WO2022044540A1 - Solid oxide fuel cell and method for manufacturing the same - Google Patents

Solid oxide fuel cell and method for manufacturing the same Download PDF

Info

Publication number
WO2022044540A1
WO2022044540A1 PCT/JP2021/024909 JP2021024909W WO2022044540A1 WO 2022044540 A1 WO2022044540 A1 WO 2022044540A1 JP 2021024909 W JP2021024909 W JP 2021024909W WO 2022044540 A1 WO2022044540 A1 WO 2022044540A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
cathode
fuel cell
electrolyte layer
layer
Prior art date
Application number
PCT/JP2021/024909
Other languages
French (fr)
Japanese (ja)
Inventor
李新宇
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020145383A external-priority patent/JP2022040594A/en
Priority claimed from JP2020161058A external-priority patent/JP7504375B2/en
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2022044540A1 publication Critical patent/WO2022044540A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell and a method for manufacturing the same.
  • the solid oxide fuel cell has a structure in which a solid oxide electrolyte is sandwiched between an anode and a cathode.
  • the cathode used in such a solid oxide fuel cell may react with a solid oxide-based electrolyte. Therefore, in order to suppress the reaction between the solid oxide-based electrolyte and the cathode, a technique of providing an anti-reaction film such as GDC as an intermediate layer between the cathode and the solid oxide-based electrolyte is disclosed (for example, patent). See Document 1).
  • reaction resistance during power generation may increase.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a solid oxide fuel cell capable of reducing reaction resistance and a method for producing the same.
  • the solid oxide fuel cell according to the present invention has an electrolyte layer containing a solid oxide having oxide ion conductivity, an intermediate layer provided on the electrolyte layer and having oxide ion conductivity, and the intermediate layer.
  • the intermediate layer is provided with a cathode provided above, and the intermediate layer is provided with a plurality of irregularities on the surface on the cathode side so as to be arranged in a two-dimensional direction in a plan view, and the intermediate layer is on the side of the electrolyte layer.
  • the surface is characterized in that a plurality of irregularities are provided along the plurality of irregularities on the surface on the cathode side.
  • the unevenness on the surface of the intermediate layer on the cathode side may be formed in the form of particles.
  • the vertical distance a between the peak and the valley may be 0.05 ⁇ m or more and 3 ⁇ m or less in the unevenness of the surface on the cathode side of the intermediate layer of the solid oxide fuel cell.
  • the horizontal distance b between the peaks may be 0.1 ⁇ m or more and 5 ⁇ m or less in the unevenness of the surface on the cathode side of the intermediate layer of the solid oxide fuel cell.
  • a / b which is the ratio of the vertical distance a between the peaks and valleys and the horizontal distance b between the peaks and peaks, is 1 /. It may be 10 or more and 20/1 or less.
  • a plurality of irregularities may be provided on the surface of the electrolyte layer on the side of the intermediate layer so as to follow the irregularities on the surface of the intermediate layer on the side of the electrolyte layer.
  • the vertical distance a'between peaks and valleys may be 0.05 ⁇ m or more and 3 ⁇ m or less in the unevenness of the surface of the electrolyte layer of the solid oxide fuel cell on the intermediate layer side.
  • the horizontal distance b'b between peaks may be 0.1 ⁇ m or more and 5 ⁇ m or less in the unevenness of the surface of the electrolyte layer of the solid oxide fuel cell on the intermediate layer side.
  • a'/ b which is the ratio of the vertical distance a'of the peak and the valley to the horizontal distance b'of the peak and the peak.
  • may be 1/10 or more and 20/1 or less.
  • the vertical distance a between the peak and the valley in the unevenness of the surface on the cathode side of the intermediate layer and the electrolyte layer side of the intermediate layer on the surface on the intermediate layer side of the electrolyte layer may have a relationship of 0.5 ⁇ a / a' ⁇ 1.
  • the horizontal distance b between the peaks on the uneven surface of the cathode side of the intermediate layer and the electrolyte layer side of the intermediate layer on the surface of the electrolyte layer on the intermediate layer side.
  • the horizontal distance b'b is the horizontal distance between the peaks on the uneven surface of the cathode side of the intermediate layer and the electrolyte layer side of the intermediate layer on the surface of the electrolyte layer on the intermediate layer side.
  • the mountain along the unevenness on the surface of the intermediate layer on the cathode side and the unevenness on the surface of the intermediate layer on the side of the intermediate layer along the unevenness of the surface of the intermediate layer on the side of the electrolyte layer may be 10 nm or more and 3 ⁇ m or less.
  • the other solid oxide fuel cell according to the present invention has an electrolyte layer containing a solid oxide having oxide ion conductivity, an intermediate layer provided on the electrolyte layer and having oxide ion conductivity, and the above.
  • a cathode provided on the intermediate layer is provided, and the intermediate layer is formed along the unevenness provided on the surface of the electrolyte layer on the intermediate layer side.
  • the electrolyte layer is provided. From the side to the cathode side, a plurality of voids are formed so as to be arranged at intervals along a predetermined line.
  • the number density of the voids in the convex portion with respect to the cathode side may be larger than the number density of the voids in the concave portion with respect to the cathode side.
  • the average diameter of the voids may be 50 nm or less.
  • the unevenness of the electrolyte layer may be provided so as to be arranged in a two-dimensional direction in a plan view on the surface on the intermediate layer side.
  • the intermediate layer may be a material in which an additive is added to ceria.
  • an electrolyte layer green sheet is produced by applying a slurry containing an oxide ion conductive material powder, and the electrolyte layer is placed on the electrolyte layer green sheet.
  • a slurry containing the oxide ion conductive material powder having a D50% particle size smaller than the D50% particle size of the oxide ion conductive material powder of the green sheet and the resin particles the green sheet is fired.
  • an intermediate layer having oxide ion conductivity and no cathode activity is formed on the electrolyte layer by the PVD method, and is formed on the intermediate layer.
  • a plurality of voids are formed so as to be arranged at intervals along a predetermined line from the electrolyte layer side to the cathode side. It is characterized in that at least one of the film forming rate and the substrate heating temperature is controlled.
  • FIG. 6 is an enlarged cross-sectional view illustrating details of a support, a mixed layer, and an anode.
  • (A) is an enlarged cross-sectional view from the electrolyte layer to the cathode
  • (b) is a plan view of the intermediate layer.
  • It is an enlarged sectional view from an electrolyte layer to a cathode.
  • It is a figure for demonstrating each dimension.
  • FIG. 1 is a schematic cross-sectional view illustrating a laminated structure of a solid oxide fuel cell 100.
  • the fuel cell 100 has a structure in which a mixed layer 20, an anode 30, an electrolyte layer 40, an intermediate layer 50, and a cathode 60 are laminated in this order on a support 10.
  • a plurality of fuel cells 100 may be stacked to form a fuel cell stack.
  • the electrolyte layer 40 is a dense layer having a solid oxide having oxide ion conductivity as a main component and having gas impermeable property.
  • the electrolyte layer 40 preferably contains, as a main component, Scandia-yttria-stabilized zirconium oxide (ScYSZ), YSZ (yttria-stabilized zirconium oxide), GDC (Gd-doped ceria) in which Gd (gadolinium) is doped in CeO 2 . ..
  • ScYSZ Scandia-yttria-stabilized zirconium oxide
  • YSZ yttria-stabilized zirconium oxide
  • GDC Gd-doped ceria
  • Gd gadolinium
  • the thickness of the electrolyte layer 40 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. The thinner the electrolyte, the better, but in order to manufacture it so that the gas on both sides does not leak, a thickness of 1 ⁇ m or more is desirable.
  • the cathode 60 is an electrode having electrode activity as a cathode, and has electron conductivity and oxide ion conductivity.
  • the cathode 60 is mainly composed of a ceramic material having electron conductivity and oxide ion conductivity.
  • a ceramic material for example, a LaCoO 3 -based material, a LaMnO 3 -based material, a LaFeO 3 -based material, or the like can be used.
  • LSC lantern strontium cobaltite
  • LSC is LaCoO3 doped with Sr (strontium).
  • the intermediate layer 50 contains a component that prevents the reaction between the electrolyte layer 40 and the cathode 60 as a main component.
  • the constituent material of the intermediate layer 50 is different from the constituent material of the electrolyte layer 40.
  • the intermediate layer 50 has oxide ion conductivity, but does not have electrode activity as a cathode.
  • the intermediate layer 50 has a structure in which an additive is added to ceria (CeO 2 ).
  • the additives are not particularly limited.
  • the intermediate layer 50 contains GDC (for example, Ce 0.8 Gd 0.2 O 2-x ) or the like as a main component.
  • the electrolyte layer 40 contains ScYSZ and the cathode 60 contains LSC, the intermediate layer 50 prevents the following reactions.
  • FIG. 2 is an enlarged cross-sectional view illustrating the details of the support 10, the mixed layer 20, and the anode 30.
  • the support 10 is a member that has gas permeability and can support the mixed layer 20, the anode 30, the electrolyte layer 40, the intermediate layer 50, and the cathode 60.
  • the support 10 is a metal porous body containing a metal as a main component, and is, for example, a porous body of an Fe—Cr alloy.
  • the anode 30 is an electrode having electrode activity as an anode, and has an electrode skeleton made of a ceramic material.
  • the electrode skeleton does not contain metal components. In this configuration, the decrease in porosity of the anode due to the coarsening of the metal component is suppressed during firing in a high-temperature reducing atmosphere. Further, alloying with the metal component of the support 10 is suppressed, and deterioration of the catalytic function is suppressed.
  • the electrode skeleton of the anode 30 has electron conductivity and oxide ion conductivity.
  • the anode 30 contains the electron conductive ceramics 31.
  • the electron conductive ceramics 31 for example, it is a perovskite-type oxide whose composition formula is represented by ABO 3 , and A site is at least one selected from the group of Ca, Sr, Ba, La, and B site is.
  • a perovskite-type oxide which is at least one selected from Ti, Cr, Ni, Mg, and Co, can be used.
  • the molar ratio of A site to B site may be B ⁇ A.
  • a LaCrO3 system material an SrTiO3 system material, or the like can be used.
  • the electrode skeleton of the anode 30 contains the oxide ion conductive ceramics 32.
  • the oxide ion conductive ceramics 32 is ScYSZ or the like. For example, it is preferable to use ScYSZ having a composition range of 5 mol% to 16 mol% for scandia (Sc 2 O 3 ) and 1 mol% to 3 mol% for itria (Y 2 O 3 ). ScYSZ in which the total amount of scandia and ittoria added is 6 mol% to 15 mol% is more preferable. This is because the oxide ion conductivity is the highest in this composition range.
  • the oxide ion conductive ceramics 32 is, for example, a material having an oxide ion transport number of 99% or more. GDC or the like may be used as the oxide ion conductive ceramics 32. In the example of FIG. 2, the same solid oxide as the solid oxide contained in the electrolyte layer 40 is used as the oxide ion conductive ceramics 32.
  • the electron conductive ceramics 31 and the oxide ion conductive ceramics 32 form an electrode skeleton.
  • a plurality of voids are formed by this electrode skeleton.
  • An anode catalyst is supported on the surface of the electrode skeleton in the void portion. Therefore, in the electrode skeleton formed spatially continuously, a plurality of anode catalysts are spatially dispersed and arranged.
  • a composite catalyst as the anode catalyst.
  • the oxide ion conductive ceramics 33 and the catalyst metal 34 are supported on the surface of the electrode skeleton.
  • the catalyst metal 34 Ni or the like can be used.
  • the oxide ion conductive ceramics 33 may have the same composition as the oxide ion conductive ceramics 32, but may have a different composition.
  • the metal that functions as the catalyst metal 34 may be in the form of a compound when no power is generated.
  • Ni may be in the form of NiO (nickel oxide). During power generation, these compounds are reduced by the reducing fuel gas supplied to the anode 30 and take the form of a metal that functions as an anode catalyst.
  • the mixed layer 20 contains a metal material 21 and a ceramic material 22.
  • the metal material 21 and the ceramic material 22 are randomly mixed. Therefore, the structure in which the layer of the metal material 21 and the layer of the ceramic material 22 are laminated is not formed.
  • the mixed layer 20 is also porous, and a plurality of voids are formed.
  • the metal material 21 is not particularly limited as long as it is a metal. In the example of FIG. 2, the same metal material as the support 10 is used as the metal material 21.
  • the ceramic material 22 ScYSZ, GDC, SrTiO 3 -based material, LaCrO 3 -based material, or the like can be used. Since the SrTiO 3 system material and the LaCrO 3 system material have high electron conductivity, the ohmic resistance in the mixed layer 20 can be reduced.
  • the fuel cell 100 generates electricity by the following actions.
  • An oxygen-containing oxidant gas such as air is supplied to the cathode 60.
  • oxygen reaching the cathode 60 reacts with electrons supplied from an external electric circuit to form oxide ions.
  • the oxide ion conducts through the intermediate layer 50 and the electrolyte layer 40 and moves to the anode 30 side.
  • a fuel gas containing hydrogen such as hydrogen gas and reforming gas is supplied to the support 10.
  • the fuel gas reaches the anode 30 via the support 10 and the mixed layer 20.
  • the hydrogen that reaches the anode 30 emits electrons at the anode 30 due to the effect of the electrode activity of the anode 30, and reacts with the oxide ion conducting the electrolyte layer 40 from the cathode 60 side to water (H 2 O). )become.
  • the emitted electrons are taken out by an external electric circuit.
  • the electrons taken out to the outside are supplied to the cathode 60 after performing electrical work. Power generation is performed by the above action.
  • the place that most contributes to the cathode reaction is the interface where the intermediate layer 50 and the cathode 60 come into contact with each other.
  • the area of this contact interface is inversely proportional to the reaction resistance. Therefore, the larger the contact area per unit area, the lower the reaction resistance per unit area. From the above, improving the contact area between the intermediate layer 50 and the cathode 60 is an issue for the development of the fuel cell 100.
  • FIG. 3A is an enlarged cross-sectional view from the electrolyte layer 40 to the cathode 60.
  • the intermediate layer 50 is formed so that a plurality of concave portions 51 and convex portions 52 are alternately arranged on the surface on the cathode 60 side.
  • the convex portion 52 has a shape that protrudes and curves toward the cathode 60 side.
  • the concave portions 51 and the convex portions 52 are arranged alternately not only in one direction but also in a two-dimensional direction in the plane of the intermediate layer 50.
  • the two-dimensional directions do not necessarily have to be orthogonal in the plane of the intermediate layer 50, and may intersect.
  • the convex portions 52 are in the form of particles and are randomly arranged in the plane of the intermediate layer 50.
  • the scales of FIGS. 3 (a) and 3 (b) are different.
  • the cathode 60 also has irregularities along the irregularities of the intermediate layer 50. That is, as illustrated in FIG. 4, the cathode 60 is provided with a convex portion 61 projecting toward the intermediate layer 50 at the position where the concave portion 51 of the intermediate layer 50 is formed in FIG. 3 (a), and is provided with FIG. 3 (a). ), The concave portion 62 is provided at the position where the convex portion 52 of the intermediate layer 50 is formed. Therefore, the area of the contact interface between the intermediate layer 50 and the cathode 60 becomes large.
  • the directions in which the irregularities of the intermediate layer 50 and the cathode 60 are arranged are arranged in the two-dimensional direction in the plane, the area of the contact interface between the intermediate layer 50 and the cathode 60 becomes larger. In this configuration, the reaction field per unit area increases, and the reaction resistance of the cathode 60 can be reduced.
  • the distance between the electrolyte layer 40 and the cathode 60 is short. Therefore, unevenness is also formed on the surface of the electrolyte layer 40 on the cathode 60 side.
  • the surface of the intermediate layer 50 on the electrolyte layer 40 side is also formed so as to follow the shape of the unevenness of the electrolyte layer 40. For example, as illustrated in FIG. 4, in the electrolyte layer 40, a plurality of concave portions 41 and convex portions 42 are alternately formed on the surface on the cathode 60 side.
  • the positions of the concave portion 51 and the concave portion 41 in FIG. 3A are substantially the same, and the positions of the convex portion 52 and the convex portion 42 in FIG. 3A are substantially the same. Therefore, the concave portion 41 and the convex portion 42 are not arranged in only one direction, but are also arranged in the two-dimensional direction in the plane of the electrolyte layer 40. Therefore, in the plan view of the electrolyte layer 40, the convex portions 52 are in the form of particles and are randomly arranged in the plane of the electrolyte layer 40.
  • the positions of the concave portion 51 and the concave portion 41 are substantially the same, and the positions of the convex portion 52 and the convex portion 42 are substantially the same. Therefore, the positions of the convex portion 61 and the concave portion 41 are substantially the same. Since the positions of the concave portion 62 and the convex portion 42 are substantially the same, the intermediate layer 50 is prevented from being partially thickened, and the distance between the electrolyte layer 40 and the cathode 60 is shortened. Therefore, the reaction resistance of the cathode 60 can be reduced.
  • FIG. 5 is a diagram for explaining each size of the concave portion 51 and the convex portion 52 of the intermediate layer 50.
  • the fuel cell 100 is embedded in resin and polished to the extent that the laminated cross section of each layer can be obtained. After that, CP (Cross section polisher) processing is performed on the polished surface to obtain a clean cross section. After that, each size can be measured by observing the cross section with SED-EDS.
  • CP Cross section polisher
  • the dimension a is the vertical distance between the peak and the valley in the concave-convex structure on the cathode 60 side of the intermediate layer 50, and the convex portion 52 adjacent to the bottom of the concave portion 51 in FIG. 3 (a).
  • the height to the apex of the fuel cell 100 (height in the stacking direction of each layer of the fuel cell 100).
  • the CP-processed cross section is observed with an SEM (scanning electron microscope), several photographs are taken, and the vertical distance between the peak and the valley in the uneven structure on the cathode 60 side of the intermediate layer 50 is 20. It is the average value when measured at a location.
  • the dimension a is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, and further preferably 0.5 ⁇ m or less.
  • the dimension a is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.15 ⁇ m or more.
  • the dimension a' is the vertical distance between the peak and the valley in the concave-convex structure on the cathode 60 side in the electrolyte layer 40, and is the apex of the convex portion 42 adjacent to the bottom of the concave portion 41 in FIG. (Height in the stacking direction of each layer of the fuel cell 100).
  • the CP-processed cross section was observed by SEM, several photographs were taken, and the vertical distance between the peak and the valley in the uneven structure on the cathode 60 side of the electrolyte layer 40 was measured at 20 locations. The average value of the cases.
  • the dimension a of the intermediate layer 50 In order for the dimension a of the intermediate layer 50 to be within a predetermined range, it is preferable that the dimension a'of the underlying electrolyte layer 40 is also substantially the same value. Therefore, it is preferable that the dimension a'is within the range of 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the dimension b is the horizontal distance between the peaks in the concave-convex structure on the cathode side of the intermediate layer 50, and the convex portion adjacent to the convex portion 52 in FIG. 3 (a).
  • the dimension b is the case where the CP-processed cross section is observed by SEM, several photographs are taken, and the vertical distance between the peak and the valley in the uneven structure on the cathode 60 side of the intermediate layer 50 is measured at 20 locations. The average value of.
  • the dimension b is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the dimension b is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the dimension b' is the horizontal distance between the peaks in the concave-convex structure on the cathode 60 side in the electrolyte layer 40, and is the apex of the convex portion 42 adjacent to the bottom of the concave portion 41 in FIG. The distance to.
  • the dimension b' is observed by SEM on the CP-processed cross section, and several photographs are taken.
  • the dimension b' is an average value when the horizontal distance between the peaks in the uneven structure on the cathode 60 side of the electrolyte layer 40 is measured at 20 points.
  • the effect of increasing the contact area with the cathode due to the uneven structure can be obtained by having the same shape, and it is preferable that b / b' ⁇ 0.5, and b / b' ⁇ 1 preferable. Since the unevenness of the intermediate layer 50 is formed by the unevenness of the electrolyte layer 40, b / b'> 1 is unlikely to occur.
  • a / b is preferably 1/10 or more, more preferably 1/1 or more, and further preferably 5/1 or more.
  • a / b is preferably 20/1 or less, more preferably 15/1 or less, and even more preferably 10/1 or less.
  • the dimension c is the vertical distance between the peak in the uneven structure of the intermediate layer 50 and the peak of the underlying electrolyte layer 40. Therefore, the dimension c is the distance between the apex of the convex portion 42 in FIG. 4 and the apex of the convex portion 52 in FIG. 3 (a) in the stacking direction.
  • For dimension c observe the CP-processed cross section with SEM, take pictures at several places, and set the vertical distance between the mountain in the uneven structure of the intermediate layer 50 and the mountain of the underlying electrolyte layer 40 at 20 places. It is the average when measured.
  • the dimension c is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and further preferably 1 ⁇ m or less. Further, if the dimension c is too small, it becomes difficult to cover the entire uneven surface of the electrolyte layer 40. Therefore, it is preferable to set a lower limit for the dimension c. In the present embodiment, the dimension c is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more.
  • the intermediate layer 50 is provided for the purpose of preventing the reaction between the electrolyte layer 40 and the cathode 60, the intermediate layer 50 is made of a material different from that of the electrolyte layer 40. Therefore, there is a difference between the thermal expansion rate of the electrolyte layer 40 and the thermal expansion rate of the intermediate layer 50.
  • the fuel cell 100 repeatedly starts and stops power generation, the fuel cell 100 repeatedly raises and lowers the temperature, and the intermediate layer 50 may be peeled off from the electrolyte layer 40 due to the difference in thermal expansion rate.
  • FIG. 6 is an enlarged view schematically an enlarged view of the intermediate layer 50.
  • a plurality of voids 53 are formed in the intermediate layer 50.
  • the plurality of voids 53 are formed in the intermediate layer 50 so as to be arranged at predetermined intervals along a predetermined line from the convex portion 42 of the electrolyte layer 40 toward the cathode 60. That is, the arrangement of the plurality of voids 53 forms a columnar shape.
  • a plurality of voids 53 are lined up at predetermined intervals on the radiation spreading toward the cathode 60 centering on the top of the convex portion 42.
  • the void 53 formed in the intermediate layer 50 absorbs stress caused by the difference in thermal expansion rate between the electrolyte layer 40 and the intermediate layer 50. Therefore, even if the stress is generated, it is relaxed by the void 53. As a result, the resistance to the temperature cycle of the fuel cell 100 is improved, and the peeling of the intermediate layer 50 from the electrolyte layer 40 is suppressed.
  • the region other than the void 53 in the intermediate layer 50 is dense, oxide ions can move in the dense region. Therefore, the conductivity of oxide ions in the intermediate layer 50 is maintained at a high level. Further, since the voids 53 are provided at predetermined intervals without penetrating from the electrolyte layer 40 to the cathode 60, mutual diffusion between the electrolyte layer 40 and the cathode 60 is suppressed. Therefore, the intermediate layer 50 can maintain its function as a reaction prevention layer.
  • the void 53 is mainly formed in the convex portion 42. That is, the number density of the voids 53 in the convex portion 42 is higher than the number density of the voids 53 in the concave portion 41.
  • the concave portion 41 and the convex portion are formed by the angle ⁇ between the straight line a1 perpendicular to the tangent line b1 on the surface along the surface of the convex portion 42 and the straight line a2 perpendicular to the tangent line b2 on the surface beyond the mountain of the convex portion 42.
  • the boundary with 42 The region where the angle ⁇ between the straight line a1 and the straight line a2 is 120 ° or less is defined as the convex portion 42, and the other portion is defined as the concave portion 41.
  • Each void 53 has a substantially spherical shape. If each void 53 is large, the number of voids 53 from the electrolyte layer 40 to the cathode 60 may be reduced, and the stress relaxation effect may be reduced. Therefore, it is preferable to set an upper limit on the average diameter of each void 53.
  • the average diameter of the void 53 is preferably 50 nm or less, more preferably 30 nm or less, and further preferably 10 nm or less.
  • the diameter of the void 53 is the diameter when each void 53 is approximated to be spherical in the cross-sectional photograph. For example, the diameters of 20 or more voids 53 are measured in the field of view of a TEM (transmission electron microscope) image, and the averaged value is taken as the average diameter.
  • the average diameter of each void 53 is preferably 1 nm or more, more preferably 3 nm or more, and further preferably 5 nm or more.
  • the stress relaxation effect may be small. Therefore, it is preferable to set a lower limit on the average value (per one convex portion 52) of the number of voids 53 from the electrolyte layer 40 to the cathode 60.
  • the average value is preferably 100 or more, more preferably 200 or more, and further preferably 300 or more.
  • the average value of the number of voids 53 from the electrolyte layer 40 to the cathode 60 is preferably 5000 or less, more preferably 4000 or less, and further preferably 3000 or less.
  • the average spacing of the voids 53 in the direction in which the voids 53 are lined up is too short, it may be difficult for oxide ions to pass through. Therefore, it is preferable to set a lower limit for the average spacing of the voids 53 in the direction in which the voids 53 are lined up.
  • the average spacing of the voids 53 is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 15 nm or more.
  • the average spacing of the voids 53 in the direction in which the voids 53 are lined up is preferably 300 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less.
  • FIG. 8 is a diagram illustrating a flow of a manufacturing method of the fuel cell 100.
  • Support material As materials for the support, metal powder (for example, particle size of 10 ⁇ m to 100 ⁇ m), plasticizer (for example, adjusted from 1 wt% to 6 wt% to adjust the adhesion of the sheet), solvent (toluene, 2-propanol (toluene, 2-propanol). IPA), 1-butanol, turpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on the viscosity), vanishing material (organic substance), binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to make a slurry. ..
  • metal powder for example, particle size of 10 ⁇ m to 100 ⁇ m
  • plasticizer for example, adjusted from 1 wt% to 6 wt% to adjust the adhesion of the sheet
  • solvent toluene, 2-propanol (toluene, 2-propanol).
  • IPA 1-butan
  • the support material is used as a material for forming the support 10.
  • the volume ratio of the organic component (disappearing material, binder solid content, plasticizer) to the metal powder is, for example, in the range of 1: 1 to 20: 1, and the amount of the organic component is adjusted according to the porosity.
  • the ceramic material powder for example, the particle size is 100 nm to 10 ⁇ m which is the raw material of the ceramic material 22 and the small particle size metal material powder (for example, the particle size is 1 ⁇ m to 10 ⁇ m) which is the raw material of the metal material 21.
  • Solvent toluene, 2-propanol (IPA), 1-butanol, turpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on the viscosity
  • plasticizer for example, to adjust the adhesion of the sheet.
  • the volume ratio of the organic component (disappearing material, binder solid content, plasticizer) to the ceramic material powder and the metal material powder is, for example, in the range of 1: 1 to 5: 1, and the amount of the organic component is adjusted according to the porosity. adjust. Further, the pore diameter of the void is controlled by adjusting the particle size of the vanishing material.
  • the ceramic material powder may contain an electron conductive material powder and an oxide ion conductive material powder.
  • the volume ratio of the electron conductive material powder and the oxide ion conductive material powder is preferably in the range of, for example, 1: 9 to 9: 1. Further, even if an electrolyte material ScYSZ, GDC or the like is used instead of the electron conductive material powder, the interface is not peeled off and the cell can be manufactured. However, from the viewpoint of reducing the ohmic resistance, it is preferable to mix the electron conductive material powder and the metal powder.
  • anode material As the material for the anode, the ceramic material powder constituting the electrode skeleton, the solvent (toluene, 2-propanol (IPA), 1-butanol, turpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on the viscosity), plasticizer.
  • An agent for example, adjusted from 1 wt% to 6 wt% to adjust the adhesion of the sheet), a vanishing material (organic substance), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry.
  • the electron conductive material powder (for example, the particle size is 100 nm to 10 ⁇ m) which is the raw material of the electron conductive ceramics 31 and the oxide ion conduction which is the raw material of the oxide ion conductive ceramics 32.
  • a ceramic material powder (for example, a particle size of 100 nm to 10 ⁇ m) may be used.
  • the volume ratio of the organic component (disappearing material, binder solid content, plasticizer) to the electron conductive material powder is, for example, in the range of 1: 1 to 5: 1, and the amount of the organic component is adjusted according to the porosity. Further, the pore diameter of the void is controlled by adjusting the particle size of the vanishing material.
  • the volume ratio of the electron conductive material powder and the oxide ion conductive material powder is, for example, in the range of 3: 7 to 7: 3.
  • a solvent toluene, 2-propanol (IPA), 1- Butanol, turpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity
  • plasticizer eg, adjusted to 1 wt% to 6 wt% to adjust sheet adhesion
  • binder PVB, Acrylic resin, ethyl cellulose, etc.
  • the volume ratio of the organic component (binder solid content, plasticizer) to the oxide ion conductive material powder is, for example, in the range of 6: 4 to 3: 4.
  • the particle size of the resin particles is 1.5 times or more that of the oxide ion conductive material powder. Further, in order to increase the aggregation effect, the particle size of the resin particles is more preferably three times or more that of the oxide ion conductive material powder. It is more preferable that the particle size of the resin particles is 5 times or more that of the oxide ion conductive material powder.
  • the particle size of the oxide ion conductive material powder in the material for the uneven layer is preferably smaller than the particle size of the oxide ion conductive material powder in the material for the electrolyte layer. This is because it becomes easy to form irregularities on the surface of the electrolyte layer 40.
  • the D50% particle size of the oxide ion conductive material powder in the material for the uneven layer may be 1/3 or less with respect to the D50% particle size of the oxide ion conductive material powder in the material for the electrolyte layer. It is more preferably 1/5 or less, and even more preferably 1/10 or less.
  • a support green sheet is produced by applying a support material on a PET (polyethylene terephthalate) film.
  • a mixed layer green sheet is produced by applying a material for a mixed layer on another PET film.
  • An anode green sheet is produced by applying an anode material on another PET film.
  • An electrolyte layer green sheet is produced by applying a material for an electrolyte layer on another PET film.
  • the uneven layer green sheet is produced. Since the uneven layer green sheet is used as a green sheet to be attached to the surface layer of the electrolyte layer green sheet, it is, for example, a thin sheet of 1 ⁇ m or less.
  • a plurality of support green sheets, one mixed layer green sheet, one anode green sheet, one electrolyte layer green sheet, and one uneven layer green sheet are laminated in this order to obtain a predetermined size. It is cut and calcined in a reducing atmosphere having an oxygen partial pressure of 10 to 20 atm or less in a temperature range of about 1100 ° C to 1300 ° C. Thereby, a half cell including the support 10, the mixed layer 20, the electrode skeleton of the anode 30, the electrolyte layer 40, and the uneven layer can be obtained.
  • the raw materials of the oxide ion conductive ceramics 33 and the catalyst metal 34 are impregnated into the electrode skeleton of the anode 30.
  • water or alcohols Zr, Y, Sc, Ce, Gd, Ni nitrates or chlorides so that Gd-doped ceria or Sc, Y-doped zirconia and Ni are produced when calcined at a predetermined temperature in a reducing atmosphere.
  • Dissolve in ethanol, 2-propanol, methanol, etc. impregnate the half cell, dry, and repeat the heat treatment as many times as necessary.
  • the intermediate layer 50 is formed by forming the oxide ion conductive ceramics contained in the intermediate layer 50 on the electrolyte layer 40 by, for example, PVD.
  • the intermediate layer 50 is formed by forming a film of Ce 0.8 Gd 0.2 O 2-x so as to have a thickness of 1 ⁇ m by PVD.
  • the film formation rate and the substrate heating temperature are controlled so that voids are lined up at predetermined intervals from the electrolyte layer 40 to the cathode 60 in the intermediate layer 50 at predetermined intervals.
  • the film forming speed is preferably 10 nm / hour to 50 nm / hour
  • the substrate heating temperature is preferably 200 ° C. to 600 ° C.
  • the cathode material is applied onto the intermediate layer 50 by screen printing or the like and dried. Then, the cathode material is sintered by heat treatment in an air atmosphere at a temperature of 1000 ° C. or lower to form the cathode 60.
  • the temperature during the heat treatment is preferably 900 ° C. or lower, more preferably 800 ° C. or lower.
  • the dispersibility of the material is adjusted so as to be poor, so that the surface of the electrolyte layer 40 after firing is convex with a plurality of recesses 41 on the cathode 60 side.
  • the portions 42 are alternately formed.
  • the intermediate layer 50 also follows the shape of the surface of the electrolyte layer 40 on the cathode 60 side. Therefore, on the surface of the intermediate layer 50 on the cathode 60 side, the concave portion 51 is formed so as to substantially coincide with the position of the concave portion 41, and the convex portion 52 is formed so as to substantially coincide with the position of the convex portion 42.
  • the unevenness can be formed in the in-plane two-dimensional direction.
  • Concavities and convexities are also formed on the surface of the intermediate layer 50 on the side of the electrolyte layer 40 along the surface of the electrolyte layer 40 on the side of the cathode 60. Further, on the surface of the cathode 60 on the intermediate layer 50 side, the convex portion 61 is formed at the portion where the concave portion 51 is formed, and the concave portion 62 is formed at the portion where the convex portion 52 is formed.
  • the green sheet 80 for the uneven layer is laminated on the electrolyte layer green sheet 70.
  • the particle size of the oxide ion conductive material powder 81 contained in the uneven layer green sheet 80 is smaller than the particle size of the oxide ion conductive material powder 71 contained in the electrolyte layer green sheet 70.
  • the green sheet 80 for the uneven layer contains resin particles 82.
  • the resin particles 82 function as spacers, and the oxide ion conductive material powder 81 becomes aggregated.
  • the resin particles 82 are removed in the firing step.
  • the agglomerated plurality of oxide ion conductive material powders 81 become convex portions 42 after firing.
  • the intermediate layer 50 also follows the shape of the surface of the electrolyte layer 40 on the intermediate layer 50 side. Therefore, on the surface of the intermediate layer 50 on the cathode 60 side, the convex portion 52 is formed so as to substantially coincide with the position of the convex portion 42.
  • the unevenness can be formed in the in-plane two-dimensional direction.
  • Concavities and convexities are also formed on the surface of the intermediate layer 50 on the side of the electrolyte layer 40 along the surface of the electrolyte layer 40 on the side of the cathode 60. Further, on the surface of the cathode 60 on the intermediate layer 50 side, irregularities are formed so as to follow the shape of the surface of the intermediate layer 50 on the cathode 60 side.
  • the film formation rate and the substrate heating temperature are controlled so that voids are lined up at predetermined intervals from the electrolyte layer 40 to the cathode 60 in the intermediate layer 50 along a predetermined line.
  • the plurality of voids 53 are formed in the intermediate layer 50 so as to be arranged at predetermined intervals along a predetermined line from the convex portion 42 of the electrolyte layer 40 toward the cathode 60.
  • the fuel cell 100 was manufactured according to the above manufacturing method.
  • Example 1 As the material for the support, SUS (stainless steel) powder was used. ScYSZ was used as the ceramic material for the electrolyte layer. A LaCrO3 system material was used for the electron conductive ceramics as the anode material, and ScYSZ was used for the oxide ion conductive ceramics. GDC was used as the ceramic material for the intermediate layer. LSC was used as the ceramic material for the cathode material. A LaCrO3 system material was used as the ceramic material for the mixed layer. SUS was used as the metal material for the mixed layer material.
  • a mixed layer green sheet, an anode green sheet, an electrolyte layer green sheet, and a green sheet for an uneven layer are laminated on the support green sheet, cut to a predetermined size, and the oxygen partial pressure is reduced to 10-16 atm or less. It was fired in an atmosphere. After impregnating the electrode skeleton of the anode with GDC and Ni, it was calcined at a temperature of 850 ° C. or lower in an atmospheric atmosphere. Then, an intermediate layer of Ce 0.8 Gd 0.2 O 2-x is formed by PVD, and a cathode material is applied onto the intermediate layer by screen printing or the like and dried. Then, the cathode material was sintered by heat treatment in an air atmosphere at a temperature of 1000 ° C.
  • Example 1 the dimension a was 120 nm, the dimension a'was 150 nm, the dimension b was 1 ⁇ m, the dimension b'was 1 ⁇ m, and the dimension c was 500 nm.
  • Example 2 NiO / YSZ was used as the material for the support. Other production conditions were the same as in Example 1.
  • the dimension a was 120 m
  • the dimension b was 1 ⁇ m
  • the dimension c was 500 nm.
  • Example 3 In Example 3, the conditions for producing the concavo-convex sheet were changed to reduce the size of the concavo-convex. Other production conditions were the same as in Example 1.
  • the dimension a was 50 nm
  • the dimension b was 1 ⁇ m
  • the dimension c was 500 nm.
  • Comparative Example 1 In Comparative Example 1, the green sheet for the uneven layer was not provided. Other conditions were the same as in Example 1. In Comparative Example 1, since the green sheet for the uneven layer was not provided, the unevenness did not appear on the surface of the electrolyte layer layer on the cathode side, and the unevenness did not appear on the intermediate layer and the cathode.
  • the dimension c was 500 nm.
  • Comparative Example 2 In Comparative Example 2, the treatment time of PVD was tripled as that of Example 1, and the thickness of the intermediate layer was tripled (about 1.5 ⁇ m). Other conditions were the same as in Example 1. The dimension c was 1.5 ⁇ m.
  • Example 1 The reason why the ohmic resistance of Examples 1 and 3 was lower than that of Example 2 is considered to be that a metal support having high electron conductivity was used.
  • the ohmic resistance was 0.25 ⁇ ⁇ cm 2 . It is considered that the ohm resistance in Comparative Example 1 is about the same as that in Example 1 because the ohm resistance depends only on the thickness (dimension c) of the intermediate layer.
  • Comparative Example 2 the ohmic resistance was larger than that in Example 1 and Comparative Example 1, and was 0.34 ⁇ ⁇ cm 2 . It is considered that this is because the ohmic resistance increased due to the thickening of the intermediate layer.
  • Example 1 the reaction resistance at the cathode was 0.27 ⁇ ⁇ cm 2 .
  • Example 2 the reaction resistance at the cathode was 0.27 ⁇ ⁇ cm 2 .
  • Example 3 the reaction resistance at the cathode was 0.31 ⁇ ⁇ cm 2 .
  • the reaction resistance at the cathode was low. It is considered that this is because the unevenness is formed two-dimensionally on the surface of the intermediate layer on the cathode side in a plan view, so that the contact area between the intermediate layer and the cathode is increased. It is considered that the reaction resistance of Examples 1 and 2 was lower than that of Example 3 because the dimension a and the dimension a'were large and the unevenness became large.
  • Example 4 As the material for the support, SUS (stainless steel) powder was used. ScYSZ was used as the ceramic material for the electrolyte layer. Acrylic resin, polystyrene particles, nylon fine particles, phenol resin and the like were added as resin particles to the material for the uneven layer. A LaCrO3 system material was used for the electron conductive ceramics as the anode material, and ScYSZ was used for the oxide ion conductive ceramics. GDC was used as the ceramic material for the intermediate layer. LSC was used as the ceramic material for the cathode material. A LaCrO3 system material was used as the ceramic material for the mixed layer. SUS was used as the metal material for the mixed layer material.
  • a mixed layer green sheet, an anode green sheet, an electrolyte layer green sheet, and a green sheet for an uneven layer are laminated on the support green sheet, cut to a predetermined size, and the oxygen partial pressure is reduced to 10-16 atm or less. It was fired in an atmosphere. After impregnating the electrode skeleton of the anode with GDC and Ni, it was calcined at a temperature of 850 ° C. or lower in an atmospheric atmosphere. Then, an intermediate layer of Ce 0.8 Gd 0.2 O 2-x was formed by PVD, and a cathode material was applied onto the intermediate layer by screen printing or the like and dried. Then, the cathode material was sintered by heat treatment in an air atmosphere at a temperature of 1000 ° C.
  • the film forming rate when forming the intermediate layer was 10 nm / hour, and the substrate heating temperature was 300 ° C.
  • the STEM (scanning transmission electron microscope) photograph of the intermediate layer was confirmed, it was confirmed that a plurality of voids were formed in the intermediate layer from the electrolyte layer to the cathode at intervals along a predetermined line.
  • the average diameter of the voids was 10 nm.
  • the average number of voids 53 per convex portion 52 from the electrolyte layer to the cathode was 500.
  • Example 5 NiO / YSZ was used as the support material. Other production conditions were the same as in Example 4.
  • the film forming rate when forming the intermediate layer was 10 nm / hour, and the substrate heating temperature was 300 ° C.
  • the STEM photograph of the intermediate layer was confirmed, it was confirmed that a plurality of voids were formed in the intermediate layer from the electrolyte layer to the cathode at intervals along a predetermined line.
  • the average diameter of the voids was 10 nm.
  • the average number of voids per convex portion 52 from the electrolyte layer to the cathode was 500.
  • Comparative Example 3 In Comparative Example 3, the green sheet for the uneven layer was not provided. Other conditions were the same as in Example 4. In Comparative Example 3, since the green sheet for the uneven layer was not provided, the unevenness did not appear on the surface of the electrolyte layer layer on the cathode side, and the unevenness did not appear on the intermediate layer and the cathode.
  • Comparative Example 4 In Comparative Example 4, a green sheet for the uneven layer was provided, and in the PVD treatment of the intermediate layer, the film formation rate was 10 nm / hour, and the substrate heating temperature was 600 ° C. Other conditions were the same as in Example 4. Since the substrate heating temperature was high, no void 53 was observed when observing the cross section. It was confirmed that all the uneven parts were dense.
  • Example 4 By measuring the impedance of the fuel cells of Examples 4 and 5 and Comparative Examples 3 and 4, each resistance value was separated, and the ohm resistance of the entire fuel cell and the reaction resistance of the cathode were measured. The results are shown in Table 2. As shown in Table 2, in Example 4, the ohmic resistance was 0.25 ⁇ ⁇ cm 2 . Further, in Example 5, the ohmic resistance was 0.30 ⁇ ⁇ cm 2 . Thus, in Examples 4 and 5, the ohmic resistance was low. It is considered that this is because the unevenness on both sides of the intermediate layer makes the resistance at the time of ion conduction almost the same as that without the uneven structure (comparative example). It is considered that the reason why the ohmic resistance of Example 4 was lower than that of Example 5 was that a metal support having high electron conductivity was used.
  • Example 4 the reaction resistance at the cathode was 0.27 ⁇ ⁇ cm 2 .
  • Example 5 the reaction resistance at the cathode was 0.27 ⁇ ⁇ cm 2 .
  • Comparative Example 4 the reaction resistance at the cathode was 0.27 ⁇ ⁇ cm 2 .
  • the reaction resistance at the cathode was low. It is considered that this is because the contact area between the intermediate layer and the cathode has increased due to the formation of irregularities on the surface of the intermediate layer on the cathode side.
  • Comparative Example 3 the reaction at the cathode was 0.56 ⁇ ⁇ cm 2 , which was significantly higher. It is considered that this is because the contact area between the intermediate layer and the cathode was not sufficiently large because the unevenness was not formed in the intermediate layer.
  • Example 4 the ohmic resistance was 0.25 ⁇ ⁇ cm 2 , and the reaction resistance of the cathode was 0.30 ⁇ ⁇ cm 2 .
  • Example 5 the ohmic resistance was 0.30 ⁇ ⁇ cm 2 and the reaction resistance of the cathode was 0.31 ⁇ ⁇ cm 2 .
  • the ohmic resistance and the reaction resistance of the cathode did not change much before and after the temperature rise and fall. It is considered that this is because the peeling did not occur between the electrolyte layer and the intermediate layer. After that, the cell surface was visually confirmed, but no peeling of the intermediate layer was observed.
  • the ohmic resistance was 0.40 ⁇ ⁇ cm 2 and the reaction resistance of the cathode was 0.71 ⁇ ⁇ cm 2 . In this way, the ohmic resistance has increased significantly. It is considered that this is because the peeling occurred between the electrolyte layer and the intermediate layer due to the difference in the thermal expansion rate between the electrolyte layer and the intermediate layer. After that, when the cell surface was visually inspected, peeling was confirmed in the intermediate layer. In Comparative Example 4, the electromotive force OCV was not confirmed after the temperature was raised and lowered by 5000 cycles, and when the cell was taken out and confirmed, it was confirmed that the intermediate layer was peeled off and the battery could not be operated. Since there are no voids, it is considered that the intermediate layer was peeled off due to thermal expansion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

This solid oxide fuel cell is characterized by comprising: an electrolyte layer containing a solid oxide having oxide ion conductivity; an intermediate layer provided on the electrolyte layer and having oxide ion conductivity; and a cathode provided on the intermediate layer. The solid oxide fuel cell is further characterized in that: the intermediate layer is provided with a plurality of recesses and protrusions on the cathode-side surface thereof, which are aligned in the two-dimensional direction when observed in plan view; and the intermediate layer is provided with a plurality of recesses and protrusions on the electrolyte layer-side surface thereof, the recesses and protrusions provided so as follow the plurality of recesses and protrusions on the cathode-side surface. 

Description

固体酸化物型燃料電池およびその製造方法Solid oxide fuel cell and its manufacturing method
 本発明は、固体酸化物型燃料電池およびその製造方法に関する。 The present invention relates to a solid oxide fuel cell and a method for manufacturing the same.
 固体酸化物型燃料電池は、アノードとカソードとによって固体酸化物系電解質が挟まれた構造を有している。このような固体酸化物型燃料電池に用いられるカソードは、固体酸化物系電解質と反応することがある。そこで、固体酸化物系電解質とカソードとの反応を抑制するために、GDCなどの反応防止膜をカソードと固体酸化物系電解質との間に中間層として設ける技術が開示されている(例えば、特許文献1参照)。 The solid oxide fuel cell has a structure in which a solid oxide electrolyte is sandwiched between an anode and a cathode. The cathode used in such a solid oxide fuel cell may react with a solid oxide-based electrolyte. Therefore, in order to suppress the reaction between the solid oxide-based electrolyte and the cathode, a technique of providing an anti-reaction film such as GDC as an intermediate layer between the cathode and the solid oxide-based electrolyte is disclosed (for example, patent). See Document 1).
特開2017-504946号公報JP-A-2017-504946
 しかしながら、中間層を設けると、発電時の反応抵抗が高くなるおそれがある。 However, if an intermediate layer is provided, the reaction resistance during power generation may increase.
 本発明は、上記課題に鑑みなされたものであり、反応抵抗を低下させることができる固体酸化物型燃料電池およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid oxide fuel cell capable of reducing reaction resistance and a method for producing the same.
 本発明に係る固体酸化物型燃料電池は、酸化物イオン伝導性を有する固体酸化物を含む電解質層と、前記電解質層上に設けられ、酸化物イオン伝導性を有する中間層と、前記中間層上に設けられたカソードと、を備え、前記中間層は、前記カソード側の面において、平面視で2次元方向に並ぶように複数の凹凸が設けられ、前記中間層は、前記電解質層側の面において、前記カソード側の面の複数の凹凸に沿うように複数の凹凸が設けられていることを特徴とする。 The solid oxide fuel cell according to the present invention has an electrolyte layer containing a solid oxide having oxide ion conductivity, an intermediate layer provided on the electrolyte layer and having oxide ion conductivity, and the intermediate layer. The intermediate layer is provided with a cathode provided above, and the intermediate layer is provided with a plurality of irregularities on the surface on the cathode side so as to be arranged in a two-dimensional direction in a plan view, and the intermediate layer is on the side of the electrolyte layer. The surface is characterized in that a plurality of irregularities are provided along the plurality of irregularities on the surface on the cathode side.
 上記固体酸化物型燃料電池において、前記中間層の前記カソード側の面における前記凹凸は、粒子状に形成されていてもよい。 In the solid oxide fuel cell, the unevenness on the surface of the intermediate layer on the cathode side may be formed in the form of particles.
 上記固体酸化物型燃料電池の前記中間層の前記カソード側の面の凹凸において、山と谷との垂直距離aは、0.05μm以上、3μm以下であってもよい。 The vertical distance a between the peak and the valley may be 0.05 μm or more and 3 μm or less in the unevenness of the surface on the cathode side of the intermediate layer of the solid oxide fuel cell.
 上記固体酸化物型燃料電池の前記中間層の前記カソード側の面の凹凸において、山と山との水平距離bは、0.1μm以上、5μm以下であってもよい。 The horizontal distance b between the peaks may be 0.1 μm or more and 5 μm or less in the unevenness of the surface on the cathode side of the intermediate layer of the solid oxide fuel cell.
 上記固体酸化物型燃料電池の前記中間層の前記カソード側の面の凹凸において、山と谷との垂直距離aと山と山との水平距離bとの比であるa/bは、1/10以上、20/1以下であってもよい。 In the unevenness of the surface on the cathode side of the intermediate layer of the solid oxide fuel cell, a / b, which is the ratio of the vertical distance a between the peaks and valleys and the horizontal distance b between the peaks and peaks, is 1 /. It may be 10 or more and 20/1 or less.
 上記固体酸化物型燃料電池において、前記電解質層の前記中間層側の面には、前記中間層の前記電解質層側の面における前記凹凸に沿うように複数の凹凸が設けられていてもよい。 In the solid oxide fuel cell, a plurality of irregularities may be provided on the surface of the electrolyte layer on the side of the intermediate layer so as to follow the irregularities on the surface of the intermediate layer on the side of the electrolyte layer.
 上記固体酸化物型燃料電池の前記電解質層の前記中間層側の面の凹凸において、山と谷との垂直距離a´は、0.05μm以上、3μm以下であってもよい。 The vertical distance a'between peaks and valleys may be 0.05 μm or more and 3 μm or less in the unevenness of the surface of the electrolyte layer of the solid oxide fuel cell on the intermediate layer side.
 上記固体酸化物型燃料電池の前記電解質層の前記中間層側の面の凹凸において、山と山との水平距離b´は、0.1μm以上、5μm以下であってもよい。 The horizontal distance b'b between peaks may be 0.1 μm or more and 5 μm or less in the unevenness of the surface of the electrolyte layer of the solid oxide fuel cell on the intermediate layer side.
 上記固体酸化物型燃料電池の前記電解質層の前記中間層側の面の凹凸において、山と谷との垂直距離a´と山と山との水平距離b´との比であるa´/b´は、1/10以上、20/1以下であってもよい。 In the unevenness of the surface of the electrolyte layer on the intermediate layer side of the solid oxide fuel cell, a'/ b, which is the ratio of the vertical distance a'of the peak and the valley to the horizontal distance b'of the peak and the peak. ´ may be 1/10 or more and 20/1 or less.
 上記固体酸化物型燃料電池において、前記中間層の前記カソード側の面の凹凸における山と谷との垂直距離aと、前記電解質層の前記中間層側の面において前記中間層の前記電解質層側の面における前記凹凸に沿うように設けられた複数の凹凸における山と谷との垂直距離a´とは、0.5≦a/a´≦1の関係を有していてもよい。 In the solid oxide fuel cell, the vertical distance a between the peak and the valley in the unevenness of the surface on the cathode side of the intermediate layer and the electrolyte layer side of the intermediate layer on the surface on the intermediate layer side of the electrolyte layer. The vertical distance a'between peaks and valleys in a plurality of irregularities provided along the unevenness on the surface of the surface may have a relationship of 0.5≤a / a'≤1.
 上記固体酸化物型燃料電池において、前記中間層の前記カソード側の面の凹凸における山と山との水平距離bと、前記電解質層の前記中間層側の面において前記中間層の前記電解質層側の面における前記凹凸に沿うように設けられた複数の凹凸における山と山との水平距離b´とは、0.5≦b/b´≦1の関係を有していてもよい。 In the solid oxide fuel cell, the horizontal distance b between the peaks on the uneven surface of the cathode side of the intermediate layer and the electrolyte layer side of the intermediate layer on the surface of the electrolyte layer on the intermediate layer side. The horizontal distance b'b.
 上記固体酸化物型燃料電池において、前記中間層の前記カソード側の面の凹凸における山と、前記電解質層の前記中間層側の面において前記中間層の前記電解質層側の面における前記凹凸に沿うように設けられた凹凸において当該山に対応する山との垂直距離は、10nm以上、3μm以下であってもよい。 In the solid oxide fuel cell, the mountain along the unevenness on the surface of the intermediate layer on the cathode side and the unevenness on the surface of the intermediate layer on the side of the intermediate layer along the unevenness of the surface of the intermediate layer on the side of the electrolyte layer. The vertical distance from the mountain corresponding to the mountain in the unevenness provided as described above may be 10 nm or more and 3 μm or less.
 本発明に係る他の固体酸化物型燃料電池は、酸化物イオン伝導性を有する固体酸化物を含む電解質層と、前記電解質層上に設けられ、酸化物イオン伝導性を有する中間層と、前記中間層上に設けられたカソードと、を備え、前記中間層は、前記電解質層の前記中間層側の面に設けられた凹凸に沿うように形成されており、前記中間層において、前記電解質層側から前記カソード側にかけて、複数の空隙が、所定線に沿って間隔を空けて並ぶように形成されていることを特徴とする。 The other solid oxide fuel cell according to the present invention has an electrolyte layer containing a solid oxide having oxide ion conductivity, an intermediate layer provided on the electrolyte layer and having oxide ion conductivity, and the above. A cathode provided on the intermediate layer is provided, and the intermediate layer is formed along the unevenness provided on the surface of the electrolyte layer on the intermediate layer side. In the intermediate layer, the electrolyte layer is provided. From the side to the cathode side, a plurality of voids are formed so as to be arranged at intervals along a predetermined line.
 上記固体酸化物型燃料電池の前記中間層において、前記カソード側に対する凸部における前記空隙の数密度は、前記カソード側に対する凹部における前記空隙の数密度よりも大きくてもよい。 In the intermediate layer of the solid oxide fuel cell, the number density of the voids in the convex portion with respect to the cathode side may be larger than the number density of the voids in the concave portion with respect to the cathode side.
 上記固体酸化物型燃料電池において、前記空隙の平均径は、50nm以下であってもよい。 In the solid oxide fuel cell, the average diameter of the voids may be 50 nm or less.
 上記固体酸化物型燃料電池において、前記電解質層の前記凹凸は、前記中間層側の面において、平面視で2次元方向に並ぶように設けられていてもよい。 In the solid oxide fuel cell, the unevenness of the electrolyte layer may be provided so as to be arranged in a two-dimensional direction in a plan view on the surface on the intermediate layer side.
 上記固体酸化物型燃料電池において、前記中間層は、セリアに添加物が添加された材料であってもよい。 In the solid oxide fuel cell, the intermediate layer may be a material in which an additive is added to ceria.
 本発明に係る固体酸化物型燃料電池の製造方法は、酸化物イオン伝導性材料粉末を含むスラリを塗工することで電解質層グリーンシートを作製し、前記電解質層グリーンシート上に、前記電解質層グリーンシートの前記酸化物イオン伝導性材料粉末のD50%粒径よりも小さいD50%粒径を有する酸化物イオン伝導性材料粉末と、樹脂粒子とを含むスラリを塗工し、焼成することで、表面に凹凸を有する電解質層を形成する工程と、前記電解質層上に、酸化物イオン伝導性を有しかつカソード活性を有していない中間層をPVD法で成膜し、前記中間層上にカソードを成膜し、前記中間層をPVD法で成膜する際に、前記電解質層側から前記カソード側にかけて複数の空隙が所定の線に沿って間隔を空けて並ぶように形成されるように、成膜速度および基盤加熱温度の少なくともいずれか一方を制御することを特徴とする。 In the method for manufacturing a solid oxide fuel cell according to the present invention, an electrolyte layer green sheet is produced by applying a slurry containing an oxide ion conductive material powder, and the electrolyte layer is placed on the electrolyte layer green sheet. By applying and firing a slurry containing the oxide ion conductive material powder having a D50% particle size smaller than the D50% particle size of the oxide ion conductive material powder of the green sheet and the resin particles, the green sheet is fired. In the step of forming an electrolyte layer having irregularities on the surface, an intermediate layer having oxide ion conductivity and no cathode activity is formed on the electrolyte layer by the PVD method, and is formed on the intermediate layer. When the cathode is formed and the intermediate layer is formed by the PVD method, a plurality of voids are formed so as to be arranged at intervals along a predetermined line from the electrolyte layer side to the cathode side. It is characterized in that at least one of the film forming rate and the substrate heating temperature is controlled.
 本発明によれば、反応抵抗を低下させることができる固体酸化物型燃料電池およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a solid oxide fuel cell capable of reducing reaction resistance and a method for producing the same.
燃料電池の積層構造を例示する模式的断面図である。It is a schematic cross-sectional view which illustrates the laminated structure of a fuel cell. 支持体、混合層、およびアノードの詳細を例示する拡大断面図である。FIG. 6 is an enlarged cross-sectional view illustrating details of a support, a mixed layer, and an anode. (a)は電解質層からカソードまでの拡大断面図であり、(b)は中間層の平面図である。(A) is an enlarged cross-sectional view from the electrolyte layer to the cathode, and (b) is a plan view of the intermediate layer. 電解質層からカソードまでの拡大断面図である。It is an enlarged sectional view from an electrolyte layer to a cathode. 各寸法を説明するための図である。It is a figure for demonstrating each dimension. 中間層を模式的に拡大した拡大図である。It is an enlarged view which made the intermediate layer schematically enlarged. 凹部41と凸部42との境界について説明するための図である。It is a figure for demonstrating the boundary between the concave part 41 and the convex part 42. 燃料電池の製造方法のフローを例示する図である。It is a figure which illustrates the flow of the manufacturing method of a fuel cell. 積層工程における電解質層グリーンシートおよび凹凸層用グリーンシートを例示する図である。It is a figure which illustrates the electrolyte layer green sheet and the green sheet for an uneven layer in a laminating process.
 以下、図面を参照しつつ、実施形態について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
(第1実施形態)
 図1は、固体酸化物型の燃料電池100の積層構造を例示する模式的断面図である。図1で例示するように、燃料電池100は、一例として、支持体10上に、混合層20、アノード30、電解質層40、中間層50、およびカソード60がこの順に積層された構造を有する。複数の燃料電池100を積層させて、燃料電池スタックを構成してもよい。
(First Embodiment)
FIG. 1 is a schematic cross-sectional view illustrating a laminated structure of a solid oxide fuel cell 100. As illustrated in FIG. 1, as an example, the fuel cell 100 has a structure in which a mixed layer 20, an anode 30, an electrolyte layer 40, an intermediate layer 50, and a cathode 60 are laminated in this order on a support 10. A plurality of fuel cells 100 may be stacked to form a fuel cell stack.
 電解質層40は、酸化物イオン伝導性を有する固体酸化物を主成分とし、ガス不透過性を有する緻密層である。電解質層40は、スカンジア・イットリア安定化酸化ジルコニウム(ScYSZ)、YSZ(イットリア安定化酸化ジルコニウム)、Gd(ガドリニウム)がCeOにドープされたGDC(Gdドープセリア)などを主成分とすることが好ましい。ScYSZを用いる場合、Y+Scの濃度は6mol%~15mol%の間で酸化物イオン伝導性が最も高く、この組成の材料を用いることが望ましい。また、電解質層40の厚みは、20μm以下であることが好ましく、より望ましいのは10μm以下である。電解質は薄いほど良いが、両側のガスが漏れないように製造するためには、1μm以上の厚みが望ましい。 The electrolyte layer 40 is a dense layer having a solid oxide having oxide ion conductivity as a main component and having gas impermeable property. The electrolyte layer 40 preferably contains, as a main component, Scandia-yttria-stabilized zirconium oxide (ScYSZ), YSZ (yttria-stabilized zirconium oxide), GDC (Gd-doped ceria) in which Gd (gadolinium) is doped in CeO 2 . .. When ScYSZ is used, the concentration of Y 2 O 3 + Sc 2 O 3 has the highest oxide ion conductivity between 6 mol% and 15 mol%, and it is desirable to use a material having this composition. The thickness of the electrolyte layer 40 is preferably 20 μm or less, more preferably 10 μm or less. The thinner the electrolyte, the better, but in order to manufacture it so that the gas on both sides does not leak, a thickness of 1 μm or more is desirable.
 カソード60は、カソードとしての電極活性を有する電極であり、電子伝導性および酸化物イオン伝導性を有する。例えば、カソード60は、電子伝導性および酸化物イオン伝導性を有するセラミックス材料を主成分とする。当該セラミックス材料として、例えば、LaCoO系材料、LaMnO系材料、LaFeO系材料などを用いることができる。例えば、LaCoO系材料として、LSC(ランタンストロンチウムコバルタイト)などを用いることができる。LSCは、Sr(ストロンチウム)がドープされたLaCoOである。 The cathode 60 is an electrode having electrode activity as a cathode, and has electron conductivity and oxide ion conductivity. For example, the cathode 60 is mainly composed of a ceramic material having electron conductivity and oxide ion conductivity. As the ceramic material, for example, a LaCoO 3 -based material, a LaMnO 3 -based material, a LaFeO 3 -based material, or the like can be used. For example, LSC (lantern strontium cobaltite) or the like can be used as the LaCoO 3 system material. LSC is LaCoO3 doped with Sr (strontium).
 中間層50は、電解質層40とカソード60との反応を防止する成分を主成分とする。中間層50の構成材料は、電解質層40の構成材料と異なっている。中間層50は、酸化物イオン伝導性を有しているが、カソードとしての電極活性を有していない。例えば、中間層50は、セリア(CeO)に添加物が添加された構造を有している。添加物は、特に限定されるものではない。例えば、中間層50は、GDC(例えば、Ce0.8Gd0.22-x)などを主成分とする。一例として、電解質層40がScYSZを含有し、カソード60がLSCを含有する場合には、中間層50は、以下の反応を防止する。
Sr+ZrO→SrZrO
La+ZrO→LaZr
The intermediate layer 50 contains a component that prevents the reaction between the electrolyte layer 40 and the cathode 60 as a main component. The constituent material of the intermediate layer 50 is different from the constituent material of the electrolyte layer 40. The intermediate layer 50 has oxide ion conductivity, but does not have electrode activity as a cathode. For example, the intermediate layer 50 has a structure in which an additive is added to ceria (CeO 2 ). The additives are not particularly limited. For example, the intermediate layer 50 contains GDC (for example, Ce 0.8 Gd 0.2 O 2-x ) or the like as a main component. As an example, when the electrolyte layer 40 contains ScYSZ and the cathode 60 contains LSC, the intermediate layer 50 prevents the following reactions.
Sr + ZrO 2 → SrZrO 3
La + ZrO 3 → La 2 Zr 2 O 7
 図2は、支持体10、混合層20、およびアノード30の詳細を例示する拡大断面図である。図2で例示するように、支持体10は、ガス透過性を有するとともに、混合層20、アノード30、電解質層40、中間層50およびカソード60を支持可能な部材である。支持体10は、金属を主成分とする金属多孔体であり、例えば、Fe-Cr合金の多孔体などである。 FIG. 2 is an enlarged cross-sectional view illustrating the details of the support 10, the mixed layer 20, and the anode 30. As illustrated in FIG. 2, the support 10 is a member that has gas permeability and can support the mixed layer 20, the anode 30, the electrolyte layer 40, the intermediate layer 50, and the cathode 60. The support 10 is a metal porous body containing a metal as a main component, and is, for example, a porous body of an Fe—Cr alloy.
 アノード30は、アノードとしての電極活性を有する電極であり、セラミックス材料の電極骨格を有する。電極骨格には、金属成分が含まれていない。この構成では、高温還元雰囲気での焼成時に、金属成分の粗大化によるアノードの空隙率の低下が抑制される。また、支持体10の金属成分との合金化が抑制され、触媒機能低下が抑制される。 The anode 30 is an electrode having electrode activity as an anode, and has an electrode skeleton made of a ceramic material. The electrode skeleton does not contain metal components. In this configuration, the decrease in porosity of the anode due to the coarsening of the metal component is suppressed during firing in a high-temperature reducing atmosphere. Further, alloying with the metal component of the support 10 is suppressed, and deterioration of the catalytic function is suppressed.
 アノード30の電極骨格は、電子伝導性および酸化物イオン伝導性を有している。アノード30は、電子伝導性セラミックス31を含有している。電子伝導性セラミックス31として、例えば、組成式がABOで表されるペロブスカイト型酸化物であって、AサイトがCa、Sr、Ba、Laの群から選ばれる少なくとも1種であり、BサイトがTi、Cr、Ni、Mg、Coから選ばれる少なくとも1種であるペロブスカイト型酸化物を用いることができる。AサイトとBサイトのモル比は、B≧Aであってもよい。具体的には、電子伝導性セラミックス31として、LaCrO系材料、SrTiO系材料などを用いることができる。 The electrode skeleton of the anode 30 has electron conductivity and oxide ion conductivity. The anode 30 contains the electron conductive ceramics 31. As the electron conductive ceramics 31, for example, it is a perovskite-type oxide whose composition formula is represented by ABO 3 , and A site is at least one selected from the group of Ca, Sr, Ba, La, and B site is. A perovskite-type oxide, which is at least one selected from Ti, Cr, Ni, Mg, and Co, can be used. The molar ratio of A site to B site may be B ≧ A. Specifically, as the electron conductive ceramics 31, a LaCrO3 system material , an SrTiO3 system material, or the like can be used.
 また、アノード30の電極骨格は、酸化物イオン伝導性セラミックス32を含有している。酸化物イオン伝導性セラミックス32は、ScYSZなどである。例えば、スカンジア(Sc)が5mol%~16mol%で、イットリア(Y)が1mol%~3mol%の組成範囲を有するScYSZを用いることが好ましい。スカンジアとイットリアの添加量が合わせて6mol%~15mol%となるScYSZがさらに好ましい。この組成範囲で、酸化物イオン伝導性が最も高くなるからである。なお、酸化物イオン伝導性セラミックス32は、例えば、酸化物イオンの輸率が99%以上の材料である。酸化物イオン伝導性セラミックス32として、GDCなどを用いてもよい。図2の例では、酸化物イオン伝導性セラミックス32として、電解質層40に含まれる固体酸化物と同じ固体酸化物を用いている。 Further, the electrode skeleton of the anode 30 contains the oxide ion conductive ceramics 32. The oxide ion conductive ceramics 32 is ScYSZ or the like. For example, it is preferable to use ScYSZ having a composition range of 5 mol% to 16 mol% for scandia (Sc 2 O 3 ) and 1 mol% to 3 mol% for itria (Y 2 O 3 ). ScYSZ in which the total amount of scandia and ittoria added is 6 mol% to 15 mol% is more preferable. This is because the oxide ion conductivity is the highest in this composition range. The oxide ion conductive ceramics 32 is, for example, a material having an oxide ion transport number of 99% or more. GDC or the like may be used as the oxide ion conductive ceramics 32. In the example of FIG. 2, the same solid oxide as the solid oxide contained in the electrolyte layer 40 is used as the oxide ion conductive ceramics 32.
 図2で例示するように、アノード30において、例えば、電子伝導性セラミックス31と酸化物イオン伝導性セラミックス32とが電極骨格を形成している。この電極骨格によって、複数の空隙が形成される。空隙部分の電極骨格の表面には、アノード触媒が担持されている。したがって、空間的に連続して形成されている電極骨格において、複数のアノード触媒が空間的に分散して配置されている。アノード触媒として、複合触媒を用いることが好ましい。例えば、複合触媒として、酸化物イオン伝導性セラミックス33と、触媒金属34とが、電極骨格の表面に担持されていることが好ましい。酸化物イオン伝導性セラミックス33として、例えば、YがドープされたBaCe1-xZr(BCZY、x=0~1)、YがドープされたSrCe1-xZr(SCZY、x=0~1)、SrがドープされたLaScO(LSS)、GDCなどを用いることができる。触媒金属34として、Niなどを用いることができる。酸化物イオン伝導性セラミックス33は、酸化物イオン伝導性セラミックス32と同じ組成を有していてもよいが、異なる組成を有していてもよい。なお、触媒金属34として機能する金属は、未発電時には化合物の形態をとっていてもよい。例えば、Niは、NiO(酸化ニッケル)の形態をとっていてもよい。これらの化合物は、発電時には、アノード30に供給される還元性の燃料ガスによって還元され、アノード触媒として機能する金属の形態をとるようになる。 As illustrated in FIG. 2, in the anode 30, for example, the electron conductive ceramics 31 and the oxide ion conductive ceramics 32 form an electrode skeleton. A plurality of voids are formed by this electrode skeleton. An anode catalyst is supported on the surface of the electrode skeleton in the void portion. Therefore, in the electrode skeleton formed spatially continuously, a plurality of anode catalysts are spatially dispersed and arranged. It is preferable to use a composite catalyst as the anode catalyst. For example, as the composite catalyst, it is preferable that the oxide ion conductive ceramics 33 and the catalyst metal 34 are supported on the surface of the electrode skeleton. Examples of the oxide ion conductive ceramics 33 include Y-doped BaCe 1-x Zr x O 3 (BCZY, x = 0-1) and Y-doped SrCe 1-x Zr x O 3 (SCZY,). x = 0 to 1), Sr-doped LaScO 3 (LSS), GDC and the like can be used. As the catalyst metal 34, Ni or the like can be used. The oxide ion conductive ceramics 33 may have the same composition as the oxide ion conductive ceramics 32, but may have a different composition. The metal that functions as the catalyst metal 34 may be in the form of a compound when no power is generated. For example, Ni may be in the form of NiO (nickel oxide). During power generation, these compounds are reduced by the reducing fuel gas supplied to the anode 30 and take the form of a metal that functions as an anode catalyst.
 混合層20は、金属材料21とセラミックス材料22とを含有する。混合層20において、金属材料21とセラミックス材料22とがランダムに混合されている。したがって、金属材料21の層とセラミックス材料22の層とが積層されたような構造が形成されているわけではない。混合層20も多孔質状であり、複数の空隙が形成されている。金属材料21は、金属であれば特に限定されるものではない。図2の例では、金属材料21として、支持体10と同じ金属材料が用いられている。例えば、セラミックス材料22として、ScYSZ、GDC、SrTiO系材料、LaCrO系材料などを用いることができる。SrTiO系材料およびLaCrO系材料は高い電子伝導性を有するため、混合層20におけるオーム抵抗を小さくすることができる。 The mixed layer 20 contains a metal material 21 and a ceramic material 22. In the mixed layer 20, the metal material 21 and the ceramic material 22 are randomly mixed. Therefore, the structure in which the layer of the metal material 21 and the layer of the ceramic material 22 are laminated is not formed. The mixed layer 20 is also porous, and a plurality of voids are formed. The metal material 21 is not particularly limited as long as it is a metal. In the example of FIG. 2, the same metal material as the support 10 is used as the metal material 21. For example, as the ceramic material 22, ScYSZ, GDC, SrTiO 3 -based material, LaCrO 3 -based material, or the like can be used. Since the SrTiO 3 system material and the LaCrO 3 system material have high electron conductivity, the ohmic resistance in the mixed layer 20 can be reduced.
 燃料電池100は、以下の作用によって発電する。カソード60には、空気などの、酸素を含有する酸化剤ガスが供給される。カソード60においては、カソード60の電極活性の効果により、カソード60に到達した酸素と、外部電気回路から供給される電子とが反応して酸化物イオンになる。酸化物イオンは、中間層50および電解質層40を伝導してアノード30側に移動する。一方、支持体10には、水素ガス、改質ガスなどの、水素を含有する燃料ガスが供給される。燃料ガスは、支持体10および混合層20を介してアノード30に到達する。アノード30に到達した水素は、アノード30の電極活性の効果により、アノード30において電子を放出するとともに、カソード60側から電解質層40を伝導してくる酸化物イオンと反応して水(HO)になる。放出された電子は、外部電気回路によって外部に取り出される。外部に取り出された電子は、電気的な仕事をした後に、カソード60に供給される。以上の作用によって、発電が行われる。 The fuel cell 100 generates electricity by the following actions. An oxygen-containing oxidant gas such as air is supplied to the cathode 60. In the cathode 60, due to the effect of the electrode activity of the cathode 60, oxygen reaching the cathode 60 reacts with electrons supplied from an external electric circuit to form oxide ions. The oxide ion conducts through the intermediate layer 50 and the electrolyte layer 40 and moves to the anode 30 side. On the other hand, a fuel gas containing hydrogen such as hydrogen gas and reforming gas is supplied to the support 10. The fuel gas reaches the anode 30 via the support 10 and the mixed layer 20. The hydrogen that reaches the anode 30 emits electrons at the anode 30 due to the effect of the electrode activity of the anode 30, and reacts with the oxide ion conducting the electrolyte layer 40 from the cathode 60 side to water (H 2 O). )become. The emitted electrons are taken out by an external electric circuit. The electrons taken out to the outside are supplied to the cathode 60 after performing electrical work. Power generation is performed by the above action.
 中間層50が設けられた燃料電池100において、カソード反応に最も寄与する場所は、中間層50とカソード60とが接触する界面である。この接触界面の面積は、反応抵抗に反比例する。したがって、単位面積当たりの接触面積が大きいほど、単位面積当たりの反応抵抗が低くなる。以上のことから、中間層50とカソード60との接触面積を向上させることが、燃料電池100の開発の課題となる。 In the fuel cell 100 provided with the intermediate layer 50, the place that most contributes to the cathode reaction is the interface where the intermediate layer 50 and the cathode 60 come into contact with each other. The area of this contact interface is inversely proportional to the reaction resistance. Therefore, the larger the contact area per unit area, the lower the reaction resistance per unit area. From the above, improving the contact area between the intermediate layer 50 and the cathode 60 is an issue for the development of the fuel cell 100.
 そこで、本実施形態に係る燃料電池100は、中間層50とカソード60との接触面積を向上させる構造を有している。図3(a)は、電解質層40からカソード60までの拡大断面図である。図3(a)で例示するように、中間層50は、カソード60側の面に複数の凹部51と凸部52とが交互に並ぶように形成されている。凸部52は、カソード60側に突出して湾曲するような形状を有している。図3(b)で例示するように、凹部51と凸部52とが交互に並ぶ方向は、一方向だけではなく、中間層50の面内で2次元方向に並んでいる。2次元方向は、中間層50の面内で必ずしも直交していなくてもよく、交差していればよい。中間層50に対する平面視において、凸部52が粒子状となっており、中間層50の面内にランダムに並んでいる。なお、図3(a)と図3(b)の縮尺は異なっている。 Therefore, the fuel cell 100 according to the present embodiment has a structure for improving the contact area between the intermediate layer 50 and the cathode 60. FIG. 3A is an enlarged cross-sectional view from the electrolyte layer 40 to the cathode 60. As illustrated in FIG. 3A, the intermediate layer 50 is formed so that a plurality of concave portions 51 and convex portions 52 are alternately arranged on the surface on the cathode 60 side. The convex portion 52 has a shape that protrudes and curves toward the cathode 60 side. As illustrated in FIG. 3B, the concave portions 51 and the convex portions 52 are arranged alternately not only in one direction but also in a two-dimensional direction in the plane of the intermediate layer 50. The two-dimensional directions do not necessarily have to be orthogonal in the plane of the intermediate layer 50, and may intersect. In a plan view with respect to the intermediate layer 50, the convex portions 52 are in the form of particles and are randomly arranged in the plane of the intermediate layer 50. The scales of FIGS. 3 (a) and 3 (b) are different.
 中間層50がカソード60側の面に凹凸を有することから、カソード60も中間層50の凹凸に沿うように凹凸を有する。すなわち、カソード60は、図4で例示するように、図3(a)で中間層50の凹部51が形成された箇所に、中間層50側に突出する凸部61を備え、図3(a)で中間層50の凸部52が形成された箇所に凹部62を備える。したがって、中間層50とカソード60との接触界面の面積が大きくなる。また、中間層50およびカソード60の凹凸が並ぶ方向が面内で2次元方向に並ぶため、中間層50とカソード60との接触界面の面積がより大きくなる。この構成では、単位面積あたりの反応場が多くなり、カソード60の反応抵抗を低下させることができる。 Since the intermediate layer 50 has irregularities on the surface on the cathode 60 side, the cathode 60 also has irregularities along the irregularities of the intermediate layer 50. That is, as illustrated in FIG. 4, the cathode 60 is provided with a convex portion 61 projecting toward the intermediate layer 50 at the position where the concave portion 51 of the intermediate layer 50 is formed in FIG. 3 (a), and is provided with FIG. 3 (a). ), The concave portion 62 is provided at the position where the convex portion 52 of the intermediate layer 50 is formed. Therefore, the area of the contact interface between the intermediate layer 50 and the cathode 60 becomes large. Further, since the directions in which the irregularities of the intermediate layer 50 and the cathode 60 are arranged are arranged in the two-dimensional direction in the plane, the area of the contact interface between the intermediate layer 50 and the cathode 60 becomes larger. In this configuration, the reaction field per unit area increases, and the reaction resistance of the cathode 60 can be reduced.
 カソード60の反応抵抗を低下させるためには、電解質層40とカソード60との距離が短いことが望まれる。そこで、電解質層40のカソード60側の面にも凹凸が形成されている。中間層50の電解質層40側の面も、当該電解質層40の凹凸の形状に沿うように形成されている。例えば、図4で例示するように、電解質層40は、カソード60側の面に複数の凹部41と凸部42とが交互に形成されている。中間層50および電解質層40に対する平面視において、図3(a)の凹部51と凹部41の位置が略一致し、図3(a)の凸部52と凸部42の位置が略一致する。したがって、凹部41および凸部42も、一方向だけに並ぶのではなく、電解質層40の面内で2次元方向に並んでいる。したがって、電解質層40に対する平面視において、凸部52が粒子状となっており、電解質層40の面内にランダムに並んでいる。このように、電解質層40に対する平面視において、凹部51と凹部41の位置が略一致し、凸部52と凸部42の位置が略一致することから、凸部61と凹部41の位置が略一致し、凹部62と凸部42の位置が略一致するため、中間層50が部分的に厚くなることが抑制され、電解質層40とカソード60との距離が短くなる。したがって、カソード60の反応抵抗を低下させることができる。 In order to reduce the reaction resistance of the cathode 60, it is desirable that the distance between the electrolyte layer 40 and the cathode 60 is short. Therefore, unevenness is also formed on the surface of the electrolyte layer 40 on the cathode 60 side. The surface of the intermediate layer 50 on the electrolyte layer 40 side is also formed so as to follow the shape of the unevenness of the electrolyte layer 40. For example, as illustrated in FIG. 4, in the electrolyte layer 40, a plurality of concave portions 41 and convex portions 42 are alternately formed on the surface on the cathode 60 side. In a plan view with respect to the intermediate layer 50 and the electrolyte layer 40, the positions of the concave portion 51 and the concave portion 41 in FIG. 3A are substantially the same, and the positions of the convex portion 52 and the convex portion 42 in FIG. 3A are substantially the same. Therefore, the concave portion 41 and the convex portion 42 are not arranged in only one direction, but are also arranged in the two-dimensional direction in the plane of the electrolyte layer 40. Therefore, in the plan view of the electrolyte layer 40, the convex portions 52 are in the form of particles and are randomly arranged in the plane of the electrolyte layer 40. As described above, in the plan view with respect to the electrolyte layer 40, the positions of the concave portion 51 and the concave portion 41 are substantially the same, and the positions of the convex portion 52 and the convex portion 42 are substantially the same. Therefore, the positions of the convex portion 61 and the concave portion 41 are substantially the same. Since the positions of the concave portion 62 and the convex portion 42 are substantially the same, the intermediate layer 50 is prevented from being partially thickened, and the distance between the electrolyte layer 40 and the cathode 60 is shortened. Therefore, the reaction resistance of the cathode 60 can be reduced.
 図5は、中間層50の凹部51および凸部52の各サイズについて説明するための図である。各サイズを測定するためには、燃料電池100を樹脂に埋め、各層の積層断面を出せる程度まで研磨を行う。その後、研磨面に対してCP(Cross section polisher)加工を行うことで、きれいな断面を出すことができる。その後、断面をSED-EDS観察を行うことで、各サイズを測定することができる。 FIG. 5 is a diagram for explaining each size of the concave portion 51 and the convex portion 52 of the intermediate layer 50. In order to measure each size, the fuel cell 100 is embedded in resin and polished to the extent that the laminated cross section of each layer can be obtained. After that, CP (Cross section polisher) processing is performed on the polished surface to obtain a clean cross section. After that, each size can be measured by observing the cross section with SED-EDS.
 図5で例示するように、寸法aは、中間層50のカソード60側における凹凸構造における山と谷との垂直距離であって、図3(a)の凹部51の底から隣接する凸部52の頂点までの高さ(燃料電池100の各層の積層方向の高さ)である。寸法aは、CP加工した断面に対してSEM(走査型電子顕微鏡)で観察を行い、数か所の写真を撮り、中間層50のカソード60側における凹凸構造における山と谷の垂直距離を20か所で測定した場合の平均値とする。 As illustrated in FIG. 5, the dimension a is the vertical distance between the peak and the valley in the concave-convex structure on the cathode 60 side of the intermediate layer 50, and the convex portion 52 adjacent to the bottom of the concave portion 51 in FIG. 3 (a). The height to the apex of the fuel cell 100 (height in the stacking direction of each layer of the fuel cell 100). For the dimension a, the CP-processed cross section is observed with an SEM (scanning electron microscope), several photographs are taken, and the vertical distance between the peak and the valley in the uneven structure on the cathode 60 side of the intermediate layer 50 is 20. It is the average value when measured at a location.
 寸法aが大きいと、電解質層40が見かけ上において厚くなることになる。そこで、寸法aに上限を設けることが好ましい。例えば、寸法aは、3μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることがさらに好ましい。 If the dimension a is large, the electrolyte layer 40 will be apparently thick. Therefore, it is preferable to set an upper limit on the dimension a. For example, the dimension a is preferably 3 μm or less, more preferably 1 μm or less, and further preferably 0.5 μm or less.
 一方、寸法aが小さいと、カソード60のカソード材料が中間層50の凹凸構造に入りにくくなるおそれがある。そこで、寸法aに下限を設けることが好ましい。例えば、寸法aは、0.05μm以上であることが好ましく0.1μm以上であることがより好ましく、0.15μm以上であることがさらに好ましい。 On the other hand, if the dimension a is small, the cathode material of the cathode 60 may not easily enter the uneven structure of the intermediate layer 50. Therefore, it is preferable to set a lower limit for the dimension a. For example, the dimension a is preferably 0.05 μm or more, more preferably 0.1 μm or more, and further preferably 0.15 μm or more.
 図5で例示するように、寸法a´は、電解質層40におけるカソード60側の凹凸構造における山と谷との垂直距離であって、図4の凹部41の底から隣接する凸部42の頂点までの高さ(燃料電池100の各層の積層方向の高さ)である。寸法a´は、CP加工した断面に対してSEMで観察を行い、数か所の写真を撮り、電解質層40のカソード60側における凹凸構造における山と谷の垂直距離を20か所で測定した場合の平均値とする。中間層50の寸法aが所定範囲となるためには、下地となる電解質層40における寸法a´も略同じ値になっていることが好ましい。したがって、寸法a’は、0.05μm以上、3μm以下の範囲に収まることが好ましい。 As illustrated in FIG. 5, the dimension a'is the vertical distance between the peak and the valley in the concave-convex structure on the cathode 60 side in the electrolyte layer 40, and is the apex of the convex portion 42 adjacent to the bottom of the concave portion 41 in FIG. (Height in the stacking direction of each layer of the fuel cell 100). For the dimension a', the CP-processed cross section was observed by SEM, several photographs were taken, and the vertical distance between the peak and the valley in the uneven structure on the cathode 60 side of the electrolyte layer 40 was measured at 20 locations. The average value of the cases. In order for the dimension a of the intermediate layer 50 to be within a predetermined range, it is preferable that the dimension a'of the underlying electrolyte layer 40 is also substantially the same value. Therefore, it is preferable that the dimension a'is within the range of 0.05 μm or more and 3 μm or less.
 中間層50が厚くなると、中間層50の凹凸が電解質層40の凹凸よりも平坦になる。そこで、中間層50は薄い方が好ましい。また、中間層50を薄くすることによって、中間層50の凹凸形状は、電解質層40の凹凸形状と略一致する。つまり、a/a´=1になる。中間層50が厚くなるほど、a/a´はより小さくなるため、a/a´<0.5になると、凹凸構造による接触面積増加の効果は得られなくなるおそれがある。したがって、a/a´は適切な範囲を設けたほうがよく、a/a´≧0.5であることが好ましく、a/a´≦1であることが好ましい。なお、中間層50の凹凸は、電解質層40の凹凸によって形成されるため、a/a´>1とはなりにくい。 When the intermediate layer 50 becomes thicker, the unevenness of the intermediate layer 50 becomes flatter than the unevenness of the electrolyte layer 40. Therefore, it is preferable that the intermediate layer 50 is thin. Further, by thinning the intermediate layer 50, the uneven shape of the intermediate layer 50 substantially matches the uneven shape of the electrolyte layer 40. That is, a / a'= 1. As the intermediate layer 50 becomes thicker, a / a'becomes smaller. Therefore, when a / a'<0.5, the effect of increasing the contact area due to the uneven structure may not be obtained. Therefore, it is better to provide an appropriate range for a / a', preferably a / a'≧ 0.5, and preferably a / a'≦ 1. Since the unevenness of the intermediate layer 50 is formed by the unevenness of the electrolyte layer 40, a / a'> 1 is unlikely to occur.
 次に、図5で例示するように、寸法bは、中間層50のカソード側における凹凸構造における山と山との水平距離であって、図3(a)の凸部52から隣接する凸部52までの距離である。寸法bは、CP加工した断面に対してSEMで観察を行い、数か所の写真を撮り、中間層50のカソード60側における凹凸構造における山と谷の垂直距離を20か所で測定した場合の平均値とする。 Next, as illustrated in FIG. 5, the dimension b is the horizontal distance between the peaks in the concave-convex structure on the cathode side of the intermediate layer 50, and the convex portion adjacent to the convex portion 52 in FIG. 3 (a). The distance to 52. The dimension b is the case where the CP-processed cross section is observed by SEM, several photographs are taken, and the vertical distance between the peak and the valley in the uneven structure on the cathode 60 side of the intermediate layer 50 is measured at 20 locations. The average value of.
 寸法bが大きいと、中間層50のカソード60側の面における凹凸構造の数が少なくなる。そこで、寸法bに上限を設けることが好ましい。例えば、寸法bは、5μm以下であることが好ましく、3μm以下であることがより好ましく、1μm以下であることがさらに好ましい。 When the dimension b is large, the number of uneven structures on the surface of the intermediate layer 50 on the cathode 60 side is reduced. Therefore, it is preferable to set an upper limit on the dimension b. For example, the dimension b is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 1 μm or less.
 一方、寸法bが小さいと、カソード60のカソード材料が中間層50の凹凸構造に入りにくくなるおそれがある。そこで、寸法bに下限を設けることが好ましい。例えば、寸法bは、0.1μm以上であることが好ましく0.2μm以上であることがより好ましく、0.3μm以上であることがさらに好ましい。 On the other hand, if the dimension b is small, the cathode material of the cathode 60 may not easily enter the uneven structure of the intermediate layer 50. Therefore, it is preferable to set a lower limit for the dimension b. For example, the dimension b is preferably 0.1 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more.
 図5で例示するように、寸法b´は、電解質層40におけるカソード60側の凹凸構造における山と山との水平距離であって、図4の凹部41の底から隣接する凸部42の頂点までの距離である。寸法b´は、CP加工した断面に対してSEMで観察を行い、数か所の写真を撮る。寸法b´は、電解質層40のカソード60側における凹凸構造における山と山の水平距離を20か所で測定した場合の平均値とする。中間層50の寸法bが所定範囲となるためには、下地となる電解質層40における寸法b´も略同じ値になっていることが好ましい。したがって、寸法b’は、0.1μm以上、5μm以下の範囲に収まることが好ましい。また、中間層50の凹凸が電解質層40の凹凸と同様の形状になることが好ましく、同じ形状に近いほど、b/b´=1に近い。また、同じ形状を持つことによって凹凸構造によるカソードとの接触面積が増やす効果が得られると考えられ、b/b´≧0.5であることが好ましく、b/b´≦1であることが好ましい。なお、中間層50の凹凸は、電解質層40の凹凸によって形成されるため、b/b´>1とはなりにくい。 As illustrated in FIG. 5, the dimension b'is the horizontal distance between the peaks in the concave-convex structure on the cathode 60 side in the electrolyte layer 40, and is the apex of the convex portion 42 adjacent to the bottom of the concave portion 41 in FIG. The distance to. The dimension b'is observed by SEM on the CP-processed cross section, and several photographs are taken. The dimension b'is an average value when the horizontal distance between the peaks in the uneven structure on the cathode 60 side of the electrolyte layer 40 is measured at 20 points. In order for the dimension b of the intermediate layer 50 to be within a predetermined range, it is preferable that the dimension b'of the underlying electrolyte layer 40 also has substantially the same value. Therefore, it is preferable that the dimension b'is within the range of 0.1 μm or more and 5 μm or less. Further, it is preferable that the unevenness of the intermediate layer 50 has the same shape as the unevenness of the electrolyte layer 40, and the closer to the same shape, the closer to b / b'= 1. Further, it is considered that the effect of increasing the contact area with the cathode due to the uneven structure can be obtained by having the same shape, and it is preferable that b / b'≧ 0.5, and b / b'≦ 1 preferable. Since the unevenness of the intermediate layer 50 is formed by the unevenness of the electrolyte layer 40, b / b'> 1 is unlikely to occur.
 また、a/bの値が高いほど、谷となる部分にカソード材料がより多く充填される。本実施形態においては、a/bは、1/10以上であることが好ましく、1/1以上であることがより好ましく、5/1以上であることがさらに好ましい。一方、a/bの値が高過ぎると、カソード60を印刷する際に、カソード60の構造が崩れやすくなる。そこで、a/bに上限を設けることが好ましい。本実施形態においては、a/bは、20/1以下であることが好ましく、15/1以下であることがより好ましく、10/1以下であることがさらに好ましい。 Further, the higher the value of a / b, the more the cathode material is filled in the valley portion. In the present embodiment, a / b is preferably 1/10 or more, more preferably 1/1 or more, and further preferably 5/1 or more. On the other hand, if the value of a / b is too high, the structure of the cathode 60 is likely to collapse when printing the cathode 60. Therefore, it is preferable to set an upper limit on a / b. In the present embodiment, a / b is preferably 20/1 or less, more preferably 15/1 or less, and even more preferably 10/1 or less.
 図5で例示するように、寸法cは、中間層50の凹凸構造における山と下地の電解質層40の山との垂直距離である。したがって、寸法cは、図4の凸部42の頂点と図3(a)の凸部52の頂点との積層方向の距離である。寸法cは、CP加工した断面に対してSEMで観察を行い、数か所の写真を撮り、中間層50の凹凸構造における山と下地の電解質層40の山との垂直距離を20か所で測定した場合の平均とする。 As illustrated in FIG. 5, the dimension c is the vertical distance between the peak in the uneven structure of the intermediate layer 50 and the peak of the underlying electrolyte layer 40. Therefore, the dimension c is the distance between the apex of the convex portion 42 in FIG. 4 and the apex of the convex portion 52 in FIG. 3 (a) in the stacking direction. For dimension c, observe the CP-processed cross section with SEM, take pictures at several places, and set the vertical distance between the mountain in the uneven structure of the intermediate layer 50 and the mountain of the underlying electrolyte layer 40 at 20 places. It is the average when measured.
 寸法cが大きいと、イオンが拡散する場合の抵抗値が向上するおそれがある。そこで、寸法cに上限を設けることが好ましい。本実施形態においては、寸法cは、3μm以下であることが好ましく、2μm以下であることがより好ましく1μm以下であることがさらに好ましい。また、寸法cが小さ過ぎると、電解質層40の凹凸表面を全部覆うことが困難になるため、寸法cに下限を設けることが好ましい。本実施形態においては、寸法cは、10nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることがさらに好ましい。 If the dimension c is large, the resistance value when ions are diffused may improve. Therefore, it is preferable to set an upper limit on the dimension c. In the present embodiment, the dimension c is preferably 3 μm or less, more preferably 2 μm or less, and further preferably 1 μm or less. Further, if the dimension c is too small, it becomes difficult to cover the entire uneven surface of the electrolyte layer 40. Therefore, it is preferable to set a lower limit for the dimension c. In the present embodiment, the dimension c is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more.
(第2実施形態)
 ところで、中間層50は、電解質層40とカソード60との反応を防止することを目的として設けられているため、中間層50は電解質層40とは異なる材料で構成されている。したがって、電解質層40の熱膨張率と中間層50の熱膨張率との間に差異が生じる。燃料電池100が発電の開始および停止を繰り返すと、燃料電池100が昇降温を繰り返し、当該熱膨張率差に起因して中間層50が電解質層40から剥がれるおそれがある。
(Second Embodiment)
By the way, since the intermediate layer 50 is provided for the purpose of preventing the reaction between the electrolyte layer 40 and the cathode 60, the intermediate layer 50 is made of a material different from that of the electrolyte layer 40. Therefore, there is a difference between the thermal expansion rate of the electrolyte layer 40 and the thermal expansion rate of the intermediate layer 50. When the fuel cell 100 repeatedly starts and stops power generation, the fuel cell 100 repeatedly raises and lowers the temperature, and the intermediate layer 50 may be peeled off from the electrolyte layer 40 due to the difference in thermal expansion rate.
 そこで、第2実施形態に係る中間層50は、燃料電池100が昇降温を繰り返しても電解質層40からの剥がれを抑制する構造を有している。図6は、中間層50を模式的に拡大した拡大図である。図6で例示するように、中間層50には、複数の空隙53が形成されている。複数の空隙53は、中間層50内において、電解質層40の凸部42からカソード60に向かう所定線に沿って所定間隔で並ぶように形成されている。すなわち、複数の空隙53の並びが柱状をなしている。例えば、中間層50の積層方向の断面において、凸部42の頂上部を中心としてカソード60側に広がる放射線上に、複数の空隙53が所定の間隔を空けて並んでいる。 Therefore, the intermediate layer 50 according to the second embodiment has a structure that suppresses peeling from the electrolyte layer 40 even if the fuel cell 100 repeatedly raises and lowers the temperature. FIG. 6 is an enlarged view schematically an enlarged view of the intermediate layer 50. As illustrated in FIG. 6, a plurality of voids 53 are formed in the intermediate layer 50. The plurality of voids 53 are formed in the intermediate layer 50 so as to be arranged at predetermined intervals along a predetermined line from the convex portion 42 of the electrolyte layer 40 toward the cathode 60. That is, the arrangement of the plurality of voids 53 forms a columnar shape. For example, in the cross section of the intermediate layer 50 in the stacking direction, a plurality of voids 53 are lined up at predetermined intervals on the radiation spreading toward the cathode 60 centering on the top of the convex portion 42.
 中間層50内に形成されている空隙53は、電解質層40と中間層50との熱膨張率差に起因する応力を吸収する。したがって、当該応力が生じても、空隙53によって緩和されることになる。その結果、燃料電池100の昇降温サイクル耐性が向上し、電解質層40からの中間層50の剥がれが抑制される。 The void 53 formed in the intermediate layer 50 absorbs stress caused by the difference in thermal expansion rate between the electrolyte layer 40 and the intermediate layer 50. Therefore, even if the stress is generated, it is relaxed by the void 53. As a result, the resistance to the temperature cycle of the fuel cell 100 is improved, and the peeling of the intermediate layer 50 from the electrolyte layer 40 is suppressed.
 なお、中間層50において空隙53以外の領域は緻密であるため、当該緻密領域を酸化物イオンが移動できる。したがって、中間層50における酸化物イオンの伝導率は高い水準を保つ。また、空隙53は、電解質層40からカソード60まで貫通せずに、所定間隔で設けられていることから、電解質層40とカソード60との間の相互拡散が抑制される。したがって、中間層50は、反応防止層としても機能を維持することができる。 Since the region other than the void 53 in the intermediate layer 50 is dense, oxide ions can move in the dense region. Therefore, the conductivity of oxide ions in the intermediate layer 50 is maintained at a high level. Further, since the voids 53 are provided at predetermined intervals without penetrating from the electrolyte layer 40 to the cathode 60, mutual diffusion between the electrolyte layer 40 and the cathode 60 is suppressed. Therefore, the intermediate layer 50 can maintain its function as a reaction prevention layer.
 中間層50において、空隙53は、主として凸部42に形成されている。すなわち、凹部41における空隙53の数密度よりも、凸部42における空隙53の数密度の方が大きくなっている。 In the intermediate layer 50, the void 53 is mainly formed in the convex portion 42. That is, the number density of the voids 53 in the convex portion 42 is higher than the number density of the voids 53 in the concave portion 41.
 ここで、凹部41と凸部42との境界について、図7を参照しながら説明する。凸部42の表面に沿って、表面の接線b1と垂直になる直線a1と、凸部42の山を越えて表面の接線b2と垂直になる直線a2との角度αによって、凹部41と凸部42との境界を定義する。直線a1と直線a2との間の角度αは120°以下の領域は凸部42と定義し、それ以外の部分は凹部41と定義する。 Here, the boundary between the concave portion 41 and the convex portion 42 will be described with reference to FIG. 7. The concave portion 41 and the convex portion are formed by the angle α between the straight line a1 perpendicular to the tangent line b1 on the surface along the surface of the convex portion 42 and the straight line a2 perpendicular to the tangent line b2 on the surface beyond the mountain of the convex portion 42. Define the boundary with 42. The region where the angle α between the straight line a1 and the straight line a2 is 120 ° or less is defined as the convex portion 42, and the other portion is defined as the concave portion 41.
 各空隙53は、略球状を有している。各空隙53が大きいと、電解質層40からカソード60に至るまでの空隙53の数が少なくなって応力緩和効果が小さくなるおそれがある。そこで、各空隙53の平均径に上限を設けることが好ましい。例えば、空隙53の平均径は、50nm以下であることが好ましく、30nm以下であることがより好ましく、10nm以下であることがさらに好ましい。空隙53の径は、断面写真において各空隙53を球状に近似する場合の直径とする。例えば、TEM(透過型電子顕微鏡)像の視野の中で20個以上の空隙53の直径を計測し、平均化した値を平均径とする。 Each void 53 has a substantially spherical shape. If each void 53 is large, the number of voids 53 from the electrolyte layer 40 to the cathode 60 may be reduced, and the stress relaxation effect may be reduced. Therefore, it is preferable to set an upper limit on the average diameter of each void 53. For example, the average diameter of the void 53 is preferably 50 nm or less, more preferably 30 nm or less, and further preferably 10 nm or less. The diameter of the void 53 is the diameter when each void 53 is approximated to be spherical in the cross-sectional photograph. For example, the diameters of 20 or more voids 53 are measured in the field of view of a TEM (transmission electron microscope) image, and the averaged value is taken as the average diameter.
 各空隙53が小さすぎると、空隙53で十分に応力を吸収できないおそれがある。そこで、各空隙53の平均径に下限を設けることが好ましい。例えば、空隙53の平均径は、1nm以上であることが好ましく、3nm以上であることがより好ましく、5nm以上であることがさらに好ましい。 If each void 53 is too small, the void 53 may not be able to sufficiently absorb stress. Therefore, it is preferable to set a lower limit for the average diameter of each void 53. For example, the average diameter of the void 53 is preferably 1 nm or more, more preferably 3 nm or more, and further preferably 5 nm or more.
 1つの凸部52当たりに電解質層40からカソード60に至るまでの空隙53の数が少ないと応力緩和効果が小さくなるおそれがある。そこで、電解質層40からカソード60に至るまでの空隙53の数の平均値(1つの凸部52当たり)に下限を設けることが好ましい。例えば、当該平均値は、100個以上であることが好ましく、200個以上であることがより好ましく、300個以上であることがさらに好ましい。 If the number of voids 53 from the electrolyte layer 40 to the cathode 60 is small per one convex portion 52, the stress relaxation effect may be small. Therefore, it is preferable to set a lower limit on the average value (per one convex portion 52) of the number of voids 53 from the electrolyte layer 40 to the cathode 60. For example, the average value is preferably 100 or more, more preferably 200 or more, and further preferably 300 or more.
 電解質層40からカソード60に至るまでの空隙53の数が多いと、酸化物イオンが通りにくくおそれがある。そこで、電解質層40からカソード60に至るまでの空隙53の数の平均値に上限を設けることが好ましい。例えば、当該平均値は、5000個以下であることが好ましく、4000個以下であることがより好ましく、3000個以下であることがさらに好ましい。 If the number of voids 53 from the electrolyte layer 40 to the cathode 60 is large, it may be difficult for oxide ions to pass through. Therefore, it is preferable to set an upper limit on the average value of the number of voids 53 from the electrolyte layer 40 to the cathode 60. For example, the average value is preferably 5000 or less, more preferably 4000 or less, and further preferably 3000 or less.
 空隙53が並ぶ方向における各空隙53の平均間隔が短すぎると、酸化物イオンが通りにくくなるおそれがある。そこで、空隙53が並ぶ方向における各空隙53の平均間隔に、下限を設けることが好ましい。例えば、各空隙53の平均間隔は5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることがさらに好ましい。 If the average spacing of the voids 53 in the direction in which the voids 53 are lined up is too short, it may be difficult for oxide ions to pass through. Therefore, it is preferable to set a lower limit for the average spacing of the voids 53 in the direction in which the voids 53 are lined up. For example, the average spacing of the voids 53 is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 15 nm or more.
 一方、空隙53が並ぶ方向における各空隙53の平均間隔が長すぎると、空隙53の数が低下し、応力を緩和する効果が得られなくなるおそれがある。そこで、空隙53が並ぶ方向における各空隙53の平均間隔に、上限を設けることが好ましい。例えば、各空隙53の平均間隔は、300nm以下であることが好ましく、200nm以下であることがより好ましく、100nm以下であることがさらに好ましい。 On the other hand, if the average spacing of the voids 53 in the direction in which the voids 53 are lined up is too long, the number of voids 53 may decrease and the effect of relieving stress may not be obtained. Therefore, it is preferable to set an upper limit on the average spacing of the voids 53 in the direction in which the voids 53 are lined up. For example, the average spacing of the voids 53 is preferably 300 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less.
 以下、第1実施形態および第2実施形態に係る燃料電池100の製造方法について説明する。図8は、燃料電池100の製造方法のフローを例示する図である。 Hereinafter, a method for manufacturing the fuel cell 100 according to the first embodiment and the second embodiment will be described. FIG. 8 is a diagram illustrating a flow of a manufacturing method of the fuel cell 100.
(支持体用材料の作製工程)(S1)
 支持体用材料として、金属粉末(例えば、粒径が10μm~100μm)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、消失材(有機物)、バインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。支持体用材料は、支持体10を形成するための材料として用いる。有機成分(消失材、バインダ固形分、可塑剤)と金属粉末との体積比は、例えば1:1~20:1の範囲とし、空隙率に応じて有機成分量を調整する。
(Process for manufacturing support material) (S1)
As materials for the support, metal powder (for example, particle size of 10 μm to 100 μm), plasticizer (for example, adjusted from 1 wt% to 6 wt% to adjust the adhesion of the sheet), solvent (toluene, 2-propanol (toluene, 2-propanol). IPA), 1-butanol, turpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on the viscosity), vanishing material (organic substance), binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to make a slurry. .. The support material is used as a material for forming the support 10. The volume ratio of the organic component (disappearing material, binder solid content, plasticizer) to the metal powder is, for example, in the range of 1: 1 to 20: 1, and the amount of the organic component is adjusted according to the porosity.
(混合層用材料の作製工程)(S1)
 混合層用材料として、セラミックス材料22の原料であるセラミックス材料粉末(例えば、粒径が100nm~10μm)、金属材料21の原料である小粒径の金属材料粉末(例えば、粒径が1μm~10μm)、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、消失材(有機物)、およびバインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。有機成分(消失材、バインダ固形分、可塑剤)と、セラミックス材料粉末および金属材料粉末と、の体積比は、例えば1:1~5:1の範囲とし、空隙率に応じて有機成分量を調整する。また、空隙の孔径は、消失材の粒径を調整することによって制御される。セラミックス材料粉末は、電子伝導性材料粉末と酸化物イオン伝導性材料粉末とを含んでいてもよい。この場合、電子伝導性材料粉末と酸化物イオン伝導性材料粉末との体積比率は、例えば、1:9~9:1の範囲とすることが好ましい。また、電子伝導性材料粉末の代わりに電解質材料ScYSZ、GDCなどを用いても界面のはがれが無く、セルの作製が可能である。ただし、オーム抵抗を小さくする観点から、電子伝導性材料粉末と金属粉末とを混合することが好ましい。
(Making step of material for mixed layer) (S1)
As the material for the mixed layer, the ceramic material powder (for example, the particle size is 100 nm to 10 μm) which is the raw material of the ceramic material 22 and the small particle size metal material powder (for example, the particle size is 1 μm to 10 μm) which is the raw material of the metal material 21. ), Solvent (toluene, 2-propanol (IPA), 1-butanol, turpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on the viscosity), plasticizer (for example, to adjust the adhesion of the sheet). (Adjusted from 1 wt% to 6 wt%), vanishing material (organic substance), and binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to make a slurry. The volume ratio of the organic component (disappearing material, binder solid content, plasticizer) to the ceramic material powder and the metal material powder is, for example, in the range of 1: 1 to 5: 1, and the amount of the organic component is adjusted according to the porosity. adjust. Further, the pore diameter of the void is controlled by adjusting the particle size of the vanishing material. The ceramic material powder may contain an electron conductive material powder and an oxide ion conductive material powder. In this case, the volume ratio of the electron conductive material powder and the oxide ion conductive material powder is preferably in the range of, for example, 1: 9 to 9: 1. Further, even if an electrolyte material ScYSZ, GDC or the like is used instead of the electron conductive material powder, the interface is not peeled off and the cell can be manufactured. However, from the viewpoint of reducing the ohmic resistance, it is preferable to mix the electron conductive material powder and the metal powder.
(アノード用材料の作製工程)(S1)
 アノード用材料として、電極骨格を構成するセラミックス材料粉末、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、消失材(有機物)、およびバインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。電極骨格を構成するセラミックス材料粉末として、電子伝導性セラミックス31の原料である電子伝導性材料粉末(例えば、粒径が100nm~10μm)、酸化物イオン伝導性セラミックス32の原料である酸化物イオン伝導性材料粉末(例えば、粒径が100nm~10μm)などを用いてもよい。有機成分(消失材、バインダ固形分、可塑剤)と電子伝導性材料粉末との体積比は、例えば1:1~5:1の範囲とし、空隙率に応じて有機成分量を調整する。また、空隙の孔径は、消失材の粒径を調整することによって制御される。電子伝導性材料粉末と酸化物イオン伝導性材料粉末との体積比率は、例えば、3:7~7:3の範囲とする。
(Process for manufacturing anode material) (S1)
As the material for the anode, the ceramic material powder constituting the electrode skeleton, the solvent (toluene, 2-propanol (IPA), 1-butanol, turpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on the viscosity), plasticizer. An agent (for example, adjusted from 1 wt% to 6 wt% to adjust the adhesion of the sheet), a vanishing material (organic substance), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry. As the ceramic material powder constituting the electrode skeleton, the electron conductive material powder (for example, the particle size is 100 nm to 10 μm) which is the raw material of the electron conductive ceramics 31 and the oxide ion conduction which is the raw material of the oxide ion conductive ceramics 32. A ceramic material powder (for example, a particle size of 100 nm to 10 μm) may be used. The volume ratio of the organic component (disappearing material, binder solid content, plasticizer) to the electron conductive material powder is, for example, in the range of 1: 1 to 5: 1, and the amount of the organic component is adjusted according to the porosity. Further, the pore diameter of the void is controlled by adjusting the particle size of the vanishing material. The volume ratio of the electron conductive material powder and the oxide ion conductive material powder is, for example, in the range of 3: 7 to 7: 3.
(電解質層用材料の作製工程)(S1)
 電解質層用材料として、酸化物イオン伝導性材料粉末(例えば、ScYSZ、YSZ、GDCなどであって、粒径がD50%=10nm~1000nm)、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、およびバインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。有機成分(バインダ固形分、可塑剤)と酸化物イオン伝導性材料粉末との体積比は、例えば6:4~3:4の範囲とする。
(Process for Fabricating Material for Electrolyte Layer) (S1)
As the material for the electrolyte layer, an oxide ion conductive material powder (for example, ScYSZ, YSZ, GDC, etc., having a particle size of D50% = 10 nm to 1000 nm), a solvent (toluene, 2-propanol (IPA), 1- Butanol, turpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity), plasticizer (eg, adjusted to 1 wt% to 6 wt% to adjust sheet adhesion), and binder (PVB, Acrylic resin, ethyl cellulose, etc.) are mixed to make a slurry. The volume ratio of the organic component (binder solid content, plasticizer) to the oxide ion conductive material powder is, for example, in the range of 6: 4 to 3: 4.
(凹凸層用材料の作製工程)(S1)
 上記の電解質層用材料と同じ材料を用い、スラリを作製する際に材料の分散性が悪くなるように粘度、添加剤、固形分濃度などを適切に調整する。さらに、ScYSZ、YSZ、GDCなどの材料の凝集を作るため、樹脂粒子を添加する。樹脂粒子は、例えば、アクリル樹脂、ポリスチレン粒子、ナイロン微粒子、フェノール樹脂などが挙げられる。樹脂粒子の大きさは、酸化物イオン伝導性材料粉末の粒径より大きいことが好ましい。例えば、樹脂粒子の粒径は、酸化物イオン伝導性材料粉末の1.5倍以上である。また、凝集効果を上げるために、樹脂粒子の粒径は、酸化物イオン伝導性材料粉末の3倍以上であることがより好ましい。樹脂粒子の粒径は、酸化物イオン伝導性材料粉末の5倍以上であることがさらに好ましい。なお、凹凸層用材料における酸化物イオン伝導性材料粉末の粒径は、電解質層用材料における酸化物イオン伝導性材料粉末の粒径よりも小さいことが好ましい。電解質層40の表面に凹凸を形成しやすくなるからである。例えば、凹凸層用材料における酸化物イオン伝導性材料粉末におけるD50%粒径は、電解質層用材料における酸化物イオン伝導性材料粉末のD50%粒径に対して、1/3以下であることが好ましく、1/5以下であることがより好ましく、1/10以下であることがさらに好ましい。
(Process for Fabricating Material for Concavo-convex Layer) (S1)
Using the same material as the above-mentioned material for the electrolyte layer, the viscosity, additives, solid content concentration, etc. are appropriately adjusted so that the dispersibility of the material deteriorates when the slurry is produced. Further, resin particles are added in order to form agglomeration of materials such as ScYSZ, YSZ, and GDC. Examples of the resin particles include acrylic resin, polystyrene particles, nylon fine particles, and phenol resin. The size of the resin particles is preferably larger than the particle size of the oxide ion conductive material powder. For example, the particle size of the resin particles is 1.5 times or more that of the oxide ion conductive material powder. Further, in order to increase the aggregation effect, the particle size of the resin particles is more preferably three times or more that of the oxide ion conductive material powder. It is more preferable that the particle size of the resin particles is 5 times or more that of the oxide ion conductive material powder. The particle size of the oxide ion conductive material powder in the material for the uneven layer is preferably smaller than the particle size of the oxide ion conductive material powder in the material for the electrolyte layer. This is because it becomes easy to form irregularities on the surface of the electrolyte layer 40. For example, the D50% particle size of the oxide ion conductive material powder in the material for the uneven layer may be 1/3 or less with respect to the D50% particle size of the oxide ion conductive material powder in the material for the electrolyte layer. It is more preferably 1/5 or less, and even more preferably 1/10 or less.
(焼成工程)(S2)
 まず、PET(ポリエチレンテレフタレート)フィルム上に、支持体用材料を塗工することで、支持体グリーンシートを作製する。別のPETフィルム上に、混合層用材料を塗工することで、混合層グリーンシートを作製する。別のPETフィルム上に、アノード用材料を塗工することで、アノードグリーンシートを作製する。別のPETフィルム上に、電解質層用材料を塗工することで、電解質層グリーンシートを作製する。別のPETフィルム上に、凹凸層用材料を塗工することで、凹凸層グリーンシートを作製する。凹凸層グリーンシートは、電解質層グリーンシートの表層に付けるグリーンシートとして用いるため、例えば1μm以下の薄いシートとする。例えば、支持体グリーンシートを複数枚、混合層グリーンシートを1枚、アノードグリーンシートを1枚、電解質層グリーンシートを1枚、凹凸層グリーンシートを1枚の順に積層し、所定の大きさにカットし、酸素分圧が10-20atm以下の還元雰囲気において1100℃~1300℃程度の温度範囲で焼成する。それにより、支持体10、混合層20、アノード30の電極骨格、電解質層40および凹凸層を備えるハーフセルを得ることができる。
(Baking step) (S2)
First, a support green sheet is produced by applying a support material on a PET (polyethylene terephthalate) film. A mixed layer green sheet is produced by applying a material for a mixed layer on another PET film. An anode green sheet is produced by applying an anode material on another PET film. An electrolyte layer green sheet is produced by applying a material for an electrolyte layer on another PET film. By applying the material for the uneven layer on another PET film, the uneven layer green sheet is produced. Since the uneven layer green sheet is used as a green sheet to be attached to the surface layer of the electrolyte layer green sheet, it is, for example, a thin sheet of 1 μm or less. For example, a plurality of support green sheets, one mixed layer green sheet, one anode green sheet, one electrolyte layer green sheet, and one uneven layer green sheet are laminated in this order to obtain a predetermined size. It is cut and calcined in a reducing atmosphere having an oxygen partial pressure of 10 to 20 atm or less in a temperature range of about 1100 ° C to 1300 ° C. Thereby, a half cell including the support 10, the mixed layer 20, the electrode skeleton of the anode 30, the electrolyte layer 40, and the uneven layer can be obtained.
(アノード含浸工程)(S3)
 次に、酸化物イオン伝導性セラミックス33および触媒金属34の原料を、アノード30の電極骨格内に含浸させる。例えば、還元雰囲気で所定の温度で焼成するとGdドープセリアあるいはSc,YドープジルコニアとNiが生成するように、Zr、Y、Sc、Ce、Gd、Niの各硝酸塩または塩化物を水またはアルコール類(エタノール、2-プロパノール、メタノールなど)に溶かし、ハーフセルを含浸、乾燥させ、熱処理を必要回数繰り返す。
(Anode impregnation step) (S3)
Next, the raw materials of the oxide ion conductive ceramics 33 and the catalyst metal 34 are impregnated into the electrode skeleton of the anode 30. For example, water or alcohols (Zr, Y, Sc, Ce, Gd, Ni nitrates or chlorides so that Gd-doped ceria or Sc, Y-doped zirconia and Ni are produced when calcined at a predetermined temperature in a reducing atmosphere. Dissolve in ethanol, 2-propanol, methanol, etc.), impregnate the half cell, dry, and repeat the heat treatment as many times as necessary.
(中間層形成工程)(S4)
 中間層50に含まれる酸化物イオン伝導性セラミックスを、例えばPVDにより電解質層40上に成膜することで、中間層50を形成する。例えば、PVDにより、Ce0.8Gd0.22-xを厚みが1μmとなるように成膜することで、中間層50を形成する。例えば、成膜の際に、中間層50内に電解質層40からカソード60までに所定線に沿って空隙が所定間隔で並ぶように、成膜速度および基盤加熱温度を制御する。この場合において、成膜速度は10nm/hourから50nm/hourであることが好ましく、基盤加熱温度は200℃から600℃であることが好ましい。
(Intermediate layer forming step) (S4)
The intermediate layer 50 is formed by forming the oxide ion conductive ceramics contained in the intermediate layer 50 on the electrolyte layer 40 by, for example, PVD. For example, the intermediate layer 50 is formed by forming a film of Ce 0.8 Gd 0.2 O 2-x so as to have a thickness of 1 μm by PVD. For example, at the time of film formation, the film formation rate and the substrate heating temperature are controlled so that voids are lined up at predetermined intervals from the electrolyte layer 40 to the cathode 60 in the intermediate layer 50 at predetermined intervals. In this case, the film forming speed is preferably 10 nm / hour to 50 nm / hour, and the substrate heating temperature is preferably 200 ° C. to 600 ° C.
(カソード形成工程)(S5)
 次に、中間層50上に、スクリーン印刷等により、カソード用材料を塗布し、乾燥させる。その後、1000℃以下の温度で空気雰囲気での熱処理によってカソード用材料を焼結し、カソード60を形成する。金属の酸化を抑えるため、熱処理時の温度を900℃以下とすることが好ましく、800℃以下とすることがより好ましい。
(Cathode forming step) (S5)
Next, the cathode material is applied onto the intermediate layer 50 by screen printing or the like and dried. Then, the cathode material is sintered by heat treatment in an air atmosphere at a temperature of 1000 ° C. or lower to form the cathode 60. In order to suppress the oxidation of the metal, the temperature during the heat treatment is preferably 900 ° C. or lower, more preferably 800 ° C. or lower.
 上記製造方法によれば、凹凸層用材料の作製工程において、材料の分散性が悪くなるように調整されているため、焼成後の電解質層40のカソード60側の面に複数の凹部41と凸部42とが交互に形成される。それにより、中間層50も電解質層40のカソード60側の面の形状に沿うようになる。したがって、中間層50のカソード60側の面において、凹部41の位置に略一致するように凹部51が形成され、凸部42の位置に略一致するように凸部52が形成される。印刷法では、凹凸を面内の一次元方向にしか形成しにくいが、本実施形態に係る製造方法では、凹凸を面内の2次元方向に形成することができる。なお、中間層50の電解質層40側の面にも、電解質層40のカソード60側の面に沿って凹凸が形成される。さらに、カソード60の中間層50側の面において、凹部51が形成された箇所に凸部61が形成され、凸部52が形成された箇所に凹部62が形成される。 According to the above manufacturing method, in the process of producing the material for the uneven layer, the dispersibility of the material is adjusted so as to be poor, so that the surface of the electrolyte layer 40 after firing is convex with a plurality of recesses 41 on the cathode 60 side. The portions 42 are alternately formed. As a result, the intermediate layer 50 also follows the shape of the surface of the electrolyte layer 40 on the cathode 60 side. Therefore, on the surface of the intermediate layer 50 on the cathode 60 side, the concave portion 51 is formed so as to substantially coincide with the position of the concave portion 41, and the convex portion 52 is formed so as to substantially coincide with the position of the convex portion 42. In the printing method, it is difficult to form the unevenness only in the in-plane one-dimensional direction, but in the manufacturing method according to the present embodiment, the unevenness can be formed in the in-plane two-dimensional direction. Concavities and convexities are also formed on the surface of the intermediate layer 50 on the side of the electrolyte layer 40 along the surface of the electrolyte layer 40 on the side of the cathode 60. Further, on the surface of the cathode 60 on the intermediate layer 50 side, the convex portion 61 is formed at the portion where the concave portion 51 is formed, and the concave portion 62 is formed at the portion where the convex portion 52 is formed.
 また、上記製造方法によれば、図9で例示するように、電解質層グリーンシート70上に、凹凸層用グリーンシート80が積層される。電解質層グリーンシート70に含まれる酸化物イオン伝導性材料粉末71の粒径よりも、凹凸層用グリーンシート80に含まれる酸化物イオン伝導性材料粉末81の粒径の方が小さくなっている。また、凹凸層用グリーンシート80には、樹脂粒子82が含まれている。この樹脂粒子82がスペーサとして機能し、酸化物イオン伝導性材料粉末81が凝集するようになる。樹脂粒子82は、焼成工程において除去される。凝集した複数の酸化物イオン伝導性材料粉末81が、焼成後に凸部42となる。それにより、焼成後の電解質層40の中間層50側の面内に2次元方向に並ぶ凹凸が形成される。それにより、中間層50も電解質層40の中間層50側の面の形状に沿うようになる。したがって、中間層50のカソード60側の面において、凸部42の位置に略一致するように凸部52が形成される。印刷法では、凹凸を面内の一次元方向にしか形成しにくいが、上記製造方法では、凹凸を面内の2次元方向に形成することができる。なお、中間層50の電解質層40側の面にも、電解質層40のカソード60側の面に沿って凹凸が形成される。さらに、カソード60の中間層50側の面においても、中間層50のカソード60側の面の形状に沿うように凹凸が形成される。 Further, according to the above manufacturing method, as illustrated in FIG. 9, the green sheet 80 for the uneven layer is laminated on the electrolyte layer green sheet 70. The particle size of the oxide ion conductive material powder 81 contained in the uneven layer green sheet 80 is smaller than the particle size of the oxide ion conductive material powder 71 contained in the electrolyte layer green sheet 70. Further, the green sheet 80 for the uneven layer contains resin particles 82. The resin particles 82 function as spacers, and the oxide ion conductive material powder 81 becomes aggregated. The resin particles 82 are removed in the firing step. The agglomerated plurality of oxide ion conductive material powders 81 become convex portions 42 after firing. As a result, unevenness arranged in the two-dimensional direction is formed in the surface of the electrolyte layer 40 on the intermediate layer 50 side after firing. As a result, the intermediate layer 50 also follows the shape of the surface of the electrolyte layer 40 on the intermediate layer 50 side. Therefore, on the surface of the intermediate layer 50 on the cathode 60 side, the convex portion 52 is formed so as to substantially coincide with the position of the convex portion 42. In the printing method, it is difficult to form the unevenness only in the in-plane one-dimensional direction, but in the above manufacturing method, the unevenness can be formed in the in-plane two-dimensional direction. Concavities and convexities are also formed on the surface of the intermediate layer 50 on the side of the electrolyte layer 40 along the surface of the electrolyte layer 40 on the side of the cathode 60. Further, on the surface of the cathode 60 on the intermediate layer 50 side, irregularities are formed so as to follow the shape of the surface of the intermediate layer 50 on the cathode 60 side.
 さらに、成膜の際に、中間層50内に電解質層40からカソード60までに所定線に沿って空隙が所定間隔で並ぶように、成膜速度および基盤加熱温度が制御される。それにより、複数の空隙53が、中間層50内において、電解質層40の凸部42からカソード60に向かう所定線に沿って所定間隔で並ぶように形成される。 Further, at the time of film formation, the film formation rate and the substrate heating temperature are controlled so that voids are lined up at predetermined intervals from the electrolyte layer 40 to the cathode 60 in the intermediate layer 50 along a predetermined line. As a result, the plurality of voids 53 are formed in the intermediate layer 50 so as to be arranged at predetermined intervals along a predetermined line from the convex portion 42 of the electrolyte layer 40 toward the cathode 60.
 上記製造方法に従って、燃料電池100を作製した。 The fuel cell 100 was manufactured according to the above manufacturing method.
(実施例1)
 支持体用材料として、SUS(ステンレス)の粉末を用いた。電解質層用材料のセラミックス材料として、ScYSZを用いた。アノード用材料の電子伝導性セラミックスにLaCrO系材料を用いて、酸化物イオン伝導性セラミックスにはScYSZを用いた。中間層用材料のセラミックス材料としてGDCを用いた。カソード用材料のセラミックス材料にはLSCを用いた。混合層用材料のセラミックス材料には、LaCrO系材料を用いた。混合層用材料の金属材料には、SUSを用いた。支持体グリーンシート上に、混合層グリーンシート、アノードグリーンシート、電解質層グリーンシート、および凹凸層用グリーンシートを積層し、所定の大きさにカットし、酸素分圧が10-16atm以下の還元雰囲気下で焼成した。GDCおよびNiをアノードの電極骨格に含浸させた後に大気雰囲気下で850℃以下の温度にて焼成した。その後、PVDにより、Ce0.8Gd0.22-xの中間層を形成し、中間層上に、スクリーン印刷等により、カソード用材料を塗布し、乾燥させる。その後、1000℃以下の温度で空気雰囲気での熱処理によってカソード用材料を焼結し、カソードを形成した。実施例1では、寸法aは120nmであり、寸法a´は150nmであり、寸法bは1μmであり、寸法b´は1μmであり、寸法cは500nmであった。
(Example 1)
As the material for the support, SUS (stainless steel) powder was used. ScYSZ was used as the ceramic material for the electrolyte layer. A LaCrO3 system material was used for the electron conductive ceramics as the anode material, and ScYSZ was used for the oxide ion conductive ceramics. GDC was used as the ceramic material for the intermediate layer. LSC was used as the ceramic material for the cathode material. A LaCrO3 system material was used as the ceramic material for the mixed layer. SUS was used as the metal material for the mixed layer material. A mixed layer green sheet, an anode green sheet, an electrolyte layer green sheet, and a green sheet for an uneven layer are laminated on the support green sheet, cut to a predetermined size, and the oxygen partial pressure is reduced to 10-16 atm or less. It was fired in an atmosphere. After impregnating the electrode skeleton of the anode with GDC and Ni, it was calcined at a temperature of 850 ° C. or lower in an atmospheric atmosphere. Then, an intermediate layer of Ce 0.8 Gd 0.2 O 2-x is formed by PVD, and a cathode material is applied onto the intermediate layer by screen printing or the like and dried. Then, the cathode material was sintered by heat treatment in an air atmosphere at a temperature of 1000 ° C. or lower to form a cathode. In Example 1, the dimension a was 120 nm, the dimension a'was 150 nm, the dimension b was 1 μm, the dimension b'was 1 μm, and the dimension c was 500 nm.
(実施例2)
 実施例2では、支持体用材料としてNiO/YSZを用いた。その他の作製条件は実施例1と同様とした。実施例2では、寸法aは120mであり、寸法a´は150nmであり、寸法bは1μmであり、寸法b´は1μmであり、寸法cは500nmであった。
(Example 2)
In Example 2, NiO / YSZ was used as the material for the support. Other production conditions were the same as in Example 1. In Example 2, the dimension a was 120 m, the dimension a'was 150 nm, the dimension b was 1 μm, the dimension b'was 1 μm, and the dimension c was 500 nm.
(実施例3)
 実施例3では、凹凸シートの作製条件を変更し、凹凸の寸法を小さくした。その他の作製条件は実施例1と同様とした。実施例3では、寸法aは50nmであり、寸法a´は80nmであり、寸法bは1μmであり、寸法b´は1μmであり、寸法cは500nmであった。
(Example 3)
In Example 3, the conditions for producing the concavo-convex sheet were changed to reduce the size of the concavo-convex. Other production conditions were the same as in Example 1. In Example 3, the dimension a was 50 nm, the dimension a'was 80 nm, the dimension b was 1 μm, the dimension b'was 1 μm, and the dimension c was 500 nm.
(比較例1)
 比較例1では、凹凸層用グリーンシートを設けなかった。その他の条件は実施例1と同様とした。比較例1では、凹凸層用グリーンシートを設けなかったため、電解質層層のカソード側の面に凹凸が表れず、中間層およびカソードにも凹凸が表れなかった。寸法cは、500nmであった。
(Comparative Example 1)
In Comparative Example 1, the green sheet for the uneven layer was not provided. Other conditions were the same as in Example 1. In Comparative Example 1, since the green sheet for the uneven layer was not provided, the unevenness did not appear on the surface of the electrolyte layer layer on the cathode side, and the unevenness did not appear on the intermediate layer and the cathode. The dimension c was 500 nm.
(比較例2)
 比較例2では、PVDの処理時間を実施例1の3倍にし、中間層の厚みを3倍にした(約1.5μm)。その他の条件は実施例1と同様とした。寸法cは、1.5μmであった。
(Comparative Example 2)
In Comparative Example 2, the treatment time of PVD was tripled as that of Example 1, and the thickness of the intermediate layer was tripled (about 1.5 μm). Other conditions were the same as in Example 1. The dimension c was 1.5 μm.
(発電評価)
 実施例1~3および比較例1,2の燃料電池に対してインピーダンス測定を行うことで、各抵抗値を分離し、燃料電池全体のオーム抵抗およびカソードの反応抵抗を測定した。結果を表1に示す。表1に示すように、実施例1では、オーム抵抗は、0.25Ω・cmであった。実施例2では、オーム抵抗は0.30Ω・cmであった。実施例3では、オーム抵抗は0.25Ω・cmであった。このように、実施例1~3では、オーム抵抗が低くなった。これは、中間層の両面に凹凸を設けたことで、イオン伝導の際の抵抗が凹凸構造なし(比較例1)とほぼ同程度になったからであると考えられる。なお、実施例1,3のオーム抵抗が実施例2のオーム抵抗よりも低くなったのは、電子伝導性の高い金属支持体を用いたからであると考えられる。比較例1では、オーム抵抗は、0.25Ω・cmであった。比較例1でオーム抵抗が実施例1と同程度であることは、オーム抵抗が中間層の厚み(寸法c)のみに依存しているからであると考えられる。一方、比較例2では、オーム抵抗は実施例1および比較例1より大きく、0.34Ω・cmであった。これは、中間層が厚くなることによってオーム抵抗が増大したからであると考えられる。
Figure JPOXMLDOC01-appb-T000001
(Power generation evaluation)
By measuring the impedance of the fuel cells of Examples 1 to 3 and Comparative Examples 1 and 2, each resistance value was separated, and the ohm resistance of the entire fuel cell and the reaction resistance of the cathode were measured. The results are shown in Table 1. As shown in Table 1, in Example 1, the ohmic resistance was 0.25 Ω · cm 2 . In Example 2, the ohmic resistance was 0.30 Ω · cm 2 . In Example 3, the ohmic resistance was 0.25 Ω · cm 2 . As described above, in Examples 1 to 3, the ohmic resistance was low. It is considered that this is because the unevenness on both sides of the intermediate layer makes the resistance during ion conduction almost the same as that without the uneven structure (Comparative Example 1). The reason why the ohmic resistance of Examples 1 and 3 was lower than that of Example 2 is considered to be that a metal support having high electron conductivity was used. In Comparative Example 1, the ohmic resistance was 0.25 Ω · cm 2 . It is considered that the ohm resistance in Comparative Example 1 is about the same as that in Example 1 because the ohm resistance depends only on the thickness (dimension c) of the intermediate layer. On the other hand, in Comparative Example 2, the ohmic resistance was larger than that in Example 1 and Comparative Example 1, and was 0.34 Ω · cm 2 . It is considered that this is because the ohmic resistance increased due to the thickening of the intermediate layer.
Figure JPOXMLDOC01-appb-T000001
 実施例1では、カソードにおける反応抵抗は0.27Ω・cmであった。実施例2では、カソードにおける反応抵抗は0.27Ω・cmであった。実施例3では、カソードにおける反応抵抗は0.31Ω・cmであった。このように、実施例1~3では、カソードにおける反応抵抗が低くなった。これは、中間層のカソード側の面に凹凸を平面視で2次元的に凹凸が形成されたことで、中間層とカソードとの接触面積が大きくなったからであると考えられる。実施例3よりも実施例1,2の反応抵抗が低下したのは、寸法aおよび寸法a´が大きくなって凹凸が大きくなったからであると考えられる。これに対して、比較例1ではカソードにおける反応抵抗は0.56Ω・cmであり、比較例2ではカソードにおける反応抵抗は0.52Ω・cmであり、大幅に高くなった。これは、中間層に凹凸が形成されなかったことで、中間層とカソードとの接触面積が十分に大きくなかったからであると考えられる。 In Example 1, the reaction resistance at the cathode was 0.27 Ω · cm 2 . In Example 2, the reaction resistance at the cathode was 0.27 Ω · cm 2 . In Example 3, the reaction resistance at the cathode was 0.31 Ω · cm 2 . As described above, in Examples 1 to 3, the reaction resistance at the cathode was low. It is considered that this is because the unevenness is formed two-dimensionally on the surface of the intermediate layer on the cathode side in a plan view, so that the contact area between the intermediate layer and the cathode is increased. It is considered that the reaction resistance of Examples 1 and 2 was lower than that of Example 3 because the dimension a and the dimension a'were large and the unevenness became large. On the other hand, in Comparative Example 1, the reaction resistance at the cathode was 0.56 Ω · cm 2 , and in Comparative Example 2, the reaction resistance at the cathode was 0.52 Ω · cm 2 , which were significantly higher. It is considered that this is because the contact area between the intermediate layer and the cathode was not sufficiently large because the unevenness was not formed in the intermediate layer.
(実施例4)
 支持体用材料として、SUS(ステンレス)の粉末を用いた。電解質層用材料のセラミックス材料として、ScYSZを用いた。凹凸層用材料には、アクリル樹脂、ポリスチレン粒子、ナイロン微粒子、フェノール樹脂などを樹脂粒子として添加した。アノード用材料の電子伝導性セラミックスにLaCrO系材料を用いて、酸化物イオン伝導性セラミックスにはScYSZを用いた。中間層用材料のセラミックス材料としてGDCを用いた。カソード用材料のセラミックス材料にはLSCを用いた。混合層用材料のセラミックス材料には、LaCrO系材料を用いた。混合層用材料の金属材料には、SUSを用いた。支持体グリーンシート上に、混合層グリーンシート、アノードグリーンシート、電解質層グリーンシート、および凹凸層用グリーンシートを積層し、所定の大きさにカットし、酸素分圧が10-16atm以下の還元雰囲気下で焼成した。GDCおよびNiをアノードの電極骨格に含浸させた後に大気雰囲気下で850℃以下の温度にて焼成した。その後、PVDにより、Ce0.8Gd0.22-xの中間層を形成し、中間層上に、スクリーン印刷等により、カソード用材料を塗布し、乾燥させた。その後、1000℃以下の温度で空気雰囲気での熱処理によってカソード用材料を焼結し、カソードを形成した。なお、中間層を形成する際の成膜速度は10nm/hourとし、基盤加熱温度は300℃とした。中間層のSTEM(走査型透過電子顕微鏡)写真を確認したところ、中間層において電解質層からカソードにかけて複数の空隙が所定線に沿って間隔を空けて形成されていることを確認した。空隙の平均径は、10nmであった。電解質層からカソードまで1つの凸部52当たりの空隙53の個数の平均値は、500個であった。
(Example 4)
As the material for the support, SUS (stainless steel) powder was used. ScYSZ was used as the ceramic material for the electrolyte layer. Acrylic resin, polystyrene particles, nylon fine particles, phenol resin and the like were added as resin particles to the material for the uneven layer. A LaCrO3 system material was used for the electron conductive ceramics as the anode material, and ScYSZ was used for the oxide ion conductive ceramics. GDC was used as the ceramic material for the intermediate layer. LSC was used as the ceramic material for the cathode material. A LaCrO3 system material was used as the ceramic material for the mixed layer. SUS was used as the metal material for the mixed layer material. A mixed layer green sheet, an anode green sheet, an electrolyte layer green sheet, and a green sheet for an uneven layer are laminated on the support green sheet, cut to a predetermined size, and the oxygen partial pressure is reduced to 10-16 atm or less. It was fired in an atmosphere. After impregnating the electrode skeleton of the anode with GDC and Ni, it was calcined at a temperature of 850 ° C. or lower in an atmospheric atmosphere. Then, an intermediate layer of Ce 0.8 Gd 0.2 O 2-x was formed by PVD, and a cathode material was applied onto the intermediate layer by screen printing or the like and dried. Then, the cathode material was sintered by heat treatment in an air atmosphere at a temperature of 1000 ° C. or lower to form a cathode. The film forming rate when forming the intermediate layer was 10 nm / hour, and the substrate heating temperature was 300 ° C. When the STEM (scanning transmission electron microscope) photograph of the intermediate layer was confirmed, it was confirmed that a plurality of voids were formed in the intermediate layer from the electrolyte layer to the cathode at intervals along a predetermined line. The average diameter of the voids was 10 nm. The average number of voids 53 per convex portion 52 from the electrolyte layer to the cathode was 500.
(実施例5)
 実施例5では、支持体用材料としてNiO/YSZを用いた。その他の作製条件は実施例4と同様とした。実施例5では、中間層を形成する際の成膜速度は10nm/hourとし、基盤加熱温度は300℃とした。中間層のSTEM写真を確認したところ、中間層において電解質層からカソードにかけて複数の空隙が所定線に沿って間隔を空けて形成されていることを確認した。空隙の平均径は、10nmであった。電解質層からカソードまで1つの凸部52当たりの空隙の個数の平均値は、500個であった。
(Example 5)
In Example 5, NiO / YSZ was used as the support material. Other production conditions were the same as in Example 4. In Example 5, the film forming rate when forming the intermediate layer was 10 nm / hour, and the substrate heating temperature was 300 ° C. When the STEM photograph of the intermediate layer was confirmed, it was confirmed that a plurality of voids were formed in the intermediate layer from the electrolyte layer to the cathode at intervals along a predetermined line. The average diameter of the voids was 10 nm. The average number of voids per convex portion 52 from the electrolyte layer to the cathode was 500.
(比較例3)
 比較例3では、凹凸層用グリーンシートを設けなかった。その他の条件は実施例4と同様とした。比較例3では、凹凸層用グリーンシートを設けなかったため、電解質層層のカソード側の面に凹凸が表れず、中間層およびカソードにも凹凸が表れなかった。
(Comparative Example 3)
In Comparative Example 3, the green sheet for the uneven layer was not provided. Other conditions were the same as in Example 4. In Comparative Example 3, since the green sheet for the uneven layer was not provided, the unevenness did not appear on the surface of the electrolyte layer layer on the cathode side, and the unevenness did not appear on the intermediate layer and the cathode.
(比較例4)
 比較例4では、凹凸層用グリーンシートを設けており、中間層のPVD処理において、成膜速度は10nm/hourとし、基盤加熱温度は600℃とした。その他の条件は、実施例4と同様とした。基盤加熱温度は高いため、断面を観察する際に、空隙53は観察されなかった。凹凸すべての部分が緻密であることが確認された。
(Comparative Example 4)
In Comparative Example 4, a green sheet for the uneven layer was provided, and in the PVD treatment of the intermediate layer, the film formation rate was 10 nm / hour, and the substrate heating temperature was 600 ° C. Other conditions were the same as in Example 4. Since the substrate heating temperature was high, no void 53 was observed when observing the cross section. It was confirmed that all the uneven parts were dense.
(発電評価)
 実施例4,5および比較例3,4の燃料電池に対してインピーダンス測定を行うことで、各抵抗値を分離し、燃料電池全体のオーム抵抗およびカソードの反応抵抗を測定した。結果を表2に示す。表2に示すように、実施例4では、オーム抵抗は、0.25Ω・cmであった。また、実施例5では、オーム抵抗は0.30Ω・cmであった。このように、実施例4および実施例5では、オーム抵抗が低くなった。これは、中間層の両面に凹凸を設けたことで、イオン伝導の際の抵抗が凹凸構造なし(比較例)とほぼ同程度になったからであるものと考えられる。なお、実施例4のオーム抵抗が実施例5のオーム抵抗よりも低くなったのは、電子伝導性の高い金属支持体を用いたからであると考えられる。
Figure JPOXMLDOC01-appb-T000002
(Power generation evaluation)
By measuring the impedance of the fuel cells of Examples 4 and 5 and Comparative Examples 3 and 4, each resistance value was separated, and the ohm resistance of the entire fuel cell and the reaction resistance of the cathode were measured. The results are shown in Table 2. As shown in Table 2, in Example 4, the ohmic resistance was 0.25 Ω · cm 2 . Further, in Example 5, the ohmic resistance was 0.30 Ω · cm 2 . Thus, in Examples 4 and 5, the ohmic resistance was low. It is considered that this is because the unevenness on both sides of the intermediate layer makes the resistance at the time of ion conduction almost the same as that without the uneven structure (comparative example). It is considered that the reason why the ohmic resistance of Example 4 was lower than that of Example 5 was that a metal support having high electron conductivity was used.
Figure JPOXMLDOC01-appb-T000002
 実施例4では、カソードにおける反応抵抗は0.27Ω・cmであった。実施例5では、カソードにおける反応抵抗は0.27Ω・cmであった。比較例4では、カソードにおける反応抵抗は0.27Ω・cmであった。このように、実施例4、実施例5および比較例4では、カソードにおける反応抵抗が低くなった。これは、中間層のカソード側の面に凹凸が形成されたことで、中間層とカソードとの接触面積が大きくなったからであると考えられる。これに対して、比較例3では、カソードにおける反応は0.56Ω・cmであり、大幅に高くなった。これは、中間層に凹凸が形成されなかったことで、中間層とカソードとの接触面積が十分に大きくなかったからであると考えられる。 In Example 4, the reaction resistance at the cathode was 0.27 Ω · cm 2 . In Example 5, the reaction resistance at the cathode was 0.27 Ω · cm 2 . In Comparative Example 4, the reaction resistance at the cathode was 0.27 Ω · cm 2 . As described above, in Example 4, Example 5, and Comparative Example 4, the reaction resistance at the cathode was low. It is considered that this is because the contact area between the intermediate layer and the cathode has increased due to the formation of irregularities on the surface of the intermediate layer on the cathode side. On the other hand, in Comparative Example 3, the reaction at the cathode was 0.56 Ω · cm 2 , which was significantly higher. It is considered that this is because the contact area between the intermediate layer and the cathode was not sufficiently large because the unevenness was not formed in the intermediate layer.
 次に、実施例4,5および比較例3,4の燃料電池に対して、5000サイクルの昇降温の後に、再度インピーダンス測定を行ない、各抵抗値を分離し、燃料電池全体のオーム抵抗およびカソードの反応抵抗を測定した。なお、1サイクルでは、750℃まで昇温と室温までの降温とを行なった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
Next, for the fuel cells of Examples 4 and 5 and Comparative Examples 3 and 4, after 5000 cycles of temperature rise and fall, impedance measurement was performed again, each resistance value was separated, and the ohm resistance and cathode of the entire fuel cell were obtained. Reaction resistance was measured. In one cycle, the temperature was raised to 750 ° C. and lowered to room temperature. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例4では、オーム抵抗は0.25Ω・cmであり、カソードの反応抵抗は0.30Ω・cmであった。実施例5では、オーム抵抗は0.30Ω・cmであり、カソードの反応抵抗は0.31Ω・cmであった。このように、オーム抵抗およびカソードの反応抵抗は、昇降温の前後でほとんど変化しなかった。これは、電解質層と中間層との間で剥がれが生じなかったからであると考えられる。その後、目視でセル表面を確認したが、中間層の剥がれは見られなかった。比較例3では、オーム抵抗は0.40Ω・cmであり、カソードの反応抵抗は0.71Ω・cmであった。このように、オーム抵抗が大幅に大きくなった。これは、電解質層と中間層との熱膨張率差に起因して電解質層と中間層との間で剥がれが生じたからであると考えられる。その後、目視でセル表面を確認したところ、中間層に剥がれが確認された。比較例4では、5000サイクル昇降温後に起電力OCVが確認されず、セルを取り出して確認したところ、中間層が剥がれており、電池として動作できなくなったことが確認された。空隙が存在しないため、中間層が熱膨張で剥がれたと考えられる。 As shown in Table 3, in Example 4, the ohmic resistance was 0.25 Ω · cm 2 , and the reaction resistance of the cathode was 0.30 Ω · cm 2 . In Example 5, the ohmic resistance was 0.30 Ω · cm 2 and the reaction resistance of the cathode was 0.31 Ω · cm 2 . Thus, the ohmic resistance and the reaction resistance of the cathode did not change much before and after the temperature rise and fall. It is considered that this is because the peeling did not occur between the electrolyte layer and the intermediate layer. After that, the cell surface was visually confirmed, but no peeling of the intermediate layer was observed. In Comparative Example 3, the ohmic resistance was 0.40 Ω · cm 2 and the reaction resistance of the cathode was 0.71 Ω · cm 2 . In this way, the ohmic resistance has increased significantly. It is considered that this is because the peeling occurred between the electrolyte layer and the intermediate layer due to the difference in the thermal expansion rate between the electrolyte layer and the intermediate layer. After that, when the cell surface was visually inspected, peeling was confirmed in the intermediate layer. In Comparative Example 4, the electromotive force OCV was not confirmed after the temperature was raised and lowered by 5000 cycles, and when the cell was taken out and confirmed, it was confirmed that the intermediate layer was peeled off and the battery could not be operated. Since there are no voids, it is considered that the intermediate layer was peeled off due to thermal expansion.
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 
Although the examples of the present invention have been described in detail above, the present invention is not limited to the specific examples thereof, and various modifications and variations are made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (18)

  1.  酸化物イオン伝導性を有する固体酸化物を含む電解質層と、
     前記電解質層上に設けられ、酸化物イオン伝導性を有する中間層と、
     前記中間層上に設けられたカソードと、を備え、
     前記中間層は、前記カソード側の面において、平面視で2次元方向に並ぶように複数の凹凸が設けられ、
     前記中間層は、前記電解質層側の面において、前記カソード側の面の複数の凹凸に沿うように複数の凹凸が設けられていることを特徴とする固体酸化物型燃料電池。
    An electrolyte layer containing a solid oxide having oxide ion conductivity and
    An intermediate layer provided on the electrolyte layer and having oxide ion conductivity,
    With a cathode provided on the intermediate layer,
    The intermediate layer is provided with a plurality of irregularities on the surface on the cathode side so as to be arranged in a two-dimensional direction in a plan view.
    The solid oxide fuel cell is characterized in that the intermediate layer is provided with a plurality of irregularities on the surface on the electrolyte layer side along the plurality of irregularities on the surface on the cathode side.
  2.  前記中間層の前記カソード側の面における前記凹凸は、粒子状に形成されていることを特徴とする請求項1に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 1, wherein the unevenness on the surface of the intermediate layer on the cathode side is formed in the form of particles.
  3.  前記中間層の前記カソード側の面の凹凸において、山と谷との垂直距離aは、0.05μm以上、3μm以下であることを特徴とする請求項1または請求項2に記載の固体酸化物型燃料電池。 The solid oxide according to claim 1 or 2, wherein the vertical distance a between the peak and the valley is 0.05 μm or more and 3 μm or less in the unevenness of the surface of the intermediate layer on the cathode side. Type fuel cell.
  4.  前記中間層の前記カソード側の面の凹凸において、山と山との水平距離bは、0.1μm以上、5μm以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の固体酸化物型燃料電池。 The aspect according to any one of claims 1 to 3, wherein the horizontal distance b between the peaks is 0.1 μm or more and 5 μm or less in the unevenness of the surface of the intermediate layer on the cathode side. The solid oxide fuel cell described.
  5.  前記中間層の前記カソード側の面の凹凸において、山と谷との垂直距離aと山と山との水平距離bとの比であるa/bは、1/10以上、20/1以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の固体酸化物型燃料電池。 In the unevenness of the surface of the intermediate layer on the cathode side, a / b, which is the ratio of the vertical distance a between the peaks and valleys and the horizontal distance b between the peaks and peaks, is 1/10 or more and 20/1 or less. The solid oxide fuel cell according to any one of claims 1 to 4, wherein the fuel cell is characterized by being present.
  6.  前記電解質層の前記中間層側の面には、前記中間層の前記電解質層側の面における前記凹凸に沿うように複数の凹凸が設けられていることを特徴とする請求項1から請求項5のいずれか一項に記載の固体酸化物型燃料電池。 Claims 1 to 5 are characterized in that a plurality of irregularities are provided on the surface of the electrolyte layer on the side of the intermediate layer so as to follow the irregularities on the surface of the intermediate layer on the side of the electrolyte layer. The solid oxide fuel cell according to any one of the above.
  7.  前記電解質層の前記中間層側の面の凹凸において、山と谷との垂直距離a´は、0.05μm以上、3μm以下であることを特徴とする請求項6に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 6, wherein the vertical distance a'between the peaks and valleys is 0.05 μm or more and 3 μm or less in the unevenness of the surface of the electrolyte layer on the intermediate layer side. battery.
  8.  前記電解質層の前記中間層側の面の凹凸において、山と山との水平距離b´は、0.1μm以上、5μm以下であることを特徴とする請求項6または請求項7に記載の固体酸化物型燃料電池。 The solid according to claim 6 or 7, wherein the horizontal distance b'between the peaks is 0.1 μm or more and 5 μm or less in the unevenness of the surface of the electrolyte layer on the intermediate layer side. Oxide fuel cell.
  9.  前記電解質層の前記中間層側の面の凹凸において、山と谷との垂直距離a´と山と山との水平距離b´との比であるa´/b´は、1/10以上、20/1以下であることを特徴とする請求項6から請求項8のいずれか一項に記載の固体酸化物型燃料電池。 In the unevenness of the surface of the electrolyte layer on the intermediate layer side, a'/ b', which is the ratio of the vertical distance a'between the peaks and the valley and the horizontal distance b'between the peaks and the peaks, is 1/10 or more. The solid oxide fuel cell according to any one of claims 6 to 8, wherein the fuel cell is 20/1 or less.
  10.  前記中間層の前記カソード側の面の凹凸における山と谷との垂直距離aと、前記電解質層の前記中間層側の面において前記中間層の前記電解質層側の面における前記凹凸に沿うように設けられた複数の凹凸における山と谷との垂直距離a´とは、0.5≦a/a´≦1の関係を有することを特徴とする請求項1から請求項9のいずれか一項に記載の固体酸化物型燃料電池。 Along the vertical distance a between the peaks and valleys on the unevenness of the surface on the cathode side of the intermediate layer and the unevenness on the surface of the intermediate layer on the side of the intermediate layer of the intermediate layer. One of claims 1 to 9, wherein the vertical distance a'between the peaks and valleys in the plurality of provided irregularities has a relationship of 0.5≤a / a'≤1. The solid oxide fuel cell described in.
  11.  前記中間層の前記カソード側の面の凹凸における山と山との水平距離bと、前記電解質層の前記中間層側の面において前記中間層の前記電解質層側の面における前記凹凸に沿うように設けられた複数の凹凸における山と山との水平距離b´とは、0.5≦b/b´≦1の関係を有することを特徴とする請求項1から請求項10のいずれか一項に記載の固体酸化物型燃料電池。 Along the horizontal distance b between the peaks on the unevenness of the surface on the cathode side of the intermediate layer and the unevenness on the surface of the intermediate layer on the side of the intermediate layer. One of claims 1 to 10, wherein the horizontal distance b'between the peaks in the plurality of provided irregularities has a relationship of 0.5≤b / b'≤1. The solid oxide fuel cell described in.
  12.  前記中間層の前記カソード側の面の凹凸における山と、前記電解質層の前記中間層側の面において前記中間層の前記電解質層側の面における前記凹凸に沿うように設けられた凹凸において当該山に対応する山との垂直距離は、10nm以上、3μm以下であることを特徴とする請求項1から請求項10のいずれか一項に記載の固体酸化物型燃料電池。 The mountain in the unevenness of the surface on the cathode side of the intermediate layer and the mountain in the unevenness provided along the unevenness on the surface of the intermediate layer on the side of the electrolyte layer in the surface of the electrolyte layer on the intermediate layer side. The solid oxide fuel cell according to any one of claims 1 to 10, wherein the vertical distance from the mountain corresponding to the above is 10 nm or more and 3 μm or less.
  13.  酸化物イオン伝導性を有する固体酸化物を含む電解質層と、
     前記電解質層上に設けられ、酸化物イオン伝導性を有する中間層と、
     前記中間層上に設けられたカソードと、を備え、
     前記中間層は、前記電解質層の前記中間層側の面に設けられた凹凸に沿うように形成されており、
     前記中間層において、前記電解質層側から前記カソード側にかけて、複数の空隙が、所定線に沿って間隔を空けて並ぶように形成されていることを特徴とする固体酸化物型燃料電池。
    An electrolyte layer containing a solid oxide having oxide ion conductivity and
    An intermediate layer provided on the electrolyte layer and having oxide ion conductivity,
    With a cathode provided on the intermediate layer,
    The intermediate layer is formed along the unevenness provided on the surface of the electrolyte layer on the intermediate layer side.
    A solid oxide fuel cell characterized in that, in the intermediate layer, a plurality of voids are formed so as to be arranged at intervals along a predetermined line from the electrolyte layer side to the cathode side.
  14.  前記中間層において、前記カソード側に対する凸部における前記空隙の数密度は、前記カソード側に対する凹部における前記空隙の数密度よりも大きいことを特徴とする請求項13に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 13, wherein in the intermediate layer, the number density of the voids in the convex portion with respect to the cathode side is larger than the number density of the voids in the concave portion with respect to the cathode side. ..
  15.  前記空隙の平均径は、50nm以下であることを特徴とする請求項13または請求項14に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 13 or 14, wherein the average diameter of the voids is 50 nm or less.
  16.  前記電解質層の前記凹凸は、前記中間層側の面において、平面視で2次元方向に並ぶように設けられていることを特徴とする請求項13から請求項15のいずれか一項に記載の固体酸化物型燃料電池。 The aspect according to any one of claims 13 to 15, wherein the unevenness of the electrolyte layer is provided so as to be arranged in a two-dimensional direction in a plan view on the surface on the intermediate layer side. Solid oxide fuel cell.
  17.  前記中間層は、セリアに添加物が添加された材料であることを特徴とする請求項13ら請求項16のいずれか一項に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to any one of claims 13 to 16, wherein the intermediate layer is a material to which an additive is added to ceria.
  18.  酸化物イオン伝導性材料粉末を含むスラリを塗工することで電解質層グリーンシートを作製し、
     前記電解質層グリーンシート上に、前記電解質層グリーンシートの前記酸化物イオン伝導性材料粉末のD50%粒径よりも小さいD50%粒径を有する酸化物イオン伝導性材料粉末と、樹脂粒子とを含むスラリを塗工し、焼成することで、表面に凹凸を有する電解質層を形成する工程と、
     前記電解質層上に、酸化物イオン伝導性を有しかつカソード活性を有していない中間層をPVD法で成膜し、
     前記中間層上にカソードを成膜し、
     前記中間層をPVD法で成膜する際に、前記電解質層側から前記カソード側にかけて複数の空隙が所定の線に沿って間隔を空けて並ぶように形成されるように、成膜速度および基盤加熱温度の少なくともいずれか一方を制御することを特徴とする固体酸化物型燃料電池の製造方法。
     
    An electrolyte layer green sheet is prepared by applying a slurry containing oxide ion conductive material powder.
    The electrolyte layer green sheet contains an oxide ion conductive material powder having a D50% particle size smaller than the D50% particle size of the oxide ion conductive material powder of the electrolyte layer green sheet, and resin particles. The process of forming an electrolyte layer with irregularities on the surface by applying a slurry and firing it,
    An intermediate layer having oxide ion conductivity and not cathode activity was formed on the electrolyte layer by the PVD method.
    A cathode is formed on the intermediate layer to form a cathode.
    When the intermediate layer is formed by the PVD method, the film forming speed and the substrate are formed so that a plurality of voids are arranged at intervals along a predetermined line from the electrolyte layer side to the cathode side. A method for manufacturing a solid oxide fuel cell, which comprises controlling at least one of the heating temperatures.
PCT/JP2021/024909 2020-08-31 2021-07-01 Solid oxide fuel cell and method for manufacturing the same WO2022044540A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-145383 2020-08-31
JP2020145383A JP2022040594A (en) 2020-08-31 2020-08-31 Solid oxide fuel cell
JP2020-161058 2020-09-25
JP2020161058A JP7504375B2 (en) 2020-09-25 2020-09-25 Solid oxide fuel cell and method for producing same

Publications (1)

Publication Number Publication Date
WO2022044540A1 true WO2022044540A1 (en) 2022-03-03

Family

ID=80353151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024909 WO2022044540A1 (en) 2020-08-31 2021-07-01 Solid oxide fuel cell and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO2022044540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228612A1 (en) * 2022-05-25 2023-11-30 太陽誘電株式会社 Solid oxide fuel cell and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174516A (en) * 2016-03-18 2017-09-28 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element
JP2018174117A (en) * 2017-03-31 2018-11-08 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of electrochemical element
JP2020155338A (en) * 2019-03-20 2020-09-24 日本碍子株式会社 Electrochemical cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174516A (en) * 2016-03-18 2017-09-28 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element
JP2018174117A (en) * 2017-03-31 2018-11-08 大阪瓦斯株式会社 Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of electrochemical element
JP2020155338A (en) * 2019-03-20 2020-09-24 日本碍子株式会社 Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228612A1 (en) * 2022-05-25 2023-11-30 太陽誘電株式会社 Solid oxide fuel cell and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP7360276B2 (en) Solid oxide fuel cell and its manufacturing method
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
JP7484048B2 (en) Solid oxide fuel cell and method for producing same
WO2022044540A1 (en) Solid oxide fuel cell and method for manufacturing the same
JP2011142042A (en) Power generation cell for solid oxide fuel battery and its manufacturing method
CN112701298B (en) Solid oxide fuel cell and method for manufacturing same
WO2022074881A1 (en) Solid oxide fuel cell and method for manufacturing same
JP7170559B2 (en) Fuel cell and manufacturing method thereof
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
CN113394434B (en) Solid oxide fuel cell and method for manufacturing same
WO2021192412A1 (en) Solid oxide fuel cell, solid oxide fuel cell stack, and solid oxide fuel cell production method
JP7504375B2 (en) Solid oxide fuel cell and method for producing same
JP6088949B2 (en) Fuel cell single cell and manufacturing method thereof
JP2022040594A (en) Solid oxide fuel cell
WO2023089978A1 (en) Solid oxide fuel cell and method for manufacturing same
WO2023228612A1 (en) Solid oxide fuel cell and method for manufacturing same
WO2023084955A1 (en) Solid oxide fuel cell and method for producing same
WO2024135170A1 (en) Solid oxide fuel cell and method for manufacturing same
WO2024135343A1 (en) Solid oxide fuel cell and production method for same
WO2022196055A1 (en) Solid oxide fuel cell and method for manufacturing same
KR102463568B1 (en) Air electrode active material and electrochemical device including the same
JP2024083913A (en) Solid oxide fuel cell and method for producing same
JP2024087405A (en) Solid oxide fuel cell and method for producing same
JP2024087417A (en) Solid oxide fuel cell and method for producing same
JP2024077292A (en) Solid oxide fuel cell and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860970

Country of ref document: EP

Kind code of ref document: A1