not present, the aggregate will not be present in the composition either. Therefore, in the evaluation of whether or not the compositions obtained in Examples and Comparative Examples contain aggregates, it is confirmed whether or not the particulate cycloolefin copolymer dispersion liquid contains aggregates as follows. I went by doing.
When the dispersion of the particulate cycloolefin copolymer is observed with an optical microscope (VHX-7000 manufactured by KEYENCE CORPORATION) and the agglomerates of the cycloolefin copolymer exceeding 1 mm are contained, the agglomerates are evaluated as "presence". When no aggregate of cycloolefin copolymer larger than 1 mm was contained, the aggregate was evaluated as "none".
 <CTE>
(フィルムのCTE)
 実施例及び比較例で得られた複合フィルムのCTEは、TMAにより測定した。具体的には、下記条件で測定を行い、50℃から100℃におけるCTEを算出した。
 装置:(株)日立ハイテクサイエンス製 TMA/SS7100
 圧子(プローブ)径:3.5mm
 荷重:50.0mN
 温度プログラム:20℃から130℃まで5℃/分の速度で昇温
 試験片:40mm×10mm×50μmの直方体
<CTE>
(Film CTE)
The CTEs of the composite films obtained in Examples and Comparative Examples were measured by TMA. Specifically, the measurement was performed under the following conditions, and the CTE at 50 ° C to 100 ° C was calculated.
Equipment: TMA / SS7100 manufactured by Hitachi High-Tech Science Corporation
Indenter (probe) diameter: 3.5 mm
Load: 50.0mN
Temperature program: Temperature rise from 20 ° C to 130 ° C at a rate of 5 ° C / min Specimen: 40 mm × 10 mm × 50 μm rectangular parallelepiped
(シクロオレフィンコポリマーのCTE)
 シクロオレフィンコポリマーのCTEは、TMAを用いて、下記条件で測定を行い、50℃から100℃におけるCTEを算出した。
 装置:(株)日立ハイテクサイエンス製 TMA/SS6200
 圧子(プローブ)径:3.5mm 荷重:38.5mN 温度プログラム:20℃から130℃まで5℃/分の速度で昇温
 試験片:10mm×10mm×1mmの直方体
(CTE of cycloolefin copolymer)
The CTE of the cycloolefin copolymer was measured using TMA under the following conditions, and the CTE at 50 ° C to 100 ° C was calculated.
Equipment: TMA / SS6200 manufactured by Hitachi High-Tech Science Corporation
Indenter (probe) diameter: 3.5 mm Load: 38.5 mN Temperature program: Temperature rise from 20 ° C to 130 ° C at a rate of 5 ° C / min Specimen: 10 mm x 10 mm x 1 mm rectangular parallelepiped
 <粒子状シクロオレフィンコポリマー分散液及び組成物中のメジアン径>
 実施例で得られた粒子状シクロオレフィンコポリマー分散液中の粒子状シクロオレフィンコポリマーのメジアン径を、レーザー回折を用いた散乱式粒度分布測定により求めた。
 具体的には、容量3.5mLのガラス製セルに、実施例で得られた粒子状シクロオレフィンコポリマー分散液を、さらにGBL、NMP又はDMAcにて(分散液と同溶媒を用いて)1000倍希釈し、粒子状シクロオレフィンコポリマーを含有する分散液試料を得た。得られた分散液試料をレーザー回析/散乱式粒度分布測定装置(Malvern Panalytical社製、型式:NanоZS、屈折率:1.70-0.20i)を用いて測定し、粒子状シクロオレフィンコポリマーのメジアン径を定量した。
 なお、上記の通り、実施例では粒子状シクロオレフィンコポリマーの粒子径に影響しない範囲の量でポリイミド樹脂又は液晶ポリエステルを分散液に添加して組成物を形成したため、分散液中の粒子状シクロオレフィンコポリマーのメジアン径を組成物中の粒子状シクロオレフィンコポリマーのメジアン径とした。
<Median diameter in particulate cycloolefin copolymer dispersion and composition>
The median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion obtained in the examples was determined by the scattering type particle size distribution measurement using laser diffraction.
Specifically, in a glass cell having a capacity of 3.5 mL, the particulate cycloolefin copolymer dispersion obtained in the example was further added 1000 times by GBL, NMP or DMAc (using the same solvent as the dispersion). Diluted to obtain a dispersion sample containing the particulate cycloolefin copolymer. The obtained dispersion sample was measured using a laser diffraction / scattering type particle size distribution measuring device (manufactured by Malvern Panasonic, model: NanоZS, refractive index: 1.70-0.20i), and the particulate cycloolefin copolymer was measured. The median diameter was quantified.
As described above, in the examples, since the polyimide resin or the liquid crystal polyester was added to the dispersion liquid in an amount within a range not affecting the particle size of the particulate cycloolefin copolymer to form the composition, the particulate cycloolefin in the dispersion liquid was formed. The median diameter of the copolymer was defined as the median diameter of the particulate cycloolefin copolymer in the composition.
 <フィルム中の粒子状シクロオレフィンコポリマーの平均一次粒子径>
 実施例で得られた複合フィルムは走査型透過電子顕微鏡(STEM)を用いて、それぞれの複合フィルムの断面観察を行い、観察された断面の画像から50個以上の粒子の粒子径を測定し、それらの平均値を平均一次粒子径とした。
 (STEM観察測定条件)
装置名:日本FEI(株)製 HeLiоsG4UX(剥片作成装置)
    (株)日立ハイテク社製S―5500(STEM観察用)
加速電圧:30kv
倍率:20,000倍
 (SEM観察測定条件)
装置名:(株)キーエンス製 VE9800
加速電圧:2.0kv
倍率:500倍
<Average primary particle size of particulate cycloolefin copolymer in film>
For the composite film obtained in the examples, a cross-sectional observation of each composite film was performed using a scanning transmission electron microscope (STEM), and the particle size of 50 or more particles was measured from the image of the observed cross-section. The average value thereof was taken as the average primary particle size.
(STEM observation measurement conditions)
Device name: HeLiоsG4UX (flake making device) manufactured by Japan FEI Co., Ltd.
Hitachi High-Tech Co., Ltd. S-5500 (for STEM observation)
Acceleration voltage: 30kv
Magnification: 20,000 times (SEM observation measurement conditions)
Device name: VE9800 manufactured by KEYENCE CORPORATION
Acceleration voltage: 2.0kv
Magnification: 500 times
 <試薬の詳細>
 シクロオレフィンコポリマーの合成には、住友化学(株)製のトルエン、和光純薬(株)製のスチレン、荒川化学工業(株)製の2-ノルボルネン(以下、NBという)、東ソー・ファインケム(株)製のトリイソブチルアルミニウム(以下、TIBAという)、AGC(株)製のN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(以下、ABという)を用いた。
<Details of reagents>
Toluene manufactured by Sumitomo Chemical Co., Ltd., styrene manufactured by Wako Pure Chemical Industries, Ltd., 2-norbornene manufactured by Arakawa Chemical Industry Co., Ltd. (hereinafter referred to as NB), and Toso Finechem Co., Ltd. are used for the synthesis of cycloolefin copolymers. ) Triisobutylaluminum (hereinafter referred to as TIBA) and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate (hereinafter referred to as AB) manufactured by AGC Inc. were used.
 トルエンは、モレキュラーシーブス13X(ユニオン昭和(株)製)と活性アルミナ(住友化学(株)製「NKHD-24」)とを用いて脱水し、次いで、窒素ガスを吹き込んで溶存酸素を除去したものを使用した。 Toluene was dehydrated using Molecular Sieves 13X (manufactured by Union Showa Co., Ltd.) and activated alumina ("NKHD-24" manufactured by Sumitomo Chemical Co., Ltd.), and then nitrogen gas was blown into it to remove dissolved oxygen. It was used.
 NBは、トルエンに溶解させた後、モレキュラーシーブス13X(ユニオン昭和(株)製)と活性アルミナ(住友化学(株)製、NKHD-24)とを用いて脱水し、次いで、窒素ガスを吹き込んで溶存酸素を除去したものを使用した(以下、NB溶液という)。なお、NB溶液中のNB濃度は、ガスクロマトグラフィーを用いて測定した。 After dissolving NB in toluene, it is dehydrated using Molecular Sieves 13X (manufactured by Union Showa Co., Ltd.) and activated alumina (manufactured by Sumitomo Chemical Co., Ltd., NKHD-24), and then nitrogen gas is blown into the NB. A solution from which dissolved oxygen was removed was used (hereinafter referred to as NB solution). The NB concentration in the NB solution was measured by using gas chromatography.
 イソプロピリデン(シクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタンジクロリド(以下、錯体という)は、特開平9-183809号公報に記載の方法に従って合成したものを使用した。 Isopropyridene (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) Titanium dichloride (hereinafter referred to as a complex) is synthesized according to the method described in JP-A-9-183809. did.
[シクロオレフィンコポリマーの製造]
 <製造例1>
 内部を減圧乾燥したオートクレーブに、NB溶液 1,501mL(NB濃度:3.00mol/L)を加え、60℃に昇温した。系内を攪拌しながら、エチレン分圧:100kPaで加圧した後、TIBAのヘキサン溶液 4.0mL(濃度:1.0mol/L)と、AB 0.16gと、錯体のトルエン溶液 10.0mL(濃度:10mmol/L)とを加え、エチレンとNBとの重合を開始した。重合中は系内の温度を60℃に保ち、また、エチレンを連続的に供給して系内の圧力を開始時の値に保った。重合開始から3時間経過後、水 5.0mLを加えて重合を停止し、オートクレーブ内の溶液を抜き出した。抜き出された溶液に、トルエン 1,500gと、硫酸マグネシウム 100gとを加えて攪拌し、次いで、水 100mLを加えて攪拌し、固体を濾過により除去した。得られた液体をアセトンに滴下し、析出した粉末を濾過により単離した。単離された粉末を更にアセトンで洗浄し、減圧下、120℃で2時間乾燥して、メジアン径335μmのシクロオレフィンコポリマーを210.0g得た。得られたシクロオレフィンコポリマーにおいて、NB含有量は84.1mol%であり、Tgは293℃であり、Mwは521,000であり、Mw/Mnは1.87であり、CTEは49.4ppm/Kであり、δDは17.7MPa0.5であり、δPは2.1MPa0.5であり,δHは3.9MPa0.5であり、メソ型二連鎖/ラセモ型二連鎖は0.19であり、屈折率は1.538であった。製造例1の合成条件を表2に示す。
[Manufacturing of cycloolefin copolymer]
<Manufacturing example 1>
To the autoclave whose inside was dried under reduced pressure, 1,501 mL (NB concentration: 3.00 mol / L) of the NB solution was added, and the temperature was raised to 60 ° C. After pressurizing with ethylene partial pressure: 100 kPa while stirring the inside of the system, 4.0 mL (concentration: 1.0 mol / L) of hexane solution of TIBA, 0.16 g of AB, and 10.0 mL of toluene solution of the complex ( Concentration: 10 mmol / L) was added to initiate polymerization of ethylene and NB. During the polymerization, the temperature in the system was kept at 60 ° C., and ethylene was continuously supplied to keep the pressure in the system at the starting value. After 3 hours had passed from the start of the polymerization, 5.0 mL of water was added to stop the polymerization, and the solution in the autoclave was withdrawn. To the extracted solution, 1,500 g of toluene and 100 g of magnesium sulfate were added and stirred, and then 100 mL of water was added and stirred, and the solid was removed by filtration. The obtained liquid was added dropwise to acetone, and the precipitated powder was isolated by filtration. The isolated powder was further washed with acetone and dried under reduced pressure at 120 ° C. for 2 hours to obtain 210.0 g of a cycloolefin copolymer having a median diameter of 335 μm. In the obtained cycloolefin copolymer, the NB content is 84.1 mol%, Tg is 293 ° C., Mw is 521,000, Mw / Mn is 1.87, and CTE is 49.4 ppm /. K, δD is 17.7 MPa 0.5 , δP is 2.1 MPa 0.5 , δH is 3.9 MPa 0.5 , and meso-type two-chain / racemo-type two-chain is 0.19. The refractive index was 1.538. Table 2 shows the synthesis conditions of Production Example 1.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 <製造例2>
 内部を減圧乾燥したオートクレーブに、NB溶液 1,427mL(NB濃度:3.00mol/L)、スチレン55.2mLを加え、80℃に昇温した。系内を攪拌しながら、TIBAのヘキサン溶液 3.0mL(濃度:1.0mol/L)と、ABを0.32gと、錯体のトルエン溶液 15.0mL(濃度:10mmol/L)とを加え、NBとスチレンの重合を開始した。重合中は系内の温度を80℃に保った。重合開始から2時間経過後、水 3.0mLを加えて重合を停止し、オートクレーブ内の溶液を抜き出した。抜き出された溶液に、得られた液体をアセトンに滴下し、析出した粉末を濾過により単離した。単離された粉末を更にアセトンで洗浄し、減圧下、150℃で2時間乾燥して、シクロオレフィンコポリマーを198.3g得た。得られたシクロオレフィンコポリマーにおいて、NB含有量は96.3mol%であり、Mwは79,000であり、Mw/Mnは1.83であり、Tgは300℃超であった。また、該シクロオレフィンコポリマーのδDは17.7MPa0.5であり、δPは2.1MPa0.5であり、δHは3.9MPa0.5であった。製造例2の合成条件を表3に示す。
<Manufacturing example 2>
To the autoclave whose inside was dried under reduced pressure, 1,427 mL of NB solution (NB concentration: 3.00 mol / L) and 55.2 mL of styrene were added, and the temperature was raised to 80 ° C. While stirring the inside of the system, add 3.0 mL (concentration: 1.0 mol / L) of a hexane solution of TIBA, 0.32 g of AB, and 15.0 mL (concentration: 10 mmol / L) of a toluene solution of the complex. Polymerization of NB and styrene was started. The temperature in the system was kept at 80 ° C. during the polymerization. After 2 hours from the start of the polymerization, 3.0 mL of water was added to stop the polymerization, and the solution in the autoclave was withdrawn. The obtained liquid was added dropwise to acetone in the extracted solution, and the precipitated powder was isolated by filtration. The isolated powder was further washed with acetone and dried under reduced pressure at 150 ° C. for 2 hours to give 198.3 g of a cycloolefin copolymer. In the obtained cycloolefin copolymer, the NB content was 96.3 mol%, Mw was 79,000, Mw / Mn was 1.83, and Tg was more than 300 ° C. The δD of the cycloolefin copolymer was 17.7 MPa 0.5 , the δP was 2.1 MPa 0.5 , and the δH was 3.9 MPa 0.5 . Table 3 shows the synthesis conditions of Production Example 2.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[ポリイミド樹脂の合成]
 <製造例3>
 セパラブルフラスコにシリカゲル管、攪拌装置及び温度計を取り付けた反応器と、オイルバスとを準備した。乾燥窒素を用いてこのフラスコ内を窒素雰囲気にした後、6FDA 75.52gと、TFMB 54.44gとを投入した。これを400rpmで攪拌しながらDMAc 519.84gを加え、フラスコの内容物が均一な溶液になるまで攪拌を続けた。続いて、オイルバスを用いて容器内温度が20~30℃の範囲になるように調整しながらさらに20時間攪拌を続け、反応させてポリアミック酸を生成させた。30分後、撹拌速度を100rpmに変更した。20時間攪拌後、反応系温度を室温に戻し、DMAc 649.8gを加えてポリマー濃度が10質量%となるように調整した。さらに、ピリジン 32.27g、無水酢酸 41.65gを加え、室温で10時間攪拌してイミド化を行った。反応容器からポリイミドワニスを取り出した。得られたポリイミドワニスをメタノール中に滴下して再沈殿を行い、得られた粉体を加熱乾燥して溶媒を除去し、固形分としてポリイミド樹脂を得た。得られたポリイミド樹脂のδDは18.1MPa0.5であり、δPは8.3MPa0.5であり、δHは9.3MPa0.5であった。また、該ポリイミド樹脂のMwは334,300であり、Tgは361℃であった。なお、該ポリイミド樹脂と、製造例1で得られたシクロオレフィンコポリマーとのHSP値間距離は8.3であった。
[Synthesis of polyimide resin]
<Manufacturing example 3>
A reactor equipped with a silica gel tube, a stirrer and a thermometer in a separable flask, and an oil bath were prepared. After making the inside of the flask a nitrogen atmosphere using dry nitrogen, 75.52 g of 6FDA and 54.44 g of TFMB were added. While stirring this at 400 rpm, 519.84 g of DMAc was added, and stirring was continued until the contents of the flask became a uniform solution. Subsequently, stirring was continued for another 20 hours while adjusting the temperature inside the container to be in the range of 20 to 30 ° C. using an oil bath, and the reaction was carried out to generate a polyamic acid. After 30 minutes, the stirring speed was changed to 100 rpm. After stirring for 20 hours, the reaction system temperature was returned to room temperature, and 649.8 g of DMAc was added to adjust the polymer concentration to 10% by mass. Further, 32.27 g of pyridine and 41.65 g of acetic anhydride were added, and the mixture was stirred at room temperature for 10 hours for imidization. The polyimide varnish was taken out from the reaction vessel. The obtained polyimide varnish was dropped into methanol for reprecipitation, and the obtained powder was heated and dried to remove the solvent to obtain a polyimide resin as a solid content. The δD of the obtained polyimide resin was 18.1 MPa 0.5, the δP was 8.3 MPa 0.5 , and the δH was 9.3 MPa 0.5 . The Mw of the polyimide resin was 334,300, and the Tg was 361 ° C. The distance between the HSP values of the polyimide resin and the cycloolefin copolymer obtained in Production Example 1 was 8.3.
[ポリアミック酸の合成]
 <製造例4>
 セパラブルフラスコにシリカゲル管、攪拌装置及び温度計を取り付けた反応器と、オイルバスとを準備した。このフラスコ内に、BPDA 27.83gと、PMDA 13.76gと、m-TB 34.00gとを投入した。これを400rpmで攪拌しながら、DMAc 428.35gを加え、フラスコの内容物が均一な溶液になるまで攪拌を続けた。続いて、オイルバスを用いて容器内温度が20~30℃の範囲になるように調整しながらさらに3時間攪拌を続け、反応させて溶媒に分散した状態のポリアミック酸溶液を得た。
[Synthesis of polyamic acid]
<Manufacturing example 4>
A reactor equipped with a silica gel tube, a stirrer and a thermometer in a separable flask, and an oil bath were prepared. 27.83 g of BPDA, 13.76 g of PMDA, and 34.00 g of m-TB were placed in this flask. While stirring this at 400 rpm, 428.35 g of DMAc was added, and stirring was continued until the contents of the flask became a uniform solution. Subsequently, stirring was continued for another 3 hours while adjusting the temperature inside the container to be in the range of 20 to 30 ° C. using an oil bath, and the reaction was carried out to obtain a polyamic acid solution dispersed in a solvent.
[液晶ポリエステル溶液の調整]
 <製造例5>
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸 940.9g、N-アセチル-4-アミノフェノール 377.9g、イソフタル酸 415.3g及び無水酢酸 867.8gを入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から140℃まで60分かけて昇温し、140℃で3時間還流させた。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(L1)を得た。
 液晶ポリエステル(L1)を、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(L2)を得た。
 液晶ポリエステル(L2)を窒素雰囲気下、室温から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル(L)を得た。得られた液晶ポリエステル(L)のδDは20.9MPa0.5であり、δPは8.3MPa0.5であり、δHは4.7MPa0.5であった。また、該液晶ポリエステルのMwは180,000であり、Tgは190℃であった。
 液晶ポリエステル(L) 8質量部を、NMP 92質量部に加え、窒素雰囲気下、140℃で4時間攪拌して、液晶ポリエステル溶液を調製した。
[Preparation of liquid crystal polyester solution]
<Manufacturing example 5>
Reactor equipped with stirrer, torque meter, nitrogen gas introduction tube, thermometer and reflux condenser, 6-hydroxy-2-naphthoic acid 940.9 g, N-acetyl-4-aminophenol 377.9 g, isophthalic acid After adding 415.3 g and 867.8 g of anhydrous acetic acid and replacing the gas in the reactor with nitrogen gas, the temperature was raised from room temperature to 140 ° C. over 60 minutes with stirring under a nitrogen gas stream at 140 ° C. It was refluxed for 3 hours. Then, while distilling off by-product acetic acid and unreacted acetic anhydride, the temperature was raised from 150 ° C. to 300 ° C. over 5 hours, held at 300 ° C. for 30 minutes, and then the contents were taken out from the reactor and brought to room temperature. Cooled. The obtained solid matter was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (L1).
The liquid crystal polyester (L1) is heated from room temperature to 160 ° C. over 2 hours and 20 minutes under a nitrogen atmosphere, then heated from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and held at 180 ° C. for 5 hours. As a result, solid-phase polymerization was carried out, the mixture was cooled, and then the mixture was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (L2).
The temperature of the liquid crystal polyester (L2) is raised from room temperature to 180 ° C. for 1 hour and 25 minutes under a nitrogen atmosphere, then the temperature is raised from 180 ° C. to 255 ° C. for 6 hours and 40 minutes, and the temperature is maintained at 255 ° C. for 5 hours. After solid-phase polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester (L). The δD of the obtained liquid crystal polyester (L) was 20.9 MPa 0.5, the δP was 8.3 MPa 0.5 , and the δH was 4.7 MPa 0.5 . The Mw of the liquid crystal polyester was 180,000, and the Tg was 190 ° C.
8 parts by mass of liquid crystal polyester (L) was added to 92 parts by mass of NMP, and the mixture was stirred at 140 ° C. for 4 hours under a nitrogen atmosphere to prepare a liquid crystal polyester solution.
[実施例1]
 製造例1で得られたシクロオレフィンコポリマーをトルエン溶液に2質量%の濃度で溶解して、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のDMAcとを混合し、トルエン量がDMAc 100質量部に対して0.6質量部になるまで、50hPa、80℃で2時間減圧留去してトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。
 得られた分散液 30.0g(シクロオレフィンコポリマー2.0質量%)に、上記で得られたポリイミド樹脂を1.9g添加することで、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して24質量%であった。
 得られた組成物をガラス基板上において流涎成形し、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ70μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは45ppm/Kであった。
[Example 1]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in a toluene solution at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with the same amount of DMAc as the amount of toluene in the solution, and the amount of toluene is 0.6 parts by mass with respect to 100 parts by mass of DMAc at 50 hPa at 80 ° C. Toluene was distilled off under reduced pressure for a period of time to obtain a particulate cycloolefin copolymer dispersion.
A composition was obtained as a polyimide-cycloolefin copolymer mixed solution by adding 1.9 g of the polyimide resin obtained above to 30.0 g (cycloolefin copolymer 2.0% by mass) of the obtained dispersion. .. In the composition, the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a 70 μm-thick polyimide-cycloolefin copolymer composite film. Got The CTE of the obtained composite film was 45 ppm / K.
[実施例2]
 製造例1で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解して、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のGBLとを混合し、トルエン量がGBL 100質量部に対して0.6質量部になるまで、50hPa、80℃で2時間減圧留去してトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。上記方法にて測定した分散液及び組成物中の粒子状シクロオレフィンコポリマーのメジアン径は0.14μmであった。
 得られた分散液 30.0g(シクロオレフィンコポリマー2.0質量%)に、上記で得られたポリイミド樹脂を1.9g添加することで、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して24質量%であった。
 得られた組成物をガラス基板上において流涎成形し、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ50μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルム中の粒子状シクロオレフィンコポリマーの平均一次粒子径は0.16μmであった。また、複合フィルムのCTEは44ppm/Kであった。
[Example 2]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with GBL having the same amount of toluene as the amount of toluene in the solution, and 2 at 50 hPa and 80 ° C. until the amount of toluene becomes 0.6 parts by mass with respect to 100 parts by mass of GBL. Toluene was distilled off under reduced pressure for a period of time to obtain a particulate cycloolefin copolymer dispersion. The median diameter of the particulate cycloolefin copolymer in the dispersion and the composition measured by the above method was 0.14 μm.
A composition was obtained as a polyimide-cycloolefin copolymer mixed solution by adding 1.9 g of the polyimide resin obtained above to 30.0 g (cycloolefin copolymer 2.0% by mass) of the obtained dispersion. .. In the composition, the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 50 μm. Got The average primary particle size of the particulate cycloolefin copolymer in the obtained composite film was 0.16 μm. The CTE of the composite film was 44 ppm / K.
[実施例3]
 製造例1で得られたシクロオレフィンコポリマーをキシレンに2質量%の濃度で溶解して、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のキシレン量と同量のDMAcとを混合し、キシレン量がDMAc 100質量部に対して0.6質量部になるまで、50hPa、85℃でトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。
 得られた分散液 30.0g(シクロオレフィンコポリマー2.0質量%)に、上記で得られたポリイミド樹脂を1.9g添加することで、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して24質量%であった。
 得られた組成物をガラス基板上において流涎成形し、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ60μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは45ppm/Kであった。
[Example 3]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in xylene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with the same amount of DMAc as the amount of xylene in the solution, and toluene is used at 50 hPa and 85 ° C. until the amount of xylene becomes 0.6 parts by mass with respect to 100 parts by mass of DMAc. Was distilled off to obtain a particulate cycloolefin copolymer dispersion.
A composition was obtained as a polyimide-cycloolefin copolymer mixed solution by adding 1.9 g of the polyimide resin obtained above to 30.0 g (cycloolefin copolymer 2.0% by mass) of the obtained dispersion. .. In the composition, the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 60 μm. Got The CTE of the obtained composite film was 45 ppm / K.
[実施例4]
 製造例1で得られたシクロオレフィンコポリマーをキシレンに2質量%の濃度で溶解して、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のキシレン量と同量のGBLとを混合し、キシレン量がGBL 100質量部に対して0.6質量部になるまで、50hPa、85℃でキシレンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。
 得られた分散液 30.0g(シクロオレフィンコポリマー2.0質量%)に、上記で得られたポリイミド樹脂を1.9g添加することで、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して24質量%であった。
 得られた組成物をガラス基板上において流涎成形し、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ60μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは45ppm/Kであった。
[Example 4]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in xylene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with GBL having the same amount of xylene as the amount of xylene in the solution, and xylene at 50 hPa and 85 ° C. until the amount of xylene becomes 0.6 parts by mass with respect to 100 parts by mass of GBL. Was distilled off to obtain a particulate cycloolefin copolymer dispersion.
A composition was obtained as a polyimide-cycloolefin copolymer mixed solution by adding 1.9 g of the polyimide resin obtained above to 30.0 g (cycloolefin copolymer 2.0% by mass) of the obtained dispersion. .. In the composition, the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 60 μm. Got The CTE of the obtained composite film was 45 ppm / K.
[実施例5]
 製造例1で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解し、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のGBLとを混合し、トルエン量がGBL 100質量部に対して7質量部になるまで、50hPa、85℃でトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。上記方法にて測定した分散液中の粒子状シクロオレフィンコポリマーのメジアン径は0.15μmであった。
 得られた分散液 32.1g(シクロオレフィンコポリマー1.9質量%)に上記で得られたポリイミド樹脂を1.9g添加することで、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して24質量%であった。
 得られた組成物をガラス基板上において流涎成形により、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ60μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは44ppm/Kであった。
[Example 5]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with the same amount of GBL as the amount of toluene in the solution, and toluene is retained at 50 hPa and 85 ° C. until the amount of toluene becomes 7 parts by mass with respect to 100 parts by mass of GBL. The mixture was removed to obtain a particulate cycloolefin copolymer dispersion. The median diameter of the particulate cycloolefin copolymer in the dispersion measured by the above method was 0.15 μm.
By adding 1.9 g of the polyimide resin obtained above to 32.1 g (cycloolefin copolymer 1.9% by mass) of the obtained dispersion, a composition was obtained as a polyimide-cycloolefin copolymer mixed solution. In the composition, the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The obtained composition was subjected to salivation molding on a glass substrate to form a coating film at a linear speed of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 60 μm. Got The CTE of the obtained composite film was 44 ppm / K.
[実施例6]
 製造例1で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解し、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のGBLとを混合し、トルエン量がGBL 100質量部に対して20質量部になるまで、50hPa、85℃でトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。上記方法にて測定した分散液中の粒子状シクロオレフィンコポリマーのメジアン径は0.14μmであった。
 得られた分散液 35.9g(シクロオレフィンコポリマー1.7質量%)に上記で得られたポリイミド樹脂を1.9g添加することで、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して24質量%であった。
 得られた組成物をガラス基板上において流涎成形により、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ60μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは44ppm/Kであった。
[Example 6]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with the same amount of GBL as the amount of toluene in the solution, and toluene is retained at 50 hPa and 85 ° C. until the amount of toluene reaches 20 parts by mass with respect to 100 parts by mass of GBL. The mixture was removed to obtain a particulate cycloolefin copolymer dispersion. The median diameter of the particulate cycloolefin copolymer in the dispersion measured by the above method was 0.14 μm.
By adding 1.9 g of the polyimide resin obtained above to 35.9 g (1.7% by mass of cycloolefin copolymer) of the obtained dispersion, a composition was obtained as a polyimide-cycloolefin copolymer mixed solution. In the composition, the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The obtained composition was subjected to salivation molding on a glass substrate to form a coating film at a linear speed of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a 60 μm-thick polyimide-cycloolefin copolymer composite film. Got The CTE of the obtained composite film was 44 ppm / K.
[実施例7]
 製造例1で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解し、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のGBLとを混合し、トルエン量がGBL 100質量部に対して40質量部になるまで、50hPa、85℃でトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。上記方法にて測定した分散液中の粒子状シクロオレフィンコポリマーのメジアン径は0.13μmであった。
 得られた分散液 41.8g(シクロオレフィンコポリマー1.4質量%)に上記で得られたポリイミド樹脂を1.9g添加することで、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して24質量%であった。
 得られた混合溶液をガラス上において流涎成形により、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ60μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは44ppm/Kであった。
[Example 7]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with the same amount of GBL as the amount of toluene in the solution, and toluene is retained at 50 hPa and 85 ° C. until the amount of toluene becomes 40 parts by mass with respect to 100 parts by mass of GBL. The mixture was removed to obtain a particulate cycloolefin copolymer dispersion. The median diameter of the particulate cycloolefin copolymer in the dispersion measured by the above method was 0.13 μm.
By adding 1.9 g of the polyimide resin obtained above to 41.8 g (1.4% by mass of cycloolefin copolymer) of the obtained dispersion, a composition was obtained as a polyimide-cycloolefin copolymer mixed solution. In the composition, the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The obtained mixed solution was subjected to salivation molding on glass to form a coating film at a linear speed of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 60 μm. Got The CTE of the obtained composite film was 44 ppm / K.
[実施例8]
 製造例1で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解し、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のNMPとを混合し、トルエン量がNMP 100質量部に対して0.6質量部になるまで、50hPa、85℃でトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。上記方法にて測定した粒子状シクロオレフィンコポリマー分散液中の粒子状シクロオレフィンコポリマーのメジアン径は0.14μmであった。
 得られた粒子状シクロオレフィンコポリマー分散液30.0g(粒子状シクロオレフィンコポリマー2.0質量%)に液晶ポリエステル溶液を17.5g添加して、液晶ポリエステル-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、液晶ポリエステルと粒子状シクロオレフィンコポリマーとの合計質量に対して30.0質量%であった。
 得られた組成物を銅箔上において流涎成形により、線速0.4m/分で塗膜を作製した。60℃で4時間、塗膜を加熱させ、銅箔と液晶ポリエステル前駆体―シクロオレフィンコポリマー複合フィルムとを有する積層体を得た後、金枠で前記積層体を固定し更に窒素雰囲気下、310℃で4時間、前記積層体を加熱することにより、銅箔と液晶ポリエステル―シクロオレフィンコポリマー複合フィルムとを有する積層体を得た。得られた前記積層体を第二塩化鉄溶液に10分間浸漬させ銅箔をエッチング除去することで、厚さ30μmの液晶ポリエステル-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは47ppm/Kであった。また、製造例5で得られた液晶ポリエステルと、製造例1で得られたシクロオレフィンコポリマーとのHSP値間距離は8.9であった。
[Example 8]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with the same amount of NMP as the amount of toluene in the solution, and toluene is added at 50 hPa and 85 ° C. until the amount of toluene becomes 0.6 parts by mass with respect to 100 parts by mass of NMP. Was distilled off to obtain a particulate cycloolefin copolymer dispersion. The median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion measured by the above method was 0.14 μm.
17.5 g of a liquid crystal polyester solution was added to 30.0 g (2.0% by mass of the particulate cycloolefin copolymer) of the obtained particulate cycloolefin copolymer dispersion liquid to prepare a composition as a liquid crystal polyester-cycloolefin copolymer mixed solution. Obtained. In the composition, the content of the particulate cycloolefin copolymer was 30.0% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
The obtained composition was subjected to salivation molding on a copper foil to prepare a coating film at a linear speed of 0.4 m / min. The coating film was heated at 60 ° C. for 4 hours to obtain a laminate having a copper foil and a liquid crystal polyester precursor-cycloolefin copolymer composite film, and then the laminate was fixed with a metal frame and further under a nitrogen atmosphere, 310. By heating the laminate at ° C. for 4 hours, a laminate having a copper foil and a liquid crystal polyester-cycloolefin copolymer composite film was obtained. The obtained laminate was immersed in a ferric chloride solution for 10 minutes to remove the copper foil by etching to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 30 μm. The CTE of the obtained composite film was 47 ppm / K. The distance between the HSP values of the liquid crystal polyester obtained in Production Example 5 and the cycloolefin copolymer obtained in Production Example 1 was 8.9.
[実施例9]
 製造例1で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解し、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のNMPとを混合し、トルエン量がNMP 100質量部に対して40質量部になるまで、50hPa、85℃でトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。上記方法にて測定した粒子状シクロオレフィンコポリマー分散液中の粒子状シクロオレフィンコポリマーのメジアン径は0.14μmであった。
 得られた粒子状シクロオレフィンコポリマー分散液 41.8g(シクロオレフィンコポリマー1.4質量%)に液晶ポリエステル溶液を17.1g添加して、液晶ポリエステル-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、液晶ポリエステルと粒子状シクロオレフィンコポリマーとの合計質量に対して30.0質量%であった。
 得られた組成物を銅箔上において流涎成形により、線速0.4m/分で塗膜を作製した。60℃で4時間、塗膜を加熱させ、銅箔と液晶ポリエステル前駆体―シクロオレフィンコポリマー複合フィルムとを有する積層体を得た後、金枠で前記積層体を固定し更に窒素雰囲気下、310℃で4時間、前記積層体を加熱することにより、銅箔と液晶ポリエステル―シクロオレフィンコポリマー複合フィルムとを有する積層体を得た。得られた前記積層体を第二塩化鉄溶液に10分間浸漬させ銅箔をエッチング除去することで、厚さ30μmの液晶ポリエステル-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは48ppm/Kであった。
[Example 9]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with the same amount of NMP as the amount of toluene in the solution, and toluene is retained at 50 hPa and 85 ° C. until the amount of toluene becomes 40 parts by mass with respect to 100 parts by mass of NMP. The mixture was removed to obtain a particulate cycloolefin copolymer dispersion. The median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion measured by the above method was 0.14 μm.
17.1 g of a liquid crystal polyester solution was added to 41.8 g (1.4% by mass of the cycloolefin copolymer) of the obtained particulate cycloolefin copolymer dispersion liquid to obtain a composition as a liquid crystal polyester-cycloolefin copolymer mixed solution. .. In the composition, the content of the particulate cycloolefin copolymer was 30.0% by mass with respect to the total mass of the liquid crystal polyester and the particulate cycloolefin copolymer.
The obtained composition was subjected to salivation molding on a copper foil to prepare a coating film at a linear speed of 0.4 m / min. The coating film was heated at 60 ° C. for 4 hours to obtain a laminate having a copper foil and a liquid crystal polyester precursor-cycloolefin copolymer composite film, and then the laminate was fixed with a metal frame and further under a nitrogen atmosphere, 310. By heating the laminate at ° C. for 4 hours, a laminate having a copper foil and a liquid crystal polyester-cycloolefin copolymer composite film was obtained. The obtained laminate was immersed in a ferric chloride solution for 10 minutes to remove the copper foil by etching to obtain a liquid crystal polyester-cycloolefin copolymer composite film having a thickness of 30 μm. The CTE of the obtained composite film was 48 ppm / K.
[実施例10]
 製造例2で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解して、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のGBLとを混合し、トルエン量がGBL 100質量部に対して0.6質量部になるまで、50hPa、80℃で2時間減圧留去してトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。上記方法にて測定した分散液及び組成物中の粒子状シクロオレフィンコポリマーのメジアン径は0.13μmであった。
 得られた粒子状シクロオレフィンコポリマー分散液 30.0g(シクロオレフィンコポリマー2.0質量%)に、上記で得られたポリイミド樹脂を1.9g添加することで、ポリイミド-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリイミド樹脂と粒子状シクロオレフィンコポリマーとの合計質量に対して24質量%であった。
 得られた組成物をガラス基板上において流涎成形し、線速0.4m/分で塗膜を成形した。70℃で60分、塗膜を加熱させ、ガラス基板からフィルムを剥離した後、金枠でフィルムを固定し更に200℃で1時間加熱することにより、厚さ60μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは45ppm/Kであった。製造例3で得られたポリイミド樹脂と、製造例2で得られたシクロオレフィンコポリマーとのHSP値間距離は8.3であった。
[Example 10]
The cycloolefin copolymer obtained in Production Example 2 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with GBL having the same amount of toluene as the amount of toluene in the solution, and the amount of toluene is 0.6 parts by mass with respect to 100 parts by mass of GBL at 50 hPa at 80 ° C. Toluene was distilled off under reduced pressure for a period of time to obtain a particulate cycloolefin copolymer dispersion. The median diameter of the particulate cycloolefin copolymer in the dispersion and the composition measured by the above method was 0.13 μm.
By adding 1.9 g of the polyimide resin obtained above to 30.0 g of the obtained particulate cycloolefin copolymer dispersion (2.0% by mass of the cycloolefin copolymer), a polyimide-cycloolefin copolymer mixed solution can be obtained. The composition was obtained. In the composition, the content of the particulate cycloolefin copolymer was 24% by mass with respect to the total mass of the polyimide resin and the particulate cycloolefin copolymer.
The obtained composition was salivated on a glass substrate, and a coating film was formed at a linear velocity of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the film is peeled off from the glass substrate, the film is fixed with a metal frame, and the film is further heated at 200 ° C. for 1 hour to obtain a 60 μm-thick polyimide-cycloolefin copolymer composite film. Got The CTE of the obtained composite film was 45 ppm / K. The distance between the HSP values of the polyimide resin obtained in Production Example 3 and the cycloolefin copolymer obtained in Production Example 2 was 8.3.
[実施例11]
 製造例2で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解して、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量のDMAcとを混合し、トルエン量がDMAc 100質量部に対して0.6質量部になるまで、50hPa、80℃で2時間減圧留去してトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。上記方法にて測定した粒子状シクロオレフィンコポリマー分散液中の粒子状シクロオレフィンコポリマーのメジアン径は0.13μmであった。
 得られた粒子状シクロオレフィンコポリマー分散液30.0g(粒子状シクロオレフィンコポリマー2.0質量%)にポリアミック酸溶液を8.0g添加して、ポリアミック酸-シクロオレフィンコポリマー混合溶液として、組成物を得た。該組成物において、粒子状シクロオレフィンコポリマーの含有量は、ポリアミック酸と粒子状シクロオレフィンコポリマーとの合計質量に対して33.3質量%であった。
 得られた組成物をガラス基板上において流涎成形により、線速0.4m/分で塗膜を作製した。70℃で60分、塗膜を加熱させ、ガラス基板からポリアミック酸―シクロオレフィンコポリマー複合フィルムを剥離した後、金枠でフィルムを固定し更に窒素雰囲気下で360℃まで段階的に30分でポリアミック酸―シクロオレフィンコポリマー複合フィルムを加熱することにより、ポリアミック酸はイミド化され、厚さ30μmのポリイミド-シクロオレフィンコポリマー複合フィルムを得た。得られた複合フィルムのCTEは21ppm/Kであった。製造例4で得られたポリアミック酸と、製造例2で得られたシクロオレフィンコポリマーとのHSP値間距離は6.0以上であった。また、該フィルムにおいて、ポリアミック酸がイミド化されて形成されたポリイミド樹脂と、製造例2で得られたシクロオレフィンコポリマーとのHSP値間距離は6.0以上であった。
[Example 11]
The cycloolefin copolymer obtained in Production Example 2 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with the same amount of DMAc as the amount of toluene in the solution, and the amount of toluene is 0.6 parts by mass with respect to 100 parts by mass of DMAc at 50 hPa at 80 ° C. Toluene was distilled off under reduced pressure for a period of time to obtain a particulate cycloolefin copolymer dispersion. The median diameter of the particulate cycloolefin copolymer in the particulate cycloolefin copolymer dispersion measured by the above method was 0.13 μm.
8.0 g of a polyamic acid solution was added to 30.0 g of the obtained particulate cycloolefin copolymer dispersion (2.0% by mass of the particulate cycloolefin copolymer) to prepare a composition as a polyamic acid-cycloolefin copolymer mixed solution. Obtained. In the composition, the content of the particulate cycloolefin copolymer was 33.3% by mass with respect to the total mass of the polyamic acid and the particulate cycloolefin copolymer.
The obtained composition was subjected to salivation molding on a glass substrate to prepare a coating film at a linear speed of 0.4 m / min. The coating film is heated at 70 ° C. for 60 minutes, the polyamic acid-cycloolefin copolymer composite film is peeled off from the glass substrate, the film is fixed with a metal frame, and the polyamic acid is gradually increased to 360 ° C. in 30 minutes under a nitrogen atmosphere. By heating the acid-cycloolefin copolymer composite film, the polyamic acid was imidized to obtain a polyimide-cycloolefin copolymer composite film having a thickness of 30 μm. The CTE of the obtained composite film was 21 ppm / K. The distance between the HSP values of the polyamic acid obtained in Production Example 4 and the cycloolefin copolymer obtained in Production Example 2 was 6.0 or more. Further, in the film, the distance between the HSP values of the polyimide resin formed by imidizing the polyamic acid and the cycloolefin copolymer obtained in Production Example 2 was 6.0 or more.
[比較例1]
 製造例1で得られたシクロオレフィンコポリマーをトルエンに2質量%の濃度で溶解し、シクロオレフィンコポリマー溶液を得た。
 得られたシクロオレフィンコポリマー溶液と、該溶液中のトルエン量と同量の酢酸アミルと混合し、トルエン量が酢酸アミル 100質量部に対して0.6質量部になるまで、50hPa、85℃でトルエンを留去し、粒子状シクロオレフィンコポリマー分散液を得た。この時、1mmを超えるシクロオレフィンコポリマーの凝集体が確認され、フィルム化が困難であった。
[Comparative Example 1]
The cycloolefin copolymer obtained in Production Example 1 was dissolved in toluene at a concentration of 2% by mass to obtain a cycloolefin copolymer solution.
The obtained cycloolefin copolymer solution is mixed with amyl acetate in the same amount as the amount of toluene in the solution, and the amount of toluene is 50 hPa at 85 ° C. until the amount of toluene becomes 0.6 parts by mass with respect to 100 parts by mass of amyl acetate. Toluene was distilled off to obtain a particulate cycloolefin copolymer dispersion. At this time, aggregates of the cycloolefin copolymer exceeding 1 mm were confirmed, and it was difficult to form a film.
 上記測定方法に従って、実施例及び比較例で得られた組成物中の凝集体の有無を評価した結果、並びに複合フィルムの10個の各測定領域における平均厚さの平均値及び該平均厚さの標準偏差を測定した結果を表4に示す。また、分散液及び組成物中の第2溶媒100質量部に対する第1溶媒の含有割合、各溶媒とポリイミド樹脂、ポリアミック酸、液晶ポリエステル、又はシクロオレフィンコポリマーとのHSP値間距離、及び、各溶媒へのポリイミド樹脂、ポリアミック酸、液晶ポリエステル又はシクロオレフィンコポリマーの溶解性の評価結果も表4に示す。なお、HSP値間距離について、例えば第1溶媒と樹脂(A)とのHSP値間距離の場合、「HSP距離(第1溶媒対(A))」と表記し、第1溶媒とシクロオレフィンコポリマーとのHSP値間距離の場合、「HSP距離(第1溶媒対COC)」と表記する。第2溶媒の場合も同じように表記する。上記に従った溶解性の評価で「溶解する」場合は「溶解」、「溶解しない」場合は「不溶」と表示する。表4中、第1溶媒はトルエン又はキシレンを示し、第2溶媒はGBL、DMAc、NMP又は酢酸アミルを示す。 According to the above measurement method, the results of evaluating the presence or absence of aggregates in the compositions obtained in Examples and Comparative Examples, and the average value of the average thickness in each of the 10 measurement regions of the composite film and the average thickness thereof. The results of measuring the standard deviation are shown in Table 4. Further, the content ratio of the first solvent to 100 parts by mass of the second solvent in the dispersion liquid and the composition, the distance between the HSP values of each solvent and the polyimide resin, the polyamic acid, the liquid crystal polyester, or the cycloolefin copolymer, and each solvent. Table 4 also shows the evaluation results of the solubility of the polyimide resin, polyamic acid, liquid crystal polyester or cycloolefin copolymer in the solvent. Regarding the distance between HSP values, for example, in the case of the distance between the HSP values of the first solvent and the resin (A), it is expressed as "HSP distance (first solvent pair (A))", and the first solvent and the cycloolefin copolymer. In the case of the distance between HSP values, it is expressed as "HSP distance (first solvent vs. COC)". The same applies to the case of the second solvent. In the evaluation of solubility according to the above, "dissolved" is indicated as "dissolved", and "insoluble" is indicated as "insoluble". In Table 4, the first solvent indicates toluene or xylene, and the second solvent indicates GBL, DMAc, NMP or amyl acetate.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表4に示されるように、実施例1~11で得られた組成物は凝集体を含んでいなかった。また実施例1~11で得られたフィルムは、厚さの標準偏差が低く、表面平滑性に優れていた。これに対して、比較例1で得られた組成物は凝集体を含んでおり、フィルム化が困難であった。 As shown in Table 4, the compositions obtained in Examples 1 to 11 did not contain aggregates. Further, the films obtained in Examples 1 to 11 had a low standard deviation in thickness and were excellent in surface smoothness. On the other hand, the composition obtained in Comparative Example 1 contained aggregates, and it was difficult to form a film.

Claims (15)

  1.  樹脂(A)、粒子状シクロオレフィン系ポリマー(B)及び溶媒を含む組成物であって、
     該溶媒は第1溶媒と第2溶媒とを含み、第2溶媒とシクロオレフィン系ポリマー(B)とのHSP値間距離は8.5以上である、組成物。
    A composition comprising a resin (A), a particulate cycloolefin polymer (B), and a solvent.
    The composition comprises a first solvent and a second solvent, and the distance between the HSP values of the second solvent and the cycloolefin polymer (B) is 8.5 or more.
  2.  第1溶媒は、シクロオレフィン系ポリマー(B)が溶解する溶媒である、請求項1に記載の組成物。 The composition according to claim 1, wherein the first solvent is a solvent in which the cycloolefin polymer (B) is dissolved.
  3.  第2溶媒は、シクロオレフィン系ポリマー(B)が溶解しない溶媒である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the second solvent is a solvent in which the cycloolefin polymer (B) is insoluble.
  4.  第1溶媒とシクロオレフィン系ポリマー(B)とのHSP値間距離は4.0以下である、請求項1~3のいずれかに記載の組成物。 The composition according to any one of claims 1 to 3, wherein the distance between the HSP values of the first solvent and the cycloolefin polymer (B) is 4.0 or less.
  5.  第2溶媒は、樹脂(A)が溶解する溶媒である、請求項1~4のいずれかに記載の組成物。 The composition according to any one of claims 1 to 4, wherein the second solvent is a solvent in which the resin (A) is dissolved.
  6.  第2溶媒と樹脂(A)とのHSP値間距離は10.0以下である、請求項1~5のいずれかに記載の組成物。 The composition according to any one of claims 1 to 5, wherein the distance between the HSP values of the second solvent and the resin (A) is 10.0 or less.
  7.  樹脂(A)とシクロオレフィン系ポリマー(B)とのHSP値間距離は6以上である、請求項1~6のいずれかに記載の組成物。 The composition according to any one of claims 1 to 6, wherein the distance between the HSP values of the resin (A) and the cycloolefin polymer (B) is 6 or more.
  8.  第1溶媒の含有量は、第2溶媒100質量部に対して120質量部以下である、請求項1~7のいずれかに記載の組成物。 The composition according to any one of claims 1 to 7, wherein the content of the first solvent is 120 parts by mass or less with respect to 100 parts by mass of the second solvent.
  9.  粒子状シクロオレフィン系ポリマー(B)の含有量は、樹脂(A)と粒子状シクロオレフィン系ポリマー(B)との合計質量に対して5~50質量%である、請求項1~8のいずれかに記載の組成物。 Any of claims 1 to 8, wherein the content of the particulate cycloolefin polymer (B) is 5 to 50% by mass with respect to the total mass of the resin (A) and the particulate cycloolefin polymer (B). The composition described in Crab.
  10.  シクロオレフィン系ポリマー(B)は、式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、mは0以上の整数を表し、R~R18は、互いに独立に、水素原子、ハロゲン原子又は炭素原子数1~20の炭化水素基を表し、R11~R14が複数存在する場合、それらは互いに独立に同一であってもよく、異なっていてもよく、R16とR17とは互いに結合し、それらが結合する炭素原子とともに環を形成してもよい]
    で表されるシクロオレフィン由来の単量体単位(1)を含む、請求項1~9のいずれかに記載の組成物。
    The cycloolefin polymer (B) has the formula (I) :.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I), m represents an integer of 0 or more, R 7 to R 18 represent hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 20 carbon atoms independently of each other, and R 11 to R When a plurality of 14 are present, they may be independently the same or different from each other, and R 16 and R 17 may be bonded to each other and form a ring with the carbon atom to which they are bonded. ]
    The composition according to any one of claims 1 to 9, which comprises a monomer unit (1) derived from cycloolefin represented by.
  11.  樹脂(A)は、ポリイミド系樹脂、液晶ポリマー、フッ素系樹脂、芳香族ポリエーテル系樹脂及びマレイミド系樹脂からなる群から選択される少なくとも1つの樹脂である、請求項1~10のいずれかに記載の組成物。 The resin (A) is any one of claims 1 to 10, wherein the resin (A) is at least one resin selected from the group consisting of a polyimide resin, a liquid crystal polymer, a fluororesin, an aromatic polyether resin, and a maleimide resin. The composition described.
  12.  樹脂(A)は、ガラス転移温度が180℃以上である、請求項1~11のいずれかに記載の組成物。 The composition according to any one of claims 1 to 11, wherein the resin (A) has a glass transition temperature of 180 ° C. or higher.
  13.  樹脂(A)及び粒子状シクロオレフィン系ポリマー(B)を含むフィルムであって、
     該フィルム表面の直線1mmの領域を10等分割した10個の各測定領域において求めた平均厚さの標準偏差は2.5以下である、フィルム。
    A film containing the resin (A) and the particulate cycloolefin polymer (B).
    A film in which the standard deviation of the average thickness obtained in each of the 10 measurement regions obtained by dividing a region of a straight line of 1 mm on the surface of the film into 10 equal parts is 2.5 or less.
  14.  樹脂(A)とシクロオレフィン系ポリマー(B)とのHSP値間距離は6以上である、請求項13に記載のフィルム。 The film according to claim 13, wherein the distance between the HSP values of the resin (A) and the cycloolefin polymer (B) is 6 or more.
  15.  粒子状シクロオレフィン系ポリマー(B)の平均一次粒子径は15μm以下である、請求項13又は14に記載のフィルム。 The film according to claim 13 or 14, wherein the particulate cycloolefin polymer (B) has an average primary particle diameter of 15 μm or less.
PCT/JP2021/031949 2020-08-31 2021-08-31 Composition WO2022045358A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-146414 2020-08-31
JP2020146414 2020-08-31
JP2020-146413 2020-08-31
JP2020-146415 2020-08-31
JP2020146415 2020-08-31
JP2020146413 2020-08-31
JP2020196189 2020-11-26
JP2020-196189 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022045358A1 true WO2022045358A1 (en) 2022-03-03

Family

ID=80353554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031949 WO2022045358A1 (en) 2020-08-31 2021-08-31 Composition

Country Status (3)

Country Link
JP (1) JP2022041943A (en)
TW (1) TW202219175A (en)
WO (1) WO2022045358A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059350A (en) * 1990-05-25 1993-01-19 Mitsui Petrochem Ind Ltd Polyolefin resin composition and production thereof
JPH06162856A (en) * 1992-11-20 1994-06-10 Nippon Zeon Co Ltd Thermosetting resin molding material, mold product, and thermoplastic norbornane resin grain
JP2001049126A (en) * 1999-05-28 2001-02-20 Hitachi Chem Co Ltd Resin composition
JP2017125176A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Low-dielectric resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059350A (en) * 1990-05-25 1993-01-19 Mitsui Petrochem Ind Ltd Polyolefin resin composition and production thereof
JPH06162856A (en) * 1992-11-20 1994-06-10 Nippon Zeon Co Ltd Thermosetting resin molding material, mold product, and thermoplastic norbornane resin grain
JP2001049126A (en) * 1999-05-28 2001-02-20 Hitachi Chem Co Ltd Resin composition
JP2017125176A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Low-dielectric resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus

Also Published As

Publication number Publication date
JP2022041943A (en) 2022-03-11
TW202219175A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2022045361A1 (en) Method for producing composition
WO2022045356A1 (en) Production method for composition
WO2022045357A1 (en) Film
JP2019510091A (en) Polyimide block copolymer and polyimide film containing the same
JP2019506479A (en) Polyimide block copolymer and polyimide film containing the same
WO2022045363A1 (en) Film
WO2022045358A1 (en) Composition
WO2022045362A1 (en) Film
WO2022045360A1 (en) Film
WO2022045359A1 (en) Film
KR20190069287A (en) Polyamide-imide copolymers and polyamide-imide film comprising the same
JP2023001899A (en) Composition
JP2023001896A (en) Composition
JP2023001901A (en) Composition
JP2023001898A (en) Composition
WO2022270375A1 (en) Composition
WO2022270373A1 (en) Composition
WO2022270374A1 (en) Composition
CN113348200A (en) Method for producing polyimide resin powder
TW201936382A (en) Laminated body including a transparent resin film and a protective film
KR102562762B1 (en) Polyamideimide copolymer, and polymer resin film using the same
KR20200078157A (en) Poly(amide-imide) block copolymer
KR20200090043A (en) Preparing method of polyamideimide block copolymer, polyamideimide block copolymer and polymer resin film using the same
WO2019117445A1 (en) Polyamide-imide copolymer and polyamide-imide film comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861779

Country of ref document: EP

Kind code of ref document: A1