WO2022044907A1 - Light-emitting composite particles and light-emitting composite particle composition - Google Patents

Light-emitting composite particles and light-emitting composite particle composition Download PDF

Info

Publication number
WO2022044907A1
WO2022044907A1 PCT/JP2021/030149 JP2021030149W WO2022044907A1 WO 2022044907 A1 WO2022044907 A1 WO 2022044907A1 JP 2021030149 W JP2021030149 W JP 2021030149W WO 2022044907 A1 WO2022044907 A1 WO 2022044907A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
luminescent composite
perovskite compound
particles
Prior art date
Application number
PCT/JP2021/030149
Other languages
French (fr)
Japanese (ja)
Inventor
瑞穂 杉内
翔太 内藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202180052840.0A priority Critical patent/CN115989193A/en
Publication of WO2022044907A1 publication Critical patent/WO2022044907A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/16Halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to particles of a semiconductor compound having light emission, and particularly to particles of a perovskite type semiconductor compound having light emission.
  • a perovskite-type semiconductor compound (hereinafter referred to as "perovskite compound”) is a luminescent semiconductor compound having a high quantum yield, and is attracting attention as a luminescent material.
  • Patent Document 1 describes a luminescent film using a perovskite compound as a luminescent material.
  • the luminescent film of Patent Document 1 has a sea-island structure in which luminescent perovskite compound particles have an island portion which is a particle contained in a silazane modifier and a sea portion which is a polymer.
  • the luminescent film of Patent Document 1 is a luminescent material having excellent durability against water vapor.
  • the luminescent film of Patent Document 1 tends to be deteriorated by irradiation with excitation light, and the luminance maintenance rate (maintenance rate of quantum yield ⁇ maintenance rate of absorption rate) tends to decrease. .. Therefore, the luminescent film of Patent Document 1 still has room for improvement in terms of light resistance.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a luminescent particle material containing a perovskite compound, which has excellent light resistance.
  • the present invention Perovskite-type crystal structure containing A, B, and X as constituents
  • A is a component located at each vertex of a hexahedron centered on B, and is a monovalent cation.
  • B is a component located at the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex, and is a metal ion.
  • X is a component located at each vertex of the octahedron centered on B, and is at least one kind of anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • a luminescent composite particle having a perovskite compound particle having luminescence and a silicon compound layer formed on at least a part of the surface of the perovskite compound particle, and having an average particle size of 1 to 100 nm. Provides composite particles.
  • the silicon compound layer is a layer composed of at least one selected from the group consisting of a hydrolyzable silicon compound and a condensate thereof.
  • the luminescent perovskite compound particles have a primary particle diameter of 1-80 nm.
  • the present invention also provides a luminescent composite particle composition containing any of the above luminescent composite particles and at least one selected from the group consisting of a dispersion medium, a polymerizable compound and a polymer.
  • the present invention also provides a film containing any of the above-mentioned luminescent composite particles.
  • the present invention also provides a laminated structure containing the film.
  • the present invention also provides a light emitting device provided with the laminated structure.
  • the present invention also provides a display provided with the laminated structure.
  • the present invention also provides a scintillator containing any of the above-mentioned luminescent composite particles.
  • the present invention it is possible to provide a luminescent particle material containing a perovskite compound, which has excellent light resistance.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the luminescent composite particle of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the luminescent composite particle composition of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the structure of an X-ray detector including the scintillator of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the luminescent composite particles of the present invention.
  • the luminescent composite particle 100 has a perovskite compound particle 10 and a silicon compound layer 20 formed on the surface thereof. It is sufficient that the silicon compound layer 20 is formed on at least a part of the surface of the perovskite compound particles 10.
  • the perovskite compound particle 10 is a compound having a perovskite-type crystal structure containing A, B, and X as constituents (A, B, and X have the same meanings as described above, hereinafter referred to as “perovskite compound (1)”. It is a particle consisting of.).
  • the structure of the perovskite compound (1) may be any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional (quasi-2D) structure.
  • the composition formula of the perovskite compound (1) is represented by ABX (3 + ⁇ ) .
  • the composition formula of the perovskite compound (1) is represented by A 2 BX (4 + ⁇ ) .
  • is a number that can be appropriately changed according to the charge balance of B, and is ⁇ 0.7 or more and 0.7 or less.
  • A is a monovalent cation
  • B is a divalent cation
  • X is a monovalent anion
  • can be selected so that the perovskite compound (1) is electrically neutral.
  • the fact that the perovskite compound (1) is electrically neutral means that the charge of the perovskite compound (1) is zero.
  • the perovskite compound (1) contains an octahedron centered on B and having an apex X.
  • the octahedron is represented by BX 6 .
  • the BX 6 contained in the perovskite compound (1) has one X located at the apex of the octahedron (BX 6 ) and two octahedrons adjacent to each other in the crystal. By sharing with (BX 6 ), a three-dimensional network is configured.
  • the BX 6 contained in the perovskite compound (1) has two Xs located at the vertices of the octahedron (BX 6 ) and two octahedrons adjacent to each other in the crystal. By sharing with (BX 6 ), the ridgeline of the octahedron is shared to form a two-dimensionally connected layer.
  • the perovskite compound (1) has a structure in which a layer made of BX 6 and a layer made of A, which are two-dimensionally connected, are alternately laminated.
  • the perovskite compound (1) preferably has a three-dimensional structure.
  • a constituting the perovskite compound (1) is a monovalent cation.
  • Examples of A include cesium ion, organic ammonium ion, and amidinium ion.
  • organic ammonium ion Specific examples of the organic ammonium ion of A include a cation represented by the following formula (A3).
  • R 6 to R 9 independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group. However, at least one of R 6 to R 9 is an alkyl group or a cycloalkyl group, and not all of R 6 to R 9 become hydrogen atoms at the same time.
  • the alkyl group represented by R 6 to R 9 may be linear or branched. Further, the alkyl groups represented by R 6 to R 9 may independently have an amino group as a substituent.
  • the number of carbon atoms of the alkyl groups represented by R 6 to R 9 is usually 1 to 20, preferably 1 to 4, more preferably 1 to 3, and 1 respectively. Is even more preferable.
  • the cycloalkyl groups represented by R 6 to R 9 may independently have an amino group as a substituent.
  • the number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, respectively.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the groups represented by R 6 to R 9 are preferably hydrogen atoms or alkyl groups independently of each other.
  • the perovskite compound (1) contains an organic ammonium ion represented by the above formula (A3) as A
  • the number of alkyl groups and cycloalkyl groups that can be contained in the formula (A3) is preferably small. Further, the number of carbon atoms of the alkyl group and the cycloalkyl group that can be contained in the formula (A3) is preferably small. This makes it possible to obtain a perovskite compound (1) having a three-dimensional structure having high emission intensity.
  • the total number of carbon atoms contained in the alkyl group represented by R 6 to R 9 and the cycloalkyl group is preferably 1 to 4. Further, in the organic ammonium ion represented by the formula (A3), one of R 6 to R 9 is an alkyl group having 1 to 3 carbon atoms, and three of R 6 to R 9 are hydrogen atoms. It is more preferable to have.
  • the alkyl groups of R 6 to R 9 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and isopentyl group.
  • Examples of the cycloalkyl groups of R 6 to R 9 include those obtained by independently forming a ring of alkyl groups having 3 or more carbon atoms exemplified by the alkyl groups of R 6 to R 9 .
  • Etc. can be exemplified.
  • Organic ammonium ions represented by A include CH 3 NH 3+ (also referred to as methylammonium ion) , C2H 5 NH 3+ (also referred to as ethylammonium ion) or C3 H7 NH 3+ (propyl) . It is also preferably ammonium ion), more preferably methylammonium ion or ethylammonium ion, and even more preferably methylammonium ion.
  • amidinium ion examples include the amidinium ion represented by the following formula (A4).
  • R 10 to R 13 each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
  • the alkyl groups represented by R 10 to R 13 may be independently linear or branched. Further, the alkyl groups represented by R 10 to R 13 may independently have an amino group as a substituent.
  • the number of carbon atoms of the alkyl groups represented by R 10 to R 13 is usually 1 to 20 independently, preferably 1 to 4, and more preferably 1 to 3.
  • the cycloalkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
  • the number of carbon atoms of the cycloalkyl group represented by R 10 to R 13 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, respectively.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • alkyl groups of R 10 to R 13 include the same groups as the alkyl groups exemplified in R 6 to R 9 , respectively.
  • cycloalkyl groups of R 10 to R 13 include the same groups as the cycloalkyl groups exemplified in R 6 to R 9 , respectively.
  • a hydrogen atom or an alkyl group is preferable independently.
  • the perovskite compound (1) having a three-dimensional structure with high emission intensity can be obtained.
  • the total number of carbon atoms contained in the alkyl group represented by R 10 to R 13 and the cycloalkyl group is preferably 1 to 4, and R 10 is an alkyl group having 1 carbon atom. It is more preferable that R 11 to R 13 are hydrogen atoms.
  • the perovskite compound (1) when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound (1) generally has a three-dimensional structure. Have.
  • the perovskite compound (1) when A is an organic ammonium ion having 4 or more carbon atoms or an amidinium ion having 4 or more carbon atoms, the perovskite compound (1) has a two-dimensional structure and a pseudo two-dimensional (quasi-). 2D) Has one or both of the structures.
  • the perovskite compound (1) can have a two-dimensional structure or a pseudo two-dimensional structure in a part or the whole of the crystal.
  • a plurality of two-dimensional perovskite-type crystal structures are laminated, they become equivalent to a three-dimensional perovskite-type crystal structure (references: P. PBoix et al., J. Phys. Chem. Lett. 2015, 6, 898-907, etc.).
  • perovskite compound (1) only one type of A may be used, or two or more types may be used in combination.
  • Component B constituting the perovskite compound (1) may be one or more kinds of metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions.
  • B preferably contains a divalent metal ion, more preferably one or more metal ions selected from the group consisting of lead ion, tin ion, antimony ion, bismuth ion, and indium ion, and more preferably lead ion or tin ion. Is more preferable, and lead ion is particularly preferable.
  • perovskite compound (1) only one type of B may be used, or two or more types may be used in combination.
  • Component X constituting the perovskite compound (1) may be at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • halide ion examples include chloride ion, bromide ion, fluoride ion, and iodide ion.
  • X is preferably a bromide ion.
  • perovskite compound (1) only one type of X may be used, or two or more types may be used in combination.
  • the content ratio of the halide ions can be appropriately selected depending on the emission wavelength.
  • it can be a combination of a bromide ion and a chloride ion, or a combination of a bromide ion and an iodide ion.
  • X can be appropriately selected according to the desired emission wavelength.
  • the perovskite compound (1) in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more.
  • the perovskite compound (1) in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of the emitted fluorescence is usually 480 to 700 nm, preferably 500 to 600 nm, and more preferably 520 to 580 nm.
  • the perovskite compound (1) in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more.
  • the perovskite compound (1) in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of the emitted fluorescence is usually 520 to 800 nm, preferably 530 to 750 nm, and more preferably 540 to 730 nm.
  • the perovskite compound (1) in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 300 nm or more, preferably 310 nm or more, more preferably 330 nm or more.
  • the perovskite compound (1) in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 600 nm or less, preferably 580 nm or less, more preferably 550 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of the emitted fluorescence is usually 300 to 600 nm, preferably 310 to 580 nm, and more preferably 330 to 550 nm.
  • Preferred examples of the perovskite compound (1) having a three-dimensional structure represented by ABX (3 + ⁇ ) are CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 3 , and CH 3 NH 3 PbBr ( CH 3 NH 3 PbBr 3).
  • Preferred examples of the perovskite compound (1) having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Ca a Br 3 (0 ⁇ a ⁇ 0.7) and CH 3 NH 3 Pb (1-a) Sr. a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ 0.7), CH 3 NH 3 Pb (1-a) Ba a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ) 0.7) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0). CH 3 NH 3 Pb (1-a) Li a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a three-dimensional structure include CsPb (1-a) Na a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0), CsPb (1- a). a) Li a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) can also be mentioned.
  • a preferred example of the perovskite compound (1) having a three-dimensional structure is CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ ). ⁇ 0,0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Li a Br (3 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ 0,0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ 0,0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Li a Br (3 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ 0,0 ⁇ y ⁇ 3) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a three-dimensional structure include CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0 ⁇ y ⁇ 3), and CsPbBr (3-y) Cly (0). ⁇ Y ⁇ 3) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br 3 (0 ⁇ a ⁇ 0.7) and CH 3 NH 3 Pb (1-a) Al. a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ⁇ 0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Mn a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Mg a Br 3 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a three-dimensional structure include CsPb (1-a) Zn a Br 3 (0 ⁇ a ⁇ 0.7), CsPb (1-a) Al a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ 0.7), CsPb (1-a) Co a Br 3 (0 ⁇ a ⁇ 0.7), CsPb (1-a) Mn a Br 3 (0 ⁇ a ⁇ ) 0.7), CsPb (1-a) Mg a Br 3 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • a preferred example of the perovskite compound (1) having a three-dimensional structure is CH 3 NH 3 Pb (1-a) Zn a Br (3-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3).
  • H 2 N CH-NH 2 ) PbBr 3 is more preferable.
  • Preferred examples of the perovskite compound (1) having a two-dimensional structure are (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1- a) Li a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ ) (0) ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ ) (0) ⁇ a ⁇
  • Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ). ⁇ ⁇ 0), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ ⁇ 0), (C 7 H 15 ) NH 3 ) 2 Pb (1-a) Rba a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ 0) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7,- 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rba a Br (4 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7,- 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4) can also be mentioned.
  • a preferred example of the perovskite compound (1) having a two-dimensional structure is (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7,- 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rba a Br (4 + ⁇ -y) Cly (0 ⁇ a ⁇ 0.7,- 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 PbBr 4 and (C 7 H 15 NH 3 ) 2 PbBr 4 .
  • Preferred examples of the two-dimensional structure perovskite compound (1) are (C 4 H 9 NH 3 ) 2 PbBr (4-y) Cly (0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 PbBr. (4-y) I y (0 ⁇ y ⁇ 4) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH). 3 ) 2 Pb (1-a) Mg a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 ⁇ a ⁇ 0.7) ), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 7 H 15 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH). 3 ) 2 Pb (1-a) Mg a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 ⁇ a ⁇ 0.7) ), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0). ⁇ Y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 ) H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1 ) -A ) Mn a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4) can also be mentioned.
  • a preferred example of the perovskite compound (1) having a two-dimensional structure is (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) Cly (0 ⁇ a ⁇ 0.7, 0). ⁇ Y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) Cly (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 ) H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) Cly (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1 ) -A ) Mn a Br (4-y) Cly (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4) can also be mentioned.
  • the primary particle size of the perovskite compound particles is the average particle size of the perobskite compound particles in the mixture of the perobskite compound particles composed of a plurality of perobskite compound particles, and the average particle size thereof is 1.0 to 1. It is preferably 80.0 nm or less. From the viewpoint that the luminescent composite particles can be stably dispersed in the dispersion medium, the average particle size of the perovskite compound particles is preferably 3.0 nm or more, more preferably 5.0 nm or more, and more preferably 10.0 nm or more. Is more preferable.
  • the average particle size of the perovskite compound particles is preferably 50.0 nm or less, more preferably 30.0 nm or less, and 20.0 nm or less. Is even more preferable.
  • the average particle size of the perovskite compound particles can be measured by observing with, for example, a transmission electron microscope (hereinafter, also referred to as TEM) or a scanning electron microscope (hereinafter, also referred to as SEM). Specifically, by TEM or SEM, the length of the longest side of cube-shaped or rectangular parallelepiped-shaped particles of 30 or more randomly selected perovskite compound particles is measured, and the arithmetic mean value of the measured values is calculated. By doing so, the average particle size can be obtained.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • Examples of the method for observing the perovskite compound particles include a method of observing the dispersion liquid composition containing the perovskite compound particles using SEM, TEM, or the like. Further, in the energy dispersive X-ray analysis (EDX) measurement using SEM or TEM, detailed element distribution can be analyzed. From the viewpoint of high spatial resolution, the method of observing with TEM is preferable.
  • EDX energy dispersive X-ray analysis
  • the silicon compound layer 20 is a layer composed of at least one compound selected from the group consisting of a hydrolyzable silicon compound and a condensate thereof.
  • the hydrolyzable silicon compound is a silicon compound having a hydrolyzable functional group, which is condensed to form a Si—O—Si bond.
  • Condensation means that a silicon compound having a Si—N bond, a Si—SR bond (R is a hydrogen atom or an organic group) or a Si—OR bond (R is a hydrogen atom or an organic group) is hydrolyzed and Si—O.
  • -It means that a silicon compound having a Si bond is produced.
  • the Si—O—Si bond may be formed by an intermolecular condensation reaction or an intramolecular condensation reaction.
  • hydrolyzable silicon compound examples include silazane and a hydrolyzable silane compound (hereinafter, these are referred to as "hydrolyzable silicon compound (2)").
  • Cilazan is a compound having a Si—N—Si bond. Cilazan may be linear, branched, or cyclic.
  • the shirazan may be a small molecule shirazan or a high molecular weight shirazan.
  • the polymer silazane may be referred to as polysilazane.
  • small molecule means that the number average molecular weight is less than 600.
  • polymer means that the number average molecular weight is 600 or more and 2000 or less.
  • number average molecular weight means a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
  • Small molecule silazan As the small molecule silazane, for example, disilazane represented by the following formula (B1) is preferable.
  • R 14 and R 15 are independently hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and a cycloalkyl having 3 to 20 carbon atoms. It represents a group, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 may have a substituent such as an amino group.
  • the plurality of R 15s may be the same or different.
  • Examples of the small molecule silazane represented by the formula (B1) include 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and 1,1,1. Examples thereof include 3,3,3-hexamethyldisilazane.
  • Small molecule silazane for example, a small molecule silazane represented by the following formula (B2) is also preferable.
  • R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).
  • the plurality of R 14s may be the same or different.
  • the plurality of R 15s may be the same or different.
  • n 1 represents an integer of 1 or more and 20 or less. n 1 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
  • octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable, and octamethylcyclotetrasilazane is more preferable.
  • polymer silazane As the polymer silazane, for example, the polymer silazane (polysilazane) represented by the following formula (B3) is preferable.
  • Polysilazane is a polymer compound having a Si—N—Si bond.
  • the constituent unit of polysilazane represented by the formula (B3) may be one kind or a plurality of kinds.
  • R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).
  • Equation (B3) * represents a bond.
  • R14 is bonded to the bond of the N atom at the end of the molecular chain.
  • R15 is bonded to the bond of the Si atom at the end of the molecular chain.
  • the plurality of R 14s may be the same or different.
  • the plurality of R 15s may be the same or different.
  • M represents an integer of 2 or more and 10000 or less.
  • the polysilazane represented by the formula (B3) may be, for example, perhydropolysilazane in which all of R 14 and R 15 are hydrogen atoms.
  • polysilazane represented by the formula (B3) may be, for example, organopolysilazane in which at least one R15 is a group other than a hydrogen atom.
  • Perhydropolysilazane and organopolysilazane may be appropriately selected depending on the intended use, and may be mixed and used.
  • the silicon compound layer preferably contains organopolysilazane represented by the formula (B3).
  • R 14 and R 15 has an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms. It may be a cycloalkyl group, an aryl group having 6 to 20 carbon atoms, or an organopolysilazane which is an alkylsilyl group having 1 to 20 carbon atoms.
  • organopolysilazane represented by the formula (B3) in which at least one of R 14 and R 15 is a methyl group is preferable.
  • polysilazane having a structure represented by the following formula (B4) is also preferable.
  • Polysilazane may have a ring structure in a part of the molecule, and may have a structure represented by the formula (B4), for example.
  • * represents a bond.
  • the bond of the formula (B4) may be bonded to the bond of polysilazane represented by the formula (B3) or the bond of the constituent unit of polysilazane represented by the formula (B3).
  • a bond of the structure represented by the formula (B4) is a bond of a structure represented by another formula (B4). It may be directly connected to the hand.
  • R14 is bonded to the bond of no N atom.
  • R15 is bonded to the bond of no Si atom.
  • n 2 represents an integer of 1 or more and 10000 or less. n 2 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
  • the silicon compound layer preferably contains organopolysilazane having a structure represented by the formula (B4).
  • an organopolysilazane having a structure represented by the formula (B4) at least one bond is bonded to R 14 or R 15 , and at least one of the R 14 and R 15 is an alkyl having 1 to 20 carbon atoms.
  • the structure is represented by the formula (B4), at least one bond is bonded to R 14 or R 15 , and at least one of the R 14 and R 15 is polysilazane, which is a methyl group. ..
  • the general polysilazane has, for example, a structure in which a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring exist, that is, a structure represented by the above formula (B3) and the above formula (B4). ..
  • the molecular weight of general polysilazane is about 600 to 2000 (in terms of polystyrene) in terms of number average molecular weight (Mn), and may be a liquid or solid substance depending on the molecular weight.
  • polysilazane a commercially available product may be used, and the commercially available products include NN120-10, NN120-20, NAX120-20, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (AZ Electronic Materials Co., Ltd.).
  • the polysilazane is preferably AZNN-120-20, Durazane1500 Slow Cure, Durazane1500 Rapid Cure, and more preferably Durazane1500 SlowCure.
  • the condensate of cilazan includes a condensate of disilazan represented by the formula (B1), a condensate of low molecular weight cilazan represented by the formula (B2), and a condensate of polysilazane represented by the formula (B3). , It is preferable that it is a condensate of polysilazane having a structure represented by the above formula (B4) in the molecule.
  • the ratio is preferably 0.1 to 100%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 98%, further preferably 30 to 95%.
  • the "ratio of silicon atoms not bonded to nitrogen atoms” is defined as ((Si (mol))-(N (mol) in Si—N bond)) / Si (mol) using the measured values described later. ) ⁇ 100.
  • the ratio of silicon atoms not bonded to the nitrogen atom means “the ratio of silicon atoms contained in the siloxane bond generated in the condensation treatment”.
  • the ratio of silicon atoms not bonded to the nitrogen atom to all the silicon atoms contained in the polysilazane condensate represented by the formula (B3) is 0. It is preferably 1 to 100%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 98%, further preferably 30 to 95%.
  • silicon not bonded to the nitrogen atom for all the silicon atoms contained in the condensate of polysilazane having the structure represented by the formula (B4).
  • the proportion of atoms is preferably 0.1 to 99%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 97%, further preferably 30 to 95%.
  • the number of Si atoms and the number of Si—N bonds in the condensate can be measured by X-ray photoelectron spectroscopy (XPS).
  • the "ratio of silicon atoms not bonded to nitrogen atoms" obtained by using the measured values by the above method is preferably 0.1 to 99%, and preferably 10 to 99%. More preferably, it is more preferably 30 to 95%.
  • the hydrolyzable silane compound is preferably a silane compound having an amino group, an alkoxy group or an alkylthio group.
  • the hydrolyzable silane compound include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, dodecyltrimethoxysilane, trimethoxyphenylsilane, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, and trimethoxy. Examples thereof include (1H, 1H, 2H, 2H-nonafluorohexyl) silane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane.
  • 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, trimethoxyphenylsilane, trimethoxyphenylsilane, trimethoxy (1H, 1H, 2H, 2H-nona) Fluorohexyl) silane is more preferred.
  • the condensate of the hydrolyzable silicon compound may be any compound obtained by condensing the above-mentioned silane compound having an amino group, an alkoxy group or an alkylthio group.
  • the shape of the luminescent composite particle is not particularly limited, such as a spherical shape, a distorted spherical shape, a go stone shape, or a rugby ball shape.
  • the average particle size of the luminescent composite particles is 1 to 100 nm, preferably 5 to 50 nm, more preferably 10 to 30 nm, still more preferably 15 to 30 nm.
  • the average particle size of the luminescent composite particles is 100 nm or less, the luminescent composite particles containing coarse perovskite compound particles and aggregated perobskite compound particles are removed, and the luminescent composite particles containing fine perovskite compound particles are removed. Particles are selectively obtained. Coarse perovskite compound particles and aggregated perovskite compound particles are considered to be inferior in light resistance, and by selecting fine perovskite compound particles, the light resistance of the luminescent composite particles is improved.
  • the average particle size of the luminescent composite particles can be measured by, for example, a dynamic light scattering method (DLS: Dynamic Light Scattering) in which the particles are dispersed in a dispersion liquid to form a dispersion liquid composition.
  • DLS Dynamic Light Scattering
  • Examples of the measuring method in DLS include a method of measuring the dispersion liquid composition in a dedicated container (glass cell).
  • the average particle size of the luminescent composite particles is adjusted by using a known classification method such as filtering the dispersion containing the synthesized luminescent composite particles using a filter having an appropriate pore size. be able to.
  • the mass of the silicon compound layer is preferably 1.1 parts by mass or more, more preferably 1.5 parts by mass with respect to the mass of the perovskite compound.
  • the above is more preferably 1.8 parts by mass or more.
  • the mass of the silicon compound layer is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less with respect to the mass of the perovskite compound.
  • FIG. 2 is a cross-sectional view schematically showing the structure of a composition containing the luminescent composite particles of the present invention.
  • the luminescent composite particle composition 200 has a luminescent composite particle 100 and a dispersion medium material 30.
  • the luminescent composite particles 100 are dispersed in the dispersion medium material 30.
  • the dispersion medium (3), the polymerizable compound (4), and the polymer (5) described below are collectively referred to as “dispersion medium”.
  • material is a support medium in which the perovskite compound particles are difficult to dissolve, and it is preferable that the perovskite compound particles do not dissolve.
  • the dispersion medium material may be a mixture containing at least one of the dispersion medium (3), the polymerizable compound (4), and the polymer (5).
  • Dispersion refers to a state in which particles are suspended in a dispersion medium material or particles are suspended in a dispersion medium material. When the particles are dispersed in the liquid dispersion medium material, some of the particles may be settled.
  • the dispersion medium (3) is an inert compound that exhibits a liquid state at 25 ° C. and 1 atm and can coexist with the perovskite compound particles.
  • the dispersion medium (3) does not include the polymerizable compound (4) described later.
  • dispersion medium (3) examples include the following (a) to (k).
  • Examples of the (a) ester include methylformate, ethylformate, propylformate, pentylformate, methyl acetate, ethyl acetate, pentyl acetate and the like.
  • Examples of the (b) ketone include ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone, diisobutylketone, cyclopentanone, cyclohexanone, and methylcyclohexanone.
  • ether examples include diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole and phenetol. And so on.
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol and diacetone alcohol. , Cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol and the like.
  • Examples of the (e) glycol ether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, and triethylene glycol dimethyl ether.
  • Examples of the organic solvent having an amide group include N, N-dimethylformamide, acetamide, N, N-dimethylacetamide and the like.
  • Examples of the organic solvent having a nitrile group include acetonitrile, isobutyronitrile, propionitrile, methoxynitrile and the like.
  • Examples of the organic solvent having a carbonate group include ethylene carbonate and propylene carbonate.
  • halogenated hydrocarbon examples include methylene chloride and chloroform.
  • Examples of the (j) hydrocarbon include n-pentane, cyclohexane, n-hexane, 1-octadecene, benzene, toluene, xylene and the like.
  • ionic liquid examples include ammonium-based, phosphonium-based, and sulfonium-based liquids as cationic liquids, and AlCl 4- , NO 2- , NO 3- , and I as anionic liquids.
  • dispersion medium (3) only one type may be used, or two or more types may be used in combination.
  • the polymerizable compound means a monomer compound (monomer) having a polymerizable group.
  • Examples of the polymerizable compound include a monomer that is in a liquid state at 25 ° C. and 1 atm.
  • the polymerizable compound when produced at room temperature and under normal pressure, is not particularly limited.
  • the polymerizable compound include known polymerizable compounds such as styrene, acrylic acid ester, methacrylic acid ester, and acrylonitrile. Among them, as the polymerizable compound, one or both of acrylic acid ester and methacrylic acid ester, which are monomers of the acrylic resin, is preferable.
  • the polymerizable compound (4) may be used alone or in combination of two or more.
  • the ratio of the total amount of the acrylic acid ester and the methacrylic acid ester to the total mass of the polymerizable compound (4) may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
  • the polymer (5) is preferably a polymer having low solubility of the luminescent composite particles at the temperature at which the luminescent composite particle composition is produced.
  • the polymer when the polymer is produced at room temperature and under normal pressure, the polymer is not particularly limited, and examples thereof include known polymers such as polystyrene, acrylic resin, and epoxy resin. Among them, acrylic resin is preferable as the polymer.
  • the acrylic resin contains one or both of a structural unit derived from an acrylic acid ester and a structural unit derived from a methacrylic acid ester. These resins may be prepared, for example, by polymerizing the corresponding monomer, the polymerizable compound (4), in the luminescent composite particle composition.
  • the ratio of the total amount of the structural unit derived from the acrylic acid ester and the structural unit derived from the methacrylic acid ester to all the structural units contained in the polymer (5) may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
  • the weight average molecular weight of the polymer (5) is preferably 100 to 1200,000, more preferably 1,000 to 800,000, and even more preferably 5,000 to 150,000.
  • weight average molecular weight means a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
  • the polymer (5) may have only one type, or two or more types may be used in combination.
  • the luminescent composite particle composition may further contain a surface modifier (6). Further, it may have other components other than the above (1) to (6). For example, it may further contain some impurities, a compound having an amorphous structure composed of elements constituting the perovskite compound (1), and a polymerization initiator.
  • the surface modifier layer is located between the perovskite compound particles and the silicon compound layer.
  • the surface modifier (6) comprises at least one ion or compound selected from the group consisting of ammonium ions, amines, primary to quaternary ammonium cations, ammonium salts, carboxylic acids, carboxylate ions, and carboxylate salts. Use as a forming material.
  • At least one selected from the group consisting of amines and carboxylic acids is preferable to use at least one selected from the group consisting of amines and carboxylic acids as the forming material.
  • the surface modifier (6) is a compound having an action of covering the surface of the perovskite compound particles and stably dispersing them in the luminescent composite particle composition when the luminescent composite particles are produced by the production method described later. ..
  • Ammonium ion, primary to quaternary ammonium cation, ammonium salt Ammonium ions, which are surface modifiers (6), and primary to quaternary ammonium cations are represented by the following formula (A1).
  • the ammonium salt which is the surface modifier (6) is a salt containing an ion represented by the following formula (A1).
  • R 1 to R 4 represent a hydrogen atom or a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R 1 to R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
  • the alkyl group represented by R 1 to R 4 may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • the number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon groups R1 to R4 may be linear or branched.
  • the number of carbon atoms of the unsaturated hydrocarbon group of R 1 to R 4 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • R 1 to R 4 are preferably hydrogen atoms, alkyl groups, or unsaturated hydrocarbon groups.
  • unsaturated hydrocarbon group an alkenyl group is preferable.
  • R 1 to R 4 are preferably alkenyl groups having 8 to 20 carbon atoms.
  • alkyl groups of R 1 to R 4 include the alkyl groups exemplified in R 6 to R 9 .
  • cycloalkyl groups of R 1 to R 4 include the cycloalkyl groups exemplified in R 6 to R 9 .
  • a single bond (CC) between any one carbon atom is two.
  • Preferred alkenyl groups of R1 to R4 are, for example, an ethenyl group, a propenyl group, a 3-butenyl group, a 2-butenyl group, a 2-pentenyl group, a 2-hexenyl group, a 2-nonenyl group and a 2-dodecenyl group.
  • Groups include 9-octadecenyl groups.
  • the counter anion is not particularly limited.
  • a halide ion, a carboxylate ion, or the like is preferable.
  • the halide ion include bromide ion, chloride ion, iodide ion, and fluoride ion.
  • ammonium salt having the ammonium cation represented by the formula (A1) and the counter anion examples include n-octyl ammonium salt and oleyl ammonium salt.
  • R 1 to R 3 represent the same group as R 1 to R 3 possessed by the above formula (A1). However, at least one of R 1 to R 3 is a monovalent hydrocarbon group.
  • the amine as the surface modifier (6) may be any of primary and tertiary amines, but primary amines and secondary amines are preferable, and primary amines are more preferable.
  • oleylamine is preferable.
  • the carboxylate ion which is the surface modifier (6) is represented by the following formula (A2).
  • the carboxylate salt which is the surface modifier (6) is a salt containing an ion represented by the following formula (A2). R 5 - CO 2 -... (A2)
  • Examples of the carboxylic acid as the surface modifier (6) include carboxylic acids in which a proton (H + ) is bound to the carboxylate anion represented by the above (A2).
  • R 5 represents a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R5 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • Examples of the saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
  • the alkyl group represented by R 5 may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R5 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • the number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms also includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon group represented by R5 may be linear or branched.
  • the number of carbon atoms of the unsaturated hydrocarbon group represented by R5 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • R 5 is preferably an alkyl group or an unsaturated hydrocarbon group.
  • unsaturated hydrocarbon group an alkenyl group is preferable.
  • alkyl group of R 5 include the alkyl groups exemplified in R 6 to R 9 .
  • cycloalkyl group of R 5 include the cycloalkyl groups exemplified in R 6 to R 9 .
  • alkenyl group of R 5 examples include the alkenyl group exemplified in R 4 .
  • the carboxylate anion represented by the formula (A2) is preferably an oleate anion.
  • the counter cation is not particularly limited, but alkali metal cations, alkaline earth metal cations, ammonium cations and the like are preferable examples.
  • Oleic acid is preferable as the carboxylic acid that is the surface modifier (6).
  • ammonium salts ammonium ions, primary to quaternary ammonium cations, carboxylate salts, and carboxylate ions are preferable.
  • ammonium salts and ammonium ions oleylamine salts and oleylammonium ions are more preferable.
  • carboxylate salts and carboxylate ions oleate and oleate cations are more preferable.
  • the luminescent composite particles only one kind of the above-mentioned surface modifier (6) may be contained, or two or more kinds thereof may be used in combination.
  • the content ratio of the luminescent composite particles to the total mass of the luminescent composite particle composition is not particularly limited.
  • the content ratio is preferably 90% by mass or less, more preferably 40% by mass or less, further preferably 10% by mass or less, and 3% by mass or less. Is particularly preferred.
  • the content ratio is preferably 0.0002% by mass or more, more preferably 0.002% by mass or more, and more preferably 0.01% by mass or more from the viewpoint of obtaining a good quantum yield. Is even more preferable.
  • the content ratio of the luminescent composite particles to the total mass of the luminescent composite particle composition is usually 0.0002 to 90% by mass.
  • the content ratio of the luminescent composite particles to the total mass of the luminescent composite particle composition is preferably 0.001 to 40% by mass, more preferably 0.002 to 10% by mass, and 0.01 to 0.01 to 10% by mass. It is more preferably 3% by mass.
  • the luminescent composite particles are less likely to aggregate and the luminescence is well exhibited. Is preferable.
  • the content ratio of the silicon compound layer to the total mass of the luminescent composite particle composition is not particularly limited.
  • the content ratio is preferably 30% by mass or less, more preferably 10% by mass or less, and 7.5 by mass, from the viewpoint of improving the dispersibility of the luminescent composite particles and improving the durability. It is more preferably mass% or less.
  • the content ratio is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and 0.1% by mass, from the viewpoint of improving the durability of the luminescent composite particles. The above is more preferable.
  • the content ratio of the silicon compound layer to the total mass of the luminescent composite particle composition is usually 0.001 to 30% by mass.
  • the content ratio of the silicon compound layer to the total mass of the luminescent composite particle composition is preferably 0.001 to 30% by mass, preferably 0.001 to 10% by mass, and 0.1 to 7.5% by mass. Is more preferable.
  • the content ratio of the dispersion medium material to the total mass of the luminescent composite particle composition is not particularly limited.
  • the content ratio is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, from the viewpoint of improving the dispersibility of the luminescent composite particles and improving the light resistance. , 99% by mass or less is more preferable.
  • the content ratio is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 10% by mass or more, and more preferably 50, from the viewpoint of improving the light resistance. It is more preferably mass% or more, more preferably 80% by mass or more, and most preferably 90% by mass or more.
  • the content ratio of the dispersion medium material to the total mass of the luminescent composite particle composition is usually 0.1 to 99.99 mass%.
  • the content ratio of the dispersion medium material with respect to the total mass of the luminescent composite particle composition is preferably 1 to 99% by mass, more preferably 10 to 99% by mass, and preferably 20 to 99% by mass. More preferably, it is particularly preferably 50 to 99% by mass, and most preferably 90 to 99% by mass.
  • the total content ratio of the perovskite compound particles, the silicon compound layer and the dispersion medium medium material may be 90% by mass or more with respect to the total mass of the luminescent composite particle composition. , 95% by mass or more, 99% by mass or more, or 100% by mass.
  • the content ratio of the surface modifier (6) to the total mass of the luminescent composite particle composition is not particularly limited.
  • the content ratio is preferably 30% by mass or less, more preferably 1% by mass or less, and further preferably 0.1% by mass or less.
  • the content ratio is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and more preferably 0.01% by mass or more from the viewpoint of improving the light durability. Is even more preferable.
  • the content ratio of the surface modifier (6) to the total mass of the luminescent composite particle composition is usually 0.0001 to 30% by mass.
  • the content ratio of the surface modifier (6) to the total mass of the luminescent composite particle composition is preferably 0.001 to 1% by mass, more preferably 0.01 to 0.1% by mass.
  • a luminescent composite particle composition in which the content ratio of the surface modifier (6) to the total mass of the luminescent composite particle composition is within the above range is preferable because it is excellent in light durability.
  • the total content of the luminescent composite particles, the compound having an amorphous structure composed of some impurities, the elements constituting the perovskite compound (1), and the polymerization initiator is 10% by mass with respect to the total mass of the luminescent composite particle composition. % Or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less.
  • the method for producing a perovskite compound includes a step of dissolving a component B, a component X, and a component A constituting the perovskite compound in the above-mentioned dispersion medium (3) at a high temperature to obtain a solution, and a step of cooling the solution.
  • the method can be mentioned.
  • the compound containing the B component and the X component and the compound containing the A component are dissolved in a high-temperature dispersion medium (3) to obtain a solution.
  • the "compound containing the A component” may contain the X component.
  • each compound may be added to a high-temperature dispersion medium (3) and dissolved to obtain a solution.
  • a solution may be obtained by adding each compound to the dispersion medium (3) and then raising the temperature.
  • the solution is preferably obtained by adding each compound to the first solvent and then raising the temperature.
  • a solvent capable of dissolving the compound containing the B component and the X component, which are raw materials, and the compound containing the A component is preferable.
  • the "high temperature” may be a solvent having a temperature at which each raw material dissolves.
  • the temperature of the high-temperature dispersion medium (3) is preferably 60 to 600 ° C, more preferably 80 to 400 ° C.
  • the holding temperature after the temperature rise is preferably, for example, 20 to 150 ° C, preferably 120 to 140 ° C. Is more preferable.
  • the resulting solution is then cooled.
  • the cooling temperature is preferably ⁇ 20 to 50 ° C., more preferably ⁇ 10 to 30 ° C.
  • the cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
  • the perovskite compound By cooling the high temperature solution, the perovskite compound can be precipitated due to the difference in solubility due to the temperature difference of the solution. As a result, a dispersion containing the perovskite compound is obtained.
  • the perovskite compound can be recovered by performing solid-liquid separation on the obtained dispersion containing the perovskite compound.
  • the solid-liquid separation method include filtration and concentration by evaporation of a solvent. By performing solid-liquid separation, only the perovskite compound can be recovered.
  • the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier (6) because the particles of the obtained perovskite compound are stably and easily dispersed in the dispersion liquid.
  • the step of adding the surface modifier (6) is preferably performed before the step of cooling.
  • the surface modifier (6) may be added to the dispersion medium (3), or may be added to a solution in which the compound containing the B component and the X component and the compound containing the A component are dissolved. ..
  • the manufacturing method it is preferable to include a step of removing coarse particles by a method such as centrifugation or filtration after the step of cooling.
  • the size of the coarse particles removed by the removing step is preferably more than 10 ⁇ m, more preferably more than 1 ⁇ m, still more preferably more than 500 nm.
  • a step of obtaining a first solution containing components A and B constituting the perovskite compound, a step of obtaining a second solution containing the component X constituting the perovskite compound, and a first solution and a first solution are used.
  • Examples thereof include a manufacturing method including a step of mixing two solutions to obtain a mixed solution and a step of cooling the obtained mixed solution.
  • the compound containing the component A and the compound containing the component B are dissolved in a high-temperature second solvent to obtain a first solution.
  • each compound may be added to a high-temperature dispersion medium (3) and dissolved to obtain a first solution.
  • the first solution may be obtained by adding each compound to the dispersion medium (3) and then raising the temperature.
  • the first solution is preferably obtained by adding each compound to the dispersion medium (3) and then raising the temperature.
  • a solvent capable of dissolving the compound containing the A component and the compound containing the B component is preferable.
  • the "high temperature” may be any temperature as long as the compound containing the A component and the compound containing the B component are melted.
  • the temperature of the high-temperature dispersion medium (3) is preferably 60 to 600 ° C, more preferably 80 to 400 ° C.
  • the holding temperature after raising the temperature is preferably, for example, 80 to 150 ° C, preferably 120 to 140 ° C. It is more preferable to have.
  • the compound containing the X component is dissolved in the above-mentioned dispersion medium (3) to obtain a second solution.
  • a second solution may be obtained by dissolving the compound containing the X component and the compound containing the B component in the dispersion medium (3).
  • Examples of the dispersion medium (3) include a solvent capable of dissolving a compound containing an X component.
  • the obtained first solution and the second solution are mixed to obtain a mixed solution.
  • mixing the first solution and the second solution one may be dropped onto the other. Further, it is advisable to mix the first solution and the second solution with stirring.
  • the resulting mixture is then cooled.
  • the cooling temperature is preferably ⁇ 20 to 50 ° C., more preferably ⁇ 10 to 30 ° C.
  • the cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
  • the perovskite compound By cooling the mixed solution, the perovskite compound can be precipitated due to the difference in solubility due to the temperature difference of the mixed solution. As a result, a dispersion containing the perovskite compound is obtained.
  • the perovskite compound can be recovered by performing solid-liquid separation.
  • the solid-liquid separation method include the method shown in the first production method.
  • the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier (6) because the particles of the obtained perovskite compound are stably and easily dispersed in the dispersion liquid.
  • the step of adding the surface modifier (6) is preferably performed before the step of cooling.
  • the surface modifier (6) may be added to any of the dispersion medium (3), the first solution, the second solution, and the mixed solution.
  • the above-mentioned manufacturing method includes a step of removing coarse particles by a method such as centrifugation and filtration shown in the first manufacturing method after the step of cooling.
  • the perovskite compound particles and the hydrolyzable silicon compound (2) are brought into contact with each other, and the hydrolyzable silicon compound (2) is condensed as necessary, and the silicon compound layer is formed on the surface of the perovskite compound particles. Is manufactured by forming.
  • the contact between the perovskite compound particles and the hydrolyzable silicon compound (2) may be carried out in the presence of the dispersion medium (3). In such a case, the dispersion medium (3) is removed after forming the particles.
  • the dispersion liquid of the particles When removing the dispersion medium (3), the dispersion liquid of the particles may be allowed to stand at room temperature and air-dried, may be vacuum-dried using a vacuum dryer, or may be heat-dried by heating. good.
  • the dispersion medium (3) can be removed by drying at 0 ° C. or higher and 300 ° C. or lower for 1 minute or more and 7 days or less.
  • the dispersion liquid of the particles containing the dispersion medium (3) may be used as it is or by adjusting the concentration as it is as a luminescent composite particle composition.
  • condensation treatment of hydrolyzable silicon compound (2) can be carried out by using a known method such as a method of reacting the silazane and the hydrolyzable silicon compound with water vapor.
  • a known method such as a method of reacting the silazane and the hydrolyzable silicon compound with water vapor.
  • the treatment of reacting the silazane and the hydrolyzable silicon compound with water vapor may be referred to as "humidification treatment”.
  • Humidification treatment is preferable from the viewpoint of forming a stronger protected region in the vicinity of the perovskite compound particles.
  • the luminescent composite particle composition may be allowed to stand for a certain period of time under the temperature and humidity conditions described later, or may be stirred for a certain period of time under the same conditions.
  • the temperature in the humidification treatment may be a temperature at which condensation proceeds sufficiently.
  • the temperature in the humidification treatment is, for example, preferably 5 to 150 ° C, more preferably 10 to 100 ° C, and even more preferably 15 to 80 ° C.
  • the humidity in the humidification treatment may be any humidity as long as sufficient water is supplied to the silazane and the hydrolyzable silicon compound in the particles.
  • the humidity in the humidification treatment is, for example, preferably 30% to 100%, more preferably 40% to 95%, and even more preferably 60% to 90%.
  • the time required for the humidification treatment may be a time during which the condensation proceeds sufficiently.
  • the time required for the humidification treatment is, for example, preferably 10 minutes or more and 1 week or less, more preferably 1 hour or more and 5 days or less, and further preferably 2 hours or more and 3 days or less.
  • Water may be supplied in the humidification treatment by circulating a gas containing water vapor in the reaction vessel, or by stirring in an atmosphere containing water vapor to supply water from the interface.
  • the flow rate of the gas containing water vapor is preferably 0.01 L / min or more and 100 L / min or less, preferably 0, in order to improve the durability of the obtained luminescent composite particle composition. .1 L / min or more and 10 L / min or less is more preferable, and 0.15 L / min or more and 5 L / min or less is further preferable.
  • the gas containing water vapor include nitrogen containing a saturated amount of water vapor.
  • a luminescent composite particle composition that is, a mixture of the particles and a dispersion medium material can be produced, for example, by dispersing the particles in a dispersion medium material.
  • the luminescent composite particle composition particles are dispersed in a dispersion medium material, a hydrolyzable silicon compound (2) is added to the obtained dispersion, and the hydrolyzable silicon compound (2) is brought into contact with the perovskite compound (1), if necessary. It may be produced by condensing the hydrolyzable silicon compound (2).
  • the luminescent composite particle composition can also be obtained by polymerizing the polymerizable compound (4) to obtain a part thereof as the polymer (5).
  • the total of the particles and the polymer (5) is 90% by mass or more of the total amount of the luminescent composite particle composition.
  • the step of polymerizing the polymerizable compound (4) can be carried out by appropriately using a known polymerization reaction such as radical polymerization.
  • the polymerization reaction can be promoted by adding a radical polymerization initiator to the mixture of the particles and the polymerizable compound (4) and generating radicals.
  • the radical polymerization initiator is not particularly limited, and examples thereof include a photoradical polymerization initiator.
  • photoradical polymerization initiator examples include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and the like.
  • the surface modifier (6) can be added together with the hydrolyzable silicon compound (2) after the perovskite compound particles are dispersed in the dispersion medium material.
  • absorption rate, quantum yield and brightness maintenance rate of luminescent composite particles are determined by an absolute PL quantum yield measuring device (for example, "C9920-02" manufactured by Hamamatsu Photonics Co., Ltd. (Commodity). It can be measured using the name)). Further, the luminance maintenance rate can be calculated from the following equation using these values. In the present invention, the measurement is carried out under the conditions of an excitation light of 450 nm, 25 ° C. and 1 atm.
  • Brightness retention rate (%) [(Quantum yield of luminescent composite particle composition after light resistance test) ⁇ (Quantum yield of luminescent composite particle composition before light resistance test)] ⁇ [(Light emission after light resistance test) Absorption rate of sex composite particle composition) ⁇ (absorption rate of luminescent composite particle composition before light resistance test)] ⁇ 100
  • the absorption rate of the excitation light of the luminescent composite particle is preferably 0.1 or more and less than 1, more preferably 0.2 or more and less than 0.9, and further preferably 0.3 or more and less than 0.9.
  • the quantum yield of the luminescent composite particles is preferably 0.1 to 1.0, more preferably 0.2 to 0.99, and even more preferably 0.3 to 0.95.
  • the brightness retention rate of the luminescent composite particles is preferably 0.3 to 1.0, more preferably 0.5 to 1.0, and even more preferably 0.7 to 1.0. When the brightness retention rate is within these ranges, a luminescent particle material having high light resistance can be obtained.
  • the film of the present invention contains the luminescent composite particles of the present invention.
  • the film according to the present invention contains luminescent composite particles and a polymer (5).
  • the total of the particles and the polymer (5) occupies 90% by mass or more of the whole film.
  • the film shape is not particularly limited, and can be any shape such as a sheet shape or a bar shape.
  • the term "bar-shaped" means, for example, a planar visual band-shaped shape extending in one direction. Examples of the plan-view band-shaped shape include a plate-shaped shape having different lengths on each side.
  • the thickness of the film may be, for example, 0.005 ⁇ m to 1000 mm, 0.01 ⁇ m to 10 mm, 0.1 ⁇ m to 1 mm, or 10 to 500 ⁇ m.
  • the film is, for example, coated with a liquid luminescent composite particle composition containing a dispersion medium (3) and a polymerizable compound (4) to obtain a coating film, and then the polymerizable compound contained in the coating film ( It can be obtained by polymerizing 4).
  • the method for coating the liquid luminescent composite particle composition on the substrate is not particularly limited, and the gravure coating method, bar coating method, printing method, spray method, spin coating method, dip method, die coating method, etc. are used. , Can be applied using known coating and coating methods.
  • the laminated structure of the present invention has a plurality of layers, and at least one layer is the above-mentioned film.
  • layers other than the above-mentioned film include arbitrary layers such as a base material, a barrier layer, and a light scattering layer.
  • the shape of the laminated film is not particularly limited, and may be any shape such as a sheet shape or a bar shape.
  • the base material is preferably one having light transmission because it is easy to take out the light emitted by the perovskite compound (1).
  • a polymer such as polyethylene terephthalate or a known material such as glass can be used.
  • the laminated structure can be manufactured, for example, by laminating the obtained film on a base material.
  • the films are bonded to each other using an adhesive.
  • the adhesive is not particularly limited as long as it does not dissolve the luminescent composite particles, and the adhesive can be bonded using a known adhesive.
  • the light emitting device of the present invention can be obtained by combining the laminated structure and a light source.
  • the light emitting device is a device that emits light from a light source by irradiating the laminated structure installed in the subsequent stage to emit light and extracts light.
  • the layers other than the above-mentioned film, base material, barrier layer, and light scattering layer include a light reflecting member, a brightness enhancing portion, a prism sheet, a light guide plate, and between elements. Any layer such as a medium material layer of the above can be mentioned.
  • the light emitting device for example, it is a light emitting device in which a prism sheet, a light guide plate, the laminated structure, and a light source are laminated in this order.
  • the light emitting device can be manufactured, for example, by installing the above-mentioned light source and the above-mentioned laminated structure on the optical path from the light source.
  • the display of the present invention includes, for example, a liquid crystal display in which a liquid crystal panel, a prism sheet, a light guide plate, the laminated structure, and a light source are laminated in this order.
  • a display can be manufactured by laminating a display element including a polarizing plate or the like on the light emitting device.
  • the scintillator The luminescent composite particle or the luminescent composite particle composition can be used as a scintillator in an X-ray image photographing apparatus or a brightness improving film.
  • the form of the scintillator is not particularly limited, and can be used in any form such as a single crystal or a sheet.
  • the scintillator When used in the form of a sheet, the scintillator can be manufactured by applying a liquid luminescent composite particle composition containing luminescent composite particles onto a substrate and drying it.
  • the base material used is not particularly limited, and for example, aluminum metal, PET film, moth-eye film, or the like can be used.
  • the scintillator may be used in combination with other commercially available scintillators.
  • FIG. 3 is a cross-sectional view schematically showing the structure of an X-ray detector including the scintillator of the present invention.
  • the X-ray detector 1 has a scintillator panel 2, an output board 3, and a power supply unit 12.
  • the scintillator panel 2 has a substrate 5 and a scintillator layer 4.
  • the scintillator layer 4 is made of the film of the present invention. This film contains the luminescent composite particles 100 and the polymer 6.
  • the output board 3 has a photoelectric conversion layer 8 and an output layer 9 on the board 11.
  • the photoelectric conversion layer 8 is generally formed by forming a pixel having a photo sensor and a TFT (not shown) in a two-dimensional manner.
  • the diaphragm layer 7 may be provided on the photoelectric conversion layer 8. It is preferable that the light emitting surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the output substrate 3 are adhered or brought into close contact with each other via the diaphragm layer 7.
  • Patent Document 2 describes the structure and constituent materials of an X-ray detector including a scintillator, and the structure and constituent materials of the X-ray detector described in Patent Document 2 can be incorporated into the present invention. can.
  • the particles of the perovskite compound (1) were photographed using a transmission electron microscope (“JEM-2200FS” (trade name) manufactured by JEOL Ltd.), and the average particle size (average ferret diameter) was obtained from the obtained electron microscope image. I asked. In the calculation, the distance between the parallel lines sandwiching the particles between two parallel lines was taken as the ferret diameter, and the arithmetic mean of the ferret diameters of 50 particles was used.
  • the sample was obtained by collecting perovskite compound particles from the luminescent composite particle composition on a grid with a support film. The measurement conditions were an acceleration voltage of 200 kV.
  • the average particle size of the luminescent composite particles was measured using a particle size analyzer (“Zetasizer Nano ZS” (trade name) manufactured by Malvern). The measurement method used was a dynamic light scattering method. The obtained luminescent composite particles were used as a number average distribution, and the average particle size and standard deviation ⁇ were determined. The measurement sample was measured by dropping the dispersion liquid into a predetermined container (glass).
  • Quantum yield, absorption rate The quantum yield and absorption rate of the luminescent composite particle composition obtained in Examples 1, 2, 3 and Comparative Example 1 are measured by an absolute PL quantum yield measuring device (“C9920-02” manufactured by Hamamatsu Photonics Co., Ltd. (Commodity). Name)) was used for measurement. The measurement was performed before and after the following light irradiation, and the measurement conditions were an excitation light of 450 nm, 25 ° C., and 1 atm.
  • the brightness maintenance rate was determined based on the following formula. It can be evaluated that the higher the value of the brightness maintenance rate, the higher the light resistance. The evaluation was performed on the ones 48 hours after the light irradiation.
  • Brightness retention rate (%) [(Quantum yield of luminescent composite particle composition after light resistance test) ⁇ (Quantum yield of luminescent composite particle composition before light resistance test)] ⁇ [(Light emission after light resistance test) Absorption rate of sex composite particle composition) ⁇ (absorption rate of luminescent composite particle composition before light resistance test)] ⁇ 100
  • Example 1 Manufacturing of perovskite compound particles
  • oleylamine oleylamine
  • 200 mL of ethanol oleylamine
  • 17.12 mL of an aqueous hydrogen bromide solution 48%) was added, and then dried under reduced pressure to obtain a precipitate.
  • the precipitate was washed with diethyl ether and then dried under reduced pressure to obtain oleylammonium bromide.
  • the condensation treatment was carried out under a steam flow rate of 0.4 L / min (supplied with N2 gas, saturated steam amount at 30 ° C.) and a heating temperature of 90 ° C.
  • the dispersion liquid after the condensation treatment was filtered through a 0.5 ⁇ m membrane filter to obtain a luminescent composite particle composition.
  • the obtained luminescent composite particle composition was measured by DLS to estimate the average particle size of the particles.
  • the average particle size was 27.26 nm ⁇ 8.5.
  • the brightness maintenance rate after the light resistance test was 70.1%.
  • Example 2 In the process of producing the luminescent composite particles, the luminescent composite was carried out by the same method as in Example 1 above, except that the dispersion liquid of the perovskite compound particles was set to 150 mL to 30 mL and the gas flow rate during the condensation treatment was set to 0.08 L / min. A particle composition was obtained. The average particle size of the particles was estimated to be 26.54 nm ⁇ 5.4 by the same method. The brightness maintenance rate was 78.0%.
  • Example 3 Trimethoxy (1H, 1H, 2H, 2H-nonafluorohexyl) silane (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.25 with respect to 1 part by mass of organopolysilazane after addition of organopolysilazane in the manufacturing process of luminescent composite particles.
  • a luminescent composite particle composition was obtained in the same manner as in Example 2 above, except that a mass portion was further added. When the average particle size of the particles was estimated by the same method, it was 17.59 nm ⁇ 5.2. The brightness maintenance rate was 100%.
  • a luminescent composite particle composition was obtained by the same method except that the obtained luminescent composite particle composition was not filtered by a membrane filter.
  • the average particle size of the particles was estimated by the same method and was 495.2 nm ⁇ 142.0.
  • the brightness maintenance rate was 24.8%.
  • the luminescent composite particles containing the perovskite compound having an average particle size of 1 to 100 nm in Examples 1 to 3 are superior in light resistance to the luminescent composite particles of Comparative Example 1. ..
  • a resin composition can be obtained by forming a sheet of the light-emitting composite particle composition according to Examples 1 to 3, and a film sandwiched between two barrier films and sealed is placed on a light guide plate. By doing so, a backlight capable of converting the blue light emitted from the blue light emitting diode placed on the end surface (side surface) of the light guide plate to the sheet through the light guide plate into green light or red light is manufactured.
  • a wavelength conversion material can be obtained by mixing the luminescent composite particle composition according to Examples 1 to 3 with a resist and then removing the solvent. By arranging the obtained wavelength conversion material between the blue light emitting diode which is the light source and the light guide plate or after the OLED which is the light source, a backlight capable of converting the blue light of the light source into green light or red light can be obtained. To manufacture.
  • the light-emitting composite particle composition according to Examples 1 to 3 is formed by mixing conductive particles such as ZnS to form a film, and an n-type transport layer is laminated on one side and the other side is laminated with a p-type transport layer. Get the LED. By passing an electric current, the holes of the p-type semiconductor and the electrons of the n-type semiconductor can be made to emit light by canceling the charges in the perovskite compound on the bonding surface.
  • a dense layer of titanium oxide is laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, a porous aluminum oxide layer is laminated on the dense layer, and the luminescent composite particles according to Examples 1 to 3 are laminated thereto.
  • FTO fluorine-doped tin oxide
  • a porous aluminum oxide layer is laminated on the dense layer
  • the luminescent composite particles according to Examples 1 to 3 are laminated thereto.
  • 2,2', 7,7'-tetrakis- (N, N'-di-p-methoxyphenyllamine) -9,9'-spirobifluorene (Spiro-OMeTAD) A solar cell is manufactured by laminating a hole transport layer such as, and then laminating a silver (Ag) layer on the whole.
  • the composition of the present embodiment can be obtained by removing the solvent from the composition containing the luminescent composite particles according to Examples 1 to 3, and installing the composition after the blue light emitting diode. Therefore, a laser diode lighting that emits white light by converting blue light radiated from a blue light emitting diode onto a composition into green light or red light is manufactured.
  • the composition of the present embodiment can be obtained by removing the solvent of the composition containing the luminescent composite particles according to Examples 1 to 3 and molding the composition.
  • a photoelectric conversion element (photodetection element) material contained in a detection unit for detecting light is manufactured.
  • the photoelectric conversion element material is a part of a living body such as an image detection unit (image sensor) for a solid-state image sensor such as an X-ray image sensor and a CMOS image sensor, a fingerprint detection unit, a face detection unit, a vein detection unit, and an iris detection unit. It is used in an optical biosensor such as a detection unit that detects a predetermined feature and a pulse oximeter.
  • the composition of the present embodiment can be obtained by removing the solvent of the composition containing the luminescent composite particles according to Examples 1 to 3 and molding the composition.
  • the obtained composition can be used as a film for improving the light conversion efficiency of the solar cell.
  • the form of the conversion efficiency improving sheet is not particularly limited, but is used in the form of being applied to a base material.
  • the base material is not particularly limited as long as it is a highly transparent base material. For example, PET film or moth-eye film is desirable.
  • the solar cell using the solar cell conversion efficiency improving sheet is not particularly limited, and the conversion efficiency improving sheet has a conversion function from a wavelength region in which the sensitivity of the solar cell is low to a wavelength region in which the sensitivity is high.
  • the composition of the present embodiment can be obtained by removing the solvent of the composition containing the luminescent composite particles according to Examples 1 to 3 and molding the composition.
  • the obtained composition can be used as a light source for single photon generation such as quantum computer, quantum teleportation and quantum cryptography communication.
  • Perovskite compound particles 10 ... Perovskite compound particles, 20 ... Silicon compound layer, 30 ... Dispersion medium material, 100 ... Luminous composite particles, 200 ... Luminous composite particle composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Light-emitting composite particles, each of which has a perovskite-type crystal structure containing A, B and X as components [in the perovskite-type crystal structure, A represents a component located at each vertex in a hexahedron having B at the center thereof, and is a monovalent cation; B represents a component located at a center in a hexahedron having A at each vertex thereof or an octahedron having X at each vertex thereof, and is a metal ion; and X represents a component located at each vertex in an octahedron having B at the center thereof, and comprises at least one anion selected from the group consisting of a halide ion and a thiocyanate ion], and comprises a perovskite compound particle having light-emitting properties and a silicon compound layer formed on at least a portion of the surface of the perovskite compound particle, the light-emitting composite particles having an average particle diameter of 1 to 100 nm.

Description

発光性複合粒子及び発光性複合粒子組成物Luminous composite particles and luminescent composite particle composition
 本発明は、発光性を有する半導体化合物の粒子に関し、特に、発光性を有するペロブスカイト型半導体化合物の粒子に関する。 The present invention relates to particles of a semiconductor compound having light emission, and particularly to particles of a perovskite type semiconductor compound having light emission.
 ペロブスカイト型半導体化合物(以下、「ペロブスカイト化合物」という。)は高い量子収率を有する発光性半導体化合物であり、発光性材料として注目されている。例えば、特許文献1には、発光体としてペロブスカイト化合物を使用した発光性フィルムが記載されている。特許文献1の発光性フィルムは、発光性を有するペロブスカイト化合物粒子がシラザン改質体に内包された粒子である島部と、重合体である海部とを有する、海島構造を有するものである。特許文献1の発光性フィルムは水蒸気に対する耐久性に優れた発光性材料である。 A perovskite-type semiconductor compound (hereinafter referred to as "perovskite compound") is a luminescent semiconductor compound having a high quantum yield, and is attracting attention as a luminescent material. For example, Patent Document 1 describes a luminescent film using a perovskite compound as a luminescent material. The luminescent film of Patent Document 1 has a sea-island structure in which luminescent perovskite compound particles have an island portion which is a particle contained in a silazane modifier and a sea portion which is a polymer. The luminescent film of Patent Document 1 is a luminescent material having excellent durability against water vapor.
国際公開第2018/212268号International Publication No. 2018/21268 国際公開第2019/131370号International Publication No. 2019/131370
 一方で、特許文献1の発光性フィルムは、励起光の照射により劣化が進行し易く、輝度維持率(量子収率の維持率×吸収率の維持率)が低下し易いことが明らかになった。そのため、特許文献1の発光性フィルムは、耐光性に関して未だ改善の余地を有している。 On the other hand, it has been clarified that the luminescent film of Patent Document 1 tends to be deteriorated by irradiation with excitation light, and the luminance maintenance rate (maintenance rate of quantum yield × maintenance rate of absorption rate) tends to decrease. .. Therefore, the luminescent film of Patent Document 1 still has room for improvement in terms of light resistance.
 本発明は、上記課題に鑑みてなされたものであって、耐光性に優れる、ペロブスカイト化合物を含む発光性粒子材料を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a luminescent particle material containing a perovskite compound, which has excellent light resistance.
 本発明は、
 A、B、及びXを構成成分とするペロブスカイト型結晶構造
[ペロブスカイト型結晶構造において、AはBを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンであり、
 BはAを頂点に配置する6面体、及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンであり、
 XはBを中心とする8面体の各頂点に位置する成分であって、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。]
及び発光性を有するペロブスカイト化合物粒子と、該ペロブスカイト化合物粒子の表面の少なくとも一部に形成されたケイ素化合物層とを、有する発光性複合粒子であって、1~100nmの平均粒径を有する発光性複合粒子を提供する。
The present invention
Perovskite-type crystal structure containing A, B, and X as constituents
[In the perovskite-type crystal structure, A is a component located at each vertex of a hexahedron centered on B, and is a monovalent cation.
B is a component located at the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex, and is a metal ion.
X is a component located at each vertex of the octahedron centered on B, and is at least one kind of anion selected from the group consisting of a halide ion and a thiocyanate ion. ]
A luminescent composite particle having a perovskite compound particle having luminescence and a silicon compound layer formed on at least a part of the surface of the perovskite compound particle, and having an average particle size of 1 to 100 nm. Provides composite particles.
 ある一形態においては、前記ケイ素化合物層は、加水分解性ケイ素化合物、及びその縮合物からなる群より選ばれる少なくとも一種から成る層である。 In one form, the silicon compound layer is a layer composed of at least one selected from the group consisting of a hydrolyzable silicon compound and a condensate thereof.
 ある一形態においては、前記発光性を有するペロブスカイト化合物粒子は1~80nmの一次粒子径を有する。 In one form, the luminescent perovskite compound particles have a primary particle diameter of 1-80 nm.
 また、本発明は、前記いずれかの発光性複合粒子と、分散媒、重合性化合物及び重合体からなる群から選ばれる少なくとも一種とを、含む発光性複合粒子組成物を提供する。 The present invention also provides a luminescent composite particle composition containing any of the above luminescent composite particles and at least one selected from the group consisting of a dispersion medium, a polymerizable compound and a polymer.
 また、本発明は、前記いずれかの発光性複合粒子を含むフィルムを提供する。 The present invention also provides a film containing any of the above-mentioned luminescent composite particles.
 また、本発明は、前記フィルムを含む積層構造体を提供する。 The present invention also provides a laminated structure containing the film.
 また、本発明は、前記積層構造体を備える発光装置を提供する。 The present invention also provides a light emitting device provided with the laminated structure.
 また、本発明は、前記積層構造体を備えるディスプレイを提供する。 The present invention also provides a display provided with the laminated structure.
 また、本発明は、前記いずれかの発光性複合粒子を含むシンチレータを提供する。 The present invention also provides a scintillator containing any of the above-mentioned luminescent composite particles.
 本発明によれば、耐光性に優れる、ペロブスカイト化合物を含む発光性粒子材料を提供することができる。 According to the present invention, it is possible to provide a luminescent particle material containing a perovskite compound, which has excellent light resistance.
図1は、本発明の発光性複合粒子の構造を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the structure of the luminescent composite particle of the present invention. 図2は、本発明の発光性複合粒子組成物の構造を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the structure of the luminescent composite particle composition of the present invention. 図3は、本発明のシンチレータを含むX線検出器の構造を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the structure of an X-ray detector including the scintillator of the present invention.
1.ペロブスカイト化合物を含む発光性複合粒子
 図1は、本発明の発光性複合粒子の構造を模式的に示す断面図である。発光性複合粒子100はペロブスカイト化合物粒子10とその表面に形成されたケイ素化合物層20とを有する。尚、ケイ素化合物層20は、ペロブスカイト化合物粒子10の表面の少なくとも一部に形成されていれば足りる。
1. 1. Luminescent Composite Particles Containing Perovskite Compounds FIG. 1 is a cross-sectional view schematically showing the structure of the luminescent composite particles of the present invention. The luminescent composite particle 100 has a perovskite compound particle 10 and a silicon compound layer 20 formed on the surface thereof. It is sufficient that the silicon compound layer 20 is formed on at least a part of the surface of the perovskite compound particles 10.
<ペロブスカイト化合物粒子>
 ペロブスカイト化合物粒子10は、A、B、及びXを構成成分とするペロブスカイト型結晶構造を有する化合物(A、B、及びXは上記と同意義である、以下、これを「ペロブスカイト化合物(1)」という。)から成る粒子である。ペロブスカイト化合物(1)の構造としては、3次元構造、2次元構造、疑似2次元(quasi-2D)構造のいずれの構造であってもよい。
 3次元構造の場合、ペロブスカイト化合物(1)の組成式は、ABX(3+δ)で表される。
 2次元構造の場合、ペロブスカイト化合物(1)の組成式は、ABX(4+δ)で表される。
<Perovskite compound particles>
The perovskite compound particle 10 is a compound having a perovskite-type crystal structure containing A, B, and X as constituents (A, B, and X have the same meanings as described above, hereinafter referred to as “perovskite compound (1)”. It is a particle consisting of.). The structure of the perovskite compound (1) may be any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional (quasi-2D) structure.
In the case of a three-dimensional structure, the composition formula of the perovskite compound (1) is represented by ABX (3 + δ) .
In the case of a two-dimensional structure, the composition formula of the perovskite compound (1) is represented by A 2 BX (4 + δ) .
 ここで、δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。例えば、Aが1価の陽イオン、Bが2価の陽イオン、Xが1価の陰イオンである場合、ペロブスカイト化合物(1)が電気的に中性となるようにδを選択することができる。ペロブスカイト化合物(1)が電気的に中性とは、ペロブスカイト化合物(1)の電荷が0であることを意味する。 Here, δ is a number that can be appropriately changed according to the charge balance of B, and is −0.7 or more and 0.7 or less. For example, when A is a monovalent cation, B is a divalent cation, and X is a monovalent anion, δ can be selected so that the perovskite compound (1) is electrically neutral. can. The fact that the perovskite compound (1) is electrically neutral means that the charge of the perovskite compound (1) is zero.
 ペロブスカイト化合物(1)は、Bを中心とし、頂点をXとする八面体を含む。八面体は、BXで表される。
 ペロブスカイト化合物(1)が3次元構造を有する場合、ペロブスカイト化合物(1)に含まれるBXは、八面体(BX)において頂点に位置する1つのXを、結晶中で隣り合う2つの八面体(BX)で共有することで、3次元ネットワークを構成する。
The perovskite compound (1) contains an octahedron centered on B and having an apex X. The octahedron is represented by BX 6 .
When the perovskite compound (1) has a three-dimensional structure, the BX 6 contained in the perovskite compound (1) has one X located at the apex of the octahedron (BX 6 ) and two octahedrons adjacent to each other in the crystal. By sharing with (BX 6 ), a three-dimensional network is configured.
 ペロブスカイト化合物(1)が2次元構造を有する場合、ペロブスカイト化合物(1)に含まれるBXは、八面体(BX)において頂点に位置する2つのXを、結晶中で隣り合う2つの八面体(BX)で共有することで八面体の稜線を共有し、2次元的に連なった層を構成する。ペロブスカイト化合物(1)では、2次元的に連なったBXからなる層と、Aからなる層と、が交互に積層された構造を有する。 When the perovskite compound (1) has a two-dimensional structure, the BX 6 contained in the perovskite compound (1) has two Xs located at the vertices of the octahedron (BX 6 ) and two octahedrons adjacent to each other in the crystal. By sharing with (BX 6 ), the ridgeline of the octahedron is shared to form a two-dimensionally connected layer. The perovskite compound (1) has a structure in which a layer made of BX 6 and a layer made of A, which are two-dimensionally connected, are alternately laminated.
 ペロブスカイト化合物(1)は、3次元構造を有することが好ましい。 The perovskite compound (1) preferably has a three-dimensional structure.
(構成成分A)
 ペロブスカイト化合物(1)を構成するAは、1価の陽イオンである。Aとしては、セシウムイオン、有機アンモニウムイオン、又はアミジニウムイオンが挙げられる。
(Component A)
A constituting the perovskite compound (1) is a monovalent cation. Examples of A include cesium ion, organic ammonium ion, and amidinium ion.
(有機アンモニウムイオン)
 Aの有機アンモニウムイオンとして具体的には、下記式(A3)で表される陽イオンが挙げられる。
(Organic ammonium ion)
Specific examples of the organic ammonium ion of A include a cation represented by the following formula (A3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(A3)中、R~Rは、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表す。但し、R~Rは、少なくとも1つがアルキル基又はシクロアルキル基であり、R~Rの全てが同時に水素原子となることはない。 In the formula (A3), R 6 to R 9 independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group. However, at least one of R 6 to R 9 is an alkyl group or a cycloalkyl group, and not all of R 6 to R 9 become hydrogen atoms at the same time.
 R~Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。また、R~Rで表されるアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。 The alkyl group represented by R 6 to R 9 may be linear or branched. Further, the alkyl groups represented by R 6 to R 9 may independently have an amino group as a substituent.
 R~Rで表されるアルキル基の炭素原子数は、それぞれ独立に通常1~20であり、1~4であることが好ましく、1~3であることがより好ましく、1であることがさらに好ましい。 The number of carbon atoms of the alkyl groups represented by R 6 to R 9 is usually 1 to 20, preferably 1 to 4, more preferably 1 to 3, and 1 respectively. Is even more preferable.
 R~Rで表されるシクロアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。 The cycloalkyl groups represented by R 6 to R 9 may independently have an amino group as a substituent.
 R~Rで表されるシクロアルキル基の炭素原子数は、それぞれ独立に通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, respectively. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R~Rで表される基としては、それぞれ独立に、水素原子又はアルキル基であることが好ましい。 The groups represented by R 6 to R 9 are preferably hydrogen atoms or alkyl groups independently of each other.
 ペロブスカイト化合物(1)が、Aとして上記式(A3)で表される有機アンモニウムイオンを含む場合、式(A3)に含まれ得るアルキル基及びシクロアルキル基の数は少ないとよい。また、式(A3)に含まれ得るアルキル基及びシクロアルキル基の炭素原子数は小さいとよい。これにより、発光強度が高い3次元構造のペロブスカイト化合物(1)を得ることができる。 When the perovskite compound (1) contains an organic ammonium ion represented by the above formula (A3) as A, the number of alkyl groups and cycloalkyl groups that can be contained in the formula (A3) is preferably small. Further, the number of carbon atoms of the alkyl group and the cycloalkyl group that can be contained in the formula (A3) is preferably small. This makes it possible to obtain a perovskite compound (1) having a three-dimensional structure having high emission intensity.
 式(A3)で表される有機アンモニウムイオンにおいて、R~Rで表されるアルキル基及びシクロアルキル基に含まれる炭素原子の合計数は1~4であることが好ましい。
また、式(A3)で表される有機アンモニウムイオンにおいて、R~Rのうちの1つが炭素原子数1~3のアルキル基であり、R~Rのうちの3つが水素原子であることがより好ましい。
In the organic ammonium ion represented by the formula (A3), the total number of carbon atoms contained in the alkyl group represented by R 6 to R 9 and the cycloalkyl group is preferably 1 to 4.
Further, in the organic ammonium ion represented by the formula (A3), one of R 6 to R 9 is an alkyl group having 1 to 3 carbon atoms, and three of R 6 to R 9 are hydrogen atoms. It is more preferable to have.
 R~Rのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。 The alkyl groups of R 6 to R 9 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and isopentyl group. , Neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl Group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-ethylpentyl Group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl Examples thereof include a group, an octadecyl group, a nonadecyl group, and an icosyl group.
 R~Rのシクロアルキル基としては、それぞれ独立にR~Rのアルキル基で例示した炭素原子数3以上のアルキル基が環を形成したものが挙げられる。一例として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等を例示できる。 Examples of the cycloalkyl groups of R 6 to R 9 include those obtained by independently forming a ring of alkyl groups having 3 or more carbon atoms exemplified by the alkyl groups of R 6 to R 9 . As an example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group. Etc. can be exemplified.
 Aで表される有機アンモニウムイオンとしては、CHNH (メチルアンモニウムイオンともいう。)、CNH (エチルアンモニウムイオンともいう。)又はCNH (プロピルアンモニウムイオンともいう。)であることが好ましく、メチルアンモニウムイオン又はエチルアンモニウムイオンであることより好ましく、メチルアンモニウムイオンであることがさらに好ましい。 Organic ammonium ions represented by A include CH 3 NH 3+ (also referred to as methylammonium ion) , C2H 5 NH 3+ ( also referred to as ethylammonium ion) or C3 H7 NH 3+ (propyl) . It is also preferably ammonium ion), more preferably methylammonium ion or ethylammonium ion, and even more preferably methylammonium ion.
(アミジニウムイオン)
 Aで表されるアミジニウムイオンとしては、例えば、下記式(A4)で表されるアミジニウムイオンが挙げられる。
(Amidinium ion)
Examples of the amidinium ion represented by A include the amidinium ion represented by the following formula (A4).
(R1011N=CH-NR1213・・・(A4) (R 10 R 11 N = CH-NR 12 R 13 ) + ... (A4)
 式(A4)中、R10~R13は、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表す。 In formula (A4), R 10 to R 13 each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
 R10~R13で表されるアルキル基は、それぞれ独立に直鎖状であっても、分岐鎖状であってもよい。また、R10~R13で表されるアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。 The alkyl groups represented by R 10 to R 13 may be independently linear or branched. Further, the alkyl groups represented by R 10 to R 13 may independently have an amino group as a substituent.
 R10~R13で表されるアルキル基の炭素原子数は、それぞれ独立に通常1~20であり、1~4であることが好ましく、1~3であることがより好ましい。 The number of carbon atoms of the alkyl groups represented by R 10 to R 13 is usually 1 to 20 independently, preferably 1 to 4, and more preferably 1 to 3.
 R10~R13で表されるシクロアルキル基は、それぞれ独立に置換基として、アミノ基を有していてもよい。 The cycloalkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
 R10~R13で表されるシクロアルキル基の炭素原子数は、それぞれ独立に通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The number of carbon atoms of the cycloalkyl group represented by R 10 to R 13 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, respectively. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R10~R13のアルキル基の具体例としては、それぞれ独立にR~Rにおいて例示したアルキル基と同じ基が挙げられる。
 R10~R13のシクロアルキル基の具体例としては、それぞれ独立にR~Rにおいて例示したシクロアルキル基と同じ基が挙げられる。
Specific examples of the alkyl groups of R 10 to R 13 include the same groups as the alkyl groups exemplified in R 6 to R 9 , respectively.
Specific examples of the cycloalkyl groups of R 10 to R 13 include the same groups as the cycloalkyl groups exemplified in R 6 to R 9 , respectively.
 R10~R13で表される基としては、それぞれ独立に水素原子又はアルキル基が好ましい。 As the group represented by R 10 to R 13 , a hydrogen atom or an alkyl group is preferable independently.
 式(A4)に含まれる、アルキル基及びシクロアルキル基の数を少なくすること、並びにアルキル基及びシクロアルキル基の炭素原子数を小さくすることにより、発光強度が高い3次元構造のペロブスカイト化合物(1)を得ることができる。 By reducing the number of alkyl groups and cycloalkyl groups contained in the formula (A4) and reducing the number of carbon atoms of the alkyl groups and cycloalkyl groups, the perovskite compound (1) having a three-dimensional structure with high emission intensity ) Can be obtained.
 アミジニウムイオンにおいて、R10~R13で表されるアルキル基及びシクロアルキル基に含まれる炭素原子数の合計数は1~4であることが好ましく、R10が炭素原子数1のアルキル基であり、R11~R13が水素原子であることがさらに好ましい。 In the amidinium ion, the total number of carbon atoms contained in the alkyl group represented by R 10 to R 13 and the cycloalkyl group is preferably 1 to 4, and R 10 is an alkyl group having 1 carbon atom. It is more preferable that R 11 to R 13 are hydrogen atoms.
 ペロブスカイト化合物(1)において、Aがセシウムイオン、炭素原子数が3以下の有機アンモニウムイオン、又は炭素原子数が3以下のアミジニウムイオンである場合、一般的にペロブスカイト化合物(1)は3次元構造を有する。 In the perovskite compound (1), when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound (1) generally has a three-dimensional structure. Have.
 ペロブスカイト化合物(1)において、Aが炭素原子数4以上の有機アンモニウムイオン、又は炭素原子数4以上のアミジニウムイオンである場合、ペロブスカイト化合物(1)は、2次元構造及び擬似2次元(quasi-2D)構造のいずれか一方又は両方を有する。この場合、ペロブスカイト化合物(1)は、2次元構造又は疑似2次元構造を、結晶の一部又は全体に有することができる。
 2次元のペロブスカイト型結晶構造が複数積層すると3次元のペロブスカイト型結晶構造と同等になる(参考文献:P.PBoixら、J.Phys.Chem.Lett.2015,6,898-907など)。
In the perovskite compound (1), when A is an organic ammonium ion having 4 or more carbon atoms or an amidinium ion having 4 or more carbon atoms, the perovskite compound (1) has a two-dimensional structure and a pseudo two-dimensional (quasi-). 2D) Has one or both of the structures. In this case, the perovskite compound (1) can have a two-dimensional structure or a pseudo two-dimensional structure in a part or the whole of the crystal.
When a plurality of two-dimensional perovskite-type crystal structures are laminated, they become equivalent to a three-dimensional perovskite-type crystal structure (references: P. PBoix et al., J. Phys. Chem. Lett. 2015, 6, 898-907, etc.).
 ペロブスカイト化合物(1)中のAは、セシウムイオン、又はアミジニウムイオンが好ましく、アミジニウムイオンがより好ましい。 As A in the perovskite compound (1), cesium ion or amidinium ion is preferable, and amidinium ion is more preferable.
 ペロブスカイト化合物(1)においては、Aを1種のみ用いてもよく、2種以上を併用してもよい。 In the perovskite compound (1), only one type of A may be used, or two or more types may be used in combination.
(構成成分B)
 ペロブスカイト化合物(1)を構成するBは、1価の金属イオン、2価の金属イオン、及び3価の金属イオンからなる群より選ばれる1種類以上の金属イオンであってよい。Bは2価の金属イオンを含むことが好ましく、鉛イオン、スズイオン、アンチモンイオン、ビスマスイオン、及びインジウムイオンからなる群より選ばれる1種類以上の金属イオンを含むことがより好ましく、鉛イオン又はスズイオンがさらに好ましく、鉛イオンが特に好ましい。
(Component B)
B constituting the perovskite compound (1) may be one or more kinds of metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions. B preferably contains a divalent metal ion, more preferably one or more metal ions selected from the group consisting of lead ion, tin ion, antimony ion, bismuth ion, and indium ion, and more preferably lead ion or tin ion. Is more preferable, and lead ion is particularly preferable.
 ペロブスカイト化合物(1)においては、Bを1種のみ用いてもよく、2種以上を併用してもよい。 In the perovskite compound (1), only one type of B may be used, or two or more types may be used in combination.
(構成成分X)
 ペロブスカイト化合物(1)を構成するXは、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンであってよい。
(Component X)
X constituting the perovskite compound (1) may be at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
 ハロゲン化物イオンとしては、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオンを挙げることができる。Xは、臭化物イオンであることが好ましい。 Examples of the halide ion include chloride ion, bromide ion, fluoride ion, and iodide ion. X is preferably a bromide ion.
 ペロブスカイト化合物(1)においては、Xを1種のみ用いてもよく、2種以上を併用してもよい。 In the perovskite compound (1), only one type of X may be used, or two or more types may be used in combination.
 Xが2種以上のハロゲン化物イオンを含む場合、ハロゲン化物イオンの含有比率は、発光波長により適宜選ぶことができる。例えば、臭化物イオンと塩化物イオンとの組み合わせ、又は、臭化物イオンとヨウ化物イオンとの組み合わせとすることができる。 When X contains two or more kinds of halide ions, the content ratio of the halide ions can be appropriately selected depending on the emission wavelength. For example, it can be a combination of a bromide ion and a chloride ion, or a combination of a bromide ion and an iodide ion.
 Xは、所望の発光波長に応じて適宜選択することができる。 X can be appropriately selected according to the desired emission wavelength.
 Xが臭化物イオンであるペロブスカイト化合物(1)は、通常480nm以上、好ましくは500nm以上、より好ましくは520nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 The perovskite compound (1) in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more.
 また、Xが臭化物イオンであるペロブスカイト化合物(1)は、通常700nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
Further, the perovskite compound (1) in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物(1)中のXが臭化物イオンの場合、発する蛍光のピークは、通常480~700nmであり、500~600nmであることが好ましく、520~580nmであることがより好ましい。 When X in the perovskite compound (1) is a bromide ion, the peak of the emitted fluorescence is usually 480 to 700 nm, preferably 500 to 600 nm, and more preferably 520 to 580 nm.
 Xがヨウ化物イオンであるペロブスカイト化合物(1)は、通常520nm以上、好ましくは530nm以上、より好ましくは540nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 The perovskite compound (1) in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more.
 また、Xがヨウ化物イオンであるペロブスカイト化合物(1)は、通常800nm以下、好ましくは750nm以下、より好ましくは730nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
Further, the perovskite compound (1) in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物(1)中のXがヨウ化物イオンの場合、発する蛍光のピークは、通常520~800nmであり、530~750nmであることが好ましく、540~730nmであることがより好ましい。 When X in the perovskite compound (1) is an iodide ion, the peak of the emitted fluorescence is usually 520 to 800 nm, preferably 530 to 750 nm, and more preferably 540 to 730 nm.
 Xが塩化物イオンであるペロブスカイト化合物(1)は、通常300nm以上、好ましくは310nm以上、より好ましくは330nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 The perovskite compound (1) in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 300 nm or more, preferably 310 nm or more, more preferably 330 nm or more.
 また、Xが塩化物イオンであるペロブスカイト化合物(1)は、通常600nm以下、好ましくは580nm以下、より好ましくは550nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
Further, the perovskite compound (1) in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 600 nm or less, preferably 580 nm or less, more preferably 550 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物(1)中のXが塩化物イオンの場合、発する蛍光のピークは、通常300~600nmであり、310~580nmであることが好ましく、330~550nmであることがより好ましい。 When X in the perovskite compound (1) is a chloride ion, the peak of the emitted fluorescence is usually 300 to 600 nm, preferably 310 to 580 nm, and more preferably 330 to 550 nm.
(3次元構造のペロブスカイト化合物(1)の例示)
 ABX(3+δ)で表される3次元構造のペロブスカイト化合物(1)の好ましい例としては、CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBr、(HN=CH-NH)PbCl、(HN=CH-NH)PbIを挙げることができる。
(Example of perovskite compound (1) having a three-dimensional structure)
Preferred examples of the perovskite compound (1) having a three-dimensional structure represented by ABX (3 + δ) are CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 3 , and CH 3 NH 3 PbBr ( CH 3 NH 3 PbBr 3). 3-y) I y (0 <y <3), CH 3 NH 3 PbBr (3-y) Cly (0 <y <3), (H 2 N = CH-NH 2 ) PbBr 3 , (H 2 ) N = CH-NH 2 ) PbCl 3 and (H 2 N = CH-NH 2 ) PbI 3 can be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、CHNHPb(1-a)CaBr(0<a≦0.7)、CHNHPb(1-a)SrBr(0<a≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)BaBr(0<a≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0<δ≦0.7)も挙げることができる。 Preferred examples of the perovskite compound (1) having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Ca a Br 3 (0 <a ≦ 0.7) and CH 3 NH 3 Pb (1-a) Sr. a Br 3 (0 <a ≤ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3 + δ) (0 <a ≤ 0.7, 0 <δ ≤ 0.7), CH 3 NH 3 Pb (1-a) Ba a Br 3 (0 <a ≤ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3 + δ) (0 <a ≤ 0.7, 0 <δ ≤) 0.7) can also be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)も挙げることができる。 Preferred examples of the perovskite compound (1) having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0). CH 3 NH 3 Pb (1-a) Li a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can also be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)も挙げることができる。 Preferred examples of the perovskite compound (1) having a three-dimensional structure include CsPb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0), CsPb (1- a). a) Li a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can also be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)も挙げることができる。 A preferred example of the perovskite compound (1) having a three-dimensional structure is CH 3 NH 3 Pb (1-a) Na a Br (3 + δ-y) I y (0 <a ≤ 0.7, -0.7 ≤ δ). <0,0 <y <3), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ-y) I y (0 <a≤0.7, -0.7≤δ <0,0 < y <3), CH 3 NH 3 Pb (1-a) Na a Br (3 + δ-y) Cly (0 <a≤0.7, -0.7≤δ <0,0 <y <3), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ-y) Cly (0 <a≤0.7, -0.7≤δ <0,0 <y <3) can also be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、(HN=CH-NH)Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)も挙げることができる。 A preferred example of the perovskite compound (1) having a three-dimensional structure is (H 2 N = CH-NH 2 ) Pb (1-a) Na a Br (3 + δ) (0 <a ≤ 0.7, -0.7). ≤δ <0), (H 2 N = CH-NH 2 ) Pb (1-a) Li a Br (3 + δ) (0 <a ≤ 0.7, -0.7 ≤ δ <0), (H 2 ) N = CH-NH 2 ) Pb (1-a) Na a Br (3 + δ-y) I y (0 <a ≤ 0.7, -0.7 ≤ δ <0, 0 <y <3), (H) 2 N = CH-NH 2 ) Pb (1-a) Na a Br (3 + δ-y) Cly (0 <a≤0.7, -0.7≤δ <0,0 <y <3) is also mentioned. be able to.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)も挙げることができる。 Preferred examples of the perovskite compound (1) having a three-dimensional structure include CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0 <y <3), and CsPbBr (3-y) Cly (0). <Y <3) can also be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、CHNHPb(1-a)ZnBr(0<a≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CHNHPb(1-a)CoBr(0<a≦0.7)、CHNHPb(1-a)MnBr(0<a≦0.7)、CHNHPb(1-a)MgBr(0<a≦0.7)も挙げることができる。 Preferred examples of the perovskite compound (1) having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br 3 (0 <a ≦ 0.7) and CH 3 NH 3 Pb (1-a) Al. a Br (3 + δ) (0 <a ≤ 0.7, 0 ≤ δ ≤ 0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0 <a ≤ 0.7), CH 3 NH 3 Pb (1-a) Mn a Br 3 (0 <a ≦ 0.7), CH 3 NH 3 Pb (1-a) Mg a Br 3 (0 <a ≦ 0.7) can also be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、CsPb(1-a)ZnBr(0<a≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7、0<δ≦0.7)、CsPb(1-a)CoBr(0<a≦0.7)、CsPb(1-a)MnBr(0<a≦0.7)、CsPb(1-a)MgBr(0<a≦0.7)も挙げることができる。 Preferred examples of the perovskite compound (1) having a three-dimensional structure include CsPb (1-a) Zn a Br 3 (0 <a≤0.7), CsPb (1-a) Al a Br (3 + δ) (0 < a ≦ 0.7, 0 <δ ≦ 0.7), CsPb (1-a) Co a Br 3 (0 <a ≦ 0.7), CsPb (1-a) Mn a Br 3 (0 <a ≦) 0.7), CsPb (1-a) Mg a Br 3 (0 <a ≦ 0.7) can also be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、CHNHPb(1-a)ZnBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)ZnBr(3-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7、0<δ≦0.7、0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)MgBr(3-y)Cl(0<a≦0.7、0<y<3)も挙げることができる。 A preferred example of the perovskite compound (1) having a three-dimensional structure is CH 3 NH 3 Pb (1-a) Zn a Br (3-y) I y (0 <a ≦ 0.7, 0 <y <3). , CH 3 NH 3 Pb (1-a) Al a Br (3 + δ-y) I y (0 <a ≤ 0.7, 0 <δ ≤ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Co a Br (3-y) I y (0 <a ≤ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) I y (0 <a≤0.7,0 <y <3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) I y (0 <a≤0.7, 0 <y < 3), CH 3 NH 3 Pb (1-a) Zn a Br (3-y) Cly (0 <a≤0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Al a Br (3 + δ-y) Cly (0 <a≤0.7, 0 <δ≤0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Co a Br (3 + δ-y ) ) Cly (0 <a≤0.7, 0 < y <3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) Cly (0 <a≤0.7, 0 < y <3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) Cly (0 <a ≦ 0.7, 0 <y <3) can also be mentioned.
 3次元構造のペロブスカイト化合物(1)の好ましい例としては、(HN=CH-NH)ZnBr(0<a≦0.7)、(HN=CH-NH)MgBr(0<a≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)(0<a≦0.7、0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)Cl(0<a≦0.7、0<y<3)も挙げることができる。 Preferred examples of the perovskite compound (1) having a three-dimensional structure include (H 2 N = CH-NH 2 ) Zn a Br 3 (0 <a ≦ 0.7), (H 2 N = CH-NH 2 ) Mg. a Br 3 (0 <a ≦ 0.7), (H 2 N = CH-NH 2 ) Pb (1-a) Zn a Br (3-y) I y (0 <a ≦ 0.7, 0 < y <3), (H 2 N = CH-NH 2 ) Pb (1-a) Zn a Br (3-y) Cly (0 <a≤0.7, 0 <y <3) can also be mentioned. can.
 上述した3次元構造のペロブスカイト化合物(1)の中でも、CsPbBr、CsPbBr(3-y)(0<y<3)、(HN=CH-NH)PbBrがより好ましく、(HN=CH-NH)PbBrがさらに好ましい。 Among the above-mentioned three-dimensionally structured perovskite compounds (1), CsPbBr 3 , CsPbBr (3-y) Iy (0 < y < 3), and (H2N = CH-NH 2) PbBr 3 are more preferable. H 2 N = CH-NH 2 ) PbBr 3 is more preferable.
(2次元構造のペロブスカイト化合物(1)の例示)
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(CNHPbBr、(CNHPbCl、(CNHPbI、(C15NHPbBr、(C15NHPbCl、(C15NHPbI、(CNHPb(1-a)LiBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(CNHPb(1-a)NaBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(CNHPb(1-a)RbBr(4+δ)(0<a≦0.7、-0.7≦δ<0)を挙げることができる。
(Example of perovskite compound (1) having a two-dimensional structure)
Preferred examples of the perovskite compound (1) having a two-dimensional structure are (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1- a) Li a Br (4 + δ) (0 <a ≤ 0.7, -0.7 ≤ δ <0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ) (0) <a ≤ 0.7, -0.7 ≤ δ <0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + δ) (0 <a ≤ 0.7, -0. 7 ≦ δ <0) can be mentioned.
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(C15NHPb(1-a)NaBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(C15NHPb(1-a)LiBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(C15NHPb(1-a)RbBr(4+δ)(0<a≦0.7、-0.7≦δ<0)も挙げることができる。 Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ) (0 <a ≤ 0.7, -0.7 ≤). δ <0), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ) (0 <a ≤ 0.7, -0.7 ≤ δ <0), (C 7 H 15 ) NH 3 ) 2 Pb (1-a) Rba a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can also be mentioned.
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(CNHPb(1-a)NaBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)も挙げることができる。 Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ-y) I y (0 <a ≦ 0.7, − 0.7 ≤ δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ-y) I y (0 <a ≤ 0.7,- 0.7 ≤ δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rba a Br (4 + δ-y) I y (0 <a ≤ 0.7,- 0.7 ≦ δ <0, 0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(CNHPb(1-a)NaBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)も挙げることができる。 A preferred example of the perovskite compound (1) having a two-dimensional structure is (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ-y) Cly (0 <a ≦ 0.7, − 0.7 ≤ δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ-y) Cly (0 <a ≤ 0.7,- 0.7 ≦ δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rba a Br (4 + δ-y) Cly (0 <a ≦ 0.7,- 0.7 ≦ δ <0, 0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(CNHPbBr、(C15NHPbBrも挙げることができる。 Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 PbBr 4 and (C 7 H 15 NH 3 ) 2 PbBr 4 .
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(CNHPbBr(4-y)Cl(0<y<4)、(CNHPbBr(4-y)(0<y<4)も挙げることができる。 Preferred examples of the two-dimensional structure perovskite compound (1) are (C 4 H 9 NH 3 ) 2 PbBr (4-y) Cly (0 <y <4), (C 4 H 9 NH 3 ) 2 PbBr. (4-y) I y (0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(CNHPb(1-a)ZnBr(0<a≦0.7)、(CNHPb(1-a)MgBr(0<a≦0.7)、(CNHPb(1-a)CoBr(0<a≦0.7)、(CNHPb(1-a)MnBr(0<a≦0.7)も挙げることができる。 Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 <a ≦ 0.7), (C 4 H 9 NH). 3 ) 2 Pb (1-a) Mg a Br 4 (0 <a ≤ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 <a ≤ 0.7) ), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 <a ≦ 0.7) can also be mentioned.
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(C15NHPb(1-a)ZnBr(0<a≦0.7)、(C15NHPb(1-a)MgBr(0<a≦0.7)、(C15NHPb(1-a)CoBr(0<a≦0.7)、(C15NHPb(1-a)MnBr(0<a≦0.7)も挙げることができる。 Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 7 H 15 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 <a ≦ 0.7), (C 7 H 15 NH). 3 ) 2 Pb (1-a) Mg a Br 4 (0 <a ≤ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 <a ≤ 0.7) ), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 <a ≦ 0.7) can also be mentioned.
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(CNHPb(1-a)ZnBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)MgBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)CoBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)MnBr(4-y)(0<a≦0.7、0<y<4)も挙げることができる。 Preferred examples of the perovskite compound (1) having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) I y (0 <a ≤ 0.7, 0). <Y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) I y (0 <a ≤ 0.7, 0 <y <4), (C 4 ) H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) I y (0 <a ≤ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1 ) -A ) Mn a Br (4-y) I y (0 <a ≦ 0.7, 0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物(1)の好ましい例としては、(CNHPb(1-a)ZnBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)MgBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)CoBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)MnBr(4-y)Cl(0<a≦0.7、0<y<4)も挙げることができる。 A preferred example of the perovskite compound (1) having a two-dimensional structure is (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) Cly (0 <a ≤ 0.7, 0). <Y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) Cly (0 <a ≤ 0.7, 0 <y <4), (C 4 ) H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) Cly (0 <a ≤ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1 ) -A ) Mn a Br (4-y) Cly (0 <a≤0.7, 0 <y <4) can also be mentioned.
<ペロブスカイト化合物粒子の一次粒子径>
 本明細書において、ペロブスカイト化合物粒子の一次粒子径とは、複数のペロブスカイト化合物粒子で構成されるペロブスカイト化合物粒子の混合物におけるペロブスカイト化合物粒子の平均粒径であり、その平均粒径は、1.0~80.0nm以下であることが好ましい。分散媒体中において発光性複合粒子が安定的に分散できる観点から、ペロブスカイト化合物粒子の平均粒径は3.0nm以上であることが好ましく、5.0nm以上であることがより好ましく、10.0nm以上であることがさらに好ましい。また、発光強度が高い発光性複合粒子を得る観点から、ペロブスカイト化合物粒子の平均粒径は50.0nm以下であることが好ましく、30.0nm以下であることがより好ましく、20.0nm以下であることがさらに好ましい。
<Primary particle size of perovskite compound particles>
In the present specification, the primary particle size of the perovskite compound particles is the average particle size of the perobskite compound particles in the mixture of the perobskite compound particles composed of a plurality of perobskite compound particles, and the average particle size thereof is 1.0 to 1. It is preferably 80.0 nm or less. From the viewpoint that the luminescent composite particles can be stably dispersed in the dispersion medium, the average particle size of the perovskite compound particles is preferably 3.0 nm or more, more preferably 5.0 nm or more, and more preferably 10.0 nm or more. Is more preferable. Further, from the viewpoint of obtaining luminescent composite particles having high luminescence intensity, the average particle size of the perovskite compound particles is preferably 50.0 nm or less, more preferably 30.0 nm or less, and 20.0 nm or less. Is even more preferable.
 ペロブスカイト化合物粒子の平均粒径は、例えば透過型電子顕微鏡(以下、TEMともいう。)、又は走査型電子顕微鏡(以下、SEMともいう。)を用いて観察することにより測定することができる。具体的には、TEM、又はSEMにより、無作為に選んだ30個以上のペロブスカイト化合物粒子の立方体もしくは直方体形状をした粒子の最も長い辺の長さを測定し、測定値の算術平均値を計算することにより、平均粒径を求めることができる。 The average particle size of the perovskite compound particles can be measured by observing with, for example, a transmission electron microscope (hereinafter, also referred to as TEM) or a scanning electron microscope (hereinafter, also referred to as SEM). Specifically, by TEM or SEM, the length of the longest side of cube-shaped or rectangular parallelepiped-shaped particles of 30 or more randomly selected perovskite compound particles is measured, and the arithmetic mean value of the measured values is calculated. By doing so, the average particle size can be obtained.
 ペロブスカイト化合物粒子を観察する方法としては、例えば、ペロブスカイト化合物粒子を含む分散液組成物をSEM、又はTEMなどを用いて観察する方法が挙げられる。さらに、SEM、又はTEMを用いたエネルギー分散型X線分析(EDX)測定では、詳細な元素分布を解析することができる。空間分解能が高い観点から、TEMで観察する方法が好ましい。 Examples of the method for observing the perovskite compound particles include a method of observing the dispersion liquid composition containing the perovskite compound particles using SEM, TEM, or the like. Further, in the energy dispersive X-ray analysis (EDX) measurement using SEM or TEM, detailed element distribution can be analyzed. From the viewpoint of high spatial resolution, the method of observing with TEM is preferable.
<ケイ素化合物層>
 ケイ素化合物層20は、加水分解性ケイ素化合物及びその縮合物からなる群より選ばれる少なくとも1つの化合物から成る層である。加水分解性ケイ素化合物とは、加水分解可能な官能基を有し、これが縮合して、Si-O-Si結合を形成するケイ素化合物をいう。「縮合」とは、Si-N結合、Si-SR結合(Rは水素原子又は有機基)又はSi-OR結合(Rは水素原子又は有機基)を有するケイ素化合物が加水分解し、Si-O-Si結合を有するケイ素化合物が生成することをいう。Si-O-Si結合は、分子間の縮合反応で生成してもよく、分子内の縮合反応で生成してもよい。
<Silicon compound layer>
The silicon compound layer 20 is a layer composed of at least one compound selected from the group consisting of a hydrolyzable silicon compound and a condensate thereof. The hydrolyzable silicon compound is a silicon compound having a hydrolyzable functional group, which is condensed to form a Si—O—Si bond. "Condensation" means that a silicon compound having a Si—N bond, a Si—SR bond (R is a hydrogen atom or an organic group) or a Si—OR bond (R is a hydrogen atom or an organic group) is hydrolyzed and Si—O. -It means that a silicon compound having a Si bond is produced. The Si—O—Si bond may be formed by an intermolecular condensation reaction or an intramolecular condensation reaction.
 加水分解性ケイ素化合物として、好ましくは、シラザン及び加水分解性シラン化合物が挙げられる(これらを、以下、「加水分解性ケイ素化合物(2)」という。)。ケイ素化合物層20がペロブスカイト化合物粒子10の表面を被覆することによって、量子収率を向上させ、発光波長を短波長化するという効果が得られる。 Preferred examples of the hydrolyzable silicon compound include silazane and a hydrolyzable silane compound (hereinafter, these are referred to as "hydrolyzable silicon compound (2)"). By coating the surface of the perovskite compound particles 10 with the silicon compound layer 20, the effect of improving the quantum yield and shortening the emission wavelength can be obtained.
<シラザン>
 シラザンは、Si-N-Si結合を有する化合物である。シラザンは、直鎖状、分岐鎖状、又は環状のいずれであってもよい。
<Shirazan>
Cilazan is a compound having a Si—N—Si bond. Cilazan may be linear, branched, or cyclic.
 シラザンは、低分子シラザンであっても、高分子シラザンであってもよい。本明細書では、高分子シラザンをポリシラザンと記載することがある。 The shirazan may be a small molecule shirazan or a high molecular weight shirazan. In the present specification, the polymer silazane may be referred to as polysilazane.
 本明細書において「低分子」とは、数平均分子量が600未満であることを意味する。
また、本明細書において「高分子」とは、数平均分子量が600以上2000以下であることを意味する。
As used herein, the term "small molecule" means that the number average molecular weight is less than 600.
Further, in the present specification, the term "polymer" means that the number average molecular weight is 600 or more and 2000 or less.
 本明細書において「数平均分子量」とは、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。 As used herein, the term "number average molecular weight" means a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
(低分子シラザン)
 低分子シラザンとしては、例えば、下記式(B1)で表されるジシラザンであることが好ましい。
(Small molecule silazan)
As the small molecule silazane, for example, disilazane represented by the following formula (B1) is preferable.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(B1)中、R14及びR15は、それぞれ独立して、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基を表す。 In the formula (B1), R 14 and R 15 are independently hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and a cycloalkyl having 3 to 20 carbon atoms. It represents a group, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
 R14及びR15は、アミノ基などの置換基を有していてもよい。複数あるR15は、同一であってもよく、異なっていてもよい。 R 14 and R 15 may have a substituent such as an amino group. The plurality of R 15s may be the same or different.
 式(B1)で表される低分子シラザンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザン、及び1,1,1,3,3,3-ヘキサメチルジシラザンが挙げられる。 Examples of the small molecule silazane represented by the formula (B1) include 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and 1,1,1. Examples thereof include 3,3,3-hexamethyldisilazane.
(低分子シラザン)
 低分子シラザンとしては、例えば、下記式(B2)で表される低分子シラザンも好ましい。
(Small molecule silazan)
As the small molecule silazane, for example, a small molecule silazane represented by the following formula (B2) is also preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(B2)中、R14、及びR15は、上記式(B1)におけるR14、及びR15と同様である。 In the formula (B2), R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
The plurality of R 14s may be the same or different.
The plurality of R 15s may be the same or different.
 式(B2)中、nは1以上20以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。 In equation (B2), n 1 represents an integer of 1 or more and 20 or less. n 1 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
 式(B2)で表される低分子シラザンとしては、オクタメチルシクロテトラシラザン、2,2,4,4,6,6-ヘキサメチルシクロトリシラザン、及び2,4,6-トリメチル-2,4,6-トリビニルシクロトリシラザンが挙げられる。 Examples of the small molecule silazane represented by the formula (B2) include octamethylcyclotetrasilazane, 2,2,4,4,6,6-hexamethylcyclotrisilazane, and 2,4,6-trimethyl-2,4. , 6-Trivinylcyclotrisilazane.
 低分子のシラザンとしては、オクタメチルシクロテトラシラザン、及び1,3-ジフェニルテトラメチルジシラザンが好ましく、オクタメチルシクロテトラシラザンがより好ましい。 As the small molecule silazane, octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable, and octamethylcyclotetrasilazane is more preferable.
(高分子シラザン)
 高分子シラザンとしては、例えば、下記式(B3)で表される高分子シラザン(ポリシラザン)が好ましい。
(Polymer Shirazan)
As the polymer silazane, for example, the polymer silazane (polysilazane) represented by the following formula (B3) is preferable.
 ポリシラザンは、Si-N-Si結合を有する高分子化合物である。式(B3)で表されるポリシラザンの構成単位は、一種であっても、複数種であってもよい。 Polysilazane is a polymer compound having a Si—N—Si bond. The constituent unit of polysilazane represented by the formula (B3) may be one kind or a plurality of kinds.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(B3)中、R14、及びR15は、上記式(B1)におけるR14、及びR15と同様である。 In the formula (B3), R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).
 式(B3)中、*は、結合手を表す。分子鎖末端のN原子の結合手には、R14が結合している。
 分子鎖末端のSi原子の結合手には、R15が結合している。
In equation (B3), * represents a bond. R14 is bonded to the bond of the N atom at the end of the molecular chain.
R15 is bonded to the bond of the Si atom at the end of the molecular chain.
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
The plurality of R 14s may be the same or different.
The plurality of R 15s may be the same or different.
 mは、2以上10000以下の整数を表す。 M represents an integer of 2 or more and 10000 or less.
 式(B3)で表されるポリシラザンは、例えば、R14、及びR15のすべてが水素原子であるパーヒドロポリシラザンでもよい。 The polysilazane represented by the formula (B3) may be, for example, perhydropolysilazane in which all of R 14 and R 15 are hydrogen atoms.
 また、式(B3)で表されるポリシラザンは、例えば、少なくとも1つのR15が水素原子以外の基であるオルガノポリシラザンであってもよい。用途に応じて、適宜にパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 Further, the polysilazane represented by the formula (B3) may be, for example, organopolysilazane in which at least one R15 is a group other than a hydrogen atom. Perhydropolysilazane and organopolysilazane may be appropriately selected depending on the intended use, and may be mixed and used.
 発光性複合粒子の分散性を向上させ、凝集を抑制する効果が高まる観点から、ケイ素化合物層は、式(B3)で表されるオルガノポリシラザンを含むことが好ましい。 From the viewpoint of improving the dispersibility of the luminescent composite particles and enhancing the effect of suppressing aggregation, the silicon compound layer preferably contains organopolysilazane represented by the formula (B3).
 式(B3)で表されるオルガノポリシラザンとしては、R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基であるオルガノポリシラザンであってもよい。 As the organopolysilazane represented by the formula (B3), at least one of R 14 and R 15 has an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms. It may be a cycloalkyl group, an aryl group having 6 to 20 carbon atoms, or an organopolysilazane which is an alkylsilyl group having 1 to 20 carbon atoms.
 その中でも、式(B3)で表されR14及びR15の少なくとも1つがメチル基であるオルガノポリシラザンが好ましい。 Among them, organopolysilazane represented by the formula (B3) in which at least one of R 14 and R 15 is a methyl group is preferable.
(高分子シラザン)
 高分子シラザンとしては、例えば、下記式(B4)で表される構造を有するポリシラザンも好ましい。
(Polymer Shirazan)
As the polymer silazane, for example, polysilazane having a structure represented by the following formula (B4) is also preferable.
 ポリシラザンは、分子内の一部に環構造を有していてもよく、例えば、式(B4)で表される構造を有していてもよい。 Polysilazane may have a ring structure in a part of the molecule, and may have a structure represented by the formula (B4), for example.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(B4)中、*は、結合手を表す。
 式(B4)の結合手は、式(B3)で表されるポリシラザンの結合手、又は式(B3)で表されるポリシラザンの構成単位の結合手と結合していてもよい。
In equation (B4), * represents a bond.
The bond of the formula (B4) may be bonded to the bond of polysilazane represented by the formula (B3) or the bond of the constituent unit of polysilazane represented by the formula (B3).
 また、ポリシラザンが、分子内に複数の式(B4)で表される構造を含む場合、式(B4)で表される構造の結合手は、他の式(B4)で表される構造の結合手と直接結合していてもよい。 Further, when polysilazane contains a structure represented by a plurality of formulas (B4) in the molecule, a bond of the structure represented by the formula (B4) is a bond of a structure represented by another formula (B4). It may be directly connected to the hand.
 式(B3)で表されるポリシラザンの結合手、式(B3)で表されるポリシラザンの構成単位の結合手、及び他の式(B4)で表される構造の結合手のいずれとも結合していないN原子の結合手には、R14が結合している。 It is bonded to any of the polysilazane bond represented by the formula (B3), the polysilazane constituent unit bond represented by the formula (B3), and the structural bond represented by the other formula (B4). R14 is bonded to the bond of no N atom.
 式(B3)で表されるポリシラザンの結合手、式(B3)で表されるポリシラザンの構成単位の結合手、及び他の式(B4)で表される構造の結合手のいずれとも結合していないSi原子の結合手には、R15が結合している。 It is bonded to any of the polysilazane bond represented by the formula (B3), the polysilazane constituent unit bond represented by the formula (B3), and the structural bond represented by the other formula (B4). R15 is bonded to the bond of no Si atom.
 nは、1以上10000以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。 n 2 represents an integer of 1 or more and 10000 or less. n 2 may be an integer of 1 or more and 10 or less, and may be 1 or 2.
 発光性複合粒子の分散性を向上させ、凝集を抑制する効果が高まる観点から、ケイ素化合物層は、式(B4)で表される構造を有するオルガノポリシラザンを含むことが好ましい。 From the viewpoint of improving the dispersibility of the luminescent composite particles and enhancing the effect of suppressing aggregation, the silicon compound layer preferably contains organopolysilazane having a structure represented by the formula (B4).
 式(B4)で表される構造を有するオルガノポリシラザンとしては、少なくとも1つの結合手がR14又はR15と結合し、当該R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基であるオルガノポリシラザンであってもよい。 As an organopolysilazane having a structure represented by the formula (B4), at least one bond is bonded to R 14 or R 15 , and at least one of the R 14 and R 15 is an alkyl having 1 to 20 carbon atoms. A group, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an organopolysilazane which is an alkylsilyl group having 1 to 20 carbon atoms. May be.
 その中でも、式(B4)で表される構造を含み、少なくとも1つの結合手がR14又はR15と結合し、当該R14及びR15の少なくとも1つがメチル基であるポリシラザンであることが好ましい。 Among them, it is preferable that the structure is represented by the formula (B4), at least one bond is bonded to R 14 or R 15 , and at least one of the R 14 and R 15 is polysilazane, which is a methyl group. ..
 一般的なポリシラザンは、例えば、直鎖構造と、6員環、又は8員環等の環構造とが存在した構造、すなわち前記式(B3)、前記式(B4)で表される構造を有する。一般的なポリシラザンの分子量は、数平均分子量(Mn)で600~2000程度(ポリスチレン換算)であり、分子量によって液体又は固体の物質でありうる。 The general polysilazane has, for example, a structure in which a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring exist, that is, a structure represented by the above formula (B3) and the above formula (B4). .. The molecular weight of general polysilazane is about 600 to 2000 (in terms of polystyrene) in terms of number average molecular weight (Mn), and may be a liquid or solid substance depending on the molecular weight.
 ポリシラザンは、市販品を使用してもよく、市販品としては、NN120-10、NN120-20、NAX120-20、NN110、NAX120、NAX110、NL120A、NL110A、NL150A、NP110、NP140(AZエレクトロニックマテリアルズ株式会社製)並びに、AZNN-120-20、Durazane(登録商標)1500 Slow Cure、Durazane1500 Rapid Cure、Durazane1800、及びDurazane1033(メルクパフォーマンスマテリアルズ株式会社製)等が挙げられる。 As the polysilazane, a commercially available product may be used, and the commercially available products include NN120-10, NN120-20, NAX120-20, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (AZ Electronic Materials Co., Ltd.). AZNN-120-20, Durazane (registered trademark) 1500 Slow Cure, Durazane 1500 Rapid Cure, Durazane 1800, Durazane 1033 (manufactured by Merck Performance Materials Co., Ltd.) and the like.
 ポリシラザンは、好ましくはAZNN-120-20、Durazane1500 Slow Cure、Durazane1500 Rapid Cureであり、より好ましくはDurazane1500 Slow Cureである。 The polysilazane is preferably AZNN-120-20, Durazane1500 Slow Cure, Durazane1500 Rapid Cure, and more preferably Durazane1500 SlowCure.
<シラザンの縮合物> <Condensate of Silazan>
 シラザンの縮合物としては、前記式(B1)で表されるジシラザンの縮合物、前記式(B2)で表される低分子シラザンの縮合物、前記式(B3)で表されるポリシラザンの縮合物、前記式(B4)で表される構造を分子内に有するポリシラザンの縮合物であることが好ましい。 The condensate of cilazan includes a condensate of disilazan represented by the formula (B1), a condensate of low molecular weight cilazan represented by the formula (B2), and a condensate of polysilazane represented by the formula (B3). , It is preferable that it is a condensate of polysilazane having a structure represented by the above formula (B4) in the molecule.
 式(B2)で表される低分子シラザンの縮合物について、式(B2)で表される低分子シラザンの縮合物に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~100%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~98%であることがより好ましく、30~95%であることがさらに好ましい。 Regarding the condensate of low molecular weight silazane represented by the formula (B2), the silicon atom which is not bonded to the nitrogen atom with respect to all the silicon atoms contained in the condensate of low molecular weight silazane represented by the formula (B2). The ratio is preferably 0.1 to 100%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 98%, further preferably 30 to 95%.
 なお、「窒素原子と結合していないケイ素原子の割合」は、後述する測定値を用いて、((Si(モル))-(Si-N結合中のN(モル)))/Si(モル)×100で求められる。縮合反応を考慮すると、「窒素原子と結合していないケイ素原子の割合」とは、「縮合処理にて生じるシロキサン結合に含まれるケイ素原子の割合」を意味する。 The "ratio of silicon atoms not bonded to nitrogen atoms" is defined as ((Si (mol))-(N (mol) in Si—N bond)) / Si (mol) using the measured values described later. ) × 100. Considering the condensation reaction, "the ratio of silicon atoms not bonded to the nitrogen atom" means "the ratio of silicon atoms contained in the siloxane bond generated in the condensation treatment".
 式(B3)で表されるポリシラザンの縮合物について、式(B3)で表されるポリシラザンの縮合物に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~100%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~98%であることがより好ましく、30~95%であることがさらに好ましい。 Regarding the polysilazane condensate represented by the formula (B3), the ratio of silicon atoms not bonded to the nitrogen atom to all the silicon atoms contained in the polysilazane condensate represented by the formula (B3) is 0. It is preferably 1 to 100%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 98%, further preferably 30 to 95%.
 式(B4)で表される構造を有するポリシラザンの縮合物について、式(B4)で表される構造を有するポリシラザンの縮合物に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~99%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~97%であることがより好ましく、30~95%であることがさらに好ましい。 Regarding the condensate of polysilazane having the structure represented by the formula (B4), silicon not bonded to the nitrogen atom for all the silicon atoms contained in the condensate of polysilazane having the structure represented by the formula (B4). The proportion of atoms is preferably 0.1 to 99%. Further, the ratio of the silicon atom not bonded to the nitrogen atom is more preferably 10 to 97%, further preferably 30 to 95%.
 縮合物中のSi原子数、Si-N結合の数は、X線光電子分光法(XPS)によって測定することができる。 The number of Si atoms and the number of Si—N bonds in the condensate can be measured by X-ray photoelectron spectroscopy (XPS).
 縮合物について、上述の方法による測定値を用いて求められる「窒素原子と結合していないケイ素原子の割合」は、0.1~99%であることが好ましく、10~99%であることがより好ましく、30~95%であることがさらに好ましい。 For the condensate, the "ratio of silicon atoms not bonded to nitrogen atoms" obtained by using the measured values by the above method is preferably 0.1 to 99%, and preferably 10 to 99%. More preferably, it is more preferably 30 to 95%.
<加水分解性シラン化合物>
 加水分解性シラン化合物として、好ましくは、アミノ基、アルコキシ基又はアルキルチオ基を有するシラン化合物である。加水分解性シラン化合物としては、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、ドデシルトリメトキシシラン、トリメトキシフェニルシラン、1H,1H,2H,2H-パーフルオロオクチルトリエトキシシラン、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランが例として挙げられる。
<Hydrolyzable silane compound>
The hydrolyzable silane compound is preferably a silane compound having an amino group, an alkoxy group or an alkylthio group. Examples of the hydrolyzable silane compound include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, dodecyltrimethoxysilane, trimethoxyphenylsilane, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, and trimethoxy. Examples thereof include (1H, 1H, 2H, 2H-nonafluorohexyl) silane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane.
 中でも、発光性複合粒子の耐久性の観点から、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、トリメトキシフェニルシラン、トリメトキシフェニルシラン、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シランがより好ましい。 Among them, from the viewpoint of durability of luminescent composite particles, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, trimethoxyphenylsilane, trimethoxyphenylsilane, trimethoxy (1H, 1H, 2H, 2H-nona) Fluorohexyl) silane is more preferred.
<加水分解性シラン化合物の縮合物>
 加水分解性ケイ素化合物の縮合物は、上述のアミノ基、アルコキシ基又はアルキルチオ基を有するシラン化合物を縮合することにより得られる化合物であればよい。
<Condensate of hydrolyzable silane compound>
The condensate of the hydrolyzable silicon compound may be any compound obtained by condensing the above-mentioned silane compound having an amino group, an alkoxy group or an alkylthio group.
<発光性複合粒子の粒径>
 発光性複合粒子の形状は球状、歪んだ球状、碁石状、又はラグビーボール状など、特に制限は無い。発光性複合粒子の平均粒径は1~100nmであり、5~50nmが好ましく、10~30nmがより好ましく、15~30nmが更に好ましい。発光性複合粒子の平均粒径が100nm以下であることによって、粗大なペロブスカイト化合物粒子及び凝集したペロブスカイト化合物粒子等が含まれた発光性複合粒子が除去され、微小なペロブスカイト化合物粒子を含む発光性複合粒子が選択的に得られる。粗大なペロブスカイト化合物粒子及び凝集したペロブスカイト化合物粒子は耐光性に劣ると考えられ、微小なペロブスカイト化合物粒子を選択することで、発光性複合粒子の耐光性が向上する。
<particle size of luminescent composite particles>
The shape of the luminescent composite particle is not particularly limited, such as a spherical shape, a distorted spherical shape, a go stone shape, or a rugby ball shape. The average particle size of the luminescent composite particles is 1 to 100 nm, preferably 5 to 50 nm, more preferably 10 to 30 nm, still more preferably 15 to 30 nm. When the average particle size of the luminescent composite particles is 100 nm or less, the luminescent composite particles containing coarse perovskite compound particles and aggregated perobskite compound particles are removed, and the luminescent composite particles containing fine perovskite compound particles are removed. Particles are selectively obtained. Coarse perovskite compound particles and aggregated perovskite compound particles are considered to be inferior in light resistance, and by selecting fine perovskite compound particles, the light resistance of the luminescent composite particles is improved.
 発光性複合粒子の平均粒径は、例えば粒子を分散液に分散させ、分散液組成物の形状とし、動的光散乱法(DLS:Dynamic Light Scattering)により測定することができる。DLSにおける測定方法としては、前記分散液組成物を専用の容器(ガラスセル)で測定する方法が挙げられる。 The average particle size of the luminescent composite particles can be measured by, for example, a dynamic light scattering method (DLS: Dynamic Light Scattering) in which the particles are dispersed in a dispersion liquid to form a dispersion liquid composition. Examples of the measuring method in DLS include a method of measuring the dispersion liquid composition in a dedicated container (glass cell).
 発光性複合粒子の平均粒径は、例えば、合成した発光性複合粒子を含む分散液を、適切な孔寸法を有するフィルターを使用してろ過する等の公知の分級方法を使用して、調節することができる。 The average particle size of the luminescent composite particles is adjusted by using a known classification method such as filtering the dispersion containing the synthesized luminescent composite particles using a filter having an appropriate pore size. be able to.
<ケイ素化合物層の量>
 発光性複合粒子において、十分に量子収率を向上させる観点から、ペロブスカイト化合物の質量に対してケイ素化合物層の質量は、好ましくは1.1質量部以上であり、より好ましくは1.5質量部以上であり、さらに好ましくは1.8質量部以上である。また、ペロブスカイト化合物の質量に対してケイ素化合物層の質量は、好ましくは50質量部以下であり、より好ましくは30質量部以下であり、さらに好ましくは20質量部以下である。
<Amount of silicon compound layer>
From the viewpoint of sufficiently improving the quantum yield in the luminescent composite particles, the mass of the silicon compound layer is preferably 1.1 parts by mass or more, more preferably 1.5 parts by mass with respect to the mass of the perovskite compound. The above is more preferably 1.8 parts by mass or more. The mass of the silicon compound layer is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less with respect to the mass of the perovskite compound.
 尚、上記の上限値及び下限値は任意に組み合わせることができる。 The above upper limit and lower limit can be combined arbitrarily.
2.ペロブスカイト化合物を含む発光性複合粒子組成物
 図2は、本発明の発光性複合粒子を含む組成物の構造を模式的に示す断面図である。発光性複合粒子組成物200は、発光性複合粒子100と分散媒体材料30とを有する。発光性複合粒子100は分散媒体材料30の中に分散されている。
2. 2. Luminescent Composite Particle Composition Containing a Perovskite Compound FIG. 2 is a cross-sectional view schematically showing the structure of a composition containing the luminescent composite particles of the present invention. The luminescent composite particle composition 200 has a luminescent composite particle 100 and a dispersion medium material 30. The luminescent composite particles 100 are dispersed in the dispersion medium material 30.
 以下の説明においては、発光性複合粒子を分散させる機能が共通することから、以下に説明する分散媒(3)、重合性化合物(4)、及び重合体(5)を総称して「分散媒体材料」と称することがある。分散媒体材料は、ペロブスカイト化合物粒子を溶解し難い支持媒体であり、溶解しないことが好ましい。また、分散媒体材料は、分散媒(3)、重合性化合物(4)、及び重合体(5)の少なくとも1種を含む混合物であってよい。 In the following description, since the functions of dispersing the luminescent composite particles are common, the dispersion medium (3), the polymerizable compound (4), and the polymer (5) described below are collectively referred to as “dispersion medium”. Sometimes referred to as "material". The dispersion medium material is a support medium in which the perovskite compound particles are difficult to dissolve, and it is preferable that the perovskite compound particles do not dissolve. Further, the dispersion medium material may be a mixture containing at least one of the dispersion medium (3), the polymerizable compound (4), and the polymer (5).
 分散とは、粒子が分散媒体材料中に浮遊している状態、又は粒子が分散媒体材料中に懸濁している状態を指す。液状分散媒体材料に粒子が分散している場合、粒子の一部は沈降していてもよい。 Dispersion refers to a state in which particles are suspended in a dispersion medium material or particles are suspended in a dispersion medium material. When the particles are dispersed in the liquid dispersion medium material, some of the particles may be settled.
(分散媒(3))
 分散媒(3)は、25℃、1気圧において液体状態を示す、ペロブスカイト化合物粒子と共存可能な不活性化合物である。本明細書において、分散媒(3)には、後述する重合性化合物(4)は含まない。
(Dispersion medium (3))
The dispersion medium (3) is an inert compound that exhibits a liquid state at 25 ° C. and 1 atm and can coexist with the perovskite compound particles. In the present specification, the dispersion medium (3) does not include the polymerizable compound (4) described later.
 分散媒(3)としては、例えば下記(a)~(k)を挙げることができる。
(a)エステル
(b)ケトン
(c)エーテル
(d)アルコール
(e)グリコールエーテル
(f)アミド基を有する有機溶媒
(g)ニトリル基を有する有機溶媒
(h)カーボネート基を有する有機溶媒
(i)ハロゲン化炭化水素
(j)炭化水素
(k)ジメチルスルホキシド
(l)イオン液体
Examples of the dispersion medium (3) include the following (a) to (k).
(A) Ester (b) Ketone (c) Ether (d) Alcohol (e) Glycol ether (f) Organic solvent having an amide group (g) Organic solvent having a nitrile group (h) Organic solvent having a carbonate group (i) ) Hydrocarbonized hydrocarbon (j) Hydrocarbon (k) Dimethylsulfoxide (l) Ion liquid
 (a)エステルとしては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等を挙げることができる。 Examples of the (a) ester include methylformate, ethylformate, propylformate, pentylformate, methyl acetate, ethyl acetate, pentyl acetate and the like.
 (b)ケトンとしては、γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等を挙げることができる。 Examples of the (b) ketone include γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, diisobutylketone, cyclopentanone, cyclohexanone, and methylcyclohexanone.
 (c)エーテルとしては、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等を挙げることができる。 (C) Examples of the ether include diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole and phenetol. And so on.
 (d)アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等を挙げることができる。 (D) Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol and diacetone alcohol. , Cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol and the like.
 (e)グリコールエーテルとしては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等を挙げることができる。 Examples of the (e) glycol ether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, and triethylene glycol dimethyl ether.
 (f)アミド基を有する有機溶媒としては、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等を挙げることができる。 (F) Examples of the organic solvent having an amide group include N, N-dimethylformamide, acetamide, N, N-dimethylacetamide and the like.
 (g)ニトリル基を有する有機溶媒としては、アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等を挙げることができる。 (G) Examples of the organic solvent having a nitrile group include acetonitrile, isobutyronitrile, propionitrile, methoxynitrile and the like.
 (h)カーボネート基を有する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。 (H) Examples of the organic solvent having a carbonate group include ethylene carbonate and propylene carbonate.
 (i)ハロゲン化炭化水素としては、塩化メチレン、クロロホルム等を挙げることができる。 (I) Examples of the halogenated hydrocarbon include methylene chloride and chloroform.
 (j)炭化水素としては、n-ペンタン、シクロヘキサン、n-ヘキサン、1-オクタデセン、ベンゼン、トルエン、キシレン等を挙げることができる。 Examples of the (j) hydrocarbon include n-pentane, cyclohexane, n-hexane, 1-octadecene, benzene, toluene, xylene and the like.
 (l)イオン液体としては、カチオン性のものとして、アンモニウム系、ホスホニウム系、スルホニウム系のもの等を挙げることができ、アニオン性のものとして、AlCl4-、NO2-、NO3-、I、BF4-、PF6-、AsF6-、SbF6-、NbF6-、TaF6-、F(HF)2.3、p-CHPhSO3-、CHCO-、CFCO2-、CHSO3-、CFSO3-、(CFSO、CCO2-、CSO3-、(CFSO、(CSO、(CFSO)(CFCO)N、(CN)等を挙げることができる。 (L) Examples of the ionic liquid include ammonium-based, phosphonium-based, and sulfonium-based liquids as cationic liquids, and AlCl 4- , NO 2- , NO 3- , and I as anionic liquids. - , BF 4- , PF 6- , AsF 6- , SbF 6- , NbF 6- , TaF 6- , F (HF) 2.3- , p-CH 3 PhSO 3- , CH 3 CO 2- , CF 3 CO 2- , CH 3 SO 3- , CF 3 SO 3- , (CF 3 SO 2 ) 3 C- , C 3 F 7 CO 2- , C 4 F 9 SO 3- , (CF 3 SO 2 ) 2 N- , (C 2 F 5 SO 2 ) 2 N- , (CF 3 SO 2 ) (CF 3 CO) N- , (CN) 2 N- , etc. can be mentioned.
 これらの溶媒の中でも、(a)エステル、(b)ケトン、(c)エーテル、(g)ニトリル基を有する有機溶媒、(h)カーボネート基を有する有機溶媒、(i)ハロゲン化炭化水素及び(j)炭化水素は、極性が低く、発光性複合粒子を溶解し難いと考えられるため好ましい。 Among these solvents, (a) ester, (b) ketone, (c) ether, (g) organic solvent having a nitrile group, (h) organic solvent having a carbonate group, (i) halogenated hydrocarbon and (i) j) Hydrocarbons are preferable because they have low polarity and are considered to be difficult to dissolve luminescent composite particles.
 さらに、分散媒(3)としては、(i)ハロゲン化炭化水素、(j)炭化水素がより好ましい。 Further, as the dispersion medium (3), (i) halogenated hydrocarbon and (j) hydrocarbon are more preferable.
 分散媒(3)は、1種のみ用いてもよく、2種以上を併用してもよい。 As the dispersion medium (3), only one type may be used, or two or more types may be used in combination.
(重合性化合物(4))
 重合性化合物とは、重合性基を有する単量体化合物(モノマー)を意味する。重合性化合物としては、例えば、25℃、1気圧において液体状態であるモノマーを挙げることができる。
(Polymerizable compound (4))
The polymerizable compound means a monomer compound (monomer) having a polymerizable group. Examples of the polymerizable compound include a monomer that is in a liquid state at 25 ° C. and 1 atm.
 例えば、常温、常圧下において製造する場合、重合性化合物としては、特に制限は無い。重合性化合物としては、例えば、スチレン、アクリル酸エステル、メタクリル酸エステル、アクリロニトリル等の公知の重合性化合物が挙げられる。なかでも、重合性化合物としては、アクリル系樹脂の単量体であるアクリル酸エステル及びメタクリル酸エステルのいずれか一方又は両方が好ましい。 For example, when produced at room temperature and under normal pressure, the polymerizable compound is not particularly limited. Examples of the polymerizable compound include known polymerizable compounds such as styrene, acrylic acid ester, methacrylic acid ester, and acrylonitrile. Among them, as the polymerizable compound, one or both of acrylic acid ester and methacrylic acid ester, which are monomers of the acrylic resin, is preferable.
 重合性化合物(4)は、1種のみ用いてもよく、2種以上を併用してもよい。 The polymerizable compound (4) may be used alone or in combination of two or more.
 重合性化合物(4)の総質量に対する、アクリル酸エステル及びメタクリル酸エステルの合計量の割合は、10mol%以上であってもよい。同割合は、30mol%以上であってもよく、50mol%以上であってもよく、80mol%以上であってもよく、100mol%であってもよい。 The ratio of the total amount of the acrylic acid ester and the methacrylic acid ester to the total mass of the polymerizable compound (4) may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
(重合体(5))
 重合体(5)は、発光性複合粒子組成物を製造する温度において、発光性複合粒子の溶解度が低い重合体が好ましい。
(Polymer (5))
The polymer (5) is preferably a polymer having low solubility of the luminescent composite particles at the temperature at which the luminescent composite particle composition is produced.
 例えば、常温、常圧下において製造する場合、重合体としては、特に制限は無いが、例えば、ポリスチレン、アクリル系樹脂、エポキシ樹脂等の公知の重合体が挙げられる。なかでも、重合体としては、アクリル系樹脂が好ましい。アクリル系樹脂は、アクリル酸エステルに由来する構成単位及びメタクリル酸エステルに由来する構成単位のいずれか一方又は両方を含む。これらの樹脂は、例えば、対応するモノマーである重合性化合物(4)を発光性複合粒子組成物中で重合することで調製してもよい。 For example, when the polymer is produced at room temperature and under normal pressure, the polymer is not particularly limited, and examples thereof include known polymers such as polystyrene, acrylic resin, and epoxy resin. Among them, acrylic resin is preferable as the polymer. The acrylic resin contains one or both of a structural unit derived from an acrylic acid ester and a structural unit derived from a methacrylic acid ester. These resins may be prepared, for example, by polymerizing the corresponding monomer, the polymerizable compound (4), in the luminescent composite particle composition.
 重合体(5)に含まれる全ての構成単位に対する、アクリル酸エステルに由来する構成単位及びメタクリル酸エステルに由来する構成単位の合計量の割合は、10mol%以上であってもよい。同割合は、30mol%以上であってもよく、50mol%以上であってもよく、80mol%以上であってもよく、100mol%であってもよい。 The ratio of the total amount of the structural unit derived from the acrylic acid ester and the structural unit derived from the methacrylic acid ester to all the structural units contained in the polymer (5) may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
 重合体(5)の重量平均分子量は、100~1200000であることが好ましく、1000~800000であることがより好ましく、5000~150000であることがさらに好ましい。 The weight average molecular weight of the polymer (5) is preferably 100 to 1200,000, more preferably 1,000 to 800,000, and even more preferably 5,000 to 150,000.
 本明細書において「重量平均分子量」とは、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。 As used herein, the term "weight average molecular weight" means a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
 重合体(5)は、1種のみ有していてもよく、2種以上を併用してもよい。 The polymer (5) may have only one type, or two or more types may be used in combination.
<表面修飾剤(6)>
 発光性複合粒子組成物は、表面修飾剤(6)をさらに含んでいてもよい。また、前記(1)~(6)以外のその他の成分を有していてもよい。例えば、若干の不純物、ペロブスカイト化合物(1)を構成する元素からなるアモルファス構造を有する化合物、重合開始剤をさらに含んでいてもよい。
<Surface modifier (6)>
The luminescent composite particle composition may further contain a surface modifier (6). Further, it may have other components other than the above (1) to (6). For example, it may further contain some impurities, a compound having an amorphous structure composed of elements constituting the perovskite compound (1), and a polymerization initiator.
 発光性複合粒子組成物が表面修飾剤(6)を含む場合、表面修飾剤層は、ペロブスカイト化合物粒子とケイ素化合物層との間に位置する。 When the luminescent composite particle composition contains the surface modifier (6), the surface modifier layer is located between the perovskite compound particles and the silicon compound layer.
(表面修飾剤)
 表面修飾剤(6)は、アンモニウムイオン、アミン、第1級~第4級アンモニウムカチオン、アンモニウム塩、カルボン酸、カルボキシレートイオン、及びカルボキシレート塩からなる群より選ばれる少なくとも一種のイオン又は化合物を形成材料とする。
(Surface modifier)
The surface modifier (6) comprises at least one ion or compound selected from the group consisting of ammonium ions, amines, primary to quaternary ammonium cations, ammonium salts, carboxylic acids, carboxylate ions, and carboxylate salts. Use as a forming material.
 中でも、アミン、及びカルボン酸からなる群より選ばれる少なくとも一種を形成材料とすることが好ましい。 Among them, it is preferable to use at least one selected from the group consisting of amines and carboxylic acids as the forming material.
 表面修飾剤(6)は、後述する製造方法で発光性複合粒子を製造する際に、ペロブスカイト化合物粒子の表面を覆い、発光性複合粒子組成物中に安定して分散させる作用を有する化合物である。 The surface modifier (6) is a compound having an action of covering the surface of the perovskite compound particles and stably dispersing them in the luminescent composite particle composition when the luminescent composite particles are produced by the production method described later. ..
(アンモニウムイオン、第1級~第4級アンモニウムカチオン、アンモニウム塩)
 表面修飾剤(6)であるアンモニウムイオン、及び第1級~第4級アンモニウムカチオンは、下記式(A1)で表される。表面修飾剤(6)であるアンモニウム塩は、下記式(A1)で表されるイオンを含む塩である。
(Ammonium ion, primary to quaternary ammonium cation, ammonium salt)
Ammonium ions, which are surface modifiers (6), and primary to quaternary ammonium cations are represented by the following formula (A1). The ammonium salt which is the surface modifier (6) is a salt containing an ion represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(A1)で表されるイオンにおいて、R~Rは、水素原子、又は1価の炭化水素基を表す。 In the ion represented by the formula (A1), R 1 to R 4 represent a hydrogen atom or a monovalent hydrocarbon group.
 R~Rで表される炭化水素基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよい。飽和炭化水素基としては、アルキル基、又はシクロアルキル基を挙げることができる。 The hydrocarbon group represented by R 1 to R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Examples of the saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
 R~Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。
 R~Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。
The alkyl group represented by R 1 to R 4 may be linear or branched.
The number of carbon atoms of the alkyl group represented by R 1 to R 4 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
 シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R~Rの不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。 The unsaturated hydrocarbon groups R1 to R4 may be linear or branched.
 R~Rの不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The number of carbon atoms of the unsaturated hydrocarbon group of R 1 to R 4 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
 R~Rは、水素原子、アルキル基、又は不飽和炭化水素基であることが好ましい。
不飽和炭化水素基としては、アルケニル基が好ましい。R~Rは、炭素原子数8~20のアルケニル基であることが好ましい。
R 1 to R 4 are preferably hydrogen atoms, alkyl groups, or unsaturated hydrocarbon groups.
As the unsaturated hydrocarbon group, an alkenyl group is preferable. R 1 to R 4 are preferably alkenyl groups having 8 to 20 carbon atoms.
 R~Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。 Specific examples of the alkyl groups of R 1 to R 4 include the alkyl groups exemplified in R 6 to R 9 .
 R~Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。 Specific examples of the cycloalkyl groups of R 1 to R 4 include the cycloalkyl groups exemplified in R 6 to R 9 .
 R~Rのアルケニル基としては、R~Rにおいて例示した前記直鎖状又は分岐鎖状のアルキル基において、いずれか一つの炭素原子間の単結合(C-C)が、二重結合(C=C)に置換されたものが例示でき、二重結合の位置は限定されない。 As the alkenyl group of R 1 to R 4 , in the linear or branched alkyl group exemplified in R 6 to R 9 , a single bond (CC) between any one carbon atom is two. Examples thereof include those substituted with a double bond (C = C), and the position of the double bond is not limited.
 R~Rのアルケニル基の好ましいものとしては、例えば、エテニル基、プロペニル基、3-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基、2-ノネニル基、2-ドデセニル基、9-オクタデセニル基が挙げられる。 Preferred alkenyl groups of R1 to R4 are, for example, an ethenyl group, a propenyl group, a 3-butenyl group, a 2-butenyl group, a 2-pentenyl group, a 2-hexenyl group, a 2-nonenyl group and a 2-dodecenyl group. Groups include 9-octadecenyl groups.
 式(A1)で表されるアンモニウムカチオンが塩を形成する場合、カウンターアニオンとしては、特に制限は無い。カウンターアニオンとしては、ハロゲン化物イオンや、カルボキシレートイオンなどが好ましい。ハロゲン化物イオンとしては、臭化物イオン、塩化物イオン、ヨウ化物イオン、フッ化物イオンが挙げられる。 When the ammonium cation represented by the formula (A1) forms a salt, the counter anion is not particularly limited. As the counter anion, a halide ion, a carboxylate ion, or the like is preferable. Examples of the halide ion include bromide ion, chloride ion, iodide ion, and fluoride ion.
 式(A1)で表されるアンモニウムカチオンと、カウンターアニオンとを有するアンモニウム塩としては、n-オクチルアンモニウム塩、オレイルアンモニウム塩が好ましい例として挙げられる。 Examples of the ammonium salt having the ammonium cation represented by the formula (A1) and the counter anion include n-octyl ammonium salt and oleyl ammonium salt.
(アミン)
 表面修飾剤(6)であるアミンとしては、下記式(A11)で表すことができる。
(Amine)
The amine which is the surface modifier (6) can be represented by the following formula (A11).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(A11)において、R~Rは、上記式(A1)が有するR~Rと同じ基を表す。ただし、R~Rのうち少なくとも1つは1価の炭化水素基である。 In the above formula (A11), R 1 to R 3 represent the same group as R 1 to R 3 possessed by the above formula (A1). However, at least one of R 1 to R 3 is a monovalent hydrocarbon group.
 表面修飾剤(6)であるアミンとしては、第1級~第3級アミンのいずれであってもよいが、第1級アミン及び第2級アミンが好ましく、第1級アミンがより好ましい。 The amine as the surface modifier (6) may be any of primary and tertiary amines, but primary amines and secondary amines are preferable, and primary amines are more preferable.
 表面修飾剤(6)であるアミンとしては、オレイルアミンが好ましい。 As the amine which is the surface modifier (6), oleylamine is preferable.
(カルボン酸、カルボキシレートイオン、カルボキシレート塩)
 表面修飾剤(6)であるカルボキシレートイオンは、下記式(A2)で表される。表面修飾剤(6)であるカルボキシレート塩は、下記式(A2)で表されるイオンを含む塩である。
 R-CO ・・・(A2)
(Carboxylic acid, carboxylate ion, carboxylate salt)
The carboxylate ion which is the surface modifier (6) is represented by the following formula (A2). The carboxylate salt which is the surface modifier (6) is a salt containing an ion represented by the following formula (A2).
R 5 - CO 2 -... (A2)
 表面修飾剤(6)であるカルボン酸は、上記(A2)で表されるカルボキシレートアニオンにプロトン(H)が結合したカルボン酸が挙げられる。 Examples of the carboxylic acid as the surface modifier (6) include carboxylic acids in which a proton (H + ) is bound to the carboxylate anion represented by the above (A2).
 式(A2)で表されるイオンにおいて、Rは、一価の炭化水素基を表す。Rで表される炭化水素基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよい。
飽和炭化水素基としては、アルキル基、又はシクロアルキル基を挙げることができる。
In the ion represented by the formula (A2), R 5 represents a monovalent hydrocarbon group. The hydrocarbon group represented by R5 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
Examples of the saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
 Rで表されるアルキル基は、直鎖状であっても分岐鎖状であってもよい。 The alkyl group represented by R 5 may be linear or branched.
 Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The number of carbon atoms of the alkyl group represented by R5 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
 シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数も含む。 The number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11. The number of carbon atoms also includes the number of carbon atoms of the substituent.
 Rで表される不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。 The unsaturated hydrocarbon group represented by R5 may be linear or branched.
 Rで表される不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The number of carbon atoms of the unsaturated hydrocarbon group represented by R5 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
 Rはアルキル基又は不飽和炭化水素基であることが好ましい。不飽和炭化水素基としては、アルケニル基が好ましい。 R 5 is preferably an alkyl group or an unsaturated hydrocarbon group. As the unsaturated hydrocarbon group, an alkenyl group is preferable.
 Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
Specific examples of the alkyl group of R 5 include the alkyl groups exemplified in R 6 to R 9 .
Specific examples of the cycloalkyl group of R 5 include the cycloalkyl groups exemplified in R 6 to R 9 .
 Rのアルケニル基の具体例としては、Rにおいて例示したアルケニル基が挙げられる。 Specific examples of the alkenyl group of R 5 include the alkenyl group exemplified in R 4 .
 式(A2)で表されるカルボキシレートアニオンは、オレイン酸アニオンが好ましい。
 
The carboxylate anion represented by the formula (A2) is preferably an oleate anion.
 カルボキレートアニオンが塩を形成する場合、カウンターカチオンとしては、特に制限は無いが、アルカリ金属カチオン、アルカリ土類金属カチオン、アンモニウムカチオンなどが好ましい例として挙げられる。 When the carbochelate anion forms a salt, the counter cation is not particularly limited, but alkali metal cations, alkaline earth metal cations, ammonium cations and the like are preferable examples.
 表面修飾剤(6)であるカルボン酸としては、オレイン酸が好ましい。 Oleic acid is preferable as the carboxylic acid that is the surface modifier (6).
 上述した表面修飾剤(6)の中では、アンモニウム塩、アンモニウムイオン、第1級~第4級アンモニウムカチオン、カルボキシレート塩、カルボキシレートイオンが好ましい。 Among the above-mentioned surface modifiers (6), ammonium salts, ammonium ions, primary to quaternary ammonium cations, carboxylate salts, and carboxylate ions are preferable.
 アンモニウム塩、アンモニウムイオンの中では、オレイルアミン塩、オレイルアンモニウムイオンがより好ましい。 Of the ammonium salts and ammonium ions, oleylamine salts and oleylammonium ions are more preferable.
 カルボキシレート塩、カルボキシレートイオンの中では、オレイン酸塩、オレイン酸カチオンがより好ましい。 Among the carboxylate salts and carboxylate ions, oleate and oleate cations are more preferable.
 発光性複合粒子において、上述の表面修飾剤(6)を1種のみ有していてもよく、2種以上を併用してもよい。 In the luminescent composite particles, only one kind of the above-mentioned surface modifier (6) may be contained, or two or more kinds thereof may be used in combination.
<発光性複合粒子組成物中の各成分の含有量>
 発光性複合粒子組成物において、発光性複合粒子組成物の総質量に対する発光性複合粒子の含有割合は、特に限定されるものではない。
<Contents of each component in the luminescent composite particle composition>
In the luminescent composite particle composition, the content ratio of the luminescent composite particles to the total mass of the luminescent composite particle composition is not particularly limited.
 上記含有割合は、濃度消光を防ぐ観点から、90質量%以下であることが好ましく、40質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。 From the viewpoint of preventing concentration quenching, the content ratio is preferably 90% by mass or less, more preferably 40% by mass or less, further preferably 10% by mass or less, and 3% by mass or less. Is particularly preferred.
 また、上記含有割合は、良好な量子収率を得る観点から、0.0002質量%以上であることが好ましく、0.002質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。 Further, the content ratio is preferably 0.0002% by mass or more, more preferably 0.002% by mass or more, and more preferably 0.01% by mass or more from the viewpoint of obtaining a good quantum yield. Is even more preferable.
 上記の上限値及び下限値は任意に組み合わせることができる。 The above upper limit and lower limit can be combined arbitrarily.
 発光性複合粒子組成物の総質量に対する発光性複合粒子の含有割合は、通常0.0002~90質量%である。 The content ratio of the luminescent composite particles to the total mass of the luminescent composite particle composition is usually 0.0002 to 90% by mass.
 発光性複合粒子組成物の総質量に対する発光性複合粒子の含有割合は、0.001~40質量%であることが好ましく、0.002~10質量%であることがより好ましく、0.01~3質量%であることがさらに好ましい。 The content ratio of the luminescent composite particles to the total mass of the luminescent composite particle composition is preferably 0.001 to 40% by mass, more preferably 0.002 to 10% by mass, and 0.01 to 0.01 to 10% by mass. It is more preferably 3% by mass.
 発光性複合粒子組成物の総質量に対する発光性複合粒子の含有割合が上記範囲内である発光性複合粒子組成物は、発光性複合粒子の凝集が生じ難く、発光性も良好に発揮される点で好ましい。 In the luminescent composite particle composition in which the content ratio of the luminescent composite particles to the total mass of the luminescent composite particle composition is within the above range, the luminescent composite particles are less likely to aggregate and the luminescence is well exhibited. Is preferable.
 発光性複合粒子組成物において、発光性複合粒子組成物の総質量に対するケイ素化合物層の含有割合は、特に限定されるものではない。 In the luminescent composite particle composition, the content ratio of the silicon compound layer to the total mass of the luminescent composite particle composition is not particularly limited.
 上記含有割合は、発光性複合粒子の分散性を向上させる観点、及び耐久性を向上させる観点から、30質量%以下であることが好ましく、10質量%以下であることがより好ましく、7.5質量%以下であることがさらに好ましい。 The content ratio is preferably 30% by mass or less, more preferably 10% by mass or less, and 7.5 by mass, from the viewpoint of improving the dispersibility of the luminescent composite particles and improving the durability. It is more preferably mass% or less.
 また、上記含有割合は、発光性複合粒子の耐久性を向上させる観点から、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。 Further, the content ratio is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and 0.1% by mass, from the viewpoint of improving the durability of the luminescent composite particles. The above is more preferable.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper limit value and lower limit value can be combined arbitrarily.
 発光性複合粒子組成物の総質量に対するケイ素化合物層の含有割合は、通常0.001~30質量%である。 The content ratio of the silicon compound layer to the total mass of the luminescent composite particle composition is usually 0.001 to 30% by mass.
 発光性複合粒子組成物の総質量に対するケイ素化合物層の含有割合は、0.001~30質量%であることが好ましく、0.001~10質量%、0.1~7.5質量%であることがより好ましい。 The content ratio of the silicon compound layer to the total mass of the luminescent composite particle composition is preferably 0.001 to 30% by mass, preferably 0.001 to 10% by mass, and 0.1 to 7.5% by mass. Is more preferable.
 発光性複合粒子組成物において、発光性複合粒子組成物の総質量に対する分散媒体材料の含有割合は、特に限定されるものではない。 In the luminescent composite particle composition, the content ratio of the dispersion medium material to the total mass of the luminescent composite particle composition is not particularly limited.
 上記含有割合は、発光性複合粒子の分散性を向上させる観点、及び耐光性を向上させる観点から、99.99質量%以下であることが好ましく、99.9質量%以下であることがより好ましく、99質量%以下であることがさらに好ましい。 The content ratio is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, from the viewpoint of improving the dispersibility of the luminescent composite particles and improving the light resistance. , 99% by mass or less is more preferable.
 また、上記含有割合は、耐光性を向上させる観点から、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以上であることがさらに好ましく、50質量%以上であることがさらに好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることがもっとも好ましい。 Further, the content ratio is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 10% by mass or more, and more preferably 50, from the viewpoint of improving the light resistance. It is more preferably mass% or more, more preferably 80% by mass or more, and most preferably 90% by mass or more.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper limit value and lower limit value can be combined arbitrarily.
 発光性複合粒子組成物の総質量に対する分散媒体材料の含有割合は、通常0.1~99.99質量%である。 The content ratio of the dispersion medium material to the total mass of the luminescent composite particle composition is usually 0.1 to 99.99 mass%.
 発光性複合粒子組成物の総質量に対する分散媒体材料の含有割合は、1~99質量%であることが好ましく、10~99質量%であることがより好ましく、20~99質量%であることがさらに好ましく、50~99質量%であることが特に好ましく、90~99質量%であることが最も好ましい。 The content ratio of the dispersion medium material with respect to the total mass of the luminescent composite particle composition is preferably 1 to 99% by mass, more preferably 10 to 99% by mass, and preferably 20 to 99% by mass. More preferably, it is particularly preferably 50 to 99% by mass, and most preferably 90 to 99% by mass.
 また、上記発光性複合粒子組成物において、ペロブスカイト化合物粒子、ケイ素化合物層及び分散媒媒体材料の合計含有割合は、発光性複合粒子組成物の総質量に対して90質量%以上であってもよく、95質量%以上であってもよく、99質量%以上であってもよく、100質量%であってもよい。 Further, in the above-mentioned luminescent composite particle composition, the total content ratio of the perovskite compound particles, the silicon compound layer and the dispersion medium medium material may be 90% by mass or more with respect to the total mass of the luminescent composite particle composition. , 95% by mass or more, 99% by mass or more, or 100% by mass.
 発光性複合粒子組成物において、発光性複合粒子組成物の総質量に対する表面修飾剤(6)の含有割合は、特に限定されるものではない。 In the luminescent composite particle composition, the content ratio of the surface modifier (6) to the total mass of the luminescent composite particle composition is not particularly limited.
 上記含有割合は、耐光性向上の観点から、30質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。 From the viewpoint of improving light resistance, the content ratio is preferably 30% by mass or less, more preferably 1% by mass or less, and further preferably 0.1% by mass or less.
 また、上記含有割合は、光耐久性を向上させる観点から、0.0001質量%以上であることが好ましく、0.001質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。 Further, the content ratio is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and more preferably 0.01% by mass or more from the viewpoint of improving the light durability. Is even more preferable.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper limit value and lower limit value can be combined arbitrarily.
 発光性複合粒子組成物の総質量に対する表面修飾剤(6)の含有割合は、通常0.0001~30質量%である。 The content ratio of the surface modifier (6) to the total mass of the luminescent composite particle composition is usually 0.0001 to 30% by mass.
 発光性複合粒子組成物の総質量に対する表面修飾剤(6)の含有割合は、0.001~1質量%であることが好ましく、0.01~0.1質量%であることがより好ましい。 The content ratio of the surface modifier (6) to the total mass of the luminescent composite particle composition is preferably 0.001 to 1% by mass, more preferably 0.01 to 0.1% by mass.
 発光性複合粒子組成物の総質量に対する表面修飾剤(6)の含有割合が上記範囲内である発光性複合粒子組成物は、光耐久性に優れる点で好ましい。 A luminescent composite particle composition in which the content ratio of the surface modifier (6) to the total mass of the luminescent composite particle composition is within the above range is preferable because it is excellent in light durability.
 発光性複合粒子における、若干の不純物、ペロブスカイト化合物(1)を構成する元素からなるアモルファス構造を有する化合物、重合開始剤の合計含有割合は、発光性複合粒子組成物の総質量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。 The total content of the luminescent composite particles, the compound having an amorphous structure composed of some impurities, the elements constituting the perovskite compound (1), and the polymerization initiator is 10% by mass with respect to the total mass of the luminescent composite particle composition. % Or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less.
3.発光性複合粒子の製造方法
 ペロブスカイト化合物粒子の製造方法は、既知文献(Nano Lett. 2015, 15, 3692-3696、ACSNano,2015,9,4533-4542)を参考に、以下に述べる方法によって製造することができる。
3. 3. Method for producing luminescent composite particles The method for producing perovskite compound particles is produced by the method described below with reference to known documents (Nano Lett. 2015, 15, 3692-3696, ACSNano, 2015, 9, 4533-4542). be able to.
(第1の製造方法)
 ペロブスカイト化合物の製造方法としては、ペロブスカイト化合物を構成するB成分、X成分、及びA成分を高温の上述の分散媒(3)に溶解させ溶液を得る工程と、溶液を冷却する工程とを含む製造方法が挙げられる。
(First manufacturing method)
The method for producing a perovskite compound includes a step of dissolving a component B, a component X, and a component A constituting the perovskite compound in the above-mentioned dispersion medium (3) at a high temperature to obtain a solution, and a step of cooling the solution. The method can be mentioned.
 以下、第1の製造方法を具体的に説明する。 Hereinafter, the first manufacturing method will be specifically described.
 まず、B成分及びX成分を含む化合物とA成分を含む化合物とを高温の分散媒(3)に溶解させ溶液を得る。「A成分を含む化合物」は、X成分を含んでいてもよい。
 本工程は、高温の分散媒(3)に各化合物を加えて溶解させ溶液を得ることとしてもよい。
 また、本工程は、分散媒(3)に各化合物を加えた後、昇温することで溶液を得ることとしてもよい。第1の製造方法においては、溶液は、第1溶媒に各化合物を加えた後、昇温することで得ることが好ましい。
First, the compound containing the B component and the X component and the compound containing the A component are dissolved in a high-temperature dispersion medium (3) to obtain a solution. The "compound containing the A component" may contain the X component.
In this step, each compound may be added to a high-temperature dispersion medium (3) and dissolved to obtain a solution.
Further, in this step, a solution may be obtained by adding each compound to the dispersion medium (3) and then raising the temperature. In the first production method, the solution is preferably obtained by adding each compound to the first solvent and then raising the temperature.
 分散媒(3)としては、原料であるB成分及びX成分を含む化合物と、A成分を含む化合物とを溶解することができる溶媒が好ましい。 As the dispersion medium (3), a solvent capable of dissolving the compound containing the B component and the X component, which are raw materials, and the compound containing the A component is preferable.
 「高温」とは、各原料が溶解する温度の溶媒であればよい。例えば、高温の分散媒(3)の温度として、60~600℃であることが好ましく、80~400℃であることがより好ましい。 The "high temperature" may be a solvent having a temperature at which each raw material dissolves. For example, the temperature of the high-temperature dispersion medium (3) is preferably 60 to 600 ° C, more preferably 80 to 400 ° C.
 分散媒(3)に各化合物を加えた後、昇温することで溶液を得る場合、昇温後の保持温度としては例えば、20~150℃であることが好ましく、120~140℃であることがより好ましい。 When a solution is obtained by adding each compound to the dispersion medium (3) and then raising the temperature, the holding temperature after the temperature rise is preferably, for example, 20 to 150 ° C, preferably 120 to 140 ° C. Is more preferable.
 反応後に不要になった水を除去して劣化を抑制する観点から、不活性ガスを流通させながら反応させることが好ましい。 From the viewpoint of removing unnecessary water after the reaction and suppressing deterioration, it is preferable to carry out the reaction while flowing an inert gas.
 次いで、得られた溶液を冷却する。
 冷却する温度としては、-20~50℃が好ましく、-10~30℃がより好ましい。
 冷却速度としては、0.1~1500℃/分が好ましく、10~150℃/分がより好ましい。
The resulting solution is then cooled.
The cooling temperature is preferably −20 to 50 ° C., more preferably −10 to 30 ° C.
The cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
 高温の溶液を冷却することで、溶液の温度差に起因した溶解度の差により、ペロブスカイト化合物を析出させることができる。これにより、ペロブスカイト化合物を含む分散液が得られる。 By cooling the high temperature solution, the perovskite compound can be precipitated due to the difference in solubility due to the temperature difference of the solution. As a result, a dispersion containing the perovskite compound is obtained.
 得られたペロブスカイト化合物を含む分散液について固液分離を行うことで、ペロブスカイト化合物を回収することができる。固液分離の方法としては、ろ過、溶媒の蒸発による濃縮などが挙げられる。固液分離を行うことで、ペロブスカイト化合物のみを回収することができる。 The perovskite compound can be recovered by performing solid-liquid separation on the obtained dispersion containing the perovskite compound. Examples of the solid-liquid separation method include filtration and concentration by evaporation of a solvent. By performing solid-liquid separation, only the perovskite compound can be recovered.
 なお、上述した製造方法においては、得られるペロブスカイト化合物の粒子が分散液中で安定して分散しやすいため、上述の表面修飾剤(6)を加える工程を含んでいることが好ましい。 It should be noted that the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier (6) because the particles of the obtained perovskite compound are stably and easily dispersed in the dispersion liquid.
 表面修飾剤(6)を加える工程は、冷却する工程の前に行うことが好ましい。具体的には、表面修飾剤(6)は、分散媒(3)に添加してもよく、B成分及びX成分を含む化合物とA成分を含む化合物とを溶解した溶液に添加してもよい。 The step of adding the surface modifier (6) is preferably performed before the step of cooling. Specifically, the surface modifier (6) may be added to the dispersion medium (3), or may be added to a solution in which the compound containing the B component and the X component and the compound containing the A component are dissolved. ..
 また、上述した製造方法においては、冷却する工程のあと、遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいることが好ましい。除去する工程によって除去する粗大粒子のサイズは、好ましくは10μm超、より好ましくは1μm超、さらに好ましくは500nm超である。 Further, in the above-mentioned manufacturing method, it is preferable to include a step of removing coarse particles by a method such as centrifugation or filtration after the step of cooling. The size of the coarse particles removed by the removing step is preferably more than 10 μm, more preferably more than 1 μm, still more preferably more than 500 nm.
(第2の製造方法)
 ペロブスカイト化合物の製造方法としては、ペロブスカイト化合物を構成するA成分、B成分を含む第1溶液を得る工程と、ペロブスカイト化合物を構成するX成分を含む第2溶液を得る工程と、第1溶液と第2溶液を混合して混合液を得る工程と、得られた混合液を冷却する工程とを含む製造方法が挙げられる。
(Second manufacturing method)
As a method for producing a perovskite compound, a step of obtaining a first solution containing components A and B constituting the perovskite compound, a step of obtaining a second solution containing the component X constituting the perovskite compound, and a first solution and a first solution are used. Examples thereof include a manufacturing method including a step of mixing two solutions to obtain a mixed solution and a step of cooling the obtained mixed solution.
 以下、第2の製造方法を具体的に説明する。 Hereinafter, the second manufacturing method will be specifically described.
 まず、A成分を含む化合物と、B成分を含む化合物とを高温の第2溶媒に溶解させ第1溶液を得る。
 本工程は、高温の分散媒(3)に各化合物を加えて溶解させ第1溶液を得ることとしてもよい。
 また、本工程は、分散媒(3)に各化合物を加えた後、昇温することで第1溶液を得ることとしてもよい。第2の製造方法においては、第1溶液は、分散媒(3)に各化合物を加えた後、昇温することで得ることが好ましい。
First, the compound containing the component A and the compound containing the component B are dissolved in a high-temperature second solvent to obtain a first solution.
In this step, each compound may be added to a high-temperature dispersion medium (3) and dissolved to obtain a first solution.
Further, in this step, the first solution may be obtained by adding each compound to the dispersion medium (3) and then raising the temperature. In the second production method, the first solution is preferably obtained by adding each compound to the dispersion medium (3) and then raising the temperature.
 分散媒(3)としては、A成分を含む化合物と、B成分を含む化合物とを溶解することができる溶媒が好ましい。 As the dispersion medium (3), a solvent capable of dissolving the compound containing the A component and the compound containing the B component is preferable.
 「高温」とは、A成分を含む化合物と、B成分を含む化合物とが溶解する温度であればよい。例えば、高温の分散媒(3)の温度として、60~600℃であることが好ましく、80~400℃であることがより好ましい。 The "high temperature" may be any temperature as long as the compound containing the A component and the compound containing the B component are melted. For example, the temperature of the high-temperature dispersion medium (3) is preferably 60 to 600 ° C, more preferably 80 to 400 ° C.
 分散媒(3)に各化合物を加えた後、昇温することで第1溶液を得る場合、昇温後の保持温度としては例えば、80~150℃であることが好ましく、120~140℃であることがより好ましい。 When the first solution is obtained by adding each compound to the dispersion medium (3) and then raising the temperature, the holding temperature after raising the temperature is preferably, for example, 80 to 150 ° C, preferably 120 to 140 ° C. It is more preferable to have.
 また、X成分を含む化合物を上述の分散媒(3)に溶解させ第2溶液を得る。X成分を含む化合物と、B成分を含む化合物とを分散媒(3)に溶解させ第2溶液を得てもよい。 Further, the compound containing the X component is dissolved in the above-mentioned dispersion medium (3) to obtain a second solution. A second solution may be obtained by dissolving the compound containing the X component and the compound containing the B component in the dispersion medium (3).
 分散媒(3)としては、X成分を含む化合物を溶解することができる溶媒が挙げられる。 Examples of the dispersion medium (3) include a solvent capable of dissolving a compound containing an X component.
 次いで、得られた第1溶液と第2溶液を混合して混合液を得る。第1溶液と第2溶液とを混合する際には、一方を他方に滴下するとよい。また、撹拌しながら第1溶液と第2溶液とを混合するとよい。 Next, the obtained first solution and the second solution are mixed to obtain a mixed solution. When mixing the first solution and the second solution, one may be dropped onto the other. Further, it is advisable to mix the first solution and the second solution with stirring.
 反応後に不要になった水を除去して劣化を抑制する観点から、不活性ガスを流通させながら反応させることが好ましい。 From the viewpoint of removing unnecessary water after the reaction and suppressing deterioration, it is preferable to carry out the reaction while flowing an inert gas.
 次いで、得られた混合液を冷却する。
 冷却する温度としては、-20~50℃が好ましく、-10~30℃がより好ましい。
 冷却速度としては、0.1~1500℃/分が好ましく、10~150℃/分がより好ましい。
The resulting mixture is then cooled.
The cooling temperature is preferably −20 to 50 ° C., more preferably −10 to 30 ° C.
The cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
 混合液を冷却することで、混合液の温度差に起因した溶解度の差により、ペロブスカイト化合物を析出させることができる。これにより、ペロブスカイト化合物を含む分散液が得られる。 By cooling the mixed solution, the perovskite compound can be precipitated due to the difference in solubility due to the temperature difference of the mixed solution. As a result, a dispersion containing the perovskite compound is obtained.
 得られたペロブスカイト化合物を含む分散液については、固液分離を行うことで、ペロブスカイト化合物を回収することができる。固液分離の方法としては、第1の製造方法で示した方法が挙げられる。 With respect to the obtained dispersion containing the perovskite compound, the perovskite compound can be recovered by performing solid-liquid separation. Examples of the solid-liquid separation method include the method shown in the first production method.
 なお、上述した製造方法においては、得られるペロブスカイト化合物の粒子が分散液中で安定して分散しやすいため、上述の表面修飾剤(6)を加える工程を含んでいることが好ましい。 It should be noted that the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier (6) because the particles of the obtained perovskite compound are stably and easily dispersed in the dispersion liquid.
 表面修飾剤(6)を加える工程は、冷却する工程の前に行うことが好ましい。具体的には、表面修飾剤(6)は、分散媒(3)、第1溶液、第2溶液、混合液のいずれに添加してもよい。 The step of adding the surface modifier (6) is preferably performed before the step of cooling. Specifically, the surface modifier (6) may be added to any of the dispersion medium (3), the first solution, the second solution, and the mixed solution.
 また、上述した製造方法においては、冷却する工程のあと、第1の製造方法で示した遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいていることが好ましい。 Further, it is preferable that the above-mentioned manufacturing method includes a step of removing coarse particles by a method such as centrifugation and filtration shown in the first manufacturing method after the step of cooling.
<発光性複合粒子の製造>
 発光性複合粒子は、例えば、ペロブスカイト化合物粒子と加水分解性ケイ素化合物(2)とを接触させ、必要に応じて加水分解性ケイ素化合物(2)を縮合させ、ペロブスカイト化合物粒子の表面にケイ素化合物層を形成して製造される。ペロブスカイト化合物粒子と加水分解性ケイ素化合物(2)との接触は、分散媒(3)の存在下で行ってもよい。かかる場合、分散媒(3)は、前記粒子を形成した後に除去される。
<Manufacturing of luminescent composite particles>
In the luminescent composite particles, for example, the perovskite compound particles and the hydrolyzable silicon compound (2) are brought into contact with each other, and the hydrolyzable silicon compound (2) is condensed as necessary, and the silicon compound layer is formed on the surface of the perovskite compound particles. Is manufactured by forming. The contact between the perovskite compound particles and the hydrolyzable silicon compound (2) may be carried out in the presence of the dispersion medium (3). In such a case, the dispersion medium (3) is removed after forming the particles.
 分散媒(3)を除去する場合、前記粒子の分散液は、室温で静置して自然乾燥してもよく、真空乾燥機を用いて減圧乾燥してもよく、加熱によって加熱乾燥してもよい。例えば、0℃以上300℃以下で、1分間以上7日間以下乾燥させることで、分散媒(3)を除去することができる。なお、分散媒(3)を含む前記粒子の分散液は、そのまま又は濃度を調節して、発光性複合粒子組成物として使用してもよい。 When removing the dispersion medium (3), the dispersion liquid of the particles may be allowed to stand at room temperature and air-dried, may be vacuum-dried using a vacuum dryer, or may be heat-dried by heating. good. For example, the dispersion medium (3) can be removed by drying at 0 ° C. or higher and 300 ° C. or lower for 1 minute or more and 7 days or less. The dispersion liquid of the particles containing the dispersion medium (3) may be used as it is or by adjusting the concentration as it is as a luminescent composite particle composition.
(加水分解性ケイ素化合物(2)の縮合処理)
 加水分解性ケイ素化合物(2)の縮合処理は、前記シラザン及び前記加水分解性ケイ素化合物と水蒸気とを反応させる方法等の公知の方法を用いて行うことができる。以下の説明では、前記シラザン及び前記加水分解性ケイ素化合物と水蒸気とを反応させる処理のことを、「加湿処理」と称することがある。加湿処理を施すことが、ペロブスカイト化合物粒子の近傍により強固な保護領域を形成する観点から好ましい。
(Condensation treatment of hydrolyzable silicon compound (2))
The condensation treatment of the hydrolyzable silicon compound (2) can be carried out by using a known method such as a method of reacting the silazane and the hydrolyzable silicon compound with water vapor. In the following description, the treatment of reacting the silazane and the hydrolyzable silicon compound with water vapor may be referred to as "humidification treatment". Humidification treatment is preferable from the viewpoint of forming a stronger protected region in the vicinity of the perovskite compound particles.
 加湿処理を施す場合、例えば、後述する温度、及び湿度条件下で一定の時間、発光性複合粒子組成物を静置してもよく、同条件下、一定の時間撹拌してもよい。 When the humidification treatment is performed, for example, the luminescent composite particle composition may be allowed to stand for a certain period of time under the temperature and humidity conditions described later, or may be stirred for a certain period of time under the same conditions.
 加湿処理における温度は、十分に縮合が進行する温度であればよい。加湿処理における温度は、例えば、5~150℃であることが好ましく、10~100℃であることがより好ましく、15~80℃であることがさらに好ましい。 The temperature in the humidification treatment may be a temperature at which condensation proceeds sufficiently. The temperature in the humidification treatment is, for example, preferably 5 to 150 ° C, more preferably 10 to 100 ° C, and even more preferably 15 to 80 ° C.
 加湿処理における湿度は、粒子中のシラザン及び加水分解性ケイ素化合物に十分に水分が供給される湿度であればよい。加湿処理における湿度は、例えば30%~100%であることが好ましく、40%~95%であることがより好ましく、60%~90%であることがさらに好ましい。 The humidity in the humidification treatment may be any humidity as long as sufficient water is supplied to the silazane and the hydrolyzable silicon compound in the particles. The humidity in the humidification treatment is, for example, preferably 30% to 100%, more preferably 40% to 95%, and even more preferably 60% to 90%.
 加湿処理に要する時間は、十分に縮合が進行する時間であればよい。加湿処理に要する時間は、例えば、10分間以上1週間以下であることが好ましく、1時間以上5日間以下であることがより好ましく、2時間以上3日間以下であることがさらに好ましい。 The time required for the humidification treatment may be a time during which the condensation proceeds sufficiently. The time required for the humidification treatment is, for example, preferably 10 minutes or more and 1 week or less, more preferably 1 hour or more and 5 days or less, and further preferably 2 hours or more and 3 days or less.
 加湿処理における水の供給は、水蒸気を含むガスを反応容器中に流通させることによってもよく、水蒸気を含む雰囲気中で撹拌することで、界面から水分を供給してもよい。 Water may be supplied in the humidification treatment by circulating a gas containing water vapor in the reaction vessel, or by stirring in an atmosphere containing water vapor to supply water from the interface.
 水蒸気を含むガスを反応容器中に流通させる場合、得られる発光性複合粒子組成物の耐久性が向上するため、水蒸気を含むガス流量は、0.01L/分以上100L/分以下が好ましく、0.1L/分以上10L/分以下がより好ましく、0.15L/分以上5L/分以下がさらに好ましい。水蒸気を含むガスとしては、例えば飽和量の水蒸気を含む窒素を挙げることができる。 When a gas containing water vapor is circulated in the reaction vessel, the flow rate of the gas containing water vapor is preferably 0.01 L / min or more and 100 L / min or less, preferably 0, in order to improve the durability of the obtained luminescent composite particle composition. .1 L / min or more and 10 L / min or less is more preferable, and 0.15 L / min or more and 5 L / min or less is further preferable. Examples of the gas containing water vapor include nitrogen containing a saturated amount of water vapor.
4.発光性複合粒子組成物の製造方法
 発光性複合粒子組成物、すなわち、前記粒子と分散媒体材料との混合物は、例えば、前記粒子を分散媒体材料に分散させて製造することができる。
4. Method for Producing a Luminous Composite Particle Composition A luminescent composite particle composition, that is, a mixture of the particles and a dispersion medium material can be produced, for example, by dispersing the particles in a dispersion medium material.
 発光性複合粒子組成物は、分散媒体材料に粒子を分散させ、得られる分散液中に加水分解性ケイ素化合物(2)を添加して、これをペロブスカイト化合物(1)に接触させ、必要に応じて加水分解性ケイ素化合物(2)を縮合させて製造してもよい。 In the luminescent composite particle composition, particles are dispersed in a dispersion medium material, a hydrolyzable silicon compound (2) is added to the obtained dispersion, and the hydrolyzable silicon compound (2) is brought into contact with the perovskite compound (1), if necessary. It may be produced by condensing the hydrolyzable silicon compound (2).
 発光性複合粒子組成物は、重合性化合物(4)を重合して、その一部を重合体(5)とすることもできる。この場合、粒子及び重合体(5)の合計が発光性複合粒子組成物全体の90質量%以上であることが好ましい。 The luminescent composite particle composition can also be obtained by polymerizing the polymerizable compound (4) to obtain a part thereof as the polymer (5). In this case, it is preferable that the total of the particles and the polymer (5) is 90% by mass or more of the total amount of the luminescent composite particle composition.
 重合性化合物(4)を重合させる工程は、ラジカル重合などの公知の重合反応を適宜用いることで行うことができる。 The step of polymerizing the polymerizable compound (4) can be carried out by appropriately using a known polymerization reaction such as radical polymerization.
 例えばラジカル重合の場合は、粒子と、重合性化合物(4)との混合物に、ラジカル重合開始剤を添加し、ラジカルを発生させることで重合反応を進行させることができる。 For example, in the case of radical polymerization, the polymerization reaction can be promoted by adding a radical polymerization initiator to the mixture of the particles and the polymerizable compound (4) and generating radicals.
 ラジカル重合開始剤は特に限定されるものではないが、例えば、光ラジカル重合開始剤等が挙げられる。 The radical polymerization initiator is not particularly limited, and examples thereof include a photoradical polymerization initiator.
 上記光ラジカル重合開始剤としては、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等が挙げられる。 Examples of the photoradical polymerization initiator include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and the like.
 表面修飾剤(6)を用いる場合、表面修飾剤(6)は、分散媒体材料中にペロブスカイト化合物粒子を分散させた後に加水分解性ケイ素化合物(2)とともに、添加することができる。 When the surface modifier (6) is used, the surface modifier (6) can be added together with the hydrolyzable silicon compound (2) after the perovskite compound particles are dispersed in the dispersion medium material.
5.発光性複合粒子の吸収率、量子収率及び輝度維持率
 発光性複合粒子の吸収率及び量子収率は、絶対PL量子収率測定装置(例えば、浜松ホトニクス株式会社製「C9920-02」(商品名))を用いて測定することができる。
また、輝度維持率はこれらの値を用いて次式より算出することができる。本発明においては、励起光450nm、25℃、1気圧の条件の下で測定する。
5. Absorption rate, quantum yield and brightness maintenance rate of luminescent composite particles The absorption rate and quantum yield of luminescent composite particles are determined by an absolute PL quantum yield measuring device (for example, "C9920-02" manufactured by Hamamatsu Photonics Co., Ltd. (Commodity). It can be measured using the name)).
Further, the luminance maintenance rate can be calculated from the following equation using these values. In the present invention, the measurement is carried out under the conditions of an excitation light of 450 nm, 25 ° C. and 1 atm.
 輝度維持率(%)=[(耐光試験後の発光性複合粒子組成物の量子収率)÷(耐光試験前の発光性複合粒子組成物の量子収率)]×[(耐光試験後の発光性複合粒子組成物の吸収率)÷(耐光試験前の発光性複合粒子組成物の吸収率)]×100 Brightness retention rate (%) = [(Quantum yield of luminescent composite particle composition after light resistance test) ÷ (Quantum yield of luminescent composite particle composition before light resistance test)] × [(Light emission after light resistance test) Absorption rate of sex composite particle composition) ÷ (absorption rate of luminescent composite particle composition before light resistance test)] × 100
 発光性複合粒子の励起光の吸収率は、0.1以上、1未満が好ましく、0.2以上、0.9未満がより好ましく、0.3以上、0.9未満がさらに好ましい。 The absorption rate of the excitation light of the luminescent composite particle is preferably 0.1 or more and less than 1, more preferably 0.2 or more and less than 0.9, and further preferably 0.3 or more and less than 0.9.
 発光性複合粒子の量子収率は、0.1~1.0が好ましく、0.2~0.99がより好ましく、0.3~0.95がさらに好ましい。 The quantum yield of the luminescent composite particles is preferably 0.1 to 1.0, more preferably 0.2 to 0.99, and even more preferably 0.3 to 0.95.
 発光性複合粒子の輝度維持率は、0.3~1.0が好ましく、0.5~1.0がより好ましく、0.7~1.0がさらに好ましい。輝度維持率がこれらの範囲にあることで耐光性の高い発光性粒子材料を得ることができる。 The brightness retention rate of the luminescent composite particles is preferably 0.3 to 1.0, more preferably 0.5 to 1.0, and even more preferably 0.7 to 1.0. When the brightness retention rate is within these ranges, a luminescent particle material having high light resistance can be obtained.
6.フィルム
 本発明のフィルムは、本発明の発光性複合粒子を含む。例えば、本発明に係るフィルムは、発光性複合粒子及び重合体(5)を含む。典型的には、粒子及び重合体(5)の合計がフィルム全体の90質量%以上を占める。
6. Film The film of the present invention contains the luminescent composite particles of the present invention. For example, the film according to the present invention contains luminescent composite particles and a polymer (5). Typically, the total of the particles and the polymer (5) occupies 90% by mass or more of the whole film.
 フィルム形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。本明細書において「バー状の形状」とは、例えば、一方向に延在する平面視帯状の形状を意味する。平面視帯状の形状としては、各辺の長さが異なる板状の形状が例示される。 The film shape is not particularly limited, and can be any shape such as a sheet shape or a bar shape. As used herein, the term "bar-shaped" means, for example, a planar visual band-shaped shape extending in one direction. Examples of the plan-view band-shaped shape include a plate-shaped shape having different lengths on each side.
 フィルムの厚さは、例えば、0.005μm~1000mmであってもよく、0.01μm~10mmであってもよく、0.1μm~1mmであってもよく、10~500μmであってもよい。 The thickness of the film may be, for example, 0.005 μm to 1000 mm, 0.01 μm to 10 mm, 0.1 μm to 1 mm, or 10 to 500 μm.
 フィルムは、例えば、分散媒(3)と重合性化合物(4)とを含む液状の発光性複合粒子組成物を塗工して塗膜を得た後、該塗膜に含まれる重合性化合物(4)を重合することで得ることができる。液状の発光性複合粒子組成物を基材上に塗工する方法としては、特に制限はなく、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法等の、公知の塗布、塗工方法を用いて塗工することができる。 The film is, for example, coated with a liquid luminescent composite particle composition containing a dispersion medium (3) and a polymerizable compound (4) to obtain a coating film, and then the polymerizable compound contained in the coating film ( It can be obtained by polymerizing 4). The method for coating the liquid luminescent composite particle composition on the substrate is not particularly limited, and the gravure coating method, bar coating method, printing method, spray method, spin coating method, dip method, die coating method, etc. are used. , Can be applied using known coating and coating methods.
7.積層構造体
 本発明の積層構造体は、複数の層を有し、少なくとも一層が、上述のフィルムである。
積層構造体が有する複数の層のうち、上述のフィルム以外の層としては、基材、バリア層、光散乱層等の任意の層が挙げられる。積層されるフィルムの形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。基材は、ペロブスカイト化合物(1)が発した光を取り出しやすいため、光透過性を有するものが好ましい。基材の形成材料としては、例えば、ポリエチレンテレフタレートなどのポリマーや、ガラスなどの公知の材料を用いることができる。
7. Laminated Structure The laminated structure of the present invention has a plurality of layers, and at least one layer is the above-mentioned film.
Among the plurality of layers of the laminated structure, examples of layers other than the above-mentioned film include arbitrary layers such as a base material, a barrier layer, and a light scattering layer. The shape of the laminated film is not particularly limited, and may be any shape such as a sheet shape or a bar shape. The base material is preferably one having light transmission because it is easy to take out the light emitted by the perovskite compound (1). As the material for forming the base material, for example, a polymer such as polyethylene terephthalate or a known material such as glass can be used.
 積層構造体は、例えば、上記得られたフィルムを基材の上に積層することで製造することができる。基材上にフィルムを積層する工程では、フィルム同士を粘接着剤を用いて貼合する。粘接着剤は、発光性複合粒子を溶解しないものであれば特に制限は無く、公知の粘接着剤を用いて貼合を行うことができる。 The laminated structure can be manufactured, for example, by laminating the obtained film on a base material. In the process of laminating the film on the base material, the films are bonded to each other using an adhesive. The adhesive is not particularly limited as long as it does not dissolve the luminescent composite particles, and the adhesive can be bonded using a known adhesive.
8.発光装置
 本発明の発光装置は、前記積層構造体と、光源とを合せることで得ることができる。発光装置は、光源から発光した光を、後段に設置した積層構造体に照射することで、積層構造体を発光させ、光を取り出す装置である。前記発光装置における積層構造体が有する複数の層のうち、上述のフィルム、基材、バリア層、光散乱層以外の層としては、光反射部材、輝度強化部、プリズムシート、導光板、要素間の媒体材料層等の任意の層が挙げられる。発光装置の具体例としては、例えば、プリズムシートと、導光板と、前記積層構造体と、光源と、がこの順に積層された発光装置である。
8. Light emitting device The light emitting device of the present invention can be obtained by combining the laminated structure and a light source. The light emitting device is a device that emits light from a light source by irradiating the laminated structure installed in the subsequent stage to emit light and extracts light. Among the plurality of layers of the laminated structure in the light emitting device, the layers other than the above-mentioned film, base material, barrier layer, and light scattering layer include a light reflecting member, a brightness enhancing portion, a prism sheet, a light guide plate, and between elements. Any layer such as a medium material layer of the above can be mentioned. As a specific example of the light emitting device, for example, it is a light emitting device in which a prism sheet, a light guide plate, the laminated structure, and a light source are laminated in this order.
 発光装置は、例えば、前述の光源と、光源からの光路上に前述の積層構造体を設置することで、製造することができる。 The light emitting device can be manufactured, for example, by installing the above-mentioned light source and the above-mentioned laminated structure on the optical path from the light source.
9.ディスプレイ
 本発明のディスプレイは、例えば、液晶パネルと、プリズムシートと、導光板と、上記積層構造体と、光源と、がこの順に積層された液晶ディスプレイが挙げられる。ディスプレイは、上記発光装置上に偏光板等を含む表示素子を積層することで製造することができる。
9. Display The display of the present invention includes, for example, a liquid crystal display in which a liquid crystal panel, a prism sheet, a light guide plate, the laminated structure, and a light source are laminated in this order. A display can be manufactured by laminating a display element including a polarizing plate or the like on the light emitting device.
10.シンチレータ
 発光性複合粒子又は発光性複合粒子組成物は、シンチレータとして、X線画像用撮影装置又は輝度向上フィルムに利用できる。シンチレータの形態としては、特に限定されるものではなく、例えば、単結晶、シート状等、任意の形態で利用することができる。
10. The scintillator The luminescent composite particle or the luminescent composite particle composition can be used as a scintillator in an X-ray image photographing apparatus or a brightness improving film. The form of the scintillator is not particularly limited, and can be used in any form such as a single crystal or a sheet.
 シンチレータは、シート状で使用する場合、発光性複合粒子を含む液状の発光性複合粒子組成物を基材上に塗布して乾燥させることで製造することができる。用いる基材は、特に限定されず、例えば、アルミ金属、PETフィルムやモスアイフィルムなどを用いることができる。シンチレータは、市販の他のシンチレータと組み合わせて使用してもよい。 When used in the form of a sheet, the scintillator can be manufactured by applying a liquid luminescent composite particle composition containing luminescent composite particles onto a substrate and drying it. The base material used is not particularly limited, and for example, aluminum metal, PET film, moth-eye film, or the like can be used. The scintillator may be used in combination with other commercially available scintillators.
 図3は、本発明のシンチレータを含むX線検出器の構造を模式的に示す断面図である。
X線検出器1は、シンチレータパネル2、出力基板3および電源部12を有する。
FIG. 3 is a cross-sectional view schematically showing the structure of an X-ray detector including the scintillator of the present invention.
The X-ray detector 1 has a scintillator panel 2, an output board 3, and a power supply unit 12.
 シンチレータパネル2は、基板5とシンチレータ層4を有する。シンチレータ層4は上記本発明のフィルムから成る。このフィルムは、発光性複合粒子100と重合体6とを含有する。 The scintillator panel 2 has a substrate 5 and a scintillator layer 4. The scintillator layer 4 is made of the film of the present invention. This film contains the luminescent composite particles 100 and the polymer 6.
 出力基板3は、基板11上に、光電変換層8および出力層9を有する。光電変換層8は、図示しないフォトセンサとTFTを有する画素を2次元状に形成したものが一般的である。光電変換層8上に隔膜層7を有してもよい。シンチレータパネル2の出光面と出力基板3の光電変換層8を、隔膜層7を介して接着または密着させることが好ましい。 The output board 3 has a photoelectric conversion layer 8 and an output layer 9 on the board 11. The photoelectric conversion layer 8 is generally formed by forming a pixel having a photo sensor and a TFT (not shown) in a two-dimensional manner. The diaphragm layer 7 may be provided on the photoelectric conversion layer 8. It is preferable that the light emitting surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the output substrate 3 are adhered or brought into close contact with each other via the diaphragm layer 7.
 シンチレータ層4で発光した光は、光電変換層8に到達して光電変換され、出力される。X線検出器を構成する材料は、シンチレータ層4を除き、従来から知られているものを使用することができる。例えば、特許文献2には、シンチレータを含むX線検出器の構造及び構成材料が記載されており、特許文献2記載されているX線検出器の構造及び構成材料は本発明に援用することができる。 The light emitted by the scintillator layer 4 reaches the photoelectric conversion layer 8, is photoelectrically converted, and is output. As the material constituting the X-ray detector, conventionally known materials can be used except for the scintillator layer 4. For example, Patent Document 2 describes the structure and constituent materials of an X-ray detector including a scintillator, and the structure and constituent materials of the X-ray detector described in Patent Document 2 can be incorporated into the present invention. can.
 以下、実施例及び比較例に基づき本発明をより具体的に説明する。本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples. The present invention is not limited to the following examples.
<測定及び評価>
 以降の実施例及び比較例で得られる発光性複合粒子について、下記項目を下記方法に従って、測定及び評価した。
<Measurement and evaluation>
The following items were measured and evaluated according to the following methods for the luminescent composite particles obtained in the following Examples and Comparative Examples.
(ペロブスカイト化合物粒子の粒径)
 ペロブスカイト化合物(1)の粒子を透過型電子顕微鏡(日本電子株式会社製「JEM-2200FS」(商品名))を用いて撮影し、得られた電子顕微鏡像から平均粒径(平均フェレー径)を求めた。算出にあたっては、粒子を2本の平行線で挟んだ平行線の間隔をフェレー径とし、50個の粒子のフェレー径の算術平均とした。試料は、支持膜付きグリッドに発光性複合粒子組成物からペロブスカイト化合物粒子を採取することで得た。測定条件は、加速電圧200kVとした。
(Particle size of perovskite compound particles)
The particles of the perovskite compound (1) were photographed using a transmission electron microscope (“JEM-2200FS” (trade name) manufactured by JEOL Ltd.), and the average particle size (average ferret diameter) was obtained from the obtained electron microscope image. I asked. In the calculation, the distance between the parallel lines sandwiching the particles between two parallel lines was taken as the ferret diameter, and the arithmetic mean of the ferret diameters of 50 particles was used. The sample was obtained by collecting perovskite compound particles from the luminescent composite particle composition on a grid with a support film. The measurement conditions were an acceleration voltage of 200 kV.
(発光性複合粒子の粒径)
 発光性複合粒子の平均粒径は、粒径分析装置(マルバーン社製「ゼータサイザーナノZS」(商品名))を用いて測定した。測定方法は、動的光散乱法を用いた。得られた発光性複合粒子を個数平均分布とし、平均粒径及び標準偏差σを求めた。測定用試料は、分散液を所定の容器(ガラス)に滴下し、測定した。
(Particle size of luminescent composite particles)
The average particle size of the luminescent composite particles was measured using a particle size analyzer (“Zetasizer Nano ZS” (trade name) manufactured by Malvern). The measurement method used was a dynamic light scattering method. The obtained luminescent composite particles were used as a number average distribution, and the average particle size and standard deviation σ were determined. The measurement sample was measured by dropping the dispersion liquid into a predetermined container (glass).
(量子収率、吸収率)
 実施例1、2、3及び比較例1で得られた発光性複合粒子組成物の量子収率及び吸収率を、絶対PL量子収率測定装置(浜松ホトニクス株式会社製「C9920-02」(商品名))を用いて測定した。測定は、下記光照射の前後で行い、測定条件は励起光450nm、25℃、1気圧とした。
(Quantum yield, absorption rate)
The quantum yield and absorption rate of the luminescent composite particle composition obtained in Examples 1, 2, 3 and Comparative Example 1 are measured by an absolute PL quantum yield measuring device (“C9920-02” manufactured by Hamamatsu Photonics Co., Ltd. (Commodity). Name)) was used for measurement. The measurement was performed before and after the following light irradiation, and the measurement conditions were an excitation light of 450 nm, 25 ° C., and 1 atm.
(耐光性の評価)
 実施例1、2、3及び比較例1で得られた発光性複合粒子組成物100μLを1cm×1cmサイズのガラス基材上に塗布し、自然乾燥させた後、膜を得た。得られた膜を50℃に加熱しながら、LED光源からピーク波長450nm、照度100mW/cmの光を48時間照射した。
(Evaluation of light resistance)
100 μL of the luminescent composite particle composition obtained in Examples 1, 2 and 3 and Comparative Example 1 was applied onto a glass substrate having a size of 1 cm × 1 cm and air-dried to obtain a film. While heating the obtained film to 50 ° C., light having a peak wavelength of 450 nm and an illuminance of 100 mW / cm 2 was irradiated from the LED light source for 48 hours.
 光照射前後の発光性複合粒子組成物の量子収率及び吸収率から、下記式に基づいて輝度維持率を求めた。輝度維持率はその値が高いほど、耐光性が高いと評価できる。なお、評価は光照射後48時間経過したものについて行った。 From the quantum yield and absorption rate of the luminescent composite particle composition before and after light irradiation, the brightness maintenance rate was determined based on the following formula. It can be evaluated that the higher the value of the brightness maintenance rate, the higher the light resistance. The evaluation was performed on the ones 48 hours after the light irradiation.
 輝度維持率(%)=[(耐光試験後の発光性複合粒子組成物の量子収率)÷(耐光試験前の発光性複合粒子組成物の量子収率)]×[(耐光試験後の発光性複合粒子組成物の吸収率)÷(耐光試験前の発光性複合粒子組成物の吸収率)]×100 Brightness retention rate (%) = [(Quantum yield of luminescent composite particle composition after light resistance test) ÷ (Quantum yield of luminescent composite particle composition before light resistance test)] × [(Light emission after light resistance test) Absorption rate of sex composite particle composition) ÷ (absorption rate of luminescent composite particle composition before light resistance test)] × 100
[実施例1]
(ペロブスカイト化合物粒子の製造)
 オレイルアミン25mL、及びエタノール200mLを混合した後、氷冷しながら撹拌し、臭化水素酸水溶液(48%)を17.12mL添加した後、減圧乾燥して沈殿を得た。沈殿はジエチルエーテルを用いて洗浄した後、減圧乾燥して臭化オレイルアンモニウムを得た。
[Example 1]
(Manufacturing of perovskite compound particles)
After mixing 25 mL of oleylamine and 200 mL of ethanol, the mixture was stirred while cooling with ice, 17.12 mL of an aqueous hydrogen bromide solution (48%) was added, and then dried under reduced pressure to obtain a precipitate. The precipitate was washed with diethyl ether and then dried under reduced pressure to obtain oleylammonium bromide.
 臭化オレイルアンモニウム21gに対して、トルエン200mLを混合して臭化オレイルアンモニウムを含む溶液を調製した。 200 mL of toluene was mixed with 21 g of oleylammonium bromide to prepare a solution containing oleylammonium bromide.
 酢酸鉛・3水和物1.52gと、ホルムアミジン酢酸塩1.56g、1-オクタデセンの溶媒160mLと、オレイン酸40mLとを混合した。窒素雰囲気下、撹拌しながら130℃まで加熱した後、上述の臭化オレイルアンモニウムを含む溶液53.4mLを添加した。添加後、溶液を室温まで降温し、ペロブスカイト化合物(1)を含む分散液を得た。 1.52 g of lead acetate trihydrate, 1.56 g of formamidine acetate, 160 mL of 1-octadecene solvent, and 40 mL of oleic acid were mixed. After heating to 130 ° C. with stirring under a nitrogen atmosphere, 53.4 mL of the above-mentioned solution containing oleylammonium bromide was added. After the addition, the temperature of the solution was lowered to room temperature to obtain a dispersion containing the perovskite compound (1).
 上記分散液200mLに対してトルエン100mL、及び酢酸エチル100mLを混合し、ろ過して固液分離した。その後、ろ紙上の固形分をトルエン100mL、及び酢酸エチル100mLの混合溶液で2回洗浄し、さらにろ過を行った。これにより、ペロブスカイト化合物粒子を単離した。 100 mL of toluene and 100 mL of ethyl acetate were mixed with 200 mL of the above dispersion, filtered and separated into solid and liquid. Then, the solid content on the filter paper was washed twice with a mixed solution of 100 mL of toluene and 100 mL of ethyl acetate, and further filtered. As a result, perovskite compound particles were isolated.
(発光性複合粒子組成物の製造)
 次に、トルエンを分散媒として、ペロブスカイト化合物粒子の濃度が0.34質量%となるように150mLの分散液を調製した。ここに、オルガノポリシラザン(1500 Slow Cure、Durazane, メルクパフォーマンスマテリアルズ株式会社製)を、ペロブスカイト化合物1質量部に対し、2.0質量部の量で加えた。その後、水蒸気による縮合処理を4時間実施し、乾燥した窒素雰囲気下で0.5時間静置した。縮合処理は、水蒸気流量:0.4L/分(Nガスとともに供給、30℃の飽和水蒸気量)、加熱温度:90℃の下で行った。縮合処理後の分散液を0.5μmのメンブレンフィルターでろ過し、発光性複合粒子組成物を得た。得られた発光性複合粒子組成物をDLS測定して、粒子の平均粒径を見積もった。平均粒径は27.26nm±8.5であった。耐光性試験後の輝度維持率は、70.1%であった。
(Manufacturing of luminescent composite particle composition)
Next, using toluene as a dispersion medium, a 150 mL dispersion was prepared so that the concentration of the perovskite compound particles was 0.34% by mass. To this, organopolysilazane (1500 Slow Cure, Durazane, manufactured by Merck Performance Materials Co., Ltd.) was added in an amount of 2.0 parts by mass with respect to 1 part by mass of the perovskite compound. Then, the condensation treatment with steam was carried out for 4 hours, and it was allowed to stand in a dry nitrogen atmosphere for 0.5 hours. The condensation treatment was carried out under a steam flow rate of 0.4 L / min (supplied with N2 gas, saturated steam amount at 30 ° C.) and a heating temperature of 90 ° C. The dispersion liquid after the condensation treatment was filtered through a 0.5 μm membrane filter to obtain a luminescent composite particle composition. The obtained luminescent composite particle composition was measured by DLS to estimate the average particle size of the particles. The average particle size was 27.26 nm ± 8.5. The brightness maintenance rate after the light resistance test was 70.1%.
[実施例2]
 発光性複合粒子の製造工程において、ペロブスカイト化合物粒子の分散液を150mLから30mLとし、縮合処理時のガス流量を0.08L/分とした以外は、上記実施例1と同様の方法で発光性複合粒子組成物を得た。同様の方法で、粒子の平均粒径を見積もると、26.54nm±5.4であった。また、輝度維持率は78.0%であった。
[Example 2]
In the process of producing the luminescent composite particles, the luminescent composite was carried out by the same method as in Example 1 above, except that the dispersion liquid of the perovskite compound particles was set to 150 mL to 30 mL and the gas flow rate during the condensation treatment was set to 0.08 L / min. A particle composition was obtained. The average particle size of the particles was estimated to be 26.54 nm ± 5.4 by the same method. The brightness maintenance rate was 78.0%.
[実施例3]
 発光性複合粒子の製造工程において、オルガノポリシラザンを添加後、オルガノポリシラザン1質量部に対して、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン(東京化成工業株式会社製)0.25質量部をさらに添加した以外は、上記実施例2と同様の方法で発光性複合粒子組成物を得た。同様の方法で粒子の平均粒径を見積もると、17.59nm±5.2であった。また、輝度維持率は100%であった。
[Example 3]
Trimethoxy (1H, 1H, 2H, 2H-nonafluorohexyl) silane (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.25 with respect to 1 part by mass of organopolysilazane after addition of organopolysilazane in the manufacturing process of luminescent composite particles. A luminescent composite particle composition was obtained in the same manner as in Example 2 above, except that a mass portion was further added. When the average particle size of the particles was estimated by the same method, it was 17.59 nm ± 5.2. The brightness maintenance rate was 100%.
[比較例1]
 実施例1に記載の発光性複合粒子の製造工程において、得られた発光性複合粒子組成物をメンブレンフィルターでろ過しない以外は、同様の方法で発光性複合粒子組成物を得た。同様の方法で粒子の平均粒径を見積もると、495.2nm±142.0であった。また、輝度維持率は24.8%であった。
[Comparative Example 1]
In the step of producing the luminescent composite particles according to Example 1, a luminescent composite particle composition was obtained by the same method except that the obtained luminescent composite particle composition was not filtered by a membrane filter. The average particle size of the particles was estimated by the same method and was 495.2 nm ± 142.0. The brightness maintenance rate was 24.8%.
 実施例1~3、及び比較例1の発光性複合粒子について、上述の測定を行った。結果を表1に示す。 The above measurements were performed on the luminescent composite particles of Examples 1 to 3 and Comparative Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記の結果から、実施例1~3の平均粒径が1~100nmであるペロブスカイト化合物を含む発光性複合粒子は、比較例1の発光性複合粒子と比べ、耐光性に優れることが確認できた。 From the above results, it was confirmed that the luminescent composite particles containing the perovskite compound having an average particle size of 1 to 100 nm in Examples 1 to 3 are superior in light resistance to the luminescent composite particles of Comparative Example 1. ..
[参考例1]
 実施例1~3に記載の発光性複合粒子組成物を、ガラスチューブ等の中に入れて封止した後に、これを光源である青色発光ダイオードと導光板の間に配置することで、青色発光ダイオードの青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 1]
The luminescent composite particle composition according to Examples 1 to 3 is placed in a glass tube or the like and sealed, and then the blue light emitting diode is placed between the blue light emitting diode as a light source and the light guide plate. Manufacture a backlight that can convert blue light into green light or red light.
[参考例2]
 実施例1~3に記載の発光性複合粒子組成物をシート化する事で樹脂組成物を得ることができ、これを2枚のバリアーフィルムで挟んで封止したフィルムを導光板の上に設置することで、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 2]
A resin composition can be obtained by forming a sheet of the light-emitting composite particle composition according to Examples 1 to 3, and a film sandwiched between two barrier films and sealed is placed on a light guide plate. By doing so, a backlight capable of converting the blue light emitted from the blue light emitting diode placed on the end surface (side surface) of the light guide plate to the sheet through the light guide plate into green light or red light is manufactured.
[参考例3]
 実施例1~3に記載の発光性複合粒子組成物を、青色発光ダイオードの発光部近傍に設置することで照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 3]
By installing the luminescent composite particle composition according to Examples 1 to 3 in the vicinity of the light emitting portion of the blue light emitting diode, a backlight capable of converting the blue light emitted into green light or red light is manufactured. do.
[参考例4]
 実施例1~3に記載の発光性複合粒子組成物とレジストを混合した後に、溶媒を除去する事で波長変換材料を得ることができる。得られた波長変換材料を光源である青色発光ダイオードと導光板の間や、光源であるOLEDの後段に配置することで、光源の青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference example 4]
A wavelength conversion material can be obtained by mixing the luminescent composite particle composition according to Examples 1 to 3 with a resist and then removing the solvent. By arranging the obtained wavelength conversion material between the blue light emitting diode which is the light source and the light guide plate or after the OLED which is the light source, a backlight capable of converting the blue light of the light source into green light or red light can be obtained. To manufacture.
[参考例5]
 実施例1~3に記載の発光性複合粒子組成物をZnSなどの導電性粒子を混合して成膜し、片面にn型輸送層を積層し、もう片面をp型輸送層で積層することでLEDを得る。
電流を流すことによりp型半導体の正孔と、n型半導体の電子が接合面のペロブスカイト化合物中で電荷を打ち消されることで発光させることができる。
[Reference Example 5]
The light-emitting composite particle composition according to Examples 1 to 3 is formed by mixing conductive particles such as ZnS to form a film, and an n-type transport layer is laminated on one side and the other side is laminated with a p-type transport layer. Get the LED.
By passing an electric current, the holes of the p-type semiconductor and the electrons of the n-type semiconductor can be made to emit light by canceling the charges in the perovskite compound on the bonding surface.
[参考例6]
 フッ素ドープされた酸化スズ(FTO)基板の表面上に、酸化チタン緻密層を積層させ、その上から多孔質酸化アルミニウム層を積層し、その上に実施例1~3に記載の発光性複合粒子組成物を積層し、溶媒を除去した後にその上から2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene(Spiro-OMeTAD)などのホール輸送層を積層し、その上に銀(Ag)層を積層し、太陽電池を作製する。
[Reference Example 6]
A dense layer of titanium oxide is laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, a porous aluminum oxide layer is laminated on the dense layer, and the luminescent composite particles according to Examples 1 to 3 are laminated thereto. After laminating the composition and removing the solvent, 2,2', 7,7'-tetrakis- (N, N'-di-p-methoxyphenyllamine) -9,9'-spirobifluorene (Spiro-OMeTAD) A solar cell is manufactured by laminating a hole transport layer such as, and then laminating a silver (Ag) layer on the whole.
[参考例7]
 実施例1~3に記載の発光性複合粒子を含む組成物の、溶媒を除去して成形する事で本実施形態の組成物を得ることができ、これを青色発光ダイオードの後段に設置することで、青色発光ダイオードから組成物に照射される青色の光を緑色光や赤色光に変換して白色光を発するレーザーダイオード照明を製造する。
[Reference Example 7]
The composition of the present embodiment can be obtained by removing the solvent from the composition containing the luminescent composite particles according to Examples 1 to 3, and installing the composition after the blue light emitting diode. Therefore, a laser diode lighting that emits white light by converting blue light radiated from a blue light emitting diode onto a composition into green light or red light is manufactured.
[参考例8]
 実施例1~3に記載の発光性複合粒子を含む組成物の溶媒を除去して成形する事で本実施形態の組成物を得ることができる。得られた組成物を光電変換層の一部とすることで、光を検知する検出部に使用する含まれる光電変換素子(光検出素子)材料を製造する。光電変換素子材料は、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(イメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する検出部、パルスオキシメーターなどの光学バイオセンサーに用いられる。
[Reference Example 8]
The composition of the present embodiment can be obtained by removing the solvent of the composition containing the luminescent composite particles according to Examples 1 to 3 and molding the composition. By using the obtained composition as a part of the photoelectric conversion layer, a photoelectric conversion element (photodetection element) material contained in a detection unit for detecting light is manufactured. The photoelectric conversion element material is a part of a living body such as an image detection unit (image sensor) for a solid-state image sensor such as an X-ray image sensor and a CMOS image sensor, a fingerprint detection unit, a face detection unit, a vein detection unit, and an iris detection unit. It is used in an optical biosensor such as a detection unit that detects a predetermined feature and a pulse oximeter.
[参考例9]
 実施例1~3に記載の発光性複合粒子を含む組成物の溶媒を除去して成形する事で本実施形態の組成物を得ることができる。得られた組成物を太陽電池の光変換効率を向上するフィルムとして用いることができる。前記、変換効率向上シートの形態としては、特に限定されないが、基材に塗布する形で利用する。基材に関しては特に限定されず、透明性の高い基材であればよい。例えば、PETフィルムやモスアイフィルムなどが望ましい。太陽電池変換効率向上シートを用いる太陽電池は特に限定せず、変換効率向上シートは、太陽電池の感度が低い波長領域から、感度の高い波長領域へと変換機能を有する。
[Reference Example 9]
The composition of the present embodiment can be obtained by removing the solvent of the composition containing the luminescent composite particles according to Examples 1 to 3 and molding the composition. The obtained composition can be used as a film for improving the light conversion efficiency of the solar cell. The form of the conversion efficiency improving sheet is not particularly limited, but is used in the form of being applied to a base material. The base material is not particularly limited as long as it is a highly transparent base material. For example, PET film or moth-eye film is desirable. The solar cell using the solar cell conversion efficiency improving sheet is not particularly limited, and the conversion efficiency improving sheet has a conversion function from a wavelength region in which the sensitivity of the solar cell is low to a wavelength region in which the sensitivity is high.
[参考例10]
 実施例1~3に記載の発光性複合粒子を含む組成物の溶媒を除去して成形する事で本実施形態の組成物を得ることができる。得られた組成物を量子コンピュータ、量子テレポーテーションおよび量子暗号通信などの単一光子発生用光源として利用することができる。
[Reference Example 10]
The composition of the present embodiment can be obtained by removing the solvent of the composition containing the luminescent composite particles according to Examples 1 to 3 and molding the composition. The obtained composition can be used as a light source for single photon generation such as quantum computer, quantum teleportation and quantum cryptography communication.
 10…ペロブスカイト化合物粒子、
 20…ケイ素化合物層、
 30…分散媒体材料、
 100…発光性複合粒子、
 200…発光性複合粒子組成物。
10 ... Perovskite compound particles,
20 ... Silicon compound layer,
30 ... Dispersion medium material,
100 ... Luminous composite particles,
200 ... Luminous composite particle composition.

Claims (9)

  1.  A、B、及びXを構成成分とするペロブスカイト型結晶構造
    [ペロブスカイト型結晶構造において、AはBを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンであり、
     BはAを頂点に配置する6面体、及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンであり、
     XはBを中心とする8面体の各頂点に位置する成分であって、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。]
    を有し、発光性を有するペロブスカイト化合物粒子と、該ペロブスカイト化合物粒子の表面の少なくとも一部に形成されたケイ素化合物層とを、有する発光性複合粒子であって、1~100nmの平均粒径を有する発光性複合粒子。
    Perovskite-type crystal structure containing A, B, and X as constituents
    [In the perovskite-type crystal structure, A is a component located at each vertex of a hexahedron centered on B, and is a monovalent cation.
    B is a component located at the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex, and is a metal ion.
    X is a component located at each vertex of the octahedron centered on B, and is at least one kind of anion selected from the group consisting of a halide ion and a thiocyanate ion. ]
    A luminescent composite particle having a perovskite compound particle having luminescence and a silicon compound layer formed on at least a part of the surface of the perovskite compound particle, and having an average particle size of 1 to 100 nm. Luminescent composite particles with.
  2.  前記ケイ素化合物層は、加水分解性ケイ素化合物、及びその縮合物からなる群より選ばれる少なくとも一種から成る層である、請求項1に記載の発光性複合粒子。 The luminescent composite particle according to claim 1, wherein the silicon compound layer is a layer composed of at least one selected from the group consisting of a hydrolyzable silicon compound and a condensate thereof.
  3.  前記発光性を有するペロブスカイト化合物粒子は1~80nmの一次粒子径を有する請求項1又は2に記載の発光性複合粒子。 The luminescent composite particle according to claim 1 or 2, wherein the perovskite compound particle having luminescence has a primary particle diameter of 1 to 80 nm.
  4.  請求項1~3のいずれか一項に記載の発光性複合粒子と、分散媒、重合性化合物及び重合体からなる群から選ばれる少なくとも一種とを、含む発光性複合粒子組成物。 A luminescent composite particle composition containing the luminescent composite particle according to any one of claims 1 to 3 and at least one selected from the group consisting of a dispersion medium, a polymerizable compound and a polymer.
  5.  請求項1~3のいずれか一項に記載の発光性複合粒子を含む、フィルム。 A film containing the luminescent composite particles according to any one of claims 1 to 3.
  6.  請求項5に記載のフィルムを含む、積層構造体。 A laminated structure including the film according to claim 5.
  7.  請求項6に記載の積層構造体を備える、発光装置。 A light emitting device including the laminated structure according to claim 6.
  8.  請求項6に記載の積層構造体を備える、ディスプレイ。 A display comprising the laminated structure according to claim 6.
  9.  請求項1~3のいずれか一項に記載の発光性複合粒子を含む、シンチレータ。 A scintillator containing the luminescent composite particles according to any one of claims 1 to 3.
PCT/JP2021/030149 2020-08-27 2021-08-18 Light-emitting composite particles and light-emitting composite particle composition WO2022044907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180052840.0A CN115989193A (en) 2020-08-27 2021-08-18 Luminescent composite particle and luminescent composite particle composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-143665 2020-08-27
JP2020143665A JP2022038930A (en) 2020-08-27 2020-08-27 Luminescent compound particle, and luminescent compound particle composition

Publications (1)

Publication Number Publication Date
WO2022044907A1 true WO2022044907A1 (en) 2022-03-03

Family

ID=80355095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030149 WO2022044907A1 (en) 2020-08-27 2021-08-18 Light-emitting composite particles and light-emitting composite particle composition

Country Status (4)

Country Link
JP (1) JP2022038930A (en)
CN (1) CN115989193A (en)
TW (1) TW202212455A (en)
WO (1) WO2022044907A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102458A1 (en) * 2006-03-07 2007-09-13 Konica Minolta Medical & Graphic, Inc. Core-shell type nanoparticle phosphor
JP2013144757A (en) * 2012-01-16 2013-07-25 Shin-Etsu Chemical Co Ltd Silicone resin composition, luminous substance-containing wavelength-converting film, and cured product thereof
JP2014504312A (en) * 2010-12-01 2014-02-20 コーニンクレッカ フィリップス エヌ ヴェ Red emission material
WO2019088266A1 (en) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 Aggregated nanoparticles and fluorescent labeling material
WO2020085513A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Particle, composition, film, laminated structure, light-emitting device, and display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777242B2 (en) * 2010-06-29 2015-09-09 株式会社日本セラテック Phosphor material and light emitting device
CN108728077A (en) * 2018-05-08 2018-11-02 天津理工大学 The preparation method of synthetic silica coated inorganic perovskite quantum dot
JP2020066725A (en) * 2018-10-26 2020-04-30 住友化学株式会社 Particle, composition, film, laminate structure, light emitting device and display
JP7179581B2 (en) * 2018-10-26 2022-11-29 住友化学株式会社 Compositions, films, laminated structures, light-emitting devices and displays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102458A1 (en) * 2006-03-07 2007-09-13 Konica Minolta Medical & Graphic, Inc. Core-shell type nanoparticle phosphor
JP2014504312A (en) * 2010-12-01 2014-02-20 コーニンクレッカ フィリップス エヌ ヴェ Red emission material
JP2013144757A (en) * 2012-01-16 2013-07-25 Shin-Etsu Chemical Co Ltd Silicone resin composition, luminous substance-containing wavelength-converting film, and cured product thereof
WO2019088266A1 (en) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 Aggregated nanoparticles and fluorescent labeling material
WO2020085513A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Particle, composition, film, laminated structure, light-emitting device, and display

Also Published As

Publication number Publication date
TW202212455A (en) 2022-04-01
JP2022038930A (en) 2022-03-10
CN115989193A (en) 2023-04-18

Similar Documents

Publication Publication Date Title
US11621299B2 (en) Composition and method for producing composition
TWI761353B (en) Composition and compound
TWI791576B (en) Composition, film, laminated structure, light emitting device, and display
CN111655818B (en) Composition, film, laminate structure, light emitting device, and display
JP2018002712A (en) Compound, dispersion composition, resin composition, film, laminate structure and light-emitting device
JP6902539B2 (en) Compounds, dispersion compositions and resin compositions
WO2022044907A1 (en) Light-emitting composite particles and light-emitting composite particle composition
WO2019150824A1 (en) Composition, film, laminate structure, light-emitting device, and display
JP7453744B2 (en) Compositions, films, laminate structures, light emitting devices and displays
TWI717527B (en) Composition
JP7257184B2 (en) Compositions, films, laminated structures, light-emitting devices and displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861335

Country of ref document: EP

Kind code of ref document: A1