WO2022045045A1 - 塗料組成物、塗膜、塗膜付き基材およびその製造方法 - Google Patents

塗料組成物、塗膜、塗膜付き基材およびその製造方法 Download PDF

Info

Publication number
WO2022045045A1
WO2022045045A1 PCT/JP2021/030737 JP2021030737W WO2022045045A1 WO 2022045045 A1 WO2022045045 A1 WO 2022045045A1 JP 2021030737 W JP2021030737 W JP 2021030737W WO 2022045045 A1 WO2022045045 A1 WO 2022045045A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
mass
composition
coating
epoxy resin
Prior art date
Application number
PCT/JP2021/030737
Other languages
English (en)
French (fr)
Inventor
真尚 児玉
Original Assignee
中国塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国塗料株式会社 filed Critical 中国塗料株式会社
Priority to US18/042,308 priority Critical patent/US20230348751A1/en
Priority to KR1020237010370A priority patent/KR20230054883A/ko
Priority to EP21861471.7A priority patent/EP4205867A1/en
Priority to JP2022544574A priority patent/JPWO2022045045A1/ja
Priority to CN202180053053.8A priority patent/CN115989091A/zh
Publication of WO2022045045A1 publication Critical patent/WO2022045045A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/103Anti-corrosive paints containing metal dust containing Al
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2320/00Organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/10Organic solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • B05D2518/12Ceramic precursors (polysiloxanes, polysilazanes)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/28Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • B05D7/222Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes of pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • B05D7/227Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes of containers, cans or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • One embodiment of the present invention relates to a coating composition, a coating film, a substrate with a coating film, or a method for producing the same.
  • a base material that is required to have anticorrosion properties there is a base material that can be exposed to a high temperature (eg, 200 ° C.). Examples of such a base material include steam pipes of ships whose temperature may rise to about 200 ° C. and the like.
  • An epoxy resin-based paint composition having an excellent heat resistance of about 150 ° C. cannot be used for a substrate that can be exposed to such a high temperature, and silicone having excellent heat resistance so far.
  • a resin-based paint composition for example, the heat-resistant paint composition described in Patent Document 1 is used.
  • the paint composition coated on the base material such as the steam pipe of the ship, and usually, the paint composition is not heated when forming the coating film and is at room temperature.
  • a coating film was formed underneath and cured by increasing the temperature due to the subsequent use of the substrate.
  • the above-mentioned silicone resin-based heat-resistant coating composition generally has a temperature of 250 ° C. or higher for complete curing. Since it is necessary, the coated composition is not completely cured on a base material such as a steam pipe of a ship whose temperature rises only to about 200 ° C. Therefore, the coating film formed has an anticorrosion property. It turned out that there was room for improvement.
  • the dry film thickness is required to be 100 ⁇ m or more, but it is not easy to form such a thick film coating film by one coating. Therefore, usually, the coating and drying of the coating composition are regarded as one coating film forming step, and this coating film forming step is repeated a plurality of times (preferably twice) (hereinafter, also referred to as "multiple coatings"). A coating film of the film is formed.
  • One embodiment of the present invention provides a coating composition capable of forming a coating film having excellent heat resistance, corrosion resistance and interlayer adhesion even at room temperature curing.
  • the configuration example of the present invention is as follows.
  • ⁇ 4> A coating film formed from the coating composition according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> A base material with a coating film containing the base material and the coating film according to ⁇ 4>.
  • ⁇ 6> A method for producing a substrate with a coating film, which comprises the following steps [1] and [2]. [1] Step of applying the coating composition according to any one of ⁇ 1> to ⁇ 3> to the substrate [2] Step of drying the coating composition coated on the substrate to form a coating film.
  • a coating film having excellent heat resistance, corrosion resistance and interlayer adhesion can be formed even by curing at room temperature.
  • a substrate that is required to have corrosion resistance and can be exposed to high temperatures (eg, 200 ° C.) such as a steam pipe of a ship the physical properties of the coating film are deteriorated and coated. It is possible to form a coating film having excellent heat resistance, corrosion resistance and adhesion to a substrate, which can suppress changes in the state of the film and the hue of the coating film, even when cured at room temperature.
  • the adhesion between the coating films is excellent, so that a coating film having excellent long-term corrosion resistance can be easily formed. Can be done.
  • FIG. 1 is a schematic schematic diagram of a test plate having a cut used in the anticorrosion test of Examples.
  • the coating composition according to one embodiment of the present invention includes an epoxy resin (A), a silicone resin (B), an aluminum (C), and an amine-based curing agent (hereinafter, also referred to as “the present composition”). D) and.
  • the epoxy resin (A) and the silicone resin (B) which are usually incompatible with each other, are contained, peeling easily occurs between the layers of the coating film formed by multiple coatings, but this composition is based on the epoxy resin (A).
  • the silicone resin (B) and the silicone resin (B) the inclusion of the aluminum (C) makes it possible to form a coating film having excellent interlayer adhesion.
  • this composition is suitably used for a base material that is required to have anticorrosion properties that can be exposed to high temperatures (eg, 200 ° C.), and specifically, steam pipes for ships, petroleum refineries, chemical plants, and the like. It is suitably used for pipes used in the above, industrial pipes (eg, industrial pipes covered with a heat insulating material, etc.). Further, the present composition can be suitably used as a heat-resistant coating composition and / or an anticorrosion coating composition, and can be more preferably used as a heat-resistant anticorrosion coating composition.
  • the present composition may be a one-component type composition, but usually has two components consisting of a main component containing an epoxy compound (A) and a curing agent component containing an amine-based curing agent (D).
  • the composition of the mold Further, if necessary, the present composition may be a composition having three or more components.
  • These main agent components and curing agent components are usually stored, stored, transported, etc. in separate containers, and are mixed and used immediately before use.
  • the composition may be diluted with a solvent and used depending on the coating method and the like.
  • a solvent and used depending on the coating method and the like.
  • Each description below is a description before dilution except for the content related to dilution.
  • the epoxy resin (A) is not particularly limited, and conventionally known epoxy resins can be used.
  • Examples of the epoxy resin (A) include non-tar epoxy resins described in JP-A-11-343454 and JP-A-10-259351.
  • the epoxy resin (A) contained in the present composition may be one kind or two or more kinds.
  • Examples of the epoxy resin (A) include polymers and oligomers containing two or more epoxy groups in the molecule, and polymers or oligomers produced by the ring-opening reaction of these epoxy groups.
  • Examples of such epoxy resins include glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, bisphenol type epoxy resin, novolak type epoxy resin, aliphatic epoxy resin, alicyclic epoxy resin, and fatty acid. Examples thereof include modified epoxy resins and epoxidized oil-based epoxy resins.
  • bisphenol type epoxy resin is preferable, and bisphenol A type and bisphenol F type epoxy resin are more preferable, and bisphenol A type epoxy is more preferable, because a coating film having excellent adhesion to a substrate can be easily formed. Resin is particularly preferred.
  • epoxy resin (A) examples include bisphenol A type epoxy resin (bisphenol A type diglycidyl ethers); bisphenol AD type epoxy resin; bisphenol F type epoxy resin; phenol novolac type epoxy resin; cresol novolac type epoxy resin; Tris.
  • examples thereof include hydroxyphenylmethane type epoxy resins, which are hydrogenated reactions (hereinafter also referred to as “hydrogenated”) products, fatty acid modified products, brominated products in which at least one of the hydrogen atoms in the resin is replaced with a bromine atom, and the like. There may be.
  • bisphenol A type epoxy resin examples include bisphenol A diglycidyl ether, bisphenol A (poly) propylene oxide diglycidyl ether, bisphenol A (poly) ethylene oxide diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and hydrogenated bisphenol A.
  • examples thereof include condensed polymers of bisphenol A type diglycidyl ethers such as (poly) propylene oxide diglycidyl ether and hydrogenated bisphenol A (poly) ethylene oxide diglycidyl ether.
  • the epoxy resin (A) may be obtained by synthesizing it by a conventionally known method, or may be a commercially available product.
  • the commercially available product may be liquid at room temperature (temperature of 15 to 25 ° C., the same applies hereinafter), for example, "E-028” (manufactured by Akishin Otake Chemical Co., Ltd., bisphenol A type epoxy resin, epoxy equivalent).
  • epoxy equivalent in the present specification refers to the epoxy equivalent of the solid content of the epoxy resin (A).
  • the epoxy equivalent of the epoxy resin (A) is preferably 150 or more, more preferably 175 or more, particularly preferably 200 or more, and preferably 200 or more, from the viewpoint that a coating film having excellent corrosion resistance can be easily formed. It is 5,000 or less, more preferably 3,000 or less, and particularly preferably 2,500 or less.
  • the weight average molecular weight of the solid content of the epoxy resin (A) measured by GPC is not unconditionally determined depending on the coating curing conditions (eg, room temperature drying or heat drying) of the obtained composition. However, it is preferably 350 to 20,000.
  • the solid content of the epoxy resin (A) is preferably 1% by mass or more with respect to 100% by mass of the non-volatile content of the present composition from the viewpoint of being able to form a coating film having better corrosion resistance. It is preferably 5% by mass or more, preferably 60% by mass or less, and more preferably 50% by mass or less. Further, when the present composition is a two-component type composition composed of a main agent component and a curing agent component, the epoxy resin (A) is included in the main agent component.
  • the solid content of the epoxy resin (A) with respect to 100% by mass of the solid content of the main agent component is preferably 1% by mass or more, more preferably 5% by mass or more, preferably 60% by mass or less, and more preferably 50% by mass. % Or less.
  • the silicone resin (B) is a resin having a siloxane bond, and is not particularly limited as long as it does not contain an epoxy group, and may be linear or branched.
  • the silicone resin (B) is also a siloxane-based binder or a siloxane-based binder.
  • the silicone resin (B) contained in the present composition may be one kind or two or more kinds.
  • the silicone resin (B) has, for example, a reactive group in the molecule via a siloxane bond, and the reactive groups react with each other to form a high molecular weight or three-dimensional crosslinked structure and cure.
  • examples include compounds.
  • Examples of the reaction include a condensation reaction and an addition reaction, and examples of the condensation reaction include a dehydration reaction and a dealcoholization reaction.
  • the silicone resin (B) is preferably, for example, a compound represented by the following formula (I).
  • R 1 independently represents an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms
  • R 2 independently represents each other. It indicates an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, or a hydrogen atom. Further, n indicates the number of repetitions.
  • Examples of the alkyl group having 1 to 8 carbon atoms in R 1 and R 2 include a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group.
  • the aryl group having 6 to 8 carbon atoms in R 1 and R 2 may be a group having a substituent such as an alkyl group on the aromatic ring, and examples thereof include a phenyl group, a methylphenyl group and a dimethylphenyl group. ..
  • Examples of the alkoxy group having 1 to 8 carbon atoms in R 1 include a methoxy group, an ethoxy group, a propoxy group, and a phenoxy group.
  • R 1 is preferably a methyl group, an ethyl group, a propyl group or a phenyl group
  • R 2 is preferably a methyl group, an ethyl group, a phenyl group or a hydrogen atom.
  • the silicone resin (B) is preferably a heat-resistant resin such as a methylsilicone resin or a methylphenylsilicone resin, and is described below as a dimethylsiloxane unit (b1), a diphenylsiloxane unit (b2), or a monomethylsiloxane unit (b3). , It is more preferable to contain one or more constituent units selected from the group consisting of monopropylsiloxane units (b4) and monophenylsiloxane units (b5).
  • a heat-resistant resin such as a methylsilicone resin or a methylphenylsilicone resin
  • the weight average molecular weight (hereinafter simply referred to as “Mw”) of the silicone resin (B) in terms of standard polystyrene measured by the GPC (gel permeation chromatography) method makes it easy to obtain a coating film having excellent heat resistance and corrosion resistance. From the viewpoint of being able to form, it is preferably 15,000 or more, more preferably 18,000 or more, preferably 1,000,000 or less, and more preferably 600,000 or less.
  • the repetition number n is preferably selected so that the Mw of the silicone resin (B) is within the above range.
  • the solid content of the silicone resin (B) is 100% by mass of the non-volatile content of the present composition from the viewpoint that a coating film having an excellent balance of corrosion resistance, heat resistance and interlayer adhesion can be easily formed. On the other hand, it is preferably 1% by mass or more, more preferably 3% by mass or more, preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the silicone resin (B) may be contained in the main agent component or may be contained in the curing agent component.
  • the ratio of the solid content of the epoxy resin (A) to the solid content of the silicone resin (B) in the present composition ((A): (B)) is suitable for heat resistance, corrosion resistance and interlayer adhesion. It is preferably 1:20 to 50: 1, more preferably 1:10 to 10: 1, and particularly preferably 1: 5 to 5: 1 from the viewpoint that a well-balanced and excellent coating film can be easily formed. be.
  • the aluminum (C) is not particularly limited, but is preferably in the form of powder, and may be scaly aluminum powder or non-scaly aluminum powder other than scaly. Further, as a raw material for preparing the present composition, not only powder-like aluminum but also paste-like aluminum may be used.
  • the aluminum powder (B) contained in the present composition may be one kind or two or more kinds.
  • the “scale-like” refers to a scale-like shape, and although there is no specified range, the aspect ratio is usually preferably 5 or more, more preferably 10 or more. It is more preferably 20 or more, preferably 150 or less, and more preferably 120 or less.
  • the above-mentioned “non-scaly” refers to a shape having a shape other than the scaly shape such as a sphere, a teardrop shape, a spindle shape, etc., and there is no particularly specified range, but usually the aspect thereof.
  • the ratio is preferably less than 5, more preferably 1 or more, and more preferably 3 or less.
  • the aspect ratio can be measured using an electron microscope.
  • the aluminum powder was observed using a scanning electron microscope (SEM), for example, "XL-30” (trade name; manufactured by Phillips), and the thickness of tens to hundreds of powder particles and the maximum length (or length) on the main surface were observed. , Major axis length and minor axis length), and calculate the average value of these ratios (maximum length / thickness on the main surface or major axis length / minor axis length). Can be calculated with.
  • SEM scanning electron microscope
  • the thickness of the aluminum powder can be measured by observing the aluminum powder from the horizontal direction with respect to the main surface (the surface having the largest area), and the maximum length of the aluminum powder on the main surface is
  • the main surface is rectangular, it means the length of the diagonal line, if the main surface is circular, it means the diameter, and if the main surface is elliptical, it means the length of the major axis.
  • the length of the long axis of the aluminum powder is the longest length in the cross-sectional view near the center of the powder, and the length of the short axis of the aluminum powder is the cross section in the cross-sectional view. It is the length of the line orthogonal to the major axis at the center of the figure.
  • the median diameter (D50) of the scaly aluminum powder is preferably 100 ⁇ m or less, more preferably 5 ⁇ m or more, and more preferably, from the viewpoint that a coating film having more excellent corrosion resistance can be easily formed. Is 70 ⁇ m or less, particularly preferably 50 ⁇ m or less.
  • the median diameter (D50) of the non-scaly aluminum powder (D) is preferably 50 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint that a composition excellent in coating workability can be easily obtained with a low VOC amount. It is 5 ⁇ m or more, more preferably 30 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the D50 is an average value measured three times using a laser scattering diffraction type particle size distribution measuring device, for example, "SALD 2200" (manufactured by Shimadzu Corporation).
  • the scaly aluminum powder may be a reefing type or a non-reefing type, but it is preferable to use the reefing type from the viewpoint of suppressing deterioration of the coating film and deterioration of adhesion to the substrate.
  • a reefing type and a non-reefing type may be used in combination.
  • the non-scaly aluminum powder is preferably an aluminum powder produced by an atomizing method (spraying method).
  • the content of the aluminum powder (C) in the present composition can easily form a coating film having an excellent balance of corrosion resistance, heat resistance and interlayer adhesion, and even when exposed to high temperature. It is preferable to 100% by mass of the non-volatile content of the present composition from the viewpoints of deterioration of the physical characteristics of the coating film, easy formation of a coating film capable of further suppressing changes in the state of the coating film and the hue of the coating film, and the like. Is 0.1% by mass or more, more preferably 1% by mass or more, preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the content of the aluminum powder (C) in the present composition is preferably 1 part by mass or more, more preferably 3 parts by mass with respect to 100 parts by mass of the solid content of the epoxy resin (A) from the viewpoint of the same effect as described above. It is by mass or more, preferably 200 parts by mass or less, and more preferably 100 parts by mass or less.
  • the content of the aluminum powder (C) in the present composition is preferably 1 part by mass or more, more preferably 3 parts by mass with respect to 100 parts by mass of the solid content of the silicone resin (B) from the viewpoint of the same effect as described above. It is by mass or more, preferably 200 parts by mass or less, and more preferably 100 parts by mass or less.
  • the content of the aluminum powder (C) in the present composition is preferably 1 with respect to a total of 100 parts by mass of the solid content of the epoxy resin (A) and the silicone resin (B) from the viewpoint of the same effect as described above. It is more than parts by mass, more preferably 3 parts by mass or more, preferably 100 parts by mass or less, and more preferably 50 parts by mass or less.
  • the amine-based curing agent (D) is not particularly limited as long as it is an amine compound, but amine compounds such as aliphatic-based, alicyclic-based, aromatic-based, and heterocyclic-based are preferable. These amine compounds are distinguished by the type of carbon to which the amino group is bonded.
  • the aliphatic amine curing agent means a compound having at least one amino group bonded to the aliphatic carbon. ..
  • the amine-based curing agent (D) contained in the present composition may be one kind or two or more kinds.
  • Examples of the aliphatic amine curing agent include alkylene polyamines, polyalkylene polyamines, and alkylaminoalkylamines.
  • alkylene polyamine examples include compounds represented by the formula: "H 2 N-R 1 -NH 2 " (R 1 is a divalent hydrocarbon group having 1 to 12 carbon atoms).
  • R 1 is a divalent hydrocarbon group having 1 to 12 carbon atoms.
  • methylenediamine ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7- Examples thereof include diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane and trimethylhexamethylenediamine.
  • polyalkylene polyamine examples include the formula: "H 2 N- (C m H 2m NH) n H" (m is an integer of 1 to 10. n is an integer of 2 to 10, preferably 2).
  • examples thereof include compounds represented by (an integer of 6), and specific examples thereof include diethylenetriamine, dipropylenetriamine, triethylenetetramine, tripropylenetetramine, tetraethylenepentamine, tetrapropylenepentamine, and pentaethylenehexamine.
  • examples thereof include nonaethylenedecamine, bis (hexamethylene) triamine, and triethylene-bis (trimethylene) hexamine.
  • the alkylaminoalkylamine may be, for example, the formula: "R 2 2 N- (CH 2 ) p -NH 2 " (R 2 is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms (provided that it is an alkyl group). , At least one R 2 is an alkyl group having 1 to 8 carbon atoms.), P is an integer of 1 to 6), and specific examples thereof include dimethylaminoethylamine and diethylamino.
  • Examples thereof include ethylamine, dibutylaminoethylamine, dimethylaminopropylamine, diethylaminopropylamine, dipropylaminopropylamine, dibutylaminopropylamine and dimethylaminobutylamine.
  • Examples of the aliphatic amine curing agent other than these include tetra (aminomethyl) methane, tetrakis (2-aminoethylaminomethyl) methane, 1,3-bis (2'-aminoethylamino) propane, and tris (2).
  • -Aminoethyl) amine bis (cyanoethyl) diethylenetriamine, polyoxyalkylenepolyamine (particularly diethyleneglycolbis (3-aminopropyl) ether), bis (aminomethyl) cyclohexane, isophoronediamine (IPDA), mensendiamine (MDA), o-Xylylenediamine, m-xylylenediamine (MXDA), p-xylylenediamine, bis (aminomethyl) naphthalene, bis (aminoethyl) naphthalene, 1,4-bis (3-aminopropyl) piperazine, 1- Examples thereof include (2'-aminoethylpiperazine) and 1- [2'-(2''-aminoethylamino) ethyl] piperazine.
  • alicyclic amine curing agent examples include cyclohexanediamine, diaminodicyclohexylmethane (particularly 4,4'-methylenebiscyclohexylamine), 4,4'-isopropyridenebiscyclohexylamine, norbornanediamine, 2, Examples thereof include 4-di (4-aminocyclohexylmethyl) aniline.
  • aromatic amine curing agent examples include aromatic polyamine compounds having two or more primary amino groups bonded to an aromatic ring such as a benzene ring or a naphthalene ring.
  • aromatic amine curing agent examples include phenylenediamine, naphthalenediamine, diaminodiphenylmethane, 2,2-bis (4-aminophenyl) propane, 4,4'-diaminodiphenyl ether, and 4,4'-diaminobenzophenone.
  • 4,4'-Diaminodiphenylsulfone 3,3'-dimethyl-4,4'-diaminodiphenylmethane, diaminodiethylphenylmethane, 2,4'-diaminobiphenyl, 2,3'-dimethyl-4,4'- Examples thereof include diaminobiphenyl and 3,3'-dimethoxy-4,4'-diaminobiphenyl.
  • heterocyclic amine curing agent examples include 1,4-diazacycloheptane, 1,11-diazacycloeikosan, and 1,15-diazacyclooctacosane.
  • a modified product of an amine compound for example, a fatty acid modified product such as polyamide amine, an amine adduct with an epoxy compound (an epoxy adduct of an amine compound), a Mannig modified product (eg, phenalkamine, etc.) Phenalcamide), Michael adduct, ketimine, aldimin.
  • a fatty acid modified product such as polyamide amine, an amine adduct with an epoxy compound (an epoxy adduct of an amine compound), a Mannig modified product (eg, phenalkamine, etc.) Phenalcamide), Michael adduct, ketimine, aldimin.
  • an amine-based curing agent (D) an amine adduct with a polyamide amine or an epoxy compound is preferable, and an amine adduct with an epoxy compound is particularly preferable.
  • an amine curing agent (D) is used, a coating film having better corrosion resistance can be easily formed.
  • the amine-based curing agent (D) may be obtained by synthesizing it by a conventionally known method, or a commercially available product may be used.
  • the commercially available product include "TD-961” (manufactured by DIC Corporation), which is a modified aliphatic polyamine (epoxyadduct of ethylenediamine), and "AD-71", which is a modified aliphatic polyamine (epoxyadduct of diethylenetriamine). (Manufactured by Akira Otake Shinkagaku Co., Ltd.) can be mentioned.
  • the active hydrogen equivalent of the amine-based curing agent (D) is preferably 50 or more, more preferably 100 or more, and preferably 1,000, from the viewpoint that a coating film having better corrosion resistance can be easily formed. Below, it is more preferably 500 or less.
  • the active hydrogen equivalent in the present specification refers to the active hydrogen equivalent of the solid content of the amine-based curing agent (D).
  • the amine-based curing agent (D) preferably has a reaction ratio calculated by the following formula (2) from the viewpoint that a coating film having excellent corrosion resistance, coating film strength and drying property can be easily formed. It is desirable to use an amount of 0.3 or more, more preferably 0.4 or more, preferably 1.5 or less, and more preferably 1.2 or less.
  • Reaction ratio ⁇ (Amount of solid content of amine-based curing agent (D) / Equivalent of active hydrogen of amine-based curing agent (D)) + (Solid content of component having reactivity with epoxy resin (A)) Blending amount / Functional group equivalent of the solid content of the component having reactivity with the epoxy resin (A) ⁇ / ⁇ (The blending amount of the solid content of the epoxy resin (A) / the epoxy equivalent of the epoxy resin (A)) + (Amount of solid content of the component having reactivity with the amine-based curing agent (D) / functional group equivalent of the solid content of the component having reactivity with the amine-based curing agent (D)) ⁇ ...
  • the component having reactivity with the amine-based curing agent (D) in the above formula (2), for example, the reactivity with the amine-based curing agent (D) in the following other components is given.
  • the “component having reactivity with the epoxy resin (A)” include a component having reactivity with the epoxy resin (A) among the following other components. ..
  • the “functional group equivalent” of each component means the mass (g) per 1 mol functional group obtained by dividing the mass of 1 mol of these components by the number of mols of the functional groups contained therein.
  • the amine-based curing agent (D) is included in the curing agent component.
  • the viscosity of this curing agent component at 25 ° C. measured by an E-type viscometer is preferably 100,000 mPa ⁇ s or less, more preferably 50 mPa, from the viewpoint of providing a composition having excellent handleability and coating workability.
  • -S or more more preferably 10,000 mPa ⁇ s or less.
  • the present composition is not particularly limited as long as it contains the components (A) to (D), and if desired, a silane coupling agent, a pigment, a pigment dispersant, an antifoaming agent, as long as the effects of the present invention are not impaired. It may contain other components such as a sagging preventive / sedimentation inhibitor (swaying agent), a dehydrating agent, a curing accelerator, a curing catalyst, and an organic solvent. As each of these other components, one kind may be used, or two or more kinds may be used.
  • silane coupling agent By using the silane coupling agent, not only the adhesion of the obtained coating film to the substrate can be further improved, but also the corrosion resistance and heat resistance of the obtained coating film such as water resistance and salt water resistance can be obtained. Can be improved.
  • the silane coupling agent may be used alone or in combination of two or more.
  • the silane coupling agent is not particularly limited, and conventionally known compounds can be used, but they have at least two functional groups in the same molecule, and the adhesion to the substrate is improved and the viscosity of the present composition is lowered. It is preferable that the compound can contribute to the above.
  • an epoxy group-containing silane coupling agent or an amino group-containing silane coupling agent is preferable. It is preferable to use an epoxy group-containing silane coupling agent from the viewpoint of adhesion of the obtained coating film to the substrate and improvement of corrosion resistance, and it is preferable to use an amino group-containing silane coupling agent to obtain a coating film. Is preferable from the viewpoint of adhesion to the substrate, improvement of corrosion resistance, improvement of heat resistance, and the like. Further, when an amino group-containing silane coupling agent is used, discoloration of the obtained coating film can be suppressed.
  • silane coupling agents include “KBM-403” (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) and “Sila Ace S-510” (JNC Co., Ltd.). ), “KBM-603” (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
  • the content of the silane coupling agent is preferably 0.1% by mass or more, more preferably 0.3, based on 100% by mass of the non-volatile content of the present composition. It is by mass or more, preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the viscosity of the present composition can be reduced, so that not only the coating workability is improved, but also the adhesion and corrosion resistance of the obtained coating film to the substrate are improved. ..
  • the content of the epoxy group-containing silane coupling agent is such that the content of the epoxy group-containing silane coupling agent is 100% by mass with respect to 100% by mass of the non-volatile content of the present composition, from the viewpoint of the same effect as described above. It is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, preferably 10% by mass or less, and more preferably 5% by mass or less. Further, when the present composition contains an amino group-containing silane coupling agent, the content of the amino group-containing silane coupling agent is 100% by mass of the non-volatile content of the present composition from the viewpoint of the same effect as described above. On the other hand, it is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the content of the amino group-containing silane coupling agent is 100% by mass of the solid content of the silicone resin (B) from the same effect as described above. It is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, preferably 20 parts by mass or less, and more preferably 10 parts by mass or less.
  • the present composition may contain a pigment, and preferably contains a pigment.
  • the pigment include extender pigments, coloring pigments, and rust preventive pigments, and may be organic or inorganic.
  • As the pigment one kind may be used, or two or more kinds may be used.
  • extender pigment examples include talc, mica, (precipitated) barium sulfate, (potassium) feldspar, kaolin, alumina white, bentonite, wollastonite, clay, glass flakes, aluminum flakes, scaly iron oxide, and magnesium carbonate.
  • talc, mica, silica, (precipitating) barium sulfate, and (potassium) feldspar are preferred.
  • the content of the extender pigment is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 10% by mass or more, based on 100% by mass of the non-volatile content of the present composition. It is 80% by mass or less, more preferably 70% by mass or less.
  • coloring pigment examples include inorganic pigments such as carbon black, titanium dioxide (titanium white), iron oxide (valve handle), yellow iron oxide and ultramarine, and organic pigments such as cyanine blue and cyanin green.
  • inorganic pigments such as carbon black, titanium dioxide (titanium white), iron oxide (valve handle), yellow iron oxide and ultramarine
  • organic pigments such as cyanine blue and cyanin green.
  • titanium white, carbon black, and valve handle are preferable.
  • the content of the coloring pigment is preferably 0.1% by mass or more, more preferably 1% by mass or more, based on 100% by mass of the non-volatile content of the present composition. It is preferably 30% by mass or less, more preferably 20% by mass or less.
  • Examples of the rust preventive pigment include zinc powder, zinc alloy powder, zinc phosphate compound, calcium phosphate compound, aluminum phosphate compound, magnesium phosphate compound, zinc phosphite compound, calcium phosphite compound, and the like.
  • Examples thereof include aluminum phosphite compounds, strontium phosphite compounds, aluminum tripolyphosphate compounds, molybdenate compounds, cyanamide zinc compounds, borate compounds, nitro compounds, and composite oxides.
  • the pigment volume concentration (PVC) in the present composition makes it possible to easily obtain a composition having excellent coating workability, and has adhesiveness to a substrate and corrosion resistance due to stress relaxation. It is preferably 10% or more, more preferably 20% or more, preferably 60% or less, and more preferably 50% or less from the viewpoint that an excellent coating film can be easily obtained.
  • the PVC refers to the total volume concentration of the pigment with respect to the volume of the non-volatile content in the composition.
  • the non-volatile content of this composition means the heating residue obtained according to JIS K 5601-1-2 (heating temperature: 125 ° C., heating time: 60 minutes). Further, the non-volatile content of the present composition can also be calculated as an amount excluding the solvent in the raw material used and the organic solvent. Further, the components other than the solvent in the main agent component and the curing agent component in each component (epoxy resin (A) and the like) which is a raw material constituting the composition, the main agent component or the curing agent component are referred to as "solid content".
  • the volume of the non-volatile component in the present composition can be calculated from the mass and the true density of the non-volatile component of the present composition.
  • the mass and true density of the non-volatile component may be measured values or values calculated from the raw materials used.
  • the volume of the pigment can be calculated from the mass and true density of the pigment used.
  • the mass and true density of the pigment may be measured values or values calculated from the raw materials used. For example, it can be calculated by separating the pigment from other components from the non-volatile content of the present composition and measuring the mass and true density of the separated pigment.
  • the sagging preventive / sedimentation inhibitor (swaying agent) is not particularly limited, but is a material capable of suppressing sedimentation of pigments and the like in the present composition and improving its storage stability, or during or after coating. It is preferable that the material is a material that can improve the sagging property of the present composition.
  • the anti-sag and anti-settling agent include stearate salts of Al, Ca and Zn, lecithin salts, organic clay waxes such as alkyl sulfonates, polyethylene wax, amido wax, hydrogenated castor oil wax and hydrogenated castor. Conventionally known waxes such as a mixture of oil wax and amido wax, synthetic fine powder silica, and polyethylene oxide wax can be used. Among them, amide wax, synthetic fine powder silica, polyethylene oxide wax, and organic clay wax are preferable.
  • Such a sagging preventive / sedimentation inhibitor may be a commercially available product.
  • the commercially available product include "Disparlon 305", “Disparlon 4200-20” and “Disparlon 6650” manufactured by Kusumoto Kasei Co., Ltd .; "AS-A T-250F” manufactured by Itoh Oil Chemicals Co., Ltd .; Examples include “Fronon RCM-300” manufactured by Kyoeisha Chemical Co., Ltd .; “Benton SD-2” manufactured by Elegantis Specialties, Inc., and "Aerosil R972" (manufactured by Nippon Aerosil Co., Ltd.), which is a silica-based rocking agent. ..
  • the content of the sagging inhibitor is preferably 0.1 to 10% by mass with respect to 100% by mass of the non-volatile content of the present composition. %.
  • Organic solvent is not particularly limited, and is, for example, an aromatic hydrocarbon solvent such as toluene and xylene, a ketone solvent such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK), an ether solvent such as butyl cellosolve, butyl acetate and the like.
  • aromatic hydrocarbon solvent such as toluene and xylene
  • ketone solvent such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK)
  • MIBK methyl isobutyl ketone
  • ether solvent such as butyl cellosolve, butyl acetate and the like.
  • PGM propylene glycol monomethyl ether
  • the present composition contains an organic solvent, it is preferably 10% by mass or more, more preferably 20% by mass or more, preferably 80% by mass or less, more preferably more than the content of the non-volatile content in the present composition. It is desirable to use an organic solvent in an amount of 70% by mass or less.
  • the content of VOC (volatile organic component) in this composition is preferably 700 g / L or less, more preferably 600 g / L or less, and particularly preferably, from the viewpoint that the composition has little influence on the environment and the human body. Is 500 g / L or less.
  • VOC content of the present composition can be calculated from the following formula (1) using the following paint specific gravity and the non-volatile content of the present composition.
  • VOC content (g / L) paint specific density x 1000 x (100-nonvolatile content of this composition) / 100 ... (1)
  • Paint specific density (g / cm 3 ): Under a temperature condition of 23 ° C., the present composition (eg, the composition immediately after mixing the main agent component and the curing agent component) is filled in a specific gravity cup having an internal volume of 100 ml. Value calculated by weighing the mass of the composition
  • the coating film according to the embodiment of the present invention (hereinafter, also referred to as “the present coating film”) is formed from the above-mentioned composition, and the base material with the coating film according to the embodiment of the present invention is the present coating film. It is a laminate containing the substrate and the substrate. A suitable example of this coating film is a heat-resistant coating film.
  • the base material is not particularly limited, and for example, a metal base material made of steel (iron, steel, alloy iron, carbon steel, alloy steel, etc.) or non-ferrous metal (stainless steel, aluminum, zinc plating, brass, brass, etc.). And a metal base material whose surface is coated with a shop primer or the like.
  • the base material include plant structures, onshore structures, offshore structures, ships, etc., but from the viewpoint of further exerting the effects of the present invention, ship steam pipes, petroleum, etc. are preferable. Pipes used in refineries, chemical plants, etc., industrial pipes (eg, industrial pipes covered with heat insulating materials, etc.), and ship steam pipes are more preferable.
  • the film thickness of the present coating film is not particularly limited, but is preferably 30 to 400 ⁇ m, more preferably 30 to 300 ⁇ m, and this film thickness may be applied multiple times even if it is a single-layer film formed by one coating. It may be a multi-layer film formed by.
  • the film thickness of this coating film is preferably 100 ⁇ m or more from the viewpoint of long-term corrosion resistance. .. Since this composition is used, even if a coating film having such a film thickness is formed on a substrate, swelling and cracks are unlikely to occur in the coating film, and even when exposed to a high temperature of about 200 ° C. Since swelling and cracks are unlikely to occur, the substrate can be protected from corrosion for a long period of time.
  • the present coating film is formed from the above-mentioned present composition, and can be specifically produced by going through a step including the following steps [1] and [2]. [1] Step of applying the present composition to the substrate [2] Step of drying the present composition coated on the substrate to form a coating film
  • the method for coating the present composition on the substrate is not particularly limited, and conventionally known methods can be used without limitation, and commonly used airless spray coating, air spray coating, brush coating, roller coating and the like are preferable. Spray coating is preferable because it is excellent in workability and productivity, can be easily coated on a large-area substrate, and can further exert the effects of the present invention.
  • the present composition is a two-component type composition, it is preferable to mix the main agent component and the curing agent component immediately before painting and perform spray painting or the like.
  • the conditions for spray coating may be appropriately adjusted according to the thickness of the coating film to be formed.
  • the primary (air) pressure about 0.4 to 0.8 MPa
  • the secondary (paint). ) Pressure about 10 to 26 MPa
  • gun moving speed about 50 to 120 cm / sec
  • coating conditions may be set.
  • the viscosity of this composition used at this time is about 1.8 to 2.5 Pa ⁇ s at 23 ° C. when measured with a B-type viscometer (“TVB-10M”, manufactured by Toki Sangyo Co., Ltd.). Is preferable.
  • the viscosity of the present composition may be adjusted by using thinner or the like.
  • the thinner is preferably an organic solvent capable of dissolving or dispersing the components in the composition, and is, for example, an aromatic hydrocarbon solvent such as toluene or xylene, or an aliphatic hydrocarbon solvent such as mineral spirit or cyclohexane. Examples thereof include solvents and alcohol-based solvents such as n-butanol and isopropanol.
  • the thinner used may be one type or two or more types.
  • the present composition When the present composition is applied onto the substrate, in order to remove rust, oil, moisture, dust, salt, etc. on the substrate, and to improve the adhesion of the obtained coating film to the substrate.
  • it is preferable to treat the surface of the base material for example, blast treatment (ISO8501-1 Sa2 1/2), treatment for removing oil and dust by degreasing) and the like.
  • the base material may be coated with a shop primer or the like for the purpose of primary rust prevention.
  • the present composition can be dried and cured at room temperature, and thus a coating film having excellent heat resistance and corrosion resistance can be obtained even when dried and cured at room temperature. Further, if desired, it may be dried under heating in order to shorten the drying time.
  • the drying conditions are not particularly limited and may be appropriately set according to the composition, the substrate, the coating place, etc., but the drying temperature is preferably 5 to 40 ° C, more preferably 10 to 30 ° C.
  • the drying time is preferably 18 hours to 14 days, more preferably 24 hours to 7 days.
  • the coating film of the desired film thickness may be formed by one coating, or the coating film of the desired film thickness may be formed by two or more coatings (multiple coatings).
  • a film may be formed. From the viewpoint of film thickness control and the residual solvent in the coating film, it is preferable to form a coating film having a desired film thickness by two or more coatings.
  • the two-time coating refers to a method in which the steps [1] and [2] are performed on the obtained coating film after the steps [1] and [2] are performed. Paint three or more times refers to a method of further repeating a series of steps.
  • the hue of the paint / coating film to be painted first and the hue of the paint / coating film to be painted next are different. This is a measure for facilitating the judgment such as forgetting to apply or insufficient film thickness in the painting work. Further, a top coat may be applied in order to finish the final hue of the outer surface to a specified hue.
  • each material listed in the column of the main ingredient component in Tables 1 to 3 is blended with the numerical value (part by mass) described in each column, stirred using a high speed dispersion at room temperature until uniform, and further 50 ° C. Dispersed until. Then, the main component of the coating composition was prepared by cooling to 30 ° C. or lower.
  • each material listed in the column of curing agent component in Tables 1 to 3 is blended in the container with the numerical value (part by mass) described in each column, and these components are mixed at room temperature and normal pressure using a high speed disper.
  • the curing agent component was prepared by mixing.
  • a coating composition was prepared by mixing these main agent components and curing agent components at the mixing ratios shown in Tables 1 to 3 before coating.
  • a description of each component shown in Tables 1 to 3 is shown in Table 4.
  • the solid content (mass%) of each component in Table 4 is a value in the manufacturer's catalog.
  • each coating composition prepared as described above was diluted by 10% by mass using thinner A for epoxy (manufactured by Chugoku Paint Co., Ltd.) (10 g of thinner for 100 g of paint composition).
  • thinner A for epoxy manufactured by Chugoku Paint Co., Ltd.
  • the diluted composition was applied to a dry film using a film applicator with a gap of 500 ⁇ m. It was painted so that the thickness was 150 ⁇ m (first painting). Then, the coating composition coated on the steel sheet was dried at room temperature (23 ° C.) for 24 hours.
  • the diluted composition was applied onto the dried coating film (first layer coating film) using a film applicator with a gap of 500 ⁇ m so that the dry film thickness was 150 ⁇ m (second coating).
  • a test plate base material with a coating film in which the first layer coating film and the second layer coating film were laminated in this order was prepared. ..
  • the following interlayer adhesion, heat resistance (coating film state after high temperature exposure) and heat resistance (discoloration resistance) were tested using the prepared test plate. The results are shown in Tables 1 to 3.
  • ⁇ Heat resistance (discoloration resistance)> Based on JIS K 5600-4-5: 1999, using a spectrocolorimeter (model CM-3700A, manufactured by Konica Minolta Japan Co., Ltd.), L * on the coating film surface on the test plate prepared as described above. , A * and b * were measured, and the test plate prepared as described above was heated at 200 ° C. for 6 hours, and then returned to room temperature, and then L *, a * on the coating film surface on the test plate. And b * were measured, and the color difference ⁇ E of the coating film surface before and after high temperature exposure was calculated according to JIS K 5600-4-6: 1999.
  • the discoloration reduction rate in Tables 2 to 3 is a percentage of the ratio of ⁇ E of the example to ⁇ E of the corresponding comparative example.
  • the discoloration reduction rate of Examples 5 and 6 is a percentage of the ratio of ⁇ E of Example 5 or 6 to ⁇ E of Comparative Example 3
  • the discoloration reduction rate of Examples 7 and 8 is relative to ⁇ E of Comparative Example 4. Percentage of the ratio of ⁇ E in Example 7 or 8.
  • Tg glass transition temperature
  • Each coating composition prepared as described above was diluted by 10% by mass using thinner A for epoxy (manufactured by Chugoku Paint Co., Ltd.) (10 g of thinner for 100 g of paint composition).
  • the diluted composition was coated on a release paper using a film applicator with a gap of 500 ⁇ m so that the dry film thickness was 150 ⁇ m.
  • the coated paint composition was dried at room temperature for 7 days, and the coating film separated from the release paper was cut out to a diameter of 3.5 mm.
  • Each coating composition prepared as described above was diluted by 10% by mass using thinner A for epoxy (manufactured by Chugoku Paint Co., Ltd.) (10 g of thinner for 100 g of paint composition).
  • the diluted composition is sprayed onto the surface of a cold-rolled steel sheet (JIS G 3141) of SSPC-SB having dimensions of 150 mm ⁇ 70 mm ⁇ 0.8 mm (thickness) so that the dry film thickness becomes 100 ⁇ m. Painted on (first painting).
  • the coating composition coated on the steel sheet was dried at room temperature (23 ° C.) for 24 hours.
  • the diluted composition was coated on the dried coating film using an air spray so that the dry film thickness was 100 ⁇ m (second coating). Then, it was dried at room temperature (23 ° C.) for 7 days to prepare each test plate for evaluation of corrosion resistance.
  • the length is 50 mm at a position of 10 mm from both ends of the long side of each of the obtained test plates 1 for evaluation of corrosion resistance and 20 mm from either end of the short side.
  • Cut 2 was put in until it reached the surface of the base steel plate.
  • the test plate with the cut as described above is heated at 200 ° C. for 6 hours, then allowed to stand at room temperature for 18 hours, and then placed in a salt sprayer (JIS K 5600-7-1 compliant) for 144 hours for one cycle. And said.
  • JIS K 5600-7-1 compliant JIS K 5600-7-1 compliant
  • the coating films formed from the coating compositions obtained in Examples 1 to 3 and 5 to 16 are considered to exhibit the same anticorrosion properties as in Example 4. Further, as in the comparison between Example 4 and Comparative Example 2, it is considered that these Examples have a higher glass transition temperature (Tg) and a smaller mass reduction rate than the corresponding Comparative Examples. It is considered that the coating film formed from the coating compositions obtained in Comparative Examples 1 and 3 to 10 exhibits the same anticorrosion property as that of Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明の一実施形態は、塗料組成物、塗膜、塗膜付き基材またはその製造方法に関し、該塗料組成物は、エポキシ樹脂(A)と、シリコーン樹脂(B)と、アルミニウム(C)と、アミン系硬化剤(D)とを含有する。

Description

塗料組成物、塗膜、塗膜付き基材およびその製造方法
 本発明の一実施形態は、塗料組成物、塗膜、塗膜付き基材またはその製造方法に関する。
 防食性が要求される基材には、高温(例:200℃)下に曝され得る基材が存在する。このような基材としては、例えば、約200℃程度まで温度が上昇することのある、船舶の蒸気パイプ等が挙げられる。
 このような高温下に曝され得る基材には、防食性には優れるが、耐熱温度が150℃程度であるエポキシ樹脂系塗料組成物は使用できず、これまでのところ、耐熱性に優れるシリコーン樹脂系塗料組成物、例えば、特許文献1に記載の耐熱塗料組成物が使用されている。
特開2019-6982号公報
 前記船舶の蒸気パイプ等の基材に塗装された塗料組成物は、加熱乾燥(焼付)させること自体が困難であることが多く、通常、塗膜を形成する際に加熱等は行わず、常温下で塗膜を形成し、その後の基材の使用による温度上昇で硬化させていたが、前記のようなシリコーン樹脂系耐熱塗料組成物は、一般的に、完全硬化に250℃以上の温度が必要であるため、200℃程度までしか温度が上昇しない船舶の蒸気パイプ等の基材では、塗装された組成物が完全硬化せず、このため、形成される塗膜には、防食性の点で改良の余地があることが分かった。
 また、長期防食性に優れる塗膜とするには、その乾燥膜厚を100μm以上とすることが要求されるが、このような厚膜の塗膜を1回の塗装で形成するのは容易ではないため、通常、塗料組成物の塗装と乾燥を1回の塗膜形成工程として、この塗膜形成工程を複数回(好ましくは2回)繰り返して(以下「複数回塗り」ともいう。)厚膜の塗膜が形成されている。
 前記のようなシリコーン樹脂系耐熱塗料組成物から形成される塗膜の防食性を向上させることを目的として、防食性に優れる有機成分を配合することも一応考えられる。しかしながら、有機成分は一般的に耐熱性に劣るため、前記高温下に曝された場合、炭化等が起り、塗膜物性の低下、塗膜の状態や塗膜の色相の変化を抑制できないことが容易に想定できる。
 さらに、このように有機成分を配合した場合、シリコーン樹脂は無機系樹脂であるため、有機成分と組み合わせると、相容性が著しく不良であり、前記のように複数回塗りした場合に形成される塗膜間の密着性(以下「層間密着性」ともいう。)に問題が生じることが分かった。
 本発明の一実施形態は、耐熱性、防食性および層間密着性に優れる塗膜を常温硬化でも形成可能な塗料組成物を提供する。
 本発明者が、前記課題を解決する方法について鋭意検討を重ねた結果、以下の構成例によれば前記課題を解決できることを見出し、本発明を完成するに至った。
 本発明の構成例は以下の通りである。
 <1> エポキシ樹脂(A)と、シリコーン樹脂(B)と、アルミニウム(C)と、アミン系硬化剤(D)とを含有する塗料組成物。
 <2> さらに、シランカップリング剤を含む、<1>に記載の塗料組成物。
 <3> 耐熱塗料組成物である、<1>または<2>に記載の塗料組成物。
 <4> <1>~<3>の何れかに記載の塗料組成物から形成された塗膜。
 <5> 基材と<4>に記載の塗膜とを含む塗膜付き基材。
 <6> 下記工程[1]および[2]を含む、塗膜付き基材の製造方法。
 [1]基材に、<1>~<3>の何れかに記載の塗料組成物を塗装する工程
 [2]基材上に塗装された塗料組成物を乾燥させて塗膜を形成する工程
 本発明の一実施形態によれば、耐熱性、防食性および層間密着性に優れる塗膜を常温硬化でも形成することができる。特に、本発明の一実施形態によれば、船舶の蒸気パイプ等の高温(例:200℃)下に曝され得る防食性が要求される基材に対しても、塗膜物性の低下、塗膜の状態や塗膜の色相の変化を抑制できる、耐熱性に優れ、かつ、防食性および基材への付着性に優れる塗膜を常温硬化でも形成することができる。
 本発明の一実施形態によれば、複数回塗りで厚膜の塗膜を形成しても形成される塗膜間の密着性に優れるため、長期防食性に優れる塗膜を容易に形成することができる。
図1は、実施例の防食性試験で用いたカットを入れた試験板の概略模式図である。
≪塗料組成物≫
 本発明の一実施形態に係る塗料組成物(以下単に「本組成物」ともいう。)は、エポキシ樹脂(A)と、シリコーン樹脂(B)と、アルミニウム(C)と、アミン系硬化剤(D)とを含有する。
 通常相容性の悪い、エポキシ樹脂(A)とシリコーン樹脂(B)とを含むと、複数回塗りで形成される塗膜層間に剥離が起こりやすいが、本組成物は、エポキシ樹脂(A)とシリコーン樹脂(B)とを含むにもかかわらず、アルミニウム(C)を含むことで、層間密着性に優れる塗膜を形成することができる。さらに、エポキシ樹脂(A)を含むにもかかわらず、高温(例:200℃)下に曝されても塗膜物性の低下、塗膜の状態や塗膜の色相の変化の起り難い塗膜を形成することができる。
 このため、本組成物は、高温(例:200℃)下に曝され得る防食性が要求される基材に好適に用いられ、具体的には、船舶の蒸気パイプ、石油精製や化学プラント等に用いられる配管、工業用配管(例:保温材等で覆われた工業用配管)等に好適に用いられる。
 また、本組成物は、耐熱塗料組成物および/または防食塗料組成物として好適に使用することができ、耐熱防食塗料組成物としてより好適に使用することができる。
 本組成物は、1成分型の組成物であってもよいが、通常、エポキシ化合物(A)を含有する主剤成分と、アミン系硬化剤(D)を含有する硬化剤成分とからなる2成分型の組成物である。また、必要により、本組成物は、3成分以上型の組成物であってもよい。
 これら主剤成分および硬化剤成分は、通常、それぞれ別個の容器にて保存、貯蔵、運搬等され、使用直前に一緒に混合して用いられる。
 なお、本組成物は、塗装方法等に応じて、溶媒で希釈して用いられることがある。以下における各説明は、希釈に関する内容以外は、希釈される前についての説明である。
<エポキシ樹脂(A)>
 エポキシ樹脂(A)としては特に制限されず、従来公知のエポキシ樹脂を用いることができる。
 エポキシ樹脂(A)としては、例えば、特開平11-343454号公報や特開平10-259351号公報に記載の非タール系エポキシ樹脂が挙げられる。
 本組成物中に含まれるエポキシ樹脂(A)は、1種でもよく、2種以上でもよい。
 エポキシ樹脂(A)としては、例えば、分子内に2個以上のエポキシ基を含むポリマー、オリゴマー、およびこれらのエポキシ基の開環反応によって生成するポリマーまたはオリゴマーが挙げられる。このようなエポキシ樹脂としては、例えば、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族エポキシ樹脂、脂環族エポキシ樹脂、脂肪酸変性エポキシ樹脂、エポキシ化油系エポキシ樹脂が挙げられる。
 これらの中でも、基材に対する付着性に優れる塗膜を容易に形成できる等の点から、ビスフェノール型エポキシ樹脂が好ましく、さらにはビスフェノールA型およびビスフェノールF型のエポキシ樹脂がより好ましく、ビスフェノールA型エポキシ樹脂が特に好ましい。
 エポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂(ビスフェノールA型ジグリシジルエーテル類);ビスフェノールAD型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;トリスヒドロキシフェニルメタン型エポキシ樹脂が挙げられ、これらの水素添加反応(以下「水添」ともいう。)物、脂肪酸変性物、樹脂中の水素原子の少なくとも1つが臭素原子で置換された臭素化物等であってもよい。
 前記ビスフェノールA型エポキシ樹脂としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールA(ポリ)プロピレンオキシドジグリシジルエーテル、ビスフェノールA(ポリ)エチレンオキシドジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールA(ポリ)プロピレンオキシドジグリシジルエーテル、水添ビスフェノールA(ポリ)エチレンオキシドジグリシジルエーテル等のビスフェノールA型ジグリシジルエーテル類の縮重合物が挙げられる。
 エポキシ樹脂(A)は、従来公知の方法で合成して得てもよく、市販品でもよい。該市販品としては、常温(15~25℃の温度、以下同様。)で液状のものとして、例えば、「E-028」(大竹明新化学(株)製、ビスフェノールA型エポキシ樹脂、エポキシ当量180~190、粘度12,000~15,000mPa・s/25℃)、「jER-807」(三菱ケミカル(株)製、ビスフェノールF型エポキシ樹脂、エポキシ当量160~175、粘度3,000~4,500mPa・s/25℃)、「フレップ60」(東レ・ファインケミカル(株)製、エポキシ当量約280、粘度約17,000mPa・s/25℃)が挙げられる。常温で半固形状のものとして、例えば、「jER-834」(三菱ケミカル(株)製、ビスフェノールA型エポキシ樹脂、エポキシ当量230~270)等が挙げられる。常温で固形状のものとして、例えば、「jER-1001」(三菱ケミカル(株)製、ビスフェノールA型エポキシ樹脂、エポキシ当量450~500)、「JER-1004」(三菱ケミカル(株)製、ビスフェノールA型エポキシ樹脂、エポキシ当量875~975、粘度Q~Uガードナーホルト/25℃)、「1007」(KUKDO CHEMICAL社製、ビスフェノールA型エポキシ樹脂、エポキシ当量1,750~2,200、粘度Y~Z1ガードナーホルト/25℃)が挙げられる。
 また、前述の半固形状または固形状のエポキシ樹脂を溶剤で希釈し、溶液とした「E-834-85X」(大竹明新化学(株)製、ビスフェノールA型エポキシ樹脂のキシレン溶液(834タイプエポキシ樹脂溶液)、エポキシ当量約300)、「E-001-75」(大竹明新化学(株)製、ビスフェノールA型エポキシ樹脂のキシレン溶液(1001タイプエポキシ樹脂溶液)、エポキシ当量約630)等も使用することができる。
 本明細書中のエポキシ当量は、エポキシ樹脂(A)の固形分のエポキシ当量のことをいう。
 エポキシ樹脂(A)のエポキシ当量は、防食性に優れる塗膜を容易に形成することができる等の点から、好ましくは150以上、より好ましくは175以上、特に好ましくは200以上であり、好ましくは5,000以下、より好ましくは3,000以下、特に好ましくは2,500以下である。
 エポキシ樹脂(A)の固形分のGPC(ゲルパーミエーションクロマトグラフ)で測定した重量平均分子量は、得られる組成物の塗装硬化条件(例:常温乾燥または加熱乾燥)などにもより一概に決定されないが、好ましくは350~20,000である。
 エポキシ樹脂(A)の固形分の含有量は、防食性により優れる塗膜を形成することができる等の点から、本組成物の不揮発分100質量%に対し、好ましくは1質量%以上、より好ましくは5質量%以上であり、好ましくは60質量%以下、より好ましくは50質量%以下である。
 また、前記エポキシ樹脂(A)は、本組成物が主剤成分と硬化剤成分とからなる2成分型の組成物である場合、主剤成分に含まれる。該主剤成分の固形分100質量%に対するエポキシ樹脂(A)の固形分の含有量は、好ましくは1質量%以上、より好ましくは5質量%以上、好ましくは60質量%以下、より好ましくは50質量%以下である。
<シリコーン樹脂(B)>
 前記シリコーン樹脂(B)としては、シロキサン結合を有する樹脂であり、エポキシ基を含まない樹脂であれば特に制限されず、直鎖状でも、分岐状であってもよい。該シリコーン樹脂(B)は、シロキサン系バインダーやシロキサン系結合剤でもある。
 本組成物中に含まれるシリコーン樹脂(B)は、1種でもよく、2種以上でもよい。
 シリコーン樹脂(B)としては、例えば、分子中にシロキサン結合を介して反応性基を有し、該反応性基が互いに反応することで、高分子量化または三次元架橋構造を形成し、硬化する化合物が挙げられる。
 なお、前記反応としては、例えば、縮合反応および付加反応が挙げられ、縮合反応としては、脱水反応、脱アルコール反応等が挙げられる。
 シリコーン樹脂(B)は、例えば、下記式(I)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
[式(I)中、R1はそれぞれ独立に、炭素数1~8のアルキル基、炭素数6~8のアリール基または炭素数1~8のアルコキシ基を示し、R2はそれぞれ独立に、炭素数1~8のアルキル基、炭素数6~8のアリール基または水素原子を示す。また、nは繰り返し数を示す。]
 R1およびR2における炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基が挙げられる。
 R1およびR2における炭素数6~8のアリール基は、芳香環上にアルキル基等の置換基を有する基であってもよく、例えば、フェニル基、メチルフェニル基、ジメチルフェニル基が挙げられる。
 R1における炭素数1~8のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、フェノキシ基が挙げられる。
 R1は、好ましくは、メチル基、エチル基、プロピル基またはフェニル基であり、R2は、好ましくは、メチル基、エチル基、フェニル基または水素原子である。
 シリコーン樹脂(B)は、メチルシリコーンレジン、メチルフェニルシリコーンレジン等の耐熱性を有する樹脂であることが好ましく、下記、ジメチルシロキサン単位(b1)、ジフェニルシロキサン単位(b2)、モノメチルシロキサン単位(b3)、モノプロピルシロキサン単位(b4)およびモノフェニルシロキサン単位(b5)からなる群より選択される1種以上の構成単位を含有することがより好ましい。
Figure JPOXMLDOC01-appb-C000002
[式(b1)~(b5)中、Si-O-における、Oに結合し、Siに結合していない「-」は、結合手を示し、Si-O-は、必ずしもSi-O-CH3を示すわけではない。]
 シリコーン樹脂(B)の、GPC(ゲル浸透クロマトグラフィー)法により測定される標準ポリスチレン換算の重量平均分子量(以下単に「Mw」ともいう。)は、耐熱性および防食性により優れる塗膜を容易に形成することができる等の点から、好ましくは15,000以上、より好ましくは18,000以上であり、好ましくは1,000,000以下、より好ましくは600,000以下である。
 前記繰り返し数nは、シリコーン樹脂(B)のMwが前記範囲となるように選択されることが好ましい。
 シリコーン樹脂(B)の固形分の含有量は、防食性、耐熱性および層間密着性にバランスよく優れる塗膜を容易に形成することができる等の点から、本組成物の不揮発分100質量%に対し、好ましくは1質量%以上、より好ましくは3質量%以上であり、好ましくは60質量%以下、より好ましくは50質量%以下である。
 シリコーン樹脂(B)は、本組成物が主剤成分と硬化剤成分とからなる2成分型の組成物である場合、主剤成分に含まれていても、硬化剤成分に含まれていてもよい。
 また、本組成物中におけるエポキシ樹脂(A)の固形分とシリコーン樹脂(B)の固形分の含有量の比((A):(B))は、耐熱性、防食性および層間密着性にバランスよく優れる塗膜を容易に形成することができる等の点から、好ましくは1:20~50:1、より好ましくは1:10~10:1、特に好ましくは1:5~5:1である。
<アルミニウム(C)>
 前記アルミニウム(C)としては特に制限されないが、粉末状であることが好ましく、鱗片状アルミニウム粉であってもよく、鱗片状以外の非鱗片状アルミニウム粉であってもよい。
 また、本組成物を調製する際の原料として、粉末状のみならず、ペースト状のアルミニウムを用いてもよい。
 本組成物中に含まれるアルミニウム粉(B)は、1種でもよく、2種以上でもよい。
 前記「鱗片状」とは、形状が鱗片の形を成しているものを指し、特に規定された範囲は存在しないが、通常、そのアスペクト比は、好ましくは5以上、より好ましくは10以上、さらに好ましくは20以上であり、好ましくは150以下、より好ましくは120以下である。
 また、前記「非鱗片状」とは、形状が球形、涙滴形、紡錘形等の鱗片状以外の形状を有しているものを指し、特に規定された範囲は存在しないが、通常、そのアスペクト比は、好ましくは5未満であり、より好ましくは1以上であり、より好ましくは3以下である。
 前記アスペクト比は、電子顕微鏡を用いて測定することができる。走査電子顕微鏡(SEM)、例えば「XL-30」(商品名;フィリップス社製)を用いてアルミニウム粉を観察し、数10~数100個の粉末粒子の厚みと主面における最大長さ(または、長軸の長さと短軸の長さ)とを測定し、これらの比(主面における最大長さ/厚み、または、長軸の長さ/短軸の長さ)の平均値を求めることで算出できる。
 なお、前記アルミニウム粉の厚みは、該粉末の主面(最も面積の大きい面)に対して水平方向から観察することで測定することができ、また、前記アルミニウム粉の主面における最大長さは、例えば、主面が四角形状であれば対角線の長さ、主面が円状であれば直径、主面が楕円状であれば長軸の長さのことを意味する。前記アルミニウム粉の長軸の長さは、具体的には、該粉末の中心付近の断面図における最も長い長さであり、前記アルミニウム粉の短軸の長さは、前記断面図において、該断面図の中心で前記長軸と直交する線の長さである。
 より防食性に優れる塗膜を容易に形成することができる等の点から、前記鱗片状アルミニウム粉のメジアン径(D50)は、好ましくは100μm以下であり、より好ましくは5μm以上であり、より好ましくは70μm以下、特に好ましくは50μm以下である。
 低VOC量で塗装作業性に優れる組成物を容易に得ることができる等の点から、前記非鱗片状アルミニウム粉(D)のメジアン径(D50)は、好ましくは50μm以下であり、より好ましくは5μm以上であり、より好ましくは30μm以下、特に好ましくは15μm以下である。
 前記D50は、レーザー散乱回折式粒度分布測定装置、例えば、「SALD 2200」((株)島津製作所製)を用いて3回測定した平均値である。
 前記鱗片状アルミニウム粉は、リーフィングタイプでもよく、ノンリーフィングタイプでもよいが、塗膜の変質や基材との付着性の低下を抑制できる等の点から、リーフィングタイプを用いることが好ましい。また、前記鱗片状アルミニウム粉を用いる場合、リーフィングタイプとノンリーフィングタイプとを併用してもよい。
 前記非鱗片状アルミニウム粉は、アトマイズ法(噴霧法)により製造されるアルミニウム粉末であることが好ましい。
 本組成物中のアルミニウム粉(C)の含有量は、防食性、耐熱性および層間密着性にバランスよく優れる塗膜を容易に形成することができ、高温下に曝された場合であっても、塗膜物性の低下、塗膜の状態や塗膜の色相の変化をより抑制できる塗膜を容易に形成することができる等の点から、本組成物の不揮発分100質量%に対し、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下である。
 本組成物中のアルミニウム粉(C)の含有量は、前記と同様の効果の点から、前記エポキシ樹脂(A)の固形分100質量部に対し、好ましくは1質量部以上、より好ましくは3質量部以上であり、好ましくは200質量部以下、より好ましくは100質量部以下である。
 本組成物中のアルミニウム粉(C)の含有量は、前記と同様の効果の点から、前記シリコーン樹脂(B)の固形分100質量部に対し、好ましくは1質量部以上、より好ましくは3質量部以上であり、好ましくは200質量部以下、より好ましくは100質量部以下である。
 本組成物中のアルミニウム粉(C)の含有量は、前記と同様の効果の点から、前記エポキシ樹脂(A)とシリコーン樹脂(B)の固形分の合計100質量部に対し、好ましくは1質量部以上、より好ましくは3質量部以上であり、好ましくは100質量部以下、より好ましくは50質量部以下である。
<アミン系硬化剤(D)>
 アミン系硬化剤(D)としてはアミン化合物であれば特に制限されないが、脂肪族系、脂環族系、芳香族系、複素環系などのアミン化合物が好ましい。なお、これらアミン化合物は、アミノ基が結合している炭素の種類により区別され、例えば、脂肪族系アミン硬化剤とは、脂肪族炭素に結合したアミノ基を少なくとも1つ有する化合物のことをいう。
 本組成物中に含まれるアミン系硬化剤(D)は、1種でもよく、2種以上でもよい。
 前記脂肪族系アミン硬化剤としては、例えば、アルキレンポリアミン、ポリアルキレンポリアミン、アルキルアミノアルキルアミンが挙げられる。
 前記アルキレンポリアミンとしては、例えば、式:「H2N-R1-NH2」(R1は、炭素数1~12の二価の炭化水素基である。)で表される化合物が挙げられ、具体例としては、メチレンジアミン、エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、トリメチルヘキサメチレンジアミンが挙げられる。
 前記ポリアルキレンポリアミンとしては、例えば、式:「H2N-(Cm2mNH)nH」(mは1~10の整数である。nは2~10の整数であり、好ましくは2~6の整数である。)で表される化合物が挙げられ、具体例としては、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、トリプロピレンテトラミン、テトラエチレンペンタミン、テトラプロピレンペンタミン、ペンタエチレンヘキサミン、ノナエチレンデカミン、ビス(ヘキサメチレン)トリアミン、トリエチレン-ビス(トリメチレン)ヘキサミンが挙げられる。
 前記アルキルアミノアルキルアミンとしては、例えば、式:「R2 2N-(CH2p-NH2」(R2は独立して、水素原子または炭素数1~8のアルキル基であり(但し、少なくとも1つのR2は炭素数1~8のアルキル基である。)、pは1~6の整数である。)で表される化合物が挙げられ、具体例としては、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジブチルアミノエチルアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノブチルアミンが挙げられる。
 これら以外の脂肪族系アミン硬化剤としては、例えば、テトラ(アミノメチル)メタン、テトラキス(2-アミノエチルアミノメチル)メタン、1,3-ビス(2'-アミノエチルアミノ)プロパン、トリス(2-アミノエチル)アミン、ビス(シアノエチル)ジエチレントリアミン、ポリオキシアルキレンポリアミン(特に、ジエチレングリコールビス(3-アミノプロピル)エーテル)、ビス(アミノメチル)シクロヘキサン、イソホロンジアミン(IPDA)、メンセンジアミン(MDA)、o-キシリレンジアミン、m-キシリレンジアミン(MXDA)、p-キシリレンジアミン、ビス(アミノメチル)ナフタレン、ビス(アミノエチル)ナフタレン、1,4-ビス(3-アミノプロピル)ピペラジン、1-(2'-アミノエチルピペラジン)、1-[2'-(2''-アミノエチルアミノ)エチル]ピペラジンが挙げられる。
 前記脂環族系アミン硬化剤の具体例としては、シクロヘキサンジアミン、ジアミノジシクロヘキシルメタン(特に、4,4'-メチレンビスシクロヘキシルアミン)、4,4'-イソプロピリデンビスシクロヘキシルアミン、ノルボルナンジアミン、2,4-ジ(4-アミノシクロヘキシルメチル)アニリンが挙げられる。
 前記芳香族系アミン硬化剤としては、例えば、ベンゼン環やナフタレン環等の芳香環に結合した2個以上の1級アミノ基を有する芳香族ポリアミン化合物が挙げられる。
 この芳香族系アミン硬化剤の具体例としては、フェニレンジアミン、ナフタレンジアミン、ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノベンゾフェノン、4,4'-ジアミノジフェニルスルホン、3,3'-ジメチル-4,4'-ジアミノジフェニルメタン、ジアミノジエチルフェニルメタン、2,4'-ジアミノビフェニル、2,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシ-4,4'-ジアミノビフェニルが挙げられる。
 前記複素環系アミン硬化剤の具体例としては、1,4-ジアザシクロヘプタン、1,11-ジアザシクロエイコサン、1,15-ジアザシクロオクタコサンが挙げられる。
 アミン系硬化剤(D)としては、さらに、アミン化合物の変性物、例えば、ポリアミドアミン等の脂肪酸変性物、エポキシ化合物とのアミンアダクト(アミン化合物のエポキシアダクト)、マンニッヒ変性物(例:フェナルカミン、フェナルカマイド)、マイケル付加物、ケチミン、アルジミンが挙げられる。
 アミン系硬化剤(D)としては、ポリアミドアミン、エポキシ化合物とのアミンアダクトが好ましく、エポキシ化合物とのアミンアダクトが特に好ましい。このようなアミン硬化剤(D)を用いると、防食性により優れる塗膜を容易に形成することができる。
 アミン系硬化剤(D)は、従来公知の方法で合成して得てもよく、市販品を用いてもよい。該市販品としては、例えば、変性脂肪族ポリアミン(エチレンジアミンのエポキシアダクト)である「TD-961」(DIC(株)製)、変性脂肪族ポリアミン(ジエチレントリアミンのエポキシアダクト)である「AD-71」(大竹明新化学(株)製)が挙げられる。
 アミン系硬化剤(D)の活性水素当量は、防食性により優れる塗膜を容易に形成することができる等の点から、好ましくは50以上、より好ましくは100以上であり、好ましくは1,000以下、より好ましくは500以下である。
 本明細書中の活性水素当量は、アミン系硬化剤(D)の固形分の活性水素当量のことをいう。
 防食性、塗膜強度および乾燥性に優れる塗膜を容易に形成することができる等の点から、アミン系硬化剤(D)は、下記式(2)で算出される反応比が、好ましくは0.3以上、より好ましくは0.4以上となるような量、好ましくは1.5以下、より好ましくは1.2以下となるような量で用いることが望ましい。
 反応比={(アミン系硬化剤(D)の固形分の配合量/アミン系硬化剤(D)の活性水素当量)+(エポキシ樹脂(A)に対して反応性を有する成分の固形分の配合量/エポキシ樹脂(A)に対して反応性を有する成分の固形分の官能基当量)}/{(エポキシ樹脂(A)の固形分の配合量/エポキシ樹脂(A)のエポキシ当量)+(アミン系硬化剤(D)に対して反応性を有する成分の固形分の配合量/アミン系硬化剤(D)に対して反応性を有する成分の固形分の官能基当量)} ・・・(2)
 ここで、前記式(2)における「アミン系硬化剤(D)に対して反応性を有する成分」としては、例えば、下記その他の成分中のアミン系硬化剤(D)に対して反応性を有する成分が挙げられ、また、「エポキシ樹脂(A)に対して反応性を有する成分」としては、例えば、下記その他の成分中のエポキシ樹脂(A)に対して反応性を有する成分が挙げられる。前記各成分の「官能基当量」とは、これらの成分1molの質量からその中に含まれる官能基のmol数を除して得られた1mol官能基あたりの質量(g)を意味する。
 本組成物が主剤成分と硬化剤成分とからなる2成分型の組成物である場合、前記アミン系硬化剤(D)は硬化剤成分に含まれる。この硬化剤成分のE型粘度計で測定した25℃における粘度は、取扱い性、塗装作業性により優れる組成物となる等の点から、好ましくは100,000mPa・s以下であり、より好ましくは50mPa・s以上であり、より好ましくは10,000mPa・s以下である。
<その他の成分>
 本組成物は、成分(A)~(D)を含有すれば特に制限されず、所望により、本発明の効果を損なわない範囲で、シランカップリング剤、顔料、顔料分散剤、消泡剤、タレ止め・沈降防止剤(揺変剤)、脱水剤、硬化促進剤、硬化触媒、有機溶剤等のその他の成分を含んでいてもよい。
 これらその他の成分は、それぞれ、1種を用いてもよく、2種以上を用いてもよい。
[シランカップリング剤]
 シランカップリング剤を用いることで、得られる塗膜の基材への付着性をさらに向上させることができるのみならず、得られる塗膜の耐水性、耐塩水性等の防食性および耐熱性をも向上させることができる。
 シランカップリング剤は、1種単独で用いてもよく、2種以上を用いてもよい。
 シランカップリング剤としては特に制限されず、従来公知の化合物を用いることができるが、同一分子内に少なくとも2つの官能基を有し、基材に対する付着性の向上、本組成物の粘度の低下等に寄与できる化合物であることが好ましい。例えば、式:「X-SiMen3-n」[nは0または1、Xは有機質との反応が可能な反応性基(例:アミノ基、ビニル基、エポキシ基、メルカプト基、ハロゲン基、炭化水素基の一部がこれらの基で置換された基、または炭化水素基の一部がエーテル結合等で置換された基の一部がこれらの基で置換された基)を示し、Meはメチル基であり、Yは加水分解性基(例:メトキシ基、エトキシ基などのアルコキシ基)を示す。]で表される化合物であることがより好ましい。
 シランカップリング剤としては、エポキシ基含有シランカップリング剤またはアミノ基含有シランカップリング剤が好ましい。
 エポキシ基含有シランカップリング剤を用いることは、得られる塗膜の基材への付着性、および防食性向上の点等から好ましく、アミノ基含有シランカップリング剤を用いることは、得られる塗膜の基材への付着性、防食性向上、および耐熱性向上の点等から好ましい。また、アミノ基含有シランカップリング剤を用いると、得られる塗膜の変色も抑制することができる。
 シランカップリング剤の市販品としては、具体的には、「KBM-403」(3-グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製)、「サイラエースS-510」(JNC(株)製)、「KBM-603」(N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、信越化学工業(株)製)等が挙げられる。
 本組成物がシランカップリング剤を含有する場合、該シランカップリング剤の含有量は、本組成物の不揮発分100質量%に対し、好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下である。
 シランカップリング剤の含有量が前記範囲にあると、本組成物の粘度を低減できるため、塗装作業性が向上するだけでなく、得られる塗膜の基材に対する付着性および防食性が向上する。
 本組成物がエポキシ基含有シランカップリング剤を含有する場合、前記と同様の効果の点から、該エポキシ基含有シランカップリング剤の含有量は、本組成物の不揮発分100質量%に対し、好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下である。
 また、本組成物がアミノ基含有シランカップリング剤を含有する場合、前記と同様の効果の点から、該アミノ基含有シランカップリング剤の含有量は、本組成物の不揮発分100質量%に対し、好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下である。
 また、本組成物がアミノ基含有シランカップリング剤を含有する場合、前記と同様の効果の点から、該アミノ基含有シランカップリング剤の含有量は、シリコーン樹脂(B)の固形分100質量部に対し、好ましくは0.1質量部以上、より好ましくは1質量部以上であり、好ましくは20質量部以下、より好ましくは10質量部以下である。
[顔料]
 本組成物は、顔料を含有していてもよく、顔料を含有していることが好ましい。
 該顔料としては、例えば、体質顔料、着色顔料、防錆顔料が挙げられ、有機系、無機系のいずれであってもよい。
 顔料は、1種を用いてもよく、2種以上を用いてもよい。
 前記体質顔料としては、例えば、タルク、マイカ、(沈降性)硫酸バリウム、(カリ)長石、カオリン、アルミナホワイト、ベントナイト、ウォラストナイト、クレー、ガラスフレーク、アルミフレーク、鱗片状酸化鉄、炭酸マグネシウム、炭酸バリウム、炭酸カルシウム、ドロマイト、シリカが挙げられる。特に、タルク、マイカ、シリカ、(沈降性)硫酸バリウム、(カリ)長石が好ましい。
 本組成物が体質顔料を含有する場合、該体質顔料の含有量は、本組成物の不揮発分100質量%に対し、好ましくは5質量%以上、より好ましくは10質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下である。
 前記着色顔料としては、例えば、カーボンブラック、二酸化チタン(チタン白)、酸化鉄(弁柄)、黄色酸化鉄、群青等の無機顔料、シアニンブルー、シアニングリーン等の有機顔料が挙げられる。特に、チタン白、カーボンブラック、弁柄が好ましい。
 本組成物が着色顔料を含有する場合、該着色顔料の含有量は、本組成物の不揮発分100質量%に対し、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下である。
 前記防錆顔料としては、例えば、亜鉛粉末、亜鉛合金粉末、リン酸亜鉛系化合物、リン酸カルシウム系化合物、リン酸アルミニウム系化合物、リン酸マグネシウム系化合物、亜リン酸亜鉛系化合物、亜リン酸カルシウム系化合物、亜リン酸アルミニウム系化合物、亜リン酸ストロンチウム系化合物、トリポリリン酸アルミニウム系化合物、モリブデン酸塩系化合物、シアナミド亜鉛系化合物、ホウ酸塩化合物、ニトロ化合物、複合酸化物が挙げられる。
 本組成物が顔料を含有する場合、本組成物中の顔料体積濃度(PVC)は、塗装作業性に優れる組成物を容易に得ることができ、応力緩和による基材との付着性および防食性に優れる塗膜を容易に得ることができる等の点から、好ましくは10%以上、より好ましくは20%以上であり、好ましくは60%以下、より好ましくは50%以下である。
 前記PVCは、本組成物中の不揮発分の体積に対する、顔料の合計の体積濃度のことをいう。なお、PVCを算出する場合の顔料には、アルミニウム(C)およびその他の成分における顔料が含まれる。PVCは、具体的には下記式より求めることができる。
  PVC[%]=本組成物中の全ての顔料の体積合計×100/本組成物中の不揮発分の体積
 なお、本明細書において、本組成物の不揮発分は、JIS K 5601-1-2(加熱温度:125℃、加熱時間:60分)に従って得られる加熱残分を意味する。また、本組成物の不揮発分は、用いる原料における溶媒および前記有機溶剤を除いた量として算出することもできる。
 また、本組成物、主剤成分または硬化剤成分を構成する原料となる各成分中(エポキシ樹脂(A)など)、主剤成分中、硬化剤成分中の溶媒以外の成分を「固形分」という。
 前記本組成物中の不揮発分の体積は、本組成物の不揮発分の質量および真密度から算出することができる。前記不揮発分の質量および真密度は、測定値でも、用いる原料から算出した値でも構わない。
 前記顔料の体積は、用いた顔料の質量および真密度から算出することができる。前記顔料の質量および真密度は、測定値でも、用いる原料から算出した値でも構わない。例えば、本組成物の不揮発分より顔料と他の成分とを分離し、分離された顔料の質量および真密度を測定することで算出することができる。
[タレ止め剤・沈降防止剤(揺変剤)]
 前記タレ止め・沈降防止剤(揺変剤)は特に制限されないが、本組成物中の顔料等の沈降を抑制し、その貯蔵安定性を向上させることができる材料、または、塗装時や塗装後の本組成物のタレ止め性を向上させることができる材料であることが好ましい。
 前記タレ止め剤・沈降防止剤としては、Al、Ca、Znのステアレート塩、レシチン塩、アルキルスルホン酸塩などの有機粘土系ワックス、ポリエチレンワックス、アマイドワックス、水添ヒマシ油ワックス、水添ヒマシ油ワックスおよびアマイドワックスの混合物、合成微粉シリカ、酸化ポリエチレン系ワックス等、従来公知のものを使用できるが、中でも、アマイドワックス、合成微粉シリカ、酸化ポリエチレン系ワックスおよび有機粘土系ワックスが好ましい。
 このようなタレ止め剤・沈降防止剤は、市販品でもよい。該市販品としては、例えば、楠本化成(株)製の「Disparlon 305」、「Disparlon 4200-20」、「Disparlon 6650」;伊藤精油(株)製の「A-S-A T-250F」;共栄社化学(株)製の「フローノンRCM-300」;Elementis Specialties, Inc社製の「ベントンSD-2」、シリカ系揺変剤である「Aerosil R972」(日本アエロジル(株)製)が挙げられる。
 本組成物がタレ止め剤・沈降防止剤を含有する場合、該タレ止め剤(沈降防止剤)の含有量は、本組成物の不揮発分100質量%に対し、好ましくは0.1~10質量%である。
[有機溶剤]
 有機溶剤としては特に限定されないが、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン系溶剤、ブチルセロソルブ等のエーテル系溶剤、酢酸ブチル等のエステル系溶剤、イソプロパノール、イソブチルアルコール、n-ブタノール、プロピレングリコールモノメチルエーテル(PGM)等のアルコール系溶剤、ミネラルスピリット、n-ヘキサン、n-オクタン、2,2,2-トリメチルペンタン、イソオクタン、n-ノナン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤が挙げられる。
 本組成物が有機溶剤を含有する場合、本組成物中の不揮発分の含有量に対し、好ましくは10質量%以上、より好ましくは20質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下となる量で有機溶剤を用いることが望ましい。
 本組成物のVOC(揮発性有機成分)の含有量は、環境や人体への影響が少ない組成物となる等の点から、好ましくは700g/L以下、より好ましくは600g/L以下、特に好ましくは500g/L以下である。
 本組成物のVOC含有量は、下記塗料比重および本組成物の不揮発分を用い、下記式(1)から算出することができる。
 VOC含量(g/L)=塗料比重×1000×(100-本組成物の不揮発分)/100 ・・・(1)
 塗料比重(g/cm3):23℃の温度条件下で、本組成物(例:主剤成分と硬化剤成分とを混合した直後の組成物)を内容積100mlの比重カップに充満し、該組成物の質量を計量することで算出される値
≪塗膜および塗膜付き基材≫
 本発明の一実施形態に係る塗膜(以下「本塗膜」ともいう。)は、前述した本組成物より形成され、本発明の一実施形態に係る塗膜付き基材は、本塗膜と基材とを含む積層体である。本塗膜の好適例は、耐熱塗膜である。
 前記基材としては特に制限されず、例えば、鉄鋼(鉄、鋼、合金鉄、炭素鋼、合金鋼等)、非鉄金属(ステンレス、アルミニウム、亜鉛メッキ、真鍮、黄銅等)からなる金属基材、および表面がショッププライマー等で被覆された金属基材が挙げられる。また、前記基材としては、プラント構造物、陸上構造物、海洋構造物、船舶等が挙げられるが、本発明の効果がより発揮される等の点から、好ましくは、船舶の蒸気パイプ、石油精製や化学プラント等に用いられる配管、工業用配管(例:保温材等で覆われた工業用配管)であり、中でも船舶の蒸気パイプがより好ましい。
 本塗膜の膜厚は特に制限されないが、好ましくは30~400μm、より好ましくは30~300μmであり、この膜厚は1回の塗装で形成された単層膜であっても、複数回塗りにより形成された複層膜であってもよい。特に、基材が、鉄鋼(鉄、鋼、合金鉄、炭素鋼、合金鋼等)製である場合は、長期防食性の観点から、本塗膜の膜厚は、100μm以上であることが好ましい。
 本組成物を用いるため、このような膜厚の塗膜を基材上に形成しても、該塗膜に膨れやクラックが発生し難く、特に、200℃程度の高温に曝された場合でも、膨れやクラックが発生し難いため、長期にわたって基材を防食することができる。
 本塗膜は、前述した本組成物より形成され、具体的には、下記工程[1]および[2]を含む工程を経ることで、製造することができる。
 [1]基材に、本組成物を塗装する工程
 [2]基材上に塗装された本組成物を乾燥させて塗膜を形成する工程
<工程[1]>
 本組成物を基材上に塗装する方法としては特に制限されず、従来公知の方法を制限なく使用可能であり、通常用いられるエアレススプレー塗装、エアスプレー塗装、刷毛塗り、ローラー塗装等が好ましい。作業性や生産性等に優れ、大面積の基材に対して容易に塗装でき、本発明の効果をより発揮できる等の点から、スプレー塗装が好ましい。
 なお、本組成物が2成分型の組成物である場合、塗装直前に主剤成分と硬化剤成分とを混合し、スプレー塗装などを行うことが好ましい。
 前記スプレー塗装の条件は、形成したい塗膜の厚さに応じて適宜調整すればよいが、例えばエアレススプレーの場合、1次(空気)圧:0.4~0.8MPa程度、2次(塗料)圧:10~26MPa程度、ガン移動速度:50~120cm/秒程度に塗装条件を設定すればよい。
 この際に使用される本組成物の粘度は、B型粘度計(「TVB-10M」、東機産業(株)製)で測定した場合、23℃で1.8~2.5Pa・s程度であることが好ましい。このような粘度の本組成物とするために、シンナー等を用いて、本組成物の粘度を調整してもよい。
 前記シンナーとしては、本組成物中の成分を溶解または分散可能な有機溶剤であることが好ましく、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ミネラルスピリット、シクロヘキサン等の脂肪族炭化水素系溶剤、n-ブタノール、イソプロパノール等のアルコール系溶剤が挙げられる。用いるシンナーは、1種でもよく、2種以上でもよい。
 本組成物を基材上に塗装するに際し、基材上の錆、油脂、水分、塵埃、塩分等を除去するため、また、得られる塗膜の基材との付着性を向上させるために、必要により前記基材表面を処理(例えば、ブラスト処理(ISO8501-1 Sa2 1/2)、脱脂による油分、粉塵を除去する処理)等することが好ましい。また、前記基材には、1次防錆を目的として、ショッププライマー等を塗装してもよい。
<工程[2]>
 本組成物は、常温で乾燥・硬化可能であり、このように、常温で乾燥・硬化させても、耐熱性および防食性に優れる塗膜を得ることができる。また、所望により、乾燥時間の短縮のため、加熱下で乾燥させてもよい。
 前記乾燥条件としては特に制限されず、本組成物、基材、塗装場所等に応じて、適宜設定すればよいが、乾燥温度が、好ましくは5~40℃、より好ましくは10~30℃であり、乾燥時間が、好ましくは18時間~14日、より好ましくは24時間~7日である。
 前記膜厚の塗膜を形成する方法としては、1回の塗装で前記所望膜厚の塗膜を形成してもよいし、2回以上の塗装(複数回塗り)で前記所望膜厚の塗膜を形成してもよい。膜厚管理の観点、および、塗膜中の残留溶剤を考慮すると、2回以上の塗装で所望膜厚の塗膜を形成することが好ましい。
 なお、2回の塗装(2回塗り)とは、工程[1]および[2]を行った後、得られた塗膜上に、工程[1]および[2]を行う方法のことをいい、3回以上の塗装は、さらに、一連の工程を繰り返す方法のことをいう。
 2回以上の塗装による塗膜形成を行う場合、例えば1回目に塗装を行う塗料・塗膜の色相と、次に塗装を行う塗料・塗膜の色相は異なることが好ましい。これは、塗装作業において、塗り忘れや膜厚不足などの判断を容易にするための措置である。また最終的な外面の色相を指定の色相に仕上げるために上塗り塗装を行ってもよい。
 以下、実施例により本発明をさらに説明するが、本発明はこれらによって制限されない。
[実施例1~16および比較例1~10]
 容器に、表1~3の主剤成分の欄に記載の各材料を各欄に記載の数値(質量部)で配合し、ハイスピードディスパーを用いて室温で均一になるまで撹拌し、さらに50℃になるまで分散させた。その後、30℃以下まで冷却することで、塗料組成物の主剤成分を調製した。
 また、容器に、表1~3の硬化剤成分の欄に記載の各材料を各欄に記載の数値(質量部)で配合し、ハイスピードディスパーを用い、常温、常圧下でこれらの成分を混合することで、硬化剤成分を調製した。
 これらの主剤成分と硬化剤成分とを、表1~3に記載の混合比で塗装前に混合することで塗料組成物を調製した。
 表1~3に記載の各成分の説明を表4に示す。なお、表4中の各成分の固形分(質量%)は、メーカーカタログ値である。
[試験板の作製]
 前述のようにして調製した各塗料組成物をエポキシ用シンナーA(中国塗料(株)製)を用いて10質量%希釈(塗料組成物100gに対してシンナーを10g)した。
 寸法が150mm×70mm×2.3mm(厚)のSS400のサンドブラスト鋼板(算術平均粗さ(Ra):30~75μm)の表面に、希釈後の組成物を隙間500μmのフィルムアプリケーターを用いて乾燥膜厚が150μmとなるように塗装した(1回目の塗装)。その後、鋼板上に塗装した塗料組成物を室温(23℃)で24時間乾燥させた。
 次いで、乾燥後の塗膜(1層目の塗膜)上に、前記希釈後の組成物を隙間500μmのフィルムアプリケーターを用いて乾燥膜厚が150μmとなるように塗装(2回目の塗装)し、室温(23℃)で3日間乾燥させることで、鋼板上に、1層目の塗膜および2層目の塗膜がこの順で積層された試験板(塗膜付き基材)を作製した。
 作製した試験板を用いて以下の層間密着性、耐熱性(高温暴露後の塗膜状態)および耐熱性(耐変色性)の試験を行った。結果を表1~3に示す。
<層間密着性>
 JIS K 5600-5-6:1999で規定されているクロスカット法に準拠して、前記1層目の塗膜と2層目の塗膜との層間密着性を評価した。
 なお、切込みを入れる際には、試験板の2層目の塗膜側から1層目の塗膜に達する切込みを入れた。
<耐熱性(高温暴露後の塗膜状態)>
 前記のように作製した試験板を200℃で6時間加熱し、その後室温に戻した。室温に戻した後の塗膜表面の状態をASTM D714-87に基づいて評価した。
 評価は、「フクレの大きさ」を表す数値と、「フクレの発生密度」を表す記号の組み合わせにより示す。「フクレの大きさ」は、フクレが大きい順に2、4、6、8の数値で表し、10は全くフクレが無い状態である。「フクレの発生密度」は、密度が高い順に、D、MD、M、Fの記号で表す。
<耐熱性(耐変色性)>
 JIS K 5600-4-5:1999に準拠し、分光色彩計(型式CM-3700A、コニカミノルタジャパン(株)製)を用いて、前記のように作製した試験板上の塗膜表面のL*、a*およびb*を測定し、また、前記のように作製した試験板を200℃で6時間加熱し、次いで、室温に戻した後の試験板上の塗膜表面のL*、a*およびb*を測定し、JIS K 5600-4-6:1999に準拠して、高温暴露前後の塗膜表面の色差ΔEを算出した。
 なお、表2~3における変色低減率は、それぞれ対応する比較例のΔEに対する実施例のΔEの比の百分率である。例えば、実施例5および6の変色低減率は、比較例3のΔEに対する実施例5または6のΔEの比の百分率であり、実施例7および8の変色低減率は、比較例4のΔEに対する実施例7または8のΔEの比の百分率である。
<ガラス転移温度(Tg)測定>
 前述のようにして調製した各塗料組成物をエポキシ用シンナーA(中国塗料(株)製)を用いて10質量%希釈(塗料組成物100gに対してシンナーを10g)した。希釈後の組成物を隙間500μmのフィルムアプリケーターを用いて乾燥膜厚が150μmとなるように、離型紙上に塗装した。その後、塗装した塗料組成物を室温で7日間乾燥させ、離型紙から離した塗膜を直径3.5mmの円形に切り抜いた。該切り抜いた塗膜を用い、DSC Q2000(TA Instruments Japan Inc.製)を用いて、-50℃から毎分20℃ずつ昇温し、150℃まで昇温した。その後、-50℃まで冷却し、さらに前記と同様に、-50℃から毎分20℃ずつ昇温し、150℃まで昇温した際のDSC曲線からTgを求めた。結果を表1に示す。
 一般的にTgが高いほど耐熱性に優れることが知られている。
<質量減少率測定>
 前述のようにして調製した各塗料組成物をエポキシ用シンナーA(中国塗料(株)製)を用いて10質量%希釈(塗料組成物100gに対してシンナーを10g)した。希釈後の組成物を隙間500μmのフィルムアプリケーターを用いて乾燥膜厚が150μmとなるように、離型紙上に塗装した。その後、塗装した塗料組成物を室温で7日間乾燥させ、離型紙から離した塗膜を直径3.5mmに切り抜いた。該切り抜いた塗膜を用い、STA7300((株)日立ハイテクサイエンス製)を用いて、30℃から毎分10℃ずつ昇温し、1,000℃まで昇温した際の、250℃時点での塗膜の質量減少率[(昇温前の塗膜の質量-250℃時点での塗膜の質量)×100/昇温前の塗膜の質量]を測定した。結果を表1に示す。
 一般的に塗膜質量減少率が低いほど耐熱性に優れることが知られている。
<防食性試験>
[試験板の作製]
 前述のようにして調製した各塗料組成物をエポキシ用シンナーA(中国塗料(株)製)を用いて10質量%希釈(塗料組成物100gに対してシンナーを10g)した。寸法が150mm×70mm×0.8mm(厚)のSSPC-SBの冷間圧延鋼板(JIS G 3141)の表面に、前記希釈後の組成物をエアスプレーを用いて乾燥膜厚が100μmとなるように塗装した(1回目の塗装)。その後、鋼板上に塗装した塗料組成物を室温(23℃)で24時間乾燥させた。次いで、乾燥後の塗膜上に、前記希釈後の組成物をエアスプレーを用いて乾燥膜厚が100μmとなるように塗装した(2回目の塗装)。その後、室温(23℃)で7日間乾燥させて防食性評価用の各試験板を作製した。
 図1に示すように、得られた防食性評価用の各試験板1の長辺の両端から10mmずつ、短辺の両端のどちらかの一方から20mmの位置に、長さが50mmになるように基材鋼板の表面に届くまでカット2を入れた。
 前記のようにカットを入れた試験板を200℃で6時間加熱し、その後室温で18時間静置し、その後塩水噴霧機(JIS K 5600-7-1準拠)に144時間入れる条件を1サイクルとした。このサイクルを合計8サイクル(1,344時間)行った後、前記切れ込みから、塗膜が鋼板から剥離した部分までの最大の長さが20mm以内の場合を合格(AA)、該最大の長さが20mmを超える場合を不合格(DD)とした。結果を表1に示す。
 実施例1~3および5~16で得られた塗料組成物から形成された塗膜は、実施例4と同様の防食性を示すと考えられる。また、実施例4と比較例2との対比と同様に、これら実施例は、対応する比較例に対して、ガラス転移温度(Tg)が高く、かつ、質量減少率が小さいと考えられる。
 比較例1および3~10で得られた塗料組成物から形成された塗膜は、比較例2と同様の防食性を示すと考えられる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 1:試験板(防食性評価用の試験板)
 2:カット

Claims (6)

  1.  エポキシ樹脂(A)と、シリコーン樹脂(B)と、アルミニウム(C)と、アミン系硬化剤(D)とを含有する塗料組成物。
  2.  さらに、シランカップリング剤を含む、請求項1に記載の塗料組成物。
  3.  耐熱塗料組成物である、請求項1または2に記載の塗料組成物。
  4.  請求項1~3の何れか1項に記載の塗料組成物から形成された塗膜。
  5.  基材と請求項4に記載の塗膜とを含む塗膜付き基材。
  6.  下記工程[1]および[2]を含む、塗膜付き基材の製造方法。
     [1]基材に、請求項1~3の何れか1項に記載の塗料組成物を塗装する工程
     [2]基材上に塗装された塗料組成物を乾燥させて塗膜を形成する工程
PCT/JP2021/030737 2020-08-28 2021-08-23 塗料組成物、塗膜、塗膜付き基材およびその製造方法 WO2022045045A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/042,308 US20230348751A1 (en) 2020-08-28 2021-08-23 Coating composition, coating film, substrate with coating film, and method for producing the same
KR1020237010370A KR20230054883A (ko) 2020-08-28 2021-08-23 도료 조성물, 도막, 도막 부착 기재 및 그의 제조방법
EP21861471.7A EP4205867A1 (en) 2020-08-28 2021-08-23 Paint composition, coating film, base material with coating film, and method for manufacturing same
JP2022544574A JPWO2022045045A1 (ja) 2020-08-28 2021-08-23
CN202180053053.8A CN115989091A (zh) 2020-08-28 2021-08-23 涂料组合物、涂膜、具有涂膜的基材及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020144927 2020-08-28
JP2020-144927 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022045045A1 true WO2022045045A1 (ja) 2022-03-03

Family

ID=80353257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030737 WO2022045045A1 (ja) 2020-08-28 2021-08-23 塗料組成物、塗膜、塗膜付き基材およびその製造方法

Country Status (6)

Country Link
US (1) US20230348751A1 (ja)
EP (1) EP4205867A1 (ja)
JP (1) JPWO2022045045A1 (ja)
KR (1) KR20230054883A (ja)
CN (1) CN115989091A (ja)
WO (1) WO2022045045A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111926A1 (ko) * 2022-11-22 2024-05-30 주식회사 케이씨씨 분체 도료 조성물

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS473709B1 (ja) * 1967-09-26 1972-02-01
JPS6323975A (ja) * 1986-07-16 1988-02-01 Kansai Paint Co Ltd 耐熱性塗料組成物
JPS6440572A (en) * 1987-08-05 1989-02-10 Nitto Denko Corp Epoxy resin coating composition with suppressed foaming
JPH10259351A (ja) 1997-01-17 1998-09-29 Chugoku Marine Paints Ltd 非タール系エポキシ樹脂塗料組成物およびそれから形成された重防食塗膜
JPH11343454A (ja) 1998-05-29 1999-12-14 Chugoku Marine Paints Ltd 防食塗料組成物、塗膜、防食方法および船舶バラストタンク
JP2000256584A (ja) * 1999-03-11 2000-09-19 Sumitomo Durez Co Ltd 不燃性エポキシ樹脂粉体塗料
JP2008038016A (ja) * 2006-08-07 2008-02-21 Petroleum Energy Center 防食塗料およびこれを塗布した金属材料
CN104974562A (zh) * 2015-07-08 2015-10-14 安庆联泰电子科技有限公司 一种环保型耐高温隔热保温涂料
CN107513348A (zh) * 2017-09-27 2017-12-26 东北大学 一种埋地钢构件用防腐蚀涂料及其制备方法与应用
CN107746653A (zh) * 2017-10-25 2018-03-02 佛山杰致信息科技有限公司 一种变压器用耐高温涂料及其制备方法
JP2019006982A (ja) 2017-06-23 2019-01-17 中国塗料株式会社 耐熱塗料組成物、耐熱塗膜、耐熱塗膜付き基材およびその製造方法
JP2020084138A (ja) * 2018-11-30 2020-06-04 中国塗料株式会社 塗料組成物
JP2020084003A (ja) * 2018-11-22 2020-06-04 中国塗料株式会社 防食塗料組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931301B2 (ja) * 2001-08-23 2012-05-16 東洋アルミニウム株式会社 アルミニウム顔料組成物の製造方法
JP2006206910A (ja) * 2003-08-28 2006-08-10 Yushi Seihin Kk 高温貼り付け可能な耐熱ラベル
JP5015591B2 (ja) * 2004-04-14 2012-08-29 ナミックス株式会社 エポキシ樹脂組成物
CN101451030B (zh) * 2008-11-26 2011-12-07 北京航空航天大学 一种水性纳米铝粉涂料及其制备方法
WO2012074617A2 (en) * 2010-10-20 2012-06-07 Valspar Sourcing, Inc. Water-based coating system with improved moisture and heat resistance

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS473709B1 (ja) * 1967-09-26 1972-02-01
JPS6323975A (ja) * 1986-07-16 1988-02-01 Kansai Paint Co Ltd 耐熱性塗料組成物
JPS6440572A (en) * 1987-08-05 1989-02-10 Nitto Denko Corp Epoxy resin coating composition with suppressed foaming
JPH10259351A (ja) 1997-01-17 1998-09-29 Chugoku Marine Paints Ltd 非タール系エポキシ樹脂塗料組成物およびそれから形成された重防食塗膜
JPH11343454A (ja) 1998-05-29 1999-12-14 Chugoku Marine Paints Ltd 防食塗料組成物、塗膜、防食方法および船舶バラストタンク
JP2000256584A (ja) * 1999-03-11 2000-09-19 Sumitomo Durez Co Ltd 不燃性エポキシ樹脂粉体塗料
JP2008038016A (ja) * 2006-08-07 2008-02-21 Petroleum Energy Center 防食塗料およびこれを塗布した金属材料
CN104974562A (zh) * 2015-07-08 2015-10-14 安庆联泰电子科技有限公司 一种环保型耐高温隔热保温涂料
JP2019006982A (ja) 2017-06-23 2019-01-17 中国塗料株式会社 耐熱塗料組成物、耐熱塗膜、耐熱塗膜付き基材およびその製造方法
CN107513348A (zh) * 2017-09-27 2017-12-26 东北大学 一种埋地钢构件用防腐蚀涂料及其制备方法与应用
CN107746653A (zh) * 2017-10-25 2018-03-02 佛山杰致信息科技有限公司 一种变压器用耐高温涂料及其制备方法
JP2020084003A (ja) * 2018-11-22 2020-06-04 中国塗料株式会社 防食塗料組成物
JP2020084138A (ja) * 2018-11-30 2020-06-04 中国塗料株式会社 塗料組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111926A1 (ko) * 2022-11-22 2024-05-30 주식회사 케이씨씨 분체 도료 조성물

Also Published As

Publication number Publication date
CN115989091A (zh) 2023-04-18
US20230348751A1 (en) 2023-11-02
JPWO2022045045A1 (ja) 2022-03-03
EP4205867A1 (en) 2023-07-05
KR20230054883A (ko) 2023-04-25

Similar Documents

Publication Publication Date Title
JP6033399B2 (ja) 防食塗料組成物、防食塗膜および基材の防食方法
TWI518149B (zh) 防蝕塗料組成物、防蝕塗膜及基材之防蝕方法
JP7189298B2 (ja) 低voc防食塗料組成物、防食塗膜、塗膜付き基材および塗膜付き基材の製造方法
JPWO2014136752A6 (ja) 防食塗料組成物、防食塗膜および基材の防食方法
JP2010024408A (ja) 防食塗料組成物およびこれを用いた複層塗膜、ならびに、複層塗膜を備える船舶および海洋構造物
JP7141317B2 (ja) 防食塗料組成物
JP7128683B2 (ja) 塗料組成物、塗膜、塗膜付き基材および塗膜付き基材の製造方法
WO2022045045A1 (ja) 塗料組成物、塗膜、塗膜付き基材およびその製造方法
JP6364693B2 (ja) 防食塗料組成物
JP7478002B2 (ja) 防食塗料組成物
JP7429795B2 (ja) 低voc塗料組成物、塗膜および塗膜付き基材ならびにこれらの製造方法
JP7309029B1 (ja) 防食塗料組成物、防食塗膜および防食塗膜の製造方法
JP6703831B2 (ja) 目標膜厚の塗膜の製造方法、塗料組成物、塗膜、塗膜付き基材および膜厚の検査方法
JP7496241B2 (ja) 防食塗料組成物
WO2024143163A1 (ja) 防食塗料組成物、防食塗膜および防食塗膜の製造方法
JP6832122B2 (ja) 二液混合形塗料組成物
JP2024095095A (ja) 防食塗料組成物、防食塗膜および防食塗膜の製造方法
JP2022154829A (ja) 防食塗料組成物の製造方法
KR20240107100A (ko) 방식도료 조성물, 방식도막 및 방식도막의 제조방법
JP2021085013A (ja) エポキシ樹脂系塗料組成物、積層塗膜および塗膜の補修方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544574

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010370

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861471

Country of ref document: EP

Effective date: 20230328