WO2019088266A1 - Aggregated nanoparticles and fluorescent labeling material - Google Patents

Aggregated nanoparticles and fluorescent labeling material Download PDF

Info

Publication number
WO2019088266A1
WO2019088266A1 PCT/JP2018/040898 JP2018040898W WO2019088266A1 WO 2019088266 A1 WO2019088266 A1 WO 2019088266A1 JP 2018040898 W JP2018040898 W JP 2018040898W WO 2019088266 A1 WO2019088266 A1 WO 2019088266A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregation
group
nanoparticles
aggregated
fluorescent labeling
Prior art date
Application number
PCT/JP2018/040898
Other languages
French (fr)
Japanese (ja)
Inventor
望月 誠
北 弘志
理枝 櫻木
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019550504A priority Critical patent/JP7192783B2/en
Publication of WO2019088266A1 publication Critical patent/WO2019088266A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Abstract

The purpose of the present invention is to provide aggregated nanoparticles and a fluorescent labeling material that are of high brightness and exhibit superior light resistance. The aggregated nanoparticles according to the present invention are formed through aggregation of aggregation-induced luminescent molecules, and have a hydrophilic group disposed on the surface thereof, and exhibit a particle-size variation coefficient of at most 30%.

Description

凝集ナノ粒子および蛍光標識材Aggregated nanoparticles and fluorescent labeling material
 本発明は、凝集ナノ粒子および蛍光標識材に関する。 The present invention relates to aggregated nanoparticles and fluorescent labels.
 近年、臨床分野や基礎研究において、分子イメージング技術が高い注目を集めている。分子イメージングは、これまで可視化できなかった生体内での分子の動きを可視化する技術であり、例えば、生体分子の分子レベルでの解析、疾病の原因となるウイルスや細菌の動態についての研究、薬物が生体に与える作用等の評価など、様々な目的について広く用いられている。特にその優れた検出感度や操作性等から、生体中の微量物質の検出には、蛍光物質を用いて行う蛍光イメージングが広く用いられる。 In recent years, molecular imaging technology has attracted high attention in the clinical field and basic research. Molecular imaging is a technology that visualizes the movement of molecules in the living body that could not be visualized so far, and for example, analysis of biomolecules at the molecular level, research on the dynamics of viruses and bacteria that cause disease, drugs It is widely used for various purposes, such as the evaluation of the action of the compound on the living body. In particular, due to its excellent detection sensitivity and operability, fluorescent imaging performed using a fluorescent substance is widely used to detect a trace substance in a living body.
 蛍光イメージングを用いた診断や研究においては、蛍光性の物質を標識試薬として検出したい生体物質に結合させ、所定の励起光を照射することによって標識試薬の蛍光を高感度に検出する手法が提案されている。このような蛍光イメージングにより得られる蛍光シグナルにより、生体分子相互作用の定量化、長期間におよぶ生体分子の動態観察、超高感度観察などを行うため、「高輝度」および「高耐光性」の二つの特性をあわせもつ蛍光標識材が求められている。 In diagnosis and research using fluorescence imaging, a method has been proposed in which a fluorescent substance is bound to a biological substance to be detected as a labeling reagent and the fluorescence of the labeling reagent is detected with high sensitivity by irradiating a predetermined excitation light. ing. With the fluorescence signal obtained by such fluorescence imaging, quantification of biomolecular interactions, long-term dynamic observation of biomolecules, ultra-high sensitivity observation, etc. There is a need for a fluorescent labeling material that combines two properties.
 従来用いられてきた蛍光標識材としては、例えば市販の有機系蛍光色素等が挙げられるが、これらは量子収率は高くても標的分子に結合した1分子あたりの輝度は低く、また、使用の際に色素分子同士が凝集することで発光効率、発色性、光感受性や光増感性などの機能が著しく低下し、蛍光色素本来の特性を制限してしまうという欠点があった。 The fluorescent labeling materials conventionally used include, for example, commercially available organic fluorescent dyes, etc., but even if the quantum yield is high, the brightness per molecule bound to the target molecule is low, and the use of At the time, due to the aggregation of the dye molecules, the functions such as the light emission efficiency, the color forming property, the photosensitivity and the photosensitivity are remarkably reduced, and there is a disadvantage that the inherent properties of the fluorescent dye are limited.
 さらに他の蛍光標識材としては、量子収率が高く、また耐光性が高いナノ粒子である量子ドットがある(特許文献1)。しかしながら、量子収率の比較的高い量子ドットの組成は生体毒性が高いCdを含む組成であることから生細胞や生体に対して用いることができないという問題がある。また、量子ドットは予測不可能な明滅現象を引き起こす等蛍光が安定せず、また比較的比重の大きい粒子であるため、標識した生体物質の動態や他の物質との相互作用へ干渉してしまうなど、生体分子の正確な観察や定量が難しいという欠点があった。 Still another fluorescent labeling material is a quantum dot which is a nanoparticle having a high quantum yield and a high light resistance (Patent Document 1). However, the composition of a quantum dot having a relatively high quantum yield has a problem that it can not be used for living cells or living organisms because it is a composition containing Cd having high biotoxicity. In addition, since the quantum dots are unstable in fluorescence, such as causing an unpredictable flicker phenomenon, and are particles with relatively large specific gravities, they interfere with the dynamics of labeled biological substances and interactions with other substances. For example, there is a drawback that accurate observation and quantification of biomolecules are difficult.
 これらの問題を解決するため、近年凝集誘起発光性分子を凝集させた凝集ナノ粒子が開発された(特許文献2)。この凝集ナノ粒子は従来の蛍光標識材よりも高輝度であり、さらに細胞毒性が低いという利点がある。凝集誘起発光性分子の高い輝度の発生は諸説あるが、凝集誘起発光性分子が高密度にパッキングされた微粒子となることで色素分子の部分構造の回転や振動や熱エネルギーへの変換等が抑制されて励起光エネルギーが効果的に発光パスに利用され量子収率が向上するメカニズム、また規則的な分子の積層状態がエキシマー発光しないような配置でパッキングされるために量子収率が向上するというメカニズムなどが考えられている。 In order to solve these problems, recently, aggregated nanoparticles in which aggregation-induced luminescent molecules are aggregated have been developed (Patent Document 2). The aggregated nanoparticles have the advantages of higher brightness than conventional fluorescent labeling materials and lower cytotoxicity. Generation of high brightness of aggregation-induced luminescent molecules has been described in various ways, but the fine particles of aggregation-induced luminescent molecules are packed at a high density to suppress rotation of the partial structure of dye molecules, conversion to vibration, thermal energy, etc. The mechanism by which excitation light energy is effectively used for the light emission path and the quantum yield is improved, and the quantum yield is improved because packing is performed in such a configuration that regular layer stacks of molecules do not emit light. Mechanism etc. are considered.
特表2011-530187号公報JP 2011-530187 gazette 米国特許出願公開第2013/089889号明細書US Patent Application Publication No. 2013/089889
 しかしながら、上記特許文献2に記載の凝集ナノ粒子について、本発明者らが追試実験をしたところ染色時において輝度ムラが発生し、また一定期間保存後に使用した際の輝度および染色後の耐光性が低いという問題が判明した。この原因を解明するため、本発明者らがさらに追試したところ、上記凝集ナノ粒子を製造してからの時間経過とともに、粒子の凝集による粒度分布が広がり始め、1週間後には粒径変動係数が60%を超えることが明らかになり、この凝集による粒度分布の増大が、耐光性の低下に相関していることもわかった。 However, when the inventors conducted additional experiments on the aggregated nanoparticles described in Patent Document 2 mentioned above, unevenness in brightness occurs at the time of dyeing, and the brightness and light resistance after dyeing when used after storage for a certain period of time The problem was low. In order to clarify the cause of this, when the present inventors further tried, the particle size distribution due to particle aggregation starts to spread with the lapse of time after producing the above-mentioned aggregated nanoparticles, and the particle diameter variation coefficient is It was found that it exceeded 60%, and it was also found that the increase in particle size distribution due to the aggregation was correlated with the decrease in light resistance.
 この原因について、発明者らは鋭意検討した結果、製造時の粒径変動係数が大きいほど、経時的な粒度分布の増大が顕著であることを突き止めた。さらに、当該凝集ナノ粒子は表面が疎水性であるために相互作用により2次凝集を引き起こしやすく、その結果、ナノ粒子の凝集体中心付近に位置する凝集誘起発光性分子の励起光吸収が不充分となることや、発光がナノ粒子凝集体の内部で多重散乱することで凝集誘起発光性分子が発した蛍光が検出されないことで、充分な輝度が得られないのではないかと考えた。また、ナノ粒子が2次凝集することで励起光の吸収に異方性が発現することで蛍光強度が均一でない(輝度ムラが発生する)こと、さらに凝集により隣接する粒子表面の凝集誘起発光性分子同士が相互作用を引き起こして再配置することでナノ粒子表面に空隙等が発生し、凝集誘起発光性分子の劣化因子となる酸素分子などが作用しやすくなってしまうことが、耐光性低下の原因となると考えた。 As a result of intensive investigations by the inventors of the present invention, it was found that the increase in particle size distribution with time was remarkable as the particle size variation coefficient at the time of production was larger. Furthermore, the aggregation nanoparticles are likely to cause secondary aggregation due to interaction because the surface is hydrophobic, and as a result, excitation light absorption of aggregation-induced luminescent molecules located near the aggregation centers of the nanoparticles is insufficient. It was considered that sufficient brightness could not be obtained due to the fact that the fluorescence caused by the aggregation-induced luminescent molecule was not detected due to multiple scattering of light emission inside the nanoparticle aggregate. In addition, the secondary aggregation of the nanoparticles causes the absorption of excitation light to exhibit anisotropy, so that the fluorescence intensity is not uniform (brightness unevenness occurs), and the aggregation-induced luminescence of the particle surface adjacent to each other due to aggregation. Interaction between molecules causes repositioning to generate voids and the like on the surface of the nanoparticles, and oxygen molecules, which become a deterioration factor of aggregation-induced luminescent molecules, are more likely to act, which results in deterioration of light resistance. I thought it was the cause.
 本発明は、従来用いられてきた蛍光標識材よりも、より高輝度であり、より耐光性の高い凝集ナノ粒子に関する。 The present invention relates to aggregated nanoparticles that are brighter and have higher light resistance than fluorescent labeling materials conventionally used.
 本発明者は、本発明者らは上記問題を解決すべく鋭意検討した結果、凝集誘起発光性分子をナノ粒子化した凝集ナノ粒子の表面を親水性にし、凝集ナノ粒子の粒子径変動係数を30%以下とすることで、上記の課題を解決し、本発明を完成するに至った。 The inventors of the present invention conducted intensive studies to solve the above problems, and as a result, made the surface of the aggregation nanoparticles, which are nanoparticles of aggregation-induced light emitting molecules, hydrophilic, and the particle size variation coefficient of the aggregation nanoparticles. By making it 30% or less, the above problems are solved and the present invention is completed.
 すなわち、本発明は例えば次のような凝集ナノ粒子および蛍光標識材を提供する。
[項1]
 凝集誘起発光性分子の凝集により形成された凝集ナノ粒子であって、
 前記凝集ナノ粒子は、当該粒子表面に親水基を有し、
 前記凝集ナノ粒子の粒径変動係数が30%以下である、凝集ナノ粒子。
[項2]
 前記凝集ナノ粒子が、前記親水基を当該粒子表面に1個/nm2以上有している、項1に記載の凝集ナノ粒子。
[項3]
 前記凝集ナノ粒子の平均粒径が1nm以上100nm以下である、項1または2に記載の凝集ナノ粒子。
[項4]
 前記凝集誘起発光性分子が、環構造の形成に寄与しない炭素・炭素二重結合を有さないことを特徴とする項1~3のいずれか一項に記載の凝集ナノ粒子。
[項5]
 中心核を有する、項1~4のいずれか一項に記載の凝集ナノ粒子。
[項6]
 項1~5のいずれか一項に記載の凝集ナノ粒子を含む蛍光標識材であって、前記凝集ナノ粒子表面に標的指向性リガンドを有する、蛍光標識材。
[項7]
 前記標的指向性リガンドが、抗体、糖鎖と結合性を有するタンパク質、細胞小器官親和性物質、ペプチドからなる群から選択される1種または2種以上の分子である、項6に記載の蛍光標識材。
[項8]
 項6または7に記載の蛍光標識材と、緩衝液とを含む蛍光標識材分散液。
[項9]
 凝集誘起発光性分子の溶液に、貧溶媒を接触させ、前記凝集誘起発光性分子を凝集させる工程(A)を含む、項1~4のいずれか一項に記載の凝集ナノ粒子の製造方法。
[項10]
 前記工程(A)が、中心核存在下で、前記凝集誘起発光性分子の溶液に、貧溶媒を接触させ、前記凝集誘起発光性分子を凝集させる工程である、項9に記載の凝集ナノ粒子の製造方法。
[項11]
 項1~5のいずれか一項に記載の凝集ナノ粒子に標的指向性リガンドを結合させる工程を含む、蛍光標識材の製造方法。
That is, the present invention provides, for example, the following aggregated nanoparticles and fluorescent labeling material.
[Item 1]
Aggregated nanoparticles formed by the aggregation of aggregation-induced luminescent molecules,
The aggregated nanoparticles have a hydrophilic group on the surface of the particles,
Aggregated nanoparticles, wherein the particle size variation coefficient of the aggregated nanoparticles is 30% or less.
[Section 2]
The aggregated nanoparticles, wherein the hydrophilic group has one / nm 2 or more on the particle surface, agglomeration nanoparticles according to claim 1.
[Section 3]
The aggregated nanoparticle according to item 1 or 2, wherein an average particle diameter of the aggregated nanoparticle is 1 nm or more and 100 nm or less.
[Section 4]
The aggregated nanoparticle according to any one of Items 1 to 3, wherein the aggregation-induced luminescent molecule does not have a carbon / carbon double bond that does not contribute to the formation of a ring structure.
[Section 5]
The aggregated nanoparticle according to any one of Items 1 to 4, which has a central nucleus.
[Section 6]
A fluorescent labeling material comprising the aggregated nanoparticle according to any one of Items 1 to 5, wherein the fluorescent labeling material has a targeting ligand on the surface of the aggregated nanoparticle.
[Section 7]
7. The fluorescence according to item 6, wherein the targeting ligand is one or more molecules selected from the group consisting of an antibody, a protein having a binding property with a sugar chain, an organelle affinity substance, and a peptide. Signs.
[Section 8]
Item 8. A fluorescent label dispersion comprising the fluorescent label according to item 6 or 7 and a buffer solution.
[Section 9]
5. The method for producing aggregated nanoparticles according to any one of Items 1 to 4, comprising the step (A) of bringing a solution of aggregation-induced luminescent molecules into contact with a poor solvent to aggregate the aggregation-induced luminescent molecules.
[Section 10]
10. The aggregated nanoparticle according to item 9, wherein the step (A) is a step of bringing a solution of the aggregation-induced luminescent molecule into contact with a poor solvent in the presence of a central nucleus to aggregate the aggregation-induced luminescent molecule. Manufacturing method.
[Item 11]
A method for producing a fluorescent labeling material, comprising the step of binding a targeting ligand to the aggregated nanoparticle according to any one of Items 1 to 5.
 本発明の「凝集ナノ粒子」は、凝集誘起発光性分子を含む従来のナノ粒子よりも量子収率が高くまた高輝度であり、さらに上述した2次凝集による輝度の低下および凝集誘起発光性分子の再配置による劣化が抑制されることで、経時的耐光性が飛躍的に向上する。 The “aggregated nanoparticles” of the present invention have a higher quantum yield and higher luminance than conventional nanoparticles containing aggregation-induced luminescent molecules, and the above-described decrease in luminance due to secondary aggregation and aggregation-induced luminescent molecules By suppressing the deterioration due to the repositioning, the light resistance over time is dramatically improved.
 また本発明の凝集ナノ粒子を含む蛍光標識材を生体分子の標識に用いると、強くまた均一な蛍光シグナルを安定して得ることができるため、生体物質の定量化、長期間におよぶ動態観察、および超高感度観察を行うことが可能となる。さらに本発明の凝集ナノ粒子および蛍光標識材は粒径および比重が比較的小さいことから、標識した生体物質と他の物質との相互作用へ干渉しにくいため、生体物質間相互作用を定量的に評価することも可能になる。 In addition, since a strong and uniform fluorescence signal can be stably obtained by using the fluorescent labeling material containing the aggregated nanoparticles of the present invention for labeling of biomolecules, quantification of biological substances, dynamic observation over a long period, And, it becomes possible to perform ultra-sensitive observation. Furthermore, since the aggregated nanoparticles and the fluorescent labeling material of the present invention have relatively small particle sizes and specific gravities, they are less likely to interfere with the interaction between the labeled biological material and other materials, so the interaction between biological materials can be quantified. It will also be possible to evaluate.
 本発明の「凝集ナノ粒子」は、凝集誘起発光性分子の凝集により形成された粒子であって、当該粒子表面には親水基を有しており、粒径変動係数が30%以下であることを特徴とする。
<凝集誘起発光性分子>
 本発明において用いられる凝集誘起発光性分子は、希薄溶液中で凝集することなく各分子が溶解あるいは分散している状態では量子収率が低いため蛍光を発さないか、蛍光の発光強度が弱い物質であるが、凝集して集合体を形成することで量子収率が上がり、強い蛍光を発する、または蛍光強度を増すという性質を有する蛍光物質である。凝集誘起発光性分子としては、公知の凝集誘起発光性分子等を特に制限なく用いることができるが、通常は炭化水素系芳香環およびヘテロ芳香環の少なくとも一方を有する分子が用いられる。具体的には、例えば、マレイミド系凝集誘起発光性分子、アミノベンゾピラノキサンテン(ABPX)系凝集誘起発光性分子、ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子、カルボラン系凝集誘起発光性分子、ローダミン系凝集誘起発光性分子、テトラフェニルエチレン系凝集誘起発光性分子、シロール系凝集誘起発光性分子、芳香環含有金属錯体系化合物、BODIPY系ホウ素イミン錯体凝集誘起発光性分子、その他のヘテロ化合物などが挙げられるが、これらに限定されるものではない。
<1.ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子>
 前記ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子とは、ベンゾフロ・オキサゾロ・カルバゾール骨格を有する凝集誘起発光性分子のことをいい、ベンゾフロ・オキサゾロ・カルバゾール骨格とは、下記式(1)で表される。すなわち、ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子は、分子内に下記式(1)で表される骨格を有する凝集誘起発光性分子である。ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子としては、例えば下記式(2)で表される化合物が挙げられる。
The “aggregated nanoparticles” of the present invention are particles formed by the aggregation of aggregation-induced light emitting molecules, and the surface of the particles has a hydrophilic group and has a particle size variation coefficient of 30% or less. It is characterized by
<Aggregation-induced luminescent molecule>
The aggregation-induced luminescent molecules used in the present invention do not emit fluorescence because the quantum yield is low when each molecule is dissolved or dispersed without aggregation in a dilute solution, or the fluorescence emission intensity is weak. Although it is a substance, it is a fluorescent substance having the property of increasing the quantum yield by aggregating to form an aggregate, emitting strong fluorescence, or increasing the fluorescence intensity. As aggregation-induced light-emitting molecules, known aggregation-induced light-emitting molecules and the like can be used without particular limitations, but usually, molecules having at least one of a hydrocarbon-based aromatic ring and a heteroaromatic ring are used. Specifically, for example, maleimide-based aggregation-induced luminescent molecules, aminobenzopyranoxanthene (ABPX) -based aggregation-induced luminescent molecules, benzofuroxazolo-carbazole-based aggregation-induced luminescent molecules, carborane-based aggregation-induced luminescent molecules, Rhodamine-based aggregation-induced luminescent molecules, tetraphenylethylene-based aggregation-induced luminescent molecules, silole-based aggregation-induced luminescent molecules, aromatic ring-containing metal complex-based compounds, BODIPY-based boronimine complex aggregation-induced luminescent molecules, other hetero compounds, etc. However, the present invention is not limited thereto.
<1. Benzofuro-oxazolo-carbazole aggregation-induced luminescent molecule>
The benzofuro oxazolo carbazole-based aggregation inducing light emitting molecule refers to an aggregation inducing light emitting molecule having a benzofuro oxazolo carbazole skeleton, and the benzofuro oxazolo carbazole skeleton is represented by the following formula (1) Ru. That is, the benzofuro-oxazolo-carbazole-based aggregation inducing light emitting molecule is an aggregation inducing light emitting molecule having a skeleton represented by the following formula (1) in the molecule. Examples of the benzofuro-oxazolo-carbazole aggregation-induced luminescent molecule include a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 R1~R3はそれぞれ独立に、水素原子、有機基または有機金属基である。
Figure JPOXMLDOC01-appb-C000002
Each of R 1 to R 3 independently represents a hydrogen atom, an organic group or an organic metal group.
 R1およびR2は、それぞれ同一であっても異なっていてもよく、好ましくはアルキル基または置換アルキル基であり、置換アルキル基の置換基としては、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基およびハロゲン原子から選択される少なくとも1種の置換基であることが好ましい。 R 1 and R 2 may be the same or different and are preferably an alkyl group or a substituted alkyl group, and as a substituent of the substituted alkyl group, a sulfonic acid group, a carboxyl group, a phosphoric acid group, It is preferable that it is at least one kind of substituent selected from a phosphorous acid group, a hydroxyl group, an amino group, an isocyanate group, a silyl group and a halogen atom.
 R3で表される置換基は、芳香族基、脂肪族基、または水素原子であることが好ましく、前記芳香族基は芳香族炭化水素基でも芳香族複素環基でもよく、好ましい例としては、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ピレニル基、ピリジル基、ピリミジル基、トリアジニル基等が挙げられる。脂肪族基としては、アルキル基、シクロアルキル基、不飽和脂肪族基等が挙げられ、芳香族基、脂肪族基は水素原子が置換基で置換されていてもよく、置換基としては、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基およびハロゲン原子から選択される少なくとも1種の置換基が好ましい。 The substituent represented by R 3 is preferably an aromatic group, an aliphatic group or a hydrogen atom, and the aromatic group may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and preferred examples thereof And phenyl group, naphthyl group, anthranyl group, phenanthryl group, pyrenyl group, pyridyl group, pyrimidyl group, triazinyl group and the like. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, and an unsaturated aliphatic group. In the aromatic group and the aliphatic group, a hydrogen atom may be substituted with a substituent, and as the substituent, a sulfone may be mentioned. At least one substituent selected from an acid group, a carboxyl group, a phosphate group, a phosphorous group, a hydroxyl group, an amino group, an isocyanate group, a silyl group and a halogen atom is preferable.
 また、Yは電子吸引性基を表し、具体的には、シアノ基、ニトロ基、メトキシ基、トシル基、メシル基、ハロゲン、フェニル基、アシル基、ケト基、カルボキシル基、アルデヒド基、エトキシカルボニル基、メトキシカルボニル基、ピリジル基、ピリミジル基、トリアジニル基、トリアゾリル基、テトラゾリル基、ジシアノメチル基、シアナミド基などが挙げられる。 Y represents an electron withdrawing group, and specifically, cyano, nitro, methoxy, tosyl, mesyl, halogen, phenyl, acyl, keto, carboxyl, aldehyde, ethoxycarbonyl Groups, methoxycarbonyl group, pyridyl group, pyrimidyl group, triazinyl group, triazolyl group, tetrazolyl group, dicyanomethyl group, cyanamide group and the like.
 前記ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子は、以下の式(3)‐1~式(3)‐3であらわされる化合物であることが好ましい。 The benzofuro-oxazolo-carbazole-based aggregation-inducing light emitting molecule is preferably a compound represented by the following formulas (3) -1 to (3) -3.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
<2.カルボラン系凝集誘起発光性分子>
 前記カルボラン系凝集誘起発光性分子としては、C210で構成されるカルボラン骨格を有する化合物、好ましくはortho-カルボラン骨格を有する化合物である。前記カルボラン系凝集誘起発光性分子としては、例えば下記式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
<2. Carborane-based aggregation-induced luminescent molecule>
The carborane-based aggregation-induced light emitting molecule is a compound having a carborane skeleton composed of C 2 B 10 , preferably a compound having an ortho-carborane skeleton. Examples of the carborane-based aggregation-induced light emitting molecules include compounds represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
 なお、式(4)において、白抜きの丸は炭素原子を表し、黒い点はBHを表す。立体構造の観点から図示できないBHは省略されている。
Figure JPOXMLDOC01-appb-C000006
In the formula (4), open circles represent carbon atoms and black dots represent BH. BH which can not be illustrated from the viewpoint of three-dimensional structure is omitted.
 式(4)においてR1およびR2はそれぞれ独立に、水素原子、有機基または有機金属基から選択することができる。R1およびR2で表される置換基は、同一であっても異なっていてもよく、互いに縮合して環状構造を形成してもよい。R1およびR2のうち1つが芳香族炭化水素基または芳香族複素環基であることが好ましく、その場合、他方は芳香族炭化水素基または芳香族複素環基であっても、脂肪族炭化水素基であっても、水素原子であってもよい。 In Formula (4), R 1 and R 2 can each be independently selected from a hydrogen atom, an organic group or an organometallic group. The substituents represented by R 1 and R 2 may be the same or different, and may be condensed with each other to form a cyclic structure. Preferably, one of R 1 and R 2 is an aromatic hydrocarbon group or an aromatic heterocyclic group, in which case the other is an aliphatic hydrocarbon group even if it is an aromatic hydrocarbon group or an aromatic heterocyclic group. It may be a hydrogen group or a hydrogen atom.
 前記芳香族炭化水素基は、例えば、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ピレニル基等が挙げられ、前記芳香族複素環基はピリジル基、ピリミジル基、トリアジニル基、ピロール基、イミダゾール基、ピラゾール基、トリアゾール基、オキサジアゾール基、オキサゾール基、チアジアゾール基、チアゾール基等が挙げられる。前記脂肪族炭化水素基のうち飽和脂肪族炭化水素基としては、アルキル基、シクロアルキル基が挙げられ、不飽和脂肪族基としては、アルケニル基、アルキニル基、シクロアルケニル基、シクロアルキニル基が挙げられる。また、前記脂肪族炭化水素基には、アラルキル基の水素原子の一つがアリール基で置換されたアラルキル基が含まれるものとする。 Examples of the aromatic hydrocarbon group include phenyl group, naphthyl group, anthranyl group, phenanthryl group, pyrenyl group and the like, and the aromatic heterocyclic group includes pyridyl group, pyrimidyl group, triazinyl group, pyrrole group, imidazole group And pyrazole, triazole, oxadiazole, oxazole, thiadiazole, thiazole and the like. Among the aliphatic hydrocarbon groups, the saturated aliphatic hydrocarbon group includes an alkyl group and a cycloalkyl group, and the unsaturated aliphatic group includes an alkenyl group, an alkynyl group, a cycloalkenyl group and a cycloalkynyl group. Be Further, the aliphatic hydrocarbon group includes an aralkyl group in which one of the hydrogen atoms of the aralkyl group is substituted with an aryl group.
 前記芳香族炭化水素基、芳香族複素環基、および脂肪族炭化水素基は任意のアルカリ金属基で置換されていてもよく、さらに親水性基および反応性官能基から選択される少なくとも1種の基で置換されていてもよい。前記親水性基および反応性官能基から選択される少なくとも1種の基としては、例えば、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基およびハロゲン原子等が挙げられる。 The aromatic hydrocarbon group, the aromatic heterocyclic group, and the aliphatic hydrocarbon group may be substituted with any alkali metal group, and at least one selected from a hydrophilic group and a reactive functional group It may be substituted by a group. As at least one group selected from the hydrophilic group and the reactive functional group, for example, a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphorous acid group, a hydroxyl group, an amino group, an isocyanate group, a silyl group and A halogen atom etc. are mentioned.
 前記R1およびR2が同一のものである場合、R1およびR2は以下の式(4)‐1の中から選択されることが好ましい。 When R 1 and R 2 are the same, it is preferable that R 1 and R 2 be selected from the following formula (4) -1.
Figure JPOXMLDOC01-appb-C000007
 また、前記R1およびR2は、以下の式(4)‐2から選択される組み合わせであることも好ましい。
Figure JPOXMLDOC01-appb-C000007
Moreover, it is also preferable that said R 1 and R 2 are a combination selected from the following formula (4) -2.
Figure JPOXMLDOC01-appb-C000008
<3.マレイミド系凝集誘起発光性分子>
 前記マレイミド系凝集誘起発光性分子とは、マレイミド骨格を有する化合物のことをいい、例えば下記式(5)‐1または(5)‐2で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
<3. Maleimide-based aggregation-induced luminescent molecule>
The maleimide aggregation-induced light emitting molecule is a compound having a maleimide skeleton, and examples thereof include a compound represented by the following formula (5) -1 or (5) -2.
Figure JPOXMLDOC01-appb-C000009
 前記式(5)‐1または(5)‐2においてR、R'、およびR''はそれぞれ独立に、水素原子、有機基または有機金属基から選択することができ、芳香族基であることが好ましく、フェニル基、ナフチル基、アントラニル基、ピリジル基、ピリミジル基、トリアジニル基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000009
In the above formula (5) -1 or (5) -2, R, R ′ and R ′ ′ can each independently be selected from a hydrogen atom, an organic group or an organometallic group and is an aromatic group Is preferable, and a phenyl group, a naphthyl group, an anthranyl group, a pyridyl group, a pyrimidyl group and a triazinyl group are more preferable.
 置換基R'およびR''は、同一であっても異なっていてもよく、また互いに縮合して飽和環、不飽和環、芳香族環を形成してもよい。 The substituents R ′ and R ′ ′ may be the same or different, and may be fused to each other to form a saturated ring, an unsaturated ring or an aromatic ring.
 また、マレイミド系凝集誘起発光性分子としては、前記式(5)‐1または(5)‐2で表される化合物の任意の位置の水素原子の一つまたは複数が、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基およびハロゲン原子から選択される少なくとも1種によって置換されていることが好ましい。 In addition, as the maleimide-based aggregation-induced light emitting molecule, one or more of hydrogen atoms at any position of the compound represented by the formula (5) -1 or (5) -2 may be a sulfonic acid group or a carboxyl group It is preferably substituted by at least one selected from phosphoric acid group, phosphorous acid group, hydroxyl group, amino group, isocyanate group, silyl group and halogen atom.
 前記マレイミド系凝集誘起発光性分子として好適に用いられる化合物の一例として、具体的には以下の化合物が挙げられる。 Specific examples of the compound suitably used as the maleimide aggregation-induced light emitting molecule include the following compounds.
Figure JPOXMLDOC01-appb-C000010
<4.アミノベンゾピラノキサンテン系凝集誘起発光性分子>
 前記アミノベンゾピラノキサンテン系凝集誘起発光性分子とは、アミノベンゾピラノキサンテン骨格を有する凝集誘起発光性分子のことをいい、例えば下記式(6)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
<4. Aminobenzopyranoxanthene aggregation-induced luminescent molecule>
The aminobenzopyranoxanthene-based aggregation inducing luminescent molecule means an aggregation inducing luminescent molecule having an aminobenzopyranoxanthene skeleton, and examples thereof include a compound represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000011
 式(6)においてR1~R4はそれぞれ独立に、水素原子、有機基または有機金属基から選択することができる。アルキル基および置換アルキル基であることが好ましく、置換アルキル基の置換基としては、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基およびハロゲン原子から選択される少なくとも一種であることがより好ましい。
Figure JPOXMLDOC01-appb-C000011
In the formula (6), R 1 to R 4 can be each independently selected from a hydrogen atom, an organic group or an organic metal group. It is preferable that it is an alkyl group and a substituted alkyl group, and as a substituent of the substituted alkyl group, a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphorous acid group, a hydroxyl group, an amino group, an isocyanate group, a silyl group and a halogen atom It is more preferable that it is at least one selected from
 さらに、R1とR2、R3とR4がそれぞれ結合して環を形成していてもよい。またアミノ基のカチオンにアニオンが配位することで塩を形成していてもよい。さらにR1とR2はそれぞれ独立に、R1とR2とが結合する窒素原子が結合する炭素原子を含む環が有する別の炭素原子と結合して環を形成してもよく、R3とR4はそれぞれ独立に、R3とR4とが結合する窒素原子が結合する炭素原子を含む環が有する別の炭素原子と結合して環を形成してもよい。 Furthermore, R 1 and R 2 , and R 3 and R 4 may be combined to form a ring. In addition, a salt may be formed by coordination of the anion to the cation of the amino group. Further, R 1 and R 2 may be each independently bonded to another carbon atom of a ring containing a carbon atom to which a nitrogen atom to which R 1 and R 2 are bonded is bonded to form a ring, R 3 And R 4 may be each independently bonded to another carbon atom of a ring containing a carbon atom to which the nitrogen atom to which R 3 and R 4 are bonded is bonded to form a ring.
 具体的には、前記アミノベンゾピラノキサンテン系凝集誘起発光性分子は、以下の化合物であることが好ましい。 Specifically, the aminobenzopyranoxanthene-based aggregation inducing light emitting molecule is preferably the following compound.
Figure JPOXMLDOC01-appb-C000012
<5.ローダミン系凝集誘起発光性分子>
 前記ローダミン系凝集誘起発光性分子とは、ローダミン骨格を有する凝集誘起発光性分子のことをいい、ローダミン骨格とは、下記式(7)で表される。ローダミン系凝集誘起発光性分子は、アミノベンゾピロキサンテン系色素が好ましく、下記式(7)‐1で表される化合物がより好ましい。式(7)‐1で表される化合物には、Ra~Rg、およびmが、それぞれ2つ存在するが、同様の符号で表されるものは、それぞれ同一でも異なっていてもよいが、同一であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
<5. Rhodamine-based aggregation-induced luminescent molecule>
The rhodamine-based aggregation-induced light emitting molecule refers to an aggregation-induced light emitting molecule having a rhodamine skeleton, and the rhodamine skeleton is represented by the following formula (7). The rhodamine aggregation-induced light emitting molecule is preferably an aminobenzopyroxanthene dye, and more preferably a compound represented by the following formula (7) -1. In the compound represented by the formula (7) -1, two R a to R g and two m exist, respectively, and those represented by the same symbol may be the same or different. And are preferably identical.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式(7)‐1においてRaおよびRbは、それぞれ独立に水素原子または炭素数1~20の炭化水素基であり、好ましくは炭素数1~12の炭化水素基である。
Figure JPOXMLDOC01-appb-C000014
In the formula (7) -1, R a and R b are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrocarbon group having 1 to 12 carbon atoms.
 前記RcおよびRdはそれぞれ独立に、水素原子、ハロゲン原子または炭素数1~20の炭化水素基であり、好ましくは水素原子である。 The R c and R d each independently represent a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom.
 前記Reは独立に、アミノ基または-COORhであり、該Rhは、水素原子または炭素数1~20の炭化水素基であり、好ましくは水素原子である。 The R e is independently an amino group or —COOR h , and the R h is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom.
 前記Rfは独立に、水素原子、ハロゲン原子、アミノ基、保護基を有していてもよいアミド結合含有基、または炭素数1~20の炭化水素基であり、好ましくは水素原子である。 R f independently represents a hydrogen atom, a halogen atom, an amino group, an amide bond-containing group which may have a protecting group, or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom.
 前記Rgは独立に、水素原子、ハロゲン原子、ニトロ基、カルボキシル基、アミノ基又は炭素数1~20の炭化水素基であり、好ましくは水素原子である。 R.sup.g is independently a hydrogen atom, a halogen atom, a nitro group, a carboxyl group, an amino group or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom.
 mは、1~4の整数であり、好ましくは1である。 M is an integer of 1 to 4, preferably 1.
 前記Ra、Rb、Rc、Rd、Rf、RgおよびRhにおける炭化水素基は、一部が窒素原子、酸素原子または硫黄原子で置換されていてもよい。 The hydrocarbon group in each of R a , R b , R c , R d , R f , R g and R h may be partially substituted by a nitrogen atom, an oxygen atom or a sulfur atom.
 前記RaとRcおよび/またはRbとRdは互いに結合することで、窒素原子を少なくとも1つ含む、構成原子数5または6の複素環基を形成してもよい。該複素環基としては、例えば、ピロリジン、ピロール、イミダゾール、ピラゾール、ピペリジン、ピリジン、ピペラジン、ピリダジン、ピリミジンおよびピラジンが挙げられる。これらの中では、ピペリジンが好ましい。 The R a and R c and / or R b and R d may be bonded to each other to form a heterocyclic group having 5 or 6 atoms including at least one nitrogen atom. The heterocyclic group includes, for example, pyrrolidine, pyrrole, imidazole, pyrazole, piperidine, pyridine, piperazine, pyridazine, pyrimidine and pyrazine. Of these, piperidine is preferred.
 なお、該複素環基は、置換基Rjを有していてもよい。該Rjは独立に、炭素数1~12の炭化水素基または該炭化水素基の一部が窒素原子、酸素原子または硫黄原子で置換された基である。このような化合物としては、下記式(7)-2および(7)-3で表される化合物が挙げられる。このとき、nは独立に0~3の整数であり、好ましくは0~2の整数である。 The heterocyclic group may have a substituent R j . The R j is independently a hydrocarbon group having 1 to 12 carbon atoms or a group in which part of the hydrocarbon group is substituted with a nitrogen atom, an oxygen atom or a sulfur atom. Examples of such a compound include compounds represented by the following formulas (7) -2 and (7) -3. At this time, n is independently an integer of 0 to 3, preferably an integer of 0 to 2.
Figure JPOXMLDOC01-appb-C000015
[式(7)‐2および(7)‐3中、Ra、Rc、Re、Rf、Rgおよびmはそれぞれ独立に、式(7)‐1中のRa、Rc、Re、Rf、Rgおよびmと同義である。]
 前記ReとRfとは互いに結合することで、窒素原子を少なくとも1つ含む、構成原子数5または6の複素環基を形成してもよい。該複素環としては、例えば、γ-ブチロラクトン、β-ラクタム、γ-ラクタムが挙られ、特にγ-ブチロラクトンであることが好ましい。該複素環基は、置換基を有していてもよく、該置換基としては、例えば、窒素原子、酸素原子もしくは硫黄原子で置換されていてもよい炭素数1~12の炭化水素基、ヒドロキシル基、アミノ基、ピリジニル基、フリル基、またはチエニル基が挙げられる。このような化合物としては、例えば下記式(7)‐4で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
[In the formulas (7) -2 and (7) -3, R a , R c , R e , R f , R g and m are each independently R a , R c in the formula (7) -1, It is synonymous with R e , R f , R g and m. ]
The R e and R f may be bonded to each other to form a heterocyclic group having 5 or 6 atoms including at least one nitrogen atom. Examples of the heterocyclic ring include γ-butyrolactone, β-lactam and γ-lactam, and in particular γ-butyrolactone is preferable. The heterocyclic group may have a substituent, and as the substituent, for example, a hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a nitrogen atom, an oxygen atom or a sulfur atom, hydroxyl Groups, amino groups, pyridinyl groups, furyl groups, or thienyl groups. As such a compound, for example, a compound represented by the following formula (7) -4 can be mentioned.
Figure JPOXMLDOC01-appb-C000016
[式(7)‐4中、Ra~Rd、Rgおよびmはそれぞれ独立に、式(7)‐1中のRa~Rd、Rgおよびmと同義である。]
 なお、前記式(7)‐4で表される化合物には、下記式(3A)のように共鳴構造を取るようなものや、下記式(3B)のようにイオン化したものも含まれる。
Figure JPOXMLDOC01-appb-C000016
[In the formula (7) -4, R a ~ R d, R g and m are independently the same as R a ~ R d, R g and m of formula (7) in -1. ]
The compounds represented by the above formula (7) -4 also include those having a resonance structure as in the following formula (3A) and those ionized as in the following formula (3B).
[規則26に基づく補充 03.12.2018] 
Figure WO-DOC-CHEMICAL-17
<6,テトラフェニルエチレン系凝集誘起発光性分子>
 前記テトラフェニルエチレン系凝集誘起発光性分子とは、テトラフェニルエチレン骨格を有する凝集誘起発光性分子のことをいい、例えば下記式(8)で表される化合物が挙げられる。
[Repletion based on rule 26 03.12.2018]
Figure WO-DOC-CHEMICAL-17
<6. Tetraphenylethylene-based aggregation-induced luminescent molecule>
The tetraphenylethylene-based aggregation-induced light emitting molecule means an aggregation-induced light emitting molecule having a tetraphenylethylene skeleton, and examples thereof include a compound represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000018
 前記式(8)中、a~dはそれぞれ独立して、0~5の整数である。a~d=0、すなわち前記式(8)であらわされる化合物がテトラフェニルエチレンであることも好ましい。なお、a~dが2以上の場合、複数のR1~R4は同一であっても異なっていてもよく、複数のR1同士、R2同士、R3同士、またはR4同士が互いに結合して環を形成していてもよい。R1~R4は、同一であっても異なっていてもよく、またR1とR2、R2とR4、R3とR4、R3とR1が縮合して飽和環、不飽和環、芳香族環を形成してもよい。
Figure JPOXMLDOC01-appb-C000018
In the formula (8), a to d are each independently an integer of 0 to 5. It is also preferable that a to d = 0, that is, the compound represented by the above formula (8) is tetraphenylethylene. When a to d are 2 or more, a plurality of R 1 to R 4 may be the same or different, and a plurality of R 1 's , R 2' s , R 3 's or R 4' s It may combine to form a ring. R 1 to R 4 may be the same or different, and R 1 and R 2 , R 2 and R 4 , R 3 and R 4 , and R 3 and R 1 may be condensed to form a saturated ring, It may form a saturated ring or an aromatic ring.
 前記式(8)中、R1~R4はそれぞれ独立に、有機基、または有機金属基であり、好ましくは芳香環含有有機基であり、より好ましくは芳香族基であり、フェニル基、ナフチル基、アントラニル基、ピリジル基、ピリミジル基、トリアジニル基であることが特に好ましい。 In the above formula (8), R 1 to R 4 are each independently an organic group or an organic metal group, preferably an aromatic ring-containing organic group, more preferably an aromatic group, a phenyl group or a naphthyl group. An anthranyl group, a pyridyl group, a pyrimidyl group and a triazinyl group are particularly preferred.
 前記式(8)で表される化合物の一例として、以下の化合物が挙げられる。 The following compounds may be mentioned as an example of the compound represented by the formula (8).
Figure JPOXMLDOC01-appb-C000019
 また、テトラフェニルエチレン系凝集誘起発光性分子としては、式(8)で表される化合物において、分子中の任意の位置に、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基およびハロゲン原子を一つまたは複数個有する化合物を用いることも好ましい。
<7.シロール系凝集誘起発光性分子>
 前記シロール系凝集誘起発光性分子とは、シロール環を有する凝集誘起発光性分子のことをいい、特に制限されないが、好ましくは下記式(2)で表される化合物である。なお、下記式(9)中の同じ符号で表される基は、それぞれ同一でも異なっていてもよいが、同一であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
In addition, as a tetraphenylethylene aggregation-induced light emitting molecule, in the compound represented by the formula (8), a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphorous acid group, a hydroxyl group may be provided at any position in the molecule. It is also preferable to use a compound having one or more of an amino group, an isocyanate group, a silyl group and a halogen atom.
<7. Silole-based aggregation-induced luminescent molecule>
The silole-based aggregation-induced light emitting molecule means an aggregation-induced light emitting molecule having a silole ring, and is not particularly limited, but is preferably a compound represented by the following formula (2). In addition, although the group represented with the same code | symbol in following formula (9) may be same or different, respectively, it is preferable that it is the same.
Figure JPOXMLDOC01-appb-C000020
 前記RAは独立に、水素原子または炭素数1~12の炭化水素基であり、好ましくは水素原子または炭素数1~6の炭化水素基であり、より好ましくは水素原子または炭素数1~4の炭化水素基であり、さらに好ましくは水素原子である。
Figure JPOXMLDOC01-appb-C000020
The R A is independently a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or 1 to 4 carbon atoms Is a hydrocarbon group, more preferably a hydrogen atom.
 前記aは独立に、1~5の整数であり、好ましくは1または2である。 The a is independently an integer of 1 to 5, preferably 1 or 2.
 前記RBは独立に芳香環含有有機基等の有機基であり、該芳香環としては、ベンゼン環、ナフタレン環、ピロール環、イミダゾール環、イミダゾリン環、ピラゾール環、ピリジン環、ピラジン環、フラン環、チオフェン環、オキサゾール環、チアゾール環等が挙げられる。 The R B is independently an organic group such as an aromatic ring-containing organic group, and as the aromatic ring, a benzene ring, a naphthalene ring, a pyrrole ring, an imidazole ring, an imidazoline ring, a pyrazole ring, a pyridine ring, a pyrazine ring, a furan ring And a thiophene ring, an oxazole ring, a thiazole ring and the like.
 前記RBは、少なくとも1つのベンゼン環を含むことが好ましく、フェニル基であることがより好ましい。 Wherein R B preferably contains at least one benzene ring, more preferably a phenyl group.
 前記RCは、独立に有機基であり、好ましくは芳香環含有有機基または炭素数1~20の炭化水素基である。 The R C is independently an organic group, preferably an aromatic ring-containing organic group or a hydrocarbon group having 1 to 20 carbon atoms.
 該炭素数1~20の炭化水素基としては、炭素数1~12の炭化水素基が好ましい。 The hydrocarbon group having 1 to 20 carbon atoms is preferably a hydrocarbon group having 1 to 12 carbon atoms.
 前記RCは、炭素数1~12の炭化水素基が好ましく、フェニル基または炭素数1~12のアルキル基であることがより好ましい。 The R C is preferably a hydrocarbon group having 1 to 12 carbon atoms, and more preferably a phenyl group or an alkyl group having 1 to 12 carbon atoms.
 前記RBおよびRCにおける有機基は、炭素原子と水素原子のみからなる基であってもよく、窒素原子、酸素原子、硫黄原子またはケイ素原子などのヘテロ原子を含む基であってもよい。具体的には、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基およびハロゲン原子から選択される少なくとも一種を有していてもよい。 The organic group in R B and R C may be a group consisting only of carbon atoms and hydrogen atoms, or may be a group containing a hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom or a silicon atom. Specifically, it may have at least one selected from a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphorous acid group, a hydroxyl group, an amino group, an isocyanate group, a silyl group and a halogen atom.
 また、前記RBおよびRCはそれぞれ結合して環を形成していてもよい。RBおよびRCが環を形成した化合物としては例えば下記の化合物が挙げられる。 Also, the R B and R C may be combined to form a ring. Examples of compounds in which R B and R C form a ring include the following compounds.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 また、前記RA、RBおよびRCの組み合わせとしては好ましい例としては以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000022
Moreover, the following are mentioned as a preferable example as a combination of said R <A> , R <B> and R < C >.
Figure JPOXMLDOC01-appb-T000023
 前記シロール系凝集誘起発光性分子として好適に用いられる化合物の一例として、具体的には以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-T000023
Specific examples of the compound suitably used as the silole aggregation-induced light emitting molecule include the following compounds.
Figure JPOXMLDOC01-appb-C000024
 前記式(9)で表される化合物は、シロール環にベンゼン環が2つ結合し、さらに、芳香環含有有機基を少なくとも2つ有する構造等であるため、凝集することにより、分子内回転が抑制され、発光が生じると考えられる。すなわち、前記式(9)で表される化合物は、シロール環にベンゼン環が2つ結合し、さらに、好ましくは芳香環含有有機基を少なくとも2つ有していれば特に制限されず、所望の用途に応じて、様々な基を導入することができる。例えば、分子中の任意の位置に、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基およびハロゲン原子から選択される少なくとも一種を、一つまたは複数個有することが好ましい。
Figure JPOXMLDOC01-appb-C000024
The compound represented by the formula (9) has a structure in which two benzene rings are bonded to a silole ring and further has at least two aromatic ring-containing organic groups, etc. It is believed that the light emission is suppressed. That is, the compound represented by the formula (9) is not particularly limited as long as two benzene rings are bonded to the silole ring, and more preferably, it has at least two aromatic ring-containing organic groups, Various groups can be introduced depending on the application. For example, one or at least one selected from a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphorous acid group, a hydroxyl group, an amino group, an isocyanate group, a silyl group and a halogen atom at any position in the molecule It is preferable to have two or more.
 前記式(9)で表される化合物はイオン化した構造をとるものも含む。例えば、前記RCが-C64-CH2-N(C252で表される基である場合、前記式(9)で表される化合物には、該部分が、-C64-CH2-N+(C252であるものも含まれる。 The compounds represented by the above formula (9) also include those having an ionized structure. For example, when the R C is a group represented by —C 6 H 4 —CH 2 —N (C 2 H 5 ) 2 , in the compound represented by the formula (9), the moiety is Also included are those that are C 6 H 4 -CH 2 -N + (C 2 H 5 ) 2 .
<8.芳香環含有金属錯体系分子>
 前記芳香環含有金属錯体系分子とは、芳香環および金属錯体部を有する凝集誘起発光性分子である。金属錯体部を構成する金属原子としては、特に限定されないが、例えばPt、Pd、Co、Cu、Ni、Fe、Ru、Mo、Zr、Cr、Re、Mn、Rh、V、W、Ti、Ta、Nb、Irなどが挙げられる。
<8. Aromatic ring-containing metal complex molecule>
The aromatic ring-containing metal complex molecule is an aggregation-induced light emitting molecule having an aromatic ring and a metal complex part. The metal atom constituting the metal complex part is not particularly limited, and examples thereof include Pt, Pd, Co, Cu, Ni, Fe, Ru, Mo, Zr, Cr, Re, Mn, Rh, V, W, Ti, and Ta. , Nb, Ir and the like.
 前記芳香環含有金属錯体系分子は、特に制限されないが、例えば下記の様なものを挙げることができる。 The aromatic ring-containing metal complex molecule is not particularly limited, and examples thereof include the following.
Figure JPOXMLDOC01-appb-C000025
<9.BODIPY系ホウ素イミン錯体凝集誘起発光性分子>
 前記BODIPY系ホウ素イミン錯体凝集誘起発光性分子とは、ホウ素原子とイミン構造とを有する凝集誘起発光性分子のことをいい、特に制限されないが、下記式(10)で表される化合物であることが好ましく、下記式(10)-1および(10)-2で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000025
<9. BODIPY-based boronimine complex aggregation-induced light emitting molecule>
The BODIPY-based boronimine complex aggregation-induced light emitting molecule refers to an aggregation-induced light emitting molecule having a boron atom and an imine structure, and is not particularly limited, but it is a compound represented by the following formula (10) Are more preferable, and compounds represented by the following formulas (10) -1 and (10) -2 are more preferable.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 前記式(10)、式(10)-1、および(10)-2中、Yは電子吸引性基または電子供与性基を表し、この置換基により、凝集誘起発光性分子の発光波長や強度といった蛍光特性が大きく変化する。前記式(10)中、XはS、O、またはNである。なお、式中X=OまたはSのとき、R4は存在しないことを留意する。
Figure JPOXMLDOC01-appb-C000027
In the above formulas (10), (10) -1 and (10) -2, Y represents an electron withdrawing group or an electron donating group, and the emission wavelength or intensity of the aggregation-induced light emitting molecule is represented by this substituent. The fluorescence characteristics such as In the formula (10), X is S, O or N. Note that R 4 does not exist when XXO or S in the formula.
 前記電子供与性基としては、例えば、メトキシ基、アルコキシ基、アミノ基アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、アルキル基、メトキシ基部位を有する芳香族基が挙げられる。 Examples of the electron donating group include methoxy group, alkoxy group, amino group alkylamino group, dialkylamino group, trialkylamino group, alkyl group and aromatic group having a methoxy group moiety.
 R1、R2、R3、R4はそれぞれ独立に水素原子、有機基または有機金属を表し、それぞれ同一であっても異なっても良く、互いに縮合して環構造を取っても良い。 R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, an organic group or an organic metal, which may be the same or different, and may be mutually condensed to form a ring structure.
 前記BODIPY系ホウ素イミン錯体凝集誘起発光性分子として好適に用いられる化合物の一例として、具体的には以下の化合物が挙げられる。 Specific examples of the compound suitably used as the BODIPY-based boronimine complex aggregation-inducing light emitting molecule include the following compounds.
Figure JPOXMLDOC01-appb-C000028
 前記凝集誘起発光性分子は、耐光性の観点から、環構造の形成に寄与しない炭素・炭素二重結合を有さないことが好ましい。言い換えると前記凝集誘起発光性分子は、耐光性の観点から、炭素・炭素二重結合は全て環構造の一部を形成していることが好ましい。
Figure JPOXMLDOC01-appb-C000028
The aggregation induced light emitting molecule preferably does not have a carbon / carbon double bond which does not contribute to the formation of a ring structure from the viewpoint of light resistance. In other words, it is preferable that all of the carbon-carbon double bonds form a part of a ring structure from the viewpoint of light resistance in the aggregation-induced light-emitting molecule.
 前記凝集誘起発光性分子は、市販品を用いてもよく、従来公知の方法、例えば、米国特許出願公開第2012/299474号明細書、米国特許出願公開第2013/177991号明細書、米国特許出願公開第2013/89889号明細書、S. Kamino, et. Al., Chem. Commun., 2010, 46, 9013-9015に記載の方法で合成した化合物を用いてもよい。 The aggregation induced light emitting molecule may be a commercially available product, and a conventionally known method such as US Patent Application Publication No. 2012/299474, US Patent Application Publication No. 2013/177991 and US Patent Application A compound synthesized by the method described in Publication No. 2013/89889, S. Kamino, et. Al., Chem. Commun., 2010, 46, 9013-9015 may be used.
 前記凝集誘起発光性分子は発光波長や輝度などの蛍光特性を調整できるさらにメカノクロミック特性を有していてもよい。 The aggregation-induced light emitting molecule may further have a mechanochromic property capable of adjusting the fluorescence property such as the light emission wavelength or the luminance.
 凝集ナノ粒子の作製に用いられる凝集誘起発光性分子は、撮影される蛍光画像において所望の波長(色)の蛍光を発するものを選択することができる。蛍光標識の対象とする標的物質が2種類以上である場合は、それぞれに対応した異なる波長の蛍光を発する凝集誘起発光性分子の組み合わせを選択して凝集ナノ粒子を作製すればよい。そのような2種類以上の凝集誘起発光性分子を用いる場合は、発光波長のピークが互いに100nm以上離れているものを選択することが好ましい。 The aggregation inducing luminescent molecule used for preparation of aggregation nanoparticles can be selected to emit fluorescence of a desired wavelength (color) in a captured fluorescence image. When two or more types of target substances to be targeted for fluorescent labeling are used, a combination of aggregation-induced luminescent molecules emitting fluorescence of different wavelengths corresponding to each may be selected to produce aggregated nanoparticles. When using such two or more types of aggregation-induced light-emitting molecules, it is preferable to select one having the emission wavelength peaks separated by 100 nm or more.
<凝集ナノ粒子>
 本発明の凝集ナノ粒子は、前記凝集誘起発光性分子の凝集により形成される粒子であり、粒子表面に親水基を有し、粒径変動係数が30%以下である。
<Aggregated nanoparticles>
The aggregated nanoparticle of the present invention is a particle formed by the aggregation of the aggregation-induced light emitting molecule, has a hydrophilic group on the particle surface, and has a particle size variation coefficient of 30% or less.
 本発明の凝集ナノ粒子がその表面に有する親水基の種類は特に限定されないが、例えば-OH、-SH、-COOH、-S(=O)2OH、-S(=O)NH2、-S(=O)2NH2、-P(=O)(OH)3、-P(=O)R(OH)2、-P(=O)R2(OH)、-P(OH)3、-P(=O)(NH23、-P(=O)R(NH22、-P(=O)R2(NH2)、-P(NH23、-O(C=O)OH、-NH2、-NHR、-NHCONH2、-NHCONHR、-NHCOOH、-Si(OH)3、-Si(R)(OH)2、-Si(R)2OH、-Ge(OH)3、-Ge(R)(OH)2、-Ge(R)2OH、-Ti(OH)3、-Ti(R)(OH)2、-Ti(R)2OH、-Si(NH23、-Si(R)(NH22、-B(OH)2、-O-B(OH)2、-B(NH22、-NHB(OH)2等が挙げられる。なお、前記Rはそれぞれ独立に水素または炭素数1~12のアルキル基を示す。 The type of hydrophilic groups aggregated nanoparticles have on its surface of the present invention is not particularly limited, for example -OH, -SH, -COOH, -S ( = O) 2 OH, -S (= O) NH 2, - S (= O) 2 NH 2 , -P (= O) (OH) 3, -P (= O) R (OH) 2, -P (= O) R 2 (OH), - P (OH) 3 , -P (= O) (NH 2) 3, -P (= O) R (NH 2) 2, -P (= O) R 2 (NH 2), - P (NH 2) 3, -O ( C = O) OH, -NH 2 , -NHR, -NHCONH 2, -NHCONHR, -NHCOOH, -Si (OH) 3, -Si (R) (OH) 2, -Si (R) 2 OH, -Ge (OH) 3, -Ge (R ) (OH) 2, -Ge (R) 2 OH, -Ti (OH) 3, -Ti (R) (OH) 2, -Ti (R) 2 OH, -Si (NH 2) 3, -Si ( ) (NH 2) 2, -B (OH) 2, -O-B (OH) 2, -B (NH 2) 2, -NHB (OH) 2 and the like. Each of R's independently represents hydrogen or an alkyl group having 1 to 12 carbon atoms.
 本発明の凝集ナノ粒子の製造方法としては特に制限は無いが、例えば任意の位置に事前に親水基が導入された凝集誘起発光性分子を任意の方法で凝集させてナノ粒子化することにより、表面に親水基を有する凝集ナノ粒子を作製することができる。また、親水基が導入されていない凝集誘起発光性分子を疎水性相互作用により凝集させてナノ粒子化させた後に化学合成法、分子間相互作用または錯形成によって粒子表面に親水基を導入する方法を用いてもよい。凝集ナノ粒子表面に親水基を導入する方法は特に限定はされないが、具体例としては、凝集誘起発光性分子を硫酸または、硝酸等の酸で処理する方法が挙げられる。 The method for producing the aggregated nanoparticles of the present invention is not particularly limited, but, for example, by aggregating aggregation-induced light emitting molecules in which hydrophilic groups have been previously introduced at arbitrary positions by aggregation by any method, Aggregated nanoparticles having hydrophilic groups on the surface can be prepared. Also, aggregation-induced light emitting molecules having no hydrophilic group are aggregated by hydrophobic interaction to form nanoparticles, and then a hydrophilic group is introduced to the particle surface by chemical synthesis, intermolecular interaction or complex formation. May be used. The method for introducing the hydrophilic group onto the surface of the aggregated nanoparticle is not particularly limited, but specific examples include a method for treating an aggregation-induced luminescent molecule with an acid such as sulfuric acid or nitric acid.
 本発明の凝集ナノ粒子は、親水基を当該粒子表面に1個/nm2以上有することが好ましく、1.5個/nm2以上有することがより好ましい。また、親水基を当該粒子表面に6.0個/nm2以下有することが好ましく、4.5個/nm2以下有することがより好ましい。なお、前記親水基の数は、凝集ナノ粒子の表面積1nm2あたりの親水基の個数である。 Aggregated nanoparticles of the invention preferably has one / nm 2 or more hydrophilic groups on the particle surface, and more preferably has 1.5 / nm 2 or more. Further, preferably it has a hydrophilic group 6.0 pieces / nm 2 or less to the particle surface, and more preferably has 4.5 or / nm 2 or less. The number of hydrophilic groups is the number of hydrophilic groups per 1 nm 2 of the surface area of the aggregated nanoparticles.
 前記親水基の導入量は、リファレンス試料と評価対象となる凝集誘起発光性分子に係るSTEM-EELSE(走査透過型電子顕微鏡を用いた電子エネルギー損失分光法)によりそれぞれの電子エネルギー損失値を測定し、ランベルト・ベールの法則に基づいて算出することができる。 The introduced amount of the hydrophilic group is determined by measuring each electron energy loss value by STEM-EELSE (electron energy loss spectroscopy using a scanning transmission electron microscope) according to the reference sample and the aggregation-induced light emitting molecule to be evaluated. It can be calculated based on Lambert-Veil's law.
 <平均粒径および粒径変動係数>
 前記凝集ナノ粒子の粒径は、粒径が小さくなるほど比表面積が大きくなることで標的物質との結合力が高まること、粒子に含まれる全ての凝集誘起発光性分子を励起させることが可能となるという観点と、粒径と輝度とは相関するという観点から、平均粒径は1nm以上100nm以下であることが好ましく、10nm以上70nm以下であることが特に好ましい。凝集ナノ粒子の平均粒径は、その製造方法における条件を調節することにより、所望の範囲に収まるようにすることができる。
<Average particle size and particle size variation coefficient>
As the particle diameter of the aggregated nanoparticles becomes smaller as the particle diameter decreases, the binding strength with the target substance is increased, and it becomes possible to excite all aggregation-induced luminescent molecules contained in the particles. The average particle diameter is preferably 1 nm or more and 100 nm or less, and particularly preferably 10 nm or more and 70 nm or less from the viewpoint of being correlated with the particle diameter and the brightness. The average particle size of the aggregated nanoparticles can be made to fall within a desired range by adjusting the conditions in the production method.
 凝集ナノ粒子の粒径は、走査型電子顕微鏡(SEM)を用いて粒子の画像を撮影することで測定することができる。充分な数(例えば100個)の集団に含まれる凝集ナノ粒子のそれぞれの粒径を測定し、その算術平均として平均粒径を算出する。 The particle size of the aggregated nanoparticles can be measured by photographing an image of the particles using a scanning electron microscope (SEM). The particle size of each of the aggregated nanoparticles contained in a sufficient number (for example, 100) of the population is measured, and the average particle size is calculated as its arithmetic mean.
 前記凝集ナノ粒子の粒径変動係数は、式:100×粒径の標準偏差/平均粒径により算出される。粒径変動係数は小さいほど染色に用いた際の輝度ムラが抑えられ、染色結果における定量性が向上する。本発明に係る凝集ナノ粒子における粒径変動係数は30%以下であることが好ましく、15%以下であることがさらに好ましい。粒径変動係数の下限としては特に限定は無いが、通常は4%以上である。凝集ナノ粒子の平均粒径、粒径変動係数は、例えば製造方法に応じた製造条件を適宜調節することによって、所定の範囲に収めることができる。例えば、高希釈高回転数の貧溶媒の中に凝集誘起発光性分子の分散液を滴下する方法や、マイクロミキサーを用いて貧溶媒と凝集誘起発光性分子の分散液とを高速接触させる方法、記載の比較的粗大な凝集誘起発光性分子の結晶を貧溶媒中に分散させた分散液に対してレーザーアブレーションを行う方法(特開2005-238342号公報)等で、粒径変動係数の小さい凝集ナノ粒子を製造することができる。 The particle size variation coefficient of the aggregated nanoparticles is calculated by the formula: 100 × standard deviation of particle size / average particle size. The smaller the particle size variation coefficient, the smaller the luminance unevenness when used for dyeing, and the quantitativeness of the dyeing result is improved. The particle size variation coefficient of the agglomerated nanoparticles according to the present invention is preferably 30% or less, and more preferably 15% or less. The lower limit of the particle size variation coefficient is not particularly limited, but is usually 4% or more. The average particle diameter and particle diameter variation coefficient of the aggregated nanoparticles can be kept within a predetermined range, for example, by appropriately adjusting the production conditions according to the production method. For example, a method of dropping a dispersion of aggregation-induced luminescent molecules into a high dilution, high rotation number of poor solvent, or a method of bringing a poor solvent into contact with a dispersion of aggregation-induced luminescent molecules at high speed using a micromixer An aggregation having a small coefficient of variation of particle diameter by a method (eg, JP-A-2005-238342) of performing a laser ablation on a dispersion in which crystals of relatively large aggregation-induced luminescent molecules are dispersed in a poor solvent. Nanoparticles can be produced.
 前記レーザーアブレーションを行う場合、レーザーとしては公知の各種レーザーを用いることができ、YAGレーザー、エキシマーレーザー、チタン-サファイヤレーザーなどが好ましく用いられる。照射レーザーとしては、パルス波を当てるのがよい。またより粒度分布のそろった凝集ナノ粒子を調製するためには、レーザーアプレーションを行う前の分散液の濃度を、0.1mg/L~500mg/Lに調整しておくことが好ましい。照射するパワー、パルス幅、波長、照射時間は、対象の凝集誘起発光性分子の結晶の種類や大きさ、貧溶媒との混合比により適宜調整することができ、より粒度分布のそろった凝集ナノ粒子を調製するためには、例えば、パワーは0.5~500mJ/cm2、パルス幅は1~100フェムト秒、パルス幅は0.01~500Hz、照射時間は0.5分~5時間、の範囲で選択してレーザーを照射することが好ましい。 When the laser ablation is performed, various known lasers can be used as the laser, and a YAG laser, an excimer laser, a titanium-sapphire laser or the like is preferably used. As an irradiation laser, it is preferable to apply a pulse wave. Further, in order to prepare aggregated nanoparticles having a more uniform particle size distribution, it is preferable to adjust the concentration of the dispersion before performing laser application to 0.1 mg / L to 500 mg / L. The irradiation power, pulse width, wavelength and irradiation time can be appropriately adjusted according to the type and size of the aggregation-induced luminescent molecule of interest and the mixing ratio with the poor solvent, and the aggregation nano size is more uniform. For preparing the particles, for example, the power is 0.5 to 500 mJ / cm 2 , the pulse width is 1 to 100 femtoseconds, the pulse width is 0.01 to 500 Hz, the irradiation time is 0.5 minutes to 5 hours, It is preferable to select in the range of and irradiate a laser.
 前記貧溶媒としては水、メタノール、エタノールなどのアルコール系溶媒、ペンタン、ヘキサン、ヘプタンなどの脂肪族系溶媒、ベンゼン、トルエンなどの芳香族系溶媒、またはこれら2種以上の混合溶媒を使用することができるが、これらには限定されない。前記レーザーアブレーション法は例えば、The Review of Laser Engineering, 33, 41-46に記載の方法でセットアップした装置で行うことができる。 As the poor solvent, use may be made of water, alcohol solvents such as methanol and ethanol, aliphatic solvents such as pentane, hexane and heptane, aromatic solvents such as benzene and toluene, or a mixed solvent of two or more of them. But not limited thereto. The laser ablation method can be performed, for example, with an apparatus set up by the method described in The Review of Laser Engineering, 33, 41-46.
 前記凝集ナノ粒子は、その構成成分として凝集誘起発光性分子の他に、中心核を有していてもよい。中心核とは、後述するように凝集誘起発光性分子から前記凝集ナノ粒子を作製する際において、凝集誘起発光性分子が凝集して成長するための核となる物質である。 The aggregated nanoparticles may have a central nucleus in addition to the aggregation inducing luminescent molecule as a component thereof. The central nucleus is a substance serving as a nucleus for aggregating and causing the aggregation-induced luminescent molecules to grow when the aggregation nanoparticles are produced from the aggregation-induced luminescent molecules as described later.
 中心核として用いられる物質は、特に限定されず、例えばポリスチレン、ラテックス等の有機分子や、シリカ等の無機分子からなる微粒子が好適に用いられる。中心核の性質および大きさは、所望の凝集ナノ粒子の粒径や作製に用いられる凝集誘起発光性分子の性質にしたがって選択することができる。中心核としては、平均粒径が1nm以上20nm以下であり、粒径変動係数が、5%以下のものが好ましい。中心核の平均粒径および粒径変動係数が前記範囲内であると、得られる凝集ナノ粒子の平均粒径および粒径変動係数を前述の範囲とすることが容易であるため好ましい。 The substance used as the central nucleus is not particularly limited, and for example, fine particles of organic molecules such as polystyrene and latex, and inorganic molecules such as silica are suitably used. The nature and size of the central core can be selected according to the desired particle size of the aggregated nanoparticles and the nature of the aggregation-induced luminescent molecule used to make it. As the central nucleus, one having an average particle diameter of 1 nm or more and 20 nm or less and a particle diameter variation coefficient of 5% or less is preferable. It is preferable for the average particle size and the particle size variation coefficient of the central core to be in the above-mentioned range, since it is easy to make the average particle size and the particle size variation coefficient of the obtained agglomerated nanoparticles into the above-mentioned range.
 前記凝集ナノ粒子は、その表面に非特異吸着防止分子を有していてもよい。凝集ナノ粒子と非特異吸着防止分子の結合様式は特に限定されないが、例えば、凝集ナノ粒子表面の親水性基を介して共有結合や静電相互作用で結合することができる。非特異吸着防止分子は特に限定されないが、例えば、ポリエチレングリコール等のポリマーであることが好ましい。 The aggregated nanoparticles may have nonspecific adsorption preventing molecules on the surface thereof. Although the binding mode of the aggregation nanoparticles and the nonspecific adsorption preventing molecule is not particularly limited, for example, they can be coupled by covalent bonding or electrostatic interaction via hydrophilic groups on the surface of the aggregation nanoparticles. Although the nonspecific adsorption preventing molecule is not particularly limited, for example, a polymer such as polyethylene glycol is preferable.
 本発明の凝集ナノ粒子の形態、例えば、製造時、保存時、流通時の形態としては、特に限定されないが、例えばPBS等の公知の緩衝液を分散媒とする分散液の形態であることが好ましい。 The form of the aggregated nanoparticles of the present invention, for example, the form at the time of production, storage, and distribution is not particularly limited, but for example, a form of dispersion using a known buffer such as PBS as a dispersion medium preferable.
<蛍光標識材>
 本発明の一実施形態に係る蛍光標識材は、凝集ナノ粒子を含み、粒子表面に標的指向性リガンドを有する。凝集ナノ粒子と標的指向性リガンドとは、直接結合させてもよいし、リンカー等を介して結合させてもよい。また、凝集ナノ粒子の表面に公知の方法で結合基を導入することで標的指向性リガンドを結合させることもできる。前記結合基としては、例えば上述の凝集ナノ粒子が有する親水基を利用してもよい。
<Fluorescent labeling material>
The fluorescent labeling material according to one embodiment of the present invention contains aggregated nanoparticles and has a targeting ligand on the particle surface. The aggregated nanoparticle and the targeting ligand may be directly linked or may be linked via a linker or the like. Alternatively, the targeting ligand can be bound by introducing a binding group to the surface of the aggregated nanoparticle by a known method. As the bonding group, for example, a hydrophilic group contained in the above-mentioned aggregated nanoparticle may be used.
 蛍光標識材の形態、例えば、製造時、保存時、流通時の形態としては、特に限定されないが、例えばPBS等の公知の緩衝液を分散媒とする分散液の形態であることが好ましい。本発明の一態様は、分散液の形態、すなわち、蛍光標識材分散液であり、該蛍光標識材分散液は、蛍光標識材と、緩衝液とを含む。 The form of the fluorescent labeling material, for example, the form at the time of production, storage, and distribution is not particularly limited, but is preferably in the form of a dispersion using a known buffer such as PBS as a dispersion medium. One embodiment of the present invention is in the form of a dispersion, that is, a fluorescent label dispersion, and the fluorescent label dispersion contains a fluorescent label and a buffer.
<標的指向性リガンド>
 本発明において用いられる標的指向性リガンドは、標的物質を特異的に認識して結合する物質であり、例えば動物等から採取した組織や細胞に含まれる生体物質である目的生体物質を標的物質として、特異的に認識して結合する物質であることが好ましい。前記目的生体物質は特に限定されないが、例えばタンパク質、核酸、糖鎖、脂質等が挙げられる。目的生体物質は任意の疾患に関連している生体物質であることが好ましい。具体的には、例えばがん細胞特異的に発現するマーカータンパク質(例えば、がん特異的タンパク質、血管内皮細胞特異的タンパク質、リン酸化タンパク質など)、炎症誘発性タンパク質等、免疫関連タンパク質が挙げられる。
<Targeting ligand>
The targeting ligand used in the present invention is a substance that specifically recognizes and binds to the target substance, for example, a target biological substance that is a biological substance contained in tissues and cells collected from an animal etc. It is preferably a substance that specifically recognizes and binds. The target biological substance is not particularly limited, and examples include proteins, nucleic acids, sugar chains, lipids and the like. The target biological material is preferably a biological material associated with any disease. Specifically, for example, marker proteins (for example, cancer-specific proteins, vascular endothelial cell-specific proteins, phosphorylated proteins, etc.) specifically expressed in cancer cells, inflammation-related proteins, etc., and immune-related proteins can be mentioned. .
 例えば、目的生体物質が腫瘍組織やがん細胞において特異的に発現するタンパク質である場合、標的指向性リガンドとしてはこれらに対する抗体が好ましく選択される。目的生体物質が糖タンパク質の場合には、標的指向性分子としては、糖鎖と結合性を有するタンパク質(例えば、レクチン)などが好ましく選択される。 For example, when the target biological substance is a protein specifically expressed in a tumor tissue or a cancer cell, antibodies against these are preferably selected as a targeting ligand. When the target biological substance is a glycoprotein, a protein (for example, lectin) having a binding property with a sugar chain is preferably selected as the target-directed molecule.
 その他の標的指向性分子としては、例えば、細胞小器官親和性物質、ペプチドなどが挙げられる。 Other target-directed molecules include, for example, organelle compatible substances, peptides and the like.
 上記標的指向性リガンドとして抗体を選択する場合、通常はIgGまたはIgMであり、IgGが好ましく用いられる。抗体は、目的タンパク質または低次抗体を特異的に認識して結合する能力を有する限り、完全長のIgGのような天然型の抗体であってもよいし、Fab、Fab'、F(ab')2、Fv、scFvなどの抗体断片、あるいはそれらの抗体断片を用いて多機能化(多価化または多重特異性化)された人工抗体のような、非天然型の抗体であってもよい。抗原にユニークなエピトープを認識して結合する一次抗体が好ましく用いられる。標的指向性リガンドとして、一次抗体にユニークなエピトープを認識して結合する抗体である二次抗体を用いる場合にはあらかじめ目的生体物質に一次抗体を結合させたものを標的物質として用いる。 When an antibody is selected as the targeting ligand, it is usually IgG or IgM, and IgG is preferably used. The antibody may be a natural antibody such as full-length IgG, as long as it has the ability to specifically recognize and bind a target protein or a lower antibody, Fab, Fab ', F (ab' 2 ) It may be a non-naturally occurring antibody such as an artificial antibody which has been multifunctionalized (multivalented or multispecificized) using antibody fragments such as 2 , Fv and scFv, or antibody fragments thereof . A primary antibody that recognizes and binds to a unique epitope on an antigen is preferably used. In the case of using a secondary antibody which is an antibody which recognizes and binds a unique epitope to a primary antibody as a targeting ligand, a target biological substance to which a primary antibody is bound in advance is used as a target substance.
 標的指向性リガンドおよび凝集ナノ粒子表面との結合様式は特に限定されず、例えば共有結合、イオン結合、水素結合、配位結合、物理吸着および化学吸着等を介して結合することができる。特に、凝集ナノ粒子表面に存在する前記親水基と、標的指向性リガンドの有する官能基とが共有結合することによって結合していることが好ましい。この場合において、凝集ナノ粒子表面の親水基は標的指向性リガンドとの結合によって失われるが、標的指向性リガンドの有する親水基によって補完されるため、本発明の蛍光標識材の表面は親水性であることに留意する。 The manner of binding to the targeting ligand and the surface of the aggregated nanoparticle is not particularly limited, and for example, it can be bound via covalent bond, ionic bond, hydrogen bond, coordinate bond, physical adsorption, chemical adsorption and the like. In particular, it is preferable that the hydrophilic group present on the surface of the aggregated nanoparticle and the functional group possessed by the targeting ligand be bound by covalent bonding. In this case, the hydrophilic group on the surface of the aggregated nanoparticle is lost by the binding with the targeting ligand, but the surface of the fluorescent labeling material of the present invention is hydrophilic because it is complemented by the hydrophilic group possessed by the targeting ligand. Keep in mind that
 また、前記凝集ナノ粒子がその表面に非特異吸着分子を有するとき、標的指向性リガンドと結合するためのリンカーとして該非特異吸着防止分子を用いてもよい。このような目的で用いられる非特異吸着防止分子としては、MPCポリマー、およびNHSもしくはマレイミド等の各種末端基を有するポリエチレングリコール誘導体等が挙げられる。 In addition, when the aggregated nanoparticles have nonspecific adsorption molecules on their surface, the nonspecific adsorption preventing molecule may be used as a linker for binding to a target-directed ligand. Examples of nonspecific adsorption preventing molecules used for such purpose include MPC polymers and polyethylene glycol derivatives having various terminal groups such as NHS or maleimide.
<凝集ナノ粒子の製造方法>
 本発明の凝集ナノ粒子は、凝集誘起発光性分子の溶液に、貧溶媒を接触させ、凝集誘起発光性分子を凝集させる工程(A)を含むことが好ましく、前記工程(A)が、中心核存在下で、凝集誘起発光性分子の溶液に、貧溶媒を接触させ、凝集誘起発光性分子を凝集させる工程であってもよい。前記工程(A)以外の工程としては特に限定は無く、例えば凝集誘起発光性分子に親水基を導入する工程や、凝集ナノ粒子表面に親水基を導入する工程等が適宜行われる。中心核存在下で工程(A)を行うことにより、凝集ナノ粒子の粒径変動係数や平均粒径をコントロールすることが容易になるため好ましい。中心核は、凝集誘起発光性分子の溶液中に予め混合されていてもよく、貧溶媒中に予め混合されていてもよい。
<Method for producing aggregated nanoparticles>
The aggregated nanoparticles of the present invention preferably include a step (A) of bringing a poor solvent into contact with a solution of aggregation-induced luminescent molecules and aggregating the aggregation-induced luminescent molecules, wherein the step (A) comprises a core In the presence of the aggregation-induced luminescent molecule, the solution of the aggregation-induced luminescent molecule may be brought into contact with the poor solvent to aggregate the aggregation-induced luminescent molecule. The step other than the step (A) is not particularly limited, and, for example, a step of introducing a hydrophilic group into the aggregation-induced light emitting molecule, a step of introducing a hydrophilic group into the surface of the aggregated nanoparticle, and the like are appropriately performed. By performing the step (A) in the presence of the central nucleus, it is preferable to control the particle size variation coefficient and the average particle size of the aggregated nanoparticles, which is preferable. The central core may be premixed in the solution of aggregation-induced luminescent molecules, or may be premixed in the poor solvent.
 本発明における凝集ナノ粒子は、凝集誘起発光性分子を溶解させることができる溶媒(良溶媒)を用い、凝集誘起発光性分子の溶液を調製した後に、凝集誘起発光性分子の溶液に、凝集誘起発光性分子の貧溶媒と混合することで凝集ナノ粒子を析出させる再沈殿法により調製することができる。このような再沈殿法を利用することで、凝集誘起発光性分子がより高密度に充填された粒子を作製することができる。具体的には、例えば、マイクロミキサーと呼ばれる内径の小さなミキサーを用いた再沈殿法であって、マイクロミキサーに凝集誘起発光性分子の良溶媒と貧溶媒とをポンプで送り込み、両者を急速かつ均一に混合することにより、微粒子を析出させる方法(流通法)が挙げられる。 The aggregation nanoparticles in the present invention use a solvent (good solvent) capable of dissolving aggregation-induced luminescent molecules, prepare a solution of aggregation-induced luminescent molecules, and then induce aggregation in the solution of aggregation-induced luminescent molecules. It can be prepared by the reprecipitation method of precipitating aggregated nanoparticles by mixing the luminescent molecule with the poor solvent. By using such a reprecipitation method, it is possible to produce particles densely packed with aggregation-induced luminescent molecules. Specifically, for example, a reprecipitation method using a mixer with a small inner diameter called a micromixer, and pumping a good solvent and a poor solvent of aggregation-induced luminescent molecules into the micromixer, both rapidly and uniformly The method (flow-through method) to which microparticles | fine-particles are deposited is mentioned by mixing to (1).
 好適に用いることができるマイクロミキサーとしては、凝集誘起発光性分子の分溶液と貧溶媒とを混合する混合部の流路の内径(流路の断面が円形でない場合は、当該流路の断面積と同じ面積をもつ円の直径)が2mm以下であることが好ましく、溶液と貧溶媒をより急速に混合するためには、流路の内径が1mm以下であることが好ましい。また、微粒子による流路の閉塞を防止するため、および流路内部での圧力損失を低減するためには、流路の内径が0.05mm以上であることが好ましい。 As a micromixer that can be suitably used, the inner diameter of the flow path of the mixing section for mixing the minute solution of aggregation-induced luminescent molecules and the poor solvent (when the cross section of the flow path is not circular, the cross-sectional area of the flow path The diameter of the circle having the same area as that of the above is preferably 2 mm or less, and in order to mix the solution and the poor solvent more rapidly, the inner diameter of the flow path is preferably 1 mm or less. Further, in order to prevent the clogging of the flow path by the fine particles and to reduce the pressure loss inside the flow path, the inner diameter of the flow path is preferably 0.05 mm or more.
 本発明の良溶媒としては、凝集誘起発光性分子に対して良好な溶解性を示すものであれば特に限定されず、後述の貧溶媒との混合性がよいものを選択することが好ましい。具体的には、例えば、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、1-メチル-2-ピロリジノン、1,3-ジメチルイミダゾリノン、N,N-ジメチルホルムアミドなどのアミド系溶媒、ジメチルスルホキシドなどの含硫黄系溶媒、またはこれら2種以上の混合溶媒を好適に使用することができる。また、凝集誘起発光性分子の再分散を防ぐという観点から、貧溶媒の沸点よりも低い沸点を有する良溶媒を使用することが好ましい。また、必要に応じて無機化合物や分散剤などを溶解させてもよい。 The good solvent of the present invention is not particularly limited as long as it exhibits good solubility in aggregation-induced light emitting molecules, and it is preferable to select one having good compatibility with the poor solvent described later. Specifically, for example, ether solvents such as tetrahydrofuran and dioxane, ketone solvents such as acetone and methyl ethyl ketone, and amides such as 1-methyl-2-pyrrolidinone, 1,3-dimethylimidazolinone and N, N-dimethylformamide A system solvent, a sulfur-containing solvent such as dimethyl sulfoxide, or a mixed solvent of two or more of these can be suitably used. Moreover, it is preferable to use a good solvent having a boiling point lower than the boiling point of the poor solvent from the viewpoint of preventing redispersion of aggregation-induced light emitting molecules. Moreover, you may dissolve an inorganic compound, a dispersing agent, etc. as needed.
 本発明の貧溶媒としては、凝集誘起発光性分子に対して比較的溶解性が低いものであれば特に限定されず、前述の良溶媒との混合性がよいものを選択することが好ましい。例えば、水または水溶液が好ましく、メタノール、エタノールなどのアルコール系溶媒、ペンタン、ヘキサン、ヘプタンなどの脂肪族系溶媒、ベンゼン、トルエンなどの芳香族系溶媒、またはこれら2種以上の混合溶媒を使用することができるが、これらには限定されない。除去を容易にする観点から、沸点が良溶媒と比較的低い(例えば40℃~120℃)ものが好ましい。また、必要に応じて無機化合物などを溶解させてもよい。 The poor solvent of the present invention is not particularly limited as long as it has relatively low solubility in the aggregation-induced light emitting molecule, and it is preferable to select one having good compatibility with the above-mentioned good solvent. For example, water or an aqueous solution is preferable, and alcohol solvents such as methanol and ethanol, aliphatic solvents such as pentane, hexane and heptane, aromatic solvents such as benzene and toluene, or mixed solvents of two or more of them are used. Although it can be, it is not limited to these. From the viewpoint of facilitating removal, those having a relatively low boiling point (eg, 40 ° C. to 120 ° C.) are preferable. Moreover, you may dissolve an inorganic compound etc. as needed.
 反応時間、反応温度の反応条件は、上述した条件を満たす凝集ナノ粒子が製造されるような条件であれば特に限定されないが、凝集誘起発光性を効率よくナノ粒子化するためには短時間内に急速に混合することが好ましく、例えば、レイノルズ数が4,000以上であるような乱流条件であることが好ましい。 The reaction conditions for the reaction time and reaction temperature are not particularly limited as long as the aggregated nanoparticles satisfying the above-mentioned conditions are produced, but in order to efficiently form the aggregation-induced light-emitting property into nanoparticles, Preferably, the turbulent mixing conditions are such that, for example, the Reynolds number is 4,000 or more.
<蛍光標識材の製造方法>
 本発明の一実施形態としては、凝集ナノ粒子に標的指向性リガンドを結合させる工程を含む、蛍光標識材の製造方法が挙げられる。凝集ナノ粒子に標的指向性リガンドの結合方法は特に限定されず、したがって上記製造方法においては、凝集ナノ粒子と標的指向性リガンドとを直接反応させてもよいし、凝集ナノ粒子と標的指向性リガンドとを反応させる前に凝集ナノ粒子に任意の結合基を導入する工程を含んでいてもよい。また、凝集ナノ粒子に標的指向性リガンドを結合させる前に、凝集粒子表面に非特異吸着防止分子を結合させる、非特異吸着防止処理を行う工程を含んでいてもよい。
<Method for producing fluorescent labeling material>
One embodiment of the present invention includes a method for producing a fluorescent labeling material, which comprises the step of binding a targeting ligand to aggregated nanoparticles. There is no particular limitation on the method of binding the targeting ligand to the aggregated nanoparticle, and therefore, in the above-mentioned production method, the aggregated nanoparticle and the targeting ligand may be directly reacted, or the aggregated nanoparticle and the targeting ligand may be used. And the step of introducing an optional binding group to the aggregated nanoparticles before reacting them. The method may further include the step of performing non-specific adsorption preventing treatment to bind the non-specific adsorption preventing molecule to the surface of the aggregated particle before attaching the targeting nanoparticle to the aggregated nanoparticle.
 以下、実施例に基づいて本発明の好適な態様をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。
[作製例1]
Hereinafter, preferred embodiments of the present invention will be more specifically described based on examples, but the present invention is not limited to these examples.
[Preparation Example 1]
<凝集誘起性発光性分子の作製>
 親水基を持たない1,1,2,3,4,5-Hexaphenyl-1H-silole(以下、AIE0と称する)0.1モルに対し、濃硝酸5mL、濃硫酸5mLを加え1時間攪拌することでAIE0の有する芳香環にニトロ基を導入した。続いて、トルエン/水で分液精製した後、カラムクロマトグラフィーを用いて一分子中に、ニトロ基が1つ導入されたAIE0、2つ導入されたAIE0をそれぞれ分離し、分取した。
<Preparation of aggregation-induced luminescent molecules>
Add 5 mL of concentrated nitric acid and 5 mL of concentrated sulfuric acid to 0.1 mol of 1,1,2,3,4,5-hexaphenyl-1H-silole (hereinafter referred to as AIE 0) having no hydrophilic group and stir for 1 hour The nitro group was introduced into the aromatic ring possessed by AIE0 by Subsequently, after liquid-phase purification with toluene / water, AIE0 into which one nitro group was introduced and AIE0 into which two nitro groups were introduced were separated and separated using column chromatography.
 10.1gのニトロ基が1つ導入されたAIE0に対し、スズ粉末0.1gおよび濃塩酸10mLを加えて1時間攪拌した。続いて、1規定水酸化ナトリウム水溶液50mLを加え、10分間攪拌した。続いて、水/酢酸エチルで分液精製し、減圧乾燥させることで一分子中に1つのアミノ基を有するシロール系凝集誘起発光性分子(以下AIE1と称する)を得た。 0.1 g of tin powder and 10 mL of concentrated hydrochloric acid were added to AIE0 introduced with one 10.1 g of nitro group, and stirred for 1 hour. Subsequently, 50 mL of 1 N aqueous sodium hydroxide solution was added, and the mixture was stirred for 10 minutes. Subsequently, liquid separation purification was performed with water / ethyl acetate, and drying under reduced pressure was performed to obtain a silole aggregation-induced light emitting molecule (hereinafter referred to as AIE1) having one amino group in one molecule.
 同様にニトロ基2つ導入されたAIE0から一分子中に2つのアミノ基を有するシロール系凝集誘起発光性分子(以下AIE2と称する)を合成した。 Similarly, a silole-based aggregation-induced light emitting molecule (hereinafter referred to as AIE2) having two amino groups in one molecule was synthesized from AIE0 introduced with two nitro groups.
 また、1,2,3,4,5-Hexaphenyl-1H-siloleの代わりに tetraphenyletheneを用いて、AIE1合成と同様の製造法によりアミノ基を1つ導入したtetraphenylethene(以下AIE3と称する)を得た。なお、AIE3は炭素―炭素2重結合に芳香環が結合したオレフィン骨格を有する。 In addition, tetraphenylethene (hereinafter referred to as AIE3) into which one amino group was introduced was obtained by the same production method as AIE1 using tetraphenylethene instead of 1,2,3,4,5-hexaphenyl-1H-silole . AIE 3 has an olefin skeleton in which an aromatic ring is bonded to a carbon-carbon double bond.
 Dalton Trans, 2013, 42, 3646-3652に記載の合成法により、シロール系凝集誘起発光性分子を作製した(以下、AIE4と称する)。 A silole aggregation-induced luminescent molecule was produced by the synthesis method described in Dalton Trans, 2013, 42, 3646-3652 (hereinafter referred to as AIE 4).
 Macromolecules 2009, 42, 1418-1420に記載の合成法によりカルボラン系凝集誘起発光性分子を作製した(以下、AIE5と称する)。 A carborane-based aggregation-induced luminescent molecule was produced by the synthesis method described in Macromolecules 2009, 42, 1418-1420 (hereinafter referred to as AIE 5).
 New J. Chem., 2007, 31, 2076-2082に記載の合成法によりベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子を作製した(以下、AIE6と称する)。 A benzofuro-oxazolo-carbazole aggregation-induced luminescent molecule was prepared by the synthetic method described in New J. Chem., 2007, 31, 2076-2082 (hereinafter referred to as AIE 6).
 Chem.Lett.2012, 41, 1445-1447に記載の合成法によりマレイミド系凝集誘起発光性分子を作製した(以下、AIE7と称する)。 A maleimide aggregation-induced luminescent molecule was produced by the synthesis method described in Chem. Lett. 2012, 41, 1445-1447 (hereinafter referred to as AIE 7).
 Organometallics, 2016, 35 (14), pp 2327-2332に記載の合成法によりシロール系凝集誘起発光性分子を作製した(以下、AIE8と称する)。 A silole aggregation-induced light emitting molecule was produced by the synthesis method described in Organometallics, 2016, 35 (14), pp 2327-2332. (Hereinafter, referred to as AIE8).
 Chem. Eur. J, 2013, 19, 4506-4512に記載の合成法によりBODIPY系ホウ素イミン錯体凝集誘起発光性分子を作製した(以下、AIE9と称する)。 The BODIPY-based boronimine complex aggregation-induced light emitting molecule was prepared by the synthesis method described in Chem. Eur. J, 2013, 19, 4506-4512 (hereinafter referred to as AIE 9).
 前記AIE1~AIE9はそれぞれ以下の構造を有する。 Each of the AIE 1 to AIE 9 has the following structure.
Figure JPOXMLDOC01-appb-C000029
[作製例2]
<ビオチン修飾した2次抗体>
 50mM Tris-HCl溶液(pH7.5)に抗ウサギIgG抗体100μgを溶解した。該溶液に最終濃度が3mMとなるようにDTT(Dithiothretol)溶液を混合した。その後、該溶液を37℃で30分間反応させ、脱塩カラムを用いて還元型2次抗体を精製した。精製した溶液全量のうち200μLを50mM Tris-HCl溶液(pH7.5)に溶解して抗体溶液を得た。その一方で、スペーサーの長さが30Åであるリンカー試薬「(+)-Biotin-PEG6-NH-Mal」(PurePEG社、製品番号2461006-250)をDMSOを用いて0.4mMとなるように調製した。この溶液8.5μLを前記抗体溶液に添加し、混和して37℃で30分間反応させた。
Figure JPOXMLDOC01-appb-C000029
[Production Example 2]
<Biotin modified secondary antibody>
100 μg of anti-rabbit IgG antibody was dissolved in 50 mM Tris-HCl solution (pH 7.5). The solution was mixed with DTT (Dithiothretol) solution to a final concentration of 3 mM. Thereafter, the solution was allowed to react at 37 ° C. for 30 minutes, and the reduced secondary antibody was purified using a desalting column. 200 μL of the total amount of the purified solution was dissolved in 50 mM Tris-HCl solution (pH 7.5) to obtain an antibody solution. On the other hand, a linker reagent "(+)-Biotin-PEG6-NH-Mal" (PurePEG, product number 2461006-250) having a spacer length of 30 Å is prepared to be 0.4 mM using DMSO. did. 8.5 μL of this solution was added to the above antibody solution, mixed and allowed to react at 37 ° C. for 30 minutes.
 この反応溶液を脱塩カラム(Zaba Spin Desalt Spin Columuns」(サーモサイエンティフィック社、89882)を用いて精製した。脱塩した反応溶液の波長300nmの吸収を分光光度計(日立社「F-7000」)により計測することで反応溶液に含まれるたんぱく質の量を算出した。50mM Tris溶液により反応溶液を250μg/mLに調整してビオチン修飾2次抗体の溶液とした。
[実施例1]
<凝集ナノ粒子1>
 作製例1で作製した、AIE1を1mMになるようにテトラヒドロフランに溶解したものを調整した。内径0.15mmの流路を備えるステンレス製T字型マイクロミキサー(MT1XCS6、Valco社製)に、ポンプ(PU-1580、日本分光株式会社)を用いて流速1.0mL/minで前記溶液を送液し、さらに別のポンプ(NS-KX-500、日本精密科学株式会社)を用いて、流速74.0mL/minで超純水を送液することで、マイクロミキサー内で両液を混合してAIE1の粒子を析出させた。混合時の圧力は4~5MPaであり、AIE1の粒子による流路の閉塞は生じなかった。混合時のレイノルズ数は、約12,000と計算された。
This reaction solution was purified using a desalting column (Zaba Spin Desalt Spin Columuns) (Thermo Scientific Co., Ltd. 89882). The absorption at a wavelength of 300 nm of the desalted reaction solution was measured with a spectrophotometer (F-7000 manufactured by Hitachi, Ltd.). The amount of protein contained in the reaction solution was calculated by measuring “.” The reaction solution was adjusted to 250 μg / mL with a 50 mM Tris solution to obtain a solution of a biotin-modified secondary antibody.
Example 1
<Flocculated nanoparticles 1>
What was melt | dissolved in the tetrahydrofuran so that it might become 1 mM of AIE1 produced by the preparation example 1 was adjusted. The above solution is sent at a flow rate of 1.0 mL / min using a pump (PU-1580, JASCO Corporation) in a stainless steel T-shaped micro mixer (MT1XCS6, manufactured by Valco) equipped with a flow path with an inner diameter of 0.15 mm. The solution is mixed, and the two solutions are mixed in the micromixer by feeding ultrapure water at a flow rate of 74.0 mL / min using another pump (NS-KX-500, Japan Precision Science Co., Ltd.). The particles of AIE1 were precipitated. The pressure at the time of mixing was 4 to 5 MPa, and clogging of the flow path by AIE1 particles did not occur. The Reynolds number at mixing was calculated to be about 12,000.
 得られた粒子0.1gと硝酸10mLを混合し、50℃で1時間攪拌して粒子表面の親水化処理を行い、続いて遠心分離機を用いて10000rpmで30分処理して上澄みを除去して洗浄することで凝集ナノ粒子1を得た。 0.1 g of the obtained particles and 10 mL of nitric acid are mixed and stirred at 50 ° C. for 1 hour to hydrophilize the particle surface, and then treated with a centrifugal separator at 10000 rpm for 30 minutes to remove the supernatant. The aggregate nanoparticles 1 were obtained by washing.
 得られた凝集ナノ粒子1について、TEMで任意の100個の粒子を観察し、平均粒径を求め、式;100×(粒子の標準偏差/平均粒子径)に基づいて粒径変動係数(CV)を算出した。 With respect to the obtained aggregated nanoparticles 1, arbitrary 100 particles are observed by TEM to obtain an average particle diameter, and the particle diameter variation coefficient (CV) is calculated based on the formula; 100 × (standard deviation of particles / average particle diameter) ) Was calculated.
 得られた凝集ナノ粒子1について、以下の方法で粒子表面への親水基の導入量[個/nm2]を算出した。 With respect to the obtained aggregated nanoparticles 1, the amount of introduced hydrophilic groups [number / nm 2 ] to the particle surface was calculated by the following method.
 表面に3個/nm2の親水基を有するリファレンス試料溶液(100μM、100μL)を、φ3mmのTEM用グリッド内に滴下し、均一に乾燥させてSTEM-EELSE測定により損失値を測定した。このときの親水基またはリガンドに吸収に由来する波長におけるSTEM-EELSE測定の損失値を、リファレンス値とした。 A reference sample solution (100 μM, 100 μL) having a hydrophilic group of 3 / nm 2 on the surface was dropped into a φ3 mm grid for TEM, dried uniformly, and the loss value was measured by STEM-EELSE measurement. The loss value of the STEM-EELSE measurement at the wavelength derived from the absorption to the hydrophilic group or the ligand at this time was used as a reference value.
 凝集ナノ粒子1についてSTEM-EELSE測定により、粒子表面の1nm2の領域を指定し、損失値を測定した。ランベルト・ベール則より、凝集誘起発光性分子1nm2の損失値とリファレンスの損失値をもとに、親水基の導入量[個/nm2]を算出した。 The area of 1 nm 2 on the particle surface was specified by STEM-EELSE measurement for the aggregated nanoparticles 1, and the loss value was measured. From the Lambert-Beer law, the amount of introduced hydrophilic groups (number / nm 2 ) was calculated based on the loss value of aggregation-induced light emitting molecule 1 nm 2 and the loss value of the reference.
 各実施例および比較例で得られた凝集ナノ粒子1~21についても同様の方法で粒径変動係数および親水基の導入量を算出した。
<蛍光標識材1>
 凝集ナノ粒子1を、EDTAを2mM含むPBSを用いて3nMに調整した分散液に、最終濃度が10mMとなるようにSM(PEG)12(succinimidyl-[(N-maleimidopropionamido)-dodecanethyleneglycol]ester;サーモサイエンティフィック社)を混合し、5℃で1時間反応させた。
The particle size variation coefficient and the amount of introduced hydrophilic group were calculated in the same manner for the aggregated nanoparticles 1 to 21 obtained in each of the examples and comparative examples.
<Fluorescent labeling material 1>
SM (PEG) 12 (succinimidyl-[(N-maleimidopropionamido) -dodecaneethyleneglycol] ester; in a dispersion prepared by adjusting aggregated nanoparticles 1 to 3 nM with PBS containing 2 mM EDTA to a final concentration of 10 mM; thermo Scientific) were mixed and allowed to react at 5 ° C. for 1 hour.
 この分散液について、10000rpmで20分間遠心分離処理を行った後に上澄みを除去した後にEDTAを2mM含有したリン酸バッファに加えて沈殿物を分散させて、再度遠心分離を行った。同様の操作を3回行うことで、マレイミド基で修飾された凝集ナノ粒子1を得た。 The dispersion was centrifuged at 10,000 rpm for 20 minutes, and after removing the supernatant, it was added to a phosphate buffer containing 2 mM of EDTA to disperse the precipitate, and centrifugation was performed again. The same operation was performed three times to obtain aggregated nanoparticles 1 modified with a maleimide group.
 1mg/mLに調整したストレプトアビジン40μLを210μLのボレートバッファに加えた後、64mg/mLに調整した2-イミノチオラン塩酸塩(シグマアルドリッチ社製)70μLを加え、室温で1時間反応させることで、ストレプトアビジンのアミノ基にチオール基を導入した。このストレプトアビジン溶液をゲルろ過カラム(Zaba Spin Desalting Columuns、フナコシ社)により脱塩することで、表面にアミノ化を有する凝集ナノ粒子1に結合可能なストレプトアビジンを作製した。 After adding 40 μL of streptavidin adjusted to 1 mg / mL to 210 μL of borate buffer, add 70 μL of 2-iminothiolane hydrochloride (manufactured by Sigma Aldrich) adjusted to 64 mg / mL, and react at room temperature for 1 hour. A thiol group was introduced to the amino group of avidin. The streptavidin solution was desalted with a gel filtration column (Zaba Spin Desalting Columuns, Funakoshi Co., Ltd.) to prepare streptavidin capable of binding to the aggregated nanoparticles 1 having amination on the surface.
 このストレプトアビジン0.04mgとEDTAを2mM含有したPBSを用いて、上記0.67nMに調整した表面にアミノ化を有する凝集ナノ粒子1、740μLと混合し、室温で1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムで未反応のストレプトアビジン等を除去し、ストレプトアビジン結合凝集ナノ粒子である蛍光標識材1を得た。 Using PBS containing 0.04 mg of this streptavidin and 2 mM of EDTA, the mixture was mixed with 740 μL of aggregated nanoparticles 1 having amination on the surface adjusted to 0.67 nM above, and reacted at room temperature for 1 hour. The reaction was stopped by adding 10 mM mercaptoethanol. The resulting solution was concentrated using a centrifugal filter, and unreacted streptavidin and the like were removed with a gel filtration column for purification, to obtain a fluorescent labeling material 1 which is a streptavidin-conjugated aggregated nanoparticle.
[実施例2]
<凝集ナノ粒子2>
 AIE1をAIE2に変更する以外は凝集ナノ粒子1と同様の手法で、凝集ナノ粒子2を得た。
<蛍光標識材2>
 凝集ナノ粒子1を凝集ナノ粒子2に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材2を得た。
Example 2
<Aggregated nanoparticles 2>
Aggregated nanoparticles 2 were obtained in the same manner as aggregated nanoparticles 1 except that AIE1 was changed to AIE2.
<Fluorescent labeling material 2>
A fluorescent labeling material 2 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 2.
[実施例3]
<凝集ナノ粒子3>
 10w%に調整した凝集ナノ粒子2の水分散液1mLと硫酸10mLを混合し、50℃で1時間攪拌して粒子表面の親水化処理を行い、続いて遠心分離機を用いて10000rpmで30分処理して上澄みを除去して洗浄することで凝集ナノ粒子3を得た。
<蛍光標識材3>
 凝集ナノ粒子1を凝集ナノ粒子3に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材3を得た。
[Example 3]
<Flocculated nanoparticles 3>
1 mL of an aqueous dispersion of aggregated nanoparticles 2 adjusted to 10 w% and 10 mL of sulfuric acid are mixed and stirred at 50 ° C. for 1 hour to hydrophilize the particle surface, followed by a centrifuge for 30 minutes at 10000 rpm Aggregated nanoparticles 3 were obtained by processing, removing the supernatant and washing.
<Fluorescent labeling material 3>
A fluorescent labeling material 3 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 3.
[実施例4]
<凝集ナノ粒子4>
 硫酸での処理時間を3時間にする以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子4を得た。
<蛍光標識材4>
 凝集ナノ粒子1を凝集ナノ粒子4に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材4を得た。
Example 4
<Flocculated nanoparticles 4>
The aggregated nanoparticles 4 were obtained in the same manner as the aggregated nanoparticles 3 except that the treatment time with sulfuric acid was 3 hours.
<Fluorescent labeling material 4>
A fluorescent labeling material 4 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 4.
[実施例5]
<凝集ナノ粒子5>
 超純水をマイクロミキサーの流路内に送液する際の流速を40.0mL/minに変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子5を得た。
<蛍光標識材5>
 凝集ナノ粒子1を凝集ナノ粒子5に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材5を得た。
[Example 5]
<Flocculated nanoparticles 5>
Aggregated nanoparticles 5 were obtained in the same manner as the aggregated nanoparticles 3 except that the flow rate of ultrapure water was fed into the flow path of the micromixer to 40.0 mL / min.
<Fluorescent labeling material 5>
A fluorescent labeling material 5 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 5.
[実施例6]
<凝集ナノ粒子6>
 マイクロミキサーの流路内に送液するAIE2のテトラヒドロフラン溶液濃度を0.1mMに変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子6を得た。
<蛍光標識材6>
 凝集ナノ粒子1を凝集ナノ粒子6に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材6を得た。
[Example 6]
<Flocculated nanoparticles 6>
Aggregated nanoparticles 6 were obtained in the same manner as the aggregated nanoparticles 3 except that the tetrahydrofuran solution concentration of AIE 2 fed into the flow path of the micromixer was changed to 0.1 mM.
<Fluorescent labeling material 6>
A fluorescent labeling material 6 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 6.
[実施例7]
<凝集ナノ粒子7>
 マイクロミキサーの流路内に送液するAIE2のテトラヒドロフラン溶液濃度を3mMに変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子7を得た。
<蛍光標識材7>
 凝集ナノ粒子1を凝集ナノ粒子7に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材7を得た。
[Example 7]
<Aggregated nanoparticles 7>
Aggregated nanoparticles 7 were obtained in the same manner as the aggregated nanoparticles 3 except that the tetrahydrofuran solution concentration of AIE 2 fed into the flow path of the micromixer was changed to 3 mM.
<Fluorescent labeling material 7>
A fluorescent labeling material 7 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 7.
[実施例8]
<凝集ナノ粒子8>
 マイクロミキサーの流路内に送液するAIE2のテトラヒドロフラン溶液濃度を0.07mMに変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子8を得た。
<蛍光標識材8>
 凝集ナノ粒子1を凝集ナノ粒子8に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材8を得た。
[Example 8]
<Flocculated nanoparticles 8>
Aggregated nanoparticles 8 were obtained in the same manner as the aggregated nanoparticles 3 except that the tetrahydrofuran solution concentration of AIE 2 fed into the flow path of the micromixer was changed to 0.07 mM.
<Fluorescent labeling material 8>
A fluorescent labeling material 8 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 8.
[実施例9]
<凝集ナノ粒子9>
 マイクロミキサーの流路内に送液するAIE2のテトラヒドロフラン溶液濃度を6mMに変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子9を得た。
<蛍光標識材9>
 凝集ナノ粒子1を凝集ナノ粒子9に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材9を得た。
[Example 9]
<Flocculated nanoparticles 9>
Aggregated nanoparticles 9 were obtained in the same manner as the aggregated nanoparticles 3 except that the concentration of the tetrahydrofuran solution of AIE 2 fed into the flow path of the micromixer was changed to 6 mM.
<Fluorescent labeling material 9>
A fluorescent labeling material 9 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 9.
[実施例10]
<凝集ナノ粒子10>
 AIE2を0.1mMになるようにテトラヒドロフランに溶解したものを調整した。続いて調整したAIE2溶液を、高速撹拌造粒機(SPG-25TG、DALTON社製)を用いて、1000rpmで撹拌させている貧溶媒の水1000mLに1分間に1mLのペースで50mL滴下させ、さらに1000rpmでの撹拌を30分継続することにより凝集ナノ粒子10を得た。
<蛍光標識材10>
 凝集ナノ粒子1を凝集ナノ粒子10に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材10を得た。
[Example 10]
<Aggregated nanoparticles 10>
What dissolved AIE2 in tetrahydrofuran so that it might be 0.1 mM was adjusted. Subsequently, 50 mL of the prepared AIE 2 solution is dropped at a pace of 1 mL per minute in 1000 mL of poor solvent water stirred at 1000 rpm using a high-speed stirring granulator (SPG-25TG, manufactured by DALTON). Agglutinated nanoparticles 10 were obtained by continuing the stirring at 1000 rpm for 30 minutes.
<Fluorescent labeling material 10>
A fluorescent labeling material 10 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 10.
[実施例11]
<凝集ナノ粒子11>
 マイクロミキサーを用いて1mMに調整したAIE2のテトラヒドロフラン溶液と水とを混合する際に、中心核として平均粒径3nmの酸化ジルコニア粒子分散液(SZR-M、堺化学工業株式会社)2mLを加える以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子11を得た。
<蛍光標識材11>
 凝集ナノ粒子1を凝集ナノ粒子11に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材11を得た。
[Example 11]
<Flocculated nanoparticles 11>
When mixing a tetrahydrofuran solution of AIE 2 adjusted to 1 mM with a micromixer with water, add 2 mL of zirconia particle dispersion liquid (SZR-M, Sakai Chemical Industry Co., Ltd.) having an average particle diameter of 3 nm as a central nucleus Were obtained in the same manner as for the aggregated nanoparticles 3 to obtain aggregated nanoparticles 11.
<Fluorescent labeling material 11>
A fluorescent labeling material 11 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 11.
[実施例12]
<凝集ナノ粒子12>
 AIE1をAIE3に変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子12を得た。
<蛍光標識材12>
 凝集ナノ粒子1を凝集ナノ粒子12に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材12を得た。
[Example 12]
<Flocculated nanoparticles 12>
Aggregated nanoparticles 12 were obtained in the same manner as aggregated nanoparticles 3 except that AIE1 was changed to AIE3.
<Fluorescent labeling material 12>
A fluorescent labeling material 12 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 12.
[比較例1]
<凝集ナノ粒子13>
 米国特許出願公開第2013/089889号明細書に記載のとおり、メタノール:THF=1:1溶媒にAIE2を100mg、完全に溶解させた後、冷暗所にて3日間再結晶させることにより凝集ナノ粒子13を得た。
<蛍光標識材13>
 凝集ナノ粒子1を凝集ナノ粒子13に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材13を得た。
Comparative Example 1
<Aggregated nanoparticles 13>
As described in US Patent Application Publication No. 2013/089889, 100 mg of AIE 2 is completely dissolved in a solvent of methanol: THF = 1: 1, and then aggregated nanoparticles 13 by recrystallization in a cool dark place for 3 days. I got
<Fluorescent labeling material 13>
A fluorescent labeling material 13 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 13.
[比較例2]
<凝集ナノ粒子14>
 AIE1をAIE0に変更し、さらに粒子表面の親水化処理を行わない以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子14を得た。
<蛍光標識材14>
 凝集ナノ粒子1を凝集ナノ粒子14に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材14を得た。
Comparative Example 2
<Flocculated nanoparticles 14>
Aggregated nanoparticles 14 were obtained in the same manner as the aggregated nanoparticles 3 except that AIE1 was changed to AIE0 and the surface of the particles was not subjected to a hydrophilization treatment.
<Fluorescent labeling material 14>
A fluorescent labeling material 14 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 14.
[実施例13]
<凝集ナノ粒子15>
 AIE1をAIE4に変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子15を得た。
<蛍光標識材15>
 ナトリウムアミドによる芳香族スルホ著酸塩のアミノ化反応(日本化学会誌1974,(8),P・1522, 奈良ら)を参考に、凝集ナノ粒子15を100mg、ナトリウムアミドを30mg、28w%アンモニア水を0.5mL、水を5mL加え、60℃で4時間反応させることで、粒子表面のスルホン酸基をアミノ基に置換した。続いて純水を用いてYM-100(ミリポア社製)で限外ろ過で精製を行った。精製後の凝集ナノ粒子15を用いて、蛍光標識材1と同様の手法でストレプトアビジンを導入し、蛍光標識材15を得た。
[Example 13]
<Aggregated nanoparticles 15>
Aggregated nanoparticles 15 were obtained in the same manner as aggregated nanoparticles 3 except that AIE1 was changed to AIE4.
<Fluorescent labeling material 15>
100 mg of aggregated nanoparticles 15, 30 mg of sodium amide, 28 w% ammonia water, referring to the amination reaction of an aromatic sulfo-acid salt with sodium amide (Japan Chemical Society Journal 1974, (8), P. 1522, Nara et al.) The sulfonic acid groups on the particle surface were substituted with amino groups by adding 0.5 mL of H 2 O, 5 mL of water, and reacting at 60 ° C. for 4 hours. Subsequently, purification was performed by ultrafiltration with YM-100 (manufactured by Millipore) using pure water. Streptavidin was introduced by the same method as the fluorescent labeling material 1 using the aggregated nanoparticles 15 after purification, and the fluorescent labeling material 15 was obtained.
[実施例14]
<凝集ナノ粒子16>
 AIE1をAIE5に変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子16を得た。
<蛍光標識材16>
 凝集ナノ粒子1を凝集ナノ粒子16に変更する以外は蛍光標識材1と同様の手法で蛍光標識材16を得た。
Example 14
<Aggregated nanoparticles 16>
Aggregated nanoparticles 16 were obtained in the same manner as aggregated nanoparticles 3 except that AIE1 was changed to AIE5.
<Fluorescent labeling material 16>
A fluorescent labeling material 16 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 16.
[実施例15]
<凝集ナノ粒子17>
 AIE1をAIE6に変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子17を得た。
<蛍光標識材17>
 凝集ナノ粒子15を凝集ナノ粒子17に変更する以外は蛍光標識材15と同様の手法で蛍光標識材17を得た。
[Example 15]
<Aggregated nanoparticles 17>
Aggregated nanoparticles 17 were obtained in the same manner as aggregated nanoparticles 3 except that AIE1 was changed to AIE6.
<Fluorescent labeling material 17>
A fluorescent labeling material 17 was obtained in the same manner as the fluorescent labeling material 15 except that the aggregation nanoparticles 15 were changed to aggregation nanoparticles 17.
[実施例16]
<凝集ナノ粒子18>
 AIE1をAIE7に変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子18を得た。
<蛍光標識材18>
 凝集ナノ粒子15を凝集ナノ粒子18に変更する以外は蛍光標識材15と同様の手法で蛍光標識材18を得た。
[Example 16]
<Flocculated nanoparticles 18>
Aggregated nanoparticles 18 were obtained in the same manner as aggregated nanoparticles 3 except that AIE1 was changed to AIE7.
<Fluorescent labeling material 18>
A fluorescent labeling material 18 was obtained in the same manner as the fluorescent labeling material 15 except that the aggregation nanoparticles 15 were changed to aggregation nanoparticles 18.
[実施例17]
<凝集ナノ粒子19>
 AIE1をAIE8に変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子19を得た。
<蛍光標識材19>
 凝集ナノ粒子15を凝集ナノ粒子19に変更する以外は蛍光標識材15と同様の手法で蛍光標識材19を得た。
[Example 17]
<Flocculated nanoparticles 19>
Aggregated nanoparticles 19 were obtained in the same manner as aggregated nanoparticles 3 except that AIE1 was changed to AIE8.
<Fluorescent labeling material 19>
A fluorescent labeling material 19 was obtained in the same manner as the fluorescent labeling material 15 except that the aggregation nanoparticles 15 were changed to aggregation nanoparticles 19.
[実施例18]
<凝集ナノ粒子20>
 AIE1をAIE9に変更する以外は凝集ナノ粒子3と同様の手法で、凝集ナノ粒子20を得た。
<蛍光標識材20>
 凝集ナノ粒子15を凝集ナノ粒子20に変更する以外は蛍光標識材15と同様の手法で蛍光標識材20を得た。
[Example 18]
<Aggregated nanoparticles 20>
Aggregated nanoparticles 20 were obtained in the same manner as aggregated nanoparticles 3 except that AIE1 was changed to AIE9.
<Fluorescent labeling material 20>
A fluorescent labeling material 20 was obtained in the same manner as the fluorescent labeling material 15 except that the aggregation nanoparticles 15 were changed to aggregation nanoparticles 20.
[実施例19]
<凝集ナノ粒子21>
 凝集ナノ粒子3を実施例19においては凝集ナノ粒子21とした。
<蛍光標識材21>
 抗PD-L1ウサギモノクローナル抗体(Cell signaling Technology社;No.E1L3N)100μgをPBS100μLに溶解させた。この抗体溶液に1Mの2-メルカプトエタノールを0.002mL(0.2×10-5モル)添加して、pH8.5、室温で30分間反応させた反応液をゲル濾過カラムに通し、過剰の2-メルカプトエタノールを除去することで、チオール化した抗PD-L1ウサギモノクローナル抗体の溶液を得た。
[Example 19]
<Flocculated nanoparticles 21>
The aggregated nanoparticles 3 were referred to as aggregated nanoparticles 21 in Example 19.
<Fluorescent labeling material 21>
One hundred μg of anti-PD-L1 rabbit monoclonal antibody (Cell signaling Technology, Inc .; No. E1L3N) was dissolved in 100 μL of PBS. To this antibody solution, 0.002 mL (0.2 × 10 -5 mol) of 1 M 2-mercaptoethanol was added, and the reaction solution reacted at pH 8.5 and room temperature for 30 minutes was passed through a gel filtration column and excess Removal of 2-mercaptoethanol gave a solution of thiolated anti-PD-L1 rabbit monoclonal antibody.
 凝集ナノ粒子1を凝集ナノ粒子21に換えた以外は、実施例1と同様の手法で、マレイミド基で修飾された凝集ナノ粒子21を得た。マレイミド基で修飾された凝集ナノ粒子1をマレイミド基で修飾された凝集ナノ粒子21に換えて、さらにストレプトアビジンに換えて、チオール化した抗PD-L1ウサギモノクローナル抗体を用いる以外は実施例1と同様の手法で、抗PD-L1ウサギモノクローナル抗体結合凝集ナノ粒子である蛍光標識材21を得た。 In the same manner as in Example 1 except that the aggregation nanoparticles 1 were replaced with aggregation nanoparticles 21, aggregation nanoparticles 21 modified with a maleimide group were obtained. Example 1 and Example 1 except that the aggregated nanoparticle 1 modified with maleimide group is changed to the aggregated nanoparticle 21 modified with maleimide group and further changed to streptavidin, and a thiolated anti-PD-L1 rabbit monoclonal antibody is used In the same manner, a fluorescent labeling material 21 which is an anti-PD-L1 rabbit monoclonal antibody-bound aggregated nanoparticle was obtained.
[実施例20]
<凝集ナノ粒子22>
 AIE2を100mg/Lとなるようにメタノールで調製し、超音波処理を3分行うことでAIE2の分散液を得た。続いて、分散液を透明な石英容器に入れ、チタンサファイアレーザー(TiF-100、東京インスツルメンツ社製)を用いて、100mJ/cm2、パルス幅100フェムト秒、照射時間20分間の条件で、分散液にレーザー照射を行い、凝集ナノ粒子22を得た。
<蛍光標識材21>
凝集ナノ粒子1を凝集ナノ粒子22に変更する以外は、蛍光標識材1と同様の手法で、蛍光標識材21を得た。
[Example 20]
<Aggregated nanoparticles 22>
AIE2 was prepared with methanol so as to be 100 mg / L, and ultrasonication was performed for 3 minutes to obtain a dispersion of AIE2. Subsequently, the dispersion is placed in a transparent quartz container, and dispersed using a titanium sapphire laser (TiF-100, manufactured by Tokyo Instruments) under conditions of 100 mJ / cm 2 , pulse width 100 femtosecond, and irradiation time 20 minutes. The solution was irradiated with a laser to obtain aggregated nanoparticles 22.
<Fluorescent labeling material 21>
A fluorescent labeling material 21 was obtained in the same manner as the fluorescent labeling material 1 except that the aggregation nanoparticles 1 were changed to aggregation nanoparticles 22.
 [評価1]
(継時的輝度変化)
 凝集ナノ粒子1~20を、粒子モル濃度が0.01mmol/LになるようにPBS中に分散させた分散液をそれぞれ調製した。蛍光光度計(日立ハイテクノロジーズ社;F-7000)を用いて、調整直後の分散液および室温で7日間保管した後の分散液輝度を励起波長450nm、蛍光極大波長630nmにおける蛍光強度を測定した。以下の基準で経時的輝度の変化の評価を行った。
AA:「室温で7日間保管後の輝度」/「分散液調整直後の輝度」が、95%以上
BB:「室温で7日間保管後の輝度」/「分散液調整直後の輝度」が、80%以上、95%未満
CC:「室温で7日間保管後の輝度」/「分散液調整直後の輝度」が、70%以上、80%未満
DD:「室温で7日間保管後の輝度」 / 「分散液作製後すぐの輝度」が、70%未満
[Evaluation 1]
(Change in luminance over time)
Dispersions in which aggregated nanoparticles 1 to 20 were dispersed in PBS such that the particle molar concentration was 0.01 mmol / L were prepared. The fluorescence intensities at an excitation wavelength of 450 nm and a fluorescence maximum wavelength of 630 nm were measured for the dispersion immediately after adjustment and the dispersion after storage for 7 days at room temperature using a fluorometer (Hitachi High Technologies, Inc .; F-7000). The change in luminance over time was evaluated based on the following criteria.
AA: “brightness after storage for 7 days at room temperature” / “brightness immediately after dispersion preparation” is 95% or more; BB: “brightness after storage for 7 days at room temperature” / “brightness immediately after dispersion preparation” is 80 % Or more and less than 95% CC: “brightness after storage for 7 days at room temperature” / “brightness immediately after dispersion preparation” is 70% or more and less than 80% DD: “brightness after storage for 7 days at room temperature” / “ "Brightness immediately after dispersion preparation" is less than 70%
[実験例]
(前処理)
 上記実施例および比較例で作製した蛍光標識材1~21について評価を行うため組織アレイスライド(コスモバイオ社;CB-A712)を用いた蛍光染色を行った。脱パラフィン処理した組織アレイスライドを水で洗浄し、10mMクエン酸バッファ液中(pH6.0)121℃で15分間オートクレーブ処理することで、賦活化処理を行った。賦活化処理後の組織アレイスライドをリン酸バッファにより洗浄し、BSAを1%含んだリン酸バッファを用いて1時間ブロッキング処理を行った。
[Example of experiment]
(Preprocessing)
In order to evaluate the fluorescent labeling materials 1 to 21 prepared in the above Examples and Comparative Examples, fluorescent staining was performed using a tissue array slide (Cosmo Bio Inc .; CB-A 712). The deparaffinized tissue array slide was washed with water, and was subjected to activation treatment by autoclaving at 121 ° C. in 10 mM citric acid buffer solution (pH 6.0) for 15 minutes. The activated tissue array slide was washed with phosphate buffer, and blocking treatment was performed using phosphate buffer containing 1% of BSA for 1 hour.
(染色:蛍光標識材1~20)
 BSAを1%含んだPBSを用いて抗HER2ウサギモノクローナル抗体(ベンタナ社製;4B5を0.05nMに調整し、上記ブロッキング処理した組織アレイスライドに対して4℃で1晩反応させた。反応後の組織アレイスライドをPBSで洗浄した後、BSAを1%含んだPBSを用いて6μg/mLに希釈した、作製例2で作製したビオチン修飾した2次抗体と室温30分間反応させた。2次抗体と反応後の組織アレイスライドをPBSで洗浄した後、BSAを1%含んだPBSを用いて0.02nMに希釈した蛍光標識材1~20とそれぞれ中性環境(pH6.9~7.4)室温条件下で3時間反応させた。反応後の各組織アレイスライドをPBSで洗浄した。
(Staining: fluorescent labeling materials 1 to 20)
The anti-HER2 rabbit monoclonal antibody (Ventana Co., Ltd .; 4B5 was adjusted to 0.05 nM using PBS containing 1% of BSA) and reacted overnight at 4 ° C. against the blocking tissue array slide mentioned above. The tissue array slide was washed with PBS and then reacted with the biotin-modified secondary antibody prepared in Preparation Example 2 diluted with PBS containing 1% of BSA to 6 μg / mL for 30 minutes at room temperature. After washing the tissue array slide after reaction with antibody with PBS, fluorescent labeling materials 1 to 20 diluted to 0.02 nM with PBS containing 1% of BSA and neutral environment (pH 6.9 to 7.4, respectively) Reaction was performed for 3 hours under room temperature conditions Each tissue array slide after reaction was washed with PBS.
(染色:蛍光標識材21)
 BSAを1%含んだPBSを用いて0.02nMに希釈した蛍光標識材15と上記ブロッキング処理した組織アレイスライドとを、中性環境(pH6.9~7.4)室温条件下で3時間反応させた。反応後の各組織アレイスライドをPBSで洗浄した。
(Staining: fluorescent labeling material 21)
The fluorescent labeling material 15 diluted to 0.02 nM with PBS containing 1% of BSA and the above-mentioned blocking-treated tissue array slide are reacted for 3 hours under neutral conditions (pH 6.9 to 7.4) at room temperature conditions I did. Each tissue array slide after reaction was washed with PBS.
(後処理・輝度観察)
 上記染色後の各組織アレイスライドに対し、純エタノールに5分間浸漬する操作を4回繰り返し、洗浄・脱水を行った。続いてキシレンに5分間浸漬する操作を4回行い、透徹を行った。最後に封入剤(メルク社製、エンテランニュー)を用いて封入処理を行うことで、観察用の組織アレイスライドとした。
(Post-processing, brightness observation)
For each tissue array slide after the staining, the operation of immersing in pure ethanol for 5 minutes was repeated 4 times to carry out washing and dehydration. Subsequently, an operation of immersing in xylene for 5 minutes was performed four times to perform clearing. Finally, a sealing agent (manufactured by Merck & Co., Inc., Entelanu) was used for sealing treatment to obtain a tissue array slide for observation.
 封入処理を終えた各組織アレイスライドに対し、蛍光顕微鏡(オリンパス社製、DP73)により励起光の照射、蛍光の発光の観察および撮像を行った。この際、励起光の波長は、蛍光顕微鏡が備える励起光用光学フィルターを用いて575~600nmに設定し、観察する蛍光の波長は、蛍光用光学フィルターを用いて612~692nmに設定した。 With respect to each tissue array slide which has been subjected to the encapsulation process, irradiation of excitation light and observation and imaging of fluorescence emission were performed using a fluorescence microscope (manufactured by Olympus, DP 73). At this time, the wavelength of excitation light was set to 575 to 600 nm using the optical filter for excitation light provided in a fluorescence microscope, and the wavelength of fluorescence to be observed was set to 612 to 692 nm using the optical filter for fluorescence.
 蛍光顕微鏡による観察および画像撮影時の励起光の強度は、視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像撮影時の露光時間は、画像の輝度が飽和しないような範囲で調節し、例えば4000μ秒に設定した。 The intensity of excitation light at the time of observation with a fluorescence microscope and image photography was such that the irradiation energy in the vicinity of the center of the field of view was 900 W / cm 2 . The exposure time at the time of photographing the image was adjusted in a range where the luminance of the image was not saturated, and was set to, for example, 4000 μsec.
 撮影は400倍で行い、得られた画像は画像処理ソフトウェア「ImageJ」(オープンソース)を用いて画像処理を行った。ImageJの処理メニューであるFind Maxima(極大点の検出)により100細胞の輝点数を計測し、その平均値を算出した。 Photographing was performed at 400 ×, and the obtained image was subjected to image processing using image processing software “Image J” (open source). The brightness score of 100 cells was measured by Find Maxima (detection of maximum point) which is the processing menu of Image J, and the average value was calculated.
 輝度は、取得した画像において1粒子領域を指定して計算した。さらに100個の粒子の輝点について、平均値および標準偏差を算出した。 The luminance was calculated by designating one particle region in the acquired image. Mean values and standard deviations were calculated for the bright spots of 100 particles.
[評価2]
(耐光性)
 実験例で作製した観察用組織アレイスライドに、365nm、8WのUVランプを1時間照射し、照射前後における1輝点あたりの輝度平均値を求め、照射前の輝度平均値に対する照射後の輝度平均値の低下率を算出し、以下の基準で耐光性の評価を行った。
AA:UVランプ照射後の輝度平均値低下が、5%未満
BB:UVランプ照射後の粒子の輝度平均値低下が、5%以上、10%未満
CC:UVランプ照射後の粒子の輝度平均値低下が、10%以上、15%未満
DD:UVランプ照射後の粒子の輝度平均値低下が、15%以上
[Evaluation 2]
(Light resistance)
The observation tissue array slide prepared in the experimental example is irradiated with a UV lamp of 365 nm and 8 W for 1 hour, and the average luminance value per one bright spot before and after irradiation is determined, and the average luminance after irradiation relative to the average luminance value before irradiation The rate of decrease of the value was calculated, and the light resistance was evaluated based on the following criteria.
AA: Average luminance decrease after UV lamp irradiation is less than 5% BB: Average luminance decrease of particles after UV lamp irradiation is 5% or more but less than 10% CC: Average luminance value of particles after UV lamp irradiation Decrease: 10% or more and less than 15% DD: The decrease in average brightness of particles after UV lamp irradiation is 15% or more
[評価3]
(輝度ムラ)
 実験例で作製した観察用組織アレイスライドについて取得した画像において、100個の粒子の輝点について標準偏差を求め以下の基準で評価することで、輝度ムラを評価した。
AA:100個の輝点輝度の標準偏差が、10%未満
BB:100個の輝点輝度の標準偏差が、10%以上、20%未満
CC:100個の輝点輝度の標準偏差が、20%以上、30%未満
DD:100個の輝点輝度の標準偏差が、30%以上
 各凝集ナノ粒子および蛍光標識体について、下記表2に示す。
[Evaluation 3]
(Uneven brightness)
In the image acquired about the tissue array slide for observation produced by the experiment example, the brightness nonuniformity was evaluated by calculating | requiring the standard deviation about the luminescent point of 100 particle | grains, and evaluating by the following references | standards.
AA: standard deviation of 100 bright spot luminances is less than 10% BB: standard deviation of 100 bright spot luminances is 10% or more, less than 20% CC: standard deviation of 100 bright spot luminances is 20 % Or more and less than 30% DD: The standard deviation of the brightness of 100 bright spots is 30% or more For each aggregated nanoparticle and fluorescent label, it is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030

Claims (11)

  1.  凝集誘起発光性分子の凝集により形成された凝集ナノ粒子であって、
     前記凝集ナノ粒子は、当該粒子表面に親水基を有し、
     前記凝集ナノ粒子の粒径変動係数が30%以下である、凝集ナノ粒子。
    Aggregated nanoparticles formed by the aggregation of aggregation-induced luminescent molecules,
    The aggregated nanoparticles have a hydrophilic group on the surface of the particles,
    Aggregated nanoparticles, wherein the particle size variation coefficient of the aggregated nanoparticles is 30% or less.
  2.  前記凝集ナノ粒子が、前記親水基を当該粒子表面に1個/nm2以上有している、請求項1に記載の凝集ナノ粒子。 The aggregated nanoparticles, wherein the hydrophilic group has one / nm 2 or more on the particle surface, agglomeration nanoparticles according to claim 1.
  3.  前記凝集ナノ粒子の平均粒径が1nm以上100nm以下である、請求項1または2に記載の凝集ナノ粒子。 The aggregated nanoparticle according to claim 1 or 2, wherein an average particle diameter of the aggregated nanoparticle is 1 nm or more and 100 nm or less.
  4.  前記凝集誘起発光性分子が、環構造の形成に寄与しない炭素・炭素二重結合を有さないことを特徴とする請求項1~3のいずれか一項に記載の凝集ナノ粒子。 The aggregated nanoparticle according to any one of claims 1 to 3, wherein the aggregation induced light emitting molecule does not have a carbon / carbon double bond which does not contribute to the formation of a ring structure.
  5.  中心核を有する、請求項1~4のいずれか一項に記載の凝集ナノ粒子。 Aggregated nanoparticles according to any of the preceding claims, having a central core.
  6.  請求項1~5のいずれか一項に記載の凝集ナノ粒子を含む蛍光標識材であって、前記凝集ナノ粒子表面に標的指向性リガンドを有する、蛍光標識材。 A fluorescent labeling material comprising the aggregated nanoparticle according to any one of claims 1 to 5, wherein the fluorescent labeling material has a targeting ligand on the surface of the aggregated nanoparticle.
  7.  前記標的指向性リガンドが、抗体、糖鎖と結合性を有するタンパク質、細胞小器官親和性物質、ペプチドからなる群から選択される1種または2種以上の分子である、請求項6に記載の蛍光標識材。 The target targeting ligand according to claim 6, wherein the targeting ligand is one or more molecules selected from the group consisting of an antibody, a protein having a binding property with a sugar chain, an organelle affinity substance, and a peptide. Fluorescent labeling material.
  8.  請求項6または7に記載の蛍光標識材と、緩衝液とを含む蛍光標識材分散液。 A fluorescent labeling material dispersion comprising the fluorescent labeling material according to claim 6 and a buffer solution.
  9.  凝集誘起発光性分子の溶液に、貧溶媒を接触させ、前記凝集誘起発光性分子を凝集させる工程(A)を含む、請求項1~4のいずれか一項に記載の凝集ナノ粒子の製造方法。 The method for producing aggregated nanoparticles according to any one of claims 1 to 4, comprising a step (A) of bringing a solution of aggregation-induced luminescent molecules into contact with a poor solvent to aggregate the aggregation-induced luminescent molecules. .
  10.  前記工程(A)が、中心核存在下で、前記凝集誘起発光性分子の溶液に、貧溶媒を接触させ、前記凝集誘起発光性分子を凝集させる工程である、請求項9に記載の凝集ナノ粒子の製造方法。 The aggregation nano according to claim 9, wherein the step (A) is a step of bringing a solution of the aggregation inducing luminescent molecule into contact with a poor solvent in the presence of a central nucleus to aggregate the aggregation inducing luminescent molecule. Method of producing particles.
  11.  請求項1~5のいずれか一項に記載の凝集ナノ粒子に標的指向性リガンドを結合させる工程を含む、蛍光標識材の製造方法。 A method for producing a fluorescent labeling material, comprising the step of binding a targeting ligand to the aggregated nanoparticle according to any one of claims 1 to 5.
PCT/JP2018/040898 2017-11-06 2018-11-02 Aggregated nanoparticles and fluorescent labeling material WO2019088266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550504A JP7192783B2 (en) 2017-11-06 2018-11-02 Aggregated nanoparticles and fluorescent labels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-214201 2017-11-06
JP2017214201 2017-11-06

Publications (1)

Publication Number Publication Date
WO2019088266A1 true WO2019088266A1 (en) 2019-05-09

Family

ID=66333206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040898 WO2019088266A1 (en) 2017-11-06 2018-11-02 Aggregated nanoparticles and fluorescent labeling material

Country Status (2)

Country Link
JP (1) JP7192783B2 (en)
WO (1) WO2019088266A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261398A1 (en) * 2020-06-25 2021-12-30 コニカミノルタ株式会社 Light-emitting nanoparticles and light-emitting labeling material for pathological diagnosis
WO2022044907A1 (en) * 2020-08-27 2022-03-03 住友化学株式会社 Light-emitting composite particles and light-emitting composite particle composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226329B2 (en) * 2017-11-06 2023-02-21 コニカミノルタ株式会社 Dye Aggregate Particles, Dye Encapsulating Particles, and Fluorescent Labeling Materials

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197097A (en) * 2008-02-20 2009-09-03 Fujifilm Corp Method for forming particulate and device for forming it
JP2009227841A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Method and apparatus for producing fine particles
WO2013164886A1 (en) * 2012-05-01 2013-11-07 エム・テクニック株式会社 Method for manufacturing fine grains
US20140255696A1 (en) * 2011-12-28 2014-09-11 The Hong Kong University Of Science And Technology Biotin-Decorated Fluorescent Silica Nanoparticles With Aggregation-Induced Emission for Tumor Cell Targeting and Long-Term Tumor Cell Tracking
JP2016199751A (en) * 2015-04-10 2016-12-01 Jsr株式会社 Fluorescence particle and method for producing fluorescence particle
CN106631997A (en) * 2014-04-07 2017-05-10 香港科技大学深圳研究院 Amphipathic illuminant having aggregation-induced emission characteristic and application
WO2018043688A1 (en) * 2016-08-31 2018-03-08 積水化学工業株式会社 Analyte concentration measuring method, particle containing agglutinated fluorescent material, and inspection device
CN108587610A (en) * 2018-06-28 2018-09-28 上海交通大学 A kind of aggregation-induced emission magnetic fluorescent coding microsphere, preparation method and applications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197097A (en) * 2008-02-20 2009-09-03 Fujifilm Corp Method for forming particulate and device for forming it
JP2009227841A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Method and apparatus for producing fine particles
US20140255696A1 (en) * 2011-12-28 2014-09-11 The Hong Kong University Of Science And Technology Biotin-Decorated Fluorescent Silica Nanoparticles With Aggregation-Induced Emission for Tumor Cell Targeting and Long-Term Tumor Cell Tracking
WO2013164886A1 (en) * 2012-05-01 2013-11-07 エム・テクニック株式会社 Method for manufacturing fine grains
CN106631997A (en) * 2014-04-07 2017-05-10 香港科技大学深圳研究院 Amphipathic illuminant having aggregation-induced emission characteristic and application
JP2016199751A (en) * 2015-04-10 2016-12-01 Jsr株式会社 Fluorescence particle and method for producing fluorescence particle
WO2018043688A1 (en) * 2016-08-31 2018-03-08 積水化学工業株式会社 Analyte concentration measuring method, particle containing agglutinated fluorescent material, and inspection device
CN108587610A (en) * 2018-06-28 2018-09-28 上海交通大学 A kind of aggregation-induced emission magnetic fluorescent coding microsphere, preparation method and applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261398A1 (en) * 2020-06-25 2021-12-30 コニカミノルタ株式会社 Light-emitting nanoparticles and light-emitting labeling material for pathological diagnosis
WO2022044907A1 (en) * 2020-08-27 2022-03-03 住友化学株式会社 Light-emitting composite particles and light-emitting composite particle composition

Also Published As

Publication number Publication date
JP7192783B2 (en) 2022-12-20
JPWO2019088266A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
Loo et al. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine
Pandey et al. High-quality quantum dots for multiplexed bioimaging: A critical review
Zhi et al. Malic acid carbon dots: from super-resolution live-cell imaging to highly efficient separation
Wang et al. A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging
Resch-Genger et al. Quantum dots versus organic dyes as fluorescent labels
Chatterjee et al. Small upconverting fluorescent nanoparticles for biomedical applications
Fery-Forgues Fluorescent organic nanocrystals and non-doped nanoparticles for biological applications
Zhao et al. One-step synthesis of red-emitting carbon dots via a solvothermal method and its application in the detection of methylene blue
Bogdan et al. Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition
Zhan et al. Preparation of compact biocompatible quantum dots using multicoordinating molecular-scale ligands based on a zwitterionic hydrophilic motif and lipoic acid anchors
Duman et al. Highly luminescent and cytocompatible cationic Ag 2 S NIR-emitting quantum dots for optical imaging and gene transfection
Palmal et al. Thiol‐directed synthesis of highly fluorescent gold clusters and their conversion into stable imaging nanoprobes
US9797840B2 (en) Highly fluorescent polymer nanoparticle
Han et al. A Versatile Naphthalimide–Sulfonamide‐Coated Tetraphenylethene: Aggregation‐Induced Emission Behavior, Mechanochromism, and Tracking Glutathione in Living Cells
Tavernaro et al. Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy
Li et al. Aqueous synthesis of CdTe/CdS/ZnS quantum dots and their optical and chemical properties
JP7192783B2 (en) Aggregated nanoparticles and fluorescent labels
JP4982687B2 (en) Method for preparing labeled spheres containing labeled molecules
CN102239108A (en) Compositions and methods for functionalizing or crosslinking ligands on nanoparticle surfaces
Zhang et al. L‐Cysteine capped CdTe–CdS core–shell quantum dots: preparation, characterization and immuno‐labeling of HeLa cells
Zhao et al. “Add on” dual-modal optical immunoassay by plasmonic metal NP-semiconductor composites
Zhang et al. Multifunctional microspheres encoded with upconverting nanocrystals and magnetic nanoparticles for rapid separation and immunoassays
JP7226329B2 (en) Dye Aggregate Particles, Dye Encapsulating Particles, and Fluorescent Labeling Materials
Tian et al. Facile synthesis of yellow fluorescent carbon dots for highly sensitive sensing of cobalt ions and biological imaging
Granada-Ramírez et al. Quantum dots for biomedical applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874940

Country of ref document: EP

Kind code of ref document: A1