WO2022042964A1 - Verfahren zur funktionsüberwachung einer kapazitiven druckmesszelle - Google Patents

Verfahren zur funktionsüberwachung einer kapazitiven druckmesszelle Download PDF

Info

Publication number
WO2022042964A1
WO2022042964A1 PCT/EP2021/070678 EP2021070678W WO2022042964A1 WO 2022042964 A1 WO2022042964 A1 WO 2022042964A1 EP 2021070678 W EP2021070678 W EP 2021070678W WO 2022042964 A1 WO2022042964 A1 WO 2022042964A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
capacitor
value
pressure
measuring
Prior art date
Application number
PCT/EP2021/070678
Other languages
English (en)
French (fr)
Inventor
Peter Kimbel
Manfred Maurus
Fabian Kuhnhäuser
Oliver Blankenhorn
Original Assignee
Ifm Electronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifm Electronic Gmbh filed Critical Ifm Electronic Gmbh
Priority to CN202180049768.6A priority Critical patent/CN115943296A/zh
Priority to US18/022,857 priority patent/US20230314260A1/en
Publication of WO2022042964A1 publication Critical patent/WO2022042964A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/12Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by changing capacitance or inductance
    • G01L23/125Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by changing capacitance or inductance by changing capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0005Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance

Definitions

  • the invention relates to a method for monitoring the function of a pressure measuring cell of a capacitive pressure sensor.
  • Capacitive pressure sensors or pressure gauges are used in many industrial sectors to measure pressure. They often have a ceramic pressure measuring cell as a measuring transducer for the process pressure and evaluation electronics for signal processing.
  • Capacitive pressure measuring cells consist of a ceramic base body and a membrane, with a glass solder ring being arranged between the base body and the membrane.
  • the resulting cavity between the base body and the membrane enables the membrane to move in a longitudinal direction as a result of the influence of pressure.
  • This cavity is therefore also referred to as a measuring chamber.
  • Electrodes are provided on the underside of the membrane and on the opposite upper side of the base body, which together form a measuring capacitor. The effect of pressure causes the membrane to deform, resulting in a change in capacitance of the measuring capacitor.
  • a capacitive pressure sensor is known from DE 198 51 506 C1, in which the measured pressure value is determined from the quotient of two capacitance values, a measuring capacitor and a reference capacitor.
  • a pressure measuring cell is not specifically described in this patent specification, the circuit shown and the method described are suitable for capacitive pressure measuring cells.
  • the special feature of this pressure gauge is that only the amplitude of the square-wave signal is relevant for the evaluation of the measurement signal at the output, as a measure of the recorded pressure measurement value, regardless of its frequency.
  • a circuit arrangement for a capacitive pressure sensor is known from EP 0 569 573 B1, in which a quotient method is also used for evaluating the pressure.
  • CM the capacitance of the measurement capacitor
  • CR the capacitance of the reference capacitor
  • p the process pressure to be determined. It is also conceivable to swap CM and CR in the quotient. However, the given example with CM in the denominator represents the most common form in favor of self-linearization. In the following, this embodiment is therefore assumed unless otherwise stated.
  • the reliability of capacitive pressure sensors is becoming more and more important.
  • the publications EP 2 606 330 B1 and DE 10 2018 118645 B3 address how the ingress of a medium - caused by mechanical damage to the pressure measuring cell, in particular the membrane, or made possible by a possible venting channel - can be reliably detected and stopped DE 10 2018 118 646 B3 is known, such as the measuring principle for pressure sensors with regard to possible leakage currents on the back of the measuring cell - facing away from the medium to be measured - or in parts of the evaluation electronics for the purpose of eliminating any possibly introduced by the environment and for condensation tending humidity levels can be optimized.
  • a challenge is a rapid temperature change, ie a so-called thermal shock, which leads to tension in the membrane of the pressure measuring cell can come.
  • the tension in the membrane results from a temperature difference between a medium acting on the membrane of the pressure measuring cell and the base body of the pressure measuring cell, which is averted from the medium and is thermally connected to the environment.
  • EP 2 189 774 A1 is based on the finding that a pressure-related deformation of the membrane differs from a membrane deformation caused by thermal shock in terms of measurement technology.
  • the method disclosed there for detecting rapid temperature changes is based on comparing the measured values of the reference capacitance Cr with expected values of the reference capacitance Cr, which follow from the measured values of the measurement capacitance Cm, for measured values of the measurement capacitance Cm, and a temperature jump is determined if the measured value of the reference capacitance is outside a tolerance range around an expected value.
  • this method assumes that a rapid change in temperature is the sole cause of the discrepancy found between the measured values and the expected values. However, this is not always the case in practice.
  • the object of the invention is to eliminate this disadvantage.
  • the characteristic curve of the quotient Q and the capacitance values of the measuring capacitor CM over the pressure and for various temperature scenarios were stored in a lookup table as expected values.
  • the Lookup table continuously assigned to the determined measured pressure value p at the temperature recorded by the temperature element at that moment, the associated amount of the quotient Q and the capacitance value of the measuring capacitor CM and the behavior of the course of the two amounts of the quotient Q and the capacitance value of the measuring capacitor CM with each other compared. This comparison could be carried out at an interval of 200 milliseconds, for example.
  • the evaluation unit is temporarily switched to safety mode and the gradient of the temperature element is recorded and evaluated during this time. If a significant increase in the gradient of the temperature element is detected, an appropriate temperature compensation can be initiated. In this case, the cause of the discrepancy between the measured values and the expected values can be clearly assigned to a temperature jump and this error influence on the output measurement result can be corrected by appropriate compensation. Otherwise, if the temperature element does not show a significant change in its measurement results despite a discrepancy between the measured values and the expected values, a temperature jump can be ruled out as the cause and instead damage to the pressure measuring cell, especially its membrane, can be assumed. In this case, an error signal is generated, which can be of different nature. For example, simple optical or acoustic warning signals are conceivable, but also corresponding signals that are received by a higher-level control unit (PLC).
  • PLC higher-level control unit
  • the advantage of the invention is that, based on the knowledge that the capacitance values react very quickly to error influences, it is possible to switch to a kind of "alarm state" at an early stage and the corresponding environmental conditions can be examined with regard to a possible cause.
  • the method according to the invention thus represents a kind of trigger that draws attention to an error—of initially unknown cause—so that only then do more precise observations of the possible causes of the error have to be started and correspondingly targeted countermeasures can be initiated very early on.
  • An advantageous development of the invention provides that during safety operation, the measured pressure value p is only obtained from the capacitance value of the measuring capacitor.
  • the primary aim of forming the quotient from the capacitance values of the measuring and reference capacitors is to compensate for a change in capacitance due to a change in the dielectric constant s r of the dielectric in the measuring chamber. This circumstance would be negligible for the period of safety operation, which should only be of a short duration anyway, while the advantage that a comparatively plausible measured pressure value p can still be output with the capacitance value of the measuring capacitor prevails.
  • the measured pressure values p obtained by the measuring capacitor alone and by the quotient Q are then compared with one another.
  • a plausibility check can be carried out, possibly also in parallel, which draws attention to sudden or gradual changes in or on the pressure measuring cell.
  • a further advantageous development provides that during the calibration procedure the charging and discharging time of the measuring and reference capacitor are also stored in the look-up table over the pressure and for various temperature scenarios, continuously corresponding to the determined measured pressure value p at the Temperature element detected temperature is assigned the associated amount of charging and discharging time from the lookup table and the behavior of the course of the amounts of the quotient Q, the capacitance value of the measuring capacitor and the charging and discharging time is compared with each other. This means that the entire procedure is extended by the charging and discharging time of the measuring and reference capacitor, ie the time that is used for charging the capacitances up to a certain level and for discharging.
  • Figure 1 is a block diagram of a capacitive pressure gauge
  • FIG. 2 shows a schematic sectional view of a capacitive pressure measuring cell
  • FIG. 3 shows a known evaluation circuit for a capacitive pressure measuring cell according to FIG.
  • FIG. 4 shows a diagram for showing an exemplary course of quotient Q, the capacitance values of the reference capacitor (CR) and the measuring capacitor (CM) and a differentiated temperature signal over time in the case of a temperature shock without external pressure influence.
  • FIG. 1 shows a block diagram of a typical capacitive pressure measuring device that is used to measure a process pressure p (eg of oil, milk, water, etc.).
  • the pressure measuring device 1 is designed as a two-wire device and essentially consists of a pressure measuring cell 10 and evaluation electronics 20.
  • the evaluation electronics 20 have an analog evaluation circuit 30 and a microcontroller pC, in which the analog output signal of the evaluation circuit 20 is digitized and further processed .
  • the microcontroller pC presents the evaluation result as a digital or analog output signal, e.g. B. a PLC available.
  • the pressure gauge 1 is connected to a voltage supply line (12-36 V) for the energy supply.
  • FIG. 2 shows a schematic representation of a typical capacitive pressure measuring cell 10, as is used in many ways in capacitive pressure measuring devices.
  • the pressure measuring cell 10 essentially consists of a base body 12 and a membrane 14 which are connected to one another via a glass solder ring 16 .
  • the base body 12 and the membrane 14 define a cavity 19, the - preferably only in the case of low pressure ranges of up to 50 bar - is connected to the back of the pressure measuring cell 10 via a ventilation channel 18 .
  • a plurality of electrodes are provided both on the base body 12 and on the membrane 14, which form a reference capacitor CR and a measuring capacitor CM.
  • the measuring capacitor CM is formed by the membrane electrode ME and the middle electrode M, the reference capacitor CR by the ring electrode R and the membrane electrode ME.
  • the process pressure p acts on the membrane 14, which deflects to a greater or lesser extent in accordance with the pressurization, the distance between the membrane electrode ME and the center electrode M essentially changing. This leads to a corresponding change in capacitance of the measuring capacitor CM.
  • the influence on the reference capacitor CR is less, since the distance between the ring electrode R and the membrane electrode ME changes less than the distance between the membrane electrode ME and the center electrode M.
  • CM and CR therefore designate both the measurement and reference capacitors themselves and their capacitances.
  • a known evaluation circuit 30 for the pressure measuring cell 10 is shown in more detail in FIG.
  • the measuring capacitor CM is arranged together with a resistor Ri in an integrating branch IZ and the reference capacitor CR is arranged together with a resistor R2 in a differentiating branch DZ.
  • a square-wave voltage UEO which preferably alternates symmetrically around 0 volts, is present at the input of the integrating branch IZ.
  • the input voltage UEO is converted into a linearly rising or falling voltage signal (depending on the polarity of the input voltage) via the resistor Ri and the measuring capacitor CM using an operational amplifier OP1 that works as an integrator, which is output at the output COM of the integrating branch IZ.
  • the measurement point P1 is virtually grounded by the operational amplifier OP1.
  • the output COM is connected to a threshold value comparator SG, which controls a square-wave generator RG. As soon as the voltage signal at the output COM exceeds or falls below a threshold value, the comparator SG changes its value Output signal, whereupon the square-wave generator RG inverts its output voltage in each case.
  • the differentiating branch DZ also consists of an operational amplifier OP2, a voltage divider with the two resistors R5 and Re and a feedback resistor R7.
  • the output of the operational amplifier OP2 is connected to a sample and hold circuit S&H. At the output of the sample-and-hold circuit S&H there is the measurement voltage llMess, from which the process pressure p, which acts on the pressure measurement cell 10, is obtained.
  • the operational amplifier OP1 ensures that the connection point P1 between the resistor Ri and the measuring capacitor CM is kept virtually at ground. As a result, a constant current h flows through the resistor Ri, which charges the measuring capacitor CM until the square-wave voltage UEO changes its sign.
  • Ri * CM and R2 * CR are equal to each other.
  • this state is set accordingly via the variable resistors Ri or R2. If the capacitance of the measuring capacitor CM changes due to the effect of pressure, the condition of equality of the time constants in the integrating branch IZ and in the differentiating branch DZ is no longer met and the potential at the measuring point P2 would deviate from the value zero. However, this change is counteracted directly by the operational amplifier OP2, since the operational amplifier OP2 continues to hold the connection point P2 virtually at ground.
  • a square-wave voltage UR is therefore present at the output of the operational amplifier OP2, the amplitude of which depends on the quotient of the two time constants.
  • the amplitude is directly proportional to the process pressure p ⁇ CR/CM - 1, where the dependence is essentially linear. The amplitude can be over the Adjust the voltage divider formed by the two resistors R5 and Re.
  • the positive and negative amplitudes A+ and A- of the square-wave signal are added in absolute terms via a sample and hold circuit S&H, the absolute value A is output as a measurement voltage llMess at the output of the operational amplifier OP3 and forwarded to the microcontroller pC (not shown). However, it could also be output directly as an analog value.
  • the amplitude of the input voltage UEO which is present at the output of the square-wave generator RG, is adjusted as a function of the measurement voltage llMess in order to achieve better linearity.
  • a voltage divider consisting of resistors R20 and R10 is provided for this purpose. This voltage divider is connected to a reference voltage VREF and can advantageously be adjusted.
  • the positive operating voltage V+ is typically +2.5 V and the negative operating voltage V- is -2.5 V.
  • FIG. 4 shows a diagram of how the quotient Q, the capacitance values of the reference capacitor CR and the measuring capacitor CM and the differentiated signal of the temperature element could look over time in the event of a temperature shock without external pressure influence.
  • the quotient Q is shown as a broken line
  • the measuring capacitor Cmess as a broken line
  • the differentiated signal of the temperature element as a dotted line
  • the reference capacitor Cref as a continuous line.
  • the temperature shock begins at the beginning of the second box (in the x-direction). You can see the significant delay with which the temperature element reacts to the temperature influence. On the other hand, this strong temperature change is immediately “noticed” in the capacitance values of the measuring and reference capacitors, with the reference capacitor showing a significantly stronger signal deflection than the measuring capacitor. This phenomenon is already known from the initially cited EP 2 189 774 B1.
  • the values of the measuring capacitor and those of the quotient should be almost the same, as can be seen from the end of the third box in the x-direction. Due to the temperature shock, however, there is a clear discrepancy between the two values, which is already apparent at the beginning of the temperature shocks. According to the invention, this discrepancy is used as a trigger to switch the entire unit to safety operation, ie to switch to a type of "alarm state", during which the corresponding environmental conditions can be examined with regard to a possible cause. By observing the temperature element, it would be possible to determine very quickly in the present example that a temperature shock is actually present, and the influence of the error on the measured pressure value could be calculated using a corresponding compensation method.
  • the decisive moment is the very first moment after the temperature shock, when the temperature element has not yet reacted at all and therefore naturally no temperature compensation can be initiated. This is where the advantage of the method according to the invention becomes apparent, since it is possible to switch to safety mode at this early point in time, since an extraordinary situation must exist in any case.
  • the value of the measuring capacitor was falsified to a much lesser extent by the temperature shock than the value of the reference capacitor and thus also the quotient Q formed from the two values. This fact then leads to the very first moment, if there is no compensation for the temperature error, the capacitance value of the measuring capacitor can be output as the measured pressure value p, in order to at least keep the degree of falsification as small as possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle (10), die einen Messkondensator (CM) und einen Referenzkondensator (CR) sowie ein Temperaturelement aufweist, wobei in einer Auswerteeinheit der Druckmesswert p durch Bildung des Quotienten Q aus den Kapazitätswerten des Referenzkondensators (CR) und des Messkondensators (CM) gewonnen wird. Das Verfahren ist dabei durch folgende Verfahrensschritte gekennzeichnet: - in einer Abgleichprozedur sind jeweils die Kennlinie des Quotienten Q und der Kapazitätswerte des Messkondensators (CM) über dem Druck und zu verschiedenen Temperaturszenarien in einer Lookup-Tabelle abgelegt worden; - kontinuierlich wird dem ermittelten Druckmesswert p bei der in diesem Moment durch das Temperaturelement erfassten Temperatur jeweils der dazugehörige Betrag des Quotienten Q sowie des Kapazitätswerts des Messkondensators (CM) aus der Lookup-Tabelle zugeordnet; - das Verhalten des Verlaufs der beiden Beträge des Quotienten Q sowie des Kapazitätswerts des Messkondensators (CM) wird miteinander verglichen; - bei signifikanter Abweichung von einem erwarteten Verhalten wird die Auswerteeinheit temporär in einen Sicherheitsbetrieb überführt und währenddessen der Gradient des Temperaturelements erfasst und ausgewertet; - im Falle eines signifikanten Anstiegs des Gradienten des Temperaturelements eine Temperaturkompensation eingeleitet wird oder im Falle eines unveränderten Gradienten des Temperaturelements ein Fehlersignal erzeugt wird.

Description

Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle
Die Erfindung betrifft ein Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors.
Kapazitive Drucksensoren bzw. Druckmessgeräte werden in vielen Industriebereichen zur Druckmessung eingesetzt. Sie weisen häufig eine keramische Druckmesszelle, als Messwandler für den Prozessdruck, und eine Auswerteelektronik zur Signalverarbeitung auf.
Kapazitive Druckmesszellen bestehen aus einem keramischen Grundkörper und einer Membran, wobei zwischen dem Grundkörper und der Membran ein Glaslotring angeordnet ist. Der sich dadurch ergebende Hohlraum zwischen Grundkörper und Membran ermöglicht die längsgerichtete Beweglichkeit der Membran infolge eines Druckeinflusses. Dieser Hohlraum wird daher auch als Messkammer bezeichnet. An der Unterseite der Membran und an der gegenüberliegenden Oberseite des Grundkörpers sind jeweils Elektroden vorgesehen, die zusammen einen Messkondensator bilden. Durch Druckeinwirkung kommt es zu einer Verformung der Membran, was eine Kapazitätsänderung des Messkondensators zur Folge hat.
Mit Hilfe einer Auswerteeinheit wird die Kapazitätsänderung erfasst und in einen Druckmesswert umgewandelt. In der Regel dienen diese Drucksensoren zur Überwachung oder Steuerung von Prozessen. Sie sind deshalb häufig mit übergeordneten Steuereinheiten (SPS) verbunden.
Aus der DE 198 51 506 C1 ist ein kapazitiver Drucksensor bekannt, bei dem der Druckmesswert aus dem Quotienten zweier Kapazitätswerte, eines Messkondensators und eines Referenzkondensators, ermittelt wird. In dieser Patentschrift ist eine Druckmesszelle zwar nicht speziell beschrieben, die dargestellte Schaltung und das beschriebene Verfahren ist aber für kapazitive Druckmesszellen geeignet. Das Besondere an diesem Druckmessgerät ist, dass für die Auswertung des Messsignals am Ausgang, als Maß für den erfassten Druckmesswert, lediglich die Amplitude des Rechtecksignals relevant ist, unabhängig von dessen Frequenz. Aus der EP 0 569 573 B1 ist eine Schaltungsanordnung für einen kapazitiven Drucksensor bekannt, bei dem ebenfalls ein Quotientenverfahren zur Druckauswertung eingesetzt wird.
Quotientenverfahren gehen in der Regel von folgenden Druckabhängigkeiten aus:
CR , , CM - CR
P - bzw. oder p - ,
CM
Figure imgf000004_0001
CM + CR wobei CM die Kapazität des Messkondensators, CR die Kapazität des Referenzkondensators und p den zu bestimmenden Prozessdruck bezeichnet. Denkbar ist auch die Möglichkeit, CM und CR im Quotienten zu vertauschen. Das angegebene Beispiel mit CM im Nenner stellt allerdings zugunsten der Eigenlinearisierung die gebräuchlichste Form dar. Im Folgenden wird daher von dieser Ausführungsform ausgegangen, sofern nicht anders angegeben.
Die Zuverlässigkeit bei kapazitiven Drucksensoren gewinnt immer mehr an Bedeutung. So wird bspw. in den Druckschriften EP 2 606 330 B1 und DE 10 2018 118645 B3 thematisiert, wie ein Mediumseintritt - verursacht durch eine mechanische Beschädigung der Druckmesszelle, insbesondere der Membran, oder ermöglicht durch einen eventuellen Entlüftungskanal - zuverlässig erkannt werden kann, und aus der DE 10 2018 118 646 B3 ist bekannt, wie das Messprinzip bei Drucksensoren in Bezug auf mögliche Kriechströme auf der - dem zu messenden Medium abgewandten - Messzellen-Rückseite oder in Teilen der Auswertelektronik zum Zwecke der Eliminierung von möglicherweise durch die Umgebung eingetragenen und zur Kondensierung neigenden Luftfeuchteanteilen optimiert werden kann.
Hinlänglich bekannt ist des Weiteren, bspw. aus DE 10 2011 005 705 B4, dass die während der Druckmessung vorherrschende Temperatur, insbesondere die des zu messenden Mediums, einen ganz erheblichen Einfluss auf die Genauigkeit der ermittelten Messergebnisse haben kann. Aus diesem Grund wird mittels eines auf der Rückseite des Grundkörpers angeordneten Temperaturelements parallel zu der Druckmessung auch die Temperatur erfasst, so dass die Temperaturabhängigkeit der Druckmessung kompensiert werden kann.
Eine Herausforderung stellt jedoch eine schnelle Temperaturänderung, d.h. ein sogenannter Thermoschock dar, wodurch es zu Verspannungen in der Membran der Druckmesszelle kommen kann. Die Verspannungen der Membran resultieren aus einem Temperaturunterschied zwischen einem auf die Membran der Druckmesszelle einwirkenden Medium und dem von dem Medium abgewandten, mit der Umgebung thermisch verbundenen, Grundkörper der Druckmesszelle.
Vor diesem Hintergrund basiert die EP 2 189 774 A1 auf der Erkenntnis, dass sich eine druckbedingte Verformung der Membran im Vergleich zu einer thermoschockbedingten Membranverformung messtechnisch unterscheiden. Das dort offenbarte Verfahren zum Erkennen schneller Temperaturänderungen beruht darauf, dass für gemessene Werte der Messkapazität Cm die gemessenen Werte der Referenzkapazität Cr mit Erwartungswerten der Referenzkapazität Cr, die aus den gemessenen Werten der Messkapazität Cm folgen, verglichen werden, und wobei ein Temperatursprung festgestellt wird, wenn der Messwert der Referenzkapazität außerhalb eines Toleranzbereichs um einen Erwartungswert liegt. Allerdings geht dieses Verfahren davon aus, dass eine schnelle Temperaturänderung die alleinige Ursache für die festgestellte Diskrepanz zwischen den gemessenen Werten und den Erwartungswerten ist. Das ist aber in der Praxis nicht immer der Fall. Beispielsweise würde sich im Falle einer mechanischen Beschädigung der Druckmesszelle, insbesondere der Membran, ein vergleichbarer Effekt zwischen den Mess- und den Erwartungswerten einstellen, was dann jedoch zu der irrtümlichen Annahme führen würde, man müsse eine einwirkende Temperatur kompensieren, statt die Druckmesszelle oder letztlich das gesamte Druckmessgerät auszutauschen, da die ausgegebenen Druckmesswerte sehr wahrscheinlich nicht mehr den tatsächlich anliegenden Druckverhältnissen entsprechen.
Aufgabe der Erfindung ist es, diesen Nachteil zu beseitigen.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Zunächst sind in einer Abgleichprozedur jeweils die Kennlinie des Quotienten Q und der Kapazitätswerte des Messkondensators CM über dem Druck und zu verschiedenen Temperaturszenarien in einer Lookup-Tabelle als Erwartungswerte abgelegt worden. Während des Betriebs der Druckmesszelle wird anhand der Lookup-Tabelle kontinuierlich dem ermittelten Druckmesswert p bei der in diesem Moment durch das Temperaturelement erfassten Temperatur jeweils der dazugehörige Betrag des Quotienten Q sowie des Kapazitätswerts des Messkondensators CM zugeordnet und das Verhalten des Verlaufs der beiden Beträge des Quotienten Q sowie des Kapazitätswerts des Messkondensators CM miteinander verglichen. Dieser Vergleich könnte beispielhaft in einem Abstand von 200 Millisekunden durchgeführt werden. Sollte es zu einer signifikanten Abweichung von einem erwarteten Verhalten kommen, wird die Auswerteeinheit temporär in einen Sicherheitsbetrieb überführt und währenddessen der Gradient des Temperaturelements erfasst und ausgewertet. Wenn ein signifikanter Anstieg des Gradienten des Temperaturelements festgestellt wird, kann eine entsprechende Temperaturkompensation eingeleitet werden. In diesem Fall kann die Ursache für die Diskrepanz zwischen den Messwerten und den Erwartungswerten eindeutig einem Temperatursprung zugeordnet und durch eine entsprechende Kompensierung dieser Fehlereinfluss auf das ausgegebene Messergebnis bereinigt werden. Anderenfalls, wenn trotz Diskrepanz zwischen den Messwerten und den Erwartungswerten das Temperaturelement keine signifikante Veränderung seiner Messergebnisse aufweist, kann ein Temperatursprung als Ursache ausgeschlossen und stattdessen eine Beschädigung der Druckmesszelle, insbesondere ihrer Membran, angenommen werden. In diesem Fall wird ein Fehlersignal generiert, was unterschiedlicher Natur sein kann. Denkbar sind bspw. einfache optische oder akustische Warnsignale, aber auch entsprechende Signale, die von einer übergeordneten Steuereinheit (SPS) empfangen werden.
Der Vorteil der Erfindung besteht somit darin, dass ausgehend von der Erkenntnis, dass die Kapazitätswerte sehr schnell auf Fehlereinflüsse reagieren, frühzeitig in eine Art „Alarmzustand“ umgeschaltet werden kann und die entsprechenden Umgebungsbedingungen hinsichtlich einer möglichen Ursache untersucht werden können. Das erfindungsgemäße Verfahren stellt somit gewissermaßen einen Trigger dar, der auf einen Fehlerfall - zunächst unbekannter Ursache - aufmerksam macht, so dass erst dann genauere Beobachtungen der möglichen Fehlerursachen begonnen werden müssen und entsprechend gezielte Gegenmaßnahmen sehr frühzeitig eingeleitet werden können. Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass während des Sicherheitsbetriebs der Druckmesswert p nur durch den Kapazitätswert des Messkondensators gewonnen wird. Die Quotientenbildung aus den Kapazitätswerten von Mess- und Referenzkondensator hat vorrangig das Ziel, eine Kapazitätsänderung aufgrund einer Änderung der Dielektrizitätszahl sr des Dielektrikums in der Messkammer auszugleichen. Für die Zeit des Sicherheitsbetriebs, der ohnehin nur von kurzer Dauer sein sollte, wäre dieser Umstand vernachlässigbar, während der Vorteil, dass mit dem Kapazitätswert des Messkondensators dennoch ein vergleichsweise plausibler Druckmesswert p ausgegeben werden kann, überwiegt.
Vorteilhafterweise werden dann die jeweils durch den Messkondensator allein und durch den Quotienten Q gewonnenen Druckmesswerte p miteinander verglichen. Durch diesen Vergleich zweier unterschiedlich berechneter Messwerte kann eine - möglichweise auch parallele - Plausibilitätsprüfung erfolgen, die auf plötzliche oder auch sich schleichend einstellende Veränderungen in oder an der Druckmesszelle aufmerksam macht.
Eine weitere vorteilhafte Weiterbildung sieht vor, dass bei der Abgleichprozedur auch die Lade- und Entladezeit des Mess- und Referenzkondensators über dem Druck und zu verschiedenen Temperaturszenarien in der Lookup-Tabelle abgelegt worden sind, kontinuierlich dem ermittelten Druckmesswert p bei der in diesem Moment durch das Temperaturelement erfassten Temperatur der dazugehörige Betrag der Lade- und Entladezeit aus der Lookup-Tabelle zugeordnet wird und das Verhalten des Verlaufs der Beträge des Quotienten Q, des Kapazitätswerts des Messkondensators und der Lade- und Entladezeit miteinander verglichen wird. D.h. das gesamte Verfahren wird um die Lade- und Entladezeit des Mess- und Referenzkondensators, also die Zeitdauer, welche jeweils für das Laden der Kapazitäten bis zu einem bestimmten Niveau und zum Entladen verbraucht wird, erweitert. Auf diese Weise lassen sich neben den beschriebenen Temperatureinflüssen und mechanischen Beschädigungen der Druckmesszelle zusätzlich noch äußere Frequenzeinflüsse feststellen, bspw. wenn das Messgerät in der Nähe eines Frequenzumrichters betrieben wird, so dass es zu einer Einkopplung der fremden Signalquellenfrequenz und damit zu einer Resonanzbildung mit der festen Betriebs- bzw. Arbeitsfrequenz des Druckmessgeräts kommen kann. Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert.
Es zeigen schematisch:
Figur 1 ein Blockdiagramm eines kapazitiven Druckmessgeräts,
Figur 2 eine schematische Schnittdarstellung einer kapazitiven Druckmesszelle,
Figur 3 eine bekannte Auswerteschaltung für eine kapazitive Druckmesszelle gemäß Figur 2 und
Figur 4 ein Diagramm zur Darstellung eines im Falle eines Temperaturschocks ohne äußeren Druckeinfluss beispielhaften Verlaufs von Quotient Q, der Kapazitätswerte des Referenzkondensators (CR) und des Messkondensators (CM) sowie eines differenzierten Temperatursignals über der Zeit.
Bei der nachfolgenden Beschreibung der bevorzugten Ausführungsformen bezeichnen gleiche Bezugszeichen gleiche oder vergleichbare Komponenten.
In Figur 1 ist ein Blockdiagramm eines typischen kapazitiven Druckmessgeräts dargestellt, der zur Messung eines Prozessdrucks p (z. B. von Öl, Milch, Wasser etc.) eingesetzt wird. Das Druckmessgerät 1 ist als Zwei-Leiter-Gerät ausgeführt und besteht im Wesentlichen aus einer Druckmesszelle 10 und einer Auswerteelektronik 20. Die Auswerteelektronik 20 weist eine analoge Auswerteschaltung 30 und einen Mikrocontroller pC auf, in dem das analoge Ausgangssignal der Auswerteschaltung 20 digitalisiert und weiterverarbeitet wird. Der Mikrocontroller pC stellt das Auswerteergebnis als digitales oder analoges Ausgangssignal z. B. einer SPS zur Verfügung. Zur Energieversorgung ist das Druckmessgerät 1 an eine Spannungsversorgungsleitung (12 - 36 V) angeschlossen.
Figur 2 zeigt eine typische kapazitive Druckmesszelle 10, wie sie vielfältig bei kapazitiven Druckmessgeräten eingesetzt wird, in schematischer Darstellung. Die Druckmesszelle 10 besteht im Wesentlichen aus einem Grundkörper 12 und einer Membran 14, die über einen Glaslotring 16 miteinander verbunden sind. Der Grundkörper 12 und die Membran 14 begrenzen einen Hohlraum 19, der - vorzugsweise nur bei niedrigen Druckbereichen bis 50 bar - über einen Entlüftungskanal 18 mit der Rückseite der Druckmesszelle 10 verbunden ist.
Sowohl auf dem Grundkörper 12 als auch auf der Membran 14 sind mehrere Elektroden vorgesehen, die einen Referenzkondensator CR und einen Messkondensator CM bilden. Der Messkondensator CM wird durch die Membranelektrode ME und die Mittelelektrode M gebildet, der Referenzkondensator CR durch die Ringelektrode R und die Membranelektrode ME.
Der Prozessdruck p wirkt auf die Membran 14, die sich entsprechend der Druckbeaufschlagung mehr oder weniger durchbiegt, wobei sich im Wesentlichen der Abstand der Membranelektrode ME zur Mittelelektrode M ändert. Dies führt zu einer entsprechenden Kapazitätsänderung des Messkondensators CM. Der Einfluss auf den Referenzkondensator CR ist geringer, da sich der Abstand zwischen Ringelektrode R und Membranelektrode ME weniger stark verändert als der Abstand zwischen Membranelektrode ME zur Mittelelektrode M.
Im Folgenden wird zwischen der Bezeichnung des Kondensators und seinem Kapazitätswert nicht unterschieden. CM und CR bezeichnen deshalb sowohl den Mess- bzw. Referenzkondensator an sich als auch jeweils dessen Kapazität.
In Figur 3 ist eine bekannte Auswerteschaltung 30 für die Druckmesszelle 10 näher dargestellt. Der Messkondensator CM ist zusammen mit einem Widerstand Ri in einem Integrierzweig IZ und der Referenzkondensator CR zusammen mit einem Widerstand R2 in einem Differenzierzweig DZ angeordnet. Am Eingang des Integrierzweigs IZ liegt eine Rechteckspannung UEO an, die vorzugsweise symmetrisch um 0 Volt alterniert. Die Eingangsspannung UEO wird über den Widerstand Ri und den Messkondensator CM mithilfe eines Operationsverstärkers OP1 , der als Integrator arbeitet, in ein linear ansteigendes bzw. abfallendes Spannungssignal (je nach Polarität der Eingangsspannung) umgewandelt, das am Ausgang COM des Integrierzweigs IZ ausgegeben wird. Der Messpunkt P1 liegt dabei durch den Operationsverstärker OP1 virtuell auf Masse.
Der Ausgang COM ist mit einem Schwellwert-Komparator SG verbunden, der einen Rechteckgenerator RG ansteuert. Sobald das Spannungssignal am Ausgang COM einen Schwellwert über- bzw. unterschreitet, ändert der Komparator SG sein Ausgangssignal, woraufhin der Rechteckgenerator RG seine Ausgangsspannung jeweils invertiert.
Der Differenzierzweig DZ besteht weiter aus einem Operationsverstärkers OP2, einem Spannungsteiler mit den beiden Widerständen R5 und Re und einem Rückführungswiderstand R7. Der Ausgang des Operationsverstärkers OP2 ist mit einer Sample-and-Hold-Schaltung S&H verbunden. Am Ausgang der Sample-and- Hold-Schaltung S&H liegt die Messspannung llMess an, aus der der Prozessdruck p, der auf die Druckmesszelle 10 wirkt, gewonnen wird.
Nachfolgend ist die Funktion dieser Messschaltung näher erläutert. Der Operationsverstärker OP1 sorgt dafür, dass der Verbindungspunkt P1 zwischen dem Widerstand Ri und dem Messkondensator CM virtuell auf Masse gehalten wird. Dadurch fließt ein konstanter Strom h über den Widerstand Ri, der den Messkondensator CM solange auflädt, bis die Rechteckspannung UEO ihr Vorzeichen wechselt.
Aus Figur 3 ist ersichtlich, dass für den Fall Ri= R2 und CM = CR der Messpunkt P2 im Differenzierzweig DZ sogar dann auf dem gleichen Potenzial wie der Messpunkt P1 , also auf Masseniveau, liegt, wenn die Verbindung zwischen dem Messpunkt P2 und dem Operationsverstärker OP2 nicht vorhanden wäre. Dies gilt nicht nur in diesem speziellen Fall, sondern immer dann, wenn die Zeitkonstanten
Ri * CM und R2 * CR zueinander gleich sind. Beim Nullpunktabgleich wird dieser Zustand über die variablen Widerstände Ri bzw. R2 entsprechend eingestellt. Wenn sich die Kapazität des Messkondensators CM durch Druckeinwirkung ändert, ist die Bedingung der Gleichheit der Zeitkonstanten im Integrierzweig IZ und im Differenzierzweig DZ nicht mehr gegeben und das Potenzial am Messpunkt P2 würde vom Wert Null abweichen. Dieser Änderung wird aber unmittelbar von dem Operationsverstärker OP2 entgegengewirkt, da der Operationsverstärker OP2 den Verbindungspunkt P2 weiterhin virtuell auf Masse hält. Am Ausgang des Operationsverstärkers OP2 liegt deshalb eine Rechteckspannung UR an, deren Amplitude vom Quotienten der beiden Zeitkonstanten abhängt. Man kann leicht zeigen, dass die Amplitude direkt proportional zum Prozessdruck p ~ CR/CM - 1 ist, wobei die Abhängigkeit im Wesentlichen linear ist. Die Amplitude lässt sich über den Spannungsteiler, der durch die beiden Widerstände R5 und Re gebildet wird, einstellen.
Über eine Sample&Hold-Schaltung S&H werden die positive und negative Amplitude A+ bzw. A- des Rechtecksignals betragsmäßig addiert, der Betrag A als Messspannung llMess am Ausgang des Operationsverstärkers OP3 ausgegeben und an den Mikrocontroller pC (nicht gezeigt) weitergeleitet. Sie könnte aber auch direkt als Analogwert ausgegeben werden. Die Amplitude der Eingangsspannung UEO, die am Ausgang des Rechteckgenerators RG anliegt, wird in Abhängigkeit der Messspannung llMess eingestellt, um eine bessere Linearität zu erzielen. Hierfür ist ein Spannungsteiler bestehend aus den Widerständen R20 und R10 vorgesehen. Dieser Spannungsteiler ist mit einer Referenzspannung VREF verbunden und vorteilhafterweise abgleichbar.
Die positive Betriebsspannung V+ liegt typischerweise bei +2,5 V und die negative Betriebsspannung V- bei -2,5 V.
Figur 4 zeigt ein Diagramm, wie im Falle eines Temperaturschocks ohne äußeren Druckeinfluss die Verläufe von Quotient Q, der Kapazitätswerte des Referenzkondensators CR und des Messkondensators CM sowie das differenzierte Signal des Temperaturelements über der Zeit beispielhaft aussehen könnten. Dabei ist der Quotient Q strichpunktiert, der Messkondensator Cmess gestrichelt, das differenzierte Signal des Temperaturelements punktiert und der Referenzkondensator Cref als durchgehende Linie dargestellt.
Der Temperaturschock setzt zu Beginn des zweiten Kästchens (in x-Richtung) ein. Zu erkennen ist, mit welcher deutlichen Verzögerung das Temperaturelement auf den Temperatureinfluss reagiert. Hingegen wird diese starke Temperaturänderung in den Kapazitätswerten des Mess- und Referenzkondensators sofort „bemerkt“, wobei der Referenzkondensator gegenüber dem Messkondensator einen deutlich stärkeren Signalausschlag zeigt. Dieses Phänomen ist aus der eingangs zitierten EP 2 189 774 B1 bereits bekannt.
Im Normalfall sollten die Werte des Messkondensators und die des Quotienten nahezu gleich verlaufen, wie es ab dem Ende des dritten Kästchens in x-Richtung zu erkennen ist. Durch den Temperaturschock gibt es jedoch eine deutliche Diskrepanz zwischen beiden Werten, die sich bereits unmittelbar zu Beginn des Temperaturschocks einstellt. Diese Diskrepanz wird erfindungsgemäß als Auslöser herangezogen, die gesamte Einheit in einen Sicherheitsbetrieb zu überführen, d.h. in eine Art „Alarmzustand“ umzuschalten, währenddessen die entsprechenden Umgebungsbedingungen hinsichtlich einer möglichen Ursache untersucht werden können. Durch Beobachtung des Temperaturelements ließe sich im vorliegenden Beispiel sehr schnell feststellen, dass tatsächlich ein Temperaturschock vorliegt, und mittels eines entsprechenden Kompensationsverfahrens der Fehlereinfluss auf den Druckmesswert herausrechnen. Entscheidend ist jedoch der allererste Moment nach dem Temperaturschock, wenn das Temperaturelement noch gar nicht reagiert hat und somit naturgemäß noch keine Temperaturkompensation eingeleitet werden kann. Hier zeigt sich der Vorteil des erfindungsgemäßen Verfahrens, da bereits zu diesem frühen Zeitpunkt in einen Sicherheitsbetrieb umgeschaltet werden kann, da auf jeden Fall eine außergewöhnliche Situation vorliegen muss.
Wie bereits beschrieben ist zu erkennen, dass der Wert des Messkondensators durch den Temperaturschock deutlich weniger stark verfälscht wurde als der Wert des Referenzkondensators und damit auch des aus beiden Werten gebildeten Quotienten Q. Diese Tatsache führt dann dazu, dass im allerersten Moment, wenn also noch keine Kompensation des Temperaturfehlers erfolgt, als Druckmesswert p der Kapazitätswert des Messkondensators ausgegeben werden kann, um zumindest den Grad der Verfälschung so klein wie möglich zu halten.
Im Falle einer mechanischen Beschädigung der Druckmesszelle, insbesondere der Membran, würde sich zu Beginn ein ähnlicher Verlauf der Werte von Quotient Q und Messkapazität ergeben, allerdings ohne, dass das Signal des Temperaturelements einen solchen Ausschlag wie in Fig. 4 aufweisen würde. Wenn dann in den zuvor beschriebenen Sicherheitsbetrieb umgeschaltet wird, würde sich durch die Beobachtung des Temperaturelements wiederrum schnell feststellen lassen, dass in diesem Fall kein Temperaturschock vorliegt und stattdessen eine andere Fehlerursache gesucht werden muss. Beispielsweise könnte dann mittels des in EP 2 606 330 B1 beschriebenen Verfahrens, bei dem mit Hilfe eines Zusatzkondensators, dessen Kapazität unabhängig vom Membrandruck ist, ein Kontrolldruckmesswert ermittelt und mit dem eigentlichen Druckmesswert p verglichen wird, eine Untersuchung hinsichtlich einer mechanischen Beschädigung eingeleitet werden. Bezugszeichenliste
1 Druckmessgerät
10 Druckmesszelle
12 Grundkörper
14 Membran
16 Glaslotring
18 Entlüftungskanal
19 Hohlraum
20 Auswerteelektronik
30 Auswerteschaltung
CM, C mess Messkondensator
CR, Cref Referenzkondensator
Q Quotient
P Druckmesswert
M Mittelelektrode
R Ringelektrode
ME Membranelektrode
IZ Integrierzweig
DZ Differenzierzweig
SG Schwellwert-Komparator
RG Rechteckgenerator

Claims

Patentansprüche
1 . Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle (10), die einen Messkondensator (CM) und einen Referenzkondensator (CR) sowie ein Temperaturelement aufweist, wobei in einer Auswerteeinheit der Druckmesswert p durch Bildung des Quotienten Q aus den Kapazitätswerten des Referenzkondensators (CR) und des Messkondensators (CM) gewonnen wird, gekennzeichnet durch folgende Verfahrensschritte:
- in einer Abgleichprozedur sind jeweils die Kennlinie des Quotienten Q und der Kapazitätswerte des Messkondensators (CM) über dem Druck und zu verschiedenen Temperaturszenarien in einer Lookup-Tabelle abgelegt worden;
- kontinuierlich wird dem ermittelten Druckmesswert p bei der in diesem Moment durch das Temperaturelement erfassten Temperatur jeweils der dazugehörige Betrag des Quotienten Q sowie des Kapazitätswerts des Messkondensators (CM) aus der Lookup-Tabelle zugeordnet;
- das Verhalten des Verlaufs der beiden Beträge des Quotienten Q sowie des Kapazitätswerts des Messkondensators (CM) wird miteinander verglichen;
- bei signifikanter Abweichung von einem erwarteten Verhalten wird die Auswerteeinheit temporär in einen Sicherheitsbetrieb überführt und währenddessen der Gradient des Temperaturelements erfasst und ausgewertet;
- im Falle eines signifikanten Anstiegs des Gradienten des Temperaturelements wird eine Temperaturkompensation eingeleitet oder im Falle eines unveränderten Gradienten des Temperaturelements wird ein Fehlersignal erzeugt.
2. Verfahren nach Anspruch 1 , wobei während des Sicherheitsbetriebs der Druckmesswert p nur durch den Kapazitätswert des Messkondensators (CM) gewonnen wird. Verfahren nach Anspruch 2, wobei die jeweils durch den Messkondensator (CM) allein und durch den Quotienten Q gewonnenen Druckmesswerte p miteinander verglichen werden. Verfahren nach einem der vorhergehenden Ansprüche, wobei in der Abgleichprozedur neben den Kennlinien des Quotienten Q und der Kapazitätswerte des Messkondensators (CM) auch die Lade- und Entladezeit des Mess- und des Referenzkondensators (CM, Cr) über dem Druck und zu verschiedenen Temperaturszenarien in der Lookup-Tabelle abgelegt worden sind, kontinuierlich dem ermittelten Druckmesswert p bei der in diesem Moment durch das Temperaturelement erfassten Temperatur der dazugehörige Betrag der Lade- und Entladezeit aus der Lookup-Tabelle zugeordnet wird und das Verhalten des Verlaufs der Beträge des Quotienten Q, des Kapazitätswerts des Messkondensators (CM) und der Lade- und Entladezeit miteinander verglichen wird.
PCT/EP2021/070678 2020-08-25 2021-07-23 Verfahren zur funktionsüberwachung einer kapazitiven druckmesszelle WO2022042964A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180049768.6A CN115943296A (zh) 2020-08-25 2021-07-23 用于监测电容式压力测量单元的功能的方法
US18/022,857 US20230314260A1 (en) 2020-08-25 2021-07-23 Method for Monitoring the Function of a Capacitive Pressure Measuring Cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020122128.2 2020-08-25
DE102020122128.2A DE102020122128B3 (de) 2020-08-25 2020-08-25 Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle

Publications (1)

Publication Number Publication Date
WO2022042964A1 true WO2022042964A1 (de) 2022-03-03

Family

ID=77179990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/070678 WO2022042964A1 (de) 2020-08-25 2021-07-23 Verfahren zur funktionsüberwachung einer kapazitiven druckmesszelle

Country Status (4)

Country Link
US (1) US20230314260A1 (de)
CN (1) CN115943296A (de)
DE (1) DE102020122128B3 (de)
WO (1) WO2022042964A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021129099A1 (de) * 2021-11-09 2023-05-11 Diehl Metering Gmbh Druckermittlung mittels piezokeramischem Ultraschall-Wandler
DE102023107963B3 (de) 2023-03-29 2024-05-02 Ifm Electronic Gmbh Verfahren zur Kompensation eines Temperaturschocks an einer kapazitiven Druckmesszelle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569573B1 (de) 1991-11-28 1996-04-10 Endress + Hauser Gmbh + Co. Kapazitive druckmessanordnung mit hoher linearität
DE19851506C1 (de) 1998-11-09 2000-10-19 Ifm Electronic Gmbh Auswerteverfahren für kapazitive Sensoren
EP2189774A1 (de) 2008-11-20 2010-05-26 VEGA Grieshaber KG Verfahren zur Detektion und zur Kompensation einer schnellen Temperaturänderung an einer Druckmesszelle
DE102011005705B4 (de) 2011-03-17 2014-07-03 Ifm Electronic Gmbh Kapazitiver Drucksensor
EP2606330B1 (de) 2010-12-08 2014-09-24 IFM Electronic GmbH Verfahren zur selbstüberwachung einer keramischen druckmesszelle eines kapazitiven drucksensors und eine auswerteschaltung zur durchführung des verfahrens
US20190293507A1 (en) * 2018-03-20 2019-09-26 Vega Grieshaber Kg Method for detecting and compensating for a rapid temperature change in a pressure measuring cell
DE102018118646B3 (de) 2018-08-01 2019-11-07 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102018118645B3 (de) 2018-08-01 2019-11-07 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102020100675A1 (de) * 2019-01-14 2020-07-16 Ifm Electronic Gmbh Kapazitiver Drucksensor mit Temperaturerfassung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078557A1 (de) 2011-07-01 2013-01-03 Endress + Hauser Gmbh + Co. Kg Verfahren zum Betreiben eines Absolut- oder Relativdrucksensors mit einem kapazitiven Wandler
EP3124937B1 (de) 2015-07-29 2018-05-02 VEGA Grieshaber KG Verfahren zum ermitteln eines druckes sowie entsprechende messanordnung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569573B1 (de) 1991-11-28 1996-04-10 Endress + Hauser Gmbh + Co. Kapazitive druckmessanordnung mit hoher linearität
DE19851506C1 (de) 1998-11-09 2000-10-19 Ifm Electronic Gmbh Auswerteverfahren für kapazitive Sensoren
EP2189774A1 (de) 2008-11-20 2010-05-26 VEGA Grieshaber KG Verfahren zur Detektion und zur Kompensation einer schnellen Temperaturänderung an einer Druckmesszelle
EP2189774B1 (de) 2008-11-20 2014-12-31 VEGA Grieshaber KG Verfahren zur Detektion und zur Kompensation einer schnellen Temperaturänderung an einer Druckmesszelle
EP2606330B1 (de) 2010-12-08 2014-09-24 IFM Electronic GmbH Verfahren zur selbstüberwachung einer keramischen druckmesszelle eines kapazitiven drucksensors und eine auswerteschaltung zur durchführung des verfahrens
DE102011005705B4 (de) 2011-03-17 2014-07-03 Ifm Electronic Gmbh Kapazitiver Drucksensor
US20190293507A1 (en) * 2018-03-20 2019-09-26 Vega Grieshaber Kg Method for detecting and compensating for a rapid temperature change in a pressure measuring cell
DE102018118646B3 (de) 2018-08-01 2019-11-07 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102018118645B3 (de) 2018-08-01 2019-11-07 Ifm Electronic Gmbh Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102020100675A1 (de) * 2019-01-14 2020-07-16 Ifm Electronic Gmbh Kapazitiver Drucksensor mit Temperaturerfassung

Also Published As

Publication number Publication date
CN115943296A (zh) 2023-04-07
DE102020122128B3 (de) 2021-11-04
US20230314260A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
EP2606330B1 (de) Verfahren zur selbstüberwachung einer keramischen druckmesszelle eines kapazitiven drucksensors und eine auswerteschaltung zur durchführung des verfahrens
WO2022042964A1 (de) Verfahren zur funktionsüberwachung einer kapazitiven druckmesszelle
DE102006018547B4 (de) Fahrzeugkollisionserfassungssystem
DE19851506C1 (de) Auswerteverfahren für kapazitive Sensoren
WO2021083736A1 (de) Verfahren zur funktionsüberwachung einer kapazitiven druckmesszelle
DE102009002662A1 (de) Kapazitiver Drucksensor als Kombinationssensor zur Erfassung weiterer Messgrößen
DE102016105904B4 (de) MEMS-Mikrofon und Verfahren zur Selbstkalibrierung des MEMS-Mikrofons
DE102018118645B3 (de) Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102018118646B3 (de) Verfahren zur Funktionsüberwachung einer Druckmesszelle eines kapazitiven Drucksensors
DE102011083133B4 (de) Verfahren zur Selbstüberwachung einer keramischen Druckmesszelle eines kapazitiven Drucksensors und eine Auswerteschaltung zur Durchführung des Verfahrens
EP1405052A1 (de) Vorrichtung zur auswertung des signals eines viskositätssensors
DE102022105693B3 (de) Verfahren zum Betreiben einer Druckmesszelle eines kapazitiven Drucksensors
EP3173760A1 (de) Relativdrucksensor
EP1743140A1 (de) Messanordnung mit ausgängen verschiedener empfindlichkeiten
DE102010035862B4 (de) Diagnosefähige resistive Druckmesszelle
DE102022120883B3 (de) Verfahren zur Funktionsüberwachung einer kapazitiven Druckmesszelle
DE102020100675A1 (de) Kapazitiver Drucksensor mit Temperaturerfassung
DE102023107963B3 (de) Verfahren zur Kompensation eines Temperaturschocks an einer kapazitiven Druckmesszelle
EP0508517B2 (de) Kompensiertes Differenzdruckmessgerät
DE102014224222A1 (de) Kapazitiver Messsensor und Positions-Messeinrichtung zur Ermittlung einer Position eines Messobjekts sowie Positioniervorrichtung mit einem derartigen Messsensor
DE102018126382B3 (de) Kapazitiver Drucksensor
DE102005006806A1 (de) Verfahren und Vorrichtung zum Messen von physikalischer Grössen mit piezoelektrischen Sensoren
DE102018105234B4 (de) Verfahren zum Betreiben eines kapazitiven Druckmessgeräts
DE102018121463A1 (de) Kapazitiver Drucksensor mit einer Druckmesszelle und einer Auswerteeinheit, die räumlich getrennt voneinander angeordnet sind
DE4210818C2 (de) Auswerteschaltung für einen Sensor, insbesondere für einen piezoresistiven Drucksensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21749574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21749574

Country of ref document: EP

Kind code of ref document: A1