JP2009227841A - Method and apparatus for producing fine particles - Google Patents

Method and apparatus for producing fine particles Download PDF

Info

Publication number
JP2009227841A
JP2009227841A JP2008075732A JP2008075732A JP2009227841A JP 2009227841 A JP2009227841 A JP 2009227841A JP 2008075732 A JP2008075732 A JP 2008075732A JP 2008075732 A JP2008075732 A JP 2008075732A JP 2009227841 A JP2009227841 A JP 2009227841A
Authority
JP
Japan
Prior art keywords
poor solvent
fine particles
solution
fine particle
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008075732A
Other languages
Japanese (ja)
Inventor
Kazunori Takahashi
一憲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008075732A priority Critical patent/JP2009227841A/en
Publication of JP2009227841A publication Critical patent/JP2009227841A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To conduct filtration and redispersion in the post-process with high precision and in a normal manner because the formation of agglomerates can be performed uniformly. <P>SOLUTION: An apparatus is composed of a unit of the combination of a means for forming a fine particle by bringing a solution L1 in which an organic pigment is dissolved in a good solvent and a poor solvent L2 which is compatible with the good solvent and does not solve the organic pigment into contact with each other, to precipitate an organic pigment fine particle, and a means for forming an agglomerate by agglomerating the resultant organic pigment fine particle with an agglomeration agent to form an agglomerate. The apparatus is provided with a reaction channel 30 for mixing the solution L1 and the poor solvent L2 and carrying out the precipitation and agglomeration of the organic pigment fine particle, a plurality of introducing channels 32, 34 which communicate with a mixing part 36 of the reaction channel 30 for introducing the solution L1 and the poor solvent L2 so as to merge into the mixed part 36 as a confluent point to form a multiple laminar flow L and an addition means 22 for adding an agglomeration agent to the poor solvent L2 before the poor solvent reaches the mixed part 36 of the reaction channel 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微粒子製造方法及び装置に係り、特に形成した微粒子を一旦凝集体にして不要物を除去した後で再分散することにより微粒子を製造する技術に関する。   The present invention relates to a method and apparatus for producing fine particles, and more particularly to a technique for producing fine particles by once forming fine particles to aggregate to remove unnecessary substances and then redispersing them.

無機あるいは有機の微粒子を製造する方法の一つとして、微粒子形成材料を溶剤に溶解した溶液と、微粒子形成材料が溶解しにくい貧溶媒とを接触させることで、微粒子を析出させるビルドアップ法がある。   As one method for producing inorganic or organic fine particles, there is a build-up method in which fine particles are precipitated by contacting a solution in which the fine particle forming material is dissolved in a solvent with a poor solvent in which the fine particle forming material is difficult to dissolve. .

ビルドアップ法で製造された微粒子の一例として、インクジェット装置のインク中に含有される有機顔料微粒子がある。近年、デジタル化の進展に伴い画像などの出力表現が多様化し、経時による色像の安定性が求められている。このような動きに呼応して耐候性、耐熱性の良い透明な色像形成方法が求められており、耐候性、耐熱性の観点から有機顔料が注目されている。特に、近年では100nm以下、好ましくは40nm以下の有機顔料微粒子を使用することが要望されている。   As an example of the fine particles produced by the build-up method, there are organic pigment fine particles contained in the ink of the ink jet apparatus. In recent years, with the progress of digitization, output expressions such as images have been diversified, and the stability of color images over time has been demanded. In response to such movements, a transparent color image forming method having good weather resistance and heat resistance is demanded, and organic pigments are attracting attention from the viewpoint of weather resistance and heat resistance. In particular, in recent years, it has been demanded to use organic pigment fine particles of 100 nm or less, preferably 40 nm or less.

このようなビルドアップ法による有機顔料微粒子の製造方法として、例えば下記の特許文献1がある。特許文献1では、図5(A)〜(D)に示すように、マイクロリアクター1を用いて、微粒子形成材料を良溶媒に溶解した溶解液L1と、前記良溶媒に相溶し微粒子形成材料を溶解しない貧溶媒L2とを反応流路3で接触させて有機顔料微粒子Aが析出した分散液を作成する。その後、分散液を溜めたタンク4内にノズル5から酸(凝集剤)を添加することにより、有機顔料微粒子Aの凝集体Bを形成する。これにより、フィルタ6での濾過により分散液中の不要物(余分な凝集剤Cや分散剤D)を取り除き易くし、その後に凝集体Bを再分散(例えばpH調整)させることで、不要物のない有機顔料微粒子Aを製造することができると記載されている。
特開2004−43776号公報
As a method for producing organic pigment fine particles by such a build-up method, for example, there is Patent Document 1 below. In Patent Document 1, as shown in FIGS. 5A to 5D, using a microreactor 1, a solution L1 in which a fine particle forming material is dissolved in a good solvent, and a fine particle forming material compatible with the good solvent. A poor solvent L2 that does not dissolve the solvent is brought into contact with the reaction channel 3 to prepare a dispersion liquid in which the organic pigment fine particles A are deposited. Thereafter, an acid B (aggregating agent) is added from the nozzle 5 into the tank 4 in which the dispersion liquid is stored, thereby forming an aggregate B of the organic pigment fine particles A. Thereby, it is easy to remove unnecessary substances (excess flocculant C and dispersant D) in the dispersion by filtration through the filter 6, and then the aggregate B is redispersed (for example, pH adjustment) to thereby remove unnecessary substances. It is described that the organic pigment fine particles A can be produced.
JP 2004-43776 A

しかしながら、特許文献1は、マイクロリアクター1で形成した有機顔料微粒子Aを含む分散液をタンク4に溜めて、このタンク4に酸(凝集剤)を添加する方式なので、次の問題がある。   However, since Patent Document 1 is a system in which a dispersion liquid containing organic pigment fine particles A formed in the microreactor 1 is stored in a tank 4 and an acid (flocculating agent) is added to the tank 4, there is the following problem.

即ち、タンク4内を一定の酸濃度にするには、必要な酸濃度よりも数倍濃い濃度の酸をノズル5から添加しなくてはならず、タンク4内での酸濃度が添加位置と添加から離れた位置では大きな濃度分布が発生してしまう。この結果、タンク4内の位置によって凝集反応が不均一になり、後から凝集体Bをフィルタ濾過したり、再分散したりするときに高精度且つ正常な濾過や再分散を行えないという問題がある。この結果、単分散性に優れたナノメートル(nm)サイズの有機顔料微粒子が製造できない。   That is, in order to make the inside of the tank 4 have a constant acid concentration, an acid having a concentration several times higher than the necessary acid concentration must be added from the nozzle 5, and the acid concentration in the tank 4 depends on the addition position. A large concentration distribution occurs at a position away from the addition. As a result, the agglomeration reaction becomes uneven depending on the position in the tank 4, and there is a problem that high accuracy and normal filtration and redispersion cannot be performed when the aggregate B is filtered and redispersed later. is there. As a result, nanometer (nm) size organic pigment fine particles having excellent monodispersibility cannot be produced.

また、微粒子形成工程を行うマイクロリアクター1と凝集体形成工程を行うタンク4との2つの装置が必要になり、コストアップにつながる。   In addition, two devices, the microreactor 1 that performs the fine particle forming process and the tank 4 that performs the aggregate forming process, are required, leading to an increase in cost.

特許文献1に含まれるこれらの問題点は、有機顔料微粒子をビルドアップ法で製造する場合に限るものではなく、他の有機あるいは無機の微粒子をビルドアップ法で製造する場合にも当てはまる。   These problems included in Patent Document 1 are not limited to the case where the organic pigment fine particles are produced by the build-up method, but also apply when other organic or inorganic fine particles are produced by the build-up method.

本発明はこのような事情に鑑みてなされたもので、凝集体形成を均一に行うことができるので、後工程の濾過や再分散を高精度且つ正常に行うことができるとともに、微粒子形成と凝集体形成とを1度に行うことができるので、微粒子製造のための装置を簡略化できる微粒子製造方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and since aggregate formation can be performed uniformly, filtration and redispersion in post-processes can be performed with high accuracy and normality, and fine particle formation and aggregation can be performed. It is an object of the present invention to provide a fine particle production method and apparatus capable of simplifying the apparatus for producing fine particles since the aggregate formation can be performed at once.

本発明の請求項1は前記目的を達成するために、微粒子形成材料を良溶媒に溶解した溶解液と、前記良溶媒に相溶し前記微粒子形成材料を溶解しない貧溶媒とを接触させて微粒子を析出させる微粒子形成工程と、形成した微粒子を凝集剤で凝集して凝集体を形成する凝集体形成工程と、凝集体を濾過する濾過工程と、濾過後の凝集体を再分散して微粒子にする再分散工程と、を備えた微粒子製造方法であって、前記溶解液と前記貧溶媒とを反応流路に連続的に流通させて微粒子形成を行いながら形成した微粒子を前記反応流路内で前記凝集剤に接触させることにより、前記微粒子形成工程と前記凝集体形成工程とを前記反応流路内で一度に行うことを特徴とする微粒子製造方法を提供する。   According to a first aspect of the present invention, in order to achieve the above object, a solution obtained by dissolving a fine particle forming material in a good solvent is brought into contact with a poor solvent which is compatible with the good solvent and does not dissolve the fine particle forming material. A fine particle forming step for precipitating particles, an agglomerate forming step for aggregating the formed fine particles with an aggregating agent, a filtration step for filtering the aggregate, and a re-dispersion of the aggregate after filtration into fine particles A redispersion step, wherein the fine particles formed while forming the fine particles by continuously circulating the solution and the poor solvent through the reaction flow channel are formed in the reaction flow channel. Provided is a method for producing fine particles, wherein the fine particle forming step and the aggregate forming step are performed in the reaction channel at a time by contacting the flocculant.

請求項1によれば、反応流路内で微粒子形成材料を溶解した溶解液と貧溶媒とを接触させて形成された微粒子は、反応流路内で凝集剤と接触される。これにより、凝集剤の濃度分布が起きにくい反応流路内で凝集体を形成することができるので、均一な凝集反応を行うことができる。この結果、大きさや凝集強さが均等な、本来目的とした正常な凝集体を高精度に形成することができる。これにより、後工程での濾過や再分散を高精度に行うことができるので、不要物のない且つ単分散性に優れたナノメートル(nm)サイズの微粒子を製造できる。   According to the first aspect, the fine particles formed by bringing the solution in which the fine particle forming material is dissolved in the reaction channel into contact with the poor solvent are brought into contact with the flocculant in the reaction channel. Thereby, since the aggregate can be formed in the reaction channel where the concentration distribution of the flocculant hardly occurs, a uniform aggregation reaction can be performed. As a result, it is possible to form the normal intended aggregate having a uniform size and cohesive strength with high accuracy. Thereby, since filtration and redispersion in a post-process can be performed with high accuracy, it is possible to manufacture nanometer (nm) size fine particles free from unnecessary substances and excellent in monodispersity.

請求項2は請求項1において、前記貧溶媒に凝集剤を予め含有させて、凝集剤含有の貧溶媒を前記反応流路に導入することを特徴とする。   A second aspect of the present invention is characterized in that in the first aspect, the poor solvent contains a flocculant in advance, and the poor solvent containing the flocculant is introduced into the reaction channel.

請求項2によれば、反応流路に凝集剤を添加することも可能であるが、貧溶媒に凝集剤を予め含有させておき、凝集剤含有の貧溶媒を反応流路に導入すれば、反応流路内での凝集剤分布を一層なくすことができる。   According to claim 2, it is possible to add a flocculant to the reaction flow path, but if the poor solvent contains the flocculant in advance and the poor solvent containing the flocculant is introduced into the reaction flow path, The flocculant distribution in the reaction channel can be further eliminated.

請求項3は請求項1又は2において、前記製造される微粒子は有機顔料微粒子であることを特徴とする。   A third aspect of the present invention is the method according to the first or second aspect, wherein the produced fine particles are organic pigment fine particles.

有機顔料微粒子の形成、及び凝集体の形成は、上述したように従来未解決の問題点が多く、本願発明を実施することで解決できるからである。   This is because the formation of organic pigment fine particles and the formation of aggregates have many unsolved problems as described above and can be solved by carrying out the present invention.

本発明の請求項4は前記目的を達成するために、微粒子形成材料を良溶媒に溶解した溶解液と、前記良溶媒に相溶し前記微粒子形成材料を溶解しない貧溶媒とを接触させて微粒子を析出させる微粒子形成手段と、形成した微粒子を凝集剤で凝集して凝集体を形成する凝集体形成手段と、凝集体を濾過する濾過手段と、濾過後の凝集体を再分散して微粒子にする再分散手段と、を備えた微粒子製造装置であって、前記微粒子形成手段と前記凝集体形成手段とは1つの装置として構成されるとともに、該装置は、前記溶解液と前記貧溶媒とを混合して微粒子の析出及び凝集を行うための反応流路と、前記反応流路の混合部に連通され、前記溶解液と前記貧溶媒とを前記混合部で合流するように導入して複層流を形成する複数の導入流路と、前記反応流路の混合部に至るまでに前記貧溶媒に凝集剤を添加する添加手段と、を備えたことを特徴とする微粒子製造装置を提供する。   According to a fourth aspect of the present invention, in order to achieve the above-mentioned object, a solution obtained by dissolving a fine particle forming material in a good solvent is brought into contact with a poor solvent which is compatible with the good solvent and does not dissolve the fine particle forming material. Fine particle forming means for precipitating particles, an aggregate forming means for aggregating the formed fine particles with an aggregating agent, a filtering means for filtering the aggregate, and a re-dispersion of the aggregate after filtration into fine particles And a redispersion means that comprises the fine particle forming means and the aggregate forming means as one device, wherein the device comprises the solution and the poor solvent. A reaction flow path for mixing and precipitating and agglomerating fine particles, and communicating with the mixing section of the reaction flow path, introducing the dissolved solution and the poor solvent so as to merge at the mixing section. A plurality of introduction flow paths forming a flow; Providing an additive means for adding a flocculant to the poor solvent to reach the mixing section of the flow path, the particle manufacturing apparatus characterized by comprising a.

請求項4は、本発明を装置として構成したものであり、装置を、反応流路と、溶解液と貧溶媒とをそれぞれ反応流路の混合部で合流させる複数の導入流路と、貧溶媒に凝集剤を添加する添加手段とで構成することにより、微粒子形成と凝集体形成との2つの手段を1つの装置として構成できる。これにより、凝集体形成を均一に行うことができるので、後工程の濾過や再分散を高精度に行うことができるとともに、微粒子形成と凝集体形成とを1度に行うことができるので、微粒子製造のための装置を簡略化できる。   According to a fourth aspect of the present invention, the present invention is configured as an apparatus. The apparatus includes a reaction flow path, a plurality of introduction flow paths that join a dissolving solution and a poor solvent at a mixing portion of the reaction flow path, and a poor solvent. With the addition means for adding an aggregating agent to the two, two means of fine particle formation and aggregate formation can be configured as one apparatus. As a result, aggregate formation can be performed uniformly, so that filtration and redispersion in subsequent steps can be performed with high accuracy, and fine particle formation and aggregate formation can be performed at a time. Equipment for manufacturing can be simplified.

請求項5は請求項4において、前記導入流路は、同一面上に少なくとも3本以上設けられ、前記溶解液の導入流路と前記貧溶媒の導入流路とが交互に配置されることを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect, at least three or more introduction flow paths are provided on the same surface, and the solution introduction flow paths and the poor solvent introduction flow paths are alternately arranged. Features.

請求項5によれば、同一面上に導入流路を少なくとも3本以上設けて、溶解液の導入流路と貧溶媒の導入流路とが交互に配置されるようにしたので、反応流路の混合部において溶解液と貧溶媒とが互いに縮流し合って、先細形状の流れを形成する。これにより、反応流路の混合部には、溶解液の薄層と貧溶媒の薄層とが交互に積層されたサンドイッチ状の複層流を形成する。この結果、溶解液と貧溶媒との拡散混合を瞬時に行うことができるので、均一な粒径の微粒子を形成できるとともに、形成された微粒子は貧溶媒に含有されて反応流路に濃度分布なく存在する凝集剤と直ちに接触して凝集体形成を均一に行う。   According to the fifth aspect of the present invention, at least three or more introduction flow paths are provided on the same surface so that the solution introduction flow path and the poor solvent introduction flow path are alternately arranged. In the mixing section, the solution and the poor solvent are mutually contracted to form a tapered flow. As a result, a sandwich-type multilayer flow in which thin layers of the solution and thin layers of the poor solvent are alternately stacked is formed in the mixing portion of the reaction channel. As a result, diffusive mixing of the solution and the poor solvent can be performed instantaneously, so that fine particles with a uniform particle size can be formed, and the formed fine particles are contained in the poor solvent and have no concentration distribution in the reaction channel. Immediate contact with the existing flocculant to form aggregates uniformly.

請求項6は請求項5において、前記反応流路の流路径は、等価直径で0.5mm以上6mm以下であることを特徴とする。   A sixth aspect of the present invention according to the fifth aspect is characterized in that the diameter of the reaction channel is 0.5 mm or more and 6 mm or less as an equivalent diameter.

請求項6によれば、3本以上の導入路により、溶解液の薄層と貧溶媒の薄層とが交互に積層されたサンドイッチ状の複層流を形成することにより、反応流路の流路径を比較的太くしても複層流を構成する溶解液や貧溶媒の層自体は薄層になるので、拡散混合時間を実質的に短くできる。したがって、導入流路が溶解液と貧溶媒の2本だけの場合と比べて、反応流路の流路径を拡大化できるので、反応流路で微粒子形成から凝集体形成までを一貫して行っても、凝集体による目詰や、凝集体による流れの不安定化を招きにくい。かかる反応流路の好ましい拡大化としては、好ましくは等価直径で0.5mm以上6mm以下、より好ましくは1mm以上6mm以下、特に好ましくは2mm以上6mm以下である。   According to the sixth aspect, the flow of the reaction channel is formed by forming a sandwich-like multi-layer flow in which the thin layers of the solution and the thin layer of the poor solvent are alternately laminated by three or more introduction paths. Even if the path diameter is relatively large, the solution and the poor solvent layer constituting the multi-layer flow itself become a thin layer, so that the diffusion mixing time can be substantially shortened. Therefore, the diameter of the reaction channel can be increased compared to the case where only two introduction channels are used, ie, a solution and a poor solvent. However, it is less likely to cause clogging due to aggregates and unstable flow due to aggregates. The preferred enlargement of the reaction channel is preferably 0.5 mm to 6 mm in equivalent diameter, more preferably 1 mm to 6 mm, and particularly preferably 2 mm to 6 mm.

請求項7は請求項4〜6の何れか1において、前記反応流路の混合部入口において前記溶解液と前記貧溶媒とが合流してから前記混合部出口から出るまでの該反応流路での滞在時間が10msec以下になるように、前記混合部に供給する溶解液と貧溶媒との総流量を調整する調整手段を設けたことを特徴とする。   A seventh aspect of the present invention provides the reaction channel according to any one of the fourth to sixth aspects, wherein the solution and the poor solvent are merged at the mixing unit inlet of the reaction channel and are then discharged from the mixing unit outlet. The adjusting means for adjusting the total flow rate of the dissolving solution and the poor solvent supplied to the mixing unit is provided so that the staying time of 10 msec or less is provided.

請求項7によれば、反応流路の混合部入口において溶解液と貧溶媒とが合流してから混合部出口から出るまでの混合部での滞在時間が10msec以下になるように、混合部に供給する溶解液と貧溶媒との総流量を調整するようにしたので、流路径を拡大化しても不均一混合を生じにくい。   According to claim 7, in the mixing part, the residence time in the mixing part from the time when the solution and the poor solvent merge at the mixing part inlet of the reaction channel to the time when the mixing part exits from the mixing part outlet is 10 msec or less. Since the total flow rate of the solution to be supplied and the poor solvent is adjusted, non-uniform mixing is unlikely to occur even if the flow path diameter is enlarged.

以上説明したように、本発明の微粒子製造方法及び装置によれば、凝集体形成を均一に行うことができるので、後工程の濾過や再分散を高精度且つ正常に行うことができるとともに、微粒子形成と凝集体形成とを1度に行うことができるので、微粒子製造のための装置を簡略化できる。   As described above, according to the fine particle production method and apparatus of the present invention, aggregate formation can be performed uniformly, so that filtration and redispersion in the subsequent process can be performed with high accuracy and normality. Since the formation and the aggregate formation can be performed at once, the apparatus for producing fine particles can be simplified.

以下、添付図面に従って、本発明に係る微粒子製造方法及び装置の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a method and apparatus for producing fine particles according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の微粒子製造装置10を示す斜視図である。尚、微粒子形成材料として有機顔料を用い、有機顔料微粒子を製造する例で説明する。   FIG. 1 is a perspective view showing a fine particle production apparatus 10 of the present invention. An example of producing organic pigment fine particles using an organic pigment as the fine particle forming material will be described.

図1に示すように、本発明の微粒子製造装置10は、主として、装置本体12と、有機顔料を良溶媒に溶解した溶解液L1を装置本体12に流す溶解液配管14と、前記良溶媒に相溶し有機顔料を溶解しない貧溶媒L2を装置本体12に流す貧溶媒配管16と、それぞれの配管14、16を介して溶解液L1及び貧溶媒L2を装置本体12に供給するそれぞれの供給手段18、20と、貧溶媒配管16に凝集剤(例えば塩酸)を添加する添加手段22とで構成される。   As shown in FIG. 1, the fine particle production apparatus 10 of the present invention mainly includes an apparatus main body 12, a solution pipe 14 for flowing a solution L1 obtained by dissolving an organic pigment in a good solvent to the apparatus main body 12, and the good solvent. A poor solvent pipe 16 that flows the poor solvent L2 that is compatible and does not dissolve the organic pigment to the apparatus main body 12, and each supply means that supplies the solution L1 and the poor solvent L2 to the apparatus main body 12 through the respective pipes 14 and 16. 18 and 20 and addition means 22 for adding a flocculant (for example, hydrochloric acid) to the poor solvent pipe 16.

装置本体12は、基板26と蓋板28とが合わさって形成され、基板26の合わせ面には、反応溝、溶解液導入溝、貧溶媒導入溝が刻設される。そして、基板26に蓋板28が合わさって一体化されることによって、反応流路30、溶解液導入流路32、貧溶媒導入流路34の各流路が形成される。即ち、反応流路30の混合部36には、溶解液L1と貧溶媒L2を反応流路30の混合部36で合流するように導入して、溶解液L1と貧溶媒L2が積層された複層流Lを形成する。   The apparatus body 12 is formed by combining a substrate 26 and a cover plate 28, and a reaction groove, a solution introduction groove, and a poor solvent introduction groove are formed on the mating surface of the substrate 26. Then, the cover plate 28 is combined with the substrate 26 to be integrated, whereby the reaction channel 30, the solution introduction channel 32, and the poor solvent introduction channel 34 are formed. In other words, the solution L1 and the poor solvent L2 are introduced into the mixing portion 36 of the reaction flow path 30 so as to merge at the mixing portion 36 of the reaction flow path 30, and the solution L1 and the poor solvent L2 are stacked. A laminar flow L is formed.

また、2本の導入流路32、34は、蓋板28に形成された貫通孔38、38を介してそれぞれの配管14、16の先端部とそれぞれ連結されると共に、それぞれの配管14、16の基端部には溶解液供給手段18と貧溶媒供給手段20とが連結される。溶解液L1及び貧溶媒L2の供給手段としては、例えばマイクロシリンジポンプを好適に使用できる。この場合、溶解液供給手段18と貧溶媒供給手段20には、装置本体12に供給する供給量を調整する調整手段(図示せず)を備えていることが好ましい。   In addition, the two introduction flow paths 32 and 34 are connected to the distal ends of the respective pipes 14 and 16 through the through holes 38 and 38 formed in the lid plate 28, respectively, and the respective pipes 14 and 16. The solution supply means 18 and the poor solvent supply means 20 are connected to the base end portion of these. For example, a microsyringe pump can be suitably used as a supply means for the solution L1 and the poor solvent L2. In this case, it is preferable that the solution supply means 18 and the poor solvent supply means 20 include an adjustment means (not shown) for adjusting the supply amount supplied to the apparatus main body 12.

溶解液配管14及び貧溶媒配管16としては、金属性の配管の他、樹脂チューブを好適に使用することができる。また、反応流路30の出口は、蓋板28に形成された貫通孔40を介して図示しない排出管等に連結される。   As the solution pipe 14 and the poor solvent pipe 16, a resin tube can be preferably used in addition to a metallic pipe. The outlet of the reaction channel 30 is connected to a discharge pipe (not shown) or the like through a through hole 40 formed in the lid plate 28.

凝集剤の添加手段22は、貧溶媒配管16から分岐された添加配管23と、添加配管23を介して貧溶媒配管16内に凝集剤を供給する凝集剤供給手段24と構成される。凝集剤供給手段24としては、一定量の凝集剤を連続的に添加配管23から貧溶媒配管16内に添加供給できるようなものであればどのような機器でもよい。   The flocculant addition means 22 includes an addition pipe 23 branched from the poor solvent pipe 16 and a flocculant supply means 24 for feeding the flocculant into the poor solvent pipe 16 via the addition pipe 23. The flocculant supply means 24 may be any device as long as a certain amount of flocculant can be continuously added and supplied from the addition pipe 23 into the poor solvent pipe 16.

また、図1では、溶解液L1と貧溶媒L2とをそれぞれ反応流路30の混合部36に導入する2本の導入流路32、34で示したが、図2及び図3に示すように、導入流路32、34の数は、同一面上(基板26の蓋板28への合わせ面上)に少なくとも3本以上設けられ、溶解液導入流路32と貧溶媒導入流路34とが交互に配置されることが一層好ましい。   In FIG. 1, the solution L1 and the poor solvent L2 are shown as two introduction channels 32 and 34 for introducing the solution L1 and the poor solvent L2 into the mixing unit 36 of the reaction channel 30, respectively, but as shown in FIGS. The number of the introduction channels 32 and 34 is at least three on the same surface (on the mating surface of the substrate 26 to the lid plate 28), and the solution introduction channel 32 and the poor solvent introduction channel 34 are provided. More preferably, they are arranged alternately.

図2は、反応流路30の混合部36から4本の導入流路32A、32B、34A、34Bを扇状に分岐させたものであり、4本の導入流路32A、32B、34A、34Bのうち、貧溶媒導入流路34A、34Bに連結される2本の配管16A、16Bには凝集剤の添加手段22を設けた態様である。即ち、反応流路30の混合部36に、θ1の角度でY字状に連通された第1の溶解液導入流路32Aと第1の貧溶媒注入流路34Aとが配置され、その外側に、θ1よりも大きなθ2の角度で第2の溶解液導入流路32Bと第2の貧溶媒注入流路34BとがY字状に配置される。また、4本の導入流路32A、32B、34A、34Bの流路幅合計は、反応流路30の流路幅よりも大きくなるように形成される。これにより、4本の導入流路32A、32B、34A、34Bを流れて反応流路30の混合部36に合流される4つの流れは、お互い同士で縮流し合って先細形状の流れとなり、溶解液L1の薄層と貧溶媒L2の薄層とが交互に積層された4層構造から成るサンドイッチ状の複層流Lを形成する。   FIG. 2 shows the four introduction flow paths 32A, 32B, 34A, 34B branched from the mixing section 36 of the reaction flow path 30 in a fan shape, and the four introduction flow paths 32A, 32B, 34A, 34B are divided. Of these, the flocculant adding means 22 is provided in the two pipes 16A, 16B connected to the poor solvent introduction flow paths 34A, 34B. That is, the first solution introduction flow path 32A and the first poor solvent injection flow path 34A communicated in a Y-shape with an angle θ1 are arranged in the mixing portion 36 of the reaction flow path 30, and on the outside thereof. , The second solution introduction flow path 32B and the second poor solvent injection flow path 34B are arranged in a Y shape at an angle θ2 larger than θ1. Further, the total flow path width of the four introduction flow paths 32A, 32B, 34A, 34B is formed to be larger than the flow path width of the reaction flow path 30. As a result, the four flows that flow through the four introduction flow paths 32A, 32B, 34A, and 34B and merge into the mixing portion 36 of the reaction flow path 30 are contracted with each other to form a tapered flow. A sandwich-like multilayer flow L having a four-layer structure in which thin layers of the liquid L1 and thin layers of the poor solvent L2 are alternately stacked is formed.

図3は、反応流路30の混合部36から5本の導入流路32A、32B、32C、34A、34Bを放射状に分岐させたものであり、5本の導入流路32A、32B、32C、34A、34Bのうち、貧溶媒導入流路34A、34Bに連結される2本の配管16A、16Bには凝集剤の添加手段22を設けたものである。即ち、反応流路30の反対側には第1の溶解液導入流路32Aが設けられ、該第1の溶解液導入流路32Aを挟んだ左右に、第1及び第2の貧溶媒導入流路34A、34BがV字状に配置される。更に、反応流路30を挟んだ左右に、第2及び第3の溶解液導入流路32B、32Cが逆V字状に配設される。即ち、図3の放射状型の場合には、2本の溶解液L1はそれぞれ左右の斜め下から反応流路の30の混合部36に向けて他の合流する液を突き上げるように挟み込む。この突き上げによって、図2に比べて縮流を促進することができる。また、5本の導入流路32A、32B、32C、34A、34Bの流路幅合計は、反応流路30の流路幅よりも大きくなるようにした。これにより、5本の導入流路32A、32B、32C、34A、34Bを流れて反応流路30の混合部36に合流される5つの流れは、お互い同士で縮流し合って先細形状の流れとなり、溶解液L1の薄層と貧溶媒L2の薄層とが交互に積層された5層構造から成るサンドイッチ状の複層流Lを形成する。   FIG. 3 is a diagram in which five introduction channels 32A, 32B, 32C, 34A, 34B are radially branched from the mixing portion 36 of the reaction channel 30, and the five introduction channels 32A, 32B, 32C, Among the pipes 34A and 34B, the two pipes 16A and 16B connected to the poor solvent introduction flow paths 34A and 34B are provided with a flocculant addition means 22. That is, a first solution introduction flow path 32A is provided on the opposite side of the reaction flow path 30, and the first and second poor solvent introduction flows are arranged on the left and right sides of the first solution introduction flow path 32A. The paths 34A and 34B are arranged in a V shape. Furthermore, the second and third solution introduction channels 32B and 32C are arranged in an inverted V shape on the left and right sides of the reaction channel 30. That is, in the case of the radial type in FIG. 3, the two dissolved solutions L1 are sandwiched so as to push up other joining solutions from the diagonally lower left and right toward the mixing portion 36 of the reaction flow path 30. By this pushing-up, the contraction can be promoted as compared with FIG. The total flow path width of the five introduction flow paths 32A, 32B, 32C, 34A, and 34B was made larger than the flow path width of the reaction flow path 30. As a result, the five flows that flow through the five introduction flow paths 32A, 32B, 32C, 34A, and 34B and are merged into the mixing portion 36 of the reaction flow path 30 are mutually contracted to form a tapered flow. Then, a sandwich-like multilayer flow L having a five-layer structure in which thin layers of the solution L1 and thin layers of the poor solvent L2 are alternately stacked is formed.

図2及び図3に示したように、3本以上の導入流路けることにより、溶解液L1と貧溶媒L2の層自体は薄層化されるので、反応流路30の流路径を比較的太くしても拡散混合時間を実質的に短くできる。したがって、導入流路が溶解液L1と貧溶媒L2の2本だけの場合と比べて、反応流路30の流路径を拡大化しても、瞬時の拡散混合を実現できる。これにより、反応流路30で微粒子形成から凝集体形成までを一貫して行っても、凝集体による目詰や、凝集体による流れの不安定化を招きにくい。反応流路30の拡大化の好ましい範囲としては、反応流路30の流路径が等価直径で0.5mm以上であり、1mm以上がより好ましく、2mm以上が更に好ましい。   As shown in FIG. 2 and FIG. 3, since the layers of the solution L1 and the poor solvent L2 themselves are thinned by providing three or more introduction channels, the channel diameter of the reaction channel 30 is relatively small. Even if the thickness is increased, the diffusion mixing time can be substantially shortened. Therefore, instantaneous diffusion mixing can be realized even when the diameter of the reaction channel 30 is increased as compared with the case where the number of introduction channels is two, that is, the solution L1 and the poor solvent L2. As a result, even if the process from the formation of fine particles to the formation of aggregates is performed consistently in the reaction channel 30, clogging due to the aggregates and instability of the flow due to the aggregates are unlikely to occur. A preferable range for enlarging the reaction channel 30 is that the channel diameter of the reaction channel 30 is 0.5 mm or more in terms of equivalent diameter, more preferably 1 mm or more, and even more preferably 2 mm or more.

ここで、溶解液L1と貧溶媒L2の瞬時混合の重要性について詳細に説明する。   Here, the importance of instantaneous mixing of the solution L1 and the poor solvent L2 will be described in detail.

例えば、溶解液L1は貧溶媒L2と接触すると、直ちに析出を開始するため、貧溶媒L2との接触が、空間的、時間的に差が出ると析出粒子のサイズに分布が生じる可能性があり、好ましくない。分布を生じさせないために重要なのは、溶解液L1がいかに速く、析出を促すのに足る量の貧溶媒L2と接触するかである。これを達成するための最も重量なポイントが溶解液L1の薄層形成である。   For example, when the solution L1 comes into contact with the poor solvent L2, the precipitation starts immediately. Therefore, if the contact with the poor solvent L2 is spatially and temporally different, the size of the precipitated particles may be distributed. It is not preferable. What is important in order not to cause the distribution is how fast the solution L1 comes into contact with an amount of the poor solvent L2 sufficient to promote precipitation. The most important point for achieving this is the formation of a thin layer of the solution L1.

そこで、本発明のように薄層形成を混合原理とするリアクターを用いれば、溶解液L1はリアクターの合流場に導入され、時間的、空間的に、貧溶媒L2と均一に近い状態で接触する。ここでいう均一性の定義であるが、混合により開始する反応の速度や粒子形成の速度と同次元の時間、もしくはそれ以下の時間で混合部36において濃度分布にむら無く混合されるかということである。なお、流路全体が濃度的に均一になる必要はなく、溶解液L1にとって、貧溶媒L2が接触する時間に差がなければよい。通常の反応でいえば、数msecのオーダーである。   Therefore, if a reactor based on the mixing principle is used as in the present invention, the solution L1 is introduced into the confluence field of the reactor and contacts the poor solvent L2 in a nearly uniform state in time and space. . The definition of homogeneity here refers to whether the concentration distribution is evenly mixed in the mixing unit 36 in the time of the same dimension as the speed of reaction started by mixing or the speed of particle formation, or less. It is. Note that the entire flow path does not need to be uniform in concentration, and it is sufficient that there is no difference in the contact time of the poor solvent L2 for the solution L1. Speaking of normal reactions, it is on the order of several milliseconds.

サンドイッチ状の複層流Lを形成する溶解液L1と貧溶媒L2との流量比としては、生産性を考慮すると、溶解液L1に対する貧溶媒L2の割合は低いほど、高い濃度の混合液が得られる。この点から、サンドイッチされる側の液(例えば溶解液L1)の流量に対して、サンドイッチする側の液(例えば貧溶媒L2)の流量が、1倍〜10倍になるようにすることが好ましい。さらに2倍〜3倍がより好ましく、2倍が特に好ましい。なお、本混合方法は、液体で液体を挟み込む原理を使っており、必ず、両脇から挟み込むサンドイッチ構造とする。これは、平面的だけではなく、立体的に流路を配置した構造でもよい。なお、ここでいうL2のL1に対する流量比は挟み込む両側のトータル量として規定している。L1の量に対して、L2の流量比は2倍であることが、特に混合性及び生産性的に好ましい。   As for the flow rate ratio between the solution L1 and the poor solvent L2 forming the sandwich-like multi-layer flow L, the lower the ratio of the poor solvent L2 to the solution L1, the higher the concentration of the mixed solution is obtained. It is done. From this point, it is preferable that the flow rate of the liquid on the sandwiching side (for example, the poor solvent L2) is 1 to 10 times the flow rate of the liquid on the sandwiched side (for example, the solution L1). . Furthermore, 2 to 3 times is more preferable, and 2 times is particularly preferable. This mixing method uses the principle of sandwiching a liquid with a liquid, and always uses a sandwich structure that sandwiches from both sides. This may be a structure in which the flow paths are arranged three-dimensionally as well as planarly. The flow rate ratio of L2 to L1 here is defined as the total amount on both sides to be sandwiched. It is particularly preferable in terms of mixing property and productivity that the flow rate ratio of L2 is twice that of L1.

また、反応流路30の混合部36に供給する複層流L(溶解液L1+貧溶媒L2)の総流量は、反応流路30の混合部入口において溶解液L1と貧溶媒L2とが合流してから混合部出口から出るまでの該混合部36での滞在時間が10msec以下になるようにすることが好ましい。総流量を調整するには、上記した溶解液供給手段18と貧溶媒供給手段20に備えた調整手段を制御するとよい。   Further, the total flow rate of the multi-layer flow L (dissolved liquid L1 + poor solvent L2) supplied to the mixing section 36 of the reaction flow path 30 is such that the dissolved liquid L1 and the poor solvent L2 merge at the mixing section inlet of the reaction flow path 30. It is preferable that the staying time in the mixing unit 36 from when the mixing unit exits to the mixing unit exit is 10 msec or less. In order to adjust the total flow rate, the adjusting means provided in the solution supply means 18 and the poor solvent supply means 20 may be controlled.

ここで、反応流路30における混合部36の入口と出口について図3を用いて説明すると、入口36Aとは、複数の流路が混合部36に交差し始める地点を指し、出口36Bとは複数の流路が交差しなくなる地点を指す。したがって、図2の場合の混合部出口は、流路32Bと流路34Bとが反応流路30に対して交差しなくなる地点をいう。   Here, the inlet and outlet of the mixing unit 36 in the reaction channel 30 will be described with reference to FIG. 3. The inlet 36A refers to a point where a plurality of channels start to intersect the mixing unit 36, and the outlet 36B includes a plurality of outlets. This refers to the point where the flow paths no longer intersect. Therefore, the mixing portion outlet in the case of FIG. 2 refers to a point where the flow path 32B and the flow path 34B do not intersect the reaction flow path 30.

そして、混合部36での滞留時間とは入口36Aと出口36Bとの間を通過する時間を指す。また、上記の滞留時間10msec以下は、溶解液L1と貧溶媒L2とで形成される複層流Lの流れで規定している。しかし、貧溶媒L2の滞留時間ではなく、溶解液L1の滞留時間が重要であり、混合部36における溶解液L1の滞留時間を10msec以下とすることが一層好ましい。したがって、混合部36の流路断面が広くなった場合、滞留時間を一定にするためには、混合部36の入口36Aに供給する流量を増大する必要がある。   And the residence time in the mixing part 36 refers to the time which passes between the entrance 36A and the exit 36B. The residence time of 10 msec or less is defined by the flow of the multilayer flow L formed by the solution L1 and the poor solvent L2. However, the residence time of the solution L1 is important, not the residence time of the poor solvent L2, and the residence time of the solution L1 in the mixing unit 36 is more preferably 10 msec or less. Therefore, when the flow path cross section of the mixing part 36 becomes wide, it is necessary to increase the flow rate supplied to the inlet 36A of the mixing part 36 in order to make the residence time constant.

本発明の混合原理は、溶解液L1と貧溶媒L2とが接触しながら薄層を形成するものであり、単純計算でも分かるように、その厚みが薄いほど、薄層の流速は大きくなる。そのため、両液L1、L2が接触する単位時間当たりの接触機会(面積)は大きくなり、常に界面の更新を行わないと、2液間での物質のやりとり、特に界面での粒子形成が時々刻々起こっている。一方で、分散剤の供給が間に合わなくなるため、凝集が発生する傾向が高くなる。もちろん、この供給速度は分散剤の濃度によっても変化するが、分散剤を入れすぎると、液の粘性が上がるため、混合が不利となり、必要以上に入れることは好ましくない。これまでの経験より、滞留時間が10msec以下で且つ一定の濃度の分散剤が入っていれば、単分散性の高いナノ粒子を形成させることは十分可能であることがわかっている。   The mixing principle of the present invention is to form a thin layer while the solution L1 and the poor solvent L2 are in contact with each other. As can be seen from simple calculations, the thinner the layer, the larger the flow rate of the thin layer. For this reason, the contact opportunity (area) per unit time with which both the liquids L1 and L2 come into contact increases, and unless the interface is constantly updated, the exchange of substances between the two liquids, especially the formation of particles at the interface, is constantly happening. is happening. On the other hand, since the supply of the dispersant cannot be made in time, the tendency for aggregation to occur increases. Of course, this supply rate also changes depending on the concentration of the dispersant. However, if too much dispersant is added, the viscosity of the liquid increases, so that mixing is disadvantageous and it is not preferable to add more than necessary. Experiences to date have shown that it is sufficiently possible to form nanoparticles with high monodispersity if the residence time is 10 msec or less and a certain concentration of dispersant is contained.

尚、図2及び図3において、3本以上の導入流路合計の流路幅と、反応流路の流路幅とをどの程度の比率で導入流路合計を大きくするかは、複層流の層数、反応流路の流路幅、反応流路で行う拡散混合の時間等によって適宜設定することができる。また、複数の溶解液導入流路と複数の貧溶媒導入流路とが交互に配置されていればよく、図2及び図3の配置の仕方に限定するものではない。また、図2及び図3には、溶解液L1と貧溶媒L2との供給手段については図示しなかったが、2本(図2)、又は3本(図3)の溶解液注入管にそれぞれ個別に溶解液供給手段を設けてもよく、1つの溶解液供給手段から2本又は3本の溶解液注入管に分流するようにしてもよい。貧溶媒L2の供給手段についても同様である。   2 and 3, the ratio of the total flow width of the three or more introduction flow paths to the flow width of the reaction flow path is determined by the multi-layer flow. The number of layers, the width of the reaction channel, the time of diffusion mixing performed in the reaction channel, and the like can be set as appropriate. Further, it is only necessary that a plurality of solution introduction flow paths and a plurality of poor solvent introduction flow paths are alternately arranged, and the present invention is not limited to the arrangement shown in FIGS. 2 and 3 do not show the means for supplying the solution L1 and the poor solvent L2, but two (FIG. 2) or three (FIG. 3) solution injection pipes are respectively provided. The solution supply means may be provided individually, or the solution may be divided into two or three solution injection pipes from one solution supply means. The same applies to the supply means of the poor solvent L2.

上記の如く構成された装置本体12は、マイクロドリル加工、マイクロ放電加工、めっきを利用したモールディング、射出成形、ドライエッチング、ウエットエッチング、及びホットエンボス加工等の精密加工技術を利用して製作することができる。尚、上記の如く反応流路30の流路径を等価直径で0.5mm以上とすることで、瞬時の拡散混合を行う目的の一般的なマイクロリアクターにおける反応流路(通常は0.5mm未満)に比べて拡大化できるので、汎用的な旋盤、ボール盤を用いる機械加工技術も利用できる。   The apparatus main body 12 configured as described above is manufactured using precision processing techniques such as micro drilling, micro electric discharge machining, molding using plating, injection molding, dry etching, wet etching, and hot embossing. Can do. As described above, the reaction channel 30 has an equivalent diameter of 0.5 mm or more, so that the reaction channel in a general microreactor for instantaneous diffusion mixing (usually less than 0.5 mm) Therefore, machining techniques using general-purpose lathes and drilling machines can also be used.

装置本体12の材料としては、特に限定されるものではなく、上述の加工技術を適用できるものであればよい。具体的には、金属材料(鉄、アルミニウム、ステンレススチール、チタン、各種の金属等)、樹脂材料(アクリル樹脂、PDMS等)、ガラス(シリコン、パイレックス(登録商標)、石英ガラス等)や、石英ガラスやパイレックス(登録商標)ガラスにパリレン(パラキシレン蒸着)処理を行ったもの、フッ素系又は炭化水素系のシランカップリング処理を行ったものを好適に使用できる。   The material of the apparatus main body 12 is not particularly limited as long as the above-described processing technique can be applied. Specifically, metal materials (iron, aluminum, stainless steel, titanium, various metals, etc.), resin materials (acrylic resin, PDMS, etc.), glass (silicon, Pyrex (registered trademark), quartz glass, etc.), quartz Glass or Pyrex (registered trademark) glass subjected to parylene (paraxylene vapor deposition) treatment, or fluorine or hydrocarbon silane coupling treatment can be suitably used.

また、装置本体12は、後記する微生物製造方法で説明するように、溶解液L1と貧溶媒L2とが反応流路30の混合部36で形成する縮流状態を顕微鏡等で視覚により観察できるように、透明な材料で製作することが好ましい。   Moreover, the apparatus main body 12 can visually observe the contracted flow state which the solution L1 and the poor solvent L2 form in the mixing part 36 of the reaction flow path 30 with a microscope etc. so that it may demonstrate with the microorganisms manufacturing method mentioned later. In addition, it is preferable to manufacture with a transparent material.

装置本体12を加熱する加熱手段(図示せず)を設けることが好ましい。加熱手段としては、金属抵抗線やPolysilicon などのヒータ構造を装置本体に作り込む方法などがある。金属抵抗線やPolysilicon などのヒータ構造の場合には、加熱についてはこれを使用し、冷却については自然冷却でサーマルサイクルを行うことで温度を制御する。この場合の温度のセンシングについては、金属抵抗線の場合には同じ抵抗線をもう一つ作り込んでおき、その抵抗値の変化に基づいて温度検出を行い、Polysilicon の場合には、熱電対を用いて温度検出を行う方法が一般的に採用されている。また、近年においては、ペルチェ素子を用いた温度制御機能を装置本体12に組み込むことで、血液の温度制御を精度良く行うこともできる。何れにしても、温度制御そのものは、従来からの温度制御技術でもペルチェ素子に代表される新規な温度制御技術でも可能であり、装置本体の材料等に応じた加熱・冷却機構と温度センシング機構の選択、ならびに外部制御系の構成を組み合わせて最適な方法を選択することができる。   It is preferable to provide a heating means (not shown) for heating the apparatus main body 12. As a heating means, there is a method in which a heater structure such as a metal resistance wire or Polysilicon is built in the apparatus body. In the case of a heater structure such as a metal resistance wire or Polysilicon, this is used for heating, and the temperature is controlled by performing a thermal cycle with natural cooling for cooling. For temperature sensing in this case, in the case of a metal resistance wire, make another same resistance wire, detect the temperature based on the change in the resistance value, and in the case of Polysilicon, use a thermocouple. A method for detecting the temperature by using this method is generally employed. In recent years, by incorporating a temperature control function using a Peltier element into the apparatus main body 12, it is also possible to accurately control the temperature of blood. In any case, the temperature control itself can be performed by a conventional temperature control technique or a new temperature control technique represented by a Peltier element. The optimum method can be selected by combining the selection and the configuration of the external control system.

次に上記の如く構成された微粒子製造装置10を用いて本発明の微粒子製造方法を説明する。尚、本実施の形態では、図2で示した4本の導入流路を備えた装置本体12を使用した場合で説明する。   Next, the fine particle production method of the present invention will be described using the fine particle production apparatus 10 configured as described above. In the present embodiment, the case where the apparatus main body 12 having the four introduction channels shown in FIG. 2 is used will be described.

図4は、有機顔料微粒子の一連の製造フローを示す概念図である。   FIG. 4 is a conceptual diagram showing a series of manufacturing flow of organic pigment fine particles.

先ず、本発明の微粒子製造装置10を用いて、有機顔料微粒子Aの形成工程と、形成された有機顔料微粒子Aを凝集して凝集体Bを形成する凝集体形成工程を一度に行う。即ち、溶解液L1と貧溶媒L2とを4本の導入流路32A、32B、34A、34Bを介して反応流路30の混合部36に導入するとともに、貧溶媒L2には、添加手段22から2本の貧溶媒配管16A、16Bに有機顔料微粒子Aを凝集させるための凝集剤C(例えば塩酸)を一定量で連続的に添加する。また、溶解液L1には、例えば高分子分散剤等の分散剤Dを添加しておくことが好ましい。これにより、図4(A)に示すように、反応流路30の混合部36では、溶解液L1と貧溶媒L2とが互いに縮流し合って、薄層な溶解液L1と薄層な貧溶媒L2とが交互に積層された4層構造から成るサンドイッチ状の複層流Lを形成する。溶解液L1と貧溶媒L2の各層が薄膜化されることにより、溶解液L1と貧溶媒L2とは反応流路30内で瞬時に拡散混合して、溶解液L1の溶解度が下がり過飽和状態となるので、溶解液L1から有機顔料微粒子Aが析出する。溶解液L1から析出した有機顔料微粒子Aは貧溶媒L2に含有される凝集剤Cと反応流路30内で接触して凝集体Bを形成する。これにより、単分散性が良くナノメートルサイズ(nm)の有機顔料微粒子Aを析出させることができる。また、析出した有機顔料微粒子Aの凝集体形成を、反応流路30内で連続的に行うことで、凝集剤濃度分布が発生しないようにできるので、凝集径及び凝集強さ等の均等な凝集体Bを形成できる。   First, using the fine particle production apparatus 10 of the present invention, the organic pigment fine particle A forming step and the aggregate forming step of aggregating the formed organic pigment fine particles A to form the aggregate B are performed at a time. That is, the solution L1 and the poor solvent L2 are introduced into the mixing portion 36 of the reaction flow path 30 through the four introduction flow paths 32A, 32B, 34A, 34B, and the poor solvent L2 is added to the poor solvent L2 from the adding means 22. A flocculant C (for example, hydrochloric acid) for agglomerating the organic pigment fine particles A is continuously added to the two poor solvent pipes 16A and 16B in a constant amount. Further, it is preferable to add a dispersant D such as a polymer dispersant to the solution L1. As a result, as shown in FIG. 4A, in the mixing portion 36 of the reaction flow path 30, the solution L1 and the poor solvent L2 flow together to form a thin solution L1 and a thin poor solvent. A sandwich-like multi-layer flow L having a four-layer structure in which L2 is alternately stacked is formed. As the respective layers of the solution L1 and the poor solvent L2 are thinned, the solution L1 and the poor solvent L2 are instantaneously diffused and mixed in the reaction flow path 30 to lower the solubility of the solution L1 and become supersaturated. Therefore, the organic pigment fine particles A are precipitated from the solution L1. The organic pigment fine particles A deposited from the solution L1 come into contact with the flocculant C contained in the poor solvent L2 in the reaction flow path 30 to form an aggregate B. Thereby, monodispersity is good and the organic pigment fine particle A of nanometer size (nm) can be deposited. In addition, since the aggregate formation of the precipitated organic pigment fine particles A is continuously performed in the reaction flow path 30, it is possible to prevent the concentration distribution of the flocculant from being generated. Aggregation B can be formed.

次に、凝集体Bが含有される分散液は、反応流路30の出口から排出され、例えば図示しない貯留容器等に貯留される。この凝集体Bには、図4(B)に示すように、余剰の分散剤Dや凝集剤C等の不要物が混在しているので、図4(C)に示すように、分散液をフィルタ42で濾過することにより、凝集体Bから不要物を除去する。   Next, the dispersion liquid containing the aggregate B is discharged from the outlet of the reaction channel 30 and stored in, for example, a storage container (not shown). In this aggregate B, as shown in FIG. 4 (B), since unnecessary substances such as surplus dispersant D and coagulant C are mixed, as shown in FIG. Unnecessary substances are removed from the aggregate B by filtering with the filter 42.

次に、不要物が除去された後の凝集体Bを含む分散液に再分散剤(例えばpH調整剤)を添加して、凝集体Bを再分散する。これにより、不要物のない、且つ単分散性が良くナノメートルサイズ(nm)の有機顔料微粒子Aを製造することができる。   Next, a redispersant (for example, a pH adjusting agent) is added to the dispersion liquid containing the aggregate B from which unnecessary substances have been removed, and the aggregate B is redispersed. Thereby, it is possible to produce organic pigment fine particles A having no unnecessary substances and having a good monodispersibility and a nanometer size (nm).

本発明の微粒子製造方法及び装置を顔料微粒子の製造に適用することにより、以下の効果を奏することができる。   By applying the fine particle production method and apparatus of the present invention to the production of pigment fine particles, the following effects can be obtained.

本発明では、溶解液L1と貧溶媒L2とで互いに縮流しあって、薄層な溶解液L1と薄層な貧溶媒L2が積層したサッドイッチ状の複層流Lを形成することで、瞬時に拡散混合して有機顔料微粒子Aを析出させることができるので、単分散性が良く且つナノメートルサイズの有機顔料微粒子Aを形成することができる。   In the present invention, the solution L1 and the poor solvent L2 are contracted with each other to form a sadditch-like multi-layer flow L in which the thin solution L1 and the thin poor solvent L2 are stacked, thereby instantly. Since the organic pigment fine particles A can be precipitated by diffusion mixing, the organic pigment fine particles A having good monodispersibility and nanometer size can be formed.

拡散係数をd、時間Tの間に分子が拡散して到達する代表距離をLとしたときに、T=L/dの関係式が成立し、拡散時間は距離の2乗に比例する。例えば、エタノール分子は、溶媒を水としたときの拡散係数Dが0.84×10−3mm/sec(25℃)であり、1mm移動するのに20分、30μm移動するのに1秒と遅く、これでは瞬時の拡散混合は不可能である。しかし、10μmまで薄層化すれば、エタノール分子は0.1秒で移動でき、1μmまで薄層化すれば、エタノール分子は0.001秒で移動でき、0.1μmまで薄層化すれば、エタノール分子は10マイクロ秒で移動できる。 When the diffusion coefficient is d and the representative distance at which molecules diffuse and reach during time T is L, the relational expression T = L 2 / d is established, and the diffusion time is proportional to the square of the distance. For example, the ethanol molecule has a diffusion coefficient D of 0.84 × 10 −3 mm 2 / sec (25 ° C.) when the solvent is water, 20 minutes for moving 1 mm, and 1 second for moving 30 μm. This makes instantaneous diffusion mixing impossible. However, if the layer is thinned to 10 μm, the ethanol molecules can move in 0.1 seconds, and if the layer is thinned to 1 μm, the ethanol molecules can move in 0.001 seconds, and if the layer is thinned to 0.1 μm, Ethanol molecules can move in 10 microseconds.

このように、拡散混合を瞬時に行うには、拡散し合う層同士を薄層化することが極めて重要である。更には、溶解液L1と貧溶媒L2とが交互に3層以上積層した複層流Lを形成することで、反応流路30自体の流路径を拡大化しても瞬時の拡散混合を実現できるので、反応流路30の流路径を上記の如く0.5mm以上、好ましく1mm以上、更には2mm以上にすることができる。これにより、反応流路30内で有機顔料微粒子Aの形成から凝集体Bの形成までを一度に行っても、凝集体Bによって反応流路30が目詰まりするのを効果的に防止できる。また、反応流路30を拡大化できるので、反応流路30を形成する製作精度が向上できると共に、反応流路30での圧力損失が大きくなり過ぎないようにできる。また、反応流路30内で有機顔料微粒子の析出と凝集とを一度に行うことで、析出と凝集を1つの装置として構成することができ、マイクロリアクターで有機顔料微粒子Aを形成した後、タンク内で凝集体Bを形成する従来に場合に比べて、工程や装置を簡素化できる。   Thus, in order to instantaneously perform the diffusive mixing, it is extremely important to make the diffusing layers thinner. Further, by forming a multi-layer flow L in which three or more layers of the solution L1 and the poor solvent L2 are alternately stacked, instantaneous diffusion mixing can be realized even if the channel diameter of the reaction channel 30 itself is increased. The channel diameter of the reaction channel 30 can be 0.5 mm or more, preferably 1 mm or more, and more preferably 2 mm or more as described above. Thereby, even if the formation from the formation of the organic pigment fine particles A to the formation of the aggregate B is performed in the reaction flow path 30 at once, it is possible to effectively prevent the reaction flow path 30 from being clogged by the aggregate B. Moreover, since the reaction channel 30 can be enlarged, the manufacturing accuracy for forming the reaction channel 30 can be improved, and the pressure loss in the reaction channel 30 can be prevented from becoming too large. In addition, the organic pigment fine particles can be deposited and aggregated at a time in the reaction flow path 30 so that the precipitation and the aggregation can be configured as one device. After the organic pigment fine particles A are formed in the microreactor, the tank As compared with the conventional case where the aggregate B is formed, the process and apparatus can be simplified.

また、本発明では、反応流路30の流路径を拡大化することができるので、処理能力が向上し、単分散性が良いナノメートルサイズの有機顔料微粒子の製造効率を大幅にアップすることができる。   Further, in the present invention, since the channel diameter of the reaction channel 30 can be enlarged, the processing capability is improved, and the production efficiency of nanometer-sized organic pigment fine particles with good monodispersibility can be greatly increased. it can.

本発明の実施の形態に用いられる有機顔料は、色相的に限定されるものではなく、マゼンタ顔料、イエロー顔料、またはシアン顔料であることができる。詳しくは、ペリレン、ペリノン、キナクリドン、キナクリドンキノン、アントラキノン、アントアントロン、ベンズイミダゾロン、ジスアゾ縮合、ジスアゾ、アゾ、インダントロン、フタロシアニン、トリアリールカルボニウム、ジオキサジン、アミノアントラキノン、ジケトピロロピロール、チオインジゴ、イソインドリン、イソインドリノン、ピラントロンまたはイソビオラントロン系顔料またはそれらの混合物などのマゼンタ顔料、イエロー顔料、またはシアン顔料である。更に詳しくは、例えば、C.I.ピグメントレッド190(C.I.番号71140)、C.I.ピグメントレッド224(C.I.番号71127)、C.I.ピグメントバイオレット29(C.I.番号71129)等のペリレン系顔料、C.I.ピグメントオレンジ43(C.I.番号71105)、もしくはC.I.ピグメントレッド194(C.I.番号71100)等のペリノン系顔料、C.I.ピグメントバイオレット19(C.I.番号73900)、C.I.ピグメントバイオレット42、C.I.ピグメントレッド122(C.I.番号73915)、C.I.ピグメントレッド192、C.I.ピグメントレッド202(C.I.番号73907)、C.I.ピグメントレッド207(C.I.番号73900、73906)、もしくはC.I.ピグメントレッド209(C.I.番号73905)のキナクリドン系顔料、C.I.ピグメントレッド206(C.I.番号73900/73920)、C.I.ピグメントオレンジ48(C.I.番号73900/73920)、もしくはC.I.ピグメントオレンジ49(C.I.番号73900/73920)等のキナクリドンキノン系顔料、C.I.ピグメントイエロー147(C.I.番号60645)等のアントラキノン系顔料、C.I.ピグメントレッド168(C.I.番号59300)等のアントアントロン系顔料、C.I.ピグメントブラウン25(C.I.番号12510)、C.I.ピグメントバイオレット32(C.I.番号12517)、C.I.ピグメントイエロー180(C.I.番号21290)、C.I.ピグメントイエロー181(C.I.番号11777)、C.I.ピグメントオレンジ62(C.I.番号11775)、もしくはC.I.ピグメントレッド185(C.I.番号12516)等のベンズイミダゾロン系顔料、C.I.ピグメントイエロー93(C.I.番号20710)、C.I.ピグメントイエロー94(C.I.番号20038)、C.I.ピグメントイエロー95(C.I.番号20034)、C.I.ピグメントイエロー128(C.I.番号20037)、C.I.ピグメントイエロー166(C.I.番号20035)、C.I.ピグメントオレンジ34(C.I.番号21115)、C.I.ピグメントオレンジ13(C.I.番号21110)、C.I.ピグメントオレンジ31(C.I.番号20050)、C.I.ピグメントレッド144(C.I.番号20735)、C.I.ピグメントレッド166(C.I.番号20730)、C.I.ピグメントレッド220(C.I.番号20055)、C.I.ピグメントレッド221(C.I.番号20065)、C.I.ピグメントレッド242(C.I.番号20067)、C.I.ピグメントレッド248、C.I.ピグメントレッド262、もしくはC.I.ピグメントブラウン23(C.I.番号20060)等のジスアゾ縮合系顔料、C.I.ピグメントイエロー13(C.I.番号21100)、C.I.ピグメントイエロー83(C.I.番号21108)、もしくはC.I.ピグメントイエロー188(C.I.番号21094)等のジスアゾ系顔料、C.I.ピグメントレッド187(C.I.番号12486)、C.I.ピグメントレッド170(C.I.番号12475)、C.I.ピグメントイエロー74(C.I.番号11714)、C.I.ピグメントレッド48(C.I.番号15865)、C.I.ピグメントレッド53(C.I.番号15585)、C.I.ピグメントオレンジ64(C.I.番号12760)、もしくはC.I.ピグメントレッド247(C.I.番号15915)等のアゾ系顔料、C.I.ピグメントブルー60(C.I.番号69800)等のインダントロン系顔料、C.I.ピグメントグリーン7(C.I.番号74260)、C.I.ピグメントグリーン36(C.I.番号74265)、ピグメントグリーン37(C.I.番号74255)、ピグメントブルー16(C.I.番号74100)、C.I.ピグメントブルー75(C.I.番号74160:2)、もしくは15(C.I.番号74160)等のフタロシアニン系顔料、C.I.ピグメントブルー56(C.I.番号42800)、もしくはC.I.ピグメントブルー61(C.I.番号42765:1)等のトリアリールカルボニウム系顔料、C.I.ピグメントバイオレット23(C.I.番号51319)、もしくはC.I.ピグメントバイオレット37(C.I.番号51345)等のジオキサジン系顔料、C.I.ピグメントレッド177(C.I.番号65300)等のアミノアントラキノン系顔料、C.I.ピグメントレッド254(C.I.番号56110)、C.I.ピグメントレッド255(C.I.番号561050)、C.I.ピグメントレッド264、C.I.ピグメントレッド272(C.I.番号561150)、C.I.ピグメントオレンジ71、もしくはC.I.ピグメントオレンジ73等のジケトピロロピロール系顔料、C.I.ピグメントレッド88(C.I.番号73312)等のチオインジゴ系顔料、C.I.ピグメントイエロー139(C.I.番号56298)、C.I.ピグメントオレンジ66(C.I.番号48210)等のイソインドリン系顔料、C.I.ピグメントイエロー109(C.I.番号56284)、もしくはC.I.ピグメントオレンジ61(C.I.番号11295)等のイソインドリノン系顔料、C.I.ピグメントオレンジ40(C.I.番号59700)、もしくはC.I.ピグメントレッド216(C.I.番号59710)等のピラントロン系顔料、またはC.I.ピグメントバイオレット31(60010)等のイソビオラントロン系顔料である。   The organic pigment used in the embodiment of the present invention is not limited in hue, and can be a magenta pigment, a yellow pigment, or a cyan pigment. Specifically, perylene, perinone, quinacridone, quinacridonequinone, anthraquinone, anthanthrone, benzimidazolone, disazo condensation, disazo, azo, indanthrone, phthalocyanine, triarylcarbonium, dioxazine, aminoanthraquinone, diketopyrrolopyrrole, thioindigo, Magenta pigments such as isoindoline, isoindolinone, pyranthrone or isoviolanthrone pigments or mixtures thereof, yellow pigments, or cyan pigments. More specifically, for example, C.I. I. Pigment red 190 (C.I. No. 71140), C.I. I. Pigment red 224 (C.I. No. 71127), C.I. I. Perylene pigments such as CI Pigment Violet 29 (C.I. No. 71129); I. Pigment orange 43 (C.I. No. 71105) or C.I. I. Perinone pigments such as CI Pigment Red 194 (C.I. No. 71100); I. Pigment violet 19 (C.I. No. 73900), C.I. I. Pigment violet 42, C.I. I. Pigment red 122 (C.I. No. 73915), C.I. I. Pigment red 192, C.I. I. Pigment red 202 (C.I. No. 73907), C.I. I. Pigment Red 207 (C.I. No. 73900, 73906) or C.I. I. Pigment Red 209 (C.I. No. 73905), a quinacridone pigment, C.I. I. Pigment red 206 (C.I. No. 73900/73920), C.I. I. Pigment Orange 48 (C.I. No. 73900/73920), or C.I. I. Quinacridone quinone pigments such as CI Pigment Orange 49 (C.I. No. 73900/73920); I. Anthraquinone pigments such as CI Pigment Yellow 147 (C.I. No. 60645); I. Anthanthrone pigments such as CI Pigment Red 168 (C.I. No. 59300); I. Pigment brown 25 (C.I. No. 12510), C.I. I. Pigment violet 32 (C.I. No. 12517), C.I. I. Pigment yellow 180 (C.I. No. 21290), C.I. I. Pigment Yellow 181 (C.I. No. 11777), C.I. I. Pigment Orange 62 (C.I. No. 11775), or C.I. I. Benzimidazolone pigments such as CI Pigment Red 185 (C.I. No. 12516); I. Pigment yellow 93 (C.I. No. 20710), C.I. I. Pigment yellow 94 (C.I. No. 20038), C.I. I. Pigment yellow 95 (C.I. No. 20034), C.I. I. Pigment yellow 128 (C.I. No. 20037), C.I. I. Pigment yellow 166 (C.I. No. 20035), C.I. I. Pigment orange 34 (C.I. No. 21115), C.I. I. Pigment orange 13 (C.I. No. 21110), C.I. I. Pigment orange 31 (C.I. No. 20055), C.I. I. Pigment red 144 (C.I. No. 20735), C.I. I. Pigment red 166 (C.I. No. 20730), C.I. I. Pigment red 220 (C.I. No. 20055), C.I. I. Pigment red 221 (C.I. No. 20065), C.I. I. Pigment red 242 (C.I. No. 20067), C.I. I. Pigment red 248, C.I. I. Pigment red 262 or C.I. I. Disazo condensation pigments such as C.I. Pigment Brown 23 (C.I. No. 20006); I. Pigment yellow 13 (C.I. No. 21100), C.I. I. Pigment yellow 83 (C.I. No. 21108) or C.I. I. Disazo pigments such as CI Pigment Yellow 188 (C.I. No. 21094); I. Pigment red 187 (C.I. No. 12486), C.I. I. Pigment red 170 (C.I. No. 12475), C.I. I. Pigment yellow 74 (C.I. No. 11714), C.I. I. Pigment red 48 (C.I. No. 15865), C.I. I. Pigment red 53 (C.I. No. 15585), C.I. I. Pigment Orange 64 (C.I. No. 12760) or C.I. I. Azo pigments such as C.I. Pigment Red 247 (C.I. No. 15915), C.I. I. Indanthrone pigments such as CI Pigment Blue 60 (C.I. No. 69800); I. Pigment green 7 (C.I. No. 74260), C.I. I. Pigment Green 36 (C.I. No. 74265), Pigment Green 37 (C.I. No. 74255), Pigment Blue 16 (C.I. No. 74100), C.I. I. Phthalocyanine pigments such as CI Pigment Blue 75 (C.I. No. 74160: 2) or 15 (C.I. No. 74160); I. Pigment blue 56 (C.I. No. 42800), or C.I. I. Triarylcarbonium pigments such as CI Pigment Blue 61 (C.I. No. 42765: 1); I. Pigment violet 23 (C.I. No. 51319), or C.I. I. Dioxazine pigments such as CI Pigment Violet 37 (C.I. No. 51345); I. Aminoanthraquinone pigments such as CI Pigment Red 177 (C.I. No. 65300); I. Pigment red 254 (C.I. No. 56110), C.I. I. Pigment red 255 (C.I. No. 561050), C.I. I. Pigment red 264, C.I. I. Pigment red 272 (C.I. No. 561150), C.I. I. Pigment orange 71 or C.I. I. Diketopyrrolopyrrole pigments such as C.I. Pigment Orange 73; I. Thioindigo pigments such as CI Pigment Red 88 (C.I. No. 73312); I. Pigment yellow 139 (C.I. No. 56298), C.I. I. Pigment Orange 66 (C.I. No. 48210) and the like, isoindoline pigments such as C.I. I. Pigment yellow 109 (C.I. No. 56284), or C.I. I. Pigment Orange 61 (C.I. No. 11295) and other isoindolinone pigments, C.I. I. Pigment Orange 40 (C.I. No. 59700), or C.I. I. Pyranthrone pigments such as CI Pigment Red 216 (C.I. No. 59710), or C.I. I. It is an isoviolanthrone pigment such as CI Pigment Violet 31 (60010).

好ましい顔料は、キナクリドン系、ジケトピロロピロール系、ジスアゾ縮合系、アゾ系、またはフタロシアニン系、ジオキサジン系顔料である。   Preferred pigments are quinacridone, diketopyrrolopyrrole, disazo condensation, azo, phthalocyanine, and dioxazine pigments.

本実施の形態で使用する分散剤としては、以下のものを使用することができる。   As the dispersant used in the present embodiment, the following can be used.

アニオン性分散剤(アニオン性界面活性剤)としては、N−アシル−N−アルキルタウリン塩、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。なかでも、N−アシル−N−アルキルタウリン塩が好ましい。N−アシル−N−アルキルタウリン塩としては、特開平3−273067号明細書に記載されているものが好ましい。これらアニオン性分散剤は、1種単独であるいは2種以上を組み合わせて用いることができる。   Anionic dispersants (anionic surfactants) include N-acyl-N-alkyl taurine salts, fatty acid salts, alkyl sulfate esters, alkyl benzene sulfonates, alkyl naphthalene sulfonates, dialkyl sulfosuccinates, alkyl phosphorus Examples include acid ester salts, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl sulfate ester salts, and the like. Of these, N-acyl-N-alkyltaurine salts are preferred. As the N-acyl-N-alkyl taurine salts, those described in JP-A-3-273067 are preferable. These anionic dispersants can be used alone or in combination of two or more.

カチオン性分散剤(カチオン性界面活性剤)には、四級アンモニウム塩、アルコキシル化ポリアミン、脂肪族アミンポリグリコールエーテル、脂肪族アミン、脂肪族アミンと脂肪族アルコールから誘導されるジアミンおよびポリアミン、脂肪酸から誘導されるイミダゾリンおよびこれらのカチオン性物質の塩が含まれる。これらカチオン性分散剤は、1種単独であるいは2種以上を組み合わせて用いることができる。   Cationic dispersants (cationic surfactants) include quaternary ammonium salts, alkoxylated polyamines, aliphatic amine polyglycol ethers, aliphatic amines, diamines and polyamines derived from aliphatic amines and fatty alcohols, fatty acids And imidazolines derived from these and salts of these cationic substances. These cationic dispersants can be used singly or in combination of two or more.

両イオン性分散剤は、前記アニオン性分散剤が分子内に有するアニオン基部分とカチオン性分散剤が分子内に有するカチオン基部分を共に分子内に有する分散剤である。   The amphoteric dispersant is a dispersant having both an anion group part in the molecule of the anionic dispersant and a cation group part in the molecule of the cationic dispersant.

ノニオン性分散剤(ノニオン性界面活性剤)としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステルなどを挙げることができる。なかでも、ポリオキシエチレンアルキルアリールエーテルが好ましい。これらノニオン性分散剤は、1種単独であるいは2種以上を組み合わせて用いることができる。   Nonionic dispersants (nonionic surfactants) include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine, Examples thereof include glycerin fatty acid esters. Of these, polyoxyethylene alkylaryl ether is preferable. These nonionic dispersants can be used singly or in combination of two or more.

有機顔料性分散剤とは、親物質としての有機顔料から誘導され、その親構造を化学修飾することで製造される有機顔料性分散剤と定義する。例えば、糖含有有機顔料分散剤、ピペリジル含有有機顔料分散剤、ナフタレンまたはペリレン誘導有機顔料分散剤、メチレン基を介して有機顔料親構造に連結された官能基を有する有機顔料分散剤、ポリマーで化学修飾された有機顔料親構造、スルホン酸基を有する有機顔料分散剤、スルホンアミド基を有する有機顔料分散剤、エーテル基を有する有機顔料分散剤、あるいはカルボン酸基、カルボン酸エステル基またはカルボキサミド基を有する有機顔料分散剤などがある。   The organic pigment dispersant is defined as an organic pigment dispersant which is derived from an organic pigment as a parent substance and is produced by chemically modifying the parent structure. For example, sugar-containing organic pigment dispersants, piperidyl-containing organic pigment dispersants, naphthalene or perylene-derived organic pigment dispersants, organic pigment dispersants having a functional group linked to the organic pigment parent structure via a methylene group, polymer chemistry Modified organic pigment parent structure, organic pigment dispersant having sulfonic acid group, organic pigment dispersant having sulfonamide group, organic pigment dispersant having ether group, or carboxylic acid group, carboxylic ester group or carboxamide group And organic pigment dispersants.

高分子分散剤としては、具体的には、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド、ビニルアルコール−酢酸ビニル共重合体、ポリビニルアルコール一部分ホルマール化物、ポリビニルアルコール一部分ブチラール化物、ビニルピロリドン−酢酸ビニル共重合体、ポリエチレンオキシド/プロピレンオキシドブロック共重合体、ポリアクリル酸塩、ポリビニル硫酸塩、ポリ(4−ビニルピリジン)塩、ポリアミド、ポリアリルアミン塩、縮合ナフタレンスルホン酸塩、スチレン−アクリル酸塩共重合物、スチレン−メタクリル酸塩共重合物、アクリル酸エステル−アクリル酸塩共重合物、アクリル酸エステル−メタクリル酸塩共重合物、メタクリル酸エステル−アクリル酸塩共重合物、メタクリル酸エステル―メタクリル酸塩共重合物、スチレン−イタコン酸塩共重合物、イタコン酸エステル−イタコン酸塩共重合物、ビニルナフタレン−アクリル酸塩共重合物、ビニルナフタレン−メタクリル酸塩共重合物、ビニルナフタレン−イタコン酸塩共重合物、セルロース誘導体、澱粉誘導体などが挙げられる。その他、アルギン酸塩、ゼラチン、アルブミン、カゼイン、アラビアゴム、トンガントゴム、リグニンスルホン酸塩などの天然高分子類も使用できる。なかでも、ポリビニルピロリドンが好ましい。これら高分子は、1種単独であるいは2種以上を組み合わせて用いることができる。また、アニオン性分散剤を水性媒体に含有させ、かつノニオン性分散剤および/または高分子分散剤を、有機顔料を溶解した溶液に含有させる態様を挙げることができる。   Specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyacrylamide, vinyl alcohol-vinyl acetate copolymer, polyvinyl alcohol partially formalized product, polyvinyl Alcohol partially butyralized, vinyl pyrrolidone-vinyl acetate copolymer, polyethylene oxide / propylene oxide block copolymer, polyacrylate, polyvinyl sulfate, poly (4-vinylpyridine) salt, polyamide, polyallylamine salt, condensed naphthalene Sulfonate, Styrene-acrylate copolymer, Styrene-methacrylate copolymer, Acrylate ester-Acrylate copolymer, Acrylate ester Methacrylate copolymer, methacrylate ester-acrylate copolymer, methacrylate ester-methacrylate copolymer, styrene-itaconate copolymer, itaconate-itaconate copolymer, vinyl Examples thereof include naphthalene-acrylate copolymer, vinyl naphthalene-methacrylate copolymer, vinyl naphthalene-itaconate copolymer, cellulose derivative, starch derivative and the like. In addition, natural polymers such as alginate, gelatin, albumin, casein, gum arabic, tonganto gum and lignin sulfonate can also be used. Of these, polyvinylpyrrolidone is preferable. These polymers can be used alone or in combination of two or more. Further, an embodiment in which an anionic dispersant is contained in an aqueous medium and a nonionic dispersant and / or a polymer dispersant is contained in a solution in which an organic pigment is dissolved can be exemplified.

分散剤の配合量は、有機顔料の均一分散性および保存安定性をより一層向上させるために、有機顔料100質量部に対して0.1〜1000質量部の範囲であることが好ましく、より好ましくは1〜500質量部の範囲であり、更に好ましくは10〜250質量部の範囲である。0.1質量部未満であると有機顔料微粒子の分散安定性の向上が見られない場合がある。   In order to further improve the uniform dispersibility and storage stability of the organic pigment, the blending amount of the dispersant is preferably in the range of 0.1 to 1000 parts by weight, more preferably 100 parts by weight of the organic pigment. Is in the range of 1 to 500 parts by weight, more preferably in the range of 10 to 250 parts by weight. If the amount is less than 0.1 parts by mass, the dispersion stability of the organic pigment fine particles may not be improved.

また、本実施の形態で使用される凝集剤としては、顔料微粒子を凝集させてスラリー、ペースト、粉状、粒状、ケーキ状(塊状)、シート状、短繊維状、フレーク状などにして従来公知の分離法によって分離することができれば、いかなるものでも使用することができる。具体的には、塩酸、硫酸、硝酸、酢酸、リン酸、トリフルオロ酢酸、ジクロロ酸、メタンスルホン酸などがあげられる。なかでも、塩酸、酢酸、硫酸が特に好ましい。また、加える量は、顔料微粒子が凝集する範囲でできるだけ少ない方が好ましい。   Further, as the flocculant used in the present embodiment, the pigment fine particles are aggregated to form a slurry, paste, powder, granule, cake (lumb), sheet, short fiber, flake, etc. Any material can be used as long as it can be separated by the above-described separation method. Specific examples include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, phosphoric acid, trifluoroacetic acid, dichloro acid, methanesulfonic acid, and the like. Of these, hydrochloric acid, acetic acid, and sulfuric acid are particularly preferable. Further, the amount to be added is preferably as small as possible within the range in which the pigment fine particles aggregate.

尚、本実施の形態で説明した微粒子製造方法では、有機顔料微粒子を製造する例で説明したが、本発明の微粒子製造方法及び装置は、各種の反応において適用することができる。他の微粒子形成材料としては、二酸化チタン、炭酸カルシウム、酸化銅、酸化アルミニウム、酸化鉄、酸化クロム、バナジン酸ビスマス、ルチル型混合相顔料、ハロゲン化銀、シリカ、及びカーボンブラックなどがあるが、これらに限定されるものではない。   In the fine particle production method described in the present embodiment, the example of producing organic pigment fine particles has been described. However, the fine particle production method and apparatus of the present invention can be applied in various reactions. Other fine particle forming materials include titanium dioxide, calcium carbonate, copper oxide, aluminum oxide, iron oxide, chromium oxide, bismuth vanadate, rutile mixed phase pigment, silver halide, silica, and carbon black. It is not limited to these.

[実施例1]
以下の実施例1に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
[Example 1]
The present invention will be described in more detail based on the following Example 1, but the present invention is not limited to these Examples.

実施例1は、本発明の微粒子製造装置を用いて有機顔料微粒子の製造を行ったものである。有機顔料を溶解した溶解液L1、貧溶媒L2は以下のように調製した。   In Example 1, organic pigment fine particles were produced using the fine particle production apparatus of the present invention. The solution L1 and the poor solvent L2 in which the organic pigment was dissolved were prepared as follows.

(1)有機顔料の溶解液L1
・易溶性マゼンダ系有機顔料PR122(2,9-ジメチルキクナドリン)…50g
・分散剤ポリビニルピロリドン…100g
・ジメチルスルホキシド…1000mL
・ナトリウムメトキシド28%メタノール溶液…33.3mL
以上の成分を室温にて十分に攪拌混合して完全に溶解した。そして、この溶液を0.45μmのミクロフィルターを通すことでゴミなどの不純物を除いた。
(1) Organic pigment solution L1
・ Easily soluble magenta organic pigment PR122 (2,9-dimethylquinacrine): 50 g
・ Dispersant polyvinylpyrrolidone ... 100g
・ Dimethyl sulfoxide… 1000mL
・ Sodium methoxide 28% methanol solution… 33.3mL
The above ingredients were thoroughly mixed at room temperature and dissolved completely. The solution was passed through a 0.45 μm microfilter to remove impurities such as dust.

(2)貧溶媒L2として蒸留水を用いた。   (2) Distilled water was used as the poor solvent L2.

(3)貧溶媒に添加した凝集剤としては塩酸を用いた。   (3) Hydrochloric acid was used as the flocculant added to the poor solvent.

(4)装置として、縦・横ともに0.5mmの矩形状の反応流路30を備えた微粒子製造装置を用いた。また、装置本体12の蓋板28を透明樹脂で形成したものを用いることにより、反応流路30の混合部36での縮流状態を顕微鏡で観察できるようにした。   (4) As the apparatus, a fine particle production apparatus provided with a rectangular reaction channel 30 of 0.5 mm in both length and width was used. In addition, by using the cover plate 28 of the apparatus main body 12 formed of a transparent resin, the contracted state in the mixing portion 36 of the reaction channel 30 can be observed with a microscope.

(5)反応条件
i)設定流量…マイクロシリンジポンプ(ハーバード社製)を用いて、溶解液L1を20mL/分、貧溶媒L2を80mL/分の一定流量で供給した。
(5) Reaction conditions
i) Set flow rate: Using a micro syringe pump (Harvard), the solution L1 was supplied at a constant flow rate of 20 mL / min and the poor solvent L2 was supplied at a constant flow rate of 80 mL / min.

ii)反応温度…18°Cで、試験を連続して20時間実施した。   ii) Reaction temperature: The test was carried out continuously at 18 ° C. for 20 hours.

製造された有機顔料分散液の粒径及び単分散度(Mv/Mn)を、日機装株式会社のナノトラックUPA−EX150を用いて測定し、メジアン平均径及び算術標準偏差を測定した。   The particle size and monodispersity (Mv / Mn) of the produced organic pigment dispersion were measured using Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., and the median average diameter and arithmetic standard deviation were measured.

その結果、生成反応液LMとして、有機顔料微粒子が濃度1質量%で含有される有機顔料分散液を得ることができ、有機顔料微粒子の粒径は20.6nmで、単分散度(Mv/Mn)が1.33であった。   As a result, an organic pigment dispersion containing organic pigment fine particles at a concentration of 1% by mass can be obtained as the generated reaction liquid LM. The organic pigment fine particles have a particle size of 20.6 nm and a monodispersity (Mv / Mn ) Was 1.33.

かかる実施例において、反応流路でのレイノルズ数Reは1700以下の層流状態であるとともに、反応流路での圧力損失は0.2MPaと低圧力損失であった。   In this example, the Reynolds number Re in the reaction channel was a laminar flow state of 1700 or less, and the pressure loss in the reaction channel was a low pressure loss of 0.2 MPa.

本発明の微粒子製造装置の概略構成を示す斜視図The perspective view which shows schematic structure of the microparticle manufacturing apparatus of this invention 本発明の微粒子製造装置において4本の導入流路を設けた一例を説明する説明図Explanatory drawing explaining an example which provided the four introduction flow paths in the microparticle manufacturing apparatus of this invention 本発明の微粒子製造装置において5本の導入流路を設けた一例を説明する説明図Explanatory drawing explaining an example which provided five introduction flow paths in the fine particle manufacturing apparatus of this invention 本発明の有機顔料微粒子の製造フローを説明するフロー図Flow chart illustrating the production flow of the organic pigment fine particles of the present invention 従来の有機顔料微粒子の製造フローを説明するフロー図Flow chart explaining the manufacturing flow of conventional organic pigment fine particles

符号の説明Explanation of symbols

10…微粒子製造装置、12…装置本体、14、16…配管、18、20…供給手段、22…凝集剤の添加手段、23…添加配管、24…凝集剤供給手段、26…基板、28…蓋板、30…反応流路、32…溶解液導入流路、34…貧溶媒導入流路、36…反応流路の混合部、L1…有機顔料の溶解液、L2…貧溶媒、A…有機顔料微粒子、B…凝集体、C…凝集剤、D…分散剤   DESCRIPTION OF SYMBOLS 10 ... Fine particle manufacturing apparatus, 12 ... Apparatus main body, 14, 16 ... Pipe, 18, 20 ... Supply means, 22 ... Coagulant addition means, 23 ... Addition pipe, 24 ... Coagulant supply means, 26 ... Substrate, 28 ... Cover plate, 30 ... reaction channel, 32 ... solution introduction channel, 34 ... poor solvent introduction channel, 36 ... mixing part of reaction channel, L1 ... organic pigment solution, L2 ... poor solvent, A ... organic Pigment fine particles, B ... aggregates, C ... flocculants, D ... dispersants

Claims (7)

微粒子形成材料を良溶媒に溶解した溶解液と、前記良溶媒に相溶し前記微粒子形成材料を溶解しない貧溶媒とを接触させて微粒子を析出させる微粒子形成工程と、
形成した微粒子を凝集剤で凝集して凝集体を形成する凝集体形成工程と、
凝集体を濾過する濾過工程と、
濾過後の凝集体を再分散して微粒子にする再分散工程と、を備えた微粒子製造方法であって、
前記溶解液と前記貧溶媒とを反応流路に連続的に流通させて微粒子形成を行いながら形成した微粒子を前記反応流路内で前記凝集剤に接触させることにより、前記微粒子形成工程と前記凝集体形成工程とを前記反応流路内で一度に行うことを特徴とする微粒子製造方法。
A fine particle forming step in which fine particles are precipitated by contacting a solution obtained by dissolving the fine particle forming material in a good solvent and a poor solvent that is compatible with the good solvent and does not dissolve the fine particle forming material;
An aggregate formation step of aggregating the formed fine particles with an aggregating agent to form an aggregate;
A filtration step of filtering the aggregates;
A redispersion step for redispersing the aggregate after filtration into fine particles, and a fine particle production method comprising:
The fine particle formation step and the coagulant are brought into contact with the aggregating agent in the reaction flow channel by forming fine particles while continuously flowing the solution and the poor solvent through the reaction flow channel. A method for producing fine particles, wherein the aggregate formation step is performed at once in the reaction channel.
前記貧溶媒に凝集剤を予め含有させて、凝集剤含有の貧溶媒を前記反応流路に導入することを特徴とすることを特徴とする請求項1の微粒子製造方法。   2. The method for producing fine particles according to claim 1, wherein the poor solvent contains a flocculant in advance, and the poor solvent containing the flocculant is introduced into the reaction channel. 前記製造される微粒子は有機顔料微粒子であることを特徴とする請求項1又は2の微粒子製造方法。   3. The method for producing fine particles according to claim 1, wherein the produced fine particles are organic pigment fine particles. 微粒子形成材料を良溶媒に溶解した溶解液と、前記良溶媒に相溶し前記微粒子形成材料を溶解しない貧溶媒とを接触させて微粒子を析出させる微粒子形成手段と、
形成した微粒子を凝集剤で凝集して凝集体を形成する凝集体形成手段と、
凝集体を濾過する濾過手段と、
濾過後の凝集体を再分散して微粒子にする再分散手段と、を備えた微粒子製造装置であって、
前記微粒子形成手段と前記凝集体形成手段とは1つの装置として構成されるとともに、該装置は、
前記溶解液と前記貧溶媒とを混合して微粒子の析出及び凝集を行うための反応流路と、
前記反応流路の混合部に連通され、前記溶解液と前記貧溶媒とを前記混合部で合流するように導入して複層流を形成する複数の導入流路と、
前記反応流路の混合部に至るまでに前記貧溶媒に凝集剤を添加する添加手段と、を備えたことを特徴とする微粒子製造装置。
A fine particle forming means for precipitating fine particles by contacting a solution obtained by dissolving the fine particle forming material in a good solvent and a poor solvent that is compatible with the good solvent and does not dissolve the fine particle forming material;
Aggregate forming means for aggregating the formed fine particles with an aggregating agent to form an aggregate;
Filtration means for filtering the aggregates;
Redispersion means for redispersing the aggregate after filtration into fine particles,
The fine particle forming means and the aggregate forming means are configured as one apparatus,
A reaction flow path for mixing the solution and the poor solvent to precipitate and agglomerate fine particles;
A plurality of introduction flow paths that are communicated with the mixing section of the reaction flow path and introduce the solubilized solution and the poor solvent so as to merge in the mixing section to form a multi-layer flow;
And an adding means for adding an aggregating agent to the poor solvent before reaching the mixing portion of the reaction channel.
前記導入流路は、同一面上に少なくとも3本以上設けられ、前記溶解液の導入流路と前記貧溶媒の導入流路とが交互に配置されることを特徴とする請求項4の微粒子製造装置。   5. The fine particle production according to claim 4, wherein at least three or more introduction channels are provided on the same surface, and the solution introduction channels and the poor solvent introduction channels are alternately arranged. apparatus. 前記反応流路の流路径は、等価直径で0.5mm以上6mm以下であることを特徴とする請求項5の微粒子製造装置。   6. The fine particle manufacturing apparatus according to claim 5, wherein a diameter of the reaction channel is 0.5 mm or more and 6 mm or less as an equivalent diameter. 前記反応流路の混合部入口において前記溶解液と前記貧溶媒とが合流してから前記混合部出口から出るまでの混合部での滞在時間が10msec以下になるように、前記混合部に供給する溶解液と貧溶媒との総流量を調整する調整手段を設けたことを特徴とする請求項4〜6の何れか1の微粒子製造装置。   Supply to the mixing unit so that the residence time in the mixing unit from the time when the solution and the poor solvent merge at the mixing unit inlet of the reaction channel to the time when the mixing unit exits from the mixing unit outlet is 10 msec or less. The fine particle production apparatus according to any one of claims 4 to 6, further comprising an adjusting means for adjusting a total flow rate of the dissolving liquid and the poor solvent.
JP2008075732A 2008-03-24 2008-03-24 Method and apparatus for producing fine particles Pending JP2009227841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008075732A JP2009227841A (en) 2008-03-24 2008-03-24 Method and apparatus for producing fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075732A JP2009227841A (en) 2008-03-24 2008-03-24 Method and apparatus for producing fine particles

Publications (1)

Publication Number Publication Date
JP2009227841A true JP2009227841A (en) 2009-10-08

Family

ID=41243606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075732A Pending JP2009227841A (en) 2008-03-24 2008-03-24 Method and apparatus for producing fine particles

Country Status (1)

Country Link
JP (1) JP2009227841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399462B1 (en) 2012-09-21 2014-05-28 한국기계연구원 Device and Module for Nano Filtering, and the Method
WO2019088266A1 (en) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 Aggregated nanoparticles and fluorescent labeling material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399462B1 (en) 2012-09-21 2014-05-28 한국기계연구원 Device and Module for Nano Filtering, and the Method
WO2019088266A1 (en) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 Aggregated nanoparticles and fluorescent labeling material
JPWO2019088266A1 (en) * 2017-11-06 2020-11-26 コニカミノルタ株式会社 Aggregated nanoparticles and fluorescent labeling material
JP7192783B2 (en) 2017-11-06 2022-12-20 コニカミノルタ株式会社 Aggregated nanoparticles and fluorescent labels

Similar Documents

Publication Publication Date Title
JP5001529B2 (en) Method for producing organic pigment fine particles
JP4587757B2 (en) Organic pigment fine particles and method for producing the same
JP2007039643A (en) Method for producing liquid dispersion of organic pigment and organic pigment fine particle obtained therefrom
EP2103345B1 (en) Method for mixing liquids and liquid mixing apparatus
JP4743068B2 (en) Method for producing organic pigment fine particles
JP4896418B2 (en) Method for producing organic fine particles and dispersion thereof, and organic fine particles obtained thereby and dispersion thereof
JP2008183554A (en) Method for producing dispersion liquid of organic fine particle, and organic fine particle obtained thereby
JP5419251B2 (en) Fine particle production method and fine particle production apparatus
JP2009242680A (en) Method for producing polymer-treated organic fine particle dispersion
JP2009256652A (en) Method of producing organic pigment fine particle dispersion, and inkjet recording ink and paint using organic pigment fine particle obtained by the same
JP2009227841A (en) Method and apparatus for producing fine particles
JP2008201914A (en) Dispersion of organic pigment particulate mixture, its solid matter and its production method
JP4601434B2 (en) Method for producing organic pigment fine particles
JP4606179B2 (en) Method for producing organic pigment fine particles
JP2007038117A (en) Particle manufacturing method
JP5322475B2 (en) Method and apparatus for producing fine particles
JP4601433B2 (en) Method for producing organic pigment fine particles
JP4606178B2 (en) Method for producing organic pigment fine particles
JP2010077370A (en) Manufacturing method of fine particle
JP5497998B2 (en) Method for producing organic fine particle dispersion, ink for ink jet recording and coating material using organic fine particle dispersion obtained thereby
JP2011202081A (en) Dispersion of particulate compound organic pigment, and method for producing the pigment
JP2011001501A (en) Process for producing pigment fine particle and reactor used therefor
JP2011026452A (en) Method for producing pigment dispersion
JP2010077365A (en) Manufacturing method of fine particle
JP2009242569A (en) Method and apparatus for producing fine particles