WO2022042246A1 - 一种小区状态切换方法及装置 - Google Patents

一种小区状态切换方法及装置 Download PDF

Info

Publication number
WO2022042246A1
WO2022042246A1 PCT/CN2021/110641 CN2021110641W WO2022042246A1 WO 2022042246 A1 WO2022042246 A1 WO 2022042246A1 CN 2021110641 W CN2021110641 W CN 2021110641W WO 2022042246 A1 WO2022042246 A1 WO 2022042246A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
serving cell
uplink
terminal device
downlink
Prior art date
Application number
PCT/CN2021/110641
Other languages
English (en)
French (fr)
Inventor
李新县
丁梦颖
彭金磷
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21860086.4A priority Critical patent/EP4195770A4/en
Publication of WO2022042246A1 publication Critical patent/WO2022042246A1/zh
Priority to US18/173,397 priority patent/US20230199586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a cell state switching method and device.
  • the cell state of the serving cell (that is, the serving cell state, hereinafter collectively referred to as the serving cell state) generally includes an activated state, a deactivated state and a dormant state.
  • the serving cell state When the state of the serving cell is in the active state, the terminal device can communicate through the serving cell; when the state of the serving cell is in the deactivated state or the dormant state, the terminal device cannot communicate through the serving cell.
  • the network device configures multiple serving cells for the terminal device, the number of serving cells in the active state of the serving cell is limited by the capability of the terminal device. Therefore, the terminal equipment needs to switch the serving cell state to meet the communication requirements of the terminal equipment in different serving cells. However, it takes a long time for the terminal equipment to switch the serving cell state, resulting in poor communication performance.
  • the embodiments of the present application provide a cell state switching method and device, so that the serving cell state can be switched from an active state to a first state, or from a first state to an active state, thereby helping to reduce the time required for switching the serving cell state delay and improve communication performance.
  • a first aspect is a cell state switching method according to an embodiment of the present application, which specifically includes:
  • the terminal device receives a first instruction from the network device, where the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state or switch out of the first state; the serving cell state is the The first state includes: the downlink carrier of the serving cell supports downlink communication, and the uplink carrier of the serving cell does not support uplink communication. Then, the terminal device switches the serving cell state according to the first instruction.
  • the terminal device can switch the state of the serving cell according to its own communication requirements on different serving cells when the number of serving cells in the active state is limited by the capability of the terminal. to the first state, or to switch out of the first state, thereby helping to reduce the switching delay of the serving cell state and improving the communication performance.
  • the terminal device when the first instruction is used to instruct to activate the serving cell, the terminal device switches the serving cell state from the first state according to the first instruction to the active state. Therefore, the terminal device can switch the serving cell state from the first state to the active state according to the first instruction from the network device.
  • the terminal device when the first instruction is used to instruct to deactivate the serving cell, the terminal device changes the serving cell state from the first state according to the first instruction Switch to deactivated state. Therefore, it is helpful to enable the terminal device to switch the serving cell state from the first state to the deactivated state according to the first instruction from the network device.
  • the terminal device when the first instruction is used to instruct to configure the serving cell state as the first state, the terminal device configures the serving cell according to the first instruction
  • the state switches from a deactivated state or an activated state to the first state. Therefore, it is helpful to enable the terminal device to switch the serving cell state to the first state according to the first instruction from the network device.
  • the uplink carrier of the serving cell when the port number of the uplink carrier of the serving cell is 0, the uplink carrier of the serving cell does not support uplink communication.
  • the terminal device when the first instruction is used to instruct to configure the number of ports of the uplink carrier of the serving cell to 0, the terminal device configures the serving cell according to the first instruction
  • the cell state is switched from a deactivated state or an activated state to the first state. Therefore, it is helpful to enable the terminal device to switch the serving cell state to the first state according to the first instruction from the network device.
  • the terminal device when the first instruction is used to instruct to configure the number of ports of the uplink carrier of the serving cell as N, the N is a positive integer, and 0 ⁇ N ⁇ M, so The M is the maximum number of ports supported by the terminal device for uplink communication, and the terminal device switches the serving cell state from the first state to the active state according to the first instruction. Therefore, the terminal device can switch the serving cell state from the first state to the active state according to the first instruction from the network device.
  • the port number of the uplink carrier of the serving cell is 0.
  • the terminal device when the first instruction is used to instruct to activate the BWP with the preconfigured port number of 0 on the uplink carrier of the serving cell, the terminal device, according to the first instruction, Switching the serving cell state from a deactivated state or an activated state to the first state. Therefore, it is helpful to enable the terminal device to switch the serving cell state to the first state according to the first instruction from the network device.
  • the terminal device when the first instruction is used to instruct to deactivate the BWP with the port number of 0 pre-configured on the uplink carrier of the serving cell, the terminal device can perform the first instruction according to the first instruction. , switching the serving cell state from the first state to the deactivated state. Therefore, the terminal device can switch the serving cell state from the first state to the deactivated state according to the first instruction from the network device.
  • the terminal device when the first instruction is used to instruct to activate the BWP with the number of ports preconfigured on the uplink carrier of the serving cell being N, the N is a positive integer, and 0 ⁇ N ⁇ M, where M is the maximum number of ports supported by the terminal device for uplink communication, and the terminal device switches the serving cell state from the first state to the active state according to the first instruction. Therefore, the terminal device can switch the serving cell state from the first state to the active state according to the first instruction from the network device.
  • the uplink carrier of the serving cell when the number of channels of the uplink carrier of the serving cell is 0, the uplink carrier of the serving cell does not support uplink communication.
  • the number of channels preconfigured by the BWP activated on the uplink carrier of the first cell is 0, the number of channels of the uplink carrier of the serving cell is 0.
  • the terminal device when the first instruction is used to instruct to deactivate the uplink carrier of the serving cell, the terminal device changes the state of the serving cell from the active state according to the first instruction switch to the first state. Therefore, it is helpful to enable the terminal device to switch the serving cell state to the first state according to the first instruction from the network device.
  • the terminal device when the first instruction is used to instruct to activate the downlink carrier of the serving cell, the terminal device changes the state of the serving cell from the deactivated state according to the first instruction switch to the first state. Therefore, it is helpful to enable the terminal device to switch the serving cell state to the first state according to the first instruction from the network device.
  • the terminal device when the first instruction is used to deactivate the downlink carrier of the serving cell, the terminal device changes the state of the serving cell from the first instruction to the first instruction. A state switches to the deactivated state. Therefore, the terminal device can switch the serving cell state from the first state to the deactivated state according to the first instruction from the network device.
  • the terminal device when the first instruction is used to instruct to activate the uplink carrier of the serving cell, the terminal device changes the state of the serving cell from the first instruction to the first instruction. A state switches to the active state. Therefore, the terminal device can switch the serving cell state from the first state to the active state according to the first instruction from the network device.
  • the cell state identifier of the serving cell is the first cell state identifier.
  • the terminal device when the first instruction is used to instruct to configure the cell state identifier of the serving cell as the first cell state identifier, the terminal device, according to the first instruction, Switching the serving cell state from a deactivated state or an activated state to the first state. Therefore, it is helpful to enable the terminal device to switch the serving cell state to the first state according to the first instruction from the network device.
  • the second cell state identifier is used to indicate the serving cell
  • the state of the cell is a deactivated state or an activated state; the terminal device switches the serving cell state from the first state to a deactivated state or an activated state according to the first instruction. Therefore, the terminal device can switch the serving cell state from the first state to the active state or the active state according to the first instruction from the network device.
  • the terminal device sends capability information to the network device, where the capability information includes a frequency band supported by the terminal device, a maximum number of channels and/or a maximum number of ports supported by the frequency band.
  • the capability information includes a frequency band supported by the terminal device, a maximum number of channels and/or a maximum number of ports supported by the frequency band.
  • the serving cell is a primary cell or a secondary cell of the terminal device. Therefore, it can be applied to scenarios in which a terminal device is configured with multiple serving cells, such as CA scenarios, DU scenarios, and the like.
  • a second aspect is a cell state switching method according to an embodiment of the present application, which specifically includes: a network device generates a first instruction, and then sends the first instruction to the terminal device.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state or switch out of the first state; the serving cell state being the first state includes: downlink of the serving cell
  • the carrier supports downlink communication, and the uplink carrier of the serving cell does not support uplink communication.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state switches from the first state to the active state, including:
  • the first instruction is used to instruct to activate the serving cell.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state switches from the first state to the deactivated state, including:
  • the first instruction is used to instruct to deactivate the serving cell.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from deactivated or activated to activated, including:
  • the first instruction is used to instruct to configure the serving cell state as the first state.
  • the uplink carrier of the serving cell does not support uplink communication, including:
  • the port number of the uplink carrier of the serving cell is 0.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell state of the terminal device from Switching from the deactivated state or the activated state to the first state
  • the first instruction is used to instruct to configure the port number of the uplink carrier of the serving cell as 0.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the first state to the active state, including:
  • the first instruction is used to instruct to configure the number of ports of the uplink carrier of the serving cell as N, where N is a positive integer, and 0 ⁇ N ⁇ M, where M is the maximum value supported by the terminal equipment for uplink communication. number of ports.
  • the port number of the uplink carrier of the serving cell is 0, including:
  • the number of ports preconfigured by the bandwidth part BWP activated on the uplink carrier of the serving cell is 0.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the deactivated state or the activated state to the first state, including:
  • the first instruction is used to instruct to activate a BWP with a preconfigured port number of 0 on the uplink carrier of the serving cell.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the first state to the deactivated state, including:
  • the first instruction is used to instruct to deactivate a BWP with a preconfigured port number of 0 on the uplink carrier of the serving cell.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the first state to the active state, including:
  • the first instruction is used to instruct to activate the BWP with the number of ports preconfigured on the uplink carrier of the serving cell being N, where N is a positive integer, and 0 ⁇ N ⁇ M, and M is the uplink of the terminal equipment The maximum number of ports supported for communication.
  • the uplink carrier of the serving cell does not support uplink communication, including:
  • the number of channels of the uplink carrier of the serving cell is 0.
  • the number of channels of the uplink carrier of the serving cell is 0, including:
  • the number of channels preconfigured by the BWP activated on the uplink carrier of the first cell is 0.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the active state to the first state, including:
  • the first instruction is used to instruct to deactivate the uplink carrier of the serving cell.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the deactivated state to the first state, including:
  • the first instruction is used to instruct to activate the downlink carrier of the serving cell.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the first state to the deactivated state, including:
  • the first instruction is used to deactivate the downlink carrier of the serving cell.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state switches from the first state to the active state, including:
  • the first instruction is used to instruct to activate the uplink carrier of the serving cell.
  • the cell state identifier of the serving cell is the first cell state identifier.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the deactivated state or the activated state to the first state, including:
  • the first instruction is used to instruct to configure the cell state identifier of the serving cell as the first cell state identifier.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state
  • the first instruction is used to instruct to switch the serving cell of the terminal device to the first state.
  • the state is switched from the first state to the deactivated state, including:
  • the first instruction is used to instruct to configure the cell state identifier of the serving cell as a second cell state identifier
  • the second cell state identifier is used to indicate that the state of the serving cell is a deactivated state or an active state.
  • the network device receives capability information from the terminal device, where the capability information includes a frequency band supported by the terminal device, a maximum number of channels and/or a maximum number of ports supported by the frequency band.
  • the serving cell is a primary cell or a secondary cell of the terminal device.
  • a third aspect is a communication method according to an embodiment of the present application, which specifically includes:
  • the terminal device performs uplink communication through N ports on the first carrier, where N is a positive integer;
  • the terminal device receives a first instruction from the network device, where the first instruction is used to instruct to use Q ports for uplink communication on the second carrier, where the Q ports include K ports in the N ports , the K and Q are positive integers, and 0 ⁇ K ⁇ N, and N-K+Q does not exceed the maximum number of ports supported by the uplink communication of the terminal device;
  • the terminal device performs uplink communication on the second carrier through Q ports according to the first instruction.
  • the network device can configure the port configured for the first carrier to be used by the second carrier, the utilization rate of the port is improved, and the uplink communication efficiency of the terminal device is improved.
  • the terminal device after receiving the first duration of the first instruction, performs uplink communication on the second carrier through the Q ports, and the first duration is all the port switching delay of the second carrier. This helps to improve the reliability of communication.
  • the port switching delay of the second carrier is predefined. Thereby helping to reduce signaling overhead.
  • the terminal device sends capability information to the network device, where the capability information includes a frequency band supported by the terminal device and a maximum number of ports supported by the frequency band.
  • a fourth aspect is another communication method according to an embodiment of the present application, which specifically includes:
  • the terminal device performs downlink communication on the first carrier through N ports, where N is a positive integer;
  • the terminal device receives a first instruction from the network device, where the first instruction is used to instruct to use Q ports for downlink communication on the second carrier, where the Q ports include K ports in the N ports , the K and Q are positive integers, and 0 ⁇ K ⁇ N, and N-K+Q does not exceed the maximum number of ports supported by the downlink communication of the terminal device;
  • the terminal device performs downlink communication on the second carrier through Q ports according to the first instruction.
  • the network device can configure the port configured for the first carrier to be used by the second carrier, the utilization rate of the port is improved, and the downlink communication efficiency of the terminal device is improved.
  • the terminal device after receiving the first duration of the first instruction, performs downlink communication on the second carrier through the Q ports, and the first duration is all the port switching delay of the second carrier. This helps to improve the reliability of communication.
  • a fifth aspect is a communication method according to an embodiment of the present application, which specifically includes:
  • the network device performs downlink communication through N transmission antennas on the first time unit and the first carrier, and performs downlink communication through M transmission antennas on the first time unit and the second carrier, where M and N are positive integers;
  • the network device performs downlink communication through P transmitting antennas on the second time unit and the second carrier, the P is a positive integer, and M ⁇ P ⁇ M+N, and the P transmitting antennas include the second At least one transmit antenna among the M transmit antennas used by the carrier and the N transmit antennas used by the first carrier, and the network device does not perform downlink communication on the first carrier in the second time unit.
  • the network device can configure the transmission antenna configured for the first carrier to be used by the second carrier, the utilization rate of the transmission antenna is improved, and the downlink communication efficiency is improved.
  • a sixth aspect is a communication method according to an embodiment of the present application, which specifically includes:
  • the network device performs uplink communication through N receiving antennas on the first time unit and the first carrier, and performs uplink communication through M receiving antennas on the first time unit and the second carrier, where M and N are positive integers;
  • the network device performs uplink communication through P receiving antennas on the second time unit and the second carrier, the P is a positive integer, and M ⁇ P ⁇ M+N, and the P receiving antennas include the second The M receiving antennas used by the carrier and at least one receiving antenna among the N receiving antennas used by the first carrier, and the network device does not perform uplink communication on the first carrier in the second time unit.
  • the network device can configure the receiving antenna configured for the first carrier to be used by the second carrier, the utilization rate of the receiving antenna is improved, and the uplink communication efficiency is improved.
  • the present application provides a communication device.
  • the communication device may be a terminal device, a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may include a processing module and a transceiver. module, and the processing module and the transceiver module can perform the corresponding functions in the first aspect and any of the methods designed in the first aspect, specifically:
  • the transceiver module is configured to receive a first instruction from a network device, where the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state or to switch out of the first state; the service
  • the cell state being the first state includes: the downlink carrier of the serving cell supports downlink communication, and the uplink carrier of the serving cell does not support uplink communication.
  • the processing module is configured to switch the serving cell state according to the first instruction.
  • the present application provides a communication device.
  • the communication device may be a network device, a device in a network device, or a device that can be matched with a network device.
  • the communication device may include a processing module and a transceiver. module, and the processing module and the transceiver module can perform the corresponding functions in the second aspect and any of the methods designed in the second aspect, specifically:
  • the processing module is configured to generate a first instruction; the transceiver module is configured to send the first instruction to the terminal device.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state or switch out of the first state; the serving cell state being the first state includes: downlink of the serving cell The carrier supports downlink communication, and the uplink carrier of the serving cell does not support uplink communication.
  • the present application provides a communication device.
  • the communication device may be a terminal device, a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may include a processing module and a transceiver. module, and the processing module and the transceiver module can perform the corresponding functions in the first aspect and any of the methods designed in the first aspect, specifically:
  • the transceiver module is configured to perform uplink communication through N ports on the first carrier, where N is a positive integer;
  • the transceiver module is configured to receive a first instruction from a network device, where the first instruction is used to instruct to use Q ports for uplink communication on the second carrier, where the Q ports include one of the N ports.
  • K ports, the K and Q are positive integers, and 0 ⁇ K ⁇ N, and N-K+Q does not exceed the maximum number of ports supported by the uplink communication of the terminal device;
  • the processing module is configured to, according to the first instruction, trigger the transceiver module to perform uplink communication on the second carrier through the Q ports.
  • the present application provides a communication device.
  • the communication device may be a terminal device, a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may include a processing module and a transceiver. module, and the processing module and the transceiver module can perform the corresponding functions in the first aspect and any of the methods designed in the first aspect, specifically:
  • the transceiver module is configured to perform downlink communication on the first carrier through N ports, where N is a positive integer;
  • the transceiver module is configured to receive a first instruction from a network device, where the first instruction is used to instruct the use of Q ports for downlink communication on the second carrier, where the Q ports include one of the N ports.
  • K ports, the K and Q are positive integers, and 0 ⁇ K ⁇ N, and N-K+Q does not exceed the maximum number of ports supported by the downlink communication of the terminal device;
  • the processing module is configured to trigger the transceiver module to perform downlink communication on the second carrier through the Q ports according to the first instruction.
  • the present application provides a communication device
  • the communication device may be a network device, a device in a network device, or a device that can be matched with a network device
  • the communication device may include a processing module and A transceiver module, and the processing module and the transceiver module can perform the corresponding functions in the first aspect and any of the methods designed in the first aspect, specifically:
  • the transceiver module is used for downlink communication through N transmission antennas on the first time unit and the first carrier, and downlink communication through M transmission antennas on the first time unit and the second carrier, the M, N is a positive integer;
  • the transceiver module is configured to perform downlink communication through P transmission antennas on the second time unit and the second carrier, where P is a positive integer, and M ⁇ P ⁇ M+N, the P transmission antennas including at least one transmit antenna among the M transmit antennas used by the second carrier and the N transmit antennas used by the first carrier, and the processing module is configured to control the transceiver module not to be on the first carrier in the second time unit Downlink communication.
  • a twelfth aspect provides a communication device for this application.
  • the communication device may be a network device, a device in a network device, or a device that can be matched with a network device.
  • the communication device may include a processing module and a A transceiver module, and the processing module and the transceiver module can perform the corresponding functions in the first aspect and any of the methods designed in the first aspect, specifically:
  • the transceiver module is used to perform uplink communication through N receiving antennas on the first time unit and the first carrier, and perform uplink communication through M receiving antennas on the first time unit and the second carrier, and the M, N is a positive integer;
  • the transceiver module is configured to perform uplink communication through P receiving antennas on the second time unit and the second carrier, where P is a positive integer, and M ⁇ P ⁇ M+N, the P receiving antennas Including at least one receiving antenna among the M receiving antennas used by the second carrier and the N receiving antennas used by the first carrier, the processing module is configured to control the transceiver module not to be on the first carrier in the second time unit Uplink communication.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus includes a processor, configured to implement the methods described in the first aspect, the third aspect, and/or the fourth aspect.
  • the communication device may also include memory for storing computer programs and data.
  • the memory is coupled to the processor, and when the processor executes the computer program stored in the memory, the methods described in the first aspect, the third aspect and/or the fourth aspect can be implemented.
  • the apparatus may also include a communication interface, and the communication interface is used for the apparatus to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, and the other devices may be Network equipment or terminal equipment, etc.
  • the communication device includes:
  • a processor configured to invoke a computer program stored in a memory, so that the communication device executes the first aspect and any possible design method of the first aspect of the embodiments of the present application, or causes the device to execute the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, configured to implement the methods described in the second aspect, the fifth aspect, and/or the sixth aspect.
  • the communication device may also include memory for storing computer programs and data.
  • the memory is coupled to the processor, and when the processor executes the computer program stored in the memory, the methods described in the second aspect, the fifth aspect and/or the sixth aspect can be implemented.
  • the apparatus may also include a communication interface, and the communication interface is used for the apparatus to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, and the other devices may be Network equipment or terminal equipment, etc.
  • the communication device includes:
  • the processor is configured to invoke the computer program stored in the memory, so that the communication device executes the second aspect and any possible design method of the second aspect of the embodiments of the present application, or causes the device to execute the first aspect of the embodiments of the present application.
  • embodiments of the present application further provide a computer-readable storage medium, including a computer program, which, when run on a computer, enables the computer to execute the first aspect and any possible design method, Either the second aspect and any possible design method of the second aspect, or the third aspect and any possible design method of the third aspect, or the fourth aspect and any possible design method of the fourth aspect , or the fifth aspect and any possible design method of the fifth aspect, or the sixth aspect and any possible design method of the sixth aspect.
  • an embodiment of the present application further provides a chip system, where the chip system includes a processor and may also include a memory, for implementing the first aspect and any possible design method of the first aspect, or the second aspect and any possible design method of the second aspect, or the third aspect and any possible design method of the third aspect, or the fourth aspect and any possible design method of the fourth aspect, or the The fifth aspect and any possible design method of the fifth aspect, or the sixth aspect and any possible design method of the sixth aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiments of the present application further provide a computer program product, including a computer program, which, when run on a computer, enables the computer to execute the first aspect and any possible design method of the first aspect, Either the second aspect and any possible design method of the second aspect, or the third aspect and any possible design method of the third aspect, or the fourth aspect and any possible design method of the fourth aspect , or the fifth aspect and any possible design method of the fifth aspect, or the sixth aspect and any possible design method of the sixth aspect.
  • FIG. 1A is a schematic diagram of a time pattern according to an embodiment of the application.
  • FIG. 1B is a schematic diagram of carrier state switching according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a serving cell state switching according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a network architecture of a communication system according to an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a cell state switching method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • 6A is a schematic diagram of a situation in which ports are used by different carriers according to an embodiment of the present application.
  • 6B is a schematic diagram of a situation in which ports are used by different carriers according to another embodiment of the present application.
  • 6C is a schematic diagram of a situation in which ports are used by different carriers according to another embodiment of the present application.
  • 6D is a schematic diagram of a situation in which ports are used by different carriers according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a situation in which ports are used by different carriers according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a situation in which different carriers use antennas according to another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a situation in which different carriers use antennas according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • 15 is a schematic diagram of capability information reported by a terminal according to an embodiment of the application.
  • 16A is a schematic diagram of a CC combination according to an embodiment of the present application.
  • FIG. 16B is a schematic diagram of another CC combination according to an embodiment of the present application.
  • a serving cell state (for example, referred to as the first state in the embodiment of the present application) is introduced, so that the terminal device can be enabled when the number of serving cells whose serving cell state is in the active state is limited by the capability of the terminal According to its own communication requirements on different serving cells, the state of the serving cell can be switched from the active state to the first state, or from the first state to the active state, without switching from the active state to the deactivated state or the dormant state , or do not need to switch from the deactivated state or the dormant state to the active state, thereby helping to reduce the switching delay of the serving cell state and improve the communication performance.
  • the downlink carrier of the serving cell supports downlink communication
  • the uplink carrier of the serving cell does not support uplink communication.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one (item) of the following or its similar expression refers to any combination of these items, including any combination of single item (item) or plural item (item).
  • At least one (a) of a, b or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Each can be an element itself, or a collection containing one or more elements.
  • transmission can include sending and/or receiving, and can be a noun or a verb.
  • a port (port) and an antenna port (antenna port) are equivalent and can be mixed.
  • the terminal device is a device with a wireless transceiver function, which may be referred to as a terminal (terminal), user equipment (UE), mobile station (MS), and mobile terminal (MT). ), access terminal equipment, vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminal devices can be stationary or mobile. It should be noted that the terminal device can support at least one wireless communication technology, such as long term evolution (LTE), new radio (NR), wideband code division multiple access (WCDMA) Wait.
  • LTE long term evolution
  • NR new radio
  • WCDMA wideband code division multiple access
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a notebook computer, an all-in-one computer, a vehicle terminal, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless Wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, wearable devices, future mobile communications
  • the terminal device may also be a device with a transceiving function, such as a chip system
  • the network device is a device that provides a wireless communication function for terminal devices, and may also be referred to as access network devices, radio access network (radio access network, RAN) devices, and the like.
  • the network device may support at least one wireless communication technology, such as LTE, NR, WCDMA, and the like.
  • the network equipment includes, but is not limited to: a next-generation base station (generation nodeB, gNB), an evolved node B (evolved node B, eNB), a wireless network control system in a fifth-generation mobile communication system (5th-generation, 5G) radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, Or home node B, HNB), baseband unit (baseband unit, BBU), transmitting and receiving point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • 5G radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved node B, Or home node B, HNB
  • baseband unit baseband unit, BBU
  • transmitting and receiving point transmitting and
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario, or the network device may It is a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, and a network device in the future mobile communication or a network device in the future evolved PLMN.
  • the network device may also be an apparatus having a wireless communication function for the terminal device, such as a chip system.
  • the system-on-chip may include chips, and may also include other discrete devices.
  • the carrier may be divided into an uplink carrier and a downlink carrier according to the uplink and downlink communication.
  • the upstream carrier is used for upstream communication.
  • Downlink carriers are used for downlink communications.
  • the uplink carrier includes a normal uplink carrier and a supplemental uplink carrier SUL (supplement uplink carrier).
  • the carrier bandwidth part in this embodiment of the present application may be referred to as a bandwidth part (BWP) for short, which refers to a continuous or non-contiguous frequency domain resource on a carrier.
  • BWP bandwidth part
  • the bandwidth of this continuous or discontinuous frequency domain resource does not exceed the bandwidth capability of the terminal device, that is, the bandwidth of the BWP is less than or equal to the maximum bandwidth supported by the terminal device.
  • the BWP configured on the uplink carrier is the uplink BWP
  • the BWP configured on the downlink carrier is the downlink BWP.
  • Time unit is a period of time in the time domain.
  • the terminal device and the network device may communicate with the granularity of time unit.
  • the time unit may be a time slot, a symbol, a subframe, a radio frame, a mini-slot, a mini-slot, etc., which is not limited.
  • the duration of one time unit is related to the subcarrier spacing. Take the time slot as an example. When the subcarrier interval is 15KHz, the duration of one slot can be 1ms; when the subcarrier interval is 30KHz, the duration of one slot can be 0.5ms.
  • a serving cell refers to a cell that provides services for terminal equipment.
  • the serving cell may be a primary cell (primary cell, Pcell) or a secondary cell (secondary cell, Scell).
  • Pcell primary cell
  • Scell secondary cell
  • the Pcell is the cell accessed by the terminal equipment during initial connection, or the Pcell is the cell configured by the network equipment when the terminal equipment performs radio resource control (RRC) connection re-establishment, or the Pcell is the terminal equipment handover.
  • RRC radio resource control
  • the Scell is added by the terminal equipment through RRC signaling (also called RRC message) after the initial access is completed, and is used to provide additional radio resources. It should be noted that the Scell can also be modified or released through RRC signaling.
  • one serving cell may include M downlink carriers and N uplink carriers. Among them, M and N are greater than or equal to 0, and M and N are not equal to 0 at the same time.
  • a serving cell may include one downlink carrier and one uplink carrier.
  • one serving cell may include one downlink carrier and 0 to 2 uplink carriers.
  • a serving cell in a supplement uplink (supplement uplink, SUL) scenario, may include one downlink carrier, one uplink carrier, and one supplementary uplink carrier.
  • the terminal device can perform uplink communication on the uplink carrier and the supplementary uplink carrier at the same time, or only perform uplink communication on one of the uplink carrier or the supplementary uplink carrier.
  • the embodiment of the present application This is not limited.
  • the downlink serving cell in the embodiments of the present application refers to a cell that provides downlink transmission services for terminal equipment
  • the uplink serving cell refers to a cell that provides uplink transmission services to terminal equipment.
  • the downlink serving cell may be a primary downlink serving cell/downlink primary serving cell (downlink primary cell/primary downlink cell), or a secondary downlink serving cell/downlink secondary serving cell (downlink secondary cell/secondary cell) downlink cell);
  • the uplink serving cell can be a primary uplink serving cell/uplink primary serving cell (uplink primary cell/primary uplink cell), or a secondary uplink serving cell/uplink secondary serving cell (uplink secondary cell/secondary uplink cell).
  • the primary downlink serving cell/downlink primary serving cell and the primary uplink serving cell/uplink primary serving cell are the cells accessed by the terminal equipment during initial access, or the cells designated by the network equipment or the terminal equipment during the terminal equipment handover process.
  • the main downlink serving cell/downlink main serving cell and the main uplink serving cell/uplink main serving cell have different cell identities, and the main downlink serving cell/downlink main serving cell and the main uplink serving cell/uplink main serving cell can be switched independently.
  • the secondary downlink serving cell/downlink secondary serving cell and the secondary uplink serving cell/uplink secondary serving cell are added by the terminal equipment through RRC signaling after the initial access is completed, and can also be modified or released through RRC signaling.
  • the secondary downlink serving cell/downlink secondary serving cell and the secondary uplink serving cell/uplink secondary serving cell have different cell identities, and the secondary downlink serving cell/downlink secondary serving cell and the secondary uplink serving cell/uplink secondary serving cell can be added and modified independently and release.
  • one downlink serving cell only includes M downlink carriers, and one uplink serving cell only includes N uplink carriers, where M and N are positive integers.
  • the network device only configures the terminal device on the downlink serving cell with configurations for transmission on the M downlink carriers, such as PDSCH, PDCCH, CSI-RS, SSB, and downlink beam management related configurations.
  • the base station only configures the user on the uplink serving cell with configurations used for transmission on the N uplink carriers, for example, PUSCH, PUCCH, SRS, and uplink beam management related configurations.
  • the carrier state may include an activated state, a deactivated state, a dormant state, and a second state.
  • the second state may be referred to as the second state for short, and the name of the second state is not limited in this embodiment of the present application.
  • the uplink carrier When the carrier state of the uplink carrier is in the active state, the uplink carrier is active, and the terminal device supports uplink communication on the uplink carrier.
  • the behavior of the terminal equipment on the active uplink carrier includes:
  • Uplink reference signals can be sent on the uplink carrier, such as signal sounding reference signal (singnal reference signal, SRS), demodulation reference signal (demodulation reference signal, DMRS), phase tracking reference signal (phase tracking signal, PTRS), Or the signal carried on the physical random access channel (PRACH).
  • SRS signal sounding reference signal
  • DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • PRACH physical random access channel
  • Channel state information can be reported on the uplink carrier.
  • Data can be sent on the uplink carrier through a physical uplink shared channel (PUSCH), that is, PUSCH transmission can be performed on the uplink carrier.
  • PUSCH physical uplink shared channel
  • uplink control information can be sent on the PUCCH, that is, PUCCH transmission can be performed on the uplink carrier.
  • PUCCH physical uplink control channel
  • the uplink carrier When the carrier state of the uplink carrier is in the deactivated state, the uplink carrier is deactivated, and the terminal device does not support uplink communication on the uplink carrier.
  • the behavior of the terminal device on the deactivated uplink carrier includes:
  • uplink reference signals such as signals carried on SRS, DMRS, PTRS or PRACH.
  • the uplink carrier When the carrier state of the uplink carrier is the second state, the uplink carrier is activated, and the terminal device does not support uplink communication on the uplink carrier.
  • the carrier state of the uplink carrier is the second state, there is no active BWP on the uplink carrier, but there is an active BWP on the downlink carrier belonging to the same cell as the uplink carrier; or, when the carrier state of the uplink carrier is the first In the second state, the BWP activated on the uplink carrier is a preconfigured BWP, and the preconfigured BWP may be defined by a protocol or configured by the network device to the terminal device through RRC signaling, which is not limited.
  • the carrier state of the uplink carrier is the second state
  • there is an activated BWP on the uplink carrier but the number of ports or channels of the BWP activated by the terminal device on the uplink carrier is 0.
  • the carrier state of the uplink carrier is the second state
  • there is an activated BWP on the uplink carrier but the carrier state identifier corresponding to the uplink carrier is used to indicate that the uplink carrier state is the second state.
  • the port includes an uplink antenna port, and the channel is an uplink transmission channel.
  • the behavior of the terminal device on the uplink carrier includes:
  • uplink reference signals such as signals carried on SRS, DMRS, PTRS or PRACH.
  • the network device may instruct the terminal device to switch the carrier state of the uplink carrier from the active state to the second state, or from the second state to the active state, through downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the DCI can indicate to the terminal equipment whether the carrier state of the uplink carrier configured for it is switched from the active state to the second state, or is switched from the second state to the active state by indicating the port number or channel number of the uplink carrier.
  • the DCI may indicate to the terminal device that the carrier state of the uplink carrier configured for it is switched from the active state to the second state by indicating that the port number or channel number of the uplink carrier is 0.
  • the DCI may indicate to the terminal device that the carrier state of the uplink carrier configured for it is switched from the second state to the active state by indicating that the number of ports or channels of the uplink carrier is N, where N is greater than An integer of 0.
  • the network device may also indicate to the terminal device through DCI the carrier status of the uplink carriers of the multiple serving cells configured for the terminal device.
  • the network device may instruct the terminal device to switch the carrier state of the uplink carrier configured for the terminal device from the active state to the deactivated state, or from the deactivated state through media access control control element (media access control control element, MAC CE) signaling.
  • the active state is switched to the active state, or the deactivated state is switched to the second state, or the second state is switched to the deactivated state.
  • media access control control element media access control control element, MAC CE
  • the network device may instruct the terminal device to switch the carrier state in a semi-static manner.
  • the network device may configure one or more time patterns for an uplink carrier through high-layer signaling, and the time pattern includes a time unit corresponding to the carrier state of the uplink carrier.
  • the time pattern includes 10 time units, the carrier state of the uplink carrier corresponding to the first seven time units is the active state, and the carrier state of the uplink carrier corresponding to the last three time units is the second state.
  • the terminal device can configure the carrier state of the uplink carrier to the active state according to the time pattern, and can perform uplink communication through the uplink carrier in the first 7 time units, and in the last 3 time units.
  • the carrier state of the uplink carrier is switched from the active state to the second state.
  • the time pattern includes a time unit corresponding to the carrier state of the uplink carrier in the active state, and the time unit in the time pattern that does not correspond to the carrier state of the uplink carrier may be adaptively determined by the network device as the active state or the second time unit. condition.
  • the time pattern includes 10 time units, the carrier state of the uplink carrier corresponding to the first 7 time units is active, and the carrier state of the uplink carrier corresponding to the last 3 time units depends on the implementation of the network device.
  • the network device when the network device configures multiple time patterns for the terminal device through high-level signaling, the network device can also activate one of the time patterns through physical layer signaling or MAC CE signaling, and the terminal device can activate one of the time patterns through physical layer signaling or MAC CE signaling. The device can determine the carrier state of the corresponding uplink carrier according to the activated time pattern.
  • the network device may also uniformly configure one or more time patterns for all activated uplink carriers or configured uplink carriers to indicate carrier states of different uplink carriers in the time domain.
  • the terminal equipment is equipped with 2 uplink carriers, namely carrier 1 and carrier 2, and the time pattern uniformly configured by the network equipment for carrier 1 and carrier 2 is shown in Fig. 1A, including 10 time slots.
  • the carrier state of carrier 1 corresponding to time slots 0-3 is the active state
  • the carrier state of carrier 2 is the second state
  • the carrier state of carrier 1 corresponding to time slots 4-6 is the second state
  • the carrier state of carrier 2 is the second state.
  • the carrier states of carrier 1 and carrier 2 corresponding to time slots 7-9 are both active states.
  • the terminal device configures the carrier state of carrier 1 as the active state and the carrier state of carrier 2 as the second state on time slots 0-3 according to the time patterns corresponding to carrier 1 and carrier 2.
  • the carrier state of carrier 1 is configured as the second state
  • the carrier state of carrier 2 is configured as the active state
  • the carrier state of carrier 1 is configured as the active state in time slots 7-9, and the carrier continues to be maintained.
  • the carrier state of 2 is the configuration of the active state.
  • the network device may configure a periodic time pattern for the uplink carrier.
  • the terminal device can determine the carrier state of the uplink carrier according to the periodic time pattern for the uplink carrier.
  • the period of the periodic time pattern is 10 time units
  • the carrier state of the uplink carrier corresponding to the first 7 time units is the active state
  • the carrier state of the uplink carrier corresponding to the last 3 time units is the second state.
  • the terminal device can switch the carrier state of the uplink carrier from the second state to the active state every 3 time units, and switch the carrier state of the uplink carrier from the active state to the second state every 7 time units.
  • the period for switching the carrier state of the uplink carrier from the second state to the active state may be the same as the period for transmitting the SRS.
  • the time patterns of uplink carriers of multiple serving cells of the terminal device conflict, for example, in the same time unit, M serving cells among the N serving cells of the terminal device need to enter the active state, or M serving cells need to enter the active state.
  • the uplink signal is sent, and the terminal equipment can only satisfy L serving cells to send the uplink signal at the same time, where N is greater than or equal to M, M is greater than or equal to L, and N, M and L are positive integers.
  • the terminal device may determine a serving cell capable of uplink transmission according to the priorities of the M serving cells.
  • the priority of the serving cell may be predefined, for example, in the M serving cells, the priority of the Pcell is higher than the priority of the SPcell, and the priority of the SPCell is higher than the priority of the Scell.
  • the network device and/or the terminal device may determine the priority of the secondary cell according to the channel with transmission demand.
  • the priorities of the secondary cells in descending order are: PRACH, PUCCH/PUSCH carrying HARQ-ACK information and/or SR, PUCCH/PUSCH carrying CSI, and PUSCH not carrying HARQ-ACK information/CSI , the channel carrying the SRS.
  • the priority of the secondary cells is determined according to the period of data carried on the channels.
  • the priorities of the secondary cells are, in descending order, aperiodic, semi-permanent, and periodic.
  • the priority of the uplink carrier is higher than the priority of the supplementary uplink carrier.
  • the network device may implicitly indicate the state switching of one uplink carrier according to the uplink data scheduling. For example, in the same time unit, the network equipment schedules the terminal equipment to use port 1 to send PUSCH on uplink carrier 1, and use port 1 to send PUSCH on uplink carrier 2, then uplink carrier 1 and uplink carrier 2 are in the active state, and other The activated uplink carrier is in the second state.
  • the serving cell state in the embodiment of the present application refers to the cell state of the serving cell, which may include an activated state, a deactivated state, a dormant state, and a first state.
  • the first state may be referred to as the first state for short.
  • the first state in this embodiment of the present application may also be referred to as the X state, or other states, etc., which is a cell state other than an activated state, a deactivated state, and a dormant state, or a state that adds For an additionally restricted active state, this embodiment of the present application does not limit the name of the first state.
  • the uplink carrier of the serving cell supports uplink communication
  • the downlink carrier of the serving cell supports downlink communication.
  • the terminal device can communicate on the uplink carrier and the downlink carrier.
  • the state of the serving cell if the terminal device can communicate on the uplink carrier, it can be understood that the uplink carrier is activated; if the terminal device can communicate on the downlink carrier, it can be understood that the downlink carrier is activated. of.
  • the carrier state of the uplink carrier of the serving cell is the active state
  • the carrier state of the downlink carrier of the serving cell is the active state.
  • the behavior of the terminal device on the serving cell may include:
  • Uplink reference signals such as SRS, DMRS, PTRS, or signals carried on PRACH, may be sent on the serving cell.
  • CSI reporting can be performed on the serving cell, that is, reporting is performed for the CSI of the serving cell;
  • the physical downlink control channel can be monitored on the serving cell, that is, the PDCCH of the serving cell can be monitored.
  • the PDCCH for the serving cell can be monitored, such as cross-carrier scheduling, sleep state indication, and the like.
  • Data can be sent on the physical uplink shared channel (PUSCH) of the serving cell, that is, PUSCH transmission can be performed on the serving cell.
  • PUSCH physical uplink shared channel
  • uplink control information can be sent on the PUCCH, that is, PUCCH transmission can be performed on the serving cell.
  • PUCCH physical uplink control channel
  • Downlink reference signals such as CSI-RS, DMRS, PTRS, TRS, or synchronization signal block (SSB), can be received on the serving cell.
  • CSI-RS CSI-RS
  • DMRS DMRS
  • PTRS PTRS
  • TRS synchronization signal block
  • SSB synchronization signal block
  • the uplink carrier of the serving cell does not support uplink communication
  • the downlink carrier of the serving cell does not support downlink communication.
  • the terminal equipment cannot communicate on the uplink carrier and the downlink carrier.
  • the terminal equipment cannot communicate on the uplink carrier, which can be understood as all uplink carriers are deactivated; the terminal equipment cannot communicate on the downlink carrier, which can be understood as the downlink carrier.
  • the carrier is deactivated.
  • the state of the serving cell is in the deactivated state, the carrier state of the uplink carrier of the serving cell is in the deactivated state, and the downlink carrier of the serving cell is in the deactivated state.
  • the behavior of the terminal device on the serving cell may include:
  • Uplink reference signals such as SRS, DMRS, PTRS, or signals carried on PRACH, are not available on the serving cell.
  • the PDCCH can not be monitored on the serving cell, that is, the PDCCH of the serving cell is not monitored;
  • Do not receive downlink reference signals such as CSI-RS, DMRS, PTRS, TRS, or synchronization signal blocks (SSB), on the serving cell.
  • downlink reference signals such as CSI-RS, DMRS, PTRS, TRS, or synchronization signal blocks (SSB)
  • the uplink carrier of the serving cell does not support uplink communication
  • the downlink carrier of the serving cell can support part of downlink communication.
  • the behavior of the terminal equipment on the serving cell when the serving cell is in a dormant state includes:
  • CSI measurement can be performed on the serving cell, that is, measurement is performed on the CSI-RS sent in the serving cell;
  • the PDCCH for the serving cell can be monitored, such as a sleep indication.
  • the downlink carrier of the serving cell supports downlink communication, and the uplink carrier of the serving cell does not support uplink communication.
  • the terminal device can communicate on the downlink carrier, but cannot communicate on the uplink carrier.
  • the downlink carrier of the serving cell when the state of the serving cell is the first state, the downlink carrier of the serving cell is activated, and the uplink carrier of the serving cell is deactivated.
  • the carrier state of the uplink carrier of the serving cell when the state of the serving cell is the first state, the carrier state of the uplink carrier of the serving cell is the deactivated state, and the carrier state of the downlink carrier of the serving cell is the active state.
  • the state of the serving cell is the first state
  • the downlink carrier of the serving cell is activated, and the uplink carrier of the serving cell is activated, but the number of ports and/or channels of the uplink carrier is 0.
  • the state of the serving cell is the first state
  • the downlink carrier of the serving cell is activated, and the uplink carrier of the serving cell is activated, but the BWP activated on the uplink carrier is the preconfigured BWP or the downlink carrier.
  • the BWP activated on the carrier is the preconfigured BWP.
  • the network device configures the cell for the cell whose serving cell state is the first state.
  • the state identifier is different from the cell state identifier configured by the network device for the cell whose cell state is in the active state.
  • the cell state identifier configured by the network device for the serving cell whose serving cell state is the first state is the first cell state identifier (for example, 1)
  • the cell state identifier configured by the network device for the serving cell whose serving cell state is the active state is the first cell state identifier.
  • Second cell status identifier (eg 0).
  • a serving cell of a terminal device includes or is configured with multiple uplink carriers, if at least one of the multiple uplink carriers can perform uplink communication, the serving cell state of the terminal device is active.
  • the carrier state of the downlink carrier of the serving cell is the active state
  • the uplink carrier state of the serving cell is the second state
  • the carrier state of the uplink carrier is the second state.
  • the behavior of the terminal device on the serving cell may include:
  • Receive downlink reference signals such as CSI-RS, DMRS, PTRS, TRS, SSB, etc., on the serving cell.
  • options 1), 4), 5), and 6) are optional, and one or more of options 2) and 3) are mandatory.
  • the terminal device may perform the serving cell state switching according to the serving cell state switching instruction sent by the network device, as shown in FIG. 2 , for example.
  • the terminal device switches the serving cell state from the deactivated state to the first state according to the first indication.
  • the terminal equipment can switch the serving cell state between the dormant state and the first state by the following methods: firstly switch the carrier state from the dormant state to the active state, and then switch the carrier state from the dormant state to the active state. Switching from the active state to the first state; for example, when the terminal equipment switches the serving cell state from the first state to the dormant state, it can be triggered by DCI, and the implementation method is similar to changing the serving cell state from the active state to the dormant state.
  • the switching between the activated state and the first state, and the switching between the deactivated state and the first state are mainly described.
  • FIG. 3 it is a schematic diagram of a network architecture of a communication system according to an embodiment of the present application, including a terminal device and a network device.
  • the network equipment and terminal equipment in the embodiments of the present application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; can also be deployed on water; and can also be deployed on aircraft, balloons, and artificial satellites in the air.
  • the embodiments of the present application do not limit the deployment scenarios of network devices and terminal devices.
  • communication between the network device and the terminal device and between the terminal device and the terminal device may be performed through a licensed spectrum (licensed spectrum), or may be communicated through an unlicensed spectrum (unlicensed spectrum), or Communication can be performed over both licensed spectrum and unlicensed spectrum at the same time, which is not limited.
  • Communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be performed through the frequency spectrum below 6 gigahertz (gigahertz, GHz), or through the frequency spectrum above 6 GHz, and can also use the frequency spectrum below 6 GHz at the same time. Communicate with spectrum above 6GHz.
  • the embodiments of the present application are applicable to both low-frequency scenarios (eg, sub6G) and high-frequency scenarios (above 6G).
  • the embodiments of the present application can also be applied to scenarios in which the terminal device is configured with multiple serving cells or carriers, such as CA scenarios, dual connection (dual connection, DC) scenarios, SUL scenarios, CA and SUL combination scenarios, and the like.
  • the network architecture of the communication system shown in FIG. 3 is only an example, and does not limit the network architecture of the communication system in the embodiment of the present application.
  • the embodiments of the present application do not limit the number of network devices and the number of terminal devices in the communication system.
  • multi-point coordinated communication may be performed between the network devices and the network devices.
  • the communication system includes multiple macro base stations and multiple micro base stations, wherein the macro base station and the macro base station, the micro base station and the micro base station, and the macro base station and the micro base station can perform multi-point coordinated communication.
  • FIG. 4 it is a flowchart of a cell state switching method according to an embodiment of the present application, which specifically includes the following steps:
  • the network device sends a first instruction to the terminal device.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state or to switch out of the first state.
  • the serving cell state is the first state
  • the downlink carrier of the serving cell supports downlink communication
  • the uplink carrier of the serving cell does not support uplink communication.
  • the network device may send the first instruction to the terminal device, for example, the first instruction may be sent periodically and/or triggered by an event.
  • the network device may configure N serving cells for the terminal device. If the N serving cells are activated, the maximum number of ports and/or channels supported by the terminal device for uplink communication cannot meet the simultaneous transmission requirements of the uplink carriers of the N serving cells.
  • M serving cells among the N serving cells may be initialized as serving cells whose serving cell state is active state, and the remaining NM serving cells may be initialized as serving cells whose serving cell state is the first state.
  • the cell states of the M serving cells in the serving cells are switched to the first state, and/or the cell states of the N-M serving cells in the serving cells are switched out of the first state.
  • the number N of serving cells configured by the network device for the terminal device and the number M of serving cells activated for the terminal device do not exceed the maximum capability supported by the terminal device, and N ⁇ M>0.
  • the network device may initially configure the cell states of the N serving cells according to the priority order of the N serving cells, and perform cell state switching.
  • the first instruction may be carried in DCI or MAC CE signaling and sent by the network device to the terminal device, which may be cell-level signaling, or specific signaling of the terminal device, or signaling of a terminal group set, This is not limited.
  • the object in the first instruction indicating entering the first state or switching out of the first state may be a cell or a carrier, or may be a cell group or a carrier group.
  • the terminal device receives the first instruction from the network device, and switches the serving cell state according to the first instruction.
  • Embodiment 1 When the state of the serving cell is the first state, the uplink carrier of the serving cell is deactivated, and the downlink carrier of the serving cell is activated.
  • the first instruction may be activation or deactivation signaling of the carrier.
  • the terminal device deactivates the serving cell according to the first instruction. Upstream carrier.
  • the state of the serving cell is switched from the active state to the first state.
  • the first instruction is not used to instruct the state switching of the downlink carrier, that is, the downlink carrier state remains unchanged.
  • the terminal device when the state of the serving cell is the first state, if the terminal device receives the first instruction sent from the network device, and the first instruction is used to instruct to activate the uplink carrier, the terminal device activates the uplink of the serving cell according to the first instruction. carrier.
  • the serving cell state is switched from the first state to the active state.
  • the first instruction is not used to indicate the status of the downlink carrier, that is, the status of the downlink carrier remains unchanged.
  • the state of the serving cell is the first state
  • the terminal device receives the first instruction sent from the network device, and the first instruction is used to instruct to deactivate the downlink carrier, the terminal device deactivates the serving cell according to the first instruction downlink carrier.
  • the first instruction is not used to instruct the status switching of the uplink carrier, that is, the status of the uplink carrier remains unchanged.
  • the serving cell state is switched from the first state to the deactivated state.
  • the terminal device receives a first instruction sent from the network device, and the first instruction is used to instruct to activate the downlink carrier, the terminal device activates the downlink of the serving cell according to the first instruction. carrier, thereby switching the serving cell state from the deactivated state to the first state.
  • the first instruction is not used to instruct the status switching of the uplink carrier, that is, the status of the uplink carrier remains unchanged.
  • the first instruction is used to activate an uplink carrier in the serving cell; in another example, the first instruction is used to activate a downlink carrier in the serving cell. In another case, if the serving cell includes multiple uplink carriers or downlink carriers, for example, the first instruction is used to activate all uplink carriers in the serving cell; for another example, the first instruction is used to activate all downlink carriers in the serving cell carrier. In this way, the independent activation and deactivation of the uplink and downlink carriers can be flexibly realized, and the different terminal capabilities, channels and remaining resources of the uplink and the downlink can be matched respectively.
  • the first instruction may be activation or deactivation signaling of the serving cell.
  • the terminal device receives the first instruction sent from the network device, where the first instruction is used to instruct to deactivate the uplink serving cell 1, the terminal device deactivates the uplink serving cell 1 according to the first instruction.
  • the first instruction is not used to instruct the state switching of the downlink serving cell, that is, the state of the downlink serving cell remains unchanged.
  • the terminal device receives the first instruction sent from the network device, where the first instruction is used to instruct to activate the uplink serving cell 1, the terminal device activates the uplink serving cell 1 according to the first instruction.
  • the first instruction is not used to instruct the state switching of the downlink serving cell, that is, the state of the downlink serving cell remains unchanged.
  • the terminal device receives the first instruction sent from the network device, where the first instruction is used to instruct to deactivate the downlink serving cell 1, the terminal device deactivates the downlink serving cell 1 according to the first instruction. In this case, the first instruction is not used to instruct the state switching of the uplink serving cell, that is, the state of the uplink serving cell remains unchanged.
  • the terminal device receives the first instruction sent from the network device, where the first instruction is used to instruct to activate the downlink serving cell 1, the terminal device activates the downlink serving cell 1 according to the first instruction.
  • the first instruction is not used to instruct the state switching of the uplink serving cell, that is, the state of the uplink serving cell remains unchanged.
  • the first instruction is used to activate an uplink carrier in the uplink serving cell; in another example, the first instruction is used to activate a downlink carrier in the uplink serving cell.
  • the first instruction is used to activate all uplink carriers in the uplink serving cell; to activate all downlink carriers in the downlink serving cell.
  • the independent activation and deactivation of the uplink and downlink serving cells can be flexibly realized, and the different terminal capabilities, channels, and remaining resources of the uplink and the downlink can be matched respectively.
  • the network device can use RRC signaling or DCI or MAC CE signaling for the activation or deactivation signaling of carriers of multiple serving cells configured by the terminal device.
  • RRC signaling or DCI or MAC CE signaling can be sent to the terminal device on any activated downlink carrier, and the activated downlink carrier can be the downlink carrier of PCel, SCell or PSCell, which is not limited here.
  • the first instruction may also be cell-level signaling.
  • at least one bit in the first instruction is used to indicate the current serving cell state of the terminal device, and at least one bit in the first instruction is used to indicate the serving cell state to which the terminal device needs to switch. For example, when the current serving cell state of the terminal device is in the active state, if a first command sent from the network device is received, where the first command is an enable signaling for switching the cell state from the active state to the first state, then The terminal device switches the serving cell state from the active state to the first state according to the first instruction.
  • the terminal device when the current serving cell state of the terminal device is the first state, if it receives a first instruction sent from the network device, wherein the first instruction is cell state activation signaling, the terminal device will serve the cell according to the first instruction. The state switches from the first state to the active state.
  • the terminal device when the current serving cell state of the terminal device is in the deactivated state, if it receives a first command sent from the network device, where the first command is an enable signaling for switching the cell state from the deactivated state to the first state, Then, the terminal device switches the serving cell state from the deactivated state to the first state according to the first instruction.
  • the terminal device when the current serving cell state of the terminal device is the first state, if it receives a first command sent from the network device, where the first command is cell state deactivation signaling, the terminal device will serve the service according to the first command.
  • the cell state is switched from the first state to the deactivated state.
  • Embodiment 2 When the state of the serving cell is the first state, the downlink carrier of the serving cell is activated, and the uplink carrier of the serving cell is activated, but the number of ports and/or channels of the uplink carrier is 0.
  • the following takes the number of ports as an example. For the number of channels, please refer to the related introduction of the number of ports.
  • the terminal device switches the serving cell state from the active state to the first state according to the first instruction.
  • the configuration of the first instruction for indicating that the port number of the uplink carrier of the serving cell is 0 can be implemented in the following manner: the cell activation signaling carries an indication that the port number of the uplink carrier of the serving cell is 0.
  • the state of the serving cell of the terminal device is the first state
  • the first command is used to indicate that the port number of the uplink carrier of the serving cell is configured as P, 0 ⁇ P ⁇ M, and P is a positive integer
  • M is the maximum number of ports supported by the terminal device for uplink communication
  • the terminal device switches the serving cell state from the first state to the active state according to the first instruction.
  • the first instruction is used to indicate that the port number of the uplink carrier of the serving cell is configured as P, which can be implemented by the following methods: carrying the port number of the uplink carrier of the serving cell in the cell activation signaling, or carrying the service cell in the cell activation signaling.
  • the network device may semi-statically or dynamically send to the terminal device an indication that the number of ports carrying the uplink carrier of the serving cell is P, or that the number of ports carrying the uplink carrier of the serving cell is not 0 in the cell activation signaling.
  • Cell activation signaling Cell activation signaling.
  • the state of the serving cell of the terminal device when the state of the serving cell of the terminal device is in the deactivated state, if it receives the first instruction sent from the network device, the first instruction is used to instruct to configure the port number of the uplink carrier of the serving cell to 0, then the terminal device According to the first instruction, the state of the serving cell is switched from the deactivated state to the first state.
  • the first instruction is used to indicate that the port number of the uplink carrier of the serving cell is configured to be 0, which can be implemented by the following methods: carrying the port number of the uplink carrier of the serving cell in the cell activation signaling, or carrying the service cell in the cell activation signaling. Indicates that the port number of the uplink carrier of the cell is 0.
  • the cell activation signaling in this embodiment of the present application may be RRC signaling, MAC CE signaling, or DCI, etc., which is not limited.
  • the terminal device when the state of the serving cell of the terminal device is the first state, if a first instruction sent from the network device is received, and the first instruction is used to instruct to deactivate the serving cell, the terminal device will deactivate the serving cell according to the first instruction. The state switches from the first state to the deactivated state.
  • Embodiment 3 When the state of the serving cell is the first state, the downlink carrier of the serving cell is activated, the uplink carrier of the serving cell is activated, but the BWP activated on the uplink carrier is a pre-configured BWP; or, when the serving cell state In the first state, the downlink carrier of the serving cell is activated, the uplink carrier of the serving cell is activated, but the BWP activated on the downlink carrier is a preconfigured BWP. For example, when the BWP activated on the uplink carrier is a preconfigured BWP, the number of ports and/or the number of channels of the preconfigured BWP is 0.
  • the network device may indicate the preconfigured BWP to the terminal device through RRC signaling.
  • the RRC signaling includes the BWP ID of the preconfigured BWP.
  • the preconfigured BWP on the uplink carrier of the serving cell may be predefined by a protocol.
  • the BWP activated on the uplink carrier is a preconfigured BWP.
  • the first command sent from the network device is received, the first command is used to instruct to activate the preconfigured BWP on the uplink carrier of the serving cell, Then, the terminal device switches the serving cell state from the active state to the first state according to the first instruction.
  • the terminal device when the state of the serving cell of the terminal device is the first state, if the first command sent from the network device is received, the first command is used to instruct to activate the BWP with the number of ports Q on the uplink carrier of the serving cell, 0 ⁇ Q ⁇ M, where M is the maximum number of ports supported by the terminal device for uplink communication, then the terminal device switches the preconfigured BWP to the BWP with Q ports on the uplink carrier according to the first instruction (that is, the number of ports on the uplink carrier is not 0). BWP), thereby switching the serving cell state from the first state to the active state.
  • the BWP switching mechanism in the prior art may be reused, and the switching is performed through the BWP ID, which will not be repeated here.
  • the network device may dynamically or semi-statically send the first instruction to the terminal device to switch the BWP, so as to switch between the active state and the first state in the serving cell state.
  • the first instructions of the multiple serving cells may be carried in one signaling and sent to the terminal device, or the first instructions of each serving cell may be sent to the terminal separately equipment.
  • the serving cells configured by the terminal equipment as an example, cell 1, cell 2, and cell 3, the serving cell status of cell 1 and cell 3 is the active state, the serving cell status of cell 2 is the first state, and 0 is used to indicate that the serving cell is activated.
  • the pre-configured BWP on the uplink carrier, 1 is used to indicate the activation of the non-pre-configured BWP on the uplink carrier of the serving cell. If the signaling received by the terminal device is 011, the terminal device switches the cell state of cell 1 from the active state For the first state, the cell state of the cell 2 is switched from the first state to the active state, and the cell state of the cell 3 remains the active state unchanged.
  • Embodiment 4 When the state of the serving cell is the first state, the downlink carrier of the serving cell is activated, and the uplink carrier of the serving cell is activated, but the cell state identifier is the first cell state identifier, wherein the first cell state identifier Used to identify the first state.
  • the terminal device when the terminal device is in the active state of the serving cell, if it receives the first instruction sent from the network device, the first instruction is used to indicate that the cell state identifier of the serving cell is configured as the first cell state identifier , the terminal device switches the serving cell state from the active state to the first state according to the first instruction.
  • the terminal device when the state of the serving cell is in the deactivated state, if the terminal device receives a first instruction sent from the network device, the first instruction is used to indicate that the cell state identifier of the serving cell is configured as the first cell state identifier, the terminal device According to the first instruction, the state of the serving cell is switched from the deactivated state to the first state.
  • the state of the serving cell is the first state
  • the terminal device receives a first instruction sent from the network device
  • the first instruction is used to indicate that the cell state identifier of the serving cell is configured as the second cell state identifier
  • the terminal device According to the first instruction, the state of the serving cell is switched from the first state to the active state.
  • the second cell state identifier is used to identify the active state.
  • the state of the serving cell is the first state
  • the terminal device receives the first instruction sent from the network device
  • the first instruction is used to indicate that the cell state identifier of the serving cell is configured as the third cell state identifier
  • the terminal device According to the first instruction, the state of the serving cell is switched from the first state to the deactivated state.
  • the third cell state identifier is used to identify the deactivated state. In an implementation manner, the first cell state identifier is 11, the second cell state identifier is 10, and the third cell state identifier is 01.
  • the network device may dynamically or semi-statically send the first instruction to the terminal device to configure the cell state identifier.
  • the first instructions of the multiple serving cells may be carried in one signaling and sent to the terminal device, or the first instructions of each serving cell may be sent separately. sent to the end device.
  • Embodiment 5 When the state of the serving cell is the first state, the carrier state of the downlink carrier of the serving cell is the active state, and the carrier state of the uplink carrier of the serving cell is the second state.
  • the specific implementation of the first instruction is related to the carrier state of the uplink carrier.
  • the specific implementation when the state is the second state is related.
  • the above-mentioned behaviors of the terminal equipment when the serving cell state is the first state may be used in combination with each other, or may be used alone, which is not limited.
  • the first instruction can be used to indicate the BWP and the cell state identifier activated on the carrier.
  • the terminal device acquires terminal capability information, and the terminal device reports the capability information to the network device, where the capability information includes the frequency band supported by the terminal device and the maximum number of channels and/or the maximum number of channels supported on the frequency band supported by the terminal device.
  • the number of ports and/or the maximum number of antennas so that the network device can configure the corresponding number of channels and/or the number of ports and/or the number of antennas for the uplink carrier of the serving cell configured for the terminal device.
  • the capability information reported by the terminal device to the network device may also include the maximum number of ports and/or the number of channels and/or the maximum number of antennas supported by the terminal device for uplink communication.
  • the capability information reported by the terminal device to the network device may also include the maximum number of ports and/or the number of channels and/or the maximum number of antennas supported by the terminal device for downlink communication.
  • the capabilities reported by the terminal device include at least one of the following:
  • the band/CC combination that can be activated at the same time or the number K of bands/CC that can be activated at the same time, or the total bandwidth or bandwidth combination of the band/CC that can be activated at the same time, or the serving cell combination that can be activated at the same time;
  • Band/CC combination that can be transmitted at the same time or in parallel, or the number m of bands/CC that can be transmitted simultaneously or in parallel, or the total bandwidth or bandwidth combination of bands/CC that can be transmitted simultaneously or in parallel, or can be transmitted simultaneously or in parallel.
  • terminal devices can report independently, and capabilities are decoupled, that is, different capabilities can be the same or different.
  • capabilities For a capability, its corresponding uplink and downlink are also decoupled, that is, only one of the uplink or the downlink may be reported, or both, and the uplink and downlink capabilities may be the same or different.
  • the uplink carrier capability as an example, M ⁇ K ⁇ L ⁇ m, that is, the number of uplink carriers that can be configured by the terminal device is greater than or equal to the number of uplink carriers that can be activated at the same time, and the number of uplink carriers that can be activated simultaneously is greater than or It is equal to the number of uplink carriers that can be quickly switched, and the number of uplink carriers that can be quickly switched is greater than or equal to the number of uplink carriers that can be transmitted simultaneously.
  • the base station can instruct the user to perform fast carrier switching through RRC, MAC CE, DCI and other signaling; the user sends the uplink data channel on the band/CC/serving cell in the uplink band/CC/serving cell combination that can be quickly switched or simultaneously transmitted , uplink control information, uplink random access channel or uplink reference signal, namely PUSCH, PUCCH, PRACH, SRS, DMRS, etc.
  • uplink control information uplink random access channel or uplink reference signal, namely PUSCH, PUCCH, PRACH, SRS, DMRS, etc.
  • the simultaneously activated uplink band combinations reported by the terminal device are a subset/full set of the simultaneously configurable uplink band combinations
  • the simultaneously transmitted uplink band combinations reported by the terminal device are A subset/full set of upstream band combinations that can be activated simultaneously.
  • the total bandwidth of the simultaneously activated uplink band/CC reported by the terminal device is less than or equal to the total uplink band/CC bandwidth that can be configured at the same time, and/or, the uplink band/CC reported by the terminal device that can be simultaneously transmitted
  • the total bandwidth of the /CC is less than or equal to the total bandwidth of the uplink band/CC that can be activated at the same time.
  • M ⁇ K ⁇ L ⁇ m that is, the number of downlink carriers that can be configured by the terminal device is greater than or equal to the number of downlink carriers that can be activated simultaneously, and the number of downlink carriers that can be activated simultaneously is greater than or equal to the number of downlink carriers that can be activated simultaneously.
  • the number of downlink carriers that can be quickly switched, and the number of downlink carriers that can be quickly switched is greater than or equal to the number of downlink carriers that can be simultaneously transmitted.
  • the base station can instruct the user to perform fast carrier switching through RRC, MAC CE, DCI and other signaling; the user receives the downlink data channel on the band/CC/serving cell in the downlink band/CC/serving cell combination that can be quickly switched or simultaneously transmitted , downlink control information, downlink synchronization channel or downlink reference signal, namely PDSCH, PDCCH, SSB, CSI-RS, DMRS, etc.
  • the downlink band combinations that can be activated simultaneously reported by the terminal device are a subset/full set of downlink band combinations that can be configured at the same time, and/or, the downlink band combinations that can be simultaneously received reported by the terminal device are Subset/full set of downstream band combinations that can be activated simultaneously.
  • the total bandwidth of downlink bands/CCs that can be activated at the same time reported by the terminal device is less than or equal to the total bandwidth of downlink bands/CCs that can be configured at the same time, and/or the downlink band/CC reported by the terminal device that can be simultaneously received.
  • the total bandwidth of /CC is less than or equal to the total bandwidth of downlink band/CC that can be activated at the same time.
  • the uplink carrier and the downlink carrier can break the flexible band pairing.
  • a serving cell includes an uplink with a carrier frequency of 1.8G and a downlink with a carrier frequency of 700MHz.
  • the network device can flexibly select an uplink or downlink carrier according to the channel measurement results and resource load conditions of different uplink carriers.
  • the terminal capability reports the total number of receiving and/or transmitting channels and/or switchable channels of the terminal, for example, reporting which channels and/or how many channels can be switched between each other in which band/CC combinations .
  • the terminal device only reports two of the above capabilities, that is, reports the first uplink band/CC combination and the second uplink band/CC combination, and the first uplink band/CC combination is a band/CC that can be configured at the same time.
  • the second uplink band/CC combination is a band/CC combination that can be activated at the same time, and is also a band/CC combination that can be transmitted at the same time.
  • the second combination is a subset of the first combination, or the first combination
  • the base station can configure M or less uplink carriers/uplink bands for the terminal device, and then dynamically select one uplink carrier from the configured carriers through RRC signaling, MAC CE signaling or DCI signaling. or several carriers are quickly activated and deactivated, ensuring that the number of carriers activated at the same time is less than or equal to K, and the terminal equipment can quickly switch between M different uplink carriers, so as to more efficiently utilize the current channel conditions and service characteristics.
  • the resources of M uplink carriers avoid the time delay caused by uplink carrier switching through RRC carrier reconfiguration signaling. If the UE also reports the total number of channels, and/or which channels and/or how many channels can be switched to each other in which band/CC combinations, the above switching needs to consider this capability.
  • the terminal device only reports two of the above capabilities, that is, reports the first uplink band/CC combination and the second uplink band/CC combination, and the first uplink band/CC combination is a band/CC that can be configured at the same time.
  • the CC combination is also a band/CC combination that can be activated at the same time.
  • the second uplink band/CC combination is a band/CC combination that can be transmitted simultaneously.
  • the second combination is a subset of the first combination, or the first combination.
  • the base station can configure and activate less than or equal to M uplink carriers/uplink bands for the terminal device, and then dynamically select one or more carriers in the configured or activated carriers through DCI signaling to switch to ensure that The number of transmission carriers at the same time is less than or equal to m, which can realize the terminal equipment to switch between M different uplink carriers more quickly, so as to use the resources of M uplink carriers more efficiently according to the current channel conditions and service characteristics, avoiding the need to pass The delay caused by uplink carrier switching by RRC carrier reconfiguration signaling, or the delay caused by activating/deactivating the uplink carrier through MAC CE signaling. If the UE also reports the total number of channels, and/or which channels and/or how many channels can be switched to each other in which band/CC combinations, the above switching needs to consider this capability.
  • the terminal equipment reports three of the above capabilities, namely reporting the first uplink band/CC combination, the second uplink band/CC combination and the third band/CC combination, and the first uplink band/CC combination is A band/CC combination that can be configured at the same time, the second uplink band/CC combination is a band/CC combination that can be activated at the same time, the third uplink band/CC combination is a band/CC combination that can be transmitted at the same time, and optionally, the third combination is a subset of the second combination, the second combination is a subset of the first combination, or the number of bands/CCs in the first combination is greater than the number of bands/CCs in the second combination, and the number of bands/CCs in the second combination The number is greater than the number of bands/CCs in the third combination, that is, the above M>K>m.
  • the base station can configure M uplink carriers/uplink bands or less for the terminal device, then activate M uplink carriers/uplink bands or less, and then switch uplink carriers through DCI signaling to ensure that the
  • the terminal equipment can quickly switch between M different uplink carriers more quickly, so as to more efficiently utilize the resources of the M uplink carriers according to the current channel conditions and service characteristics, avoiding the need to pass the RRC carrier.
  • the number of bands/CCs is M or the total bandwidth or bandwidth combination of bands/CCs is similar, and details are not repeated here.
  • the downlink is similar and will not be repeated here.
  • the simultaneously configurable CC combinations reported by the terminal device are CC1, CC2, CC3 and CC4; the simultaneously activated CC combinations reported by the terminal are CC1, CC2, CC3 and CC4, that is, The number of CCs that can be activated at the same time is 4, and the combination of CCs that can be switched by the terminal is CC1, CC2, CC3 and CC4; the combination of CCs that can be transmitted at the same time reported by the terminal is CC3 and CC4, that is, the number of CCs that can be transmitted at the same time The maximum is 2.
  • the CC used by the terminal device for transmission is switched from CC2 to CC3 and CC4, that is, the channel used by CC2 is switched to CC3 and CC4.
  • CC2 uses two channels, namely, channel 1 and channel 2. You can switch channel 1 to CC3 and switch channel 2 to CC4.
  • the base station can notify the user to switch the channel used by CC2 to CC3 and CC4 through DCI signaling.
  • the time delay required to switch the channel used by CC2 to CC3 and CC4 is about 1 to 4 symbols.
  • the simultaneously configurable CC combinations reported by the terminal device are CC1, CC2, CC3, and CC4; the simultaneously activated CC combination 1 reported by the terminal is CC1 and CC2, and the simultaneously activatable CC combination 2 It is CC3 and CC4, wherein CC1 and CC2 can be activated at the same time, and CC3 and CC4 can be activated at the same time, that is, the number of CCs that can be activated at the same time is 2.
  • the combination of CCs reported by the terminal that can be transmitted at the same time is CC3 and CC4, where CC3 and CC4 can be transmitted at the same time, that is, the maximum number of CCs that can be transmitted at the same time is two.
  • the terminal device can switch the channel used by CC1 to CC2.
  • the terminal device deactivates the simultaneously activatable CC combination 1 CC1 and CC2, and the terminal device activates the simultaneously activatable CC combination 2 CC3 and CC4.
  • the terminal device can transmit on CC3 and CC4 at the same time.
  • the above two examples take the CC combination as an example, and the band combination or the serving cell combination or the CC/band bandwidth combination is similar, and details are not repeated here.
  • the CC combination in the examples of FIG. 16A and FIG. 16B may be an uplink CC combination or a downlink CC combination, which is not limited in this application.
  • the terminal device switches the serving cell state according to the time pattern.
  • the time pattern may be indicated to the terminal device by the network device, or predefined by a protocol.
  • the network device may send time pattern configuration signaling or time pattern activation signaling to the terminal device, so as to switch the serving cell state.
  • time pattern reference may be made to the relevant introduction about the time pattern in the carrier state, and details are not repeated here.
  • the time pattern configuration signaling or the time pattern activation signaling may be DCI, RRC signaling, or MAC CE signaling, etc., which is not limited thereto.
  • the network device may implicitly indicate the switching of a serving cell state according to uplink data scheduling. For example, in the same time unit, the network equipment schedules the terminal equipment to use 1 port (port) to send PUSCH on the uplink carrier of serving cell 1, and use 1 port to send PUSCH on the uplink carrier of serving cell 2, then serving cell 1 and serving
  • the serving cell states of cell 2 are all active states, and the serving cell states of other active serving cells of the terminal device are the first state.
  • the terminal device realizes the uplink communication through the port/channel/transmitting antenna on the uplink carrier.
  • the port/channel/transmitting antenna used or configured for the uplink carrier is indicated to the terminal device by the network device.
  • the network device when the network device configures multiple uplink carriers for the terminal device, the network device usually configures one or more ports/channels/transmitting antennas for each uplink carrier, and configures ports/channels/transmission antennas for different uplink carriers. The antennas are different. Even when a certain uplink carrier does not perform uplink communication, the ports/channels configured for the uplink carrier cannot be used by other uplink carriers, which easily wastes resources and affects communication efficiency. In view of this, an embodiment of the present application provides a communication method.
  • the terminal device implementing uplink communication through a port on an uplink carrier as an example, as shown in FIG. 5 , it can be applied to CA, DC or SUL scenarios or a combination of CA and SUL. , which specifically includes the following steps.
  • the manner in which the terminal device implements uplink communication through the channel/transmitting antenna on the uplink carrier is similar, which can be referred to.
  • the terminal device performs uplink communication on the first carrier through N ports, where N is a positive integer.
  • the network device sends a second instruction to the terminal device, where the second instruction is used to instruct to use Q ports for uplink communication on the second carrier, and the Q ports include the N ports used by the first carrier in the above step 501.
  • Q is a positive integer, 0 ⁇ K ⁇ N, and N-K+Q does not exceed the maximum number of ports supported by the uplink communication of the terminal device.
  • the terminal device performs uplink communication on the second carrier through Q ports according to the second instruction.
  • the network device can configure the port configured for the first carrier to be used by the second carrier, the utilization rate of the port is improved, and the communication efficiency of the terminal device is improved.
  • the first carrier and the second carrier may be two uplink carriers of the same serving cell of the terminal device, or may be two uplink carriers of different serving cells of the terminal device, which are not limited.
  • the first carrier and the second carrier do not limit the case where only two carriers are included in the embodiment of the present application, and the terminal device may allocate and switch the number of ports on more than two carriers.
  • the first carrier and the second carrier may belong to the same frequency band, or may belong to different frequency bands.
  • the terminal device when the terminal device performs uplink communication through N ports on the first carrier, it can also perform uplink communication through M ports on the second carrier, where M+N does not exceed the uplink communication support of the terminal device. maximum number of ports. Also, the N ports used by the first carrier and the M ports used by the second carrier are different. That is to say, the terminal device may use different ports for uplink communication on the first carrier and the second carrier in the same time unit. In this case, if the terminal device receives the second instruction, the Q ports used on the second carrier may include M ports previously used and K ports among the N ports used by the first carrier.
  • the terminal device when the terminal device performs uplink communication on the first carrier through N ports, it does not perform uplink communication on the second carrier. In this case, if the terminal device receives the second instruction, it will The Q ports used on the second carrier include at least K ports among the N ports used by the first carrier.
  • the terminal device when the value of K is equal to N, and the terminal device receives the second instruction, the terminal device will not perform uplink communication on the first carrier subsequently. In the case where the value of K is less than N, after receiving the second instruction, the terminal device can continue to perform uplink communication on the first carrier through N-K uplink carriers.
  • the same port may also correspond to different uplink carriers, that is, the terminal device may use the same port for uplink transmission on at least two uplink carriers. For example, two consecutive uplink carriers in the frequency band may correspond to the same port.
  • the network device may carry the second command in DCI and send it to the terminal device, or carry the second command in RRC signaling or MAC CE signaling and send it to the terminal device, or carry the second command in other
  • the information is sent to the terminal device, which is not limited.
  • the network device may dynamically or semi-statically send the updated number of ports used by the uplink carrier to the terminal device.
  • the network device may send the second instruction to the terminal device through event triggering. For example, when the network device detects that the amount of data to be transmitted on the first carrier is less than or equal to a certain threshold, it sends a second instruction to some terminal devices, instructing the terminal devices to transmit on other uplink carriers, so as to achieve network load balancing the goal of.
  • the second instruction may also be used to instruct the terminal device not to perform uplink communication on the first carrier. That is, the number of ports used by the first carrier is 0.
  • the network device when detecting that the amount of data to be transmitted on the second carrier is greater than the amount of data to be transmitted on the first carrier, the network device sends the second instruction to the terminal device.
  • the network device can also periodically update the number of ports used by the uplink carrier, so that the terminal device can periodically switch to the uplink carrier for uplink communication. For example, the terminal equipment periodically switches to a certain uplink carrier to send the SRS.
  • the terminal equipment uses one port (port, Can be abbreviated as P) for uplink communication, use another port for uplink communication in time slot 1 and time slot 2, and the center frequency is 1.8GHz on the uplink carrier, in time slot 4, on the uplink carrier with the center frequency of 2.1GHz No uplink communication is performed. If the terminal device needs to perform uplink communication on the uplink carrier with a center frequency of 1.8GHz in time slot 4, then in time slot 4, the uplink carrier with a center frequency of 1.8GHz can use two ports for uplink communication. This helps to improve communication efficiency.
  • the terminal equipment uses three ports for uplink communication on the uplink carrier with the center frequency of 2.1GHz in time slot 1 and time slot 2 , use another port for uplink communication on time slot 1 and time slot 2 and the uplink carrier with the center frequency of 1.8GHz, and use one port for uplink communication in time slot 4 and the uplink carrier with the center frequency of 2.1GHz, If the terminal device needs to use 1 port on the uplink carrier with the center frequency of 2.1GHz in time slot 4 for uplink communication, then in time slot 4, the uplink carrier with the center frequency of 1.8GHz can use 2 or 3 ports for uplink communication, thereby helping to improve communication efficiency.
  • the number of ports that the uplink carrier with the center frequency of 1.8GHz can use for uplink communication may be indicated by the network device, or may be set by the terminal device according to its own data transmission requirements. For example, in time slot 4, if the number of ports of the uplink carrier with the center frequency of 2.1GHz is 1, in time slot 4, in addition to the uplink communication on the uplink carrier with the center frequency of 1.8GHz, it is also necessary to perform the uplink communication on the center frequency of 1.8GHz. For uplink communication on the 3.5GHz uplink carrier, the terminal device can use 2 ports for uplink communication in time slot 4, the uplink carrier with the center frequency of 1.8GHz, and one port on the uplink carrier with the center frequency of 3.5GHz. port for upstream communication.
  • the terminal equipment uses one port for uplink on time slot 1 and time slot 2 and the uplink carrier with the center frequency of 2.1 GHz.
  • Communication use another port for uplink communication on the uplink carrier with the center frequency of 1.8GHz in time slot 1 and time slot 2, and do not perform uplink communication on the uplink carrier with the center frequency of 2.1GHz and 1.8GHz in time slot 4 , if the terminal device needs to perform uplink communication on the uplink carrier with the center frequency of 3.5GHz in time slot 4, then in time slot 4, the uplink carrier with the center frequency of 3.5GHz can use 2 ports for uplink communication, in this case In the time slot 4, the number of ports used by the uplink carriers with the center frequencies of 2.1GHz and 1.8GHz is 0, which helps to improve the communication efficiency.
  • the terminal equipment uses 2 ports for uplink communication on the uplink carrier of time slot 1 and time slot 2 and the center frequency is 2.1GHz , use another port for uplink communication on time slot 1 and time slot 2 and the uplink carrier with the center frequency of 1.8GHz, and use one port for uplink communication in time slot 4 and the uplink carrier with the center frequency of 2.1GHz, If the terminal equipment does not need to perform uplink communication on the uplink carrier with the center frequency of 1.8GHz in time slot 4, and if the uplink carrier with the center frequency of 3.5GHz in time slot 4 needs to perform uplink communication, the center frequency of time slot 4 is The 3.5GHz uplink carrier can use 2 ports for uplink communication, which helps to improve communication efficiency.
  • the terminal device uses one port for uplink communication on the uplink carrier with time slot 4 and the center frequency of 2.1GHz, and uses one port for uplink communication on the uplink carrier with time slot 4 and the center frequency of 1.8GHz, then When the uplink carrier whose center frequency is 3.5GHz in time slot 4 needs to perform uplink communication, the uplink carrier whose center frequency is 3.5GHz in time slot 4 can use one port for uplink communication.
  • the terminal device after receiving the second instruction, performs uplink communication through K ports among the N ports on the second carrier after a first period of time has elapsed, and the first period of time is the number of ports on the second carrier.
  • the starting time of the first duration may be indicated to the terminal device by the network device, or may be determined by the terminal device according to a certain policy, or the starting time of the first duration may be defined through a protocol.
  • the start time of the first duration is the time when the terminal device receives the second instruction, or the time when the terminal device receives and parses the content of the second instruction.
  • the first duration may be predefined by a protocol, or may be indicated to the terminal device by the network device, or reported by the terminal device.
  • the first duration may be defined in units of time, or may be absolute time, which is not limited.
  • the first duration is the number of fixed symbols in a reference parameter set (numerology), and the reference numerology may be predefined or configured, or may be associated with a certain uplink carrier (such as the uplink carrier of the primary cell, the first carrier or The numerology of the BWP activated on the second carrier) is the same, and for different numerologies, the number of symbols corresponding to the first duration may be different.
  • the first duration is combined with the source band, the target band, the frequency band of the source uplink carrier, the frequency band of the target uplink carrier, the number of source ports, the number of target ports, the number of source transmit antennas, the number of target transmit antennas, and the number of source transmit channels , at least one of the number of target transmission channels, the number of source carriers, and the number of target carriers is related.
  • the band combination and the carrier frequency band are the first duration related to the band combination/frequency band corresponding to the carrier to be switched.
  • the number of source ports refers to the number of ports of the terminal device on the second carrier before the number of ports corresponding to the second carrier is switched to Q
  • the number of source transmit antennas refers to the number of ports corresponding to the second carrier before the terminal device switches to Q.
  • the number of transmit antennas on the second carrier refers to the number of channels of the terminal device on the second carrier before the number of ports for the second carrier switches to Q
  • the number of target ports refers to the number of ports for the second carrier to switch
  • the target number of transmit antennas refers to the number of transmit antennas of the terminal device on the second carrier after the number of ports corresponding to the second carrier is switched to Q
  • the number of target channels refers to the number of transmit antennas of the terminal device on the second carrier.
  • the number of channels of the terminal device on the second carrier after the number of ports of the second carrier is switched to Q refers to the number of uplink carriers sent by the terminal device at the same time before the number of ports of the second carrier is switched
  • the number of target carriers is The number of uplink carriers sent by the terminal device at the same time after the port number of the second carrier is switched.
  • the port/transmission channel switching delay between carriers belonging to the same frequency band, the port/transmission channel switching delay between carriers belonging to different frequency bands, and/or the port/transmission delay of different numbers of ports can be uniform, helping to simplify implementation. Or, configure different port/transmit channel switching delays for the above different situations.
  • the port switching delay can be determined according to the carrier and/or the frequency band to which the carrier belongs, or the switching situation of the number of ports.
  • the terminal device obtains the capability information of the terminal switching delay, and the terminal device can report the switching delay capability respectively.
  • the terminal device may report the switching delay respectively.
  • the port switching delay of switching from 0 ports to 1 port, switching from carrier 1 to carrier 2, and the port switching delay of carrier 1 and carrier 2 belonging to different frequency bands is delay 1.
  • the port switching delay of switching from 1 port to 2 ports, switching from carrier 2 to carrier 3, and the port switching delay of carrier 2 and carrier 3 belonging to the same frequency band is delay 2.
  • the terminal equipment reports delay 1 and delay 2 respectively.
  • the switching delays required for switching from 1 port to 2 ports and switching from 0 ports to 2 ports for the same carrier are different.
  • the port switching delays between different carriers may also be different.
  • switching from carrier 1 to carrier 2 requires a different switching duration from switching from carrier 2 to carrier 3.
  • port switching delays on different carriers may also be different.
  • the time delay for the terminal equipment to switch from 0 ports to 2 ports on carrier 4 is t1
  • the time delay for the terminal equipment to switch from 0 ports to 2 ports on carrier 5 is t2.
  • the terminal equipment reports the delay t1 and the delay t2 respectively.
  • the delay t1 when two channels of band/carrier 1 are switched to one channel of band/carrier 1 and one channel of band/carrier 2 "two channels of band/carrier 1 are switched to band/carrier 1”
  • Time delay t2 of zero channels of band/carrier 2 and two channels of band/carrier 2 "two channels of band/carrier 1 switch to zero channels of band/carrier 1, one channel of band/carrier 2 and band/carrier At least 2 of the delays t3" of a channel of 3 are different.
  • the terminal device reports capability information to the network device, where the capability information includes the frequency band supported by the terminal device and the maximum number of ports supported by the frequency band supported by the terminal device, so that the network device can target the service configured for the terminal device.
  • the uplink carrier of the cell is configured with the corresponding number of ports.
  • the capability information reported by the terminal device to the network device may also include the maximum number of ports supported by the terminal device for uplink communication.
  • the number of ports used by the terminal device on the first carrier is related to the number of channels configured by the terminal device on the first carrier. It should be noted that the number of ports used by the terminal device on the first carrier is configured by the network device. The number of ports configured on the first carrier is less than or equal to the number of channels configured on the first carrier or reported by the terminal device. For example, if the number of channels configured on the first carrier is 1, the number of ports configured on the first carrier may be 1 or 0. For another example, if the number of channels configured on the first carrier is 2, the number of ports configured on the first carrier may be 2, 1 or 0. For another example, if the number of channels configured on the first carrier is 0, the number of ports configured on the first carrier may be 0.
  • the uplink transmission channel of the terminal device on one carrier refers to the radio frequency channel used by the terminal device for transmission on the uplink carrier, which corresponds to a power amplifier;
  • the uplink transmission antenna of the terminal device on one carrier refers to The physical antenna used by the terminal equipment for transmission on the carrier;
  • the uplink transmission port of the terminal equipment on a carrier refers to the logical port number corresponding to the terminal equipment sending signals on the carrier, and each port number has its own independent DMRS signal for network equipment to demodulate the signal on each port.
  • the physical antenna of the terminal device on one carrier refers to the logical port number corresponding to the signal received by the terminal device on the carrier.
  • the uplink receiving channel of the network device on an uplink carrier refers to the radio frequency channel that the network device uses for receiving on the uplink carrier; the uplink receiving antenna of the terminal device on an uplink carrier refers to the radio frequency channel used by the terminal device on the carrier Physical antenna received; the uplink receiving port of the terminal device on an uplink carrier refers to the logical port number corresponding to the terminal device receiving signals on the carrier.
  • the downlink transmission channel of the network device on a downlink carrier refers to the radio frequency channel used by the network device for transmission on the carrier; the downlink transmission antenna of the network device on a downlink carrier refers to the radio frequency channel used by the network device to transmit on the carrier.
  • the physical antenna of the terminal device on a downlink carrier refers to the logical port number corresponding to the signal sent by the terminal device on the carrier.
  • the relationship between channels, ports and antennas is: the maximum number of uplink transmit antennas of a terminal device on an uplink carrier is greater than or equal to the maximum number of uplink transmit channels, and greater than or equal to the maximum number of transmit ports, and the maximum number of receive antennas of a terminal device on a downlink carrier is greater than or equal to the maximum The number of downlink receive channels, greater than or equal to the maximum number of receive ports; the maximum number of uplink receive antennas of a network device on an uplink carrier is greater than or equal to the maximum number of uplink receive channels, greater than or equal to the maximum number of receive ports, the maximum number of transmit antennas of a network device on a downlink carrier Greater than or equal to the maximum number of downlink sending channels, greater than or equal to the maximum number of sending ports; the network device can configure at least one of the number of channels, the number of ports and the number of antennas to the terminal device, so as to realize the communication between the network device and the terminal device.
  • the relationship between the number of channels of the carrier and the number of ports can be as shown in Table 1.
  • the ports in the above steps 501 to 503 can also be replaced by channels or transmitting antennas.
  • the relevant introduction of the ports please refer to the relevant introduction of the ports, which will not be repeated here.
  • the switching delay of the carrier from 1 channel to 2 channels can be 1 symbol of 30KHz
  • the switching delay of the carrier from 0 channels to 2 channels can be 30KHz.
  • the network device may further configure one or more time patterns for the uplink carrier configured for the terminal device.
  • the time pattern specifies which ports/channels/transmit antennas are used by the upstream carrier in which time units. In this case, the network device does not need to send the second instruction to switch the port/channel/transmitting antenna used by the uplink carrier.
  • each uplink carrier may correspond to one time pattern, or all uplink carriers configured for the terminal device may correspond to one time pattern.
  • the uplink carrier configured by the network device for the terminal device includes a first carrier and a second carrier, and the time pattern of the first carrier is Time pattern 1, including 10 time units
  • the terminal device can use 2 ports (such as port 1 and port 2) for uplink communication in the first 3 time units for the first carrier, and can use 1 in the 4th to 7th time units.
  • One port (for example, port 1) is used for uplink communication, and no port is used for uplink communication in the last three time units.
  • the time pattern of the second carrier is time pattern 2, which also includes 10 time units.
  • the terminal device does not use ports for uplink communication in the first 3 time units for the second carrier, and can use 1 port in the 4th to 7th time units. (for example, port 2) for uplink communication, and 2 ports (for example, port 1 and port 2) can be used for uplink communication in the last three time units.
  • the terminal device may periodically use the previously configured time pattern to perform uplink communication.
  • the network device may periodically configure a time pattern for the terminal device for the uplink carrier.
  • the terminal device performs uplink communication through N ports on the first time unit and the first carrier, and the terminal device performs uplink communication at the second time unit.
  • the unit and the first carrier perform uplink communication through M ports, where N and M are positive integers greater than or equal to 0, and N and M are not equal.
  • the terminal device may switch from the N ports to the M ports in the second time unit according to the switching instruction of the network device for the first carrier.
  • the terminal device switches from the N ports to the M ports in the second time unit according to the time pattern of the first carrier.
  • the terminal equipment implements downlink communication on the downlink carrier through ports/channels/receiving antennas.
  • the port/channel/receiving antenna used or configured for the downlink carrier is indicated to the terminal device by the network device.
  • the network device when the network device configures multiple downlink carriers for the terminal device, the network device usually configures one or more ports/channels/receiving antennas for each downlink carrier, and configures ports/channels/receiving antennas for different downlink carriers.
  • the antennas are different. Even if a certain downlink carrier is not used for downlink communication, the port/channel/receiving antenna configured for this downlink carrier cannot be used by other downlink carriers, which is prone to waste of resources and affects communication efficiency.
  • the embodiment of the present application provides another communication method, which can be applied to a CA or DC scenario. Taking a port as an example, as shown in FIG. 7 , it specifically includes the following steps.
  • the terminal device performs downlink communication on the first carrier through N ports, where N is a positive integer;
  • the network device sends a third instruction to the terminal device, where the third instruction is used to instruct the use of Q ports for downlink communication on the second carrier, and the Q ports used by the second carrier include the N ports used by the first carrier.
  • K and Q are positive integers, and 0 ⁇ K ⁇ N, and N-K+Q does not exceed the maximum number of ports supported by the downlink communication of the terminal device.
  • the terminal device After receiving the third instruction, the terminal device performs downlink communication on the second carrier through Q ports according to the third instruction.
  • the ports in FIG. 7 can also be replaced by receiving antennas and channels, that is, the downlink receiving capability of the terminal device on one downlink carrier can borrow the downlink receiving capability of other carriers.
  • the network device may dynamically schedule the terminal device to perform port switching on different carriers.
  • the third instruction may be carried in the DCI and sent to the terminal device.
  • the third instruction may be CSI-RS, and the switching of the receiving capability of the terminal device is implicitly indicated through the configuration and transmission of CSI-RS configured on different ports.
  • the CSI-RS corresponding to different port numbers are different.
  • the CSI-RS corresponding to different port numbers may be indicated by the network device to the terminal device, or may be predefined by a protocol, which is not limited.
  • the third instruction may also be a different scheduling parameter, such as MCS, RI, or PMI, etc., wherein the scheduling parameters corresponding to different port numbers are different.
  • the terminal device after receiving the second duration of the third instruction, performs downlink communication on the second carrier through K ports, and the second duration is the duration between the second carrier and the first carrier. Port switching delay.
  • the second duration and the starting moment of the second duration reference may be made to the relevant introduction in the communication method shown in FIG. 5 , and details are not repeated here.
  • the second duration is combined with the source band, the target band, the frequency band of the source downlink carrier, the frequency band of the target downlink carrier, the number of source ports, the number of target ports, the number of source receiving antennas, the number of target receiving antennas, and the number of source receiving channels , at least one of the number of target receiving channels, the number of source carriers, and the number of target carriers is related.
  • the band combination and the carrier frequency band and the second duration are related to the band combination/frequency band corresponding to the carrier on which the switching occurs.
  • the number of source ports refers to the number of ports of the terminal device on the second carrier before the number of ports corresponding to the second carrier is switched to Q
  • the number of source receiving antennas refers to the number of ports corresponding to the second carrier before the terminal device is switched to Q.
  • the number of receiving antennas on the second carrier, the number of source receiving channels refers to the number of channels of the terminal device on the second carrier before the number of ports for the second carrier is switched to Q
  • the number of target ports refers to the number of ports for the second carrier.
  • the number of ports of the terminal device on the second carrier after reaching Q, the target number of receiving antennas refers to the number of receiving antennas of the terminal device on the second carrier after the number of ports corresponding to the second carrier is switched to Q, and the number of target channels refers to the number of receiving antennas of the terminal device on the second carrier.
  • the embodiments of the present application are for port/reception channel switching delays between carriers belonging to the same frequency band, port/reception channel switching delays between carriers belonging to different frequency bands, and/or ports/reception channels with different numbers of ports.
  • the channel switching delays can be the same, helping to simplify implementation. Or, configure different port/receive channel switching delays for the above different situations.
  • the port switching delay can be determined according to the carrier and/or the frequency band to which the carrier belongs, or the switching situation of the number of ports.
  • the terminal device obtains the capability information of the corresponding terminal switching delay respectively, and the terminal device can report the switching delay capability respectively.
  • the terminal device may report the switching delay respectively.
  • the port switching delay of switching from 0 ports to 1 port, switching from carrier 1 to carrier 2, and the port switching delay of carrier 1 and carrier 2 belonging to different frequency bands is delay 1.
  • the port switching delay of switching from 1 port to 2 ports, switching from carrier 2 to carrier 3, and the port switching delay of carrier 2 and carrier 3 belonging to the same frequency band is delay 2.
  • the terminal equipment reports delay 1 and delay 2 respectively.
  • switching from 1 port to 2 ports and switching from 0 ports to 2 ports require different switching delays for the same carrier.
  • the port switching delays between different carriers may also be different.
  • switching from carrier 1 to carrier 2 requires a different switching duration from switching from carrier 2 to carrier 3.
  • port switching delays on different carriers may also be different.
  • the time delay for the terminal equipment to switch from 0 ports to 2 ports on carrier 4 is t1
  • the time delay for the terminal equipment to switch from 0 ports to 2 ports on carrier 5 is t2.
  • the terminal equipment reports the delay t1 and the delay t2 respectively.
  • the delay t1 when two channels of band/carrier 1 are switched to one channel of band/carrier 1 and one channel of band/carrier 2 "two channels of band/carrier 1 are switched to band/carrier 1”
  • Time delay t2 of zero channels of band/carrier 2 and two channels of band/carrier 2 "two channels of band/carrier 1 switch to zero channels of band/carrier 1, one channel of band/carrier 2 and band/carrier At least 2 of the delays t3" of a channel of 3 are different.
  • the terminal device may also report first indication information to the network device, where the first indication information is used to indicate whether the terminal device supports inter-carrier port switching capability or whether it supports the occurrence of the number of ports on one carrier
  • the handover includes uplink transmission and downlink reception of the terminal equipment, that is, whether the terminal equipment supports switching of ports configured on different carriers, so that the network equipment can send a port switching instruction (eg, a third instruction) to the terminal equipment.
  • the terminal device can implement port switching between different carriers under the condition of supporting the port switching capability between carriers, it is helpful to enhance the downlink experience of the terminal device.
  • the maximum number of ports supported by the terminal device on the first carrier is 4, and the maximum number of ports supported on the second carrier is 2. If the maximum number of ports supported by the terminal device for downlink communication is 4, the first carrier is configured with 2 ports, if the second carrier is configured with 2 ports, if there is no downlink communication requirement on the second carrier, the first carrier can borrow the 2 ports configured on the second carrier, so that the first carrier can Communication is carried out through 4 ports, which improves communication efficiency.
  • the downlink receiving capability of the terminal device can also be measured by the number of receiving antennas and the number of channels. Therefore, the ports in steps 701 to 703 can also be replaced by receiving antennas or channels.
  • the network device may also configure one or more time patterns for the downlink carrier configured for the terminal device.
  • the time pattern specifies which ports/channels/receiving antennas are used by the downlink carrier in which time units.
  • the network device does not need to send a third instruction to switch the port/channel/receiving antenna used by the downlink carrier.
  • each downlink carrier may correspond to one time pattern, or all downlink carriers configured for the terminal device may correspond to one time pattern.
  • the downlink carrier configured by the network device for the terminal device includes a first carrier and a second carrier
  • the time pattern of the first carrier is Time pattern 1 includes 10 time units.
  • the terminal device can use 3 ports (for example, port 1, port 2, and port 3) for uplink communication in the first 3 time units for the first carrier. In the 4th to 7th time units One port (eg, port 1) can be used for upstream communication, and no port is used for upstream communication in the last 3 time units.
  • the time pattern of the second carrier is time pattern 2, which also includes 10 time units.
  • the terminal device does not use ports for downlink communication in the first 3 time units for the second carrier, and can use 2 ports in the 4th to 7th time units. (eg, port 2 and port 3) for downstream communication, and 3 ports (eg, port 1, port 2, and port 3) can be used for downstream communication in the last 3 time units.
  • the terminal device may periodically use the previously configured time pattern to perform downlink communication.
  • the network device may periodically configure a time pattern for the terminal device for the downlink carrier.
  • the terminal device performs downlink communication through N ports on the first time unit and the first carrier, and the terminal device performs downlink communication at the second time unit.
  • Downlink communication is performed on the unit and the first carrier through M ports, where N and M are positive integers greater than or equal to 0, and N and M are not equal.
  • the terminal device may switch from the N ports to the M ports in the second time unit according to the switching instruction of the network device for the first carrier.
  • the terminal device switches from the N ports to the M ports in the second time unit according to the time pattern of the first carrier.
  • the network device may have a fixed downlink transmission capability for the downlink carrier.
  • the downlink transmission capability of the network device for the downlink carrier can be measured by the number of transmit antennas or the number of ports used for downlink communication (also referred to as the number of transmit antenna ports). For example, taking the first carrier and the second carrier as an example, the number of transmit antennas of the network device for the first carrier is 64, and the number of transmit antennas for the second carrier is also 64, then the network device usually uses 64 antennas on the first carrier The transmitting antenna performs downlink communication, and 64 transmitting antennas are used for downlink communication on the second carrier. In the prior art, when the network device does not perform downlink communication on the second carrier, the antenna generally performs downlink communication on the second carrier. The number will not exceed 64. Therefore, it is easy to lead to waste of resources.
  • an embodiment of the present application also provides a communication method, as shown in FIG. 9 , which can be applied to a CA or DC scenario, and specifically includes the following steps.
  • the network device performs downlink communication on the first time unit and the first carrier through N transmit antennas, and performs downlink communication on the first time unit and the second carrier by using M transmit antennas, where M and N are positive integers.
  • the network device performs downlink communication on the second time unit and the second carrier through P transmission antennas, where P is a positive integer, and M ⁇ P ⁇ M+N, and the P transmission antennas include M used by the second carrier.
  • the transmitting antenna and at least one transmitting antenna among the N transmitting antennas used by the first carrier, the network device does not perform downlink communication on the first carrier in the second time unit.
  • the first carrier and the second carrier may be downlink carriers of different terminal equipment, or may be downlink carriers of different serving cells of the same terminal equipment.
  • the carrier may be a downlink carrier in one serving cell of the same terminal equipment, or may be a downlink carrier in different serving cells of the same terminal equipment, which is not limited.
  • the number of transmit antennas (T) of the network device for downlink carrier 1 is 64, and the number of transmit antennas for downlink carrier 2 is also 64.
  • the network device uses time unit 1 and downlink carrier 1. 64 transmit antennas are used for downlink communication, and 64 transmit antennas are used on time unit 1 and downlink carrier 2 for downlink communication.
  • Downlink communication is performed using 128 transmit antennas on time unit 2 and downlink carrier 2, and communication is not performed on downlink carrier 1 in time unit 2.
  • Downlink communication is performed using 128 transmit antennas on time unit 3 and downlink carrier 1, and downlink communication is not performed on downlink carrier 2 in time unit 3. This helps to improve downlink communication efficiency.
  • the transmitting antenna in the above steps 901 to 902 may be replaced by a transmitting antenna port or a channel.
  • the network device in this embodiment of the present application has a fixed uplink reception capability for the uplink carrier.
  • the uplink receiving capability of the network device for the uplink carrier can be measured by the number of receiving antennas or the number of ports used for uplink communication (also referred to as the number of receiving antenna ports). For example, take the first carrier and the second carrier as an example.
  • the number of receiving antennas of the network equipment for the first carrier is 64
  • the number of receiving antennas for the second carrier is also 64, so the network equipment usually uses 64 transmitting and receiving antennas on the first carrier for uplink communication, and on the second carrier. 64 transmitting and receiving antennas perform uplink communication.
  • the number of antennas performing uplink communication on the second carrier does not exceed 64. Therefore, it is easy to lead to waste of resources.
  • an embodiment of the present application also provides a communication method, as shown in FIG. 11 , which can be applied to a CA or DU scenario, and specifically includes the following steps.
  • the network device performs uplink communication through N receiving antennas on the first time unit and the first carrier, and performs uplink communication through M receiving antennas on the first time unit and the second carrier, where M and N are positive integers.
  • the network device performs uplink communication on the second time unit and the second carrier through P receiving antennas, where P is a positive integer, and M ⁇ P ⁇ M+N, and the P receiving antennas include M used by the second carrier
  • P is a positive integer
  • M ⁇ P ⁇ M+N and the P receiving antennas include M used by the second carrier
  • the first carrier and the second carrier may be uplink carriers of different terminal equipment, or may be uplink carriers of different serving cells of the same terminal equipment.
  • the first carrier and the second carrier may be uplink carriers of different serving cells of the same terminal equipment.
  • the carrier may be an uplink carrier in one serving cell of the same terminal device, or may be an uplink carrier in different serving cells of the same terminal device, which is not limited.
  • the number of receiving antennas (R) of the network equipment for uplink carrier 1 is 64, and the number of receiving antennas for uplink carrier 2 is also 64.
  • the network equipment uses time unit 1 and uplink carrier 1. 64 receiving antennas are used for uplink communication, and 64 receiving antennas are used on time unit 1 and uplink carrier 2 for uplink communication.
  • Uplink communication is performed using 128 receiving antennas on time unit 2 and uplink carrier 2, and communication is not performed on uplink carrier 1 in time unit 2.
  • Uplink communication is performed using 128 receiving antennas on time unit 3 and uplink carrier 1, and uplink communication is not performed on uplink carrier 2 in time unit 3. Therefore, it helps to improve the efficiency of uplink communication.
  • the receiving antenna in the above steps 1101 to 1102 may be replaced by a receiving antenna port or a channel.
  • the number of uplink carriers/bands/serving cells configured by the network device for the terminal device is M
  • the number of uplink carriers/bands/serving cells configured for the terminal device is M.
  • the number of configured downlink carriers/bands/serving cells is N, where M is greater than N, and M and N are positive integers, and the number of downlink carriers/bands/serving cells configured for traditional terminal equipment is greater than that of uplink carriers/ Compared with the number of bands/serving cells, it is more suitable for the above service scenarios.
  • the network device does not limit the center frequency of the uplink carrier and the center frequency of the downlink carrier included in the same serving cell configured by the terminal device.
  • a serving cell may include only downlink carriers and no uplink carriers.
  • a serving cell may only include uplink carriers and not include downlink carriers.
  • a serving cell may include an uplink carrier and a downlink carrier at the same time, but the uplink carrier and the downlink carrier belong to different frequency bands.
  • the above serving cell may be a primary cell or a secondary cell.
  • the uplink carrier of the uplink primary serving cell and the downlink carrier of the downlink serving cell may belong to different frequency bands/frequency points, for example, the downlink Pcell is configured as carrier 1/band1/serving cell 1, and the uplink Pcell is configured as carrier 2/band2/serving cell 2.
  • the network sends a Pcell handover instruction to indicate that downlink and uplink Pcells can be handed over together, or decoupled handover, that is, used to instruct downlink Pcell handover or uplink Pcell handover Pcell handover.
  • the downlink Pcell is carrier 1/band1/serving cell 1 and the uplink Pcell is configured as carrier 1/band1/serving cell 1.
  • the network sends a Pcell handover command to instruct the downlink Pcell to switch to Carrier 2/band2/serving cell 2 (the uplink PCell is still carrier 1/band1/serving cell 1 without switching), or a Pcell switching command is sent to indicate that the downlink Pcell is not switched and still remains carrier 1/band1/serving cell 1 but the uplink Pcell is Switch to carrier 2/band2/serving cell 2.
  • a Pcell handover command to instruct the downlink Pcell to switch to Carrier 2/band2/serving cell 2 (the uplink PCell is still carrier 1/band1/serving cell 1 without switching), or a Pcell switching command is sent to indicate that the downlink Pcell is not switched and still remains carrier 1/band1/serving cell 1 but the uplink Pcell is Switch to carrier 2/band2/serving cell 2.
  • the Pcell includes a downlink main carrier and an uplink main carrier
  • the network layer sends a Pcell handover instruction to indicate the downlink carrier/frequency point/frequency band and uplink carrier of the Pcell /Frequency/frequency band can be switched together or decoupled switching, that is, it is used to indicate downlink carrier/frequency/frequency band switching of Pcell or uplink carrier/frequency/frequency band switching of Pcell.
  • the network sends a Pcell switching instruction to instruct the downlink carrier/frequency/band 1 of the Pcell to switch to the downlink carrier/frequency/band 2, and the Pcell does not switch its uplink carrier/frequency/band 1; or send the Pcell
  • the switching instruction is used to instruct the Pcell to switch the uplink carrier/frequency/band 1 to the uplink carrier/frequency/band 2, and the Pcell does not switch the downlink carrier/frequency/band 1.
  • the downlink and uplink frequency points/bands can be decoupled, independent load balancing can be achieved, and the uplink and downlink consistent experience can be achieved.
  • the serving cell may include an uplink carrier with a center frequency of 900MHz and a downlink carrier with a center frequency of 3.5GHz.
  • a 3.5G downlink carrier and a 900MHz uplink carrier are configured for it.
  • This method can obtain better uplink coverage than the prior art configuration of 3.5G uplink and downlink carriers, and a 900MHz configuration compared to the prior art.
  • the uplink and downlink carriers can obtain better downlink capacity.
  • the uplink carriers configured by the network equipment for the terminal equipment are UL1, UL2, UL3 and UL4 respectively
  • the downlink carriers configured by the network equipment for the terminal equipment are DL1, DL2, DL3 and DL4 respectively, where UL1 and DL1 are located in the frequency band In A, UL2 and DL2 are in frequency band B, UL3 and DL3 are in frequency band C, and UL4 and DL4 are in frequency band D.
  • the network device instructs the terminal device to activate DL1, UL2, DL3 and UL3, then UL1, DL2, UL4 and DL4 are not activated.
  • DL1 may be the downlink carrier of the Pcell of the terminal equipment
  • UL2 may be the uplink carrier of the Pcell of the terminal equipment.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between a network device and a terminal device.
  • the base station and the terminal device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 13 shows a communication device 1300 provided by the present application, including a transceiver module 1302 and a processing module 1301 .
  • the communication apparatus 1300 may be a terminal device, or may be a device capable of supporting the terminal device to implement the functions of the terminal device in the methods involved in FIGS. 4 , 5 and 7 .
  • the communication apparatus 1300 may also be an apparatus (such as a chip or a chip system) in a terminal device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the transceiver module 1302 is configured to receive a first instruction from a network device, where the first instruction is used to instruct to switch the serving cell state to the first state or switch out of the first state; the serving cell state being the first state includes: all The downlink carrier of the serving cell supports downlink communication, and the uplink carrier of the serving cell does not support uplink communication.
  • the processing module 1301 is configured to switch the serving cell state according to the first instruction.
  • the communication apparatus 1300 may be a network device, or may be a device capable of supporting the network device to implement the functions of the network device in the methods involved in FIGS. 4 , 5 and 7 .
  • the communication apparatus 1300 may also be an apparatus (such as a chip or a chip system) within a network device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the processing module 1301 is configured to generate the first instruction; the transceiver module 1302 is configured to send the first instruction to the terminal device.
  • the first instruction is used to instruct to switch the serving cell state of the terminal device to the first state or switch out of the first state; the serving cell state being the first state includes: downlink of the serving cell The carrier supports downlink communication, and the uplink carrier of the serving cell does not support uplink communication.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides a communication apparatus 1400 .
  • the communication apparatus 1400 is used to implement the functions of the terminal device in the methods involved in FIG. 4 , FIG. 5 and FIG. 7 , and the apparatus may be a terminal device or an apparatus in a terminal device.
  • the communication apparatus 1400 includes at least one processor 1401 for implementing the functions of the terminal device in the above method.
  • the processor 1401 may be configured to switch the serving cell state according to the first instruction. For details, refer to the detailed description in the method, which is not described herein again.
  • the communication apparatus 1400 is configured to implement the functions of the network device in the methods involved in FIGS. 4 , 5 and 7 , and the apparatus may be a network device or an apparatus in a network device.
  • the communication apparatus 1400 includes at least one processor 1401 for implementing the functions of the network device in the above method.
  • the processor 1401 may be configured to generate the first instruction.
  • the communication device 1400 may also include at least one memory 1402 for storing computer programs and/or data.
  • Memory 1402 and processor 1401 are coupled.
  • the coupling in the embodiments of the present application is the spaced coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between the devices, units or modules.
  • memory 1402 may also be located external to device 1400.
  • the processor 1401 may cooperate with the memory 1402 .
  • the processor 1401 may execute computer programs stored in the memory 1402 . At least one of the at least one memory may be included in the processor.
  • the communication apparatus 1400 may further include a communication interface 1403 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1400 may communicate with other devices.
  • the communication interface 1403 may be a transceiver, circuit, bus, module, or other type of communication interface, and the other device may be a terminal device or a network device.
  • the processor 1401 uses the communication interface 1403 to send and receive data and/or instructions, and is used to implement the methods in the above embodiments.
  • the communication interface 1403 may be used to receive the first instruction from the network device.
  • the embodiment of the present application does not limit the connection medium between the communication interface 1403, the processor 1401, and the memory 1402.
  • the memory 1402 , the processor 1401 , and the communication interface 1403 may be connected by a bus, and the bus may be divided into an address bus, a data bus, a control bus, and the like.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVD)), or semiconductor media (eg, SSDs), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种小区状态切换方法及装置,涉及通信技术领域。其中该方法包括: 终端设备接收到来自网络设备的第一指令,根据第一指令,切换所述服务小区状态。第一指令用于指示将终端设备的服务小区状态切换至第一状态或切换出第一状态; 服务小区状态为第一状态时,服务小区的下行载波支持下行通信,服务小区的上行载波不支持上行通信。这种技术方案有助于降低服务小区状态的切换时延,提高通信性能。

Description

一种小区状态切换方法及装置
相关申请的交叉引用
本申请要求在2020年08月24日提交中国专利局、申请号为202010859375.9、申请名称为“一种小区状态切换方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2020年10月21日提交中国专利局、申请号为202011133816.3、申请名称为“一种小区状态切换方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种小区状态切换方法及装置。
背景技术
无线通信中,对于终端设备来说,服务小区的小区状态(即服务小区状态,下文均统一称为服务小区状态)通常包括激活态、去激活态和休眠态。当服务小区状态为激活态时,终端设备能够通过服务小区进行通信;当服务小区状态为去激活态或休眠态时,终端设备无法通过服务小区进行通信。在网络设备为终端设备配置多个服务小区的情况下,服务小区状态为激活态的服务小区个数受终端设备能力的限制。因此,终端设备需要进行服务小区状态的切换,以满足终端设备在不同服务小区的通信需求。但是,终端设备进行服务小区状态切换需要的时间较长,导致通信性能较差。
发明内容
本申请实施例提供了一种小区状态切换方法及装置,使得服务小区状态可以从激活态切换到第一状态、或者从第一状态切换到激活态,从而有助于降低服务小区状态的切换时延,提高通信性能。
第一方面,为本申请实施例的一种小区状态切换方法,具体包括:
终端设备接收来自网络设备的第一指令,所述第一指令用于指示将所述终端设备的服务小区状态切换至第一状态或切换出所述第一状态;所述服务小区状态为所述第一状态包括:所述服务小区的下行载波支持下行通信,所述服务小区的上行载波不支持上行通信。然后,所述终端设备根据所述第一指令,切换所述服务小区状态。
本申请实施例通过引入第一状态,使得终端设备能够在服务小区状态为激活态的服务小区个数受终端能力限制的情况下,根据自身在不同服务小区上的通信需求,将服务小区状态切换到第一状态、或者切出第一状态,从而有助于降低服务小区状态的切换时延,提高通信性能。
在一种可能的设计中,在所述第一指令用于指示激活所述服务小区的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至激活态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态从第一状态切换至激活态。
在一种可能的设计中,在所述第一指令用于指示去激活所述服务小区的情况下,所述 终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至去激活态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态从第一状态切换至去激活态。
在一种可能的设计中,在所述第一指令用于指示将所述服务小区状态配置为所述第一状态的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从去激活态或激活态切换至所述第一状态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态切换至第一状态。
在一种可能的设计中,在所述服务小区的上行载波的端口数为0的情况下,所述服务小区的上行载波不支持上行通信。
在一种可能的设计中,在所述第一指令用于指示将所述服务小区的上行载波的端口数配置为0的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从去激活态或激活态切换至所述第一状态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态切换至第一状态。
在一种可能的设计中,在所述第一指令用于指示将所述服务小区的上行载波的端口数配置为N的情况下,所述N为正整数,且0<N≤M,所述M为所述终端设备上行通信支持的最大端口数,所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至激活态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态从第一状态切换至激活态。
在一种可能的设计中,在所述服务小区的上行载波上激活的带宽部分BWP所预配置的端口数为0的情况下,所述服务小区的上行载波的端口数为0。
在一种可能的设计中,在所述第一指令用于指示激活所述服务小区的上行载波上预配置的端口数为0的BWP的情况下,所述终端设备根据所述第一指令,将所述服务小区状态由去激活态或激活态切换至所述第一状态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态切换至第一状态。
在一种可能的设计中,在所述第一指令用于指示去激活所述服务小区的上行载波上预配置的端口数为0的BWP的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至去激活态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态从第一状态切换到去激活态。
在一种可能的设计中,在所述第一指令用于指示激活所述服务小区的上行载波上预配置的端口数为N的BWP的情况下,所述N为正整数,且0<N≤M,所述M为所述终端设备上行通信支持的最大端口数,所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至激活态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态从第一状态切换到激活态。
在一种可能的设计中,在所述服务小区的上行载波的通道数为0的情况下,所述服务小区的上行载波不支持上行通信。
在一种可能的设计中,在所述第一小区的上行载波上激活的BWP所预配置的通道数为0的情况下,所述服务小区的上行载波的通道数为0。
在一种可能的设计中,在所述第一指令用于指示去激活所述服务小区的上行载波的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从激活态切换至所述第一状 态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态切换至第一状态。
在一种可能的设计中,在所述第一指令用于指示激活所述服务小区的下行载波的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从去激活态切换至所述第一状态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态切换至第一状态。
在一种可能的设计中,在所述第一指令用于去激活所述服务小区的下行载波的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至去激活态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态从第一状态切换到去激活态。
在一种可能的设计中,在所述第一指令用于指示激活所述服务小区的上行载波的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至激活态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态从第一状态切换到激活态。
在一种可能的设计中,当所述服务小区的状态为所述第一状态时,所述服务小区的小区状态标识为第一小区状态标识。
在一种可能的设计中,在所述第一指令用于指示将所述服务小区的小区状态标识配置为所述第一小区状态标识的情况下,所述终端设备根据所述第一指令,将所述服务小区状态从去激活态或激活态切换至所述第一状态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态切换到第一状态。
在一种可能的设计中,在所述第一指令用于指示将所述服务小区的小区状态标识配置为第二小区状态标识的情况下,所述第二小区状态标识用于指示所述服务小区的状态为去激活态或激活态;所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至去激活态或激活态。从而有助于使得终端设备可以根据来自网络设备的第一指令,将服务小区状态从第一状态切换到激活态或激活态。
在一种可能的设计中,所述终端设备向所述网络设备发送能力信息,所述能力信息包括所述终端设备支持的频段、所述频段支持的最大通道数和/或最大端口数。以便于网络设备指示终端设备进行服务小区状态切换。
在一种可能的设计中,所述服务小区为所述终端设备的主小区或辅小区。从而可以适用于终端设备配置有多个服务小区的场景,例如CA场景、DU场景等。
第二方面,为本申请实施例的一种小区状态切换方法,具体包括:网络设备生成第一指令,然后,向所述终端设备发送所述第一指令。所述第一指令用于指示将所述终端设备的服务小区状态切换至第一状态或切换出所述第一状态;所述服务小区状态为所述第一状态包括:所述服务小区的下行载波支持下行通信,所述服务小区的上行载波不支持上行通信。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从第一状态切换至激活态,包括:
所述第一指令用于指示激活所述服务小区。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换出 所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从第一状态切换至去激活态,包括:
所述第一指令用于指示去激活所述服务小区。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态或激活态切换至激活态,包括:
所述第一指令用于指示将所述服务小区状态配置为所述第一状态。
在一种可能的设计中,所述服务小区的上行载波不支持上行通信,包括:
所述服务小区的上行载波的端口数为0。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换至第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态或激活态切换至所述第一状态,包括:
所述第一指令用于指示将所述服务小区的上行载波的端口数配置为0。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至激活态,包括:
所述第一指令用于指示将所述服务小区的上行载波的端口数配置为N,所述N为正整数,且0<N≤M,所述M为所述终端设备上行通信支持的最大端口数。
在一种可能的设计中,所述服务小区的上行载波的端口数为0,包括:
所述服务小区的上行载波上激活的带宽部分BWP所预配置的端口数为0。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态或激活态切换至所述第一状态,包括:
所述第一指令用于指示激活所述服务小区的上行载波上预配置的端口数为0的BWP。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至去激活态,包括:
所述第一指令用于指示去激活所述服务小区的上行载波上预配置的端口数为0的BWP。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至激活态,包括:
所述第一指令用于指示激活所述服务小区的上行载波上预配置的端口数为N的BWP,所述N为正整数,且0<N≤M,所述M为所述终端设备上行通信支持的最大端口数。
在一种可能的设计中,所述服务小区的上行载波不支持上行通信,包括:
所述服务小区的上行载波的通道数为0。
在一种可能的设计中,所述服务小区的上行载波的通道数为0,包括:
所述第一小区的上行载波上激活的BWP所预配置的通道数为0。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从激活态切换至 所述第一状态,包括:
所述第一指令用于指示去激活所述服务小区的上行载波。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态切换至所述第一状态,包括:
所述第一指令用于指示激活所述服务小区的下行载波。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至去激活态,包括:
所述第一指令用于去激活所述服务小区的下行载波。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换激活态,包括:
所述第一指令用于指示激活所述服务小区的上行载波。
在一种可能的设计中,当所述服务小区的状态为所述第一状态时,所述服务小区的小区状态标识为第一小区状态标识。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态或激活态切换至所述第一状态,包括:
所述第一指令用于指示将所述服务小区的小区状态标识配置为所述第一小区状态标识。
在一种可能的设计中,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至去激活态,包括:
所述第一指令用于指示将所述服务小区的小区状态标识配置为第二小区状态标识,所述第二小区状态标识用于指示所述服务小区的状态为去激活态或激活态。
在一种可能的设计中,所述网络设备接收来自所述终端设备的能力信息,所述能力信息包括所述终端设备支持的频段、所述频段支持的最大通道数和/或最大端口数。
在一种可能的设计中,所述服务小区为所述终端设备的主小区或辅小区。
需要说明的是,第二方面中任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第三方面,为本申请实施例的一种通信方法,具体包括:
终端设备在第一载波上通过N个端口进行上行通信,所述N为正整数;
所述终端设备接收来自网络设备的第一指令,所述第一指令用于指示在第二载波上使用Q个端口进行上行通信,所述Q个端口包括所述N个端口中的K个端口,所述K、Q为正整数,且0<K≤N,N-K+Q不超过所述终端设备的上行通信支持的最大端口数;
所述终端设备根据所述第一指令,在第二载波上通过Q个端口进行上行通信。
本申请实施例中,由于网络设备可以将配置给第一载波的端口配置给第二载波使用,从而提高了端口的利用率,有助于提高终端设备的上行通信效率。
在一种可能的设计中,所述终端设备在接收到所述第一指令的第一时长后,在所述第 二载波上通过所述Q个端口进行上行通信,所述第一时长为所述第二载波的端口切换时延。从而有助于提高通信的可靠性。
在一种可能的设计中,所述第二载波的端口切换时延为预定义的。从而有助于减少信令开销。
在一种可能的设计中,所述终端设备向所述网络设备发送能力信息,所述能力信息包括所述终端设备支持的频段和所述频段支持的最大端口数。
第四方面,为本申请实施例的另一通信方法,具体包括:
终端设备在第一载波上通过N个端口进行下行通信,所述N为正整数;
所述终端设备接收来自网络设备的第一指令,所述第一指令用于指示在第二载波上使用Q个端口进行下行通信,所述Q个端口包括所述N个端口中的K个端口,所述K、Q为正整数,且0<K≤N,N-K+Q不超过所述终端设备的下行通信支持的最大端口数;
所述终端设备根据所述第一指令,在第二载波上通过Q个端口进行下行通信。
本申请实施例中,由于网络设备可以将配置给第一载波的端口配置给第二载波使用,从而提高了端口的利用率,有助于提高终端设备的下行通信效率。
在一种可能的设计中,所述终端设备在接收到所述第一指令的第一时长后,在所述第二载波上通过所述Q个端口进行下行通信,所述第一时长为所述第二载波的端口切换时延。从而有助于提高通信的可靠性。
第五方面,为本申请实施例的一种通信方法,具体包括:
网络设备在第一时间单元和第一载波上通过N个发送天线进行下行通信,以及在第一时间单元和第二载波上通过M个发送天线进行下行通信,所述M、N为正整数;
所述网络设备在第二时间单元和所述第二载波上通过P个发送天线进行下行通信,所述P为正整数,且M<P≤M+N,所述P个发送天线包括第二载波使用的M个发送天线和第一载波使用的N个发送天线中的至少一个发送天线,所述网络设备在第二时间单元不在所述第一载波上进行下行通信。
本申请实施例中,由于网络设备可以将配置给第一载波的发送天线配置给第二载波使用,从而提高了发送天线的利用率,有助于提高下行通信效率。
第六方面,为本申请实施例的一种通信方法,具体包括:
网络设备在第一时间单元和第一载波上通过N个接收天线进行上行通信,以及在第一时间单元和第二载波上通过M个接收天线进行上行通信,所述M、N为正整数;
所述网络设备在第二时间单元和所述第二载波上通过P个接收天线进行上行通信,所述P为正整数,且M<P≤M+N,所述P个接收天线包括第二载波使用的M个接收天线和第一载波使用的N个接收天线中的至少一个接收天线,所述网络设备在第二时间单元不在所述第一载波上进行上行通信。
本申请实施例中,由于网络设备可以将配置给第一载波的接收天线配置给第二载波使用,从而提高了接收天线的利用率,有助于提高上行通信效率。
第七方面,为本申请提供一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置,该通信装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第一方面及第一方面任一种设计的方法中的相应功能,具体的:
所述收发模块,用于接收来自网络设备的第一指令,所述第一指令用于指示将所述终 端设备的服务小区状态切换至第一状态或切换出所述第一状态;所述服务小区状态为所述第一状态包括:所述服务小区的下行载波支持下行通信,所述服务小区的上行载波不支持上行通信。所述处理模块,用于根据所述第一指令,切换所述服务小区状态。
第八方面,为本申请提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置,该通信装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第二方面及第二方面任一种设计的方法中的相应功能,具体的:
所述处理模块,用于生成第一指令;所述收发模块,用于向所述终端设备发送所述第一指令。所述第一指令用于指示将所述终端设备的服务小区状态切换至第一状态或切换出所述第一状态;所述服务小区状态为所述第一状态包括:所述服务小区的下行载波支持下行通信,所述服务小区的上行载波不支持上行通信。
第九方面,为本申请提供一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置,该通信装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第一方面及第一方面任一种设计的方法中的相应功能,具体的:
所述收发模块,用于在第一载波上通过N个端口进行上行通信,所述N为正整数;
所述收发模块,用于接收来自网络设备的第一指令,所述第一指令用于指示在第二载波上使用Q个端口进行上行通信,所述Q个端口包括所述N个端口中的K个端口,所述K、Q为正整数,且0<K≤N,N-K+Q不超过所述终端设备的上行通信支持的最大端口数;
所述处理模块用于,根据所述第一指令,触发所述收发模块在第二载波上通过Q个端口进行上行通信。
第十方面,为本申请提供一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置,该通信装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第一方面及第一方面任一种设计的方法中的相应功能,具体的:
所述收发模块,用于在第一载波上通过N个端口进行下行通信,所述N为正整数;
所述收发模块,用于接收来自网络设备的第一指令,所述第一指令用于指示在第二载波上使用Q个端口进行下行通信,所述Q个端口包括所述N个端口中的K个端口,所述K、Q为正整数,且0<K≤N,N-K+Q不超过所述终端设备的下行通信支持的最大端口数;
所述处理模块,用于根据所述第一指令,触发所述收发模块在第二载波上通过Q个端口进行下行通信。
第十一方面,为本申请提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置,该通信装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第一方面及第一方面任一种设计的方法中的相应功能,具体的:
所述收发模块,用于在第一时间单元和第一载波上通过N个发送天线进行下行通信,以及在第一时间单元和第二载波上通过M个发送天线进行下行通信,所述M、N为正整数;
所述收发模块,用于在第二时间单元和所述第二载波上通过P个发送天线进行下行通信,所述P为正整数,且M<P≤M+N,所述P个发送天线包括第二载波使用的M个发送 天线和第一载波使用的N个发送天线中的至少一个发送天线,所述处理模块用于控制所述收发模块在第二时间单元不在所述第一载波上进行下行通信。
第十二方面,为本申请提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置,该通信装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第一方面及第一方面任一种设计的方法中的相应功能,具体的:
所述收发模块,用于在第一时间单元和第一载波上通过N个接收天线进行上行通信,以及在第一时间单元和第二载波上通过M个接收天线进行上行通信,所述M、N为正整数;
所述收发模块,用于在第二时间单元和所述第二载波上通过P个接收天线进行上行通信,所述P为正整数,且M<P≤M+N,所述P个接收天线包括第二载波使用的M个接收天线和第一载波使用的N个接收天线中的至少一个接收天线,所述处理模块用于控制所述收发模块在第二时间单元不在所述第一载波上进行上行通信。
第十三方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,用于实现上述第一方面、第三方面和/或第四方面描述的方法。所述通信装置还可以包括存储器,用于存储计算机程序和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的计算机程序时,可以实现上述第一方面、第三方面和/或第四方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备或终端设备等。
在一种可能的设计中,该通信装置包括:
存储器,用于存储程序计算机程序;
处理器,用于调用存储器中存储的计算机程序,使得所述通信装置执行本申请实施例第一方面以及第一方面任一种可能的设计的方法、或者使得所述装置执行本申请实施例第三方面以及第三方面任意一种可能的设计的方法、或者使得所述装置执行本申请实施例第四方面以及第四方面任意一种可能的设计的方法。
第十四方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,用于实现上述第二方面、第五方面和/或第六方面描述的方法。所述通信装置还可以包括存储器,用于存储计算机程序和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的计算机程序时,可以实现上述第二方面、第五方面和/或第六方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备或终端设备等。
在一种可能的设计中,该通信装置包括:
存储器,用于存储程序计算机程序;
处理器,用于调用存储器中存储的计算机程序,使得所述通信装置执行本申请实施例第二方面以及第二方面任一种可能的设计的方法、或者使得所述装置执行本申请实施例第五方面以及第五方面任意一种可能的设计的方法、或者使得所述装置执行本申请实施例第六方面以及第六方面任意一种可能的设计的方法。
第十五方面,本申请实施例还提供一种计算机可读存储介质,包括计算机程序,当其 在计算机上运行时,使得计算机执行第一方面以及第一方面任一种可能的设计的方法、或者第二方面以及第二方面任意一种可能的设计的方法、或者第三方面以及第三方面任意一种可能的设计的方法、或者第四方面以及第四方面任意一种可能的设计的方法、或者第五方面以及第五方面任意一种可能的设计的方法、或者第六方面以及第六方面任意一种可能的设计的方法。
第十六方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面以及第一方面任一种可能的设计的方法、或者第二方面以及第二方面任意一种可能的设计的方法、或者第三方面以及第三方面任意一种可能的设计的方法、或者第四方面以及第四方面任意一种可能的设计的方法、或者第五方面以及第五方面任意一种可能的设计的方法、或者第六方面以及第六方面任意一种可能的设计的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十七方面,本申请实施例中还提供一种计算机程序产品,包括计算机程序,当其在计算机上运行时,使得计算机执行于第一方面以及第一方面任一种可能的设计的方法、或者第二方面以及第二方面任意一种可能的设计的方法、或者第三方面以及第三方面任意一种可能的设计的方法、或者第四方面以及第四方面任意一种可能的设计的方法、或者第五方面以及第五方面任意一种可能的设计的方法、或者第六方面以及第六方面任意一种可能的设计的方法。
另外,第七方面至第十七方面中任一种可能设计方式所带来的技术效果可参见方法部分中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1A为本申请一实施例的时间图样的示意图;
图1B为本申请一实施例的载波状态切换的示意图;
图2为本申请一实施例的服务小区状态切换的示意图;
图3为本申请实施例的通信系统的网络架构示意图;
图4为本申请实施例的小区状态切换方法的流程示意图;
图5为本申请实施例的一种通信方法的流程示意图;
图6A为本申请一实施例的不同载波使用端口的情况的示意图;
图6B为本申请另一实施例的不同载波使用端口的情况的示意图;
图6C为本申请另一实施例的不同载波使用端口的情况的示意图;
图6D为本申请另一实施例的不同载波使用端口的情况的示意图;
图7为本申请实施例的另一通信方法的流程示意图;
图8为本申请另一实施例的不同载波使用端口的情况的示意图;
图9为本申请实施例的另一通信方法的流程示意图;
图10为本申请另一实施例的不同载波使用天线的情况的示意图;
图11为本申请实施例的另一通信方法的流程示意图;
图12为本申请另一实施例的不同载波使用天线的情况的示意图;
图13为本申请实施例的一种通信装置的结构示意图;
图14为本申请实施例的另一通信装置的结构示意图;
图15为本申请实施例的一种终端上报的能力信息的示意图;
图16A为本申请实施例的一种CC组合的示意图;
图16B为本申请实施例的另一CC组合的示意图。
具体实施方式
本申请实施例中通过引入一种服务小区状态(例如,在本申请实施例中称为第一状态),使得终端设备能够在服务小区状态为激活态的服务小区个数受终端能力限制的情况下,根据自身在不同服务小区上的通信需求,可以将服务小区状态从激活态切换到第一状态、或者从第一状态切换到激活态,而无需从激活态切换到去激活态或休眠态、或无需从去激活态或休眠态切换到激活态,从而有助于降低服务小区状态的切换时延,提高通信性能。其中,当终端设备的服务小区状态为第一状态时,服务小区的下行载波支持下行通信,服务小区的上行载波不支持上行通信。
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c中的每一个本身可以是元素,也可以是包含一个或多个元素的集合。
在本申请实施例中,“示例的”“在一些实施例中”“在另一实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。本申请实施例中通信、传输有时可以混用,应当指出的是,在不强调区别是,其所表达的含义是一致的。例如传输可以包括发送和/或接收,可以为名词,也可以是动词。再例如,端口(port)与天线端口(antenna port)是等价的,可以混用。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案,需要说明的是,当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
以下对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、终端设备。本申请实施例中终端设备是一种具有无线收发功能的设备,可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如长期演进(long term evolution,LTE)、新空口(new radio,NR)、宽带码分多址(wideband code division multiple access,WCDMA)等。例如,终端设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载 终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端设备还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
2、网络设备。本申请实施例中网络设备是一种为终端设备提供无线通信功能的设备,也可称之为接入网设备、无线接入网(radio access network,RAN)设备等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR、WCDMA等。示例的,网络设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的网络设备或者未来演进的PLMN中的网络设备等。在一些实施例中,网络设备还可以为具有为终端设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
3、载波(carrier)。本申请实施例中可以根据上下行通信将载波划分为上行载波和下行载波。上行载波用于上行通信。下行载波用于下行通信。其中,上行载波包括普通上行载波和增补上行载波SUL(supplement uplink carrier)。
4、载波带宽部分。本申请实施例中的载波带宽部分可以简称为带宽部分(bandwidth part,BWP),指的是载波上一段连续或非连续的频域资源。其中,这段连续或非连续的频域资源的带宽不超过终端设备的带宽能力,即BWP的带宽小于或等于终端设备支持的最大带宽。示例的,在上行载波上配置的BWP为上行BWP,在下行载波上配置的BWP为下行BWP。
5、时间单元。本申请实施例中的时间单元为在时域上的一段时间。示例的,终端设备和网络设备之间在时域上可以是以时间单元为粒度进行通信的。例如,时间单元可以为时隙、符号、子帧、无线帧、微时隙、迷你时隙等,对此不作限定。此外,一个时间单元的时长与子载波间隔有关。以时隙为例。子载波间隔为15KHz时,一个时隙的时长可以为1ms;子载波间隔为30KHz时,一个时隙的时长可以为0.5ms。
6、服务小区。本申请实施例中服务小区指的是为终端设备提供服务的小区。例如,在载波聚合(carrier aggregation,CA)场景下,服务小区可以为主小区(primary cell,Pcell), 也可以为辅小区(secondary cell,Scell)。通常,Pcell是终端设备进行初始连接时接入的小区,或者Pcell是终端设备进行无线资源控制(radio resource control,RRC)连接重建时由网络设备配置的小区,或者Pcell是终端设备切换(handover)过程中由网络设备或终端设备指定的小区。Scell是终端设备在初始接入完成之后,通过RRC信令(又可以称之为RRC消息)添加的,用于提供额外的无线资源。需要说明的是,Scell也可以通过RRC信令修改或释放。
具体的,对于一个服务小区来说,一个服务小区可以包括M个下行载波和N个上行载波。其中,M和N大于或等于0,M和N不同时等于0。示例的,在单载波场景下,一个服务小区可以包括一个下行载波和一个上行载波。又示例的,在CA场景下,一个服务小区可以包括一个下行载波和0到2个上行载波。又示例的,在增补上行(supplement uplink,SUL)场景下,一个服务小区可以包括一个下行载波、一个上行载波和一个增补上行载波。可以理解的是,在SUL场景下,终端设备可以在上行载波和增补上行载波上同时进行上行通信,也可以只在上行载波或增补上行载波中的其中一个载波上进行上行通信,本申请实施例对此不作限定。
7、下/上行服务小区。本申请实施例中的下行服务小区指为终端设备提供下行传输服务的小区、上行服务小区指为终端设备提供上行传输服务的小区。例如,在载波聚合场景下,下行服务小区可以是主下行服务小区/下行主服务小区(downlink primary cell/primary downlink cell),也可以是辅下行服务小区/下行辅服务小区(downlink secondary cell/secondary downlink cell);上行服务小区可以是主上行服务小区/上行主服务小区(uplink primary cell/primary uplink cell),也可以是辅上行服务小区/上行辅服务小区(uplink secondary cell/secondary uplink cell)。主下行服务小区/下行主服务小区和主上行服务小区/上行主服务小区是终端设备进行初始接入时接入的小区,或者是终端设备切换过程中由网络设备或终端设备指定的小区。主下行服务小区/下行主服务小区和主上行服务小区/上行主服务小区具有不同的小区标识,主下行服务小区/下行主服务小区和主上行服务小区/上行主服务小区可以独立切换。辅下行服务小区/下行辅服务小区和辅上行服务小区/上行辅服务小区是终端设备在初始接入完成之后,通过RRC信令添加的,也可以通过RRC信令修改或释放。辅下行服务小区/下行辅服务小区和辅上行服务小区/上行辅服务小区具有不同的小区标识,辅下行服务小区/下行辅服务小区和辅上行服务小区/上行辅服务小区可以独立的添加、修改和释放。
具体的,对于一个下行服务小区来说,一个下行服务小区只包括M个下行载波,一个上行服务小区只包括N个上行载波,其中M和N为正整数。网络设备只给终端设备在下行服务小区上配置用于在M个下行载波上进行传输的配置,例如,PDSCH、PDCCH、CSI-RS、SSB、下行波束管理相关配置等。基站只给用户在上行服务小区上配置用于在N个上行载波上进行传输的配置,例如,PUSCH、PUCCH、SRS、上行波束管理相关配置等。
8、载波状态。本申请实施例中载波状态可以包括激活态、去激活态、休眠态和第二状态。其中,第二状态可以简称为第二态,本申请实施例对第二状态的名称不作限定。
以上行载波为例:
当上行载波的载波状态为激活态时,上行载波是激活的,且终端设备在该上行载波支持上行通信。具体的,终端设备在处于激活态的上行载波上的行为包括:
1)在该上行载波上可以发送上行参考信号,比如信号探测参考信号(singnal reference  signal,SRS)、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking signal,PTRS)、或者物理随机接入信道(physical random access channel,PRACH)上承载的信号。
2)在该上行载波上可以进行信道状态信息(channel state information,CSI)上报。
3)在该上行载波上通过物理上行链路共享信道(physical uplink shared channel,PUSCH)可以发送数据,即在该上行载波上可以进行PUSCH传输。
4)在该上行载波配置了物理上行链路控制信道(physical uplink control channel,PUCCH)上的情况下,在该PUCCH上可以发送上行控制信息,即在该上行载波上可以进行PUCCH传输。
当上行载波的载波状态为去激活态时,上行载波是去激活的,终端设备在该上行载波上不支持上行通信。具体的,终端设备在处于去激活态的上行载波上的行为包括:
1)不在该上行载波上发送上行参考信号,比如SRS、DMRS、PTRS或者PRACH上承载的信号。
2)不在该上行载波上进行CSI的上报。
3)不在该上行载波上通过PUSCH进行数据传输,即不在该上行载波上进行PUSCH传输。
4)不在该上行载波上通过PUCCH进行信息传输,即在该上行载波上不进行PUCCH传输。需要说明的是,在载波状态为去激活态的情况下,即使在该上行载波上配置了PUCCH,也不在该上行载波上进行PUCCH传输。
当上行载波的载波状态为第二状态时,上行载波是激活的,且终端设备在该上行载波上不支持上行通信。示例的,当上行载波的载波状态为第二状态时,上行载波上没有激活的BWP,但与该上行载波属于同一小区的下行载波上有激活的BWP;或者,当上行载波的载波状态为第二状态时,上行载波上激活的BWP为预配置的BWP,所述预配置的BWP可以是通过协议定义的,也可以是网络设备通过RRC信令配置给终端设备的,对此不作限定。或者,当上行载波的载波状态为第二状态时,上行载波上有激活的BWP,但终端设备在上行载波上激活的BWP的端口数或通道数为0。或者,当上行载波的载波状态为第二状态时,上行载波上有激活的BWP,但该上行载波对应的载波状态标识用于指示上行载波状态为第二状态。所述端口包括上行天线端口,所述通道为上行发送通道。示例的,当上行载波的载波状态为第二状态时,终端设备在该上行载波上的行为包括:
1)不在该上行载波上发送上行参考信号,比如SRS、DMRS、PTRS或者PRACH上承载的信号。
2)不在该上行载波上进行CSI的上报。
3)不在该上行载波上通过PUSCH进行数据传输,即不在该上行载波上进行PUSCH传输。
4)不在该上行载波上通过PUCCH进行信息传输,即在该上行载波上不进行PUCCH传输。
可以理解的是,针对同一载波可以在不同载波状态间切换。以上行载波为例,示例的,如图1B所示,为针对同一上行载波的载波状态之间的切换示意图。例如,网络设备可以通过下行控制信息(downlink control information,DCI)指示终端设备将上行载波的载波状态从激活态切换到第二状态、或者从第二状态切换到激活态。具体的,DCI可以通过指 示上行载波的端口数或通道数,向终端设备指示为其配置的上行载波的载波状态是从激活态切换到第二状态、还是从第二状态切换到激活态。在一种实现方式中,DCI可以通过指示上行载波的端口数或通道数为0,向终端设备指示为其配置的上行载波的载波状态从激活态切换到第二状态。在另一种实现方式中,DCI可以通过指示上行载波的端口数或通道数为N,向终端设备指示为其配置的上行载波的载波状态从第二状态切换到激活态,所述N为大于0的整数。需要说明的是,在终端设备配置有多个服务小区的情况下,网络设备还可以通过DCI向终端设备指示为终端设备配置的多个服务小区的上行载波的载波状态。又例如,网络设备可以通过媒体接入控制控制单元(media access control control element,MAC CE)信令指示终端设备将为其配置的上行载波的载波状态从激活态切换到去激活态、或者从去激活态切换到激活态、或者从去激活态切换到第二状态、或者从第二状态切换到去激活态。
或者,在另一些实施例中,网络设备可以通过半静态方式指示终端设备进行载波状态的切换。示例的,网络设备可以针对一个上行载波通过高层信令配置一个或多个时间图样,时间图样内包括了与上行载波的载波状态对应的时间单元。比如,时间图样包括10个时间单元,前7个时间单元对应的上行载波的载波状态为激活态,后3个时间单元对应的上行载波的载波状态为第二状态。在这种情况下,终端设备针对上行载波,可以根据时间图样将上行载波的载波状态配置为激活态,并在前7个时间单元上可以通过上行载波进行上行通信,在后3个时间单元上将上行载波的载波状态从激活态切换到第二状态。或者,时间图样内包括与上行载波的载波状态为激活态时对应的时间单元,而时间图样内未与上行载波的载波状态对应的时间单元,可以由网络设备自适应确定为激活态或第二状态。例如,时间图样包括10个时间单元,前7个时间单元对应的上行载波的载波状态为激活态,后3个时间单元对应的上行载波的载波状态取决于网络设备的实现。
进一步的,在一些实施例中,在网络设备通过高层信令为终端设备配置了多个时间图样的情况下,网络设备还可以通过物理层信令或MAC CE信令激活其中一个时间图样,终端设备可以根据激活的时间图样,确定对应的上行载波的载波状态。
此外,网络设备也可以针对所有的激活上行载波或配置的上行载波统一配置一个或多个时间图样用于指示不同上行载波在时域上的载波状态。比如终端设备配有2个上行载波,分别为载波1和载波2,网络设备针对载波1和载波2统一配置的时间图样如图1A所示,包括10个时隙。其中,时隙0-3对应的载波1的载波状态为激活态、载波2的载波状态为第二状态;时隙4-6对应的载波1的载波状态为第二状态、载波2的载波状态为激活态;时隙7-9对应的载波1和载波2的载波状态均为激活态。在这种情况下,终端设备根据载波1和载波2对应的时间图样,在时隙0-3上将载波1的载波状态配置为激活态、将载波2的载波状态配置为第二状态,在时隙4-6上将载波1的载波状态配置为第二状态、将载波2的载波状态配置为激活态,在时隙7-9上将载波1的载波状态配置为激活态、继续保持载波2的载波状态为激活态的配置。
进一步的,在一些实施例中,网络设备可以针对上行载波配置具有周期性的时间图样。以某一上行载波的时间图样为例,终端设备针对该上行载波,可以根据周期性的时间图样,确定该上行载波的载波状态。例如,周期性时间图样的周期为10个时间单元,其中前7个时间单元对应的上行载波的载波状态为激活态,后3个时间单元对应的上行载波的载波状态为第二状态的情况下,终端设备可以每隔3个时间单元将上行载波的载波状态从第二 状态切到激活态,每隔7个时间单元将上行载波的载波状态从激活态切换到第二状态。比如,将上行载波的载波状态从第二状态切到激活态的周期可以和传输SRS的周期相同。
在终端设备的多个服务小区的上行载波的时间图样有冲突的情况下,比如在同一个时间单元,终端设备的N个服务小区中M个服务小区需要进入激活态,或M个服务小区需要发送上行信号,而终端设备最多只能满足L个服务小区同时发送上行信号,其中N大于或等于M,M大于或等于L,且N、M和L为正整数。终端设备可以根据M个服务小区的优先级来确定能够进行上行发送的服务小区。其中,服务小区的优先级可以预定义,比如M个服务小区中Pcell优先级高于SPcell优先级,SPCell的优先级高于Scell的优先级。对于多个Scell来说,网络设备和/或终端设备可以根据有传输需求的信道来确定辅小区的优先级。例如,辅小区的优先级按照从高到低的顺序依次为:PRACH、承载HARQ-ACK信息和/或SR的PUCCH/PUSCH、承载CSI的PUCCH/PUSCH、不承载HARQ-ACK信息/CSI的PUSCH、承载SRS的信道。另外,对于不同辅小区来说,如果信道相同,则根据信道上承载数据的周期,确定辅小区的优先级。例如,辅小区的优先级按照从高到低的顺序依次为:非周期、半永久、周期。此外,在一些实施例中,在某一服务小区包括上行载波和增补上行载波的情况下,上行载波的优先级高于增补上行载波的优先级。
或者,在又一些实施例中,网络设备可以根据上行的数据调度来隐式的指示一个上行载波的状态切换。比如在同一个时间单元,网络设备调度了终端设备在上行载波1上使用1端口(port)发送PUSCH,在上行载波2上使用1port发送PUSCH,那么上行载波1和上行载波2为激活态,其他激活的上行载波为第二状态。
8、服务小区状态。本申请实施例中服务小区状态指的是服务小区的小区状态,可以包括激活态、去激活态、休眠态和第一状态。其中,第一状态可以简称为第一态。需要说明的是,本申请实施例中第一状态也可以称之为X状态、或者其它状态等,是除激活态、去激活态、休眠态以外的一种小区状态,或者是一种添加了额外限制的激活态,本申请实施例对第一状态的名称不作限定。
当服务小区状态为激活态时,在服务小区配置有上行载波和下行载波的情况下,服务小区的上行载波支持上行通信,服务小区的下行载波支持下行通信。换句话说,在服务小区状态为激活态的情况下,终端设备能够在上行载波和下行载波上进行通信。示例的,在服务小区状态为激活态的情况下,终端设备能够在上行载波上进行通信,可以理解为上行载波是激活的;终端设备能够在下行载波上进行通信,可以理解为下行载波是激活的。又示例的,在服务小区状态为激活态的情况下,服务小区的上行载波的载波状态为激活态,且服务小区的下行载波的载波状态为激活态。
具体的,在服务小区状态为激活态的情况下,终端设备在服务小区上的行为可以包括:
1)在该服务小区上可以发送上行参考信号,比如SRS、DMRS、PTRS、或者PRACH上承载的信号。
2)在该服务小区上可以进行CSI上报,即针对该服务小区的CSI进行上报;
3)在该服务小区上可以监听物理下行链路控制信道(physical downlink control channel,PDCCH),即可以监听该服务小区的PDCCH。
4)可以监听针对该服务小区的PDCCH,比如跨载波调度、休眠状态指示等。
5)在该服务小区的物理上行链路共享信道(physical uplink shared channel,PUSCH)上可以发送数据,即在该服务小区上可以进行PUSCH传输。
6)在该服务小区配置了物理上行链路控制信道(physical uplink control channel,PUCCH)上的情况下,在该PUCCH上可以发送上行控制信息,即在该服务小区上可以进行PUCCH传输。
7)在该服务小区的物理下行链路共享信道(physical downlink shared channel,PDSCH)上接收数据,即在该服务小区可以进行PDSCH的传输。
8)在该服务小区上可以接收下行参考信号,例如CSI-RS、DMRS、PTRS、TRS或同步信号块(synchronization signal block,SSB)等。
当服务小区状态为去激活态时,服务小区的上行载波不支持上行通信,服务小区的下行载波不支持下行通信。换句话说,在服务小区状态为去激活态的情况下,终端设备不能在上行载波和下行载波上进行通信。示例的,在服务小区状态为去激活态的情况下,终端设备不能在上行载波上进行通信,可以理解为所有上行载波是去激活的;终端设备不能在下行载波上进行通信,可以理解为下行载波是去激活的。又示例的,在服务小区状态为去激活态的情况下,服务小区的上行载波的载波状态为去激活态,服务小区的下行载波为去激活态。
具体的,在服务小区状态为去激活态的情况下,终端设备在服务小区上的行为可以包括:
1)不在该服务小区上可以上行参考信号,比如SRS、DMRS、PTRS、或者PRACH上承载的信号。
2)不在该服务小区上进行CSI上报,即针对该服务小区的CSI不进行上报;
3)不在该服务小区上可以监听PDCCH,即不监听该服务小区的PDCCH;
4)不监听针对该服务小区的PDCCH,比如跨载波调度、休眠状态指示等;
5)不在该服务小区的PUSCH上发送数据,即在该服务小区上不进行PUSCH传输;
6)不在该服务小区上进行PUCCH传输;
7)不在该服务小区的PDSCH上接收数据,即不在该服务小区进行PDSCH的传输;
8)不在该服务小区上接收下行参考信号,例如CSI-RS、DMRS、PTRS、TRS或同步信号块(synchronization signal block,SSB)等。
当服务小区状态为休眠态时,服务小区的上行载波不支持上行通信,服务小区的下行载波可以支持部分下行通信。终端设备在服务小区处于休眠态时在服务小区上的行为包括:
1)在该服务小区上可以进行CSI测量,即针对在该服务小区发送的CSI-RS进行测量;
2)不在该服务小区上发送上行参考信号,比如SRS、DMRS、PTRS或者PRACH上承载的信号;
3)不在该服务小区上进行CSI的上报;
4)不在该服务小区上通过PUSCH进行数据传输,即不在该服务小区上进行PUSC传输;
5)不在该服务小区上通过PUCCH进行上行控制信息传输,即在该服务小区上不进行PUCCH传输;
6)不在该服务小区上监听物理下行链路控制信道(physical downlink control channel,PDCCH),即不可以监听该服务小区的PDCCH;
7)可以监听针对该服务小区的PDCCH,比如休眠指示。
当服务小区状态为第一状态时,服务小区的下行载波支持下行通信,服务小区的上行 载波不支持上行通信。换句话说,在服务小区状态为第一状态的情况下,终端设备可以在下行载波上进行通信,但不能在上行载波上进行通信。
示例的,在服务小区状态为第一状态的情况下,服务小区的下行载波是激活的,服务小区的上行载波是去激活的。例如,在服务小区状态为第一状态的情况下,服务小区的上行载波的载波状态为去激活态,服务小区的下行载波的载波状态为激活态。
又示例的,在服务小区状态为第一状态的情况下,服务小区的下行载波是激活的,服务小区的上行载波是激活的,但该上行载波的端口数和/或通道数为0。
又示例的,在服务小区状态为第一状态的情况下,服务小区的下行载波是激活的,服务小区的上行载波是激活的,但该上行载波上激活的BWP为预配置的BWP、或者下行载波上激活的BWP为预配置的BWP。
又示例的,在服务小区状态为第一状态的情况下,服务小区的下行载波是激活的,服务小区的上行载波是激活的,但是网络设备针对服务小区状态为第一状态的小区配置的小区状态标识不同于网络设备针对小区状态为激活态的小区配置的小区状态标识。例如,网络设备针对服务小区状态为第一状态的服务小区配置的小区状态标识为第一小区状态标识(比如1),网络设备针对服务小区状态为激活态的服务小区配置的小区状态标识为第二小区状态标识(比如0)。
特别的,在终端设备的一个服务小区中包括或配置有多个上行载波的情况下,如果多个上行载波有至少一个上行载波可以进行上行通信,那么该终端设备的服务小区状态为激活态。
又示例的,在服务小区状态为第一状态的情况下,服务小区的下行载波的载波状态为激活态,服务小区的上行载波状态为第二状态,关于上行载波的载波状态为第二状态可以参见上述关于载波状态中第二状态的相关说明,在此不再赘述。
在一些实施例中,在服务小区状态为第一状态的情况下,终端设备在服务小区上的行为可以包括:
1)在该服务小区上进行CSI测量,即针对在该服务小区发送的CSI-RS进行测量;
2)在该服务小区上监听PDCCH,即可以监听该服务小区的PDCCH。
3)监听针对该服务小区的PDCCH,比如跨载波调度、休眠状态指示等。
4)在该服务小区的PDSCH上接收数据,即在该服务小区上接收PDSCH。
5)在该服务小区上接收下行参考信号,比如CSI-RS、DMRS、PTRS、TRS、SSB等。
6)不在该服务小区上发送承载在PRACH、PUCCH、PUSCH上的信号、上行DMRS、SRS或者上行PTRS。
需要说明的是,选项1)、4)、5)、6)是可选的,选项2)、3)中一项或多项为必选项。
本申请实施例中针对同一服务小区可以在不同服务小区状态之间切换。例如,终端设备可以根据网络设备发送的服务小区状态切换指示进行服务小区状态切换,示例的,如图2所示。在一种实现方式中,终端设备根据第一指示,将服务小区状态从去激活态切换到第一状态。可以理解的是,激活态、去激活态和休眠态之间的切换可以参见现有技术中的相关描述,在此不再赘述。针对休眠态和第一状态之间的切换,比如终端设备将服务小区状态在休眠态与第一状态之间进行切换可以通过下列方式实现:将载波状态先从休眠态切换到激活态,然后再从激活态切换到第一状态;再比如终端设备将服务小区状态从第一状 态切换到休眠态,可以通过DCI来触发,实现方法与将服务小区状态从激活态到休眠态类似。本申请实施例中重点描述激活态和第一状态之间的切换,以及去激活态和第一状态之间的切换。
本申请实施例可以应用于LTE、NR等通信系统中。如图3所示,为本申请实施例的一种通信系统的网络架构示意图,包括终端设备和网络设备。其中,本申请实施例的网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上等。本申请实施例对网络设备和终端设备的部署场景不做限定。
需要说明的是,本申请实施例中网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信,对此不做限定。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。即本申请实施例既适用于低频场景(例如sub6G),也适用于高频场景(6G以上)。本申请实施例还可以应用于终端设备配置有多个服务小区或载波的场景,例如CA场景、双连接(dual connection,DC)场景和SUL场景、CA和SUL组合场景等。
图3所示的通信系统的网络架构,仅为一个举例,并不对本申请实施例中的通信系统的网络架构构成限定。本申请实施例不限定通信系统中网络设备的个数、终端设备的个数。示例的,当本申请实施例的通信系统中包括多个网络设备时,网络设备与网络设备之间可以进行多点协同通信。例如,通信系统中包括多个宏基站、多个微基站,其中宏基站与宏基站、微基站与微基站、宏基站与微基站间可以进行多点协同通信。
下面结合附图,对本申请实施例的方法进行详细的介绍。
示例的,如图4所示,为本申请实施例的一种小区状态切换方法的流程图,具体包括以下步骤:
401、网络设备向终端设备发送第一指令。第一指令用于指示将终端设备的服务小区状态切换至第一状态或者切换出第一状态。其中,服务小区状态为第一状态时,服务小区的下行载波支持下行通信,服务小区的上行载波不支持上行通信,具体可以参见上述关于服务小区状态的相关描述,在此不再赘述。
在一些实施例中,网络设备可以向终端设备发送第一指令,比如可以周期性和/或通过事件触发来发送所述第一指令。示例的,网络设备可以针对终端设备配置N个服务小区,如果激活N个服务小区后,终端设备上行通信支持的最大端口数和/或通道数难以满足N个服务小区的上行载波的同时传输需求,可以将N个服务小区中的M个服务小区初始化为服务小区状态为激活态的服务小区,将剩余的N-M个服务小区初始化为服务小区状态为第一状态的服务小区。然后,根据N个服务小区的传输需求,将服务小区中M个服务小区的小区状态切换至第一状态,和/或者将服务小区中N-M个服务小区的小区状态切换出第一状态。需要说明的是,网络设备针对终端设备配置的服务小区的个数N、以及针对终端设备激活的服务小区的个数M不超过终端设备支持的最大能力,且N≥M>0。
例如,网络设备可以根据N个服务小区的优先级顺序,初始化配置N个服务小区的小区状态,以及进行小区状态的切换。
示例的,第一指令可以携带在DCI或MAC CE信令中由网络设备发送给终端设备,可以是小区级的信令,也可以是终端设备特定的信令,或者终端组集的信令,对此不作限定。第一指令中指示进入第一状态或切出第一状态的对象可以是一个小区或载波,也可以是一个小区组或载波组。
402、终端设备接收来自网络设备的第一指令,根据第一指令切换服务小区状态。
以下结合第一状态对本申请实施例的小区状态切换方法进行具体介绍。
实施例一、当服务小区状态为第一状态时,服务小区的上行载波是去激活的,服务小区的下行载波是激活的。
在这种情况下,在一些实施例中,第一指令可以为载波的激活或去激活信令。例如,当终端设备的服务小区状态为激活态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示去激活上行载波,则终端设备根据第一指令,去激活服务小区的上行载波。从而将服务小区状态从激活态切换到第一状态。在此种情况下,第一指令不用于指示下行载波的状态切换,即下行载波状态保持不变。再例如,当服务小区状态为第一状态时,终端设备如果接收到来自网络设备发送的第一指令,第一指令用于指示激活上行载波,则终端设备根据第一指令,激活服务小区的上行载波。从而将服务小区状态从第一状态切换到激活态。在此种情况下,第一指令不用于指示下行载波的状态,即下行载波状态保持不变。又例如,当服务小区状态为第一状态时,终端设备如果接收到来自网络设备发送的第一指令,第一指令用于指示去激活下行载波,则终端设备根据第一指令,去激活服务小区的下行载波。在此种情况下,第一指令不用于指示上行载波的状态切换,即上行载波状态保持不变。从而将服务小区状态从第一状态切换到去激活态。又例如,终端设备当服务小区状态为去激活态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示激活下行载波,则终端设备根据第一指令,激活服务小区的下行载波,从而将服务小区状态从去激活态切换第一状态。在此种情况下,第一指令不用于指示上行载波的状态切换,即上行载波状态保持不变。在一种情况中,例如,第一指令用于激活服务小区中的一个上行载波;再例如,第一指令用于激活服务小区中的一个下行载波。在另一种情况中,如果服务小区包含多个上行载波或者下行载波,例如,第一指令用于激活服务小区中的所有上行载波;再例如,第一指令用于激活服务小区中的所有下行载波。通过该种方式,可以灵活实现上下行载波的独立激活、去激活,分别匹配上下行不同的终端能力和信道、剩余资源情况。
上述以载波激活、去激活举例,对于服务小区激活、去激活类似。第一指令可以为服务小区的激活或去激活信令。例如,当终端设备接收到来自网络设备发送的第一指令,第一指令用于指示去激活上行服务小区1,则终端设备根据第一指令,去激活上行服务小区1。在此种情况下,第一指令不用于指示下行服务小区的状态切换,即下行服务小区状态保持不变。再例如,终端设备如果接收到来自网络设备发送的第一指令,第一指令用于指示激活上行服务小区1,则终端设备根据第一指令,激活上行服务小区1。在此种情况下,第一指令不用于指示下行服务小区的状态切换,即下行服务小区状态保持不变。又例如,当终端设备接收到来自网络设备发送的第一指令,第一指令用于指示去激活下行服务小区1,则终端设备根据第一指令,去激活下行服务小区1。在此种情况下,第一指令不用于指示上行服务小区的状态切换,即上行服务小区状态保持不变。再例如,终端设备如果接收到来自网络设备发送的第一指令,第一指令用于指示激活下行服务小区1,则终端设备根据第一指令,激活下行服务小区1。在此种情况下,第一指令不用于指示上行服务小区的 状态切换,即上行服务小区状态保持不变。在一种情况中,例如,第一指令用于激活上行服务小区中的一个上行载波;再例如,第一指令用于激活上行服务小区中的一个下行载波。在另一种情况中,如果上行服务小区包含多个上行载波或者下行服务小区包含多个下行载波,例如,第一指令用于激活上行服务小区中的所有上行载波;再例如,第一指令用于激活下行服务小区中的所有下行载波。通过该种方式,可以灵活实现上下行服务小区的独立激活、去激活,分别匹配上下行不同的终端能力和信道、剩余资源情况。
需要说明的是,在终端设备配置有N个服务小区的情况下,网络设备针对终端设备配置的多个服务小区的载波的激活或去激活信令可以通过RRC信令或DCI或MAC CE信令指示给终端设备。所述RRC信令或DCI或MAC CE信令可以在任意一个激活的下行载波上发送给终端设备,激活的下行载波可以是PCel、SCell或PSCell的下行载波,此处不做限定。
在另一些实施例中,第一指令还可以为小区级信令。在这种情况下,第一指令中的至少一个比特用于指示终端设备的当前的服务小区状态、且第一指令中的至少一个比特用于指示终端设备需要切换到的服务小区状态。例如,当终端设备的当前的服务小区状态为激活态时,如果接收到来自网络设备发送的第一指令,其中第一指令为小区状态从激活态切换到第一状态的使能信令,则终端设备根据第一指令,将服务小区状态从激活态切换到第一状态。再例如,终端设备当前的服务小区状态为第一状态时,如果接收到来自网络设备发送的第一指令,其中第一指令为小区状态激活信令,则终端设备根据第一指令,将服务小区状态从第一状态切换到激活态。又例如,终端设备当前的服务小区状态为去激活态时,如果接收到来自网络设备发送的第一指令,其中第一指令为小区状态从去激活态切换到第一状态的使能信令,则终端设备根据第一指令,将服务小区状态从去激活态切换到第一状态。又例如,终端设备当前的服务小区状态为第一状态时,如果接收到来自网络设备发送的第一指令,其中第一指令为小区状态去激活信令,则终端设备根据第一指令,将服务小区状态从第一状态切换到去激活态。
实施例二、当服务小区状态为第一状态时,服务小区的下行载波是激活的,服务小区的上行载波是激活的、但上行载波的端口数和/或通道数为0。以下以端口数为例,关于通道数可以参见端口数的相关介绍。
在这种情况下,例如,当终端设备的服务小区状态为激活态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示服务小区的上行载波的端口数配置为0,则终端设备根据第一指令,将服务小区状态从激活态切换到第一状态。比如,第一指令用于指示服务小区的上行载波的端口数配置为0可以通过下列方式实现:在小区激活信令中携带服务小区的上行载波的端口数为0的指示。
再例如,当终端设备的服务小区状态为第一状态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示服务小区的上行载波的端口数配置为P,0<P≤M,且P为正整数,M为终端设备上行通信支持的最大端口数,则终端设备根据第一指令,将服务小区状态从第一状态切换到激活态。比如,第一指令用于指示服务小区的上行载波的端口数配置为P可以通过下列方式实现:在小区激活信令中携带服务小区的上行载波的端口数、或者在小区激活信令中携带服务小区的上行载波的端口数不为0的指示。可以理解的是,网络设备可以半静态或动态向终端设备发送携带服务小区的上行载波的端口数为P、或者在小区激活信令中携带服务小区的上行载波的端口数不为0的指示的小区激活信令。
又例如,当终端设备的服务小区状态为去激活态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示将服务小区的上行载波的端口数配置为0,则终端设备根据第一指令,将服务小区状态从去激活态切换到第一状态。比如,第一指令用于指示服务小区的上行载波的端口数配置为0可以通过下列方式实现:在小区激活信令中携带服务小区的上行载波的端口数、或者在小区激活信令中携带服务小区的上行载波的端口数为0的指示。示例的,本申请实施例中的小区激活信令可以为RRC信令、MAC CE信令或DCI等,对此不作限定。
又例如,当终端设备的服务小区状态为第一状态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示去激活服务小区,则终端设备根据第一指令,将服务小区状态从第一状态切换到去激活态。
实施例三、当服务小区状态为第一状态时,服务小区的下行载波是激活的,服务小区的上行载波是激活的、但上行载波上激活的BWP是预配置BWP;或者,当服务小区状态为第一状态时,服务小区的下行载波是激活的,服务小区的上行载波是激活的、但下行载波上激活的BWP是预配置的BWP。例如,在上行载波上激活的BWP为预配置的BWP的情况下,预配置的BWP的端口数和/或通道数为0。再例如,在下行载波上激活的BWP为预配置的BWP的情况下,上行载波的端口数和/或通道数为0。示例的,网络设备可以通过RRC信令向终端设备指示预配置的BWP。例如,RRC信令中包括预配置BWP的BWP ID。或者,服务小区的上行载波上的预配置BWP可以是通过协议预定义的。
以上行载波上激活的BWP为预配置的BWP为例。在这种情况下,例如,当终端设备的服务小区状态为激活态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示激活服务小区的上行载波上预配置的BWP,则终端设备根据第一指令,将服务小区状态从激活态切换到第一状态。再例如,当终端设备的服务小区状态为第一状态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示激活服务小区的上行载波上端口数为Q的BWP,0<Q≤M,M为终端设备上行通信支持的最大端口数,则终端设备根据第一指令,将预配置的BWP切换为上行载波上端口数为Q的BWP(即上行载波上端口数不为0的BWP),从而将服务小区状态从第一状态切换到激活态。需要说明的是,本申请实施例中关于BWP切换可以复用现有技术中的BWP切换机制,通过BWP ID进行切换,在此不再赘述。
示例的,网络设备可以动态或半静态向终端设备发送第一指令,进行BWP的切换,从而实现服务小区状态中激活态和第一状态之间的切换。
比如,在终端设备配置有多个服务小区的场景下,可以将多个服务小区的第一指令携带在一个信令中发送给终端设备,也可以每个服务小区的第一指令单独发送给终端设备。以终端设备配置的服务小区有小区1、小区2和小区3为例,小区1和小区3的服务小区状态为激活态、小区2的服务小区状态为第一状态,0用于指示激活服务小区的上行载波上预配置的BWP,1用于指示激活服务小区的上行载波上非预配置的BWP,如果终端设备接收到的信令为011,则终端设备将小区1的小区状态从激活态切换为第一状态,将小区2的小区状态从第一状态切换到激活态,小区3的小区状态保持激活态不变。
需要说明的是,针对实施例三中,服务小区状态中去激活态和第一状态之间的切换可以参见实施例二中的关于去激活态和第一状态之间切换的相关介绍,在此不再赘述。
实施例四、当服务小区状态为第一状态时,服务小区的下行载波是激活的,服务小区 的上行载波是激活的、但小区状态标识为第一小区状态标识,其中,第一小区状态标识用于标识第一状态。
在这种情况下,例如,终端设备当服务小区状态为激活态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示服务小区的小区状态标识配置为第一小区状态标识,则终端设备根据第一指令,将服务小区状态从激活态切换到第一状态。再例如,终端设备当服务小区状态为去激活态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示服务小区的小区状态标识配置为第一小区状态标识,则终端设备根据第一指令,将服务小区状态从去激活态切换到第一状态。再例如,终端设备当服务小区状态为第一状态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示服务小区的小区状态标识配置为第二小区状态标识,则终端设备根据第一指令,将服务小区状态从第一状态切换到激活态。第二小区状态标识用于标识激活态。再例如,终端设备当服务小区状态为第一状态时,如果接收到来自网络设备发送的第一指令,第一指令用于指示服务小区的小区状态标识配置为第三小区状态标识,则终端设备根据第一指令,将服务小区状态从第一状态切换到去激活态。第三小区状态标识用于标识去激活态。在一种实现方式中,第一小区状态标识为11,第二小区状态标识为10,第三小区状态标识为01。
示例的,网络设备可以动态或半静态向终端设备发送第一指令,进行小区状态标识的配置。需要说明的是,在终端设备配置有多个服务小区的场景下,可以将多个服务小区的第一指令携带在一个信令中发送给终端设备,也可以每个服务小区的第一指令单独发送给终端设备。
实施例五、当服务小区状态为第一状态时,服务小区的下行载波的载波状态为激活态,服务小区的上行载波的载波状态为第二状态,第一指令的具体实现与上行载波的载波状态为第二状态时的具体实现有关,示例的,实施例五中关于服务小区状态的切换可以参见上述实施例一至实施例四中服务小区状态的切换的介绍,在此不再赘述。
需要说明的是,本申请实施例中上述关于服务小区状态为第一状态时终端设备的行为可以相互结合使用,也可以单独使用,对此不作限定。例如,将实施例三和实施例四相互结合,则第一指令可以用于指示载波上激活的BWP和小区状态标识。
还需要说明的是,上述五种关于服务小区状态为第一状态的介绍中,均涉及了下行载波,在服务小区不包括下行载波或服务小区未配置有下行载波的情况下,上述关于服务小区状态为第一状态的介绍中可以不包括涉及激活的下行载波的介绍。
在另一些实施例中,终端设备获取终端能力信息,终端设备向网络设备上报能力信息,该能力信息包括终端设备支持的频段、以及终端设备支持的频段上所支持的最大通道数和/或最大端口数和/或最大天线数,以便于网络设备针对为终端设备配置的服务小区的上行载波配置相应的通道数和/或端口数和/或天线数。进一步的,终端设备向网络设备上报的能力信息还可以包括终端设备上行通信支持的最大端口数和/或通道数和/或最大天线数。进一步的,终端设备向网络设备上报的能力信息还可以包括终端设备下行通信支持的最大端口数和/或通道数和/或最大天线数。
可选的,终端设备上报的能力包括以下至少一种:
1、可同时配置的band/CC组合、或者可同时配置的band/CC个数M、或者可同时配置的band/CC总带宽或带宽组合、或者可同时配置的服务小区组合;
2、可同时激活的band/CC组合、或者可同时激活的band/CC个数K、或者可同时激 活的band/CC总带宽或带宽组合、或者可同时激活的服务小区组合;
3、可同时或可并行传输的band/CC组合、或者可同时或可并行传输的band/CC个数m、或者可同时或可并行传输的band/CC总带宽或带宽组合、或者可同时或并行传输的服务小区组合;
4、可快速切换的band/CC组合、或者可快速切换的band/CC集合个数L、或者可快速切换的服务小区组合。
针对上述上报的能力,终端设备可以独立上报,能力之间是解耦的,即不同的能力是可以相同或不同的。针对一种能力,其对应的上行和下行也是解耦的,即可以只上报上行或下行中的一个,也可以都上报,上行和下行的能力也是可以相同或不同的。示例的,以上行载波能力为例,M≥K≥L≥m,即终端设备可配置的上行载波个数大于或者等于可以同时激活的上行载波个数,可以同时激活的上行载波个数大于或者等于可快速切换的上行载波个数,可快速切换的上行载波个数大于或者等于可同时传输的上行载波个数。基站可以通过RRC、MAC CE、DCI等信令指示用户进行快速载波切换;用户在可快速切换或可同时传输的上行band/CC/服务小区组合中的band/CC/服务小区上发送上行数据信道、上行控制信息、上行随机接入信道或上行参考信号,即PUSCH,PUCCH,PRACH,SRS,DMRS等。示例的,以上行能力为例,终端设备上报的可同时激活的上行band组合是可同时配置的上行band组合的子集/全集,和/或,终端设备上报的可同时传输的上行band组合是可同时激活的上行band组合的子集/全集。示例的,以上行能力为例,终端设备上报的可同时激活的上行band/CC总带宽小于等于可同时配置的上行band/CC总带宽,和/或,终端设备上报的可同时传输的上行band/CC总带宽小于等于可同时激活的上行band/CC总带宽。同理,对于下行载波能力,M≥K≥L≥m,即终端设备可配置的下行载波个数大于或者等于可以同时激活的下行载波个数,可以同时激活的下行载波个数大于或者等于可快速切换的下行载波个数,可快速切换的下行载波个数大于或者等于可同时传输的下行载波个数。基站可以通过RRC、MAC CE、DCI等信令指示用户进行快速载波切换;用户在可快速切换或可同时传输的下行band/CC/服务小区组合中的band/CC/服务小区上接收下行数据信道、下行控制信息、下行同步信道或者下行参考信号,即PDSCH,PDCCH,SSB,CSI-RS,DMRS等。示例的,以下行能力为例,终端设备上报的可同时激活的下行band组合是可同时配置的下行band组合的子集/全集,和/或,终端设备上报的可同时接收的下行band组合是可同时激活的下行band组合的子集/全集。示例的,以下行能力为例,终端设备上报的可同时激活的下行band/CC总带宽小于等于可同时配置的下行band/CC总带宽,和/或,终端设备上报的可同时接收的下行band/CC总带宽小于等于可同时激活的下行band/CC总带宽。在可配置的M个band/CC内,上行载波和下行载波可以打破band灵活配对,比如一个服务小区包括了载波频率为1.8G的上行和载波频率为700MHz的下行。在可切换的L个band/CC组合内,网络设备可以根据不同上行载波的信道测量结果和资源负载情况灵活选择上行或下行载波。在一些可能的示例中,终端能力上报终端的总接收和/或发送通道数和/或可切换的通道数,例如,上报哪些通道和/或多少通道数可以在哪些band/CC组合里互相切换。
示例的,以上行为例,终端设备只上报上述能力中的两种,即上报第一上行band/CC组合和第二上行band/CC组合,第一上行band/CC组合为可同时配置的band/CC组合,第二上行band/CC组合为可同时激活的band/CC组合,也为可同时传输的band/CC组合,可 选地,第二组合是第一组合的子集,或者第一组合里的band/CC个数大于第二组合里的band/CC个数,即上述M>K=m。如此,基站基于上报的能力,可以给终端设备配置小于等于M个上行载波/上行band,然后通过RRC信令或MAC CE信令或DCI信令对上行载波在配置的载波里动态的选择1个或几个载波快速激活去激活,保证同一时刻激活的载波数小于等于K,可以实现终端设备快速地在M个不同上行载波之间快速切换,从而更加高效的根据当前的信道状况和业务特性利用M个上行载波的资源,避免了通过RRC载波重配置信令进行上行载波切换造成的时延。若UE还上报了总通道数,和/或,哪些通道和/或多少通道数可以在哪些band/CC组合里互相切换,则上述切换需要考虑该能力。
示例的,以上行为例,终端设备只上报上述能力中的两种,即上报第一上行band/CC组合和第二上行band/CC组合,第一上行band/CC组合为可同时配置的band/CC组合,也为可同时激活的band/CC组合,第二上行band/CC组合为可同时传输的band/CC组合,可选地,第二组合是第一组合的子集,或者第一组合里的band/CC个数大于第二组合里的band/CC个数,即上述M=K>m。如此,基站基于上报的能力,可以给终端设备配置并激活小于等于M个上行载波/上行band,然后通过DCI信令在配置的或激活的载波里动态的选择1个或几个载波切换,保证同一时刻传输载波数小于等于m,可以实现终端设备更加快速地在M个不同上行载波之间快速切换,从而更加高效的根据当前的信道状况和业务特性利用M个上行载波的资源,避免了通过RRC载波重配置信令进行上行载波切换造成的时延,或者通过MAC CE信令激活/去激活上行载波造成的时延。若UE还上报了总通道数,和/或,哪些通道和/或多少通道数可以在哪些band/CC组合里互相切换,则上述切换需要考虑该能力。
示例的,以上行为例,终端设备上报上述能力中的三种,即上报第一上行band/CC组合,第二上行band/CC组合和第三band/CC组合,第一上行band/CC组合为可同时配置的band/CC组合,第二上行band/CC组合为可同时激活的band/CC组合,第三上行band/CC组合为可同时传输的band/CC组合,可选地,第三组合是第二组合的子集,第二组合是第一组合的子集,或者第一组合里的band/CC个数大于第二组合里的band/CC个数,第二组合里的band/CC个数大于第三组合里的band/CC个数,即上述M>K>m。如此,基站基于上报的能力,可以给终端设备配置小于等于M个上行载波/上行band,然后激活小于等于M个上行载波/上行band,然后通过DCI信令对上行载波切换,保证同一时刻调度的传输载波数小于等于m,可以实现终端设备更加快速地在M个不同上行载波之间快速切换,从而更加高效的根据当前的信道状况和业务特性利用M个上行载波的资源,避免了通过RRC载波重配置信令进行上行载波切换造成的时延,或者通过MAC CE信令激活/去激活上行载波造成的时延。若UE还上报了总通道数,和/或,哪些通道和/或多少通道数可以在哪些band/CC组合里互相切换,则上述切换需要考虑该能力。
band/CC个数M或者band/CC总带宽或带宽组合类似,不再赘述。
下行类似,不再赘述。
以CC组合为例,如图16A所示,终端设备上报的可同时配置的CC组合为CC1、CC2、CC3和CC4;终端上报的可同时激活的CC组合为CC1、CC2、CC3和CC4,即可同时激活的CC的个数为4个,则终端可切换的CC组合为CC1、CC2、CC3和CC4;终端上报的可同时传输的CC组合为CC3和CC4,即可同时传输的CC的数目最大为2个。例如,终端设备用于传输的CC从CC2切换到CC3和CC4,即将CC2使用的通道切换到CC3和 CC4。例如,CC2使用的通道为两个,分别为通道1和通道2,可以将通道1切换到CC3,将通道2切换到CC4。基站可以通过DCI信令通知用户将CC2使用的通道切换到CC3和CC4。将CC2使用的通道切换到CC3和CC4所需要的时延大概为1~4个符号。
再例如,如图16B所示,终端设备上报的可同时配置的CC组合为CC1、CC2、CC3和CC4;终端上报的可同时激活的CC组合一为CC1和CC2,可同时激活的CC组合二为CC3和CC4,其中,CC1和CC2可以同时激活,CC3和CC4可以同时激活,即可同时激活的CC个数为2个。终端上报的可同时传输的CC组合为CC3和CC4,其中,CC3和CC4可同时传输,即可同时传输的CC个数最大为2个。例如,当可同时激活的CC组合一CC1和CC2处于激活状态时,终端设备可以将CC1使用的通道切换到CC2。例如,终端设备将可同时激活的CC组合一CC1和CC2去激活,终端设备将可同时激活的CC组合二CC3和CC4激活。例如,当可同时激活的CC组合二CC3和CC4处于激活状态时,由于CC3和CC4也为可同时传输的CC组合,终端设备可以同时在CC3和CC4上传输。
以上两个例子是以CC组合为例,band组合或者服务小区组合或者CC/band带宽组合类似,不再赘述。其中图16A和图16B例子中的CC组合可以是上行CC组合,也可以是下行CC组合,本申请不做限制。
在本申请另一些实施例中,终端设备是根据时间图样进行服务小区状态的切换的。而时间图样可是以网络设备指示给终端设备的,或者是通过协议预定义的。网络设备可以向终端设备发送时间图样配置信令或时间图样激活信令,从而实现服务小区状态的切换。关于时间图样可以参见载波状态中关于时间图样的相关介绍,在此不再赘述。示例的,时间图样配置信令或者时间图样激活信令可以为DCI、RRC信令或者MAC CE信令等,对此不作限定。
或者,在一些实施例中,网络设备可以根据上行的数据调度来隐式的指示一个服务小区状态的切换。比如在同一个时间单元,网络设备调度了终端设备在服务小区1上的上行载波上使用1端口(port)发送PUSCH,在服务小区2的上行载波上使用1port发送PUSCH,那么服务小区1和服务小区2的服务小区状态均为激活态,而终端设备其他激活的服务小区的服务小区状态为第一状态。
另外,终端设备在上行载波上是通过端口/通道/发送天线实现上行通信的。而针对上行载波使用或配置的端口/通道/发送天线是由网络设备指示给终端设备的。然而,在网络设备为终端设备配置多个上行载波的情况下,网络设备通常分别给每个上行载波配置一个或多个端口/通道/发送天线,且针对不同上行载波配置的端口/通道/发送天线是不同的,即使在某一个上行载波未进行上行通信的情况下,针对该上行载波配置的端口/通道也不能被其他上行载波使用,从而容易资源浪费,影响通信效率。有鉴于此,本申请实施例提供了一种通信方法,以终端设备在上行载波上通过端口实现上行通信为例,如图5所示,可以应用于CA、DC或者SUL场景或者CA和SUL组合的场景,具体包括以下步骤,终端设备在上行载波上通过通道/发送天线实现上行通信的方式是类似的,可以参照。
501、终端设备在第一载波上通过N个端口进行上行通信,N为正整数。
502、网络设备向终端设备发送第二指令,其中,第二指令用于指示在第二载波上使用Q个端口进行上行通信,Q个端口包括上述步骤501中第一载波使用的N个端口中的K 个端口,其中,Q为正整数,0<K≤N,N-K+Q不超过所述终端设备的上行通信支持的最大端口数。
503、终端设备根据第二指令,在第二载波上通过Q个端口进行上行通信。
在本申请实施例中,由于网络设备可以将配置给第一载波的端口配置给第二载波使用,从而提高了端口的利用率,有助于提高终端设备的通信效率。
其中,第一载波和第二载波可以为终端设备同一服务小区的两个上行载波,也可以为终端设备的不同服务小区的两个上行载波,对此不作限定。其中第一载波和第二载波并没有限定本申请实施例中只包括两个载波的情况,终端设备可以在大于两个载波上分配和切换端口数。另外,本申请实施例中,第一载波和第二载波可以属于同一频段,也可以属于不同的频段。
在一种实现方式中,终端设备在第一载波上通过N个端口进行上行通信时,也可以在第二载波上通过M个端口进行上行通信,其中M+N不超过终端设备的上行通信支持的最大端口数。而且,第一载波使用的N个端口和第二载波使用的M个端口是不同的。也就是说,终端设备在同一时间单元可以在第一载波和第二载波上使用不同的端口进行上行通信。在这种情况下,如果终端设备接收到第二指令,则第二载波上使用的Q个端口可以包括之前使用的M个端口和第一载波使用的N个端口中的K个端口。
在另一种实现方式中,终端设备在第一载波上通过N个端口进行上行通信时,在第二载波上不进行上行通信,在这种情况下,如果终端设备接收到第二指令,则第二载波上使用的Q个端口至少包括第一载波使用的N个端口中的K个端口。
可以理解的是,在K的取值等于N的情况下,终端设备接收到第二指令,则终端设备后续不在第一载波上进行上行通信。在K的取值小于N的情况下,终端设备接收到第二指令后,可以继续在第一载波上通过N-K个上行载波进行上行通信。可选的,相同的端口也可以对应不同的上行载波,即终端设备在至少两个上行载波上可以使用相同的端口进行上行传输。例如,在频段上连续的两个上行载波可以对应相同的端口。
示例的,网络设备可以将第二指令携带在DCI中发送给终端设备,也可以将第二指令携带在RRC信令或者MAC CE信令中发送给终端设备,还可以将第二指令携带在其它信息中发送给终端设备,对此不作限定。
在一些实施例中,网络设备可以动态或半静态向终端设备发送更新上行载波使用的端口数。示例的,网络设备可以通过事件触发向终端设备发送第二指令。例如,网络设备在检测到第一载波上需要传输的数据量小于大于或等于某一阈值时,向一些终端设备发送第二指令,指示终端设备在其他上行载波上进行传输,从而达到网络负载均衡的目的。第二指令还可以用于指示终端设备在第一载波上不进行上行通信。即第一载波使用的端口数为0。再例如,网络设备在检测到第二载波上需要传输的数据量大于第一载波上需要传输的数据量时,向终端设备发送第二指令。在另一些实施例中,网络设备还可以周期性更新上行载波使用的端口数,使得终端设备可以周期性切换到上行载波上进行上行通信。比如终端设备周期的切换到某个上行载波发送SRS。
例如,以终端设备上行通信支持的最大端口数为2为例,如图6A所示,终端设备在时隙1和时隙2、中心频率为2.1GHz的上行载波上使用1个端口(port,可以简称为P)进行上行通信,在时隙1和时隙2、中心频率为1.8GHz的上行载波上使用另1个端口进行上行通信,在时隙4、中心频率为2.1GHz的上行载波上不进行上行通信,如果终端设备在 时隙4需要在中心频率为1.8GHz的上行载波上进行上行通信,则在时隙4,中心频率为1.8GHz的上行载波可以使用两个端口进行上行通信,从而有助于提高通信效率。
例如,以终端设备上行通信支持的最大端口数为4为例,如图6B所示,终端设备在时隙1和时隙2、中心频率为2.1GHz的上行载波上使用3个端口进行上行通信,在时隙1和时隙2、中心频率为1.8GHz的上行载波上使用另外1个端口进行上行通信,在时隙4、中心频率为2.1GHz的上行载波上使用1个端口进行上行通信,如果终端设备在时隙4需要在中心频率为2.1GHz的上行载波上使用1个端口进行上行通信,则在时隙4,中心频率为1.8GHz的上行载波可以使用2个或3个端口进行上行通信,从而有助于提高通信效率。具体的,在时隙4,中心频率为1.8GHz的上行载波可以进行上行通信使用的端口数可以是网络设备指示的,也可以是终端设备根据自身的数据传输需求设置的。比如,在时隙4如果中心频率为2.1GHz的上行载波的端口数为1的情况下,在时隙4,除了在中心频率为1.8GHz的上行载波进行上行通信以外,还需要在中心频率为3.5GHz的上行载波上进行上行通信,则终端设备可以在时隙4,在中心频率为1.8GHz的上行载波可以使用2个端口进行上行通信,在中心频率为3.5GHz的上行载波上使用1个端口进行上行通信。
又例如,以终端设备上行通信支持的最大端口数为2为例,如图6C所示,终端设备在时隙1和时隙2、中心频率为2.1GHz的上行载波上使用1个端口进行上行通信,在时隙1和时隙2、中心频率为1.8GHz的上行载波上使用另1个端口进行上行通信,在时隙4、中心频率为2.1GHz和1.8GHz的上行载波上不进行上行通信,如果终端设备在时隙4需要在中心频率为3.5GHz的上行载波上进行上行通信,则在时隙4,中心频率为3.5GHz的上行载波可以使用2个端口进行上行通信,在这种情况下,在时隙4,中心频率为2.1GHz和1.8GHz的上行载波使用的端口数为0,从而有助于提高通信效率。
例如,以终端设备上行通信支持的最大端口数为3为例,如图6D所示,终端设备在时隙1和时隙2、中心频率为2.1GHz的上行载波上使用2个端口进行上行通信,在时隙1和时隙2、中心频率为1.8GHz的上行载波上使用另外1个端口进行上行通信,在时隙4、中心频率为2.1GHz的上行载波上使用1个端口进行上行通信,如果终端设备在时隙4不需要在中心频率为1.8GHz的上行载波上进行上行通信,在时隙4中心频率为3.5GHz的上行载波需要进行上行通信的情况下,在时隙4中心频率为3.5GHz的上行载波可以使用2个端口进行上行通信,从而有助于提高通信效率。或者,终端设备如果在时隙4、中心频率为2.1GHz的上行载波上使用1个端口进行上行通信,在时隙4、中心频率为1.8GHz的上行载波上使用1个端口进行上行通信,则在时隙4中心频率为3.5GHz的上行载波需要进行上行通信的情况下,在时隙4中心频率为3.5GHz的上行载波可以使用1个端口进行上行通信。
在另一些实施例中,终端设备在接收到第二指令后经过第一时长,再在第二载波上通过N个端口中的K个端口进行上行通信,第一时长为第二载波上端口个数发生切换时需要的切换时延。从而有助于提高上行通信的可靠性。示例的,第一时长的起始时刻可以是由网络设备指示给终端设备,也可以是由终端设备根据某一策略确定的、或者第一时长的起始时刻为通过协议定义的。例如,第一时长的起始时刻为终端设备接收到第二指令的时刻,或为终端设备接收并解析了第二指令内容的时刻。第一时长可以是通过协议预定义的,也可以是由网络设备指示给终端设备的,或者是终端设备上报的。示例的,第一时长可以以时间单元为单位来定义,也可以为绝对时间,对此不作限定。例如,第一时长为一个参考 参数集(numerology)的固定符号的个数,参考numerology可以是预定义或与配置的,也可以与某一上行载波(如主小区的上行载波、第一载波或第二载波)上激活的BWP的numerology相同,针对不同numerology,第一时长对应的符号个数可以不同。可选的,第一时长与源band组合、目标band组合、源上行载波的频段、目标上行载波的频段、源端口数、目标端口数、源发送天线数、目标发送天线数、源发送通道数、目标发送通道数、源载波数、目标载波数中的至少1个相关。其中band组合和载波频段是第一时长与发生切换的载波对应的band组合/频段有关。源端口数是指针对第二载波的端口数切换到Q个之前终端设备在第二载波上的端口数,源发送天线数是指针对第二载波的端口数切换到Q个之前终端设备在第二载波上的发送天线数,源发送通道数是指针对第二载波的端口数切换到Q个之前终端设备在第二载波上的通道数,目标端口数是指针对第二载波的端口数切换到Q个后终端设备在第二载波上的端口数,目标发送天线数是指针对第二载波的端口数切换到Q个后终端设备在第二载波上的发送天线数,目标通道数是指针对第二载波的端口数切换到Q个后终端设备在第二载波上的通道数,源载波数是指终端设备在第二载波的端口数切换前同时发送的上行载波数,目标载波数是终端设备在第二载波的端口数切换后同时发送的上行载波数。
示例的,本申请实施例的对于属于同一频段的载波间的端口/发送通道切换时延、属于不同频段的载波间的端口/发送通道切换时延、和/或不同端口个数的端口/发送通道切换时延可以是统一的,从而有助于简化实现。或者,针对以上不同情况配置不同的端口/发送通道切换时延。在这种情况下,可以根据载波和/或载波所属的频段、或者端口数的切换情况确定端口切换时延。进一步的,在一些实施例中,针对以上不同情况的端口/发送通道切换,终端设备获取终端切换时延的能力信息,终端设备可以分别上报切换时延能力。具体的,针对不同的载波/载波频段上的端口/发送通道切换情况、或者不同的端口/发送通道数的情况,终端设备可以分别上报切换时延。例如,从0个端口切换到1个端口、从载波1切换到载波2、且载波1和载波2属于不同频段的端口切换时延为时延1。再例如,从1个端口切换到2个端口、从载波2切换到载波3、且载波2和载波3属于同一频段的端口切换时延为时延2。终端设备分别上报时延1和时延2。
例如,针对同一载波从1个端口切换到2个端口和从0个端口切换到2个端口需要的切换时延不同。再例如,针对不同载波之间的端口切换时延也可能不同。比如,从载波1切换到载波2、与从载波2切换到载波3所需的切换时长不同。再例如,针对不同载波上的端口切换时延也可能不同。比如,终端设备在载波4上从0个端口切换到2个端口的时延为t1,终端设备在载波5上从0个端口切换到2个端口的时延为t2。终端设备分别上报时延t1和时延t2。
示例的,“band/载波1的两个通道切换到band/载波1的一个通道和band/载波2的一个通道的时延t1”、“band/载波1的两个通道切换到band/载波1的零个通道和band/载波2的两个通道的时延t2”、“band/载波1的两个通道切换到band/载波1的零个通道、band/载波2的一个通道和band/载波3的一个通道的时延t3”中至少有2个不一样。
在另一些实施例中,终端设备向网络设备上报能力信息,该能力信息包括终端设备支持的频段、以及终端设备支持的频段所支持的最大端口数,以便于网络设备针对为终端设备配置的服务小区的上行载波配置相应的端口数。进一步的,终端设备向网络设备上报的 能力信息还可以包括终端设备上行通信支持的最大端口数。
以第一载波为例。需要说明的是,本申请实施例中,终端设备在第一载波上使用的端口数与终端设备在第一载波上配置的通道数相关。需要说明的是,终端设备在第一载波上使用的端口数是由网络设备配置的。其中,在第一载波上配置的端口数小于或等于在第一载波上配置或终端设备上报的通道数。例如,在第一载波上配置的通道数为1,则在第一载波上配置的端口数可以为1,也可以为0。再例如,在第一载波上配置的通道数为2,则在第一载波上配置的端口数可以为2、1或0。又例如,在第一载波上配置的通道数为0,则在第一载波上配置的端口数可以为0。
本申请实施例中,终端设备在一个载波上的上行发送通道是指终端设备在所述上行载波上用于发送的射频通道,对应一个功率放大器;终端设备在一个载波上的上行发送天线是指终端设备在所述载波上用于发送的物理天线;终端设备在一个载波上的上行发送端口是指终端设备在所述载波上发送信号对应的逻辑端口号,每个端口号上有自己独立的DMRS信号,供网络设备解调出各个端口上的信号。终端设备在一个下行载波上的下行接收通道是指终端设备在所述下行载波上用于接收的射频通道;终端设备在一个载波上的下行接收天线是指终端设备在所述载波上用于接收的物理天线;终端设备在一个载波上的下行接收端口是指终端设备在所述载波上接收信号对应的逻辑端口号。
网络设备在一个上行载波上的上行接收通道是指网络设备在所述上行载波上用于接收的射频通道;终端设备在一个上行载波上的上行接收天线是指终端设备在所述载波上用于接收的物理天线;终端设备在一个上行载波上的上行接收端口是指终端设备在所述载波上接收信号对应的逻辑端口号。网络设备在一个下行载波上的下行发送通道是指网络设备在所述载波上用于发送的射频通道;网络设备在一个下行载波上的下行发送天线是指网络设备在所述载波上用于发送的物理天线;终端设备在一个下行载波上的下行发送端口是指终端设备在所述载波上发送信号对应的逻辑端口号。
通道,端口和天线的关系为:终端设备在一个上行载波上最大上行发送天线数大于等于最大上行发送通道数,大于等于最大发送端口数,终端设备在一个下行载波上最大接收天线数大于等于最大下行接收通道数,大于等于最大接收端口数;网络设备在一个上行载波上最大上行接收天线数大于等于最大上行接收通道数,大于等于最大接收端口数,网络设备在一个下行载波上最大发送天线数大于等于最大下行发送通道数,大于等于最大发送端口数;网络设备可以配置通道数,端口数和天线数三者中至少一个给终端设备,从而实现网络设备和终端设备之间的通信。
以终端设备配置有第一载波和第二载波、终端设备上行通信支持的最大上行通道数为2为例,载波的通道数和端口数之间的关系可以如表1所示。
表1
Figure PCTCN2021110641-appb-000001
因此,基于表1,上述步骤501~步骤503中的端口也可以替换为通道、或发送天线,具体实现可以参见端口的相关介绍,在此不在赘述。示例的,对于通道切换时延,例如载波从1个通道切换到2个通道的切换时延可以为30KHz的1个符号,载波从0个通道切换到2个通道的切换时延可以为30KHz的2个符号,也可以为绝对时间,例如70us。
此外,在本申请的另一些实施例中,网络设备还可以针对为终端设备配置的上行载波配置一个或多个时间图样。时间图样规定了上行载波在哪些时间单元使用哪些端口/通道/发送天线。在这种情况下,网络设备无需发送第二指令,针对上行载波使用的端口/通道/发送天线进行切换。
示例的,每个上行载波可以对应一个时间图样,或者针对终端设备配置的所有上行载波对应一个时间图样。以一个上行载波对应一个时间图样、终端设备上行通信支持的最大端口数为2为例,例如,网络设备针对终端设备配置的上行载波包括第一载波和第二载波,第一载波的时间图样为时间图样1,包括10个时间单元,终端设备针对第一载波在前3个时间单元可以使用2个端口(例如端口1和端口2)进行上行通信,在第4~7个时间单元可以使用1个端口(例如端口1)进行上行通信,在后3个时间单元不使用端口进行上行通信。第二载波的时间图样为时间图样2,也包括10个时间单元,终端设备针对第二载波在前3个时间单元不使用端口进行上行通信,在第4~7个时间单元可以使用1个端口(例如端口2)进行上行通信,在后3个时间单元可以使用2个端口(例如端口1和端口2)进行上行通信。
示例的,终端设备在接收到网络设备针对上行载波配置的新的时间图样之前,可以周期性使用之前配置的时间图样,进行上行通信。或者,网络设备可以周期性针对上行载波为终端设备配置时间图样。
需要说明的是,本申请实施例如果从单载波角度考虑的话,以第一载波为例,终端设备在第一时间单元和第一载波上通过N个端口进行上行通信,终端设备在第二时间单元和第一载波上通过M个端口进行上行通信,其中N和M为大于或等于0的正整数,且N和M不相等。示例的,终端设备针对第一载波可以根据网络设备的切换指令,在第二时间单元从N个端口切换到M个端口。或者,终端设备根据第一载波的时间图样,在第二时间单元从N个端口切换到M个端口。
终端设备在下行载波上是通过端口/通道/接收天线实现下行通信的。而针对下行载波使用或配置的端口/通道/接收天线是由网络设备指示给终端设备的。然而,在网络设备为终端设备配置多个下行载波的情况下,网络设备通常分别给每个下行载波配置一个或多个端口/通道/接收天线,且针对不同下行载波配置的端口/通道/接收天线是不同的,即使在某一个下行载波未用于进行下行通信的情况下,针对该下行载波配置的端口/通道/接收天线也不能被其他下行载波使用,从而容易资源浪费,影响通信效率。有鉴于此,本申请实施例提供了另一种通信方法,可以应用于CA、或DC场景,以端口为例,如图7所示,具体包括以下步骤。
701、终端设备在第一载波上通过N个端口进行下行通信,N为正整数;
702、网络设备向终端设备发送第三指令,第三指令用于指示在第二载波上使用Q个端口进行下行通信,第二载波使用的Q个端口包括上述第一载波使用的N个端口中的K个端口,K、Q为正整数,且0<K≤N,N-K+Q不超过终端设备的下行通信支持的最大端 口数。
703、终端设备在接收到第三指令,根据第三指令,在第二载波上通过Q个端口进行下行通信。
关于第一载波、第二载波可以参见图5所示的通信方法中的相关介绍,在此不再赘述。
图7中的端口也可以替换为接收天线、通道,即终端设备在一个下行载波上的下行接收能力可以借用其他载波的下行接收能力。示例的,网络设备可以动态调度终端设备在不同载波上进行端口的切换。例如,第三指令可以携带在DCI中发送给终端设备。或者,第三指令可以为CSI-RS,通过不同端口配置的CSI-RS配置和发送来隐式的指示终端设备接收能力的切换。其中,不同的端口数对应的CSI-RS不同。其中,不同的端口数对应的CSI-RS可以是网络设备指示给终端设备的,也可以是通过协议预定义的,对此不作限定。或者,第三指令还可以为不同的调度参数,例如MCS、RI或PMI等,其中,不同的端口数对应的调度参数不同。
进一步的,在一些实施例中,终端设备在接收到第三指令的第二时长后,在第二载波上通过K个端口进行下行通信,第二时长为第二载波与第一载波之间的端口切换时延。关于第二时长、和第二时长的起始时刻可以参见图5所示的通信方法中的相关介绍,在此不在赘述。
可选的,第二时长与源band组合、目标band组合、源下行载波的频段、目标下行载波的频段、源端口数、目标端口数、源接收天线数、目标接收天线数、源接收通道数、目标接收通道数、源载波数、目标载波数中的至少1个相关。其中band组合和载波频段与第二时长与发生切换的载波对应的band组合/频段有关。源端口数是指针对第二载波的端口数切换到Q个之前终端设备在第二载波上的端口数,源接收天线数是指针对第二载波的端口数切换到Q个之前终端设备在第二载波上的接收天线数,源接收通道数是指针对第二载波的端口数切换到Q个之前终端设备在第二载波上的通道数,目标端口数是指针对第二载波的端口数切换到Q个后终端设备在第二载波上的端口数,目标接收天线数是指针对第二载波的端口数切换到Q个后终端设备在第二载波上的接收天线数,目标通道数是指针对第二载波的端口数切换到Q个后终端设备在第二载波上的通道数,源载波数是指终端设备在第二载波的端口数切换前同时接收的上行载波数,目标载波数是终端设备在第二载波的端口数切换后同时接收的上行载波数。
示例的,本申请实施例的对于属于同一频段的载波间的端口/接收通道切换时延、属于不同频段的载波间的端口/接收通道切换时延、和/或不同端口个数的端口/接收通道切换时延可以相同的,从而有助于简化实现。或者,针对以上不同情况配置不同的端口/接收通道切换时延。在这种情况下,可以根据载波和/或载波所属的频段、或者端口数的切换情况确定端口切换时延。进一步的,在一些实施例中,针对以上不同情况的端口/接收通道切换,终端设备分别获取对应的终端切换时延的能力信息,终端设备可以分别上报切换时延能力。具体的,针对不同的载波/载波频段上的端口/接收通道切换情况、或者不同的端口/接收通道数的情况,终端设备可以分别上报切换时延。例如,从0个端口切换到1个端口、从载波1切换到载波2、且载波1和载波2属于不同频段的端口切换时延为时延1。再例如,从1个端口切换到2个端口、从载波2切换到载波3、且载波2和载波3属于同一频段的端口切换时延为时延2。终端设备分别上报时延1和时延2。
例如,针对同一载波从1个端口切换到2个端口和从0个端口切换到2个端口需要的 切换时延不同。再例如,针对不同载波之间的端口切换时延也可能不同。比如,从载波1切换到载波2、与从载波2切换到载波3所需的切换时长不同。再例如,针对不同载波上的端口切换时延也可能不同。比如,终端设备在载波4上从0个端口切换到2个端口的时延为t1,终端设备在载波5上从0个端口切换到2个端口的时延为t2。终端设备分别上报时延t1和时延t2。
示例的,“band/载波1的两个通道切换到band/载波1的一个通道和band/载波2的一个通道的时延t1”、“band/载波1的两个通道切换到band/载波1的零个通道和band/载波2的两个通道的时延t2”、“band/载波1的两个通道切换到band/载波1的零个通道、band/载波2的一个通道和band/载波3的一个通道的时延t3”中至少有2个不一样。
在本申请的另一些实施例中,终端设备还可以向网络设备上报第一指示信息,第一指示信息用于指示终端设备是否支持载波间端口切换能力或是否支持在一个载波上端口个数发生切换,包括终端设备上行发送和下行接收,即终端设备是否支持不同载波上配置的端口的切换,以便于网络设备向终端设备发送端口切换指令(例如第三指令)。
本申请实施例中,由于终端设备能够在支持载波间端口切换能力的情况下,实现端口在不同载波间的切换,从而有助于增强终端设备的下行体验。例如,终端设备在第一载波上支持的最大端口数为4,在第二载波上支持的最大端口数为2,如果终端设备下行通信支持的最大端口数为4,在第一载波上配置有2个端口,在第二载波上配置有2个端口的情况下,如果第二载波上没有下行通信需求,则第一载波可以借用第二载波上配置的2个端口,从而使得第一载波可以通过4个端口进行通信,从而提高了通信效率。
以终端设备在第一载波上支持的最大端口数为4为例,在终端设备在第一载波和第二载波上支持的最大端口数均为4的情况下,如图8所示,在时隙1上在第一载波上配置有2个端口,在第二载波上配置有2个端口,即终端设备在时隙1,在第一载波和第二载波上分别使用2个端口进行下行通信;在时隙2上在第一载波上配置有4个端口,在第二载波上配置有0个端口,即终端设备在时隙2,在第一载波使用4个端口进行下行通信,不在第二载波进行下行通信;在时隙3上在第一载波上配置有0个端口,在第二载波上配置有4个端口,即终端设备在时隙3,在第二载波使用4个端口进行下行通信,不在第一载波进行下行通信。
需要说明的是,对于终端设备来说,还可以通过接收天线数、通道数衡量终端设备的下行接收能力。因此,步骤701~步骤703中的端口还可以替换为接收天线或通道。
需要说明的是,在本申请的另一些实施例中,网络设备还可以针对为终端设备配置的下行载波配置一个或多个时间图样。时间图样规定了下行载波在哪些时间单元使用哪些端口/通道/接收天线。在这种情况下,网络设备无需发送第三指令,针对下行载波使用的端口/通道/接收天线进行切换。示例的,每个下行载波可以对应一个时间图样,或者针对终端设备配置的所有下行载波对应一个时间图样。以一个下行载波对应一个时间图样、终端设备下行通信支持的最大端口数为3为例,例如,网络设备针对终端设备配置的下行载波包括第一载波和第二载波,第一载波的时间图样为时间图样1,包括10个时间单元,终端设备针对第一载波在前3个时间单元可以使用3个端口(例如端口1、端口2和端口3)进行上行通信,在第4~7个时间单元可以使用1个端口(例如端口1)进行上行通信,在后3个时间单元不使用端口进行上行通信。第二载波的时间图样为时间图样2,也包括10 个时间单元,终端设备针对第二载波在前3个时间单元不使用端口进行下行通信,在第4~7个时间单元可以使用2个端口(例如端口2和端口3)进行下行通信,在后3个时间单元可以使用3个端口(例如端口1、端口2和端口3)进行下行通信。
示例的,终端设备在接收到网络设备针对下行载波配置的新的时间图样之前,可以周期性使用之前配置的时间图样,进行下行通信。或者,网络设备可以周期性针对下行载波为终端设备配置时间图样。
需要说明的是,本申请实施例如果从单载波角度考虑的话,以第一载波为例,终端设备在第一时间单元和第一载波上通过N个端口进行下行通信,终端设备在第二时间单元和第一载波上通过M个端口进行下行通信,其中N和M为大于或等于0的正整数,且N和M不相等。示例的,终端设备针对第一载波可以根据网络设备的切换指令,在第二时间单元从N个端口切换到M个端口。或者,终端设备根据第一载波的时间图样,在第二时间单元从N个端口切换到M个端口。
此外,本申请实施例中网络设备针对下行载波可以具有固定的下行发送能力。具体的,网络设备针对下行载波的下行发送能力可以通过发送天线数或者用于下行通信的端口数(又可以称之为发送天线端口数)衡量。例如,以第一载波和第二载波为例,网络设备针对第一载波的发送天线数为64,针对第二载波的发送天线数也为64,则网络设备通常在第一载波上使用64个发送天线进行下行通信,在第二载波上使用64个发送天线进行下行通信,现有技术中,当网络设备在第二载波上不进行下行通信时,一般在第二载波上进行下行通信的天线个数也不会超过64。因而容易导致资源浪费。
有鉴于此,本申请实施例还提供了一种通信方法,如图9所示,可以应用于CA或DC场景,具体包括以下步骤。
901、网络设备在第一时间单元和第一载波上通过N个发送天线进行下行通信,以及在第一时间单元和第二载波上通过M个发送天线进行下行通信,M、N为正整数。
902、网络设备在第二时间单元和第二载波上通过P个发送天线进行下行通信,P为正整数,且M<P≤M+N,该P个发送天线包括第二载波使用的M个发送天线和第一载波使用的N个发送天线中的至少一个发送天线,网络设备在第二时间单元上不在第一载波上进行下行通信。
需要说明的是,图9所示的通信方法中,第一载波和第二载波可以为不同终端设备的下行载波,也可以为同一终端设备的不同服务小区的下行载波,第一载波和第二载波可以为同一终端设备一个服务小区内的下行载波,也可以为同一终端设备不同服务小区内的下行载波,对此不作限定。
例如,以下行载波1和下行载波2为例。网络设备针对下行载波1的发送天线(transmit antenna,简称T)数为64,针对下行载波2的发送天线数也为64,如图10所示,网络设备在时间单元1和下行载波1上使用64个发送天线进行下行通信,在时间单元1和下行载波2上使用64个发送天线进行下行通信。在时间单元2和下行载波2上使用128个发送天线进行下行通信,在时间单元2不在下行载波1上进行通信。在时间单元3和下行载波1上使用128个发送天线进行下行通信,在时间单元3不在下行载波2上进行下行通信。从而有助于提高下行通信效率。
可以理解的是,上述步骤901~步骤902中的发送天线可以替换为发送天线端口、或者 通道。
与下行载波类似,本申请实施例中网络设备针对上行载波具有固定的上行接收能力。具体的,网络设备针对上行载波的上行接收能力可以通过接收天线数或者用于上行通信的端口数(又可以称之为接收天线端口数)衡量。例如,以第一载波和第二载波为例。网络设备针对第一载波的接收天线数为64,针对第二载波的接收天线数也为64,则网络设备通常在第一载波上使用64个发接收天线进行上行通信,在第二载波上使用64个发接收天线进行上行通信,现有技术中,网络设备当在第二载波上不进行上行通信时,一般在第二载波上进行上行通信的天线个数也不会超过64。因而容易导致资源浪费。
有鉴于此,本申请实施例还提供了一种通信方法,如图11所示,可以应用于CA或DU场景,具体包括以下步骤。
1101、网络设备在第一时间单元和第一载波上通过N个接收天线进行上行通信,以及在第一时间单元和第二载波上通过M个接收天线进行上行通信,M、N为正整数。
1102、网络设备在第二时间单元和第二载波上通过P个接收天线进行上行通信,P为正整数,且M<P≤M+N,该P个接收天线包括第二载波使用的M个接收天线和第一载波使用的N个接收天线中的至少一个接收天线,网络设备在第二时间单元上不在第一载波上进行上行通信。
需要说明的是,图11所示的通信方法中,第一载波和第二载波可以为不同终端设备的上行载波,也可以为同一终端设备的不同服务小区的上行载波,第一载波和第二载波可以为同一终端设备一个服务小区内的上行载波,也可以为同一终端设备不同服务小区内的上行载波,对此不作限定。
例如,以上行载波1和上行载波2为例。网络设备针对上行载波1的接收天线(receiving antenna,简称R)数为64,针对上行载波2的接收天线数也为64,如图12所示,网络设备在时间单元1和上行载波1上使用64个接收天线进行上行通信,在时间单元1和上行载波2上使用64个接收天线进行上行通信。在时间单元2和上行载波2上使用128个接收天线进行上行通信,在时间单元2不在上行载波1上进行通信。在时间单元3和上行载波1上使用128个接收天线进行上行通信,在时间单元3不在上行载波2上进行上行通信。从而有助于提高上行通信效率。
可以理解的是,上述步骤1101~步骤1102中的接收天线可以替换为接收天线端口、或者通道。
另外,本申请实施例中,针对一些上行通信占主导的业务场景,例如城市监控、智能工厂等,网络设备可以针对终端设备配置的上行载波/band/服务小区的个数为M,针对终端设备配置的下行载波/band/服务小区的个数为N,其中M大于N,且M、N为正整数,与针对传统的终端设备配置的下行载波/band/服务小区的个数大于上行载波/band/服务小区的个数相比,更适用于上述业务场景。或者,网络设备针对终端设备配置的同一服务小区包括的上行载波的中心频率和下行载波的中心频率不作限制。在一种情况中,一个服务小区中可以只包含下行载波,不包含上行载波。在另一种情况中,一个服务小区中可以只包含上行载波,不包含下行载波。在另一种情况中,一个服务小区可以包含上行载波,同时包含下行载波,但是上行载波和下行载波属于不同的频段。上述服务小区可以是主小区或者辅小区。另外,在一些可能的示例中,上行主服务小区的上行载波和下行服务小区的 下行载波可以属于不同的频段/频点,例如下行Pcell配置为载波1/band1/服务小区1,上行Pcell配置为载波2/band2/服务小区2。此外,在一些可能的示例中,在小区间切换或者移动性过程中,网络发送Pcell切换指令用于指示下行和上行Pcell可以一起切换,也可以解耦切换,即用于指示下行Pcell切换或上行Pcell切换。比如时刻1,下行Pcell为载波1/band1/服务小区1且上行Pcell配置为载波1/band1/服务小区1,小区间切换或者移动性过程中,网络发送Pcell切换指令用于指示下行Pcell切换为载波2/band2/服务小区2(上行PCell不切换仍然为载波1/band1/服务小区1),或者发送Pcell切换指令用于指示下行Pcell不切换仍然为载波1/band1/服务小区1但上行Pcell切换为载波2/band2/服务小区2。如此则可以实现下行和上行解耦,Pcell解耦,独立负载均衡,实现上下行一致性体验。另外,在一些可能的示例中,Pcell包含下行主载波和上行主载波,在小区间切换或者移动性过程中,网络层发送Pcell切换指令用于指示Pcell的下行载波/频点/频段和上行载波/频点/频段可以一起切换,也可以解耦切换,即用于指示Pcell的下行载波/频点/频段切换或Pcell的上行载波/频点/频段切换。比如时刻1,网络发送Pcell切换指令用于指示Pcell的下行载波/频点/频段1切换为下行载波/频点/频段2,并且Pcell不切换其上行载波/频点/频段1;或者发送Pcell切换指令用于指示Pcell的上行载波/频点/频段1切换为上行载波/频点/频段2,并且Pcell不切换下行载波/频点/频段1。如此则可以实现下行和上行频点/频段解耦,独立负载均衡,实现上下行一致性体验。再例如,以FDD通信系统中终端设备的一个服务小区为例,该服务小区可以包括一个中心频率为900MHz的上行载波和一个中心频率为3.5GHz的下行载波。从而使得小区配置更为灵活。因此,按照本实施例中的方法,为其配置3.5G下行载波与900MHz的上行载波,这种方法比现有技术配置3.5G上下行载波能获得更好的上行覆盖,比现有技术配置900MHz上下行载波能获得更好的下行容量。
以band为例。如图15所示网络设备为终端设备配置的上行载波分别为UL1、UL2、UL3和UL4,网络设备为终端设备配置的下行载波分别为DL1、DL2、DL3和DL4,其中,UL1和DL1位于频带A内,UL2和DL2位于频带B内,UL3和DL3位于频带C内,UL4和DL4位于频带D内。在这种情况下,网络设备如果指示终端设备激活DL1、UL2、DL3和UL3,则UL1、DL2、UL4和DL4是未激活的。示例的,DL1可以为终端设备的Pcell的下行载波,UL2为终端设备的Pcell的上行载波。
应理解,本申请上述各实施例可以单独使用,也可以相互结合使用,以实现不同的技术效果。
上述本申请提供的实施例中,分别从网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,基站和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
基于相同的构思,图13所示为本申请提供的一种通信装置1300,包括收发模块1302和处理模块1301。
一示例中,该通信装置1300可以是终端设备,也可以是能够支持终端设备实现图4、图5和图7涉及的方法中终端设备的功能的装置。示例性地,通信装置1300还可以是终端设备内的装置(如芯片或芯片系统)。需要说明的是,在本申请实施例中芯片系统可以 由芯片构成,也可以包含芯片和其他分立器件。
例如,收发模块1302用于接收来自网络设备的第一指令,第一指令用于指示将服务小区状态切换至第一状态或切换出第一状态;所述服务小区状态为第一状态包括:所述服务小区的下行载波支持下行通信,所述服务小区的上行载波不支持上行通信。处理模块1301用于根据所述第一指令,切换所述服务小区状态。
一示例中,该通信装置1300可以是网络设备,也可以是能够支持网络设备实现图4、图5和图7涉及的方法网络设备的功能的装置。示例性地,通信装置1300还可以是网络设备内的装置(如芯片或芯片系统)。需要说明的是,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
例如,处理模块1301用于生成第一指令;收发模块1302用于向终端设备发送所述第一指令。所述第一指令用于指示将所述终端设备的服务小区状态切换至第一状态或切换出所述第一状态;所述服务小区状态为所述第一状态包括:所述服务小区的下行载波支持下行通信,所述服务小区的上行载波不支持上行通信。
关于处理模块1301、收发模块1302的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图14所示,本申请实施例还提供一种通信装置1400。
一示例中,该通信装置1400用于实现图4、图5和图7涉及的方法中终端设备的功能,该装置可以是终端设备,也可以是终端设备中的装置。通信装置1400包括至少一个处理器1401,用于实现上述方法中终端设备的功能。示例地,处理器1401可以用于根据第一指令,切换服务小区状态,具体参见方法中的详细描述,此处不再说明。
又一示例中,该通信装置1400用于实现图4、图5和图7涉及的方法中网络设备的功能,该装置可以是网络设备,也可以是网络设备中的装置。通信装置1400包括至少一个处理器1401,用于实现上述方法中网络设备的功能。示例地,处理器1401可以用于生成第一指令,具体参见方法中的详细描述,此处不再说明。
在一些实施例中,通信装置1400还可以包括至少一个存储器1402,用于存储计算机程序和/或数据。存储器1402和处理器1401耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器1402还可以位于装置1400之外。处理器1401可以和存储器1402协同操作。处理器1401可能执行存储器1402中存储的计算机程序。所述至少一个存储器中的至少一个可以包括于处理器中。
在一些实施例中,通信装置1400还可以包括通信接口1403,用于通过传输介质和其它设备进行通信,从而用于装置1400中的装置可以和其它设备进行通信。示例性地,通信接口1403可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备可以是终端设备或网络设备。处理器1401利用通信接口1403收发数据和/或指令,并用于实现上述实施例中的方法。示例性的,以通信装置1400为终端设备为例,通信接口1403,可以用于接收来自网络设备的第一指令。
本申请实施例中不限定上述通信接口1403、处理器1401以及存储器1402之间的连接 介质。例如,本申请实施例在图14中以存储器1402、处理器1401以及通信接口1403之间可以通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (48)

  1. 一种小区状态切换方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一指令,所述第一指令用于指示将所述终端设备的服务小区状态切换至第一状态或切换出所述第一状态;所述服务小区状态为所述第一状态包括:所述服务小区的下行载波支持下行通信,所述服务小区的上行载波不支持上行通信;
    所述终端设备根据所述第一指令,切换所述服务小区状态。
  2. 如权利要求1所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从第一状态切换至激活态,包括:
    所述第一指令用于指示激活所述服务小区;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至激活态。
  3. 如权利要求1所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从第一状态切换至去激活态,包括:
    所述第一指令用于指示去激活所述服务小区;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至去激活态。
  4. 如权利要求1所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态或激活态切换至激活态,包括:
    所述第一指令用于指示将所述服务小区状态配置为所述第一状态;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从去激活态或激活态切换至所述第一状态。
  5. 如权利要求1所述的方法,其特征在于,所述服务小区的上行载波不支持上行通信,包括:
    所述服务小区的上行载波的端口数为0。
  6. 如权利要求5所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换至第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态或激活态切换至所述第一状态,包括:
    所述第一指令用于指示将所述服务小区的上行载波的端口数配置为0;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从去激活态或激活态切换至所述第一状态。
  7. 如权利要求5所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至激活态,包括:
    所述第一指令用于指示将所述服务小区的上行载波的端口数配置为N,所述N为正整数,且0<N≤M,所述M为所述终端设备上行通信支持的最大端口数;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至激活态。
  8. 如权利要求5所述的方法,其特征在于,所述服务小区的上行载波的端口数为0,包括:
    所述服务小区的上行载波上激活的带宽部分BWP所预配置的端口数为0。
  9. 如权利要求8所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态或激活态切换至所述第一状态,包括:
    所述第一指令用于指示激活所述服务小区的上行载波上预配置的端口数为0的BWP;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态由去激活态或激活态切换至所述第一状态。
  10. 如权利要求8所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至去激活态,包括:
    所述第一指令用于指示去激活所述服务小区的上行载波上预配置的端口数为0的BWP;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至去激活态。
  11. 如权利要求8所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至激活态,包括:
    所述第一指令用于指示激活所述服务小区的上行载波上预配置的端口数为N的BWP,所述N为正整数,且0<N≤M,所述M为所述终端设备上行通信支持的最大端口数;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至激活态。
  12. 如权利要求1所述的方法,其特征在于,所述服务小区的上行载波不支持上行通信,包括:
    所述服务小区的上行载波的通道数为0。
  13. 如权利要求12所述的方法,其特征在于,所述服务小区的上行载波的通道数为0,包括:
    所述第一小区的上行载波上激活的BWP所预配置的通道数为0。
  14. 如权利要求1所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从激活态切换至所述第一状态,包括:
    所述第一指令用于指示去激活所述服务小区的上行载波;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从激活态切换至所述第一状态。
  15. 如权利要求1所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态切换至所述第一状态,包括:
    所述第一指令用于指示激活所述服务小区的下行载波;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从去激活态切换至所述第一状态。
  16. 如权利要求1所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至去激活态,包括:
    所述第一指令用于去激活所述服务小区的下行载波;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至去激活态。
  17. 如权利要求1所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换激活态,包括:
    所述第一指令用于指示激活所述服务小区的上行载波;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至激活态。
  18. 如权利要求1至17任一所述的方法,其特征在于,当所述服务小区的状态为所述第一状态时,所述服务小区的小区状态标识为第一小区状态标识。
  19. 如权利要求18所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换至所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从去激活态或激活态切换至所述第一状态,包括:
    所述第一指令用于指示将所述服务小区的小区状态标识配置为所述第一小区状态标识;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从去激活态或激活态切换至所述第一状态。
  20. 如权利要求19所述的方法,其特征在于,所述第一指令用于指示将所述终端设备的服务小区状态切换出所述第一状态,为所述第一指令用于指示将所述终端设备的服务小区状态从所述第一状态切换至去激活态,包括:
    所述第一指令用于指示将所述服务小区的小区状态标识配置为第二小区状态标识,所述第二小区状态标识用于指示所述服务小区的状态为去激活态或激活态;
    所述终端设备根据所述第一指令,切换所述服务小区状态,包括:
    所述终端设备根据所述第一指令,将所述服务小区状态从所述第一状态切换至去激活态或激活态。
  21. 一种小区状态切换方法,其特征在于,所述方法包括:
    网络设备生成第一指令,所述第一指令用于指示将终端设备的服务小区状态切换至第一状态或切换出所述第一状态;所述服务小区状态为所述第一状态包括:所述服务小区的下行载波支持下行通信,所述服务小区的上行载波不支持上行通信;
    所述网络设备向所述终端设备发送所述第一指令。
  22. 如权利要求21所述的方法,其特征在于,所述服务小区的上行载波不支持上行通信,包括:
    所述服务小区的上行载波的端口数为0。
  23. 如权利要求22所述的方法,其特征在于,所述服务小区的上行载波的端口数为0,包括:
    所述服务小区的上行载波上激活的带宽部分BWP所预配置的端口数为0。
  24. 如权利要求21所述的方法,其特征在于,所述服务小区的上行载波不支持上行通信,包括:
    所述服务小区的上行载波的通道数为0。
  25. 一种能力上报方法,其特征在于,所述方法包括:
    终端设备获取终端上行能力信息,所述终端上行能力信息包括以下至少2种信息:
    所述终端设备可同时配置的上行频带band组合、上行分量载波CC组合、或上行服务小区组合;
    所述终端设备可同时激活的上行band组合、上行CC组合、或上行服务小区组合;
    所述终端设备可同时传输的上行band组合、上行CC组合、或上行服务小区组合,其中,所述可同时传输的上行band组合、上行CC组合、或所述终端设备可同时传输的上行服务小区组合用于所述终端设备发送上行数据和/或上行控制信息;
    所述终端设备可切换的上行band组合、上行CC组合、或上行服务小区组合,其中,所述可切换的上行band组合、上行CC组合、或上行服务小区组合用于所述终端设备发送上行数据和/或上行控制信息;
    所述终端设备向网络设备上报所述终端上行能力信息。
  26. 如权利要求25所述的方法,其特征在于,
    所述终端设备可同时配置的上行频带band组合的个数、上行分量载波CC组合的个数、或上行服务小区组合的个数为M1,M1为正整数;
    所述终端设备可同时激活的上行band组合的个数、上行CC组合的个数、或上行服务小区组合的个数为M2,M2为正整数;
    所述终端设备可同时传输的上行band组合的个数、上行CC组合的个数、或上行服务小区组合的个数为M3,M3为正整数;
    所述终端设备可切换的上行band组合的个数、上行CC组合的个数、或上行服务小区组合的个数为L1,L1为正整数;
    M1、M2、M3和L1的值不全相同。
  27. 如权利要求26所述的方法,其特征在于,M1≥M2≥L1≥M3。
  28. 如权利要求25至27任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备将第一上行载波通信时使用的通道切换到第二上行载波上;
    所述第一上行载波为所述终端设备当前用于进行上行通信所使用的上行载波,且所述第一上行载波和所述第二上行载波位于同一可切换的上行band组合、上行CC组合、或上 行服务小区组合内。
  29. 如权利要求25至28任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备上报切换时延;
    其中,所述切换时延与以下至少两项相关:源上行band或CC、目标上行band或CC、源通道数目、目标通道数目、源上行band或CC数目、目标上行band或CC数目。
  30. 一种通信方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的上行能力信息,所述终端上行能力信息包括以下至少2种信息:
    所述终端设备可同时配置的上行频带band组合、上行分量载波CC组合、或上行服务小区组合;
    所述终端设备可同时激活的上行band组合、上行CC组合、或上行服务小区组合;
    所述终端设备可同时传输的上行band组合、上行CC组合、或上行服务小区组合,其中,所述可同时传输的上行band组合、上行CC组合、或所述终端设备可同时传输的上行服务小区组合用于所述终端设备发送上行数据和/或上行控制信息;
    所述终端设备可切换的上行band组合、上行CC组合、或上行服务小区组合,其中,所述可切换的上行band组合、上行CC组合、或上行服务小区组合用于所述终端设备发送上行数据和/或上行控制信息;
    所述网络设备根据所述终端上行能力信息,配置所述终端设备的传输参数。
  31. 如权利要求30所述的方法,其特征在于,
    所述终端设备可同时配置的上行频带band组合的个数、上行分量载波CC组合的个数、或上行服务小区组合的个数为M1,M1为正整数;
    所述终端设备可同时激活的上行band组合的个数、上行CC组合的个数、或上行服务小区组合的个数为M2,M2为正整数;
    所述终端设备可同时传输的上行band组合的个数、上行CC组合的个数、或上行服务小区组合的个数为M3,M3为正整数;
    所述终端设备可切换的上行band组合的个数、上行CC组合的个数、或上行服务小区组合的个数为L1,L1为正整数;
    M1、M2、M3和L1的值不全相同。
  32. 如权利要求31所述的方法,其特征在于,M1≥M2≥L1≥M3。
  33. 如权利要求30至32任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备向的切换时延;
    其中,所述切换时延与以下至少两项相关:源上行band或CC、目标上行band或CC、源通道数目、目标通道数目、源上行band或CC数目、目标上行band或CC数目。
  34. 一种能力上报方法,其特征在于,所述方法包括:
    终端设备获取终端下行能力信息,所述终端下行能力信息包括以下至少2种信息:
    所述终端设备可同时配置的下行频带band组合、下行分量载波CC组合、或下行服务小区组合;
    所述终端设备可同时激活的下行band组合、下行CC组合、或下行服务小区组合;
    所述终端设备可同时传输的下行band组合、下行CC组合、或下行服务小区组合,其中,所述可同时传输的下行band组合、下行CC组合、或下行服务小区组合用于所述终端 设备接收如下中的至少一种:下行数据、下行控制信息、下行导频信号和下行同步信号;
    所述终端设备可切换的下行band组合、下行CC组合、或下行服务小区组合;其中,所述可切换的下行band组合、下行CC组合、或者下行服务小区组合用于所述终端设备接收如下中的至少一种:下行数据、下行控制信息、下行导频信号和下行同步信号;
    所述终端设备向网络设备上报所述终端下行能力信息。
  35. 如权利要求34所述的方法,其特征在于,
    所述终端设备可同时配置的下行频带band组合的个数、下行分量载波CC组合的个数、或下行服务小区组合的个数为N1,所述N1为正整数;
    所述终端设备可同时激活的下行band组合的个数、下行CC组合的个数、或下行服务小区组合的个数为N2,N2为正整数;
    所述终端设备可同时传输的下行band组合的个数、下行CC组合的个数、或下行服务小区组合的个数为N3,N3为正整数;
    所述终端设备可切换的下行band组合的个数、下行CC组合的个数、或下行服务小区组合的个数为L1,L2为正整数;
    N1、N2、N3和L2的值不全相同。
  36. 如权利要求35所述的方法,其特征在于,N1≥所述N2≥所述L2≥所述N3。
  37. 如权利要求34至36任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备将第一下行载波通信时使用的通道切换到第二下行载波上,所述第一下行载波为所述终端设备当前用于进行下行通信所使用的下行载波,且所述第一下行载波和所述第二下行载波位于同一可切换的下行band组合、下行CC组合、或下行服务小区组合内。
  38. 如权利要求34至37任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备上报切换时延;
    其中,所述切换时延与以下至少两项相关:源下行band或CC、目标下行band或CC、源通道数目、目标通道数目、源下行band或CC数目、目标下行band或CC数目。
  39. 一种通信方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的下行能力信息,所述终端下行能力信息包括以下至少2种信息:
    所述终端设备可同时配置的下行频带band组合、下行分量载波CC组合、或下行服务小区组合;
    所述终端设备可同时激活的下行band组合、下行CC组合、或下行服务小区组合;
    所述终端设备可同时传输的下行band组合、下行CC组合、或下行服务小区组合,其中,所述可同时传输的下行band组合、下行CC组合、或下行服务小区组合用于所述终端设备接收如下中的至少一种:下行数据、下行控制信息、下行导频信号和下行同步信号;
    所述终端设备可切换的下行band组合、下行CC组合、或下行服务小区组合;其中,所述可切换的下行band组合、下行CC组合、或者下行服务小区组合用于所述终端设备接收如下中的至少一种:下行数据、下行控制信息、下行导频信号和下行同步信号;
    所述网络设备根据所述诊断下行能力信息,配置所述终端设备的传输参数。
  40. 如权利要求39所述的方法,其特征在于,所述终端设备可同时配置的下行频带band组合的个数、下行分量载波CC组合的个数、或下行服务小区组合的个数为N1,N1为正 整数;
    所述终端设备可同时激活的下行band组合的个数、下行CC组合的个数、或下行服务小区组合的个数为N2,N2为正整数;
    所述终端设备可同时传输的下行band组合的个数、下行CC组合的个数、或下行服务小区组合的个数为N3,N3为正整数;
    所述终端设备可切换的下行band组合的个数、下行CC组合的个数、或下行服务小区组合的个数为L1,L2为正整数;
    N1、N2、N3和L2的值不全相同。
  41. 如权利要求40所述的方法,其特征在于,N1≥N2≥L2≥N3。
  42. 如权利要求39至41任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的切换时延,其中,所述切换时延与以下至少两项相关:源下行band或CC、目标下行band或CC、源通道数目、目标通道数目、源下行band或CC数目、目标下行band或CC数目。
  43. 一种通信方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一指令,所述第一指令用于指示激活所述终端设备的第一服务小区的下行载波、保持所述第一服务小区的上行载波状态,或者所述第一指令用于指示激活所述终端设备的第一服务小区的上行载波、保持所述第一服务小区的下行载波状态;
    所述终端设备根据所述第一指令,激活所述第一服务小区的下行载波或者上行载波。
  44. 如权利要求43所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第二指令,所述第二指令用于指示去激活所述终端设备的第二服务小区的下行载波、保持所述第二服务小区的上行载波状态,或者所述第二指令用于指示去激活所述终端设备的第二服务小区的上行载波、保持所述第二服务小区的下行载波状态。
  45. 一种通信方法,其特征在于,所述方法包括:
    网络设备生成第一指令,所述第一指令用于指示激活所述终端设备的第一服务小区的下行载波、保持所述第一服务小区的上行载波状态,或者所述第一指令用于指示激活所述终端设备的第一服务小区的上行载波、保持所述第一服务小区的下行载波状态;
    所述网络设备向所述终端设备发送所述第一指令。
  46. 如权利要求45所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指令,所述第二指令用于指示去激活所述终端设备的第二服务小区的下行载波、保持所述第二服务小区的上行载波状态,或者所述第二指令用于指示去激活所述终端设备的第二服务小区的上行载波、保持所述第二服务小区的下行载波状态。
  47. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器用于读取所述存储器中的计算机程序,执行如权利要求1-20任一所述的方法、执行如权利要求21-24任一所述的方法、执行如权利要求25-29任一所述的方法、执行如权利要求30-33任一所述的方法、执行如权利要求34-38任一所述的方法、执行如权利要求39-42任一所述的方法、执行如权利要求43或44所述的方法、或者执行如权利要求45或46任一所述的方法。
  48. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被计算机执行时,用于实现如权利要求1-20任一所述的方法、执行如权利要求21-24任一所述的方法、执行如权利要求25-29任一所述的方法、执行如权利要求30-33任一所述的方法、执行如权利要求34-38任一所述的方法、执行如权利要求39-42任一所述的方法、执行如权利要求43或44所述的方法、或者执行如权利要求45或46所述的方法。
PCT/CN2021/110641 2020-08-24 2021-08-04 一种小区状态切换方法及装置 WO2022042246A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21860086.4A EP4195770A4 (en) 2020-08-24 2021-08-04 CELL STATE SWITCHING METHOD AND APPARATUS
US18/173,397 US20230199586A1 (en) 2020-08-24 2023-02-23 Cell State Switching Method and Apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010859375.9 2020-08-24
CN202010859375 2020-08-24
CN202011133816.3A CN114095981B (zh) 2020-08-24 2020-10-21 一种小区状态切换方法及装置
CN202011133816.3 2020-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,397 Continuation US20230199586A1 (en) 2020-08-24 2023-02-23 Cell State Switching Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2022042246A1 true WO2022042246A1 (zh) 2022-03-03

Family

ID=80295877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110641 WO2022042246A1 (zh) 2020-08-24 2021-08-04 一种小区状态切换方法及装置

Country Status (4)

Country Link
US (1) US20230199586A1 (zh)
EP (1) EP4195770A4 (zh)
CN (2) CN117460007A (zh)
WO (1) WO2022042246A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193758A1 (zh) * 2022-04-08 2023-10-12 华为技术有限公司 一种通信方法和通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116939694A (zh) * 2022-04-10 2023-10-24 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787726A (zh) * 2017-11-10 2019-05-21 维沃移动通信有限公司 载波状态的控制方法和设备
CN109803348A (zh) * 2017-11-15 2019-05-24 维沃移动通信有限公司 终端能力的指示方法及终端
CN110012532A (zh) * 2018-01-04 2019-07-12 维沃移动通信有限公司 一种phr的触发方法、终端设备及网络设备
WO2020167203A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for managing scell state during ue suspend/resume

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2730137B1 (en) * 2011-07-05 2022-11-09 HMD Global Oy Method and apparatus for resource aggregation in wireless communications
CN109586876B (zh) * 2017-09-29 2021-02-23 华为技术有限公司 一种载波状态指示方法及设备
US11343824B2 (en) * 2018-08-01 2022-05-24 Qualcomm Incorporated Carrier switching and antenna switching for a target carrier combination
WO2020155160A1 (en) * 2019-02-02 2020-08-06 Zte Corporation Serving cell state management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787726A (zh) * 2017-11-10 2019-05-21 维沃移动通信有限公司 载波状态的控制方法和设备
CN109803348A (zh) * 2017-11-15 2019-05-24 维沃移动通信有限公司 终端能力的指示方法及终端
CN110012532A (zh) * 2018-01-04 2019-07-12 维沃移动通信有限公司 一种phr的触发方法、终端设备及网络设备
WO2020167203A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for managing scell state during ue suspend/resume

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "On PHY impact of Rel-15 LTE CA SCell New State agreements", 3GPP DRAFT; R1-1802292 ON PHY IMPACT OF REL-15 LTE CA SCELL NEW STATE AGREEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051397821 *
See also references of EP4195770A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193758A1 (zh) * 2022-04-08 2023-10-12 华为技术有限公司 一种通信方法和通信装置

Also Published As

Publication number Publication date
US20230199586A1 (en) 2023-06-22
CN114095981A (zh) 2022-02-25
CN114095981B (zh) 2023-10-20
CN117460007A (zh) 2024-01-26
EP4195770A4 (en) 2024-02-14
EP4195770A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
CN111345050B (zh) 对无线通信设备能力的临时处理
JP7055869B2 (ja) マルチキャリア通信のためのキャリア・スイッチング方法、装置およびシステム
US11252755B2 (en) Uplink resource grant methods and apparatus
WO2018028271A1 (zh) 一种控制信息传输方法、设备以及通信系统
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
CA3056689C (en) Transmission direction configuration method, device, and system
WO2021227755A1 (zh) 一种切换方法及装置
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
WO2020233717A1 (zh) 一种上行harq传输方法及通信装置
JP7336590B2 (ja) 無線通信システムにおいてデータを送受信する方法及びその装置
US20210328733A1 (en) Wireless Network Communication Method and Terminal Device
US20230199586A1 (en) Cell State Switching Method and Apparatus
CN113950856A (zh) 一种通信方法、通信装置和系统
JP7429242B2 (ja) 測定管理方法及び装置、通信デバイス
US11582015B2 (en) Enhancement for bandwidth part (BWP) operation towards secondary cell (SCELL) dormancy indication
WO2019062583A1 (zh) 一种载波状态指示方法及设备
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2023109879A1 (zh) 射频链路切换方法和通信装置
WO2022188638A1 (zh) 一种数据传输方法及装置
WO2022022673A1 (zh) 一种通信方法及装置
WO2021259138A1 (zh) 上行信号的发送方法、装置及系统
CN114616784A (zh) 无线通信中的跨载波调度
WO2024017376A1 (zh) 调度信息指示方法及通信装置
WO2023065874A1 (zh) 一种调度方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021860086

Country of ref document: EP

Effective date: 20230309

NENP Non-entry into the national phase

Ref country code: DE