TW202212455A - Light-emitting composite particles and light-emitting composite particle composition - Google Patents

Light-emitting composite particles and light-emitting composite particle composition Download PDF

Info

Publication number
TW202212455A
TW202212455A TW110130815A TW110130815A TW202212455A TW 202212455 A TW202212455 A TW 202212455A TW 110130815 A TW110130815 A TW 110130815A TW 110130815 A TW110130815 A TW 110130815A TW 202212455 A TW202212455 A TW 202212455A
Authority
TW
Taiwan
Prior art keywords
compound
light
luminescent composite
particles
perovskite compound
Prior art date
Application number
TW110130815A
Other languages
Chinese (zh)
Inventor
杉内瑞穂
内藤翔太
Original Assignee
日商住友化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友化學股份有限公司 filed Critical 日商住友化學股份有限公司
Publication of TW202212455A publication Critical patent/TW202212455A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/16Halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Light-emitting composite particles, each of which has a perovskite-type crystal structure containing A, B and X as components [in the perovskite-type crystal structure, A represents a component located at each vertex in a hexahedron having B at the center thereof, and is a monovalent cation; B represents a component located at a center in a hexahedron having A at each vertex thereof or an octahedron having X at each vertex thereof, and is a metal ion; and X represents a component located at each vertex in an octahedron having B at the center thereof, and comprises at least one anion selected from the group consisting of a halide ion and a thiocyanate ion], and comprises a perovskite compound particle having light-emitting properties and a silicon compound layer formed on at least a portion of the surface of the perovskite compound particle, the light-emitting composite particles having an average particle diameter of 1 to 100 nm.

Description

發光性複合粒子及發光性複合粒子組合物Luminescent composite particle and luminescent composite particle composition

本發明係關於一種具有發光性之半導體化合物之粒子,尤其關於一種具有發光性之鈣鈦礦型半導體化合物之粒子。The present invention relates to a particle of a luminescent semiconductor compound, in particular to a particle of a luminescent perovskite type semiconductor compound.

鈣鈦礦型半導體化合物(以下,稱為「鈣鈦礦化合物」)係具有較高之量子產率之發光性半導體化合物,作為發光性材料而備受關注。例如,於專利文獻1中記載有一種使用鈣鈦礦化合物作為發光體之發光性膜。專利文獻1之發光性膜具有海島結構,該海島結構具有:島部,其係具有發光性之鈣鈦礦化合物粒子內包於矽氮烷改質體中之粒子;及海部,其係聚合物。專利文獻1之發光性膜係對水蒸氣之耐久性優異之發光性材料。 [先前技術文獻] [專利文獻] A perovskite-type semiconductor compound (hereinafter, referred to as a "perovskite compound") is a light-emitting semiconductor compound having a high quantum yield, and attracts attention as a light-emitting material. For example, Patent Document 1 describes a light-emitting film using a perovskite compound as a light-emitting body. The luminescent film of Patent Document 1 has a sea-island structure, and the sea-island structure has: island parts, which are particles of luminescent perovskite compound particles enclosed in a silazane-modified body; and sea parts, which are polymers . The luminescent film of Patent Document 1 is a luminescent material excellent in durability against water vapor. [Prior Art Literature] [Patent Literature]

[專利文獻1]國際公開第2018/212268號 [專利文獻2]國際公開第2019/131370號 [Patent Document 1] International Publication No. 2018/212268 [Patent Document 2] International Publication No. 2019/131370

[發明所欲解決之問題][Problems to be Solved by Invention]

另一方面,可知專利文獻1之發光性膜因激發光之照射而容易劣化,亮度維持率(量子產率之維持率×吸收率之維持率)容易降低。因此,專利文獻1之發光性膜在耐光性方面尚有改善之餘地。On the other hand, it turns out that the luminescent film of patent document 1 is easily degraded by irradiation of excitation light, and the luminance maintenance rate (maintaining rate of quantum yield×maintaining rate of absorption rate) tends to decrease. Therefore, the light-emitting film of Patent Document 1 still has room for improvement in light resistance.

本發明係鑒於上述課題而完成者,目的在於提供一種耐光性優異之包含鈣鈦礦化合物之發光性粒子材料。 [解決問題之技術手段] This invention was made in view of the said subject, and an object is to provide the luminescent particle material containing a perovskite compound which is excellent in light resistance. [Technical means to solve problems]

本發明提供一種發光性複合粒子,其具有鈣鈦礦化合物粒子、及形成於該鈣鈦礦化合物粒子表面之至少一部分之矽化合物層,且具有1~100 nm之平均粒徑,該鈣鈦礦化合物粒子具有以A、B及X作為構成成分之鈣鈦礦型結晶結構 [於鈣鈦礦型結晶結構中,A係位於以B為中心之六面體之各頂點之成分,且係一價陽離子, B係位於將A配置於頂點之六面體、及將X配置於頂點之八面體之中心之成分,且係金屬離子, X係位於以B為中心之八面體之各頂點之成分,且係選自由鹵化物離子及硫氰酸離子所組成之群中之至少一種陰離子],且具有發光性。 The present invention provides a luminescent composite particle having perovskite compound particles, a silicon compound layer formed on at least a part of the surface of the perovskite compound particles, and having an average particle size of 1-100 nm, the perovskite compound particles The compound particles have a perovskite crystal structure with A, B, and X as constituents [In the perovskite crystal structure, A is a component located at each vertex of the hexahedron with B as the center, and is a monovalent cation, B is a component located at the center of the hexahedron with A at the vertex and the octahedron with X at the vertex, and is a metal ion, X is a component located at each vertex of the octahedron with B as the center, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion], and has luminescence.

於某一方式中,上述矽化合物層係包含選自由水解性矽化合物及其縮合物所組成之群中之至少一種之層。In one embodiment, the silicon compound layer includes at least one layer selected from the group consisting of a hydrolyzable silicon compound and a condensate thereof.

於某一方式中,上述具有發光性之鈣鈦礦化合物粒子具有1~80 nm之一次粒徑。In a certain form, the said perovskite compound particle which has luminescence has a primary particle diameter of 1-80 nm.

又,本發明提供一種發光性複合粒子組合物,其包含上述任一發光性複合粒子、以及選自由分散介質、聚合性化合物及聚合物所組成之群中之至少一種。Furthermore, the present invention provides a luminescent composite particle composition comprising any one of the above-mentioned luminescent composite particles and at least one selected from the group consisting of a dispersion medium, a polymerizable compound, and a polymer.

又,本發明提供一種膜,其包含上述任一發光性複合粒子。Furthermore, the present invention provides a film comprising any of the above-mentioned luminescent composite particles.

又,本發明提供一種積層構造體,其包含上述膜。Furthermore, the present invention provides a laminated structure including the above-mentioned film.

又,本發明提供一種發光裝置,其具備上述積層構造體。Furthermore, the present invention provides a light-emitting device including the above-described laminated structure.

又,本發明提供一種顯示器,其具備上述積層構造體。Moreover, this invention provides the display provided with the said laminated structure.

又,本發明提供一種閃爍器,其包含上述任一發光性複合粒子。 [發明之效果] Furthermore, the present invention provides a scintillator including any one of the above-mentioned luminescent composite particles. [Effect of invention]

根據本發明,可提供一種耐光性優異之包含鈣鈦礦化合物之發光性粒子材料。According to the present invention, a light-emitting particle material containing a perovskite compound excellent in light resistance can be provided.

1.包含鈣鈦礦化合物之發光性複合粒子 圖1係模式性地表示本發明之發光性複合粒子之結構之剖視圖。發光性複合粒子100具有鈣鈦礦化合物粒子10及形成於其表面之矽化合物層20。再者,矽化合物層20只要形成於鈣鈦礦化合物粒子10表面之至少一部分即可。 1. Luminescent composite particles containing perovskite compounds FIG. 1 is a cross-sectional view schematically showing the structure of the luminescent composite particle of the present invention. The light-emitting composite particle 100 has the perovskite compound particle 10 and the silicon compound layer 20 formed on the surface thereof. Furthermore, the silicon compound layer 20 only needs to be formed on at least a part of the surface of the perovskite compound particle 10 .

<鈣鈦礦化合物粒子> 鈣鈦礦化合物粒子10係包含以A、B及X作為構成成分之具有鈣鈦礦型結晶結構之化合物(A、B、及X與上述為相同含義,以下,將其稱為「鈣鈦礦化合物(1)」)之粒子。作為鈣鈦礦化合物(1)之結構,可為三維結構、二維結構、準二維(quasi-2D)結構之任一結構。 於三維結構之情形時,鈣鈦礦化合物(1)之組成式係由ABX (3+δ)所表示。 於二維結構之情形時,鈣鈦礦化合物(1)之組成式係由A 2BX (4+δ)所表示。 <Perovskite Compound Particles> The perovskite compound particles 10 contain a compound having a perovskite-type crystal structure containing A, B, and X as constituents (A, B, and X have the same meanings as described above, and hereinafter referred to as It is called the particle of "perovskite compound (1)"). The structure of the perovskite compound (1) may be any of a three-dimensional structure, a two-dimensional structure, and a quasi-2D structure. In the case of a three-dimensional structure, the compositional formula of the perovskite compound (1) is represented by ABX (3+δ) . In the case of a two-dimensional structure, the composition formula of the perovskite compound (1) is represented by A 2 BX (4+δ) .

此處,δ係可對應於B之電荷平衡性適當變更之數,為-0.7以上且0.7以下。例如,於A為一價陽離子、B為二價陽離子、X為一價陰離子之情形時,能以鈣鈦礦化合物(1)成為電中性之方式選擇δ。鈣鈦礦化合物(1)為電中性意指鈣鈦礦化合物(1)之電荷為0。Here, δ is a number that can be appropriately changed according to the charge balance of B, and is -0.7 or more and 0.7 or less. For example, when A is a monovalent cation, B is a divalent cation, and X is a monovalent anion, δ can be selected so that the perovskite compound (1) becomes electrically neutral. The fact that the perovskite compound (1) is electrically neutral means that the charge of the perovskite compound (1) is zero.

鈣鈦礦化合物(1)包含以B為中心且將頂點設為X之八面體。八面體係由BX 6所表示。 於鈣鈦礦化合物(1)具有三維結構之情形時,鈣鈦礦化合物(1)中所包含之BX 6藉由使於結晶中相鄰之2個八面體(BX 6)共有於八面體(BX 6)中位於頂點之1個X來構成三維網狀結構。 The perovskite compound (1) includes an octahedron whose center is B and whose vertex is X. The octahedral system is represented by BX 6 . In the case where the perovskite compound (1) has a three-dimensional structure, the BX 6 contained in the perovskite compound (1) is shared by two adjacent octahedrons (BX 6 ) in the crystal on the eight sides One X located at the vertex in the body (BX 6 ) constitutes a three-dimensional network structure.

於鈣鈦礦化合物(1)具有二維結構之情形時,鈣鈦礦化合物(1)中所包含之BX 6藉由使於結晶中相鄰之2個八面體(BX 6)共有於八面體(BX 6)中位於頂點之2個X來共有八面體之稜線,從而構成二維連接之層。鈣鈦礦化合物(1)具有包含二維鏈接之BX 6之層與包含A之層交替地積層而成之結構。 When the perovskite compound (1) has a two-dimensional structure, the BX 6 contained in the perovskite compound (1) is shared by two octahedrons (BX 6 ) adjacent to each other in the crystal. Two X's located at the vertices of the face (BX 6 ) share the edges of the octahedron, thereby forming a two-dimensionally connected layer. The perovskite compound (1) has a structure in which layers including BX 6 of two-dimensional linkage and layers including A are alternately stacked.

鈣鈦礦化合物(1)較佳為具有三維結構。The perovskite compound (1) preferably has a three-dimensional structure.

(構成成分A) 構成鈣鈦礦化合物(1)之A係一價陽離子。作為A,可例舉:銫離子、有機銨離子或脒鎓離子。 (Constituent A) The A-series monovalent cation constituting the perovskite compound (1). As A, a cesium ion, an organic ammonium ion, or an amidinium ion can be mentioned.

(有機銨離子) 作為A之有機銨離子,具體而言,可例舉下述式(A3)所表示之陽離子。 (organic ammonium ion) As an organic ammonium ion of A, the cation represented by following formula (A3) is mentioned specifically,.

[化1]

Figure 02_image001
[hua 1]
Figure 02_image001

式(A3)中,R 6~R 9分別獨立地表示氫原子、烷基或環烷基。其中,R 6~R 9之至少1個為烷基或環烷基,R 6~R 9不會全部同時成為氫原子。 In formula (A3), R 6 to R 9 each independently represent a hydrogen atom, an alkyl group or a cycloalkyl group. However, at least one of R 6 to R 9 is an alkyl group or a cycloalkyl group, and all of R 6 to R 9 do not become hydrogen atoms at the same time.

R 6~R 9所表示之烷基可為直鏈狀,亦可為支鏈狀。又,R 6~R 9所表示之烷基亦可分別獨立地具有胺基作為取代基。 The alkyl groups represented by R 6 to R 9 may be linear or branched. In addition, the alkyl groups represented by R 6 to R 9 may each independently have an amino group as a substituent.

R 6~R 9所表示之烷基之碳原子數分別獨立地通常為1~20,較佳為1~4,更佳為1~3,進而較佳為1。 The number of carbon atoms of the alkyl groups represented by R 6 to R 9 is usually 1 to 20, preferably 1 to 4, more preferably 1 to 3, and still more preferably 1, independently of each other.

R 6~R 9所表示之環烷基亦可分別獨立地具有胺基作為取代基。 The cycloalkyl groups represented by R 6 to R 9 may each independently have an amino group as a substituent.

R 6~R 9所表示之環烷基之碳原子數分別獨立地通常為3~30,較佳為3~11,更佳為3~8。碳原子數包括取代基之碳原子數。 The number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is usually 3 to 30, preferably 3 to 11, more preferably 3 to 8, each independently. The number of carbon atoms includes the number of carbon atoms of the substituent.

作為R 6~R 9所表示之基,分別獨立地較佳為氫原子或烷基。 The groups represented by R 6 to R 9 are each independently preferably a hydrogen atom or an alkyl group.

於鈣鈦礦化合物(1)包含上述式(A3)所表示之有機銨離子作為A之情形時,較佳為式(A3)中可包含之烷基及環烷基之數量較少。又,較佳為式(A3)中可包含之烷基及環烷基之碳原子數較小。藉此,可獲得發光強度較高之三維結構之鈣鈦礦化合物(1)。When the perovskite compound (1) contains the organic ammonium ion represented by the above formula (A3) as A, it is preferable that the number of alkyl groups and cycloalkyl groups that can be contained in the formula (A3) is small. Moreover, it is preferable that the number of carbon atoms of the alkyl group and cycloalkyl group which may be contained in formula (A3) is small. Thereby, the perovskite compound (1) having a three-dimensional structure with high luminous intensity can be obtained.

於式(A3)所表示之有機銨離子中,較佳為R 6~R 9所表示之烷基及環烷基中所包含之碳原子之合計個數為1~4。 又,於式(A3)所表示之有機銨離子中,更佳為R 6~R 9中之1個為碳原子數1~3之烷基,R 6~R 9中之3個為氫原子。 In the organic ammonium ion represented by formula (A3), it is preferable that the total number of carbon atoms contained in the alkyl group represented by R 6 to R 9 and the cycloalkyl group is 1 to 4. Moreover, among the organic ammonium ions represented by the formula (A3), it is more preferable that one of R 6 to R 9 is an alkyl group having 1 to 3 carbon atoms, and three of R 6 to R 9 are hydrogen atoms. .

作為R 6~R 9之烷基,可例示:甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、第三丁基、正戊基、異戊基、新戊基、第三戊基、1-甲基丁基、正己基、2-甲基戊基、3-甲基戊基、2,2-二甲基丁基、2,3-二甲基丁基、正庚基、2-甲基己基、3-甲基己基、2,2-二甲基戊基、2,3-二甲基戊基、2,4-二甲基戊基、3,3-二甲基戊基、3-乙基戊基、2,2,3-三甲基丁基、正辛基、異辛基、2-乙基己基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基。 Examples of the alkyl groups of R 6 to R 9 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopropyl Pentyl, neopentyl, tert-pentyl, 1-methylbutyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3- Dimethylbutyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl , 3,3-dimethylpentyl, 3-ethylpentyl, 2,2,3-trimethylbutyl, n-octyl, isooctyl, 2-ethylhexyl, nonyl, decyl , undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl .

作為R 6~R 9之環烷基,可分別獨立地例舉R 6~R 9之烷基中所例示之碳原子數3以上之烷基形成有環者。作為一例,可例示:環丙基、環丁基、環戊基、環己基、環庚基、環辛基、環壬基、環癸基、降𦯉基、異𦯉基、1-金剛烷基、2-金剛烷基、三環癸基等。 As the cycloalkyl group of R 6 to R 9 , the alkyl group having 3 or more carbon atoms exemplified in the alkyl group of R 6 to R 9 can each independently form a ring. As an example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a norxyl group, an isoxyl group, and a 1-adamantyl group can be exemplified. , 2-adamantyl, tricyclodecyl, etc.

作為A所表示之有機銨離子,較佳為CH 3NH 3 +(亦稱為甲基銨離子)、C 2H 5NH 3 +(亦稱為乙基銨離子)或C 3H 7NH 3 +(亦稱為丙基銨離子),更佳為甲基銨離子或乙基銨離子,進而較佳為甲基銨離子。 The organic ammonium ion represented by A is preferably CH 3 NH 3 + (also referred to as methylammonium ion), C 2 H 5 NH 3 + (also referred to as ethylammonium ion) or C 3 H 7 NH 3 + (also referred to as propylammonium ion), more preferably methylammonium ion or ethylammonium ion, and still more preferably methylammonium ion.

(脒鎓離子) 作為A所表示之脒鎓離子,例如可例舉下述式(A4)所表示之脒鎓離子。 (Amidinonium ion) As the amidinium ion represented by A, the amidinium ion represented by the following formula (A4) may, for example, be mentioned.

(R 10R 11N=CH-NR 12R 13) +・・・(A4) (R 10 R 11 N=CH-NR 12 R 13 ) +・・・(A4)

式(A4)中,R 10~R 13分別獨立地表示氫原子、烷基或環烷基。 In formula (A4), R 10 to R 13 each independently represent a hydrogen atom, an alkyl group or a cycloalkyl group.

R 10~R 13所表示之烷基分別獨立地可為直鏈狀,亦可為支鏈狀。又,R 10~R 13所表示之烷基亦可分別獨立地具有胺基作為取代基。 The alkyl groups represented by R 10 to R 13 may each independently be linear or branched. In addition, the alkyl groups represented by R 10 to R 13 may each independently have an amine group as a substituent.

R 10~R 13所表示之烷基之碳原子數分別獨立地通常為1~20,較佳為1~4,更佳為1~3。 The number of carbon atoms of the alkyl groups represented by R 10 to R 13 is usually 1 to 20, preferably 1 to 4, and more preferably 1 to 3, each independently.

R 10~R 13所表示之環烷基亦可分別獨立地具有胺基作為取代基。 The cycloalkyl groups represented by R 10 to R 13 may each independently have an amine group as a substituent.

R 10~R 13所表示之環烷基之碳原子數分別獨立地通常為3~30,較佳為3~11,更佳為3~8。碳原子數包括取代基之碳原子數。 The number of carbon atoms of the cycloalkyl groups represented by R 10 to R 13 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8, each independently. The number of carbon atoms includes the number of carbon atoms of the substituent.

作為R 10~R 13之烷基之具體例,可分別獨立地例舉與R 6~R 9中所例示之烷基相同之基。 作為R 10~R 13之環烷基之具體例,可分別獨立地例舉與R 6~R 9中所例示之環烷基相同之基。 Specific examples of the alkyl groups of R 10 to R 13 include the same groups as the alkyl groups exemplified for R 6 to R 9 , respectively. Specific examples of the cycloalkyl groups of R 10 to R 13 include the same groups as the cycloalkyl groups exemplified for R 6 to R 9 , independently of each other.

作為R 10~R 13所表示之基,分別獨立地較佳為氫原子或烷基。 The groups represented by R 10 to R 13 are each independently preferably a hydrogen atom or an alkyl group.

藉由減少式(A4)中所包含之烷基及環烷基之數量,以及減少烷基及環烷基之碳原子數,可獲得發光強度較高之三維結構之鈣鈦礦化合物(1)。By reducing the number of alkyl groups and cycloalkyl groups contained in the formula (A4), and reducing the number of carbon atoms in the alkyl groups and cycloalkyl groups, a three-dimensional perovskite compound (1) with a higher luminous intensity can be obtained .

於脒鎓離子中,較佳為R 10~R 13所表示之烷基及環烷基中所包含之碳原子數之合計數為1~4,進而較佳為R 10為碳原子數1之烷基,R 11~R 13為氫原子。 Among the amidinium ions, it is preferable that the total number of carbon atoms contained in the alkyl group represented by R 10 to R 13 and the cycloalkyl group is 1 to 4, and it is more preferable that R 10 is one with 1 carbon atom. In the alkyl group, R 11 to R 13 are hydrogen atoms.

於在鈣鈦礦化合物(1)中A為銫離子、碳原子數為3以下之有機銨離子或碳原子數為3以下之脒鎓離子之情形時,鈣鈦礦化合物(1)一般具有三維結構。When A in the perovskite compound (1) is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound (1) generally has three dimensions. structure.

於在鈣鈦礦化合物(1)中A為碳原子數4以上之有機銨離子或碳原子數4以上之脒鎓離子之情形時,鈣鈦礦化合物(1)具有二維結構及準二維(quasi-2D)結構之任一者或兩者。於該情形時,鈣鈦礦化合物(1)可於結晶之一部分或整體具有二維結構或準二維結構。 若將複數個二維鈣鈦礦型結晶結構積層,則與三維鈣鈦礦型結晶結構變得同等(參考文獻:P. PBoix等人、J. Phys. Chem. Lett. 2015, 6, 898-907等)。 When A in the perovskite compound (1) is an organic ammonium ion having 4 or more carbon atoms or an amidinium ion having 4 or more carbon atoms, the perovskite compound (1) has a two-dimensional structure and a quasi-two-dimensional structure Either or both of the (quasi-2D) structures. In this case, the perovskite compound (1) may have a two-dimensional structure or a quasi-two-dimensional structure in a part or the whole of the crystal. When a plurality of two-dimensional perovskite-type crystal structures are stacked, they become equivalent to three-dimensional perovskite-type crystal structures (references: P. PBoix et al., J. Phys. Chem. Lett. 2015, 6, 898- 907, etc.).

鈣鈦礦化合物(1)中之A較佳為銫離子或脒鎓離子,更佳為脒鎓離子。A in the perovskite compound (1) is preferably a cesium ion or an amidinium ion, more preferably an amidinium ion.

於鈣鈦礦化合物(1)中,可僅使用1種A,亦可將2種以上併用。In the perovskite compound (1), only one type of A may be used, or two or more types may be used in combination.

(構成成分B) 構成鈣鈦礦化合物(1)之B可為選自由一價金屬離子、二價金屬離子、及三價金屬離子所組成之群中之1種以上之金屬離子。B較佳為包含二價金屬離子,更佳為包含選自由鉛離子、錫離子、銻離子、鉍離子、及銦離子所組成之群中之1種以上之金屬離子,進而較佳為鉛離子或錫離子,尤佳為鉛離子。 (Constituent B) B constituting the perovskite compound (1) may be one or more metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions. B preferably contains divalent metal ions, more preferably contains at least one metal ion selected from the group consisting of lead ions, tin ions, antimony ions, bismuth ions, and indium ions, and more preferably lead ions or tin ions, especially lead ions.

於鈣鈦礦化合物(1)中,可僅使用1種B,亦可將2種以上併用。In the perovskite compound (1), only one type of B may be used, or two or more types may be used in combination.

(構成成分X) 構成鈣鈦礦化合物(1)之X可為選自由鹵化物離子、及硫氰酸離子所組成之群中之至少一種陰離子。 (Constituent X) X constituting the perovskite compound (1) may be at least one anion selected from the group consisting of halide ions and thiocyanate ions.

作為鹵化物離子,可例舉:氯化物離子、溴化物離子、氟化物離子、碘化物離子。X較佳為溴化物離子。As a halide ion, a chloride ion, a bromide ion, a fluoride ion, and an iodide ion are mentioned. X is preferably a bromide ion.

於鈣鈦礦化合物(1)中,可僅使用1種X,亦可將2種以上併用。In the perovskite compound (1), only one type of X may be used, or two or more types may be used in combination.

於X包含2種以上之鹵化物離子之情形時,鹵化物離子之含有比率可根據發光波長適當選擇。例如可設為溴化物離子與氯化物離子之組合或溴化物離子與碘化物離子之組合。When X contains two or more types of halide ions, the content ratio of the halide ions can be appropriately selected according to the emission wavelength. For example, a combination of a bromide ion and a chloride ion or a combination of a bromide ion and an iodide ion can be used.

X可對應於所需發光波長適當選擇。X can be appropriately selected corresponding to the desired emission wavelength.

X為溴化物離子之鈣鈦礦化合物(1)可發出於通常為480 nm以上、較佳為500 nm以上、更佳為520 nm以上之波長範圍內存在強度之極大峰值之螢光。The perovskite compound (1) in which X is a bromide ion can emit fluorescence having a maximum peak intensity in a wavelength range of usually 480 nm or more, preferably 500 nm or more, and more preferably 520 nm or more.

又,X為溴化物離子之鈣鈦礦化合物(1)可發出於通常為700 nm以下、較佳為600 nm以下、更佳為580 nm以下之波長範圍內存在強度之極大峰值之螢光。 上述波長範圍之上限值及下限值可任意進行組合。 In addition, the perovskite compound (1) in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 700 nm or less, preferably 600 nm or less, and more preferably 580 nm or less. The upper limit value and the lower limit value of the above-mentioned wavelength range can be arbitrarily combined.

於鈣鈦礦化合物(1)中之X為溴化物離子之情形時,所發出之螢光之峰值通常為480~700 nm,較佳為500~600 nm,更佳為520~580 nm。When X in the perovskite compound (1) is a bromide ion, the peak of the emitted fluorescence is usually 480-700 nm, preferably 500-600 nm, more preferably 520-580 nm.

X為碘化物離子之鈣鈦礦化合物(1)可發出於通常為520 nm以上、較佳為530 nm以上、更佳為540 nm以上之波長範圍內存在強度之極大峰值之螢光。The perovskite compound (1) in which X is an iodide ion can emit fluorescence having a maximum peak intensity in a wavelength range of usually 520 nm or more, preferably 530 nm or more, and more preferably 540 nm or more.

又,X為碘化物離子之鈣鈦礦化合物(1)可發出於通常為800 nm以下、較佳為750 nm以下、更佳為730 nm以下之波長範圍內存在強度之極大峰值之螢光。 上述波長範圍之上限值及下限值可任意地進行組合。 In addition, the perovskite compound (1) in which X is an iodide ion can emit fluorescence having a maximum peak intensity in a wavelength range of usually 800 nm or less, preferably 750 nm or less, and more preferably 730 nm or less. The upper limit value and the lower limit value of the above-mentioned wavelength range can be arbitrarily combined.

於鈣鈦礦化合物(1)中之X為碘化物離子之情形時,所發出之螢光之峰值通常為520~800 nm,較佳為530~750 nm,更佳為540~730 nm。When X in the perovskite compound (1) is an iodide ion, the peak of the emitted fluorescence is usually 520-800 nm, preferably 530-750 nm, more preferably 540-730 nm.

X為氯化物離子之鈣鈦礦化合物(1)可發出於通常為300 nm以上、較佳為310 nm以上、更佳為330 nm以上之波長範圍內存在強度之極大峰值之螢光。The perovskite compound (1) in which X is a chloride ion can emit fluorescence having a maximum peak intensity in a wavelength range of usually 300 nm or more, preferably 310 nm or more, and more preferably 330 nm or more.

又,X為氯化物離子之鈣鈦礦化合物(1)可發出於通常為600 nm以下、較佳為580 nm以下、更佳為550 nm以下之波長範圍內存在強度之極大峰值之螢光。 上述波長範圍之上限值及下限值可任意地進行組合。 In addition, the perovskite compound (1) in which X is a chloride ion can emit fluorescence having a maximum peak intensity in a wavelength range of usually 600 nm or less, preferably 580 nm or less, and more preferably 550 nm or less. The upper limit value and the lower limit value of the above-mentioned wavelength range can be arbitrarily combined.

於鈣鈦礦化合物(1)中之X為氯化物離子之情形時,所發出之螢光之峰值通常為300~600 nm,較佳為310~580 nm,更佳為330~550 nm。When X in the perovskite compound (1) is a chloride ion, the peak of the emitted fluorescence is usually 300-600 nm, preferably 310-580 nm, more preferably 330-550 nm.

(三維結構之鈣鈦礦化合物(1)之例示) 作為ABX (3+δ)所表示之三維結構之鈣鈦礦化合物(1)之較佳例,可例舉:CH 3NH 3PbBr 3、CH 3NH 3PbCl 3、CH 3NH 3PbI 3、CH 3NH 3PbBr (3-y)I y(0<y<3)、CH 3NH 3PbBr (3-y)Cl y(0<y<3)、(H 2N=CH-NH 2)PbBr 3、(H 2N=CH-NH 2)PbCl 3、(H 2N=CH-NH 2)PbI 3(Example of Perovskite Compound (1) with Three-Dimensional Structure) Preferable examples of the perovskite compound (1) with three-dimensional structure represented by ABX (3+δ) include CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr (3-y) I y (0<y<3), CH 3 NH 3 PbBr (3-y) C y (0<y) <3), (H 2 N=CH-NH 2 )PbBr 3 , (H 2 N=CH-NH 2 )PbCl 3 , (H 2 N=CH-NH 2 )PbI 3 .

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:CH 3NH 3Pb (1-a)Ca aBr 3(0<a≦0.7)、CH 3NH 3Pb (1-a)Sr aBr 3(0<a≦0.7)、CH 3NH 3Pb (1-a)La aBr (3+δ)(0<a≦0.7,0<δ≦0.7)、CH 3NH 3Pb (1-a)Ba aBr 3(0<a≦0.7)、CH 3NH 3Pb (1-a)Dy aBr (3+δ)(0<a≦0.7,0<δ≦0.7)。 Preferable examples of the three-dimensional perovskite compound (1) include: CH 3 NH 3 Pb (1-a) Ca a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1 -a) Sr a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) La a Br (3+δ) (0<a≦0.7, 0<δ≦0.7), CH 3 NH 3 Pb (1-a) Ba a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3+δ) (0<a≦0.7, 0<δ≦0.7) .

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:CH 3NH 3Pb (1-a)Na aBr (3+δ)(0<a≦0.7,-0.7≦δ<0)、CH 3NH 3Pb (1-a)Li aBr (3+δ)(0<a≦0.7,-0.7≦δ<0)。 Preferable examples of the three-dimensional perovskite compound (1) include CH 3 NH 3 Pb (1-a) Na a Br (3+δ) (0<a≦0.7, -0.7≦δ) <0), CH 3 NH 3 Pb (1-a) Li a Br (3+δ) (0<a≦0.7, -0.7≦δ<0).

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:CsPb (1-a)Na aBr (3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb (1-a)Li aBr (3+δ)(0<a≦0.7,-0.7≦δ<0)。 Preferable examples of the three-dimensional perovskite compound (1) include CsPb (1-a) Na a Br (3+δ) (0<a≦0.7, -0.7≦δ<0), CsPb (1-a) Li a Br (3+δ) (0<a≦0.7, -0.7≦δ<0).

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:CH 3NH 3Pb (1-a)Na aBr (3+δ-y)I y(0<a≦0.7,-0.7≦δ<0,0<y<3)、CH 3NH 3Pb (1-a)Li aBr (3+δ-y)I y(0<a≦0.7,-0.7≦δ<0,0<y<3)、CH 3NH 3Pb (1-a)Na aBr (3+δ-y)Cl y(0<a≦0.7,-0.7≦δ<0,0<y<3)、CH 3NH 3Pb (1-a)Li aBr (3+δ-y)Cl y(0<a≦0.7,-0.7≦δ<0,0<y<3)。 As a preferred example of the three-dimensional perovskite compound (1), CH 3 NH 3 Pb (1-a) Na a Br (3+δ-y) I y (0<a≦0.7, -0.7≦δ<0, 0<y<3), CH 3 NH 3 Pb (1-a) Li a Br (3+δ-y) I y (0<a≦0.7, -0.7≦δ<0, 0<y<3), CH 3 NH 3 Pb (1-a) Na a Br (3+δ-y) Cl y (0<a≦0.7, -0.7≦δ<0, 0<y<3), CH 3 NH 3 Pb (1-a) Li a Br (3+δ-y) C y (0<a≦0.7, -0.7≦δ<0, 0<y<3).

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(H 2N=CH-NH 2)Pb (1-a)Na aBr (3+δ)(0<a≦0.7,-0.7≦δ<0)、(H 2N=CH-NH 2)Pb (1-a)Li aBr (3+δ)(0<a≦0.7,-0.7≦δ<0)、(H 2N=CH-NH 2)Pb (1-a)Na aBr (3+δ-y)I y(0<a≦0.7,-0.7≦δ<0,0<y<3)、(H 2N=CH-NH 2)Pb (1-a)Na aBr (3+δ-y)Cl y(0<a≦0.7,-0.7≦δ<0,0<y<3)。 As a preferred example of the three-dimensional perovskite compound (1), (H 2 N=CH-NH 2 )Pb (1-a) Na a Br (3+δ) (0<a≦ 0.7, -0.7≦δ<0), (H 2 N=CH-NH 2 )Pb (1-a) Li a Br (3+δ) (0<a≦0.7, -0.7≦δ<0), ( H 2 N=CH-NH 2 )Pb (1-a) Na a Br (3+δ-y) I y (0<a≦0.7, -0.7≦δ<0, 0<y<3), (H 2 N=CH-NH 2 )Pb (1-a) Na a Br (3+δ-y) C y (0<a≦0.7, -0.7≦δ<0, 0<y<3).

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:CsPbBr 3、CsPbCl 3、CsPbI 3、CsPbBr (3-y)I y(0<y<3)、CsPbBr (3-y)Cl y(0<y<3)。 Preferable examples of the three-dimensional perovskite compound (1) include CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0<y<3), CsPbBr (3- y) C y (0<y<3).

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:CH 3NH 3Pb (1-a)Zn aBr 3(0<a≦0.7)、CH 3NH 3Pb (1-a)Al aBr (3+δ)(0<a≦0.7、0≦δ≦0.7)、CH 3NH 3Pb (1-a)Co aBr 3(0<a≦0.7)、CH 3NH 3Pb (1-a)Mn aBr 3(0<a≦0.7)、CH 3NH 3Pb (1-a)Mg aBr 3(0<a≦0.7)。 Preferable examples of the three-dimensional perovskite compound (1) include CH 3 NH 3 Pb (1-a) Zn a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1 -a) Al a Br (3+δ) (0<a≦0.7, 0≦δ≦0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) Mn a Br 3 (0<a≦0.7), CH 3 NH 3 Pb (1-a) Mg a Br 3 (0<a≦0.7).

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:CsPb (1-a)Zn aBr 3(0<a≦0.7)、CsPb (1-a)Al aBr (3+δ)(0<a≦0.7、0<δ≦0.7)、CsPb (1-a)Co aBr 3(0<a≦0.7)、CsPb (1-a)Mn aBr 3(0<a≦0.7)、CsPb (1-a)Mg aBr 3(0<a≦0.7)。 Preferable examples of the three-dimensional perovskite compound (1) include CsPb (1-a) Zn a Br 3 (0<a≦0.7), CsPb (1-a) Al a Br (3 +δ) (0<a≦0.7, 0<δ≦0.7), CsPb (1-a) Co a Br 3 (0<a≦0.7), CsPb (1-a) Mn a Br 3 (0<a≦ 0.7), CsPb (1-a) Mg a Br 3 (0<a≦0.7).

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:CH 3NH 3Pb (1-a)Zn aBr (3-y)I y(0<a≦0.7、0<y<3)、CH 3NH 3Pb (1-a)Al aBr (3+δ-y)I y(0<a≦0.7,0<δ≦0.7,0<y<3)、CH 3NH 3Pb (1-a)Co aBr (3-y)I y(0<a≦0.7、0<y<3)、CH 3NH 3Pb (1-a)Mn aBr (3-y)I y(0<a≦0.7,0<y<3)、CH 3NH 3Pb (1-a)Mg aBr (3-y)I y(0<a≦0.7、0<y<3)、CH 3NH 3Pb (1-a)Zn aBr (3-y)Cl y(0<a≦0.7、0<y<3)、CH 3NH 3Pb (1-a)Al aBr (3+δ-y)Cl y(0<a≦0.7、0<δ≦0.7、0<y<3)、CH 3NH 3Pb (1-a)Co aBr (3+δ-y)Cl y(0<a≦0.7、0<y<3)、CH 3NH 3Pb (1-a)Mn aBr (3-y)Cl y(0<a≦0.7、0<y<3)、CH 3NH 3Pb (1-a)Mg aBr (3-y)Cl y(0<a≦0.7、0<y<3)。 Preferable examples of the three-dimensional perovskite compound (1) include CH 3 NH 3 Pb (1-a) Zn a Br (3-y) I y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Al a Br (3+δ-y) I y (0<a≦0.7, 0<δ≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Co a Br (3-y) I y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) I y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) I y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Zn a Br (3-y) C y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Al a Br (3+δ -y) Cl y (0<a≦0.7, 0<δ≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Co a Br (3+δ-y) Cl y (0< a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) Cl y (0<a≦0.7, 0<y<3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) Cl y (0<a≦0.7, 0<y<3).

作為三維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(H 2N=CH-NH 2)Zn aBr 3(0<a≦0.7)、(H 2N=CH-NH 2)Mg aBr 3(0<a≦0.7)、(H 2N=CH-NH 2)Pb (1-a)Zn aBr (3-y)I y(0<a≦0.7、0<y<3)、(H 2N=CH-NH 2)Pb (1-a)Zn aBr (3-y)Cl y(0<a≦0.7、0<y<3)。 Preferable examples of the three-dimensional perovskite compound (1) include (H 2 N=CH-NH 2 )Zn a Br 3 (0<a≦0.7), (H 2 N=CH- NH 2 )Mg a Br 3 (0<a≦0.7), (H 2 N=CH-NH 2 )Pb (1-a) Zn a Br (3-y) I y (0<a≦0.7, 0<y<3), (H 2 N=CH-NH 2 )Pb (1-a) Zn a Br (3-y) C y (0<a≦0.7, 0<y<3).

上述三維結構之鈣鈦礦化合物(1)之中,更佳為CsPbBr 3、CsPbBr (3-y)I y(0<y<3)、(H 2N=CH-NH 2)PbBr 3,進而較佳為(H 2N=CH-NH 2)PbBr 3Among the above-mentioned three-dimensional perovskite compounds (1), more preferred are CsPbBr 3 , CsPbBr (3-y) I y (0<y<3), (H 2 N=CH-NH 2 )PbBr 3 , and further Preferred is (H 2 N=CH-NH 2 )PbBr 3 .

(二維結構之鈣鈦礦化合物(1)之例示) 作為二維結構之鈣鈦礦化合物(1)之較佳例,可例舉:(C 4H 9NH 3) 2PbBr 4、(C 4H 9NH 3) 2PbCl 4、(C 4H 9NH 3) 2PbI 4、(C 7H 15NH 3) 2PbBr 4、(C 7H 15NH 3) 2PbCl 4、(C 7H 15NH 3) 2PbI 4、(C 4H 9NH 3) 2Pb (1-a)Li aBr (4+δ)(0<a≦0.7、-0.7≦δ<0)、(C 4H 9NH 3) 2Pb (1-a)Na aBr (4+δ)(0<a≦0.7、-0.7≦δ<0)、(C 4H 9NH 3) 2Pb (1-a)Rb aBr (4+δ)(0<a≦0.7、-0.7≦δ<0)。 (Example of the two-dimensional structure perovskite compound (1)) As preferred examples of the two-dimensional structure perovskite compound (1), (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4H9NH3 ) 2PbCl4 , ( C4H9NH3 ) 2PbI4 , ( C7H15NH3 ) 2PbBr4 , ( C7H15NH3 ) 2PbCl4 , ( C7H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+δ) (0<a≦0.7, -0.7≦δ<0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4+δ) (0<a≦0.7, -0.7≦δ<0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+δ) (0<a≦0.7, -0.7≦δ<0).

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 7H 15NH 3) 2Pb (1-a)Na aBr (4+δ)(0<a≦0.7、-0.7≦δ<0)、(C 7H 15NH 3) 2Pb (1-a)Li aBr (4+δ)(0<a≦0.7、-0.7≦δ<0)、(C 7H 15NH 3) 2Pb (1-a)Rb aBr (4+δ)(0<a≦0.7、-0.7≦δ<0)。 As a preferred example of the two-dimensional perovskite compound (1), (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br (4+δ) (0<a≦) 0.7, -0.7≦δ<0), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br (4+δ) (0<a≦0.7, -0.7≦δ<0), (C 7 H 15 NH 3 ) 2 Pb (1-a) Rb a Br (4+δ) (0<a≦0.7, -0.7≦δ<0).

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 4H 9NH 3) 2Pb (1-a)Na aBr (4+δ-y)I y(0<a≦0.7、-0.7≦δ<0、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Li aBr (4+δ-y)I y(0<a≦0.7、-0.7≦δ<0、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Rb aBr (4+δ-y)I y(0<a≦0.7、-0.7≦δ<0、0<y<4)。 As a preferred example of the two-dimensional perovskite compound (1), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4+δ-y) I y ( 0<a≦0.7, -0.7≦δ<0, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+δ-y) I y (0< a≦0.7, -0.7≦δ<0, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+δ-y) I y (0<a≦ 0.7, -0.7≦δ<0, 0<y<4).

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 4H 9NH 3) 2Pb (1-a)Na aBr (4+δ-y)Cl y(0<a≦0.7、-0.7≦δ<0、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Li aBr (4+δ-y)Cl y(0<a≦0.7、-0.7≦δ<0、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Rb aBr (4+δ-y)Cl y(0<a≦0.7、-0.7≦δ<0、0<y<4)。 As a preferred example of the two-dimensional perovskite compound (1), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4+δ-y) C y ( 0<a≦0.7, -0.7≦δ<0, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+δ-y) C y (0< a≦0.7, -0.7≦δ<0, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+δ-y) C y (0<a≦ 0.7, -0.7≦δ<0, 0<y<4).

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 4H 9NH 3) 2PbBr 4、(C 7H 15NH 3) 2PbBr 4Preferable examples of the two-dimensional perovskite compound (1) include (C 4 H 9 NH 3 ) 2 PbBr 4 and (C 7 H 15 NH 3 ) 2 PbBr 4 .

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 4H 9NH 3) 2PbBr (4-y)Cl y(0<y<4)、(C 4H 9NH 3) 2PbBr (4-y)I y(0<y<4)。 Preferable examples of the two-dimensional perovskite compound (1) include (C 4 H 9 NH 3 ) 2 PbBr (4-y) C y (0<y<4), (C 4 H 9 NH 3 ) 2 PbBr (4-y) I y (0<y<4).

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 4H 9NH 3) 2Pb (1-a)Zn aBr 4(0<a≦0.7)、(C 4H 9NH 3) 2Pb (1-a)Mg aBr 4(0<a≦0.7)、(C 4H 9NH 3) 2Pb (1-a)Co aBr 4(0<a≦0.7)、(C 4H 9NH 3) 2Pb (1-a)Mn aBr 4(0<a≦0.7)。 Preferable examples of the two-dimensional perovskite compound (1) include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0<a≦0.7), ( C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0<a≦0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br 4 (0<a≦0.7) 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0<a≦0.7).

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 7H 15NH 3) 2Pb (1-a)Zn aBr 4(0<a≦0.7)、(C 7H 15NH 3) 2Pb (1-a)Mg aBr 4(0<a≦0.7)、(C 7H 15NH 3) 2Pb (1-a)Co aBr 4(0<a≦0.7)、(C 7H 15NH 3) 2Pb (1-a)Mn aBr 4(0<a≦0.7)。 Preferable examples of the two-dimensional perovskite compound (1) include (C 7 H 15 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0<a≦0.7), ( C 7 H 15 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0<a≦0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br 4 (0<a≦0.7) 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0<a≦0.7).

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 4H 9NH 3) 2Pb (1-a)Zn aBr (4-y)I y(0<a≦0.7、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Mg aBr (4-y)I y(0<a≦0.7、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Co aBr (4-y)I y(0<a≦0.7、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Mn aBr (4-y)I y(0<a≦0.7、0<y<4)。 As a preferred example of the two-dimensional perovskite compound (1), (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) I y (0< a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) I y (0<a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) I y (0<a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb ( 1-a) Mn a Br (4-y) I y (0<a≦0.7, 0<y<4).

作為二維結構之鈣鈦礦化合物(1)之較佳例,亦可例舉:(C 4H 9NH 3) 2Pb (1-a)Zn aBr (4-y)Cl y(0<a≦0.7、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Mg aBr (4-y)Cl y(0<a≦0.7、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Co aBr (4-y)Cl y(0<a≦0.7、0<y<4)、(C 4H 9NH 3) 2Pb (1-a)Mn aBr (4-y)Cl y(0<a≦0.7、0<y<4)。 As a preferred example of the two-dimensional perovskite compound (1), (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) C y (0< a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) C y (0<a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) C y (0<a≦0.7, 0<y<4), (C 4 H 9 NH 3 ) 2 Pb ( 1-a) Mn a Br (4-y) C y (0<a≦0.7, 0<y<4).

<鈣鈦礦化合物粒子之一次粒徑> 於本說明書中,鈣鈦礦化合物粒子之一次粒徑係由複數個鈣鈦礦化合物粒子構成之鈣鈦礦化合物粒子之混合物中之鈣鈦礦化合物粒子之平均粒徑,其平均粒徑較佳為1.0~80.0 nm以下。就發光性複合粒子可於分散介質中穩定地分散之觀點而言,鈣鈦礦化合物粒子之平均粒徑較佳為3.0 nm以上,更佳為5.0 nm以上,進而較佳為10.0 nm以上。又,就獲得發光強度較高之發光性複合粒子之觀點而言,鈣鈦礦化合物粒子之平均粒徑較佳為50.0 nm以下,更佳為30.0 nm以下,進而較佳為20.0 nm以下。 <Primary particle size of perovskite compound particles> In this specification, the primary particle size of the perovskite compound particles is the average particle size of the perovskite compound particles in the mixture of perovskite compound particles composed of a plurality of perovskite compound particles, and the average particle size is preferably 1.0 to 80.0 nm or less. From the viewpoint that the luminescent composite particles can be stably dispersed in the dispersion medium, the average particle diameter of the perovskite compound particles is preferably 3.0 nm or more, more preferably 5.0 nm or more, and still more preferably 10.0 nm or more. In addition, from the viewpoint of obtaining luminescent composite particles with high emission intensity, the average particle diameter of the perovskite compound particles is preferably 50.0 nm or less, more preferably 30.0 nm or less, and still more preferably 20.0 nm or less.

鈣鈦礦化合物粒子之平均粒徑可藉由使用例如穿透式電子顯微鏡(以下,亦稱為TEM)或掃描式電子顯微鏡(以下,亦稱為SEM)進行觀察所測得。具體而言,藉由TEM或SEM測定隨機選擇之30個以上之鈣鈦礦化合物粒子之呈立方體或者長方體形狀之粒子之最長邊之長度,並計算測定值之算術平均值,藉此可求出平均粒徑。The average particle diameter of the perovskite compound particles can be measured by observation using, for example, a transmission electron microscope (hereinafter, also referred to as TEM) or a scanning electron microscope (hereinafter, also referred to as SEM). Specifically, by TEM or SEM, the lengths of the longest sides of randomly selected 30 or more perovskite compound particles having a cubic or cuboid shape are measured, and the arithmetic mean of the measured values can be calculated. The average particle size.

作為對鈣鈦礦化合物粒子進行觀察之方法,例如可例舉使用SEM或TEM等對包含鈣鈦礦化合物粒子之分散液組合物進行觀察之方法。進而,可利用使用SEM或TEM之能量分散型X射線分析(EDX)測定對詳細之元素分佈進行解析。就空間分解能力較高之觀點而言,較佳為利用TEM進行觀察之方法。As a method of observing perovskite compound particles, for example, a method of observing a dispersion liquid composition containing perovskite compound particles using SEM, TEM, or the like can be mentioned. Furthermore, detailed element distribution can be analyzed by energy dispersive X-ray analysis (EDX) measurement using SEM or TEM. From the viewpoint of high spatial resolution, a method of observing by TEM is preferable.

<矽化合物層> 矽化合物層20係包含選自由水解性矽化合物及其縮合物所組成之群中之至少1種化合物之層。水解性矽化合物、係指具有可水解之官能基且其縮合後形成Si-O-Si鍵之矽化合物。「縮合」係指具有Si-N鍵、Si-SR鍵(R為氫原子或有機基)或Si-OR鍵(R為氫原子或有機基)之矽化合物水解,生成具有Si-O-Si鍵之矽化合物。Si-O-Si鍵可於分子間之縮合反應中生成,亦可於分子內之縮合反應中生成。 <Silicon compound layer> The silicon compound layer 20 is a layer containing at least one compound selected from the group consisting of a hydrolyzable silicon compound and its condensate. Hydrolyzable silicon compound refers to a silicon compound having a hydrolyzable functional group and forming a Si-O-Si bond after condensation. "Condensation" refers to the hydrolysis of silicon compounds with Si-N bonds, Si-SR bonds (R is hydrogen atom or organic group) or Si-OR bond (R is hydrogen atom or organic group) to generate Si-O-Si Bonded silicon compound. Si-O-Si bonds can be formed in intermolecular condensation reactions or in intramolecular condensation reactions.

作為水解性矽化合物,較佳為例舉矽氮烷及水解性矽烷化合物(以下,將該等稱為「水解性矽化合物(2)」)。藉由使矽化合物層20被覆鈣鈦礦化合物粒子10之表面,獲得提高量子產率且使發光波長短波長化之效果。Preferred examples of the hydrolyzable silicon compound include silazane and hydrolyzable silane compounds (hereinafter, these are referred to as "hydrolyzable silicon compound (2)"). By covering the surface of the perovskite compound particle 10 with the silicon compound layer 20, the effect of improving the quantum yield and shortening the emission wavelength is obtained.

<矽氮烷> 矽氮烷係具有Si-N-Si鍵之化合物。矽氮烷可為直鏈狀、支鏈狀或環狀之任一者。 <Silazane> Silazane is a compound with Si-N-Si bond. The silazane may be linear, branched or cyclic.

矽氮烷可為低分子矽氮烷,亦可為高分子矽氮烷。於本說明書中,有時將高分子矽氮烷記載為聚矽氮烷。The silazane can be a low molecular silazane or a high molecular silazane. In this specification, a polymer silazane may be described as polysilazane.

於本說明書中,「低分子」意指數量平均分子量未達600。 又,於本說明書中,「高分子」意指數量平均分子量為600以上且2000以下。 In this specification, "low molecular weight" means that the number average molecular weight is less than 600. In addition, in this specification, "polymer" means that the number average molecular weight is 600 or more and 2000 or less.

於本說明書中,「數量平均分子量」意指藉由凝膠滲透層析(GPC)法所測得之聚苯乙烯換算值。In this specification, "number average molecular weight" means a polystyrene conversion value measured by a gel permeation chromatography (GPC) method.

(低分子矽氮烷) 作為低分子矽氮烷,例如較佳為下述式(B1)所表示之二矽氮烷。 (low molecular weight silazanes) As the low molecular weight silazane, for example, disilazane represented by the following formula (B1) is preferable.

[化2]

Figure 02_image003
[hua 2]
Figure 02_image003

式(B1)中,R 14及R 15分別獨立地表示氫原子、碳原子數1~20之烷基、碳原子數1~20之烯基、碳原子數3~20之環烷基、碳原子數6~20之芳基或碳原子數1~20之烷基矽烷基。 In formula (B1), R 14 and R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a carbon An aryl group having 6 to 20 atoms or an alkylsilyl group having 1 to 20 carbon atoms.

R 14及R 15亦可具有胺基等取代基。所存在之複數個R 15可相同,亦可不同。 R 14 and R 15 may have a substituent such as an amino group. The plurality of R 15 present may be the same or different.

作為式(B1)所表示之低分子矽氮烷,可例舉:1,3-二乙烯基-1,1,3,3-四甲基二矽氮烷、1,3-二苯基四甲基二矽氮烷、及1,1,1,3,3,3-六甲基二矽氮烷。As the low molecular weight silazane represented by the formula (B1), 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetrakis Methyldisilazane, and 1,1,1,3,3,3-hexamethyldisilazane.

(低分子矽氮烷) 作為低分子矽氮烷,例如亦較佳為下述式(B2)所表示之低分子矽氮烷。 (low molecular weight silazanes) As the low molecular weight silazane, for example, a low molecular weight silazane represented by the following formula (B2) is also preferred.

[化3]

Figure 02_image005
[hua 3]
Figure 02_image005

式(B2)中,R 14及R 15與上述式(B1)中之R 14及R 15相同。 In formula (B2), R 14 and R 15 are the same as R 14 and R 15 in the above formula (B1).

所存在之複數個R 14可相同,亦可不同。 所存在之複數個R 15可相同,亦可不同。 The plurality of R 14 present may be the same or different. The plurality of R 15 present may be the same or different.

式(B2)中,n 1表示1以上且20以下之整數。n 1可為1以上且10以下之整數,可為1或2。 In formula (B2), n 1 represents an integer of 1 or more and 20 or less. n 1 may be an integer of 1 or more and 10 or less, and may be 1 or 2.

作為式(B2)所表示之低分子矽氮烷,可例舉:八甲基環四矽氮烷、2,2,4,4,6,6-六甲基環三矽氮烷、及2,4,6-三甲基-2,4,6-三乙烯基環三矽氮烷。As the low molecular weight silazane represented by the formula (B2), octamethylcyclotetrasilazane, 2,2,4,4,6,6-hexamethylcyclotrisilazane, and 2 ,4,6-trimethyl-2,4,6-trivinylcyclotrisilazan.

作為低分子之矽氮烷,較佳為八甲基環四矽氮烷、及1,3-二苯基四甲基二矽氮烷,更佳為八甲基環四矽氮烷。As the low molecular weight silazane, octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable, and octamethylcyclotetrasilazane is more preferable.

(高分子矽氮烷) 作為高分子矽氮烷,例如較佳為下述式(B3)所表示之高分子矽氮烷(聚矽氮烷)。 (Polymer silazane) As a polymer silazane, for example, a polymer silazane (polysilazane) represented by the following formula (B3) is preferable.

聚矽氮烷係具有Si-N-Si鍵之高分子化合物。式(B3)所表示之聚矽氮烷之結構單元可為一種,亦可為複數種。Polysilazane is a polymer compound with Si-N-Si bond. The structural unit of the polysilazane represented by formula (B3) may be one kind or plural kinds.

[化4]

Figure 02_image007
[hua 4]
Figure 02_image007

式(B3)中,R 14及R 15與上述式(B1)中之R 14及R 15相同。 In formula (B3), R 14 and R 15 are the same as R 14 and R 15 in the above-mentioned formula (B1).

式(B3)中,*表示鍵結鍵。於分子鏈末端之N原子之鍵結鍵鍵結有R 14。 於分子鏈末端之Si原子之鍵結鍵鍵結有R 15In formula (B3), * represents a bonding bond. R 14 is bonded to the bond of the N atom at the end of the molecular chain. R 15 is bonded to the bonding bond of the Si atom at the end of the molecular chain.

所存在之複數個R 14可相同,亦可不同。 所存在之複數個R 15可相同,亦可不同。 The plurality of R 14 present may be the same or different. The plurality of R 15 present may be the same or different.

m表示2以上且10000以下之整數。m represents an integer of 2 or more and 10000 or less.

式(B3)所表示之聚矽氮烷例如可為R 14及R 15均為氫原子之全氫聚矽氮烷。 The polysilazane represented by the formula (B3) can be, for example, a perhydropolysilazane in which both R 14 and R 15 are hydrogen atoms.

又,式(B3)所表示之聚矽氮烷例如亦可為至少1個R 15為氫原子以外之基之有機聚矽氮烷。可對應於用途適當地選擇全氫聚矽氮烷與有機聚矽氮烷,亦可混合使用。 Moreover, the polysilazane represented by formula (B3) may be, for example, an organopolysilazane in which at least one R 15 is a group other than a hydrogen atom. The perhydropolysilazane and the organopolysilazane may be appropriately selected according to the application, and may be used in combination.

就提高發光性複合粒子之分散性而抑制凝聚之效果提高之觀點而言,較佳為矽化合物層包含式(B3)所表示之有機聚矽氮烷。From the viewpoint of improving the dispersibility of the luminescent composite particles and improving the effect of suppressing aggregation, it is preferable that the silicon compound layer contains the organopolysilazane represented by the formula (B3).

作為式(B3)所表示之有機聚矽氮烷,可為R 14及R 15之至少1個為碳原子數1~20之烷基、碳原子數1~20之烯基、碳原子數3~20之環烷基、碳原子數6~20之芳基或碳原子數1~20之烷基矽烷基之有機聚矽氮烷。 As the organopolysilazane represented by the formula (B3), at least one of R 14 and R 15 may be an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or an alkenyl group having 3 carbon atoms. Organopolysilazane of a cycloalkyl group of ~20, an aryl group of 6 to 20 carbon atoms, or an alkylsilyl group of 1 to 20 carbon atoms.

其中,較佳為式(B3)所表示且R 14及R 15之至少1個為甲基之有機聚矽氮烷。 Among them, the organopolysilazane represented by the formula (B3) and wherein at least one of R 14 and R 15 is a methyl group is preferred.

(高分子矽氮烷) 作為高分子矽氮烷,例如亦較佳為具有下述式(B4)所表示之結構之聚矽氮烷。 (Polymer silazane) As the polymer silazane, for example, polysilazane having a structure represented by the following formula (B4) is also preferred.

聚矽氮烷可於分子內之一部分具有環結構,例如可具有式(B4)所表示之結構。Polysilazane may have a ring structure in a part of the molecule, for example, may have a structure represented by formula (B4).

[化5]

Figure 02_image009
[hua 5]
Figure 02_image009

式(B4)中,*表示鍵結鍵。 式(B4)之鍵結鍵亦可與式(B3)所表示之聚矽氮烷之鍵結鍵或式(B3)所表示之聚矽氮烷之結構單元之鍵結鍵鍵結。 In formula (B4), * represents a bonding bond. The bond of the formula (B4) may also be bonded to the bond of the polysilazane represented by the formula (B3) or the bond of the structural unit of the polysilazane represented by the formula (B3).

又,於聚矽氮烷於分子內包含複數個式(B4)所表示之結構之情形時,式(B4)所表示之結構之鍵結鍵亦可與其他式(B4)所表示之結構之鍵結鍵直接鍵結。In addition, when the polysilazane contains a plurality of structures represented by the formula (B4) in the molecule, the bonding bonds of the structures represented by the formula (B4) can also be combined with other structures represented by the formula (B4). The bond key is directly bonded.

於未與式(B3)所表示之聚矽氮烷之鍵結鍵、式(B3)所表示之聚矽氮烷之結構單元之鍵結鍵、及其他式(B4)所表示之結構之鍵結鍵之任一者鍵結之N原子之鍵結鍵鍵結有R 14Bonds not bound to polysilazane represented by formula (B3), bonds to structural units of polysilazane represented by formula (B3), and bonds to other structures represented by formula (B4) The N atom to which any one of the bonds is bonded is bonded with R 14 .

於未與式(B3)所表示之聚矽氮烷之鍵結鍵、式(B3)所表示之聚矽氮烷之結構單元之鍵結鍵、及其他式(B4)所表示之結構之鍵結鍵之任一者鍵結之Si原子之鍵結鍵鍵結有R 15Bonds not bound to polysilazane represented by formula (B3), bonds to structural units of polysilazane represented by formula (B3), and bonds to other structures represented by formula (B4) The Si atom to which any one of the bonds is bonded has R 15 in the bond bond.

n 2表示1以上且10000以下之整數。n 2可為1以上且10以下之整數,可為1或2。 n 2 represents an integer of 1 or more and 10000 or less. n 2 may be an integer of 1 or more and 10 or less, and may be 1 or 2.

就提高發光性複合粒子之分散性而抑制凝聚之效果提高之觀點而言,較佳為矽化合物層包含具有式(B4)所表示之結構之有機聚矽氮烷。From the viewpoint of improving the dispersibility of the luminescent composite particles and improving the effect of suppressing aggregation, it is preferable that the silicon compound layer contains an organopolysilazane having a structure represented by formula (B4).

作為具有式(B4)所表示之結構之有機聚矽氮烷,可為至少1個鍵結鍵與R 14或R 15鍵結,且該R 14及R 15之至少1個為碳原子數1~20之烷基、碳原子數1~20之烯基、碳原子數3~20之環烷基、碳原子數6~20之芳基或碳原子數1~20之烷基矽烷基之有機聚矽氮烷。 As the organopolysilazane having the structure represented by the formula (B4), at least one bond may be bonded to R 14 or R 15 , and at least one of R 14 and R 15 has a carbon number of 1 ~20 alkyl groups, alkenyl groups with 1 to 20 carbon atoms, cycloalkyl groups with 3 to 20 carbon atoms, aryl groups with 6 to 20 carbon atoms, or organic alkylsilyl groups with 1 to 20 carbon atoms Polysilazane.

其中,較佳為包含式(B4)所表示之結構且至少1個鍵結鍵與R 14或R 15鍵結、該R 14及R 15之至少1個為甲基之聚矽氮烷。 Among them, a polysilazane comprising the structure represented by the formula (B4) and having at least one bonding bond with R 14 or R 15 and at least one of R 14 and R 15 being a methyl group is preferred.

普通聚矽氮烷例如具有存在直鏈結構、及6員環或8員環等環結構之結構、即上述式(B3)、上述式(B4)所表示之結構。普通聚矽氮烷之分子量以數量平均分子量(Mn)計為600~2000左右(聚苯乙烯換算),視分子量不同而可為液體或固體之物質。Ordinary polysilazane has, for example, a structure having a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring, that is, the structures represented by the above-mentioned formula (B3) and the above-mentioned formula (B4). The molecular weight of ordinary polysilazane is about 600-2000 (in terms of polystyrene conversion) in terms of number average molecular weight (Mn), and it can be a liquid or solid substance depending on the molecular weight.

聚矽氮烷可使用市售品,作為市售品,可例舉:NN120-10、NN120-20、NAX120-20、NN110、NAX120、NAX110、NL120A、NL110A、NL150A、NP110、NP140(AZ ELECTRONIC MATERIALS股份有限公司製)以及AZNN-120-20、Durazane(註冊商標)1500 Slow Cure、Durazane1500 Rapid Cure、Durazane1800、及Durazane1033(Merck Performance Materials股份有限公司製造)等。As the polysilazane, commercially available products can be used. Examples of commercially available products include: NN120-10, NN120-20, NAX120-20, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (AZ ELECTRONIC MATERIALS Co., Ltd.) and AZNN-120-20, Durazane (registered trademark) 1500 Slow Cure, Durazane 1500 Rapid Cure, Durazane 1800, and Durazane 1033 (manufactured by Merck Performance Materials Co., Ltd.), and the like.

聚矽氮烷較佳為AZNN-120-20、Durazane1500 Slow Cure、Durazane1500 Rapid Cure,更佳為Durazane1500 Slow Cure。The polysilazane is preferably AZNN-120-20, Durazane1500 Slow Cure, Durazane1500 Rapid Cure, more preferably Durazane1500 Slow Cure.

<矽氮烷之縮合物><Condensation product of silazane>

作為矽氮烷之縮合物,較佳為上述式(B1)所表示之二矽氮烷之縮合物、上述式(B2)所表示之低分子矽氮烷之縮合物、上述式(B3)所表示之聚矽氮烷之縮合物、分子內具有上述式(B4)所表示之結構之聚矽氮烷之縮合物。The condensate of silazane is preferably a condensate of disilazane represented by the above formula (B1), a condensate of a low molecular weight silazane represented by the above formula (B2), The condensate of polysilazane represented, and the condensate of polysilazane having the structure represented by the above formula (B4) in the molecule.

關於式(B2)所表示之低分子矽氮烷之縮合物,相對於式(B2)所表示之低分子矽氮烷之縮合物中所包含的所有矽原子,未與氮原子鍵結之矽原子之比率較佳為0.1~100%。又,未與氮原子鍵結之矽原子之比率更佳為10~98%,進而較佳為30~95%。Regarding the condensate of low-molecular-weight silazanes represented by formula (B2), silicon atoms not bonded to nitrogen atoms relative to all silicon atoms contained in the condensate of low-molecular-weight silazanes represented by formula (B2) The ratio of atoms is preferably 0.1 to 100%. In addition, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 98%, further preferably 30 to 95%.

再者,「未與氮原子鍵結之矽原子之比率」係使用下述測定值,藉由((Si(莫耳))-(Si-N鍵中之N(莫耳)))/Si(莫耳)×100求出。考慮到縮合反應,「未與氮原子鍵結之矽原子之比率」意指「縮合處理中產生之矽氧烷鍵所包含之矽原子之比率」。In addition, the "ratio of silicon atoms not bonded to nitrogen atoms" uses the following measured value, by ((Si(mol))-(N(mol) in Si-N bond))/Si (Mole) × 100 to obtain. In consideration of the condensation reaction, "the ratio of silicon atoms not bonded to nitrogen atoms" means "the ratio of silicon atoms contained in siloxane bonds generated in the condensation treatment".

關於式(B3)所表示之聚矽氮烷之縮合物,相對於式(B3)所表示之聚矽氮烷之縮合物中所包含的所有矽原子,未與氮原子鍵結之矽原子之比率較佳為0.1~100%。又,未與氮原子鍵結之矽原子之比率更佳為10~98%,進而較佳為30~95%。Regarding the condensate of polysilazane represented by formula (B3), with respect to all silicon atoms contained in the condensate of polysilazane represented by formula (B3), the fraction of silicon atoms not bonded to nitrogen atoms The ratio is preferably 0.1 to 100%. In addition, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 98%, further preferably 30 to 95%.

關於具有式(B4)所表示之結構之聚矽氮烷之縮合物,相對於具有式(B4)所表示之結構之聚矽氮烷之縮合物中所包含的所有矽原子,未與氮原子鍵結之矽原子之比率較佳為0.1~99%。又,未與氮原子鍵結之矽原子之比率更佳為10~97%,進而較佳為30~95%。Regarding the condensate of polysilazane having the structure represented by the formula (B4), with respect to all the silicon atoms contained in the condensate of the polysilazane having the structure represented by the formula (B4), no nitrogen atom is attached to the condensate. The ratio of bonded silicon atoms is preferably 0.1 to 99%. In addition, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 97%, further preferably 30 to 95%.

縮合物中之Si原子數、Si-N鍵之數量可藉由X射線光電子光譜法(XPS)進行測定。The number of Si atoms and the number of Si-N bonds in the condensate can be measured by X-ray photoelectron spectroscopy (XPS).

對縮合物使用藉由上述方法所得之測定值而求出之「未與氮原子鍵結之矽原子之比率」較佳為0.1~99%,更佳為10~99%,進而較佳為30~95%。The "ratio of silicon atoms not bonded to nitrogen atoms" obtained by using the measured values obtained by the above method for the condensate is preferably 0.1 to 99%, more preferably 10 to 99%, and further preferably 30 ~95%.

<水解性矽烷化合物> 作為水解性矽烷化合物,較佳為具有胺基、烷氧基或烷硫基之矽烷化合物。作為水解性矽烷化合物,可例舉:3-胺基丙基三乙氧基矽烷、3-胺基丙基三甲氧基矽烷、十二烷基三甲氧基矽烷、三甲氧基苯基矽烷、1H,1H,2H,2H-全氟辛基三乙氧基矽烷、三甲氧基(1H,1H,2H,2H-九氟己基)矽烷、3-巰基丙基三甲氧基矽烷、3-巰基丙基三乙氧基矽烷。 <Hydrolyzable silane compound> As a hydrolyzable silane compound, the silane compound which has an amino group, an alkoxy group, or an alkylthio group is preferable. As the hydrolyzable silane compound, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, dodecyltrimethoxysilane, trimethoxyphenylsilane, 1H ,1H,2H,2H-perfluorooctyltriethoxysilane, trimethoxy(1H,1H,2H,2H-nonafluorohexyl)silane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl Triethoxysilane.

其中,就發光性複合粒子之耐久性之觀點而言,更佳為3-胺基丙基三乙氧基矽烷、3-胺基丙基三甲氧基矽烷、三甲氧基苯基矽烷、三甲氧基苯基矽烷、三甲氧基(1H,1H,2H,2H-九氟己基)矽烷。Among them, from the viewpoint of the durability of the luminescent composite particles, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, trimethoxyphenylsilane, and trimethoxysilane are more preferable. phenyl silane, trimethoxy (1H, 1H, 2H, 2H-nonafluorohexyl) silane.

<水解性矽烷化合物之縮合物> 水解性矽化合物之縮合物只要為可藉由對上述具有胺基、烷氧基或烷硫基之矽烷化合物進行縮合而獲得之化合物即可。 <Condensate of hydrolyzable silane compound> The condensate of the hydrolyzable silicon compound may be a compound obtainable by condensing the above-mentioned silane compound having an amino group, an alkoxy group or an alkylthio group.

<發光性複合粒子之粒徑> 發光性複合粒子之形狀並無特別限制,為球狀、變形球狀、碁石狀、或橄欖球狀等。發光性複合粒子之平均粒徑為1~100 nm,較佳為5~50 nm,更佳為10~30 nm,進而較佳為15~30 nm。藉由使發光性複合粒子之平均粒徑為100 nm以下,可將包含粗大之鈣鈦礦化合物粒子及凝聚而成之鈣鈦礦化合物粒子等之發光性複合粒子去除,而選擇性地獲得包含微小之鈣鈦礦化合物粒子之發光性複合粒子。認為粗大之鈣鈦礦化合物粒子及凝聚而成之鈣鈦礦化合物粒子之耐光性較差,藉由選擇微小之鈣鈦礦化合物粒子,發光性複合粒子之耐光性提高。 <Particle size of luminescent composite particles> The shape of the luminescent composite particles is not particularly limited, and may be a spherical shape, a deformed spherical shape, a stone shape, or a rugby ball shape. The average particle diameter of the luminescent composite particles is 1 to 100 nm, preferably 5 to 50 nm, more preferably 10 to 30 nm, and still more preferably 15 to 30 nm. By setting the average particle diameter of the luminescent composite particles to be 100 nm or less, luminescent composite particles including coarse perovskite compound particles and aggregated perovskite compound particles can be removed and selectively obtained. Light-emitting composite particles of tiny perovskite compound particles. It is considered that the coarse perovskite compound particles and the aggregated perovskite compound particles have poor light resistance, and by selecting fine perovskite compound particles, the light resistance of the luminescent composite particles is improved.

發光性複合粒子之平均粒徑例如可使粒子分散於分散液中,成為分散液組合物之形狀,並藉由動態光散射法(DLS:Dynamic Light Scattering)進行測定。作為DLS中之測定方法,可例舉利用專用容器(玻璃槽)對上述分散液組合物進行測定之方法。The average particle diameter of the luminescent composite particles can be measured by a dynamic light scattering method (DLS: Dynamic Light Scattering), for example, by dispersing the particles in a dispersion liquid to take the shape of a dispersion liquid composition. As a measuring method in DLS, the method of measuring the said dispersion liquid composition using a dedicated container (glass tank) is mentioned.

發光性複合粒子之平均粒徑例如可使用利用具有合適之孔尺寸之過濾器對包含經合成之發光性複合粒子之分散液進行過濾等公知之分級方法進行調節。The average particle diameter of the luminescent composite particles can be adjusted by, for example, a known classification method such as filtering a dispersion liquid containing the synthesized luminescent composite particles using a filter having an appropriate pore size.

<矽化合物層之量> 於發光性複合粒子中,就充分地提高量子產率之觀點而言,相對於鈣鈦礦化合物之質量,矽化合物層之質量較佳為1.1質量份以上,更佳為1.5質量份以上,進而較佳為1.8質量份以上。又,相對於鈣鈦礦化合物之質量,矽化合物層之質量較佳為50質量份以下,更佳為30質量份以下,進而較佳為20質量份以下。 <Amount of silicon compound layer> In the light-emitting composite particles, from the viewpoint of sufficiently improving the quantum yield, the mass of the silicon compound layer is preferably 1.1 parts by mass or more, more preferably 1.5 parts by mass or more, with respect to the mass of the perovskite compound, and further It is preferably 1.8 parts by mass or more. Further, the mass of the silicon compound layer is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and still more preferably 20 parts by mass or less, relative to the mass of the perovskite compound.

再者,上述上限值及下限值可任意地進行組合。In addition, the above-mentioned upper limit value and lower limit value can be combined arbitrarily.

2.包含鈣鈦礦化合物之發光性複合粒子組合物 圖2係模式性地表示包含本發明之發光性複合粒子之組合物之結構的剖視圖。發光性複合粒子組合物200具有發光性複合粒子100與分散介質材料30。發光性複合粒子100分散於分散介質材料30之中。 2. Luminescent composite particle composition comprising perovskite compound Fig. 2 is a cross-sectional view schematically showing the structure of a composition comprising the luminescent composite particles of the present invention. The luminescent composite particle composition 200 includes the luminescent composite particles 100 and the dispersion medium material 30 . The luminescent composite particles 100 are dispersed in the dispersion medium material 30 .

於以下之說明中,由於使發光性複合粒子分散之功能共通,因此,有時將下要說明之分散介質(3)、聚合性化合物(4)、及聚合物(5)總稱為「分散介質材料」。分散介質材料係不易使鈣鈦礦化合物粒子溶解之支持介質,較佳為不會使鈣鈦礦化合物粒子溶解。又,分散介質材料可為包含分散介質(3)、聚合性化合物(4)、及聚合物(5)之至少1種之混合物。In the following description, since the function of dispersing the luminescent composite particles is common, the dispersion medium (3), the polymerizable compound (4), and the polymer (5) to be described below are sometimes collectively referred to as "dispersion medium". Material". The material of the dispersion medium is a support medium that does not easily dissolve the perovskite compound particles, and preferably does not dissolve the perovskite compound particles. Moreover, the dispersion medium material may be a mixture containing at least one of the dispersion medium (3), the polymerizable compound (4), and the polymer (5).

分散係指粒子懸浮於分散介質材料中之狀態或粒子懸濁於分散介質材料中之狀態。於液狀分散介質材料中分散有粒子之情形時,粒子之一部分亦可沈澱。Dispersion refers to a state in which particles are suspended in a dispersion medium material or a state in which particles are suspended in a dispersion medium material. When particles are dispersed in the liquid dispersion medium material, a part of the particles may be precipitated.

(分散介質(3)) 分散介質(3)係於25℃、1氣壓下呈現出液體狀態之可與鈣鈦礦化合物粒子共存之惰性化合物。於本說明書中,分散介質(3)中不包含下述聚合性化合物(4)。 (dispersion medium (3)) The dispersion medium (3) is an inert compound that exhibits a liquid state at 25° C. and 1 atmospheric pressure and can coexist with the perovskite compound particles. In this specification, the following polymerizable compound (4) is not contained in the dispersion medium (3).

作為分散介質(3),例如可例舉下述(a)~(k)。 (a)酯 (b)酮 (c)醚 (d)醇 (e)二醇醚 (f)具有醯胺基之有機溶劑 (g)具有腈基之有機溶劑 (h)具有碳酸酯基之有機溶劑 (i)鹵化烴 (j)烴 (k)二甲基亞碸 (l)離子液體 As a dispersion medium (3), the following (a)-(k) are mentioned, for example. (a) Esters (b) Ketones (c) ethers (d) Alcohol (e) Glycol ethers (f) Organic solvent having an amide group (g) Organic solvent having nitrile group (h) Organic solvent with carbonate group (i) Halogenated hydrocarbons (j) Hydrocarbons (k) Dimethyl methylene (l) Ionic liquid

作為(a)酯,例如可例舉:甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸戊酯、乙酸甲酯、乙酸乙酯、乙酸戊酯等。As (a) ester, methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate, etc. are mentioned, for example.

作為(b)酮,可例舉:γ-丁內酯、N-甲基-2-吡咯啶酮、丙酮、二異丁基酮、環戊酮、環己酮、甲基環己酮等。As (b) ketone, γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, etc. are mentioned.

作為(c)醚,可例舉:二乙醚、甲基-第三丁醚、二異丙醚、二甲氧基甲烷、二甲氧基乙烷、1,4-二㗁烷、1,3-二氧雜環戊烷、4-甲基二氧雜環戊烷、四氫呋喃、甲基四氫呋喃、苯甲醚、苯乙醚等。As (c) ether, diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3 -Dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, phenethyl ether, etc.

作為(d)醇,可例舉:甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、第三丁醇、1-戊醇、2-甲基-2-丁醇、甲氧基丙醇、二丙酮醇、環己醇、2-氟乙醇、2,2,2-三氟乙醇、2,2,3,3-四氟-1-丙醇等。As (d) alcohol, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 3-butanol, 1-pentanol, 2-methyl-2 -Butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, etc.

作為(e)二醇醚,可例舉:乙二醇單甲醚、乙二醇單乙醚、乙二醇單丁醚、乙二醇單乙醚乙酸酯、三乙二醇二甲醚等。As (e) glycol ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, triethylene glycol dimethyl ether, etc. are mentioned.

作為(f)具有醯胺基之有機溶劑,可例舉:N,N-二甲基甲醯胺、乙醯胺、N,N-二甲基乙醯胺等。(f) As an organic solvent which has an amide group, N,N- dimethylformamide, acetamide, N,N- dimethylacetamide, etc. are mentioned.

作為(g)具有腈基之有機溶劑,可例舉:乙腈、異丁腈、丙腈、甲氧基乙腈等。(g) As an organic solvent which has a nitrile group, acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile, etc. are mentioned.

作為(h)具有碳酸酯基之有機溶劑,可例舉:碳酸乙二酯、碳酸丙二酯等。(h) As an organic solvent which has a carbonate group, ethylene carbonate, propylene carbonate, etc. are mentioned.

作為(i)鹵化烴,可例舉:二氯甲烷、氯仿等。As (i) halogenated hydrocarbon, dichloromethane, chloroform, etc. are mentioned.

作為(j)烴,可例舉:正戊烷、環己烷、正己烷、1-十八烯、苯、甲苯、二甲苯等。As (j) hydrocarbon, n-pentane, cyclohexane, n-hexane, 1-octadecene, benzene, toluene, xylene, etc. are mentioned.

作為(l)離子液體,作為陽離子性者,可例舉銨系、鏻系、鋶系之離子液體等,作為陰離子性者,可例舉:AlCl 4-、NO 2-、NO 3-、I -、BF 4-、PF 6-、AsF 6-、SbF 6-、NbF 6-、TaF 6-、F(HF)2.3 -、p-CH 3PhSO 3-、CH 3CO 2-、CF 3CO 2-、CH 3SO 3-、CF 3SO 3-、(CF 3SO 2) 3C -、C 3F 7CO 2-、C 4F 9SO 3-、(CF 3SO 2) 2N -、(C 2F 5SO 2) 2N -、(CF 3SO 2)(CF 3CO)N -、(CN) 2N -等。 (1) As the ionic liquid, cationic ones include ammonium-based, phosphonium-based, and peronium-based ionic liquids, and as anionic ones, AlCl 4- , NO 2- , NO 3- , I - , BF 4- , PF 6- , AsF 6- , SbF 6- , NbF 6- , TaF 6- , F(HF)2.3 - , p-CH 3 PhSO 3- , CH 3 CO 2 - , CF 3 CO 2- , CH 3 SO 3- , CF 3 SO 3- , (CF 3 SO 2 ) 3 C - , C 3 F 7 CO 2- , C 4 F 9 SO 3- , (CF 3 SO 2 ) 2 N - , (C 2 F 5 SO 2 ) 2 N - , (CF 3 SO 2 )(CF 3 CO)N - , (CN) 2 N - and the like.

認為該等溶劑之中,(a)酯、(b)酮、(c)醚、(g)具有腈基之有機溶劑、(h)具有碳酸酯基之有機溶劑、(i)鹵化烴及(j)烴由於極性較低而不易使發光性複合粒子溶解,故而較佳。Among these solvents, (a) esters, (b) ketones, (c) ethers, (g) organic solvents having nitrile groups, (h) organic solvents having carbonate groups, (i) halogenated hydrocarbons and ( j) Hydrocarbons are preferred because they have low polarity and do not easily dissolve the luminescent composite particles.

進而,作為分散介質(3),更佳為(i)鹵化烴、(j)烴。Furthermore, as the dispersion medium (3), (i) halogenated hydrocarbons and (j) hydrocarbons are more preferable.

分散介質(3)可僅使用1種,亦可將2種以上併用。Only one type of dispersion medium (3) may be used, or two or more types may be used in combination.

(聚合性化合物(4)) 聚合性化合物意指具有聚合性基之單體化合物(單體)。作為聚合性化合物,例如可例舉於25℃、1氣壓下為液體狀態之單體。 (Polymerizable compound (4)) The polymerizable compound means a monomer compound (monomer) having a polymerizable group. As a polymerizable compound, the monomer which is a liquid state at 25 degreeC and 1 atmospheric pressure is mentioned, for example.

例如,於在常溫、常壓下製造之情形時,作為聚合性化合物,並無特別限制。作為聚合性化合物,例如可例舉苯乙烯、丙烯酸酯、甲基丙烯酸酯、丙烯腈等公知之聚合性化合物。其中,作為聚合性化合物,較佳為作為丙烯酸系樹脂之單體之丙烯酸酯及甲基丙烯酸酯之任一者或兩者。For example, in the case of producing at normal temperature and normal pressure, the polymerizable compound is not particularly limited. As a polymerizable compound, well-known polymerizable compounds, such as styrene, an acrylate, a methacrylate, and acrylonitrile, are mentioned, for example. Among them, as the polymerizable compound, either one or both of acrylates and methacrylates, which are monomers of the acrylic resin, are preferred.

聚合性化合物(4)可僅使用1種,亦可將2種以上併用。The polymerizable compound (4) may be used alone or in combination of two or more.

丙烯酸酯及甲基丙烯酸酯之合計量相對於聚合性化合物(4)之總質量之比率可為10 mol%以上。該比率亦可為30 mol%以上,亦可為50 mol%以上,亦可為80 mol%以上,亦可為100 mol%。The ratio of the total amount of acrylate and methacrylate with respect to the total mass of the polymerizable compound (4) may be 10 mol % or more. The ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.

(聚合物(5)) 聚合物(5)較佳為於製造發光性複合粒子組合物之溫度下發光性複合粒子之溶解度較低之聚合物。 (Polymer(5)) The polymer (5) is preferably a polymer having a low solubility of the luminescent composite particles at the temperature at which the luminescent composite particle composition is produced.

例如,於在常溫、常壓下製造之情形時,作為聚合物,並無特別限制,例如可例舉聚苯乙烯、丙烯酸系樹脂、環氧樹脂等公知之聚合物。其中,作為聚合物,較佳為丙烯酸系樹脂。丙烯酸系樹脂包含源自丙烯酸酯之結構單元及源自甲基丙烯酸酯之結構單元之任一者或兩者。該等樹脂例如可藉由使作為對應單體之聚合性化合物(4)於發光性複合粒子組合物中聚合而製備。For example, when it manufactures at normal temperature and normal pressure, it does not specifically limit as a polymer, For example, well-known polymers, such as polystyrene, an acrylic resin, and an epoxy resin, are mentioned. Among them, as the polymer, an acrylic resin is preferable. The acrylic resin contains either or both of a structural unit derived from an acrylate and a structural unit derived from a methacrylate. These resins can be prepared, for example, by polymerizing the polymerizable compound (4) as the corresponding monomer in the luminescent composite particle composition.

源自丙烯酸酯之結構單元及源自甲基丙烯酸酯之結構單元之合計量相對於聚合物(5)中所包含之所有結構單元之比率可為10 mol%以上。該比率亦可為30 mol%以上,亦可為50 mol%以上,亦可為80 mol%以上,亦可為100 mol%。The ratio of the total amount of the acrylate-derived structural unit and the methacrylate-derived structural unit with respect to all the structural units contained in the polymer (5) may be 10 mol % or more. The ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.

聚合物(5)之重量平均分子量較佳為100~1200000,更佳為1000~800000,進而較佳為5000~150000。The weight average molecular weight of the polymer (5) is preferably 100 to 1,200,000, more preferably 1,000 to 800,000, and still more preferably 5,000 to 150,000.

於本說明書中,「重量平均分子量」意指藉由凝膠滲透層析(GPC)法所測得之聚苯乙烯換算值。In this specification, "weight average molecular weight" means the polystyrene conversion value measured by the gel permeation chromatography (GPC) method.

聚合物(5)可僅具有1種,亦可將2種以上併用。Only one type of polymer (5) may be used, or two or more types may be used in combination.

<表面改質劑(6)> 發光性複合粒子組合物亦可進而包含表面改質劑(6)。又,亦可具有上述(1)~(6)以外之其他成分。例如,亦可進而包含包括若干雜質、構成鈣鈦礦化合物(1)之元素之具有非晶結構之化合物、聚合起始劑。 <Surface modifier (6)> The luminescent composite particle composition may further contain a surface modifier (6). Moreover, you may have other components other than said (1)-(6). For example, a compound having an amorphous structure including some impurities, an element constituting the perovskite compound (1), and a polymerization initiator may be further included.

於發光性複合粒子組合物包含表面改質劑(6)之情形時,表面改質劑層位於鈣鈦礦化合物粒子與矽化合物層之間。When the luminescent composite particle composition includes the surface modifier (6), the surface modifier layer is located between the perovskite compound particles and the silicon compound layer.

(表面改質劑) 表面改質劑(6)將選自由銨離子、胺、一級~四級銨陽離子、銨鹽、羧酸、羧酸酯離子、及羧酸酯鹽所組成之群中之至少一種離子或化合物作為形成材料。 (Surface Modifier) The surface modifier (6) uses at least one ion or compound selected from the group consisting of ammonium ions, amines, primary to quaternary ammonium cations, ammonium salts, carboxylic acids, carboxylate ions, and carboxylate salts. forming material.

其中,較佳為將選自由胺、及羧酸所組成之群中之至少一種作為形成材料。Among them, at least one selected from the group consisting of amines and carboxylic acids is preferably used as the forming material.

表面改質劑(6)係具有於利用下述製造方法製造發光性複合粒子時,覆蓋鈣鈦礦化合物粒子之表面,使其穩定地分散於發光性複合粒子組合物中之作用之化合物。The surface modifier (6) is a compound having a function of covering the surface of the perovskite compound particles and stably dispersing them in the luminescent composite particle composition when luminescent composite particles are produced by the following production method.

(銨離子、一級~四級銨陽離子、銨鹽) 作為表面改質劑(6)之銨離子、及一級~四級銨陽離子係由下述式(A1)所表示。作為表面改質劑(6)之銨鹽係包含下述式(A1)所表示之離子之鹽。 (ammonium ion, primary to quaternary ammonium cation, ammonium salt) The ammonium ion as the surface modifier (6) and the primary to quaternary ammonium cations are represented by the following formula (A1). The ammonium salt as the surface modifier (6) contains a salt of an ion represented by the following formula (A1).

[化6]

Figure 02_image011
[hua 6]
Figure 02_image011

於式(A1)所表示之離子中,R 1~R 4表示氫原子或一價烴基。 In the ion represented by the formula (A1), R 1 to R 4 represent a hydrogen atom or a monovalent hydrocarbon group.

R 1~R 4所表示之烴基可為飽和烴基,亦可為不飽和烴基。作為飽和烴基,可例舉烷基或環烷基。 The hydrocarbon group represented by R 1 to R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. As a saturated hydrocarbon group, an alkyl group or a cycloalkyl group is mentioned.

R 1~R 4所表示之烷基可為直鏈狀,亦可為支鏈狀。 R 1~R 4所表示之烷基之碳原子數通常為1~20,較佳為5~20,更佳為8~20。 The alkyl groups represented by R 1 to R 4 may be linear or branched. The number of carbon atoms of the alkyl group represented by R 1 to R 4 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.

環烷基之碳原子數通常為3~30,較佳為3~20,更佳為3~11。碳原子數包括取代基之碳原子數。The number of carbon atoms in the cycloalkyl group is usually 3-30, preferably 3-20, more preferably 3-11. The number of carbon atoms includes the number of carbon atoms of the substituent.

R 1~R 4之不飽和烴基可為直鏈狀,亦可為支鏈狀。 The unsaturated hydrocarbon groups of R 1 to R 4 may be linear or branched.

R 1~R 4之不飽和烴基之碳原子數通常為2~20,較佳為5~20,更佳為8~20。 The number of carbon atoms in the unsaturated hydrocarbon groups of R 1 to R 4 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.

R 1~R 4較佳為氫原子、烷基或不飽和烴基。 作為不飽和烴基,較佳為烯基。R 1~R 4較佳為碳原子數8~20之烯基。 R 1 to R 4 are preferably a hydrogen atom, an alkyl group or an unsaturated hydrocarbon group. As the unsaturated hydrocarbon group, an alkenyl group is preferable. R 1 to R 4 are preferably alkenyl groups having 8 to 20 carbon atoms.

作為R 1~R 4之烷基之具體例,可例舉於R 6~R 9中例示之烷基。 Specific examples of the alkyl groups of R 1 to R 4 include the alkyl groups exemplified for R 6 to R 9 .

作為R 1~R 4之環烷基之具體例,可例舉於R 6~R 9中例示之環烷基。 Specific examples of the cycloalkyl groups of R 1 to R 4 include the cycloalkyl groups exemplified for R 6 to R 9 .

作為R 1~R 4之烯基,可例示於R 6~R 9中所例示之上述直鏈狀或支鏈狀之烷基中,其中任一個之碳原子間之單鍵(C-C)被取代為雙鍵(C=C)者,雙鍵之位置並無限定。 The alkenyl group of R 1 to R 4 can be exemplified by the linear or branched alkyl groups exemplified above for R 6 to R 9 , in which any single bond (CC) between carbon atoms is substituted. In the case of a double bond (C=C), the position of the double bond is not limited.

作為較佳之R 1~R 4之烯基,例如可例舉:乙烯基、丙烯基、3-丁烯基、2-丁烯基、2-戊烯基、2-己烯基、2-壬烯基、2-十二烯基、9-十八烯基。 Examples of preferable alkenyl groups for R 1 to R 4 include vinyl, propenyl, 3-butenyl, 2-butenyl, 2-pentenyl, 2-hexenyl, and 2-nonyl. Alkenyl, 2-dodecenyl, 9-octadecenyl.

於式(A1)所表示之銨陽離子形成鹽之情形時,作為抗衡陰離子,並無特別限制。作為抗衡陰離子,較佳為鹵化物離子或羧酸酯離子等。作為鹵化物離子,可例舉:溴化物離子、氯化物離子、碘化物離子、氟化物離子。When the ammonium cation represented by the formula (A1) forms a salt, the counter anion is not particularly limited. As a counter anion, a halide ion, a carboxylate ion, etc. are preferable. As a halide ion, a bromide ion, a chloride ion, an iodide ion, and a fluoride ion are mentioned.

作為具有式(A1)所表示之銨陽離子與抗衡陰離子之銨鹽,可例舉正辛基銨鹽、油基銨鹽作為較佳例。Preferred examples of the ammonium salt having the ammonium cation and the counter anion represented by the formula (A1) include n-octyl ammonium salt and oleyl ammonium salt.

(胺) 作為表面改質劑(6)之胺可由下述式(A11)所表示。 (amine) The amine as the surface modifier (6) can be represented by the following formula (A11).

[化7]

Figure 02_image013
[hua 7]
Figure 02_image013

於上述式(A11)中,R 1~R 3表示與上述式(A1)所具有之R 1~R 3相同之基。其中,R 1~R 3中之至少1個為一價烴基。 In the above formula (A11), R 1 to R 3 represent the same groups as R 1 to R 3 in the above formula (A1). Here, at least one of R 1 to R 3 is a monovalent hydrocarbon group.

作為表面改質劑(6)之胺可為一級~三級胺之任一者,較佳為一級胺及二級胺,更佳為一級胺。The amine used as the surface modifier (6) may be any of primary to tertiary amines, preferably primary amine and secondary amine, more preferably primary amine.

作為表面改質劑(6)之胺較佳為油胺。The amine used as the surface modifier (6) is preferably oleylamine.

(羧酸、羧酸酯離子、羧酸酯鹽) 作為表面改質劑(6)之羧酸酯離子係由下述式(A2)所表示。作為表面改質劑(6)之羧酸酯鹽係包含下述式(A2)所表示之離子之鹽。 R 5-CO 2 -・・・(A2) (Carboxylic acid, carboxylate ion, carboxylate salt) The carboxylate ion as the surface modifier (6) is represented by the following formula (A2). The carboxylate salt as the surface modifier (6) is a salt containing an ion represented by the following formula (A2). R 5 -CO 2 -・・・(A2)

作為表面改質劑(6)之羧酸可例舉質子(H +)鍵結於上述(A2)所表示之羧酸酯陰離子之羧酸。 As the carboxylic acid of the surface modifier (6), a carboxylic acid in which a proton (H + ) is bonded to the carboxylate anion represented by the above (A2) may be mentioned.

於式(A2)所表示之離子中,R 5表示一價烴基。R 5所表示之烴基可為飽和烴基,亦可為不飽和烴基。 作為飽和烴基,可例舉烷基或環烷基。 In the ion represented by the formula (A2), R 5 represents a monovalent hydrocarbon group. The hydrocarbon group represented by R 5 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. As a saturated hydrocarbon group, an alkyl group or a cycloalkyl group is mentioned.

R 5所表示之烷基可為直鏈狀,亦可為支鏈狀。 The alkyl group represented by R 5 may be linear or branched.

R 5所表示之烷基之碳原子數通常為1~20,較佳為5~20,更佳為8~20。 The number of carbon atoms of the alkyl group represented by R 5 is usually 1-20, preferably 5-20, more preferably 8-20.

環烷基之碳原子數通常為3~30,較佳為3~20,更佳為3~11。碳原子數亦包含取代基之碳原子數。The number of carbon atoms in the cycloalkyl group is usually 3-30, preferably 3-20, more preferably 3-11. The number of carbon atoms also includes the number of carbon atoms of the substituent.

R 5所表示之不飽和烴基可為直鏈狀,亦可為支鏈狀。 The unsaturated hydrocarbon group represented by R 5 may be linear or branched.

R 5所表示之不飽和烴基之碳原子數通常為2~20,較佳為5~20,更佳為8~20。 The number of carbon atoms of the unsaturated hydrocarbon group represented by R 5 is usually 2-20, preferably 5-20, more preferably 8-20.

R 5較佳為烷基或不飽和烴基。作為不飽和烴基,較佳為烯基。 R 5 is preferably an alkyl group or an unsaturated hydrocarbon group. As the unsaturated hydrocarbon group, an alkenyl group is preferable.

作為R 5之烷基之具體例,可例舉R 6~R 9中所例示之烷基。 作為R 5之環烷基之具體例,可例舉R 6~R 9中所例示之環烷基。 As a specific example of the alkyl group of R< 5 >, the alkyl group exemplified by R< 6 >-R< 9 > is mentioned. Specific examples of the cycloalkyl group of R 5 include the cycloalkyl groups exemplified by R 6 to R 9 .

作為R 5之烯基之具體例,可例舉R 4中所例示之烯基。 Specific examples of the alkenyl group for R 5 include the alkenyl groups exemplified for R 4 .

式(A2)所表示之羧酸酯陰離子較佳為油酸陰離子。The carboxylate anion represented by the formula (A2) is preferably an oleic acid anion.

於碳螯合物陰離子形成鹽之情形時,作為抗衡陽離子,並無特別限制,可例舉鹼金屬陽離子、鹼土金屬陽離子、銨陽離子等作為較佳例。When the carbochelate anion forms a salt, the counter cation is not particularly limited, and preferred examples include alkali metal cations, alkaline earth metal cations, and ammonium cations.

作為表面改質劑(6)之羧酸較佳為油酸。The carboxylic acid used as the surface modifier (6) is preferably oleic acid.

於上述表面改質劑(6)之中,較佳為銨鹽、銨離子、一級~四級銨陽離子、羧酸酯鹽、羧酸酯離子。Among the above-mentioned surface modifiers (6), ammonium salts, ammonium ions, primary to quaternary ammonium cations, carboxylate salts, and carboxylate ions are preferred.

於銨鹽、銨離子之中,更佳為油胺鹽、油銨離子。Among ammonium salts and ammonium ions, oleylamine salts and oleylammonium ions are more preferred.

於羧酸酯鹽、羧酸酯離子之中,更佳為油酸鹽、油酸陽離子。Among carboxylate salts and carboxylate ions, oleate and oleate cations are more preferred.

於發光性複合粒子中,可僅具有1種上述表面改質劑(6),亦可將2種以上併用。In the light-emitting composite particle, only one type of the above-mentioned surface modifier (6) may be provided, or two or more types may be used in combination.

<發光性複合粒子組合物中之各成分之含量> 於發光性複合粒子組合物中,發光性複合粒子相對於發光性複合粒子組合物之總質量之含有比率並無特別限定。 <Content of each component in the luminescent composite particle composition> In the luminescent composite particle composition, the content ratio of the luminescent composite particle with respect to the total mass of the luminescent composite particle composition is not particularly limited.

就防止濃度淬滅之觀點而言,上述含有比率較佳為90質量%以下,更佳為40質量%以下,進而較佳為10質量%以下,尤佳為3質量%以下。From the viewpoint of preventing concentration quenching, the content ratio is preferably 90% by mass or less, more preferably 40% by mass or less, still more preferably 10% by mass or less, and particularly preferably 3% by mass or less.

又,就獲得良好之量子產率之觀點而言,上述含有比率較佳為0.0002質量%以上,更佳為0.002質量%以上,進而較佳為0.01質量%以上。Moreover, from the viewpoint of obtaining a good quantum yield, the content ratio is preferably 0.0002 mass % or more, more preferably 0.002 mass % or more, and still more preferably 0.01 mass % or more.

上述上限值及下限值可任意地進行組合。The above upper limit value and lower limit value can be arbitrarily combined.

發光性複合粒子相對於發光性複合粒子組合物之總質量之含有比率通常為0.0002~90質量%。The content ratio of the luminescent composite particles with respect to the total mass of the luminescent composite particle composition is usually 0.0002 to 90% by mass.

發光性複合粒子相對於發光性複合粒子組合物之總質量之含有比率較佳為0.001~40質量%,更佳為0.002~10質量%,進而較佳為0.01~3質量%。The content ratio of the luminescent composite particles with respect to the total mass of the luminescent composite particle composition is preferably 0.001 to 40 mass %, more preferably 0.002 to 10 mass %, and still more preferably 0.01 to 3 mass %.

發光性複合粒子相對於發光性複合粒子組合物之總質量之含有比率為上述範圍內之發光性複合粒子組合物不易產生發光性複合粒子之凝聚,且亦可良好地發揮發光性,於該方面而言較佳。In the light-emitting composite particle composition in which the content ratio of the luminescent composite particles to the total mass of the luminescent composite particle composition is within the above-mentioned range, the aggregation of the luminescent composite particles is less likely to occur, and the luminescent properties can be well exhibited. is better.

於發光性複合粒子組合物中,矽化合物層相對於發光性複合粒子組合物之總質量之含有比率並無特別限定。In the luminescent composite particle composition, the content ratio of the silicon compound layer with respect to the total mass of the luminescent composite particle composition is not particularly limited.

就提高發光性複合粒子之分散性之觀點、及提高耐久性之觀點而言,上述含有比率較佳為30質量%以下,更佳為10質量%以下,進而較佳為7.5質量%以下。From the viewpoint of improving the dispersibility of the luminescent composite particles and improving the durability, the content ratio is preferably 30% by mass or less, more preferably 10% by mass or less, and still more preferably 7.5% by mass or less.

又,就提高發光性複合粒子之耐久性之觀點而言,上述含有比率較佳為0.001質量%以上,更佳為0.01質量%以上,進而較佳為0.1質量%以上。Moreover, from the viewpoint of improving the durability of the luminescent composite particles, the content ratio is preferably 0.001 mass % or more, more preferably 0.01 mass % or more, and still more preferably 0.1 mass % or more.

上述上限值及下限值可任意地進行組合。The above upper limit value and lower limit value can be arbitrarily combined.

矽化合物層相對於發光性複合粒子組合物之總質量之含有比率通常為0.001~30質量%。The content ratio of the silicon compound layer with respect to the total mass of the luminescent composite particle composition is usually 0.001 to 30 mass %.

矽化合物層相對於發光性複合粒子組合物之總質量之含有比率較佳為0.001~30質量%,更佳為0.001~10質量%、0.1~7.5質量%。The content ratio of the silicon compound layer with respect to the total mass of the luminescent composite particle composition is preferably 0.001 to 30 mass %, more preferably 0.001 to 10 mass %, and 0.1 to 7.5 mass %.

於發光性複合粒子組合物中,分散介質材料相對於發光性複合粒子組合物之總質量之含有比率並無特別限定。In the luminescent composite particle composition, the content ratio of the dispersion medium material to the total mass of the luminescent composite particle composition is not particularly limited.

就提高發光性複合粒子之分散性之觀點、及提高耐光性之觀點而言,上述含有比率較佳為99.99質量%以下,更佳為99.9質量%以下,進而較佳為99質量%以下。From the viewpoint of improving the dispersibility of the luminescent composite particles and improving the light resistance, the content ratio is preferably 99.99 mass % or less, more preferably 99.9 mass % or less, and still more preferably 99 mass % or less.

又,就提高耐光性之觀點而言,上述含有比率較佳為0.1質量%以上,更佳為1質量%以上,進而較佳為10質量%以上,進而較佳為50質量%以上,進而較佳為80質量%以上,最佳為90質量%以上。Also, from the viewpoint of improving light resistance, the content ratio is preferably 0.1 mass % or more, more preferably 1 mass % or more, more preferably 10 mass % or more, still more preferably 50 mass % or more, and still more preferably 10 mass % or more. Preferably it is 80 mass % or more, Most preferably, it is 90 mass % or more.

上述上限值及下限值可任意地進行組合。The above upper limit value and lower limit value can be arbitrarily combined.

分散介質材料相對於發光性複合粒子組合物之總質量之含有比率通常為0.1~99.99質量%。The content ratio of the dispersion medium material to the total mass of the luminescent composite particle composition is usually 0.1 to 99.99 mass %.

分散介質材料相對於發光性複合粒子組合物之總質量之含有比率較佳為1~99質量%,更佳為10~99質量%,進而較佳為20~99質量%,尤佳為50~99質量%,最佳為90~99質量%。The content ratio of the dispersion medium material to the total mass of the luminescent composite particle composition is preferably 1 to 99 mass %, more preferably 10 to 99 mass %, still more preferably 20 to 99 mass %, particularly preferably 50 to 50 mass %. 99% by mass, preferably 90 to 99% by mass.

又,於上述發光性複合粒子組合物中,相對於發光性複合粒子組合物之總質量,鈣鈦礦化合物粒子、矽化合物層及分散介質材料之合計含有比率可為90質量%以上,亦可為95質量%以上,亦可為99質量%以上,亦可為100質量%。Moreover, in the above-mentioned luminescent composite particle composition, the total content ratio of the perovskite compound particles, the silicon compound layer and the dispersion medium material may be 90% by mass or more with respect to the total mass of the luminescent composite particle composition. 95 mass % or more, 99 mass % or more may be sufficient, and 100 mass % may be sufficient.

於發光性複合粒子組合物中,表面改質劑(6)相對於發光性複合粒子組合物之總質量之含有比率並無特別限定。In the luminescent composite particle composition, the content ratio of the surface modifier (6) with respect to the total mass of the luminescent composite particle composition is not particularly limited.

就提高耐光性之觀點而言,上述含有比率較佳為30質量%以下,更佳為1質量%以下,進而較佳為0.1質量%以下。From the viewpoint of improving light resistance, the content ratio is preferably 30% by mass or less, more preferably 1% by mass or less, and still more preferably 0.1% by mass or less.

又,就提高光耐久性之觀點而言,上述含有比率較佳為0.0001質量%以上,更佳為0.001質量%以上,進而較佳為0.01質量%以上。Moreover, from a viewpoint of improving light durability, the said content ratio becomes like this. Preferably it is 0.0001 mass % or more, More preferably, it is 0.001 mass % or more, More preferably, it is 0.01 mass % or more.

上述上限值及下限值可任意地進行組合。The above upper limit value and lower limit value can be arbitrarily combined.

表面改質劑(6)相對於發光性複合粒子組合物之總質量之含有比率通常為0.0001~30質量%。The content ratio of the surface modifier (6) with respect to the total mass of the luminescent composite particle composition is usually 0.0001 to 30% by mass.

表面改質劑(6)相對於發光性複合粒子組合物之總質量之含有比率較佳為0.001~1質量%,更佳為0.01~0.1質量%。The content ratio of the surface modifier (6) with respect to the total mass of the luminescent composite particle composition is preferably 0.001 to 1 mass %, more preferably 0.01 to 0.1 mass %.

表面改質劑(6)相對於發光性複合粒子組合物之總質量之含有比率為上述範圍內之發光性複合粒子組合物之光耐久性優異,於該方面而言較佳。The light-emitting composite particle composition in which the content ratio of the surface modifier (6) to the total mass of the light-emitting composite particle composition is within the above-mentioned range is excellent in light durability, and is preferable in this respect.

相對於發光性複合粒子組合物之總質量,發光性複合粒子中之包含若干雜質、構成鈣鈦礦化合物(1)之元素之具有非晶結構之化合物、聚合起始劑之合計含有比率較佳為10質量%以下,更佳為5質量%以下,進而較佳為1質量%以下。With respect to the total mass of the luminescent composite particle composition, the total content ratio of the luminescent composite particles including some impurities, the compound having an amorphous structure of the element constituting the perovskite compound (1), and the polymerization initiator is preferable It is 10 mass % or less, More preferably, it is 5 mass % or less, More preferably, it is 1 mass % or less.

3.發光性複合粒子之製造方法 關於鈣鈦礦化合物粒子之製造方法,可以已知文獻(Nano Lett. 2015, 15, 3692-3696、ACSNano, 2015, 9, 4533-4542)為參考,並藉由以下所述之方法來製造。 3. Manufacturing method of luminescent composite particles Regarding the production method of perovskite compound particles, known literatures (Nano Lett. 2015, 15, 3692-3696, ACS Nano, 2015, 9, 4533-4542) can be referred to and produced by the method described below.

(第1製造方法) 作為鈣鈦礦化合物之製造方法,可例舉包括如下步驟之製造方法:使構成鈣鈦礦化合物之B成分、X成分、及A成分溶解於高溫之上述分散介質(3)中而獲得溶液之步驟;及使溶液冷卻之步驟。 (1st manufacturing method) As a method for producing a perovskite compound, a production method comprising the steps of dissolving Component B, Component X, and Component A constituting the perovskite compound in the above-mentioned dispersion medium (3) at a high temperature to obtain a solution can be exemplified. step; and the step of cooling the solution.

以下,對第1製造方法具體地進行說明。Hereinafter, the first manufacturing method will be specifically described.

首先,使包含B成分及X成分之化合物與包含A成分之化合物溶解於高溫之分散介質(3)中而獲得溶液。「包含A成分之化合物」亦可包含X成分。 本步驟亦可向高溫之分散介質(3)中添加各化合物進行溶解而獲得溶液。 又,本步驟亦可藉由向分散介質(3)中添加各化合物後升溫而獲得溶液。於第1製造方法中,溶液較佳為藉由向第1溶劑中添加各化合物後升溫而獲得。 First, a solution is obtained by dissolving the compound containing the B component and the X component and the compound containing the A component in a high temperature dispersion medium (3). The "compound containing component A" may also contain component X. In this step, each compound can also be added to the high temperature dispersion medium (3) and dissolved to obtain a solution. In addition, in this step, a solution can also be obtained by adding each compound to the dispersion medium (3) and then raising the temperature. In the first production method, the solution is preferably obtained by adding each compound to the first solvent and then raising the temperature.

作為分散介質(3),較佳為可使作為原料之包含B成分及X成分之化合物與包含A成分之化合物溶解之溶劑。The dispersion medium (3) is preferably a solvent that can dissolve the compound containing the B component and the X component and the compound containing the A component, which are raw materials.

所謂「高溫」,只要為各原料會溶解之溫度之溶劑即可。例如,作為高溫之分散介質(3)之溫度,較佳為60~600℃,更佳為80~400℃。The so-called "high temperature" may be a solvent at a temperature at which each raw material dissolves. For example, the temperature of the high temperature dispersion medium (3) is preferably 60 to 600°C, more preferably 80 to 400°C.

於藉由向分散介質(3)中添加各化合物後升溫而獲得溶液之情形時,作為升溫後之保持溫度,例如較佳為20~150℃,更佳為120~140℃。When a solution is obtained by adding each compound to the dispersion medium (3) and then raising the temperature, the holding temperature after raising the temperature is, for example, preferably 20 to 150°C, more preferably 120 to 140°C.

就反應後將不必要之水去除而抑制劣化之觀點而言,較佳為一面使惰性氣體流通,一面進行反應。From the viewpoint of suppressing deterioration by removing unnecessary water after the reaction, it is preferable to carry out the reaction while flowing an inert gas.

繼而,使所獲得之溶液冷卻。 作為冷卻溫度,較佳為-20~50℃,更佳為-10~30℃。 作為冷卻速度,較佳為0.1~1500℃/min,更佳為10~150℃/min。 Then, the obtained solution was cooled. As cooling temperature, -20-50 degreeC is preferable, and -10-30 degreeC is more preferable. As a cooling rate, 0.1-1500 degreeC/min is preferable, and 10-150 degreeC/min is more preferable.

藉由使高溫之溶液冷卻,可藉由因溶液之溫度差而產生之溶解度之差使鈣鈦礦化合物析出。藉此,獲得包含鈣鈦礦化合物之分散液。By cooling the high-temperature solution, the perovskite compound can be precipitated by the difference in solubility due to the difference in temperature of the solution. Thereby, a dispersion liquid containing the perovskite compound is obtained.

可藉由對包含所獲得之鈣鈦礦化合物之分散液進行固液分離而回收鈣鈦礦化合物。作為固液分離之方法,可例舉藉由過濾、溶劑之蒸發進行濃縮等。可藉由進行固液分離而僅回收鈣鈦礦化合物。The perovskite compound can be recovered by subjecting the dispersion liquid containing the obtained perovskite compound to solid-liquid separation. As a method of solid-liquid separation, filtration, concentration by evaporation of a solvent, etc. are mentioned. Only the perovskite compound can be recovered by performing solid-liquid separation.

再者,於上述製造方法中,較佳為包括為了使所獲得之鈣鈦礦化合物之粒子於分散液中穩定地分散而添加上述表面改質劑(6)之步驟。Furthermore, in the above-mentioned production method, it is preferable to include the step of adding the above-mentioned surface modifier (6) in order to stably disperse the obtained particles of the perovskite compound in the dispersion liquid.

添加表面改質劑(6)之步驟較佳為於冷卻步驟之前進行。具體而言,表面改質劑(6)可添加至分散介質(3)中,亦可添加至使包含B成分及X成分之化合物與包含A成分之化合物溶解所得之溶液中。The step of adding the surface modifier (6) is preferably performed before the cooling step. Specifically, the surface modifier (6) may be added to the dispersion medium (3), or may be added to a solution obtained by dissolving the compound containing the B component and the X component and the compound containing the A component.

又,於上述製造方法中,較佳為包括於冷卻步驟之後,藉由離心分離、過濾等方法將粗大粒子去除之步驟。藉由去除步驟而去除之粗大粒子之尺寸較佳為超過10 μm,更佳為超過1 μm,進而較佳為超過500 nm。Moreover, in the above-mentioned production method, it is preferable to include the step of removing coarse particles by methods such as centrifugation and filtration after the cooling step. The size of the coarse particles removed by the removing step is preferably more than 10 μm, more preferably more than 1 μm, and still more preferably more than 500 nm.

(第2製造方法) 作為鈣鈦礦化合物之製造方法,可例舉包括如下步驟之製造方法:獲得包含構成鈣鈦礦化合物之A成分、B成分之第1溶液之步驟;獲得包含構成鈣鈦礦化合物之X成分之第2溶液之步驟;將第1溶液與第2溶液加以混合而獲得混合液之步驟;及對所獲得之混合液進行冷卻之步驟。 (2nd manufacturing method) As a method for producing a perovskite compound, a production method including the following steps can be exemplified: a step of obtaining a first solution containing component A and component B constituting the perovskite compound; obtaining a solution containing component X constituting the perovskite compound The step of the second solution; the step of mixing the first solution and the second solution to obtain a mixed solution; and the step of cooling the obtained mixed solution.

以下,對第2製造方法具體地進行說明。Hereinafter, the second manufacturing method will be specifically described.

首先,使包含A成分之化合物與包含B成分之化合物溶解於高溫之第2溶劑中,獲得第1溶液。 本步驟亦可向高溫之分散介質(3)中添加各化合物進行溶解而獲得第1溶液。 又,本步驟亦可藉由向分散介質(3)中添加各化合物後升溫而獲得第1溶液。於第2製造方法中,第1溶液較佳為藉由向分散介質(3)中添加各化合物後升溫而獲得。 First, the compound containing the A component and the compound containing the B component are dissolved in a high-temperature second solvent to obtain a first solution. In this step, each compound may be added and dissolved in the high temperature dispersion medium (3) to obtain a first solution. In addition, in this step, the first solution may be obtained by adding each compound to the dispersion medium (3) and then raising the temperature. In the second production method, the first solution is preferably obtained by adding each compound to the dispersion medium (3) and then raising the temperature.

作為分散介質(3),較佳為可使包含A成分之化合物與包含B成分之化合物溶解之溶劑。The dispersion medium (3) is preferably a solvent that can dissolve the compound containing the A component and the compound containing the B component.

所謂「高溫」,只要為包含A成分之化合物與包含B成分之化合物會溶解之溫度即可。例如,作為高溫之分散介質(3)之溫度,較佳為60~600℃,更佳為80~400℃。The "high temperature" may be a temperature at which the compound containing the A component and the compound containing the B component dissolve. For example, the temperature of the high temperature dispersion medium (3) is preferably 60 to 600°C, more preferably 80 to 400°C.

於藉由向分散介質(3)中添加各化合物後升溫而獲得第1溶液之情形時,作為升溫後之保持溫度,例如較佳為80~150℃,更佳為120~140℃。When the first solution is obtained by adding each compound to the dispersion medium (3) and then raising the temperature, the holding temperature after the temperature rise is preferably, for example, 80 to 150°C, more preferably 120 to 140°C.

又,使包含X成分之化合物溶解於上述分散介質(3)中,獲得第2溶液。亦可使包含X成分之化合物與包含B成分之化合物溶解於分散介質(3)中而獲得第2溶液。Moreover, the compound containing X component was melt|dissolved in the said dispersion medium (3), and the 2nd solution was obtained. The second solution may be obtained by dissolving the compound containing the X component and the compound containing the B component in the dispersion medium (3).

作為分散介質(3),可例舉可使包含X成分之化合物溶解之溶劑。As a dispersion medium (3), the solvent which can dissolve the compound containing X component is mentioned.

繼而,將所獲得之第1溶液與第2溶液加以混合而獲得混合液。於將第1溶液與第2溶液加以混合時,可將一者滴加至另一者中。又,可一面進行攪拌,一面將第1溶液與第2溶液加以混合。Next, the obtained first solution and the second solution were mixed to obtain a mixed solution. When mixing the 1st solution and the 2nd solution, one can be added dropwise to the other. Moreover, the 1st solution and the 2nd solution may be mixed, stirring.

就反應後將不必要之水去除而抑制劣化之觀點而言,較佳為一面使惰性氣體流通,一面進行反應。From the viewpoint of suppressing deterioration by removing unnecessary water after the reaction, it is preferable to carry out the reaction while flowing an inert gas.

繼而,使所獲得之混合液冷卻。 作為冷卻溫度,較佳為-20~50℃,更佳為-10~30℃。 作為冷卻速度,較佳為0.1~1500℃/min,更佳為10~150℃/min。 Next, the obtained mixed liquid is cooled. As cooling temperature, -20-50 degreeC is preferable, and -10-30 degreeC is more preferable. As a cooling rate, 0.1-1500 degreeC/min is preferable, and 10-150 degreeC/min is more preferable.

藉由使混合液冷卻,可藉由因混合液之溫度差而產生之溶解度之差使鈣鈦礦化合物析出。藉此,獲得包含鈣鈦礦化合物之分散液。By cooling the mixed solution, the perovskite compound can be precipitated by the difference in solubility due to the temperature difference of the mixed solution. Thereby, a dispersion liquid containing the perovskite compound is obtained.

可藉由對包含所獲得之鈣鈦礦化合物之分散液進行固液分離來回收鈣鈦礦化合物。作為固液分離之方法,可例舉第1製造方法中所示之方法。The perovskite compound can be recovered by subjecting the dispersion liquid containing the obtained perovskite compound to solid-liquid separation. As a method of solid-liquid separation, the method shown in the 1st manufacturing method is mentioned.

再者,於上述製造方法中,較佳為包括為了使所獲得之鈣鈦礦化合物之粒子於分散液中穩定地分散而添加上述表面改質劑(6)之步驟。Furthermore, in the above-mentioned production method, it is preferable to include the step of adding the above-mentioned surface modifier (6) in order to stably disperse the obtained particles of the perovskite compound in the dispersion liquid.

添加表面改質劑(6)之步驟較佳為於冷卻步驟之前進行。具體而言,表面改質劑(6)可添加至分散介質(3)、第1溶液、第2溶液、混合液之任一者中。The step of adding the surface modifier (6) is preferably performed before the cooling step. Specifically, the surface modifier (6) can be added to any one of the dispersion medium (3), the first solution, the second solution, and the mixed solution.

又,於上述製造方法中,較佳為包括於冷卻步驟後藉由第1製造方法中所示之離心分離、過濾等方法將粗大粒子去除之步驟。Moreover, in the said manufacturing method, it is preferable to include the process of removing coarse particles by methods, such as centrifugation and filtration shown in the 1st manufacturing method, after a cooling process.

<發光性複合粒子之製造> 發光性複合粒子例如係使鈣鈦礦化合物粒子與水解性矽化合物(2)接觸,並視需要使水解性矽化合物(2)縮合,於鈣鈦礦化合物粒子之表面形成矽化合物層而製造。鈣鈦礦化合物粒子與水解性矽化合物(2)之接觸亦可於分散介質(3)之存在下進行。於該情形時,分散介質(3)係於形成上述粒子後被去除。 <Manufacture of luminescent composite particles> The luminescent composite particles are produced, for example, by contacting the perovskite compound particles with the hydrolyzable silicon compound (2), and optionally condensing the hydrolyzable silicon compound (2) to form a silicon compound layer on the surface of the perovskite compound particles. The contact between the perovskite compound particles and the hydrolyzable silicon compound (2) may also be performed in the presence of a dispersion medium (3). In this case, the dispersion medium (3) is removed after the above-mentioned particles are formed.

於去除分散介質(3)之情形時,上述粒子之分散液可於室溫下靜置進行自然乾燥,亦可使用真空乾燥機進行減壓乾燥,亦可藉由加熱進行加熱乾燥。例如可藉由於0℃以上且300℃以下乾燥1分鐘以上且7天以下而將分散介質(3)去除。再者,包含分散介質(3)之上述粒子之分散液可直接使用或調節濃度後作為發光性複合粒子組合物來使用。In the case of removing the dispersion medium (3), the dispersion liquid of the particles can be left to stand at room temperature for natural drying, can also be dried under reduced pressure using a vacuum dryer, or can be heated and dried by heating. For example, the dispersion medium (3) can be removed by drying at 0°C or higher and 300°C or lower for 1 minute or more and 7 days or less. In addition, the dispersion liquid of the said particle|grains containing a dispersion medium (3) can be used as it is as a luminescent composite particle composition after adjusting a density|concentration.

(水解性矽化合物(2)之縮合處理) 水解性矽化合物(2)之縮合處理可使用使上述矽氮烷及上述水解性矽化合物與水蒸氣反應之方法等公知之方法進行。於以下說明中,有時將使上述矽氮烷及上述水解性矽化合物與水蒸氣反應之處理稱為「加濕處理」。就於鈣鈦礦化合物粒子之附近形成更牢固之保護區域之觀點而言,較佳為實施加濕處理。 (Condensation treatment of hydrolyzable silicon compound (2)) The condensation treatment of the hydrolyzable silicon compound (2) can be performed by a known method such as a method in which the above-mentioned silazanes and the above-mentioned hydrolyzable silicon compound are reacted with water vapor. In the following description, the process of reacting the above-mentioned silazane and the above-mentioned hydrolyzable silicon compound with water vapor may be referred to as "humidification process". From the viewpoint of forming a stronger protection region in the vicinity of the perovskite compound particles, it is preferable to perform the humidification treatment.

於實施加濕處理之情形時,例如可於下述溫度及濕度條件下將發光性複合粒子組合物靜置一定時間,亦可於相同條件下攪拌一定時間。In the case of carrying out the humidification treatment, for example, the luminescent composite particle composition may be allowed to stand for a certain period of time under the following temperature and humidity conditions, or may be stirred under the same conditions for a certain period of time.

加濕處理中之溫度只要為充分進行縮合之溫度即可。加濕處理中之溫度例如較佳為5~150℃,更佳為10~100℃,進而較佳為15~80℃。The temperature during the humidification treatment may be a temperature at which condensation is sufficiently advanced. The temperature in the humidification treatment is, for example, preferably 5 to 150°C, more preferably 10 to 100°C, and still more preferably 15 to 80°C.

加濕處理中之濕度只要為對粒子中之矽氮烷及水解性矽化合物充分地供給水分之濕度即可。加濕處理中之濕度例如較佳為30%~100%,更佳為40%~95%,進而較佳為60%~90%。The humidity in the humidification treatment may be sufficient to supply moisture to the silazane and the hydrolyzable silicon compound in the particles. The humidity in the humidification treatment is, for example, preferably 30% to 100%, more preferably 40% to 95%, and still more preferably 60% to 90%.

加濕處理所需之時間只要為充分進行縮合之時間即可。加濕處理所需之時間例如較佳為10分鐘以上且1週以下,更佳為1小時以上且5天以下,進而較佳為2小時以上且3天以下。The time required for the humidification treatment may be sufficient for condensation to proceed. The time required for the humidification treatment is, for example, preferably 10 minutes or more and 1 week or less, more preferably 1 hour or more and 5 days or less, and still more preferably 2 hours or more and 3 days or less.

加濕處理中之水之供給可藉由使包含水蒸氣之氣體於反應容器中流通而進行,亦可藉由於包含水蒸氣之環境中進行攪拌而自界面供給水分。The supply of water in the humidification treatment may be performed by circulating a gas containing water vapor in the reaction vessel, or by stirring in an environment containing water vapor, water may be supplied from the interface.

於使包含水蒸氣之氣體於反應容器中流通之情形時,為了提高所獲得之發光性複合粒子組合物之耐久性,包含水蒸氣之氣體流量較佳為0.01 L/min以上且100 L/min以下,更佳為0.1 L/min以上且10 L/min以下,進而較佳為0.15 L/min以上且5 L/min以下。作為包含水蒸氣之氣體,例如可例舉包含飽和量之水蒸氣之氮氣。When the gas containing water vapor is circulated in the reaction vessel, in order to improve the durability of the obtained luminescent composite particle composition, the flow rate of the gas containing water vapor is preferably 0.01 L/min or more and 100 L/min Below, it is more preferable that it is 0.1 L/min or more and 10 L/min or less, and still more preferably 0.15 L/min or more and 5 L/min or less. As the gas containing water vapor, for example, nitrogen gas containing a saturated amount of water vapor can be mentioned.

4.發光性複合粒子組合物之製造方法 發光性複合粒子組合物、即上述粒子與分散介質材料之混合物例如可藉由使上述粒子分散於分散介質材料中而製造。 4. Manufacturing method of luminescent composite particle composition The luminescent composite particle composition, that is, a mixture of the above-mentioned particles and a dispersion medium material can be produced, for example, by dispersing the above-mentioned particles in a dispersion medium material.

發光性複合粒子組合物亦可使粒子分散於分散介質材料中,向所獲得之分散液中添加水解性矽化合物(2),使其與鈣鈦礦化合物(1)接觸,並視需要使水解性矽化合物(2)縮合而製造。In the luminescent composite particle composition, the particles may be dispersed in a dispersion medium material, and the hydrolyzable silicon compound (2) may be added to the obtained dispersion to contact with the perovskite compound (1), and if necessary, hydrolyzed It is produced by condensing the silicone compound (2).

發光性複合粒子組合物亦可使聚合性化合物(4)聚合而使其一部分成為聚合物(5)。於該情形時,較佳為粒子及聚合物(5)之合計為發光性複合粒子組合物整體之90質量%以上。The light-emitting composite particle composition may polymerize the polymerizable compound (4) to make a part of the polymer (5). In this case, it is preferable that the sum total of particle|grains and polymer (5) is 90 mass % or more of the whole luminescent composite particle composition.

使聚合性化合物(4)聚合之步驟可藉由適當使用自由基聚合等公知之聚合反應而進行。The step of polymerizing the polymerizable compound (4) can be performed by appropriately using a known polymerization reaction such as radical polymerization.

例如於自由基聚合之情形時,可向粒子與聚合性化合物(4)之混合物中添加自由基聚合起始劑而產生自由基,藉此進行聚合反應。For example, in the case of radical polymerization, a radical polymerization initiator can be added to the mixture of the particle and the polymerizable compound (4) to generate radicals, thereby performing the polymerization reaction.

自由基聚合起始劑並無特別限定,例如可例舉光自由基聚合起始劑等。A radical polymerization initiator is not specifically limited, For example, a photoradical polymerization initiator etc. are mentioned.

作為上述光自由基聚合起始劑,例如可例舉雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦等。As said photoradical polymerization initiator, bis(2,4,6-trimethylbenzyl)-phenylphosphine oxide etc. are mentioned, for example.

於使用表面改質劑(6)之情形時,表面改質劑(6)可於使鈣鈦礦化合物粒子分散於分散介質材料中後與水解性矽化合物(2)一併添加。When the surface modifier (6) is used, the surface modifier (6) may be added together with the hydrolyzable silicon compound (2) after the perovskite compound particles are dispersed in the dispersion medium material.

5.發光性複合粒子之吸收率、量子產率及亮度維持率 發光性複合粒子之吸收率及量子產率可使用絕對PL量子產率測定裝置(例如,浜松光子股份有限公司製造之「C9920-02」(商品名))進行測定。 又,亮度維持率可使用該等之值並根據下述式算出。於本發明中,於激發光450 nm、25℃、1氣壓之條件下進行測定。 5. Absorption rate, quantum yield and brightness maintenance rate of luminescent composite particles The absorbance and quantum yield of the luminescent composite particles can be measured using an absolute PL quantum yield measuring apparatus (for example, "C9920-02" (trade name) manufactured by Hamamatsu Photonics Co., Ltd.). In addition, the luminance maintenance ratio can be calculated according to the following formula using these values. In the present invention, the measurement is performed under the conditions of excitation light of 450 nm, 25° C., and 1 atmospheric pressure.

亮度維持率(%)=[(耐光試驗後之發光性複合粒子組合物之量子產率)÷(耐光試驗前之發光性複合粒子組合物之量子產率)]×[(耐光試驗後之發光性複合粒子組合物之吸收率)÷(耐光試驗前之發光性複合粒子組合物之吸收率)]×100Brightness maintenance rate (%)=[(quantum yield of luminescent composite particle composition after light resistance test)÷(quantum yield of luminescent composite particle composition before light resistance test)]×[(luminescence after light resistance test Absorptivity of luminescent composite particle composition)÷(absorptivity of luminescent composite particle composition before light resistance test)]×100

發光性複合粒子之激發光之吸收率較佳為0.1以上且未達1,更佳為0.2以上且未達0.9,進而較佳為0.3以上且未達0.9。The absorptivity of excitation light of the luminescent composite particles is preferably 0.1 or more and less than 1, more preferably 0.2 or more and less than 0.9, and still more preferably 0.3 or more and less than 0.9.

發光性複合粒子之量子產率較佳為0.1~1.0,更佳為0.2~0.99,進而較佳為0.3~0.95。The quantum yield of the luminescent composite particles is preferably 0.1 to 1.0, more preferably 0.2 to 0.99, and still more preferably 0.3 to 0.95.

發光性複合粒子之亮度維持率較佳為0.3~1.0,更佳為0.5~1.0,進而較佳為0.7~1.0。藉由使亮度維持率為該等範圍,可獲得耐光性較高之發光性粒子材料。The luminance maintenance ratio of the luminescent composite particles is preferably 0.3 to 1.0, more preferably 0.5 to 1.0, and still more preferably 0.7 to 1.0. By making the luminance maintenance ratio into these ranges, a light-emitting particle material with high light resistance can be obtained.

6.膜 本發明之膜包含本發明之發光性複合粒子。例如,本發明之膜包含發光性複合粒子及聚合物(5)。典型而言,粒子及聚合物(5)合計占膜整體之90質量%以上。 6. Membrane The film of the present invention contains the luminescent composite particles of the present invention. For example, the film of the present invention includes luminescent composite particles and polymer (5). Typically, the total of the particles and the polymer (5) accounts for 90% by mass or more of the entire film.

膜形狀並無特別限定,可為片狀、棒狀等任意形狀。於本說明書中,「棒狀之形狀」例如意指沿一方向延伸之俯視下呈帶狀之形狀。作為俯視下呈帶狀之形狀,可例示各邊之長度不同之板狀之形狀。The shape of the film is not particularly limited, and may be any shape such as a sheet shape or a rod shape. In the present specification, the "rod-like shape" means, for example, a band-like shape in plan view extending in one direction. As a belt-like shape in plan view, a plate-like shape in which the lengths of each side are different can be exemplified.

膜之厚度例如可為0.005 μm~1000 mm,亦可為0.01 μm~10 mm,亦可為0.1 μm~1 mm,還可為10~500 μm。The thickness of the film may be, for example, 0.005 μm to 1000 mm, 0.01 μm to 10 mm, 0.1 μm to 1 mm, or 10 to 500 μm.

膜例如可藉由如下方式獲得:塗敷包含分散介質(3)及聚合性化合物(4)之液狀發光性複合粒子組合物而獲得塗膜後,使該塗膜中所包含之聚合性化合物(4)聚合。作為將液狀發光性複合粒子組合物塗敷於基材上之方法,並無特別限制,可使用凹版塗佈法、棒式塗佈法、印刷法、噴霧法、旋轉塗佈法、浸漬法、模嘴塗佈法等公知之塗佈、塗敷方法進行塗敷。The film can be obtained, for example, by applying the liquid luminescent composite particle composition containing the dispersion medium (3) and the polymerizable compound (4) to obtain a coating film, and then applying the polymerizable compound contained in the coating film to the coating film. (4) Aggregation. The method for applying the liquid luminescent composite particle composition to the substrate is not particularly limited, and a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, and a dipping method can be used. Coating is carried out by known coating and coating methods such as die coating method.

7.積層構造體 本發明之積層構造體具有複數個層,且至少一層為上述膜。作為積層構造體所具有之複數個層中之除上述膜以外之層,可例舉:基材、障壁層、光散射層等任意層。所積層之膜之形狀並無特別限定,可為片狀、棒狀等任意形狀。為了容易提取鈣鈦礦化合物(1)所發出之光,基材較佳為具有光透過性。作為基材之形成材料,例如可使用聚對苯二甲酸乙二酯等聚合物或玻璃等公知之材料。 7. Laminated structures The laminated structure of the present invention has a plurality of layers, and at least one layer is the above-mentioned film. As a layer other than the said film among the several layers which a laminated structure has, arbitrary layers, such as a base material, a barrier rib layer, and a light-scattering layer, are mentioned. The shape of the layered film is not particularly limited, and may be any shape such as a sheet shape or a rod shape. In order to easily extract the light emitted by the perovskite compound (1), the substrate preferably has light transmittance. As a material for forming the base material, known materials such as polymers such as polyethylene terephthalate and glass can be used, for example.

積層構造體例如可藉由將上獲得之膜積層於基材之上而製造。於將膜積層於基材上之步驟中,使用黏接著劑將膜彼此貼合。黏接著劑並無特別限制,只要不溶解發光性複合粒子即可,可使用公知之黏接著劑進行貼合。A laminated structure can be manufactured by laminating|stacking the film obtained above on a base material, for example. In the step of laminating the films on the substrate, the films are bonded to each other using an adhesive. The adhesive is not particularly limited as long as the luminescent composite particles are not dissolved, and a known adhesive can be used for bonding.

8.發光裝置 本發明之發光裝置可藉由將上述積層構造體與光源組合而獲得。發光裝置係藉由將自光源發出之光照射至設置於後段之積層構造體而使積層構造體發光並提取光的裝置。作為上述發光裝置中之積層構造體所具有之複數個層中除上述膜、基材、障壁層、光散射層以外之層,可例舉:光反射構件、亮度強化部、稜鏡片、導光板、元件間之介質材料層等任意層。作為發光裝置之具體例,例如為將稜鏡片、導光板、上述積層構造體及光源依序積層而成之發光裝置。 8. Lighting device The light-emitting device of the present invention can be obtained by combining the above-described laminated structure with a light source. The light-emitting device is a device that emits light from the laminated structure by irradiating the laminated structure provided in the latter stage with light emitted from a light source and extracts the light. Examples of layers other than the above-mentioned film, base material, barrier layer, and light-scattering layer among the plurality of layers of the laminated structure in the above-mentioned light-emitting device include a light reflection member, a brightness enhancement portion, a sintered sheet, and a light guide plate. , any layer such as the dielectric material layer between components. As a specific example of the light-emitting device, for example, it is a light-emitting device in which a silicon wafer, a light guide plate, the above-mentioned laminated structure, and a light source are laminated in this order.

發光裝置例如可藉由設置上述光源,及於來自光源之光路上設置上述積層構造體而製造。A light-emitting device can be manufactured, for example, by disposing the above-mentioned light source, and disposing the above-mentioned laminated structure on the light path from the light source.

9.顯示器 本發明之顯示器例如可例舉將液晶面板、稜鏡片、導光板、上述積層構造體及光源依序積層而成之液晶顯示器。顯示器可藉由於上述發光裝置上積層包含偏光板等之顯示元件而製造。 9. Display The display of the present invention includes, for example, a liquid crystal display formed by laminating a liquid crystal panel, a wafer, a light guide plate, the above-mentioned laminated structure, and a light source in this order. The display can be manufactured by laminating a display element including a polarizing plate or the like on the above-mentioned light-emitting device.

10.閃爍器 發光性複合粒子或發光性複合粒子組合物可作為閃爍器用於X射線圖像用拍攝裝置或亮度提高膜。作為閃爍器之形態,並無特別限定,例如可以單晶、片狀等任意形態利用。 10. Blinker The luminescent composite particles or the luminescent composite particle composition can be used as a scintillator for an imaging device for X-ray images or a brightness enhancement film. It does not specifically limit as a form of a scintillator, For example, it can utilize in arbitrary forms, such as a single crystal and a sheet.

於閃爍器以片狀使用之情形時,可藉由將包含發光性複合粒子之液狀發光性複合粒子組合物塗佈於基材上並使其乾燥而製造。所使用之基材並無特別限定,例如可使用鋁金屬、PET膜或蛾眼膜等。閃爍器亦可與市售之其他閃爍器組合使用。When the scintillator is used in the form of a sheet, it can be produced by coating the liquid luminescent composite particle composition containing the luminescent composite particles on a substrate and drying it. The substrate to be used is not particularly limited, for example, aluminum metal, PET film, moth-eye film, etc. can be used. The scintillator can also be used in combination with other commercially available scintillators.

圖3係模式性地表示包含本發明之閃爍器之X射線檢測器之構造的剖視圖。X射線檢測器1具有閃爍器面板2、輸出基板3及電源部12。3 is a cross-sectional view schematically showing the structure of an X-ray detector including the scintillator of the present invention. The X-ray detector 1 includes a scintillator panel 2 , an output substrate 3 , and a power supply unit 12 .

閃爍器面板2具有基板5與閃爍器層4。閃爍器層4包含上述本發明之膜。該膜含有發光性複合粒子100與聚合物6。The scintillator panel 2 has a substrate 5 and a scintillator layer 4 . The scintillator layer 4 includes the film of the present invention described above. The film contains the luminescent composite particles 100 and the polymer 6 .

輸出基板3於基板11上具有光電轉換層8及輸出層9。光電轉換層8通常係將具有未圖示之光感測器與TFT之像素形成為二維狀而成者。光電轉換層8上亦可具有隔膜層7。較佳為經由隔膜層7使閃爍器面板2之出光面與輸出基板3之光電轉換層8接著或密接。The output substrate 3 has the photoelectric conversion layer 8 and the output layer 9 on the substrate 11 . The photoelectric conversion layer 8 is usually formed by two-dimensionally forming pixels having photo sensors and TFTs (not shown). The photoelectric conversion layer 8 may also have a diaphragm layer 7 thereon. Preferably, the light-emitting surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the output substrate 3 are bonded or tightly bonded through the diaphragm layer 7 .

閃爍器層4所發出之光到達光電轉換層8後經光電轉換並輸出。構成X射線檢測器之材料除閃爍器層4以外均可使用先前以來已知者。例如,於專利文獻2中記載有包含閃爍器之X射線檢測器之結構及構成材料,專利文獻2所記載之X射線檢測器之結構及構成材料可援用至本發明中。 [實施例] The light emitted by the scintillator layer 4 reaches the photoelectric conversion layer 8 and is photoelectrically converted and output. As for the materials constituting the X-ray detector, those previously known can be used except for the scintillator layer 4 . For example, the structure and constituent material of an X-ray detector including a scintillator are described in Patent Document 2, and the structure and constituent material of the X-ray detector described in Patent Document 2 can be used in the present invention. [Example]

以下,基於實施例及比較例對本發明更具體地進行說明。本發明並不限定於以下實施例。Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples. The present invention is not limited to the following examples.

<測定及評價> 針對於以下實施例及比較例中所獲得之發光性複合粒子,依據下述方法對下述項目進行測定及評價。 <Measurement and Evaluation> Regarding the luminescent composite particles obtained in the following Examples and Comparative Examples, the following items were measured and evaluated according to the following methods.

(鈣鈦礦化合物粒子之粒徑) 使用穿透式電子顯微鏡(日本電子股份有限公司製造之「JEM-2200FS」(商品名))對鈣鈦礦化合物(1)之粒子進行拍攝,根據所獲得之電子顯微鏡像求出平均粒徑(平均斐瑞特直徑)。算出時,將由2根平行線將粒子夾於中間之平行線之間隔設為斐瑞特直徑,並算出50個粒子之斐瑞特直徑之算術平均。試樣係藉由自發光性複合粒子組合物採集鈣鈦礦化合物粒子置於附支持膜之網格中而獲得。測定條件設為加速電壓200 kV。 (Particle size of perovskite compound particles) The particles of the perovskite compound (1) were photographed using a transmission electron microscope (“JEM-2200FS” (trade name) manufactured by JEOL Ltd.), and the average particle size ( average Ferret diameter). In the calculation, the interval between the parallel lines sandwiching the particles by two parallel lines was set as the Ferret diameter, and the arithmetic mean of the Ferret diameters of 50 particles was calculated. The sample is obtained by collecting perovskite compound particles from the self-luminous composite particle composition and placing them in a grid with a support film. The measurement conditions were set to an accelerating voltage of 200 kV.

(發光性複合粒子之粒徑) 發光性複合粒子之平均粒徑係使用粒徑分析裝置(Malvern公司製造之「Zetasizer Nano ZS」(商品名))進行測定。測定方法使用動態光散射法。使所獲得之發光性複合粒子個數平均分佈,求出平均粒徑及標準偏差σ。測定用試樣係將分散液滴加至特定容器(玻璃)中進行測定。 (Particle size of luminescent composite particles) The average particle diameter of the luminescent composite particles was measured using a particle size analyzer (“Zetasizer Nano ZS” (trade name) manufactured by Malvern Corporation). As a measurement method, a dynamic light scattering method was used. The obtained luminescent composite particles were evenly distributed in number, and the average particle diameter and standard deviation σ were obtained. The measurement sample is measured by dropping the dispersion into a specific container (glass).

(量子產率、吸收率) 使用絕對PL量子產率測定裝置(浜松光子股份有限公司製造之「C9920-02」(商品名))測定實施例1、2、3及比較例1中所獲得之發光性複合粒子組合物之量子產率及吸收率。測定係於下述光照射之前後進行,測定條件設為激發光450 nm、25℃、1氣壓。 (quantum yield, absorption rate) The quantum yields of the luminescent composite particle compositions obtained in Examples 1, 2, 3 and Comparative Example 1 were measured using an absolute PL quantum yield analyzer (“C9920-02” (trade name) manufactured by Hamamatsu Photonics Co., Ltd.) yield and absorption. The measurement was performed before and after the following light irradiation, and the measurement conditions were set to excitation light of 450 nm, 25° C., and 1 atmosphere.

(耐光性之評價) 將實施例1、2、3及比較例1中所獲得之發光性複合粒子組合物100 μL塗佈於1 cm×1 cm尺寸之玻璃基材上,並使其自然乾燥後獲得膜。一面將所獲得之膜加熱至50℃,一面自LED(light-emitting diode,發光二極體)光源照射波峰波長450 nm、照度100 mW/cm 2之光48小時。 (Evaluation of light resistance) 100 μL of the luminescent composite particle compositions obtained in Examples 1, 2, 3 and Comparative Example 1 were coated on a glass substrate with a size of 1 cm×1 cm, and allowed to dry naturally film is obtained. While heating the obtained film to 50° C., irradiated with light with a peak wavelength of 450 nm and an illuminance of 100 mW/cm 2 from an LED (light-emitting diode) light source for 48 hours.

根據光照射前後之發光性複合粒子組合物之量子產率及吸收率,並基於下述式求出亮度維持率。關於亮度維持率,其值越高,可評價耐光性越高。再者,評價係針對經過48小時光照射後者進行。From the quantum yield and absorptivity of the luminescent composite particle composition before and after light irradiation, the luminance maintenance rate was calculated|required based on the following formula. Regarding the luminance maintenance ratio, the higher the value, the higher the light resistance can be evaluated. In addition, the evaluation was performed with respect to the latter after 48 hours of light irradiation.

亮度維持率(%)=[(耐光試驗後之發光性複合粒子組合物之量子產率)÷(耐光試驗前之發光性複合粒子組合物之量子產率)]×[(耐光試驗後之發光性複合粒子組合物之吸收率)÷(耐光試驗前之發光性複合粒子組合物之吸收率)]×100Brightness maintenance rate (%)=[(quantum yield of luminescent composite particle composition after light resistance test)÷(quantum yield of luminescent composite particle composition before light resistance test)]×[(luminescence after light resistance test Absorptivity of luminescent composite particle composition)÷(absorptivity of luminescent composite particle composition before light resistance test)]×100

[實施例1] (鈣鈦礦化合物粒子之製造) 將油胺25 mL、及乙醇200 mL加以混合後,一面進行冰冷,一面進行攪拌,添加氫溴酸水溶液(48%)17.12 mL後,進行減壓乾燥而獲得沈澱。沈澱係使用二乙醚洗淨後,進行減壓乾燥而獲得溴化油銨。 [Example 1] (Production of Perovskite Compound Particles) After mixing 25 mL of oleylamine and 200 mL of ethanol, the mixture was stirred with ice cooling, and 17.12 mL of an aqueous hydrobromic acid solution (48%) was added, followed by drying under reduced pressure to obtain a precipitate. After the precipitate was washed with diethyl ether, it was dried under reduced pressure to obtain oleylammonium bromide.

向溴化油銨21 g中混合甲苯200 mL,製備包含溴化油銨之溶液。200 mL of toluene was mixed with 21 g of oleyl ammonium bromide to prepare a solution containing oleyl ammonium bromide.

將乙酸鉛・三水合物1.52 g、甲脒乙酸鹽1.56 g、1-十八烯之溶劑160 mL、及油酸40 mL加以混合。於氮氣氛圍下一面進行攪拌,一面加熱至130℃後,添加上述包含溴化油銨之溶液53.4 mL。添加後,將溶液降溫至室溫,獲得包含鈣鈦礦化合物(1)之分散液。1.52 g of lead acetate trihydrate, 1.56 g of formamidine acetate, 160 mL of a solvent for 1-octadecene, and 40 mL of oleic acid were mixed. While stirring under a nitrogen atmosphere and heating to 130°C, 53.4 mL of the above solution containing oleyl bromide was added. After the addition, the solution was cooled to room temperature to obtain a dispersion liquid containing the perovskite compound (1).

向上述分散液200 mL中混合甲苯100 mL、及乙酸乙酯100 mL,並過濾以進行固液分離。其後,利用甲苯100 mL、及乙酸乙酯100 mL之混合溶液將濾紙上之固形物成分洗淨2次,進而進行過濾。藉此,單離出鈣鈦礦化合物粒子。To 200 mL of the above dispersion liquid were mixed 100 mL of toluene and 100 mL of ethyl acetate, followed by filtration for solid-liquid separation. Then, the solid content on the filter paper was washed twice with a mixed solution of 100 mL of toluene and 100 mL of ethyl acetate, followed by filtration. Thereby, the perovskite compound particles are isolated.

(發光性複合粒子組合物之製造) 繼而,將甲苯作為分散介質,並以鈣鈦礦化合物粒子之濃度成為0.34質量%之方式製備150 mL之分散液。以相對於鈣鈦礦化合物1質量份為2.0質量份之量向其中添加有機聚矽氮烷(1500 Slow Cure、Durazane,Merck Performance Materials股份有限公司製造)。其後,實施4小時基於水蒸氣之縮合處理,並於乾燥後之氮氣氛圍下靜置0.5小時。縮合處理係於水蒸氣流量:0.4 L/min(與氮氣(N 2)一併供給,30℃之飽和水蒸氣量)、加熱溫度:90℃之下進行。利用0.5 μm之薄膜過濾器對縮合處理後之分散液進行過濾,獲得發光性複合粒子組合物。對所獲得之發光性複合粒子組合物進行DLS測定,並估算粒子之平均粒徑。平均粒徑為27.26 nm±8.5。耐光性試驗後之亮度維持率為70.1%。 (Manufacture of luminescent composite particle composition) Next, using toluene as a dispersion medium, 150 mL of dispersion liquids were prepared so that the density|concentration of perovskite compound particle might become 0.34 mass %. Organopolysilazane (1500 Slow Cure, Durazane, manufactured by Merck Performance Materials Co., Ltd.) was added thereto in an amount of 2.0 parts by mass relative to 1 part by mass of the perovskite compound. Then, the condensation treatment by water vapor was performed for 4 hours, and it was left to stand for 0.5 hours under a nitrogen atmosphere after drying. The condensation treatment was carried out under the steam flow rate: 0.4 L/min (supplied together with nitrogen gas (N 2 ), the amount of saturated steam at 30°C) and the heating temperature: 90°C. The dispersion liquid after the condensation treatment was filtered with a 0.5 μm membrane filter to obtain a luminescent composite particle composition. The obtained luminescent composite particle composition was subjected to DLS measurement, and the average particle diameter of the particles was estimated. The average particle size was 27.26 nm ± 8.5. The luminance maintenance rate after the light resistance test was 70.1%.

[實施例2] 於發光性複合粒子之製造步驟中,將鈣鈦礦化合物粒子之分散液自150 mL設為30 mL,將縮合處理時之氣體流量設為0.08 L/min,除此以外,以與上述實施例1相同之方法獲得發光性複合粒子組合物。若以相同之方法估算粒子之平均粒徑,則為26.54 nm±5.4。又,亮度維持率為78.0%。 [Example 2] In the production step of the luminescent composite particles, the dispersion liquid of the perovskite compound particles was set from 150 mL to 30 mL, and the gas flow rate during the condensation treatment was set to 0.08 L/min. 1 The same method was used to obtain the luminescent composite particle composition. If the average particle size of the particles is estimated in the same way, it is 26.54 nm ± 5.4. In addition, the luminance maintenance ratio was 78.0%.

[實施例3] 於發光性複合粒子之製造步驟中,添加有機聚矽氮烷後,進而添加相對於有機聚矽氮烷1質量份為0.25質量份之三甲氧基(1H,1H,2H,2H-九氟己基)矽烷(東京化成工業股份有限公司製造),除此以外,以與上述實施例2相同之方法獲得發光性複合粒子組合物。若以相同之方法估算粒子之平均粒徑,則為17.59 nm±5.2。又,亮度維持率為100%。 [Example 3] In the production step of the luminescent composite particles, after adding the organopolysilazane, 0.25 parts by mass of trimethoxy (1H, 1H, 2H, 2H-nonafluorohexyl) was further added with respect to 1 part by mass of the organopolysilazane. ) silane (manufactured by Tokyo Chemical Industry Co., Ltd.), a luminescent composite particle composition was obtained in the same manner as in Example 2 above. If the average particle size of the particles is estimated by the same method, it is 17.59 nm±5.2. In addition, the luminance maintenance rate was 100%.

[比較例1] 於實施例1所記載之發光性複合粒子之製造步驟中,不利用薄膜過濾器對所獲得之發光性複合粒子組合物進行過濾,除此以外,以相同之方法獲得發光性複合粒子組合物。若以相同之方法估算粒子之平均粒徑,則為495.2 nm±142.0。又,亮度維持率為24.8%。 [Comparative Example 1] The luminescent composite particle composition was obtained by the same method except not filtering the obtained luminescent composite particle composition with a membrane filter in the manufacturing process of the luminescent composite particle described in Example 1. If the average particle size of the particles is estimated by the same method, it is 495.2 nm ± 142.0. In addition, the luminance maintenance rate was 24.8%.

於實施例1~3、及比較例1之發光性複合粒子中,進行上述測定。將結果示於表1。In the light-emitting composite particles of Examples 1 to 3 and Comparative Example 1, the above measurements were performed. The results are shown in Table 1.

[表1]    亮度維持率(%) 平均粒徑(nm) 標準偏差( nm) 實施例1 70.1 27.26 8.426 實施例2 78.0 26.54 5.374 實施例3 100 17.59 5.177 比較例 24.8 495.2 142.0 [Table 1] Brightness maintenance rate (%) Average particle size (nm) Standard Deviation (nm) Example 1 70.1 27.26 8.426 Example 2 78.0 26.54 5.374 Example 3 100 17.59 5.177 Comparative example 24.8 495.2 142.0

根據上述結果確認到實施例1~3之包含平均粒徑為1~100 nm之鈣鈦礦化合物之發光性複合粒子與比較例1之發光性複合粒子相比,耐光性優異。From the above results, it was confirmed that the luminescent composite particles of Examples 1 to 3 including the perovskite compound having an average particle diameter of 1 to 100 nm were superior in light resistance as compared with the luminescent composite particles of Comparative Example 1.

[參考例1] 將實施例1~3所記載之發光性複合粒子組合物放入至玻璃管等中並密封後,將其配置於作為光源之藍色發光二極體與導光板之間,藉此製造可將藍色發光二極體之藍色光轉換成綠色光或紅色光之背光裝置。 [Reference Example 1] After putting the luminescent composite particle compositions described in Examples 1 to 3 in a glass tube or the like and sealing, it was placed between a blue light-emitting diode as a light source and a light guide plate to produce a A backlight device that converts blue light from blue light-emitting diodes into green or red light.

[參考例2] 使實施例1~3所記載之發光性複合粒子組合物片材化,藉此可獲得樹脂組合物,將該樹脂組合物夾於2片障壁膜之間並密封而獲得膜,將所獲得之膜設置於導光板之上,藉此製造可將自設置於導光板之端面(側面)之藍色發光二極體通過導光板照射至上述片材之藍色光轉換成綠色光或紅色光之背光裝置。 [Reference Example 2] The luminescent composite particle compositions described in Examples 1 to 3 were sheeted to obtain a resin composition, and the resin composition was sandwiched between two barrier films and sealed to obtain a film, and the obtained The film is arranged on the light guide plate, thereby producing a backlight that can convert the blue light irradiated to the above-mentioned sheet from the blue light-emitting diodes arranged on the end face (side surface) of the light guide plate through the light guide plate into green light or red light device.

[參考例3] 將實施例1~3所記載之發光性複合粒子組合物設置於藍色發光二極體之發光部附近,藉此製造可將所照射之藍色光轉換成綠色光或紅色光之背光裝置。 [Reference Example 3] The light-emitting composite particle compositions described in Examples 1 to 3 were placed near the light-emitting portion of the blue light-emitting diode, thereby producing a backlight device capable of converting irradiated blue light into green light or red light.

[參考例4] 將實施例1~3所記載之發光性複合粒子組合物與抗蝕劑加以混合後將溶劑去除,藉此可獲得波長轉換材料。將所獲得之波長轉換材料設為於作為光源之藍色發光二極體與導光板之間或作為光源之OLED(organic light emitting diode,有機發光二極體)之後段,藉此製造可將光源之藍色光轉換成綠色光或紅色光之背光裝置。 [Reference Example 4] After mixing the light-emitting composite particle compositions described in Examples 1 to 3 with a resist, and removing the solvent, a wavelength conversion material can be obtained. The obtained wavelength conversion material is set between the blue light emitting diode as the light source and the light guide plate or the latter part of the OLED (organic light emitting diode, organic light emitting diode) as the light source, thereby manufacturing the light source A backlight device that converts blue light into green light or red light.

[參考例5] 將實施例1~3所記載之發光性複合粒子組合物與ZnS等導電性粒子加以混合後成膜,於單面積層n型傳輸層,於另一面積層p型傳輸層,藉此獲得LED。藉由使電流流過,p型半導體之電洞與n型半導體之電子於接合面之鈣鈦礦化合物中使電荷抵消,藉此可使LED發光。 [Reference Example 5] The luminescent composite particle compositions described in Examples 1 to 3 were mixed with conductive particles such as ZnS to form a film, an n-type transport layer was layered on one area, and a p-type transport layer was layered on the other area to obtain an LED. By flowing a current, the holes of the p-type semiconductor and the electrons of the n-type semiconductor cancel the charges in the perovskite compound of the junction surface, thereby enabling the LED to emit light.

[參考例6] 使氧化鈦緻密層積層於摻雜有氟之氧化錫(FTO)基板之表面上,自其上積層多孔質氧化鋁層,於其上積層實施例1~3所記載之發光性複合粒子組合物,並將溶劑去除後,自其上積層2,2',7,7'-四-(N,N'-二-對甲氧基苯胺)-9,9'-螺二茀(Spiro-OMe TAD)等電洞傳輸層,於其上積層銀(Ag)層,製作太陽電池。 [Reference Example 6] A dense layer of titanium oxide was deposited on the surface of a fluorine-doped tin oxide (FTO) substrate, a porous alumina layer was deposited thereon, and the luminescent composite particle compositions described in Examples 1 to 3 were deposited thereon. , and after the solvent was removed, 2,2',7,7'-tetra-(N,N'-di-p-methoxyaniline)-9,9'-spiro-OMe A hole transport layer such as TAD), on which a silver (Ag) layer is laminated to make a solar cell.

[參考例7] 將包含實施例1~3所記載之發光性複合粒子之組合物之溶劑後成形,藉此可獲得本實施形態之組合物,將其設置於藍色發光二極體之後段,藉此製造將自藍色發光二極體照射至組合物之藍色光轉換成綠色光或紅色光後發出白色光之雷射二極體照明。 [Reference Example 7] The composition of the present embodiment can be obtained by post-molding a solvent containing the composition of the luminescent composite particles described in Examples 1 to 3, and it is placed in the latter stage of the blue light-emitting diode to produce the composition of the present embodiment. Laser diode illumination that emits white light from the blue light emitting diode irradiated to the composition after the blue light is converted into green light or red light.

[參考例8] 將包含實施例1~3所記載之發光性複合粒子之組合物之溶劑去除後成形,藉此可獲得本實施形態之組合物。將所獲得之組合物作為光電轉換層之一部分,藉此製造探測光之檢測部所使用且所包含之光電轉換元件(光檢測元件)材料。光電轉換元件材料用於X射線攝像裝置及CMOS影像感測器等固體攝像裝置用之影像檢測部(影像感測器)、指紋檢測部、面部檢測部、靜脈檢測部及虹膜檢測部等檢測活體之一部分特定特徵之檢測部、脈搏血氧計等光學生物感測器。 [Reference Example 8] The composition of the present embodiment can be obtained by removing the solvent of the composition containing the luminescent composite particles described in Examples 1 to 3 and molding. The obtained composition is used as a part of the photoelectric conversion layer, whereby a photoelectric conversion element (photodetection element) material used and included in the detection part of the detection light is produced. Photoelectric conversion element materials are used for detection of living bodies in the image detection section (image sensor), fingerprint detection section, face detection section, vein detection section, and iris detection section for solid-state imaging devices such as X-ray imaging devices and CMOS image sensors. Optical biosensors such as the detection part of a part of specific features, pulse oximeter, etc.

[參考例9] 將包含實施例1~3所記載之發光性複合粒子之組合物之溶劑去除後成形,藉此可獲得本實施形態之組合物。可將所獲得之組合物用作提高太陽電池之光轉換效率之膜。作為上述轉換效率提高片材之形態,並無特別限定,可以塗佈於基材之形態利用。關於基材,只要為透明性較高之基材即可,並無特別限定。例如,較理想為PET膜或蛾眼膜等。使用太陽電池轉換效率提高片材之太陽電池並無特別限定,轉換效率提高片材具有自太陽電池之感度較低之波長區域向感度較高之波長區域轉換之功能。 [Reference Example 9] The composition of the present embodiment can be obtained by removing the solvent of the composition containing the luminescent composite particles described in Examples 1 to 3 and molding. The obtained composition can be used as a film for improving the light conversion efficiency of solar cells. It does not specifically limit as a form of the said conversion efficiency improvement sheet, It can utilize in the form of apply|coating to a base material. The base material is not particularly limited as long as it is a base material with high transparency. For example, a PET film, a moth-eye film, or the like is preferable. The solar cell using the solar cell conversion efficiency improvement sheet is not particularly limited, and the conversion efficiency improvement sheet has the function of converting from a wavelength region with a lower sensitivity of the solar cell to a wavelength region with a higher sensitivity.

[參考例10] 將包含實施例1~3所記載之發光性複合粒子之組合物之溶劑去除後成形,藉此可獲得本實施形態之組合物。可將所獲得之組合物用作量子電腦、量子電視及量子加密通信等單一光子產生用光源。 [Reference Example 10] The composition of this embodiment can be obtained by shaping|molding after removing the solvent of the composition containing the luminescent composite particle of Examples 1-3. The obtained composition can be used as a light source for generating single photons such as quantum computers, quantum televisions, and quantum encrypted communications.

1:X射線檢測器 2:閃爍器面板 3:輸出基板 4:閃爍器層 5:基板 6:聚合物 7:隔膜層 8:光電轉換層 9:輸出層 10:鈣鈦礦化合物粒子 11:基板 12:電源部 20:矽化合物層 30:分散介質材料 100:發光性複合粒子 200:發光性複合粒子組合物 1: X-ray detector 2: Scintillation panel 3: Output substrate 4: scintillator layer 5: Substrate 6: Polymer 7: Diaphragm layer 8: Photoelectric conversion layer 9: Output layer 10: Perovskite Compound Particles 11: Substrate 12: Power Department 20: Silicon compound layer 30: Dispersion medium material 100: luminescent composite particles 200: Luminescent composite particle composition

圖1係模式性地表示本發明之發光性複合粒子之結構之剖視圖。 圖2係模式性地表示本發明之發光性複合粒子組合物之結構之剖視圖。 圖3係模式性地表示包含本發明之閃爍器之X射線檢測器之結構的剖視圖。 FIG. 1 is a cross-sectional view schematically showing the structure of the luminescent composite particle of the present invention. Fig. 2 is a cross-sectional view schematically showing the structure of the luminescent composite particle composition of the present invention. 3 is a cross-sectional view schematically showing the structure of an X-ray detector including the scintillator of the present invention.

10:鈣鈦礦化合物粒子 10: Perovskite Compound Particles

20:矽化合物層 20: Silicon compound layer

100:發光性複合粒子 100: luminescent composite particles

Claims (9)

一種發光性複合粒子,其具有鈣鈦礦化合物粒子、及形成於該鈣鈦礦化合物粒子表面之至少一部分之矽化合物層,且具有1~100 nm之平均粒徑,該鈣鈦礦化合物粒子具有以A、B及X作為構成成分之鈣鈦礦型結晶結構 [於鈣鈦礦型結晶結構中,A係位於以B為中心之六面體之各頂點之成分,且係一價陽離子, B係位於將A配置於頂點之六面體、及將X配置於頂點之八面體之中心之成分,且係金屬離子, X係位於以B為中心之八面體之各頂點之成分,且係選自由鹵化物離子及硫氰酸離子所組成之群中之至少一種陰離子],且具有發光性。 A luminescent composite particle having perovskite compound particles and a silicon compound layer formed on at least a part of the surface of the perovskite compound particles, and having an average particle size of 1 to 100 nm, the perovskite compound particles having Perovskite crystal structure with A, B and X as constituents [In the perovskite crystal structure, A is a component located at each vertex of the hexahedron with B as the center, and is a monovalent cation, B is a component located at the center of the hexahedron with A placed at the vertex and the octahedron with X placed at the vertex, and is a metal ion, X is a component located at each vertex of the octahedron with B as the center, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion], and has luminescence. 如請求項1之發光性複合粒子,其中上述矽化合物層係包含選自由水解性矽化合物及其縮合物所組成之群中之至少一種之層。The luminescent composite particle according to claim 1, wherein the silicon compound layer comprises at least one layer selected from the group consisting of a hydrolyzable silicon compound and a condensate thereof. 如請求項1或2之發光性複合粒子,其中上述具有發光性之鈣鈦礦化合物粒子具有1~80 nm之一次粒徑。The luminescent composite particle according to claim 1 or 2, wherein the above-mentioned luminescent perovskite compound particle has a primary particle diameter of 1 to 80 nm. 一種發光性複合粒子組合物,其包含如請求項1至3中任一項之發光性複合粒子、以及選自由分散介質、聚合性化合物及聚合物所組成之群中之至少一種。A luminescent composite particle composition comprising the luminescent composite particle according to any one of claims 1 to 3, and at least one selected from the group consisting of a dispersion medium, a polymerizable compound, and a polymer. 一種膜,其包含如請求項1至3中任一項之發光性複合粒子。A film comprising the luminescent composite particles as claimed in any one of claims 1 to 3. 一種積層構造體,其包含如請求項5之膜。A laminated structure comprising the film of claim 5. 一種發光裝置,其具備如請求項6之積層構造體。A light-emitting device including the laminated structure as claimed in claim 6. 一種顯示器,其具備如請求項6之積層構造體。A display provided with the laminated structure as claimed in claim 6. 一種閃爍器,其包含如請求項1至3中任一項之發光性複合粒子。A scintillator comprising the luminescent composite particles of any one of claims 1 to 3.
TW110130815A 2020-08-27 2021-08-20 Light-emitting composite particles and light-emitting composite particle composition TW202212455A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-143665 2020-08-27
JP2020143665A JP2022038930A (en) 2020-08-27 2020-08-27 Luminescent compound particle, and luminescent compound particle composition

Publications (1)

Publication Number Publication Date
TW202212455A true TW202212455A (en) 2022-04-01

Family

ID=80355095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110130815A TW202212455A (en) 2020-08-27 2021-08-20 Light-emitting composite particles and light-emitting composite particle composition

Country Status (4)

Country Link
JP (1) JP2022038930A (en)
CN (1) CN115989193A (en)
TW (1) TW202212455A (en)
WO (1) WO2022044907A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212541A1 (en) * 2006-03-07 2007-09-13 Kazuya Tsukada Core/shell type particle phosphor
JP5777242B2 (en) * 2010-06-29 2015-09-09 株式会社日本セラテック Phosphor material and light emitting device
BR112013013485B1 (en) * 2010-12-01 2020-12-29 Lumileds Holding B.V. material ba1-x-y-zsrxcayeuz) 2si5-a-balan8-a-4boa + 4b, light-emitting structure and system
JP5661657B2 (en) * 2012-01-16 2015-01-28 信越化学工業株式会社 Silicone resin composition, phosphor-containing wavelength conversion film, and cured products thereof
WO2019088266A1 (en) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 Aggregated nanoparticles and fluorescent labeling material
CN108728077A (en) * 2018-05-08 2018-11-02 天津理工大学 The preparation method of synthetic silica coated inorganic perovskite quantum dot
JP2020066725A (en) * 2018-10-26 2020-04-30 住友化学株式会社 Particle, composition, film, laminate structure, light emitting device and display
CN112912462A (en) * 2018-10-26 2021-06-04 住友化学株式会社 Particle, composition, film, laminated structure, light-emitting device, and display
JP7179581B2 (en) * 2018-10-26 2022-11-29 住友化学株式会社 Compositions, films, laminated structures, light-emitting devices and displays

Also Published As

Publication number Publication date
WO2022044907A1 (en) 2022-03-03
JP2022038930A (en) 2022-03-10
CN115989193A (en) 2023-04-18

Similar Documents

Publication Publication Date Title
US11621299B2 (en) Composition and method for producing composition
TWI761353B (en) Composition and compound
TWI791576B (en) Composition, film, laminated structure, light emitting device, and display
CN111655818B (en) Composition, film, laminate structure, light emitting device, and display
TW202028416A (en) Particle, composition, film, laminated structure, light emitting device, and display
TW201819300A (en) Compound, dispersion composition, and resin composition
TWI830795B (en) Compositions, films, laminated structures, light-emitting devices and displays
TWI760591B (en) Composition, film, laminate structure, light emitting device and display
JP6549778B1 (en) Composition, film, laminated structure, light emitting device and display
TW202212455A (en) Light-emitting composite particles and light-emitting composite particle composition
JP7453744B2 (en) Compositions, films, laminate structures, light emitting devices and displays
JP6924187B2 (en) Composition
TW202033743A (en) Composition, film, laminated structure, light emitting device, and display
TWI826655B (en) Compositions, films, laminated structures, light-emitting devices and displays
WO2022024804A1 (en) Light-emitting semiconductor compound and production method therefor
JP2020142981A (en) Compound, composition, film, laminate structure, light-emitting device, display and production method of compound