WO2022042196A1 - 用于激光雷达的激光单元以及激光雷达 - Google Patents

用于激光雷达的激光单元以及激光雷达 Download PDF

Info

Publication number
WO2022042196A1
WO2022042196A1 PCT/CN2021/109211 CN2021109211W WO2022042196A1 WO 2022042196 A1 WO2022042196 A1 WO 2022042196A1 CN 2021109211 W CN2021109211 W CN 2021109211W WO 2022042196 A1 WO2022042196 A1 WO 2022042196A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
sub
laser unit
distance
Prior art date
Application number
PCT/CN2021/109211
Other languages
English (en)
French (fr)
Inventor
陈杰
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Priority to EP21860036.9A priority Critical patent/EP4206733A1/en
Publication of WO2022042196A1 publication Critical patent/WO2022042196A1/zh
Priority to US18/081,002 priority patent/US20230184901A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone

Definitions

  • the present invention relates to the field of laser radar, in particular to a laser unit for laser radar and a laser radar.
  • Lidar undertakes important tasks such as road edge detection, obstacle recognition, and real-time localization and mapping (SLAM) in autonomous driving.
  • SLAM real-time localization and mapping
  • the LIDAR system includes a laser emitting system and a light receiving system.
  • the laser emission system includes a laser unit, which generates emission light pulses, and the emission light pulses are incident on the target and reflected to generate echo beams, and finally the echo beams are received by the light receiving system.
  • the receiving system accurately measures the travel time of an incident light pulse from when it is emitted to when it is reflected back. Because light pulses travel at the speed of light, and the speed of light is known, the travel time can be converted into a measure of distance.
  • Lidar can accurately measure target position (distance and angle), motion state (speed, vibration and attitude) and shape, and detect, identify, distinguish and track targets. Due to the advantages of fast measurement speed, high accuracy and long distance measurement, lidar has been widely used in unmanned vehicles.
  • the laser unit of the lidar has the problem of high transmit power.
  • the problem solved by the present invention is to provide a laser unit for a laser radar and a laser radar for reducing laser emission power.
  • the technical solution of the present invention provides a laser unit for a laser radar.
  • the laser unit includes a light-emitting surface for providing emitted light projected to a target. The emitted light passes through the target to form an echo beam and is received by the light.
  • the light-emitting surface includes: a first end arranged close to the light receiving device, and a second end arranged away from the light receiving device, the first end to the second end are in the first direction, The second direction is perpendicular to the first direction;
  • the light-emitting surface of the laser unit includes: an effective light-emitting area with light-emitting points arranged and an ineffective light-emitting area without light-emitting points; the effective light-emitting area
  • a plurality of sub-light-emitting regions are included along the first direction, which are respectively used for detecting objects at different distances.
  • the distribution density of light-emitting points of the plurality of sub-light-emitting regions gradually decreases.
  • the sizes of the plurality of sub-light-emitting regions in the second direction gradually decrease.
  • all light-emitting points in the effective light-emitting region emit light simultaneously, and/or sub-light-emitting regions corresponding to different target distances are selected to emit light.
  • the distance of each sub-light-emitting region along the first direction for detecting the target gradually decreases.
  • the sub-light-emitting area close to the first end is the first sub-light-emitting area, which is used to detect the target above the first distance; the sub-light-emitting area near the second end is the second sub-light-emitting area, which is used for detecting the second distance.
  • the second distance is smaller than the first distance.
  • a plurality of third sub-light-emitting regions are located between the first sub-light-emitting region and the second sub-light-emitting region, and are used for detecting the target between the second distance and the first distance .
  • the first sub-light-emitting area and the second sub-light-emitting area are rectangular, and the third sub-light-emitting area is trapezoidal or rectangular.
  • a portion of the plurality of third sub-light-emitting regions close to the first end is a reference portion, and the spacing between the reference portions of adjacent third sub-light-emitting regions gradually increases along the first direction.
  • the size of the effective light-emitting region in the first direction is larger than the size in the second direction.
  • the light-emitting points in the sub-light-emitting area are arranged alternately along the first direction and/or the second direction; or, the light-emitting points in the sub-light-emitting area are arranged in a matrix.
  • the laser unit is a vertical cavity surface emitting laser.
  • an embodiment of the present invention also provides a laser radar, including: a laser unit provided by an embodiment of the present invention, configured to provide emitted light projected to a target, and the emitted light forms an echo beam after passing through the target; A receiving device, disposed close to the first end of the laser unit, is used for detecting the echo beam.
  • control unit configured to control all light-emitting points in the effective light-emitting area to emit light, and control the light-receiving device to receive detection signals.
  • control unit obtains the distance information of the target based on the detection signal, and controls the light-emitting points in the sub-light-emitting area corresponding to the distance information to emit light.
  • the technical solution of the present invention has the following advantages: the light-emitting surface of the laser unit in the technical solution of the present invention includes: an effective light-emitting area with light-emitting points arranged and an ineffective light-emitting area without light-emitting points;
  • the effective light-emitting area includes a plurality of sub-light-emitting areas along the first direction, which are respectively used to measure targets at different distances; relative to the laser unit with light-emitting points arranged on the entire light-emitting surface, the effective light-emitting area with light-emitting points arranged occupies part of the entire light-emitting surface, thereby reducing the area occupied by the light-emitting points on the entire light-emitting surface; in the laser unit of the embodiment of the present invention, the light-emitting points are arranged on the light-emitting surface of a local area, and the plurality of sub-light-emitting areas can be used for different In this way, the arrangement of
  • the sizes of the plurality of sub-light-emitting regions are gradually reduced, that is, the areas of the sub-light-emitting regions arranged with light-emitting points are gradually reduced, thereby further reducing the emission of the laser unit. power and heat generated by the laser unit.
  • the distribution density of light-emitting points in the plurality of sub-light-emitting regions gradually decreases, and the reduction in the density of light-emitting points can further reduce the number of light-emitting points, thereby further reducing the emission power of the laser unit and The heat generated by the laser unit.
  • Figure 1 is a schematic diagram of the optical path of the lidar.
  • FIG. 2 is a schematic diagram showing the variation of the echo signal intensity with the distance detected by the lidar shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of the optical path of the laser unit according to the first embodiment of the present invention.
  • FIG. 4 is a partial enlarged view of the laser unit in FIG. 3 .
  • 5 to 8 respectively illustrate the echo light spots generated by the laser unit shown in FIG. 4 when detecting objects at different distances.
  • FIG. 9 is a schematic diagram of a second embodiment of the laser unit of the present invention.
  • FIG. 10 is a schematic diagram of a third embodiment of the laser unit of the present invention.
  • FIG. 11 is a schematic diagram of a fourth embodiment of the laser unit of the present invention.
  • FIG. 12 is a schematic diagram of a fifth embodiment of the laser unit of the present invention.
  • FIG. 13 is a schematic diagram of a sixth embodiment of the laser unit of the present invention.
  • FIG. 14 is a schematic diagram of an embodiment of a lidar of the present invention.
  • the laser unit 1 includes a light-emitting surface, and the light-emitting surface has a plurality of light-emitting points for providing emitted light projected to the target S1 (or S2 ), and the emitted light reaches the target through the first optical lens group 3 object S1 (or S2), and then pass through the target object S1 (or S2) to form an echo beam, and the echo beam passes through the second optical lens group 4 to form a light spot T1 (or T2) on the detection surface of the light receiving device 2 ), and is detected by the light receiving device 2, so as to realize the detection of the target S1 (or S2).
  • the light-emitting surface of the laser unit 1 and the detection surface of the light-receiving device 2 are arranged in the same direction, and the transmitting end and the receiving end each have an optical lens group, so that the light emission and reception can be isolated from each other and not interfere with each other.
  • the transmitting end and the receiving end each have an optical lens group, so that the light emission and reception can be isolated from each other and not interfere with each other.
  • there will be a near-far effect in the paraxial optical path that is, when the distance of the target object changes, the spot of the echo beam on the detection surface will move.
  • the light spot formed by the long-distance target S1 on the light receiving device 2 is T1
  • the light spot formed by the relatively short distance target S2 on the light receiving device 2 is T2 . That is, as the distance of the target increases, the light spot moves toward the direction close to the laser unit 1 .
  • the light receiving device 2 is placed on the focal plane of the second optical lens group 4, and after the echo spot reflected by the target is focused by the second optical lens group 4, the spot size D' formed on the light receiving device 2 satisfies the following formula: 1.
  • D is the spot size incident on the second optical lens group 4
  • f is the focal length of the lens
  • d is the distance between the target and the second optical lens group 4 . Since the light spot incident on the second optical lens group 4 (ie, the echo light spot reflected by the target) usually covers the entire second optical lens group 4 , the size D of the light spot incident on the second optical lens group 4 is usually the same.
  • the spot size D′ formed on the light receiving device 2 is inversely proportional to the distance d between the target and the second optical lens group 4 . Specifically, the farther the distance of the target object (that is, the larger the d), the smaller the spot size formed by the target object on the light receiving device 2; The larger the size of the light spot formed on the receiving device 2 is.
  • Figure 2 shows a schematic diagram of the variation of the echo signal intensity of the laser unit with the distance.
  • the distance is large (above 10m)
  • the echo spot is small, and there is energy loss in the process of light propagation due to the long light propagation path, and the detected echo signal intensity is correspondingly small.
  • the distance gradually decreases (between 1m and 10m)
  • the loss of light energy decreases and the light spot grows slowly and the adjacent light spots overlap each other, so the detected echo signal intensity begins to increase.
  • the target distance is less than 1m
  • the light spot becomes larger rapidly and the adjacent light spots overlap each other, resulting in a larger signal intensity.
  • the signal intensity gradually decreases.
  • the distance is reduced to within 0.3 m, the light spot moves out of the detection surface of the light receiving device 2 .
  • the light-receiving device 2 can measure the distance by detecting the light signal.
  • the echo signal for a close-range object is stronger, and the light-emitting point in the same arrangement as when detecting a long-distance object is used to measure the distance.
  • Light emission actually causes waste of light emission power, and there is a problem of high emission power.
  • the present invention provides a laser unit for the laser radar.
  • the light forms an echo beam after passing through the target, and is received by the light receiving device;
  • the light emitting surface includes: a first end arranged close to the light receiving device and a second end arranged away from the light receiving device, so The first direction from the first end to the second end is the first direction, and the direction perpendicular to the first direction is the second direction;
  • the non-effective light-emitting area of the light-emitting point; the effective light-emitting area includes a plurality of sub-light-emitting areas along the first direction, which are respectively used to detect targets at different distances.
  • the light-emitting surface of the laser unit includes: an effective light-emitting area with light-emitting points arranged and an ineffective light-emitting area without light-emitting points; the effective light-emitting area includes a plurality of sub-light-emitting areas along the first direction, which are respectively It is used to measure objects at different distances; compared with the laser unit with light-emitting points arranged on the entire light-emitting surface, the effective light-emitting area with light-emitting points arranged occupies a part of the entire light-emitting surface, thereby reducing the light-emitting point on the entire light-emitting surface.
  • the area occupied by the laser unit in the embodiment of the present invention can set light-emitting points on the light-emitting surface of a local area, and at the same time, the plurality of sub-light-emitting areas can detect targets at different distances, so that the laser radar can detect objects at different distances.
  • the arrangement of light-emitting points is optimized, and the number of light-emitting points on the light-emitting surface is reduced, thereby reducing the emission power of the laser unit and the heat generated by the laser unit.
  • FIG. 3 a schematic diagram of an optical path of an embodiment of a laser unit of the present invention is shown.
  • the laser unit 10 is applied to the laser radar, and is used to generate the emitted light for detecting the distance of the target object.
  • the laser unit 10 includes a light-emitting surface 104, and the light-emitting surface 104 has a plurality of light-emitting points for providing emission light F projected to the target S1, and the emission light F passes through the first lens group (not shown in the figure). shown) reach the target S1, and then pass through the target S1 to form an echo beam B, the echo beam B passes through the second lens group (not shown), and is then received by the light receiving device 20, thereby realizing the target detection.
  • the laser unit 10 is an area array laser unit
  • the light-emitting point on the light-emitting surface 104 is a Vertical-Cavity Surface-Emitting Laser (VCSEL).
  • the VCSEL includes: a substrate, a resonant cavity on the substrate, the resonant cavity includes a bottom Bragg mirror, an active region and a top Bragg mirror sequentially on the substrate, and a light exit window is provided above the resonant cavity.
  • the VCSEL emits laser light perpendicular to the substrate from the light exit window.
  • the active region may be a quantum well layer
  • the quantum well layer can generate photons when a voltage is applied, the photons oscillate in the resonator cavity to form laser light, and the laser light is emitted through the light exit window, form luminous spots.
  • the laser unit in this embodiment improves the arrangement of the light-emitting points.
  • the spot of the echo beam on the detection surface will move and change in size. size (as shown in Figure 5-8), therefore, in practical applications, the position of the detection surface remains unchanged, based on the characteristic that the echo spot moves away from the laser unit, and the size of the echo spot decreases with the distance of the target.
  • the characteristic of being small and gradually increasing, according to the principle of reversibility of the optical path the luminous point corresponding to the echo spot that is not detected by the detection surface is omitted, thereby improving the arrangement of the luminous point.
  • the light emitting surface 104 includes: a first end A1 arranged close to the light receiving device 20, and a second end A2 arranged away from the light receiving device 20, the first end A1 to the second end A2 are:
  • the first direction X, which is perpendicular to the first direction X is the second direction Y.
  • the light emitting surface 104 is rectangular, the end close to the light receiving device 20 is the first end A1, and the end far from the light receiving device is the second end A2.
  • the light-emitting surface 104 includes: an area where light-emitting points are arranged (the area shown by the dotted box in FIG. 3 and FIG. 4 , that is, the effective light-emitting area 105 ) and an area without light-emitting points (as shown in FIG. 4 ) 3 and the blank area in FIG. 4, that is, the non-effective light-emitting area 106).
  • Laser light is emitted in the area where the light-emitting points are arranged, so it is defined as the effective light-emitting area 105 , and the area where the light-emitting points are not arranged is the non-effective light-emitting area 106 .
  • the light-emitting surface 104 of this embodiment includes a hexagonal effective light-emitting area 105 , and the longer first side of the hexagon is close to the first end A1 , and is opposite to the first side in the first direction X The second side is close to the second end A2.
  • the meaning that the effective light-emitting area 105 is hexagonal means that the contour line of the area where the light-emitting points are arranged on the light-emitting surface 104 is roughly surrounded by a hexagon.
  • the effective light-emitting area 105 may also have other shapes, as long as the size in the second direction Y is gradually reduced along the first direction X, and the area of the area where the light-emitting points are arranged is along the first direction X. reduce the trend.
  • the effective light-emitting region 105 in the first direction X includes a plurality of sub-light-emitting regions, which are respectively used for detecting objects at different distances.
  • the sub-light-emitting area close to the first end A1 is the first sub-light-emitting area 101, which is used to detect the target object above the first distance;
  • the sub-light-emitting area near the second end A2 is the second sub-light-emitting area 102, which is used to detect the second For targets below the distance, the second distance is smaller than the first distance.
  • a plurality of third sub-light-emitting regions 103 located between the first sub-light-emitting region 101 and the second sub-light-emitting region 102 are used for detecting the target between the second distance and the first distance, That is, it is used to detect objects in the middle distance interval.
  • the first sub-light-emitting area 101 is used to detect objects at a first distance (for example, within a range of 15m to 25m); the second sub-light-emitting area 102 is used to detect a second distance (for example: 0.3 m). ⁇ 0.6m) or less targets; a plurality of third sub-light-emitting regions 103 located between the first sub-light-emitting region 101 and the second sub-light-emitting region 102, corresponding to detection 10m-20m, 5m-10m, 2.5m-5m respectively , 1.25m-2.5m and 0.6m-1.25m targets.
  • the spot of the echo beam on the detection surface will move and change in size.
  • the size of the echo spot is larger than that of the detection surface. (as shown in Figure 5-8). Therefore, in practical applications, the position of the detection surface remains unchanged.
  • the echo spot corresponding to the first sub-light-emitting area 101 can be set to be aligned with the detection surface (such as As shown in Figure 5), as the distance of the target object decreases (that is, the target object between the second distance and the first distance), the echo spot moves away from the laser unit, and the echo spot size gradually increases, then Based on this characteristic, the echo spots corresponding to the plurality of third sub-light-emitting areas 103 are detected by the detection surface (as shown in FIGS. 6 and 7 ). For close-range targets, the echo spots corresponding to the second sub-light-emitting areas 102 are detected by the detection surface. detection ( Figure 8).
  • the effective light-emitting area 105 is hexagonal, and includes a first sub-light-emitting area 101 that is rectangular at the first end A1, a second sub-light-emitting area 102 that is rectangular at the second end A2, and a plurality of Three sub-light-emitting areas 103, the light-emitting area formed by the plurality of third sub-light-emitting areas 103 is an isosceles trapezoid, the lower base of the isosceles trapezoid is close to the first end A1, and the upper base is close to the second end A2 .
  • the first sub-light-emitting area 101 is used to be disposed close to the light receiving device 20 in the lidar, and correspondingly, the second sub-light-emitting area 102 is used to be disposed away from the light receiving device 20 in the lidar.
  • the central axis of the isosceles trapezoid is set in the plane of the optical axis of the first lens group and the optical axis of the second lens group, so the light spot formed by the light-emitting point on the light receiving device 20 is shifted along the direction of the central axis.
  • the effective light-emitting region 105 is divided into a plurality of sub-light-emitting regions from the first direction X, and each of the sub-light-emitting regions is respectively used to detect objects at different distances. Specifically, the light emitted by the light-emitting points of the sub-light-emitting regions can be detected by the light receiving device 20 after being reflected by the target at the corresponding distance, thereby realizing detection at the corresponding distance.
  • the first sub-light-emitting area 101 near the first end A1 is used for detecting the long-distance target S1
  • the second sub-light-emitting area 102 near the second end A2 is used for detecting the short-range target S2
  • one or more third sub-light-emitting regions 103 located between the first sub-light-emitting region 101 and the second sub-light-emitting region 102 are used to detect objects in the intermediate distance range; accordingly, along the first direction For a plurality of sub-light-emitting regions set by X, the distribution density of light-emitting points gradually decreases.
  • the distribution density of the light-emitting points of each sub-light-emitting region in the effective light-emitting region 105 in the first direction X gradually decreases.
  • the light-emitting points of the first sub-light-emitting area 101 near the first end A1 are the densest and the distribution density is the largest;
  • the light-emitting points of the second sub-light-emitting area 102 near the second end A2 are the sparsest and the distribution density is the smallest;
  • the distribution density of light-emitting points in the third sub-light-emitting region 103 between the first sub-light-emitting region 101 and the second sub-light-emitting region 102 is centered.
  • the effective light-emitting area 105 in which the light-emitting points are arranged in the present invention occupies a part of the entire light-emitting surface, thereby reducing the area occupied by the light-emitting points on the entire light-emitting surface 104, and along the entire light-emitting surface 104.
  • the laser unit of the present invention can set a small number of light-emitting points on the local light-emitting surface; at the same time, the plurality of sub-light-emitting regions can In this way, the arrangement of light-emitting points is optimized on the basis of ensuring the ranging performance of laser radar for targets at different distances, and the emission power of the laser unit is reduced; at the same time, the laser unit of the light-emitting point is reduced. It can be driven with a lower voltage, thereby reducing the heat generated by the laser unit.
  • FIG. 5 , 6 , 7 , and 8 are diagrams showing the positional relationship between the echo spot generated by the target at distances of 20 m, 1 m, 0.7 m, and 0.4 m and the light receiving device 20 , respectively.
  • the principle of solving the technical problem by the technical solution of the present embodiment will now be explained with reference to FIG. 3 to FIG. 8 .
  • the light receiving device 20 is used as a detector for description. Specifically, the light receiving device 20 can convert the light signal into an electrical signal, for example, the detector is an avalanche photodiode (APD) or a silicon photomultiplier (SiPM) or a single photon avalanche diode (SPAD) array.
  • the detector is an avalanche photodiode (APD) or a silicon photomultiplier (SiPM) or a single photon avalanche diode (SPAD) array.
  • APD avalanche photodiode
  • SiPM silicon photomultiplier
  • SPAD single photon avalanche diode
  • the size of the echo spot is small, and the echo spot generated by the light-emitting point of the first sub-light-emitting area close to the first end A1 is detected by the detector.
  • the position of the echo spot is shifted, and the third sub-luminescence near the first sub-luminous area 101 is detected by the detector.
  • the distribution density of the light-emitting points in the third sub-light-emitting area 103 is slightly smaller, but the size of the light spot will become larger as the distance from the target object decreases. After the light spot becomes larger, the adjacent echo light spots overlap to cover the detector. detection surface.
  • the position of the echo spot shifts rapidly, and the detector detects the first light spot close to the second sub-light-emitting area 102 .
  • the echo light spots generated by the light-emitting points of the three sub-light-emitting regions 103 .
  • the distribution density of the light-emitting points in the third sub-light-emitting region 103 is further reduced, but as the distance from the target decreases, the size of the light spot increases rapidly, and the adjacent echo light spots overlap and overlap. Covers the detection surface of the detector.
  • the position of the echo spot shifts rapidly, and the detector detects the light-emitting point of the second sub-light-emitting area 102 The resulting echo spot.
  • the second sub-light-emitting area 102 has the smallest distribution density of light-emitting points, with only a few scattered light-emitting points.
  • the size of the light spot formed by the echo beam is very large, and the adjacent echo light spots have a larger size. Overlap area and cover the detection surface of the detector.
  • the echo spot formed by targets with different distances in this embodiment will shift in the plane where the detector is located, and the closer the distance of the target, the larger the size of the echo spot correspondingly.
  • the arrangement of the light-emitting points on the light-emitting surface of the laser unit is optimized.
  • a plurality of sub-light-emitting regions are set in the first direction X of the laser unit, each of which is The light emitted by the light-emitting point of the sub-light-emitting area is reflected by the target object at the corresponding distance and detected by the detector.
  • the echo spot on the detector can be offset along the first direction. Therefore, the function of detecting the distance of different targets correspondingly through each sub-light-emitting area is realized.
  • the size of the effective light-emitting region 105 in the first direction X may be larger than the size in the second direction Y. That is to say, by extending the effective light-emitting area of the laser unit in this embodiment along the first direction X, it becomes a long light source, which can not only compensate for the spot shift, but also increase the horizontal divergence angle of the laser unit, thereby reducing the blind spot.
  • the size of the sub-light-emitting area (the size along the second direction Y) is gradually reduced along the first direction X, so that the The size of the light spot at the Y boundary in the second direction of the light-emitting area can still cover the detector, so as not to affect the ranging function of the lidar; on the other hand, the light-emitting point density of each sub-light-emitting area in the first direction X gradually decreases , this is based on the feature of the increase in the size of the echo spot. Although the density of the luminous point decreases when detecting a close-range target, the light spots of the adjacent luminous points become so large that they overlap and still cover the detector. Lidar ranging function.
  • the laser unit in the embodiment of the present invention optimizes the arrangement of light-emitting points, and can realize the function of detecting targets at different distances with fewer light-emitting points, thereby reducing the emission power of the laser unit.
  • the first sub-light-emitting region 101 and the second sub-light-emitting region 102 are rectangular, and the third sub-light-emitting region 103 in the middle is trapezoidal.
  • the first sub-light-emitting area 101 is used to detect the long-distance target that has just entered the detectable range of the detector, and the spot size basically does not change. Therefore, the light-emitting points are densely arranged in the first sub-light-emitting area 101, Make the shape of the spot arrangement area the same as the detector.
  • the plurality of third sub-light-emitting areas 103 are located in the area where the spot size gradually increases.
  • the shape of the third sub-light-emitting area 103 is set to a trapezoid, and the light-emitting point at the upper bottom of the trapezoid is more than the light spot formed by the light-emitting point at the lower bottom. larger and thus still cover the detector.
  • the first sub-light-emitting area 101 is used to detect close-range targets close to the blind area.
  • the light spots formed on the detector are very large and can overlap each other and completely cover the detector. Therefore, the first sub-light-emitting area 101 is set as a detector.
  • the shape is the same, just set a few light-emitting points scattered.
  • the size of the light spot in the first direction X also gradually increases, its coverage area on the detector along the first direction X also increases, therefore, multiple third sub-lights emit light.
  • the division intervals of the regions along the first direction X may gradually increase.
  • the edge of the third sub-light-emitting region 103 close to the first end A1 is the reference edge
  • the plurality of third sub-light-emitting regions 103 include reference edges BB', CC', and DD'
  • the edge of the third sub-light-emitting region 103 close to the second end A1 The distance d1 is between the reference sides BB' and CC' of the adjacent third sub-light-emitting regions 103
  • the distance d2 is between the reference sides CC' and DD' of the adjacent third sub-light-emitting regions 103 close to the first end A1
  • the distance gradually increases along the first direction X, that is, d1 is greater than d2.
  • the division intervals of the plurality of third sub-light-emitting regions along the first direction may also be divided in various ways, for example: between the reference portions of the adjacent third sub-light-emitting regions The distance between the three sub-light-emitting regions remains unchanged (that is, the plurality of third sub-light-emitting regions are divided uniformly); or, the distance between the reference portions of the adjacent third sub-light-emitting regions gradually decreases along the first direction.
  • the arrangement of the light-emitting points is simulated in combination with the detectable range of the detector, the area of the detection surface and the light-emitting surface, and the parameters of the second optical lens group (such as the focal length) on the detector. Combined, different sub-light-emitting regions are divided, the light-emitting point arrangement of different sub-light-emitting regions is set, and it is judged whether the light spot formed by the light-emitting points of each sub-light-emitting region can cover the detector.
  • the distribution density value of the light-emitting point within a single sub-light-emitting area can be an interval range, that is, in a sub-light-emitting area.
  • the light-emitting points in the light-emitting area are arranged in a non-uniform arrangement, or in other words, the density of light-emitting points in each local area within a sub-light-emitting area may be different.
  • the VCSEL realizes light emission by applying voltage to the bottom and top electrodes of the resonator.
  • the laser unit of this embodiment may be formed with a plurality of light-emitting points in an optimal arrangement on a whole substrate. By simultaneously applying voltage to the electrodes corresponding to each light-emitting point, all light-emitting points can emit light simultaneously. Since the number of light-emitting points is reduced in this embodiment, the total parallel resistance is increased, thereby reducing the power of the laser unit.
  • the light-emitting points of each sub-light-emitting region may be formed on different substrates and integrated together.
  • the laser unit can control the light-emitting points of each sub-light-emitting area at the same time to realize simultaneous emission of light, and can also control the light-emitting points of each sub-light-emitting area individually, so as to select the sub-light-emitting point corresponding to different target distances.
  • the light-emitting area glows.
  • the light-emitting area formed by the plurality of third sub-light-emitting areas 103 in the effective light-emitting area 105 is an isosceles trapezoid, and the first sub-light-emitting area 101
  • the side of the isosceles trapezoid has the same size as the upper base of the isosceles trapezoid
  • the side of the second sub-light-emitting area 102 is the same as the lower base of the isosceles trapezoid
  • the plurality of third sub-light-emitting areas 103 are along the second direction Y
  • the waist of the isosceles trapezoid gradually decreases.
  • a third light emitting region is further included between the first light emitting region and the second light emitting region.
  • the effective light-emitting surface of the laser unit 30 may only include: the first sub-light-emitting area 201 at the first end and the second sub-light-emitting area at the second end 202, which are respectively used to detect the long-distance target and the short-distance target. That is, in the second embodiment, the effective light-emitting surface does not include the third sub-light-emitting region.
  • the density of light-emitting points in the second sub-light-emitting area 202 is smaller than the density of light-emitting points in the first sub-light-emitting area 201, so that the number of light-emitting points can be reduced, thereby further reducing the light-emitting power .
  • the light-emitting points of the first sub-light-emitting area 201 are arranged alternately, and the light-emitting points of the second sub-light-emitting area 202 are arranged in a matrix.
  • the first sub-light-emitting areas may also be arranged in a matrix and the second sub-light-emitting areas may be alternately arranged, that is, different sub-light-emitting areas may be arranged in different ways on the same effective light-emitting surface.
  • the sub-light-emitting regions may also be arranged in the same manner (for example, the sub-light-emitting regions are arranged alternately or are arranged in an array).
  • the boundary of the effective light-emitting region 203 has a sawtooth bevel, and the first size of the plurality of sub-light-emitting regions decreases in an abrupt manner along the first direction X, that is, the phase
  • the first dimensions of the adjacent sub-light-emitting regions are quite different.
  • each sub-light-emitting area is a rectangle
  • the long side of the rectangle is along the Y direction
  • the short side is along the X direction.
  • FIG. 11 a schematic diagram of a fourth embodiment of the laser unit of the present invention is shown.
  • the light-emitting points 205 in the sub-light-emitting regions are alternately arranged along the first direction X and the second direction Y.
  • the alternate arrangement is adopted, the light spots formed by the light emitted by the adjacent light-emitting points are relatively easy to overlap, thereby covering the cover surface of the light-receiving device.
  • the light-emitting points in the sub-light-emitting regions may also be alternately arranged along one of the first direction or the second direction, and aligned along the other direction.
  • FIG. 12 a schematic diagram of a fifth embodiment of the laser unit of the present invention is shown.
  • the light-emitting points 305 in the sub-light-emitting regions are arranged in a matrix, that is, the light-emitting points are aligned in the first direction X and the second direction Y.
  • the shapes of the light-emitting points in the foregoing embodiments are all circular.
  • the shape of the light-emitting point 405 is a rectangle. In order for the light spot to cover the detection surface in the first direction and the second direction, the light-emitting point is square here.
  • the present invention also provides a laser radar.
  • a schematic diagram of an embodiment of the laser radar of the present invention is shown.
  • the lidar includes: a laser unit 10 for providing emitted light projected to the target, and the emitted light passes through the target to form an echo beam.
  • a laser unit 10 for providing emitted light projected to the target, and the emitted light passes through the target to form an echo beam.
  • the light receiving device 20 is disposed near the first end of the laser unit 10 and is used for detecting the echo beam.
  • the light receiving device 20 is a photodetector, which may be an avalanche photodiode or a silicon photomultiplier tube, and is used to convert the light signal corresponding to the light spot falling into the detection range into an electrical signal.
  • the shape of the effective light-emitting surface 103 of the laser unit 10 is an isosceles trapezoid
  • the light receiving device 20 includes: a detection surface arranged in the same direction as the light-emitting surface 104 of the laser unit; the detection surface The surface is located on the central axis of the isosceles trapezoid, and is arranged adjacent to the lower base of the isosceles trapezoid.
  • the lidar further includes: a control unit 30 for controlling all light-emitting points in the effective light-emitting area 103 to emit light, and for controlling the light-receiving device 20 to detect and acquire echo signals. Because the laser unit with the light-emitting point optimally set according to the present invention is adopted, the laser unit only uses a small number of light-emitting points in a local area, so the emission power of the laser unit in the lidar is small.
  • control unit 30 is further configured to control the light-emitting points in the sub-light-emitting area corresponding to the distance information to emit light according to the distance information in the echo signals obtained by emitting light of all light-emitting points, and control the light-receiving Device 20 detects.
  • the lidar can first scan surrounding objects by emitting light from all light-emitting points and obtain echo signals, and then control the sub-light-emitting areas corresponding to the distance information to light up based on the distance information in the echo signals to reduce The number of light-emitting points that emit light, thereby further reducing the light-emitting power.

Abstract

一种用于激光雷达的激光单元(10),包括,发光面(104),用于提供投射向目标物的发射光(F),发射光(F)经由目标物(S1)后形成回波光束(B),被光接收装置(20)接收;发光面(104)包括:用于靠近光接收装置(20)设置的第一端(A1),和远离光接收装置(20)设置的第二端(A2),第一端(A1)至第二端(A2)为第一方向(X),与第一方向(X)相垂直的为第二方向(Y);激光单元(10)的发光面(104)包括:排布有发光点的有效发光区(105)和未排布有发光点的非有效发光区(106);有效发光区(105)沿第一方向(X)包括多个子发光区(101,102,103),分别用于对不同距离的目标物进行探测。还公开了一种激光雷达,包括激光单元(10)、光接收装置(20)以及控制单元(30),减小整个激光单元(10)的发射功率,降低激光单元的热量,同时减少了激光单元的发光点数量,降低了成本。

Description

用于激光雷达的激光单元以及激光雷达 技术领域
本发明涉及激光雷达领域,尤其涉及一种用于激光雷达的激光单元以及激光雷达。
背景技术
激光雷达(LIDAR)在自动驾驶中承担了路沿检测、障碍物识别以及实时定位与绘图(SLAM)等重要任务。
具体地,LIDAR系统包括激光发射系统和光接收系统。激光发射系统包括激光单元,产生发射光脉冲,所述发射光脉冲入射到目标物上反射并产生回波光束,最终所述回波光束被光接收系统所接收。接收系统准确地测量入射光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,且光速是已知的,传播时间即可被转换为对距离的测量。
激光雷达能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。由于具有测量速度快、精度高和测距远等优点,激光雷达在无人车上得到了广泛应用。
而公开的技术中激光雷达的激光单元存在发射功率较高的问题。
技术问题
本发明解决的问题是提供一种用于激光雷达的激光单元以及激光雷达,用于降低激光发射功率。
技术解决方案
本发明技术方案提供一种用于激光雷达的激光单元,所述激光单元包括发光面,用于提供投射向目标物的发射光,所述发射光经由目标物后形成回波光束,被光接收装置接收;所述发光面包括:用于靠近所述光接收装置设置的第一端,和远离所述光接收装置设置的第二端,所述第一端至第二端为第一方向,与所述第一方向相垂直的为第二方向;所述激光单元的发光面包括:排布有发光点的有效发光区和未排布有发光点的非有效发光区;所述有效发光区沿第一方向包括多个子发光区,分别用于对不同距离的目标物进行探测。
可选地,沿第一方向,所述多个子发光区的发光点分布密度逐渐减小。
可选地,沿第一方向,所述多个子发光区在第二方向的尺寸逐渐减小。
可选地,所述有效发光区中所有发光点同时发射光,和/或选择对应不同目标物距离的子发光区发光。
可选地,各子发光区沿第一方向用于探测目标物的距离逐渐减小。
可选地,靠近第一端的子发光区为第一子发光区,用于探测第一距离以上的目标物;靠近第二端的子发光区为第二子发光区,用于探测第二距离以下的目标物,所述第二距离小于所述第一距离。
可选地,位于所述第一子发光区和所述第二子发光区之间包括多个第三子发光区,用于探测所述第二距离至所述第一距离之间的目标物。
可选地,所述第一子发光区和第二子发光区为矩形,所述第三子发光区为梯形或矩形。
可选地,所述多个第三子发光区靠近所述第一端的部分为基准部,相邻各第三子发光区的基准部之间的间距沿第一方向逐渐增大。
可选地,所述有效发光区在第一方向的尺寸大于第二方向的尺寸。可选地,所述子发光区中发光点沿第一方向,和/或第二方向呈交替式排布;或者,所述子发光区中发光点呈矩阵式排布。
可选地,所述激光单元为垂直腔面发射激光器。
相应地,本发明实施例还提供一种激光雷达,包括:本发明实施例提供的激光单元,用于提供投射向目标物的发射光,所述发射光经由目标物后形成回波光束;光接收装置,靠近所述激光单元的第一端设置,用于探测所述回波光束。
可选地,还包括:控制单元,用于控制有效发光区的所有发光点发光,并控制所述光接收装置接收探测信号。
可选地,所述控制单元,基于所述探测信号获得目标物的距离信息,控制与所述距离信息相对应的子发光区内的发光点发光。
有益效果
与现有技术相比,本发明的技术方案具有以下优点:本发明技术方案中激光单元的发光面包括:排布有发光点的有效发光区和未排布有发光点的非有效发光区;所述有效发光区沿第一方向包括多个子发光区,分别用于对不同距离的目标物进行测量;相对于整个发光面排布发光点的激光单元,排布有发光点的有效发光区占据整个发光面的一部分,从而减小了整个发光面上发光点占据的面积;本发明实施例的激光单元通过在局部区域的发光面上设置发光点,同时所述多个子发光区能够分别对不同距离的目标物进行探测,这样在实现激光雷达对不同距离目标物保证测距性能的基础上优化了发光点的排布方式,减少了发光面上发光点的数量,从而减小了激光单元的发射功率以及激光单元所产生的热量。
可选方案中,沿第一方向,所述多个子发光区的尺寸逐渐减小,也就是说,排布有发光点的子发光区的面积逐渐减小,从而进一步减小了激光单元的发射功率以及激光单元所产生的热量。
可选方案中,沿第一方向,所述多个子发光区的发光点分布密度逐渐减小,发光点的密度减小可以进一步减少发光点的数量,从而进一步减小了激光单元的发射功率以及激光单元所产生的热量。
附图说明
图1为激光雷达光路示意图。
图2为图1所示激光雷达探测到的回波信号强度随距离变化示意图。
图3为本发明激光单元第一实施例的光路示意图。
图4为图3中激光单元的局部放大图。
图5至图8分别示意了图4所示的激光单元探测不同距离目标物产生的回波光斑。
图9为本发明激光单元第二实施例的示意图。
图10为本发明激光单元第三实施例的示意图。
图11为本发明激光单元第四实施例的示意图。
图12为本发明激光单元第五实施例的示意图。
图13为本发明激光单元第六实施例的示意图。
图14为本发明激光雷达一实施例的示意图。
本发明的实施方式
下面结合图1和图2示意的激光雷达光路示意图和回波信号强度随距离变化示意图,分析激光雷达发射功率较高的原因。
所述激光单元1包括发光面,所述发光面具有多个发光点,用于提供投射向目标物S1(或S2)的发射光,所述发射光通过第一光学透镜组3到达所述目标物S1(或S2),之后经由目标物S1(或S2)后形成回波光束,所述回波光束通过第二光学透镜组4,在光接收装置2的探测面上形成光斑T1(或T2),并被光接收装置2探测,从而实现目标物S1(或S2)的检测。
激光雷达中激光单元1的发光面和光接收装置2的探测面同向设置,发射端和接收端各自具有光学透镜组,可以实现光的发射和接收相互隔离、互不干扰。但是旁轴光路会存在远近效应,即当目标物的距离变化时,回波光束在探测面上的光斑会产生移动。
具体地,如图1所示,远距离目标物S1在光接收装置2上形成的光斑为T1,而相对近距离的目标物S2在光接收装置2上形成的光斑为T2。即随着目标物距离的增大,光斑朝靠近激光单元1的方向移动。光接收装置2放在第二光学透镜组4的焦平面上,则目标物反射的回波光斑经第二光学透镜组4聚焦后,在光接收装置2上形成的光斑尺寸D`满足如下公式1。
Figure 315864dest_path_image001
……公式1。
其中,D为入射到第二光学透镜组4的光斑尺寸,f为透镜焦距,d为目标物和第二光学透镜组4之间的距离。由于入射到第二光学透镜组4的光斑(即目标物反射的回波光斑)通常会覆盖整个第二光学透镜组4,则入射到第二光学透镜组4的光斑尺寸D通常是相同的。
根据上述公式1,在光接收装置2上形成的光斑尺寸D`与目标物和第二光学透镜组4之间的距离d成反比。具体地,目标物的距离越远(即d越大),则目标物在光接收装置2上形成的光斑尺寸越小;目标物的距离越近(即d越小),则目标物在光接收装置2上形成的光斑尺寸越大。
如图2所示的激光单元的回波信号强度随距离变化示意图。距离较大(10m以上)时回波光斑较小,且由于光传播路径较长导致光传播过程中存在能量损失,相应地探测到的回波信号强度较小。而随着距离逐渐减小(1m-10m之间)光能量损失有所减小且光斑缓慢变大且相邻光斑相互交叠,因此探测到的回波信号强度开始增大。当目标物距离在1m以下时,光斑快速变大且相邻光斑相互重合,从而产生较大的信号强度。而当距离小于0.6m时,由于光斑逐渐移动出光接收装置2可探测的范围,信号强度逐渐减小。在距离减小到0.3m以内时,光斑移出光接收装置2的探测面。
对于激光雷达测距而言,光接收装置2能够探测到光信号即可实现距离的测量,对于近距离物体的回波信号较强,而采用与探测远距离物体时相同排布的发光点进行发光,实际上造成了光发射功率的浪费,存在发射功率较高的问题。
为了解决激光雷达中激光单元存在发射功率较高的问题,本发明提供一种用于激光雷达的激光单元,所述激光单元包括发光面,用于提供投射向目标物的发射光,所述发射光经由目标物后形成回波光束,被光接收装置接收;所述发光面包括:用于靠近所述光接收装置设置的第一端,和远离所述光接收装置设置的第二端,所述第一端至第二端为第一方向,与所述第一方向相垂直的为第二方向;所述激光单元的发光面包括:排布有发光点的有效发光区和未排布有发光点的非有效发光区;所述有效发光区沿第一方向包括多个子发光区,分别用于对不同距离的目标物进行探测。
本发明技术方案中激光单元的发光面包括:排布有发光点的有效发光区和未排布有发光点的非有效发光区;所述有效发光区沿第一方向包括多个子发光区,分别用于对不同距离的目标物进行测量;相对于整个发光面排布发光点的激光单元,排布有发光点的有效发光区占据整个发光面的一部分,从而减小了整个发光面上发光点占据的面积;本发明实施例中的激光单元可以在局部区域的发光面上设置发光点,同时所述多个子发光区能够分别对不同距离的目标物进行探测,这样在实现激光雷达对不同距离目标物保证测距性能的基础上优化了发光点的排布方式,减少了发光面上发光点的数量,从而减小了激光单元的发射功率以及激光单元所产生的热量。
参考图3,示出了本发明激光单元一实施例的光路示意图。
本实施例中激光单元10应用于激光雷达,用于产生检测目标物距离的发射光。具体地,所述激光单元10包括发光面104,所述发光面104具有多个发光点,用于提供投射向目标物S1的发射光F,所述发射光F通过第一透镜组(图未示)到达所述目标物S1,之后经由目标物S1后形成回波光束B,所述回波光束B通过第二透镜组(图未示),之后被光接收装置20接收,从而实现目标物的检测。
本实施例中,激光单元10为面阵激光单元,发光面104上的发光点为垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)。具体地,VCSEL包括:基底,位于基底上的谐振腔,所述谐振腔包括依次位于基底上的底部布拉格反射镜、有源区和顶部布拉格反射镜,谐振腔上方具有出光窗口。VCSEL从所述出光窗口发出与基底相垂直的激光。
具体地,所述有源区可以是量子阱层(quantum well),所述量子阱层在加载电压时能产生光子,光子在谐振腔中振荡形成激光,所述激光通过所述出光窗口发射,形成发光点。
为了解决激光单元发射功率较高的问题,本实施例的激光单元针对发光点的排布进行了改进。具体地,根据上述原理,当目标物的距离变化时,回波光束在探测面上的光斑会产生移动以及尺寸改变,根据上述公式1和透镜参数,得出回波光斑的尺寸大于探测面的尺寸(如图5-8所示),因此,实际应用中,探测面的位置保持不变,基于回波光斑向远离激光单元的方向移动的特性,以及回波光斑尺寸随目标物的距离减小而逐渐增大的特点,根据光路可逆原理,将未被探测面检测的回波光斑对应的发光点省去,从而改进发光点的排布。
结合参考图4示出的图3中激光单元的放大图。所述发光面104包括:用于靠近所述光接收装置20设置的第一端A1,和远离所述光接收装置20设置的第二端A2,所述第一端A1至第二端A2为第一方向X,与所述第一方向X相垂直的为第二方向Y。
本实施例中,所述发光面104为矩形,靠近所述光接收装置20的端部为所述第一端A1,远离所述光接收装置的端部为所述第二端A2。
具体地说,所述发光面104包括:排布有发光点的区域(如图3和图4中虚线框所示区域,即有效发光区105)和未排布有发光点的区域(如图3和图4中空白区域,即非有效发光区106)。排布有发光点的区域中激光发射,因此定义为有效发光区105,未排布发光点的区域为非有效发光区106。
本实施例的发光面104包括六边形的有效发光区105,所述六边形的中较长的第一边靠近所述第一端A1,在第一方向X上与第一边相对的第二边靠近所述第二端A2。
需要说明的是,此处,有效发光区105呈六边形的含义指的是,发光面104上排布有发光点的区域轮廓线大致围成一六边形。在其他实施例中,所述有效发光区105还可以是其他形状,只要符合在第二方向Y上的尺寸沿第一方向X逐渐减小,排布发光点的区域面积沿第一方向X呈减小趋势即可。
如图4所示,在第一方向X上有效发光区105包括多个子发光区,分别用于对不同距离的目标物进行探测。靠近第一端A1的子发光区为第一子发光区101,用于探测第一距离以上的目标物;靠近第二端A2的子发光区为第二子发光区102,用于探测第二距离以下的目标物,所述第二距离小于所述第一距离。
位于所述第一子发光区101和所述第二子发光区102之间包括多个第三子发光区103,用于探测所述第二距离至所述第一距离之间的目标物,即用于对中间距离区间的目标物进行探测。
例如第一子发光区101,用于探测第一距离(例如:位于15m~25m的范围内)以上的目标物;第二子发光区102,用于探测第二距离(例如:0.3 m ~0.6m)以下的目标物;位于第一子发光区101和第二子发光区102之间的多个第三子发光区103,分别对应探测10m-20m、5m-10m、2.5m-5m、1.25m-2.5m和0.6m-1.25m的目标物。
具体地,根据上述原理,当目标物的距离变化时,回波光束在探测面上的光斑会产生移动以及尺寸改变,根据上述公式1和透镜参数,可知回波光斑的尺寸大于探测面的尺寸(如图5-8所示)。因此,实际应用中,探测面的位置保持不变,对于远距离目标物(即第一距离以上的目标物),可以先设置第一子发光区101对应的回波光斑对准探测面(如图5所示),随着目标物距离减小(即第二距离至第一距离之间的目标物),回波光斑向远离激光单元的方向移动,并且回波光斑尺寸逐渐增大,则基于该特性,多个第三子发光区103对应的回波光斑被探测面检测(如图6和7),对于近距离目标物,则第二子发光区102对应的回波光斑被探测面检测(如图8)。
具体地,所述有效发光区105为六边形,包括位于第一端A1呈矩形的第一子发光区101,以及位于第二端A2呈矩形的第二子发光区102,以及多个第三子发光区103,所述多个第三子发光区103构成的发光区域为等腰梯形,所述等腰梯形的下底靠近所述第一端A1,上底靠近所述第二端A2。
所述第一子发光区101,用于在激光雷达中靠近光接收装置20设置,相应地,第二子发光区102用于在激光雷达中远离光接收装置20设置。所述等腰梯形的中轴线用于设置在第一透镜组光轴和第二透镜组光轴所在平面内,因而发光点在光接收装置20上形成的光斑沿着中轴线的方向偏移。
所述有效发光区105自第一方向X分为多个子发光区,所述各子发光区分别用于对不同距离的目标物进行探测。具体地,所述子发光区的发光点发出的光经过相应距离目标物反射后能被光接收装置20检测到,从而实现相应距离的探测。
具体地,靠近所述第一端A1的第一子发光区101用于对远距离目标物S1进行探测,靠近所述第二端A2的第二子发光区102用于对近距离目标物S2进行探测,位于第一子发光区101和第二子发光区102之间的一个或多个第三子发光区103,用于对中间距离区间的目标物进行探测;相应地,沿第一方向X设置的多个子发光区,发光点的分布密度逐渐减小。
如图3和图4所示,所述有效发光区105在第一方向X上各子发光区发光点的分布密度逐渐减小。具体地说,靠近第一端A1的第一子发光区101的发光点最密集,分布密度最大;靠近第二端A2的第二子发光区102的发光点最稀疏,分布密度最小;位于第一子发光区101和第二子发光区102之间的第三子发光区103的发光点分布密度居中。
需要说明的是,如果第三子发光区103的数量为多个时,相应地,多个第三子发光区103沿第一方向X,发光点的分布密度逐渐减小。相对于整个发光面排布发光点的激光单元,本发明中排布有发光点的有效发光区105占据整个发光面的一部分,从而减小了整个发光面104上发光点占据的面积,并且沿第一方向,所述多个子发光区的发光点分布密度逐渐减小,因此本发明的激光单元可以在局部发光面上设置数量较少的发光点;同时所述多个子发光区能够分别对不同距离的目标物进行探测,这样在实现激光雷达对不同距离目标物保证测距性能的基础上优化了发光点的排布方式,减小了激光单元的发射功率;同时减少了发光点的激光单元可以用更小的电压来驱动,从而降低激光单元所产生的热量。
图5、图6、图7、图8分别示意了距离为20m、1m、0.7m、0.4m目标物产生的回波光斑与光接收装置20的位置关系图。现结合图3至图8解释本实施例技术方案解决技术问题的原理。
需要说明的是,此处以光接收装置20为探测器进行说明。具体地,所述光接收装置20能将光信号转换为电信号,例如:探测器为雪崩光电二极管(APD)或硅光电倍增管(SiPM)或单光子雪崩二极管(SPAD)阵列。
如图5所示,在目标物距离为20m时,回波光斑尺寸较小,靠近第一端A1的第一子发光区的发光点产生的回波光斑被探测器探测。
如图6所示,随着目标物距离的减小,在目标物距离为1m时,回波光斑产生位置偏移,被探测器探测到的是靠近第一子发光区101的第三子发光区103发光点产生的回波光斑。所述第三子发光区103的发光点的分布密度稍小,但是随着目标物距离的减小光斑的尺寸会变大,光斑变大后相邻的回波光斑相交叠从而覆盖探测器的探测面。
如图7所示,随着目标物距离的进一步减小,在目标物距离为0.7m时,回波光斑的位置快速偏移,被探测器探测到的是靠近第二子发光区102的第三子发光区103发光点产生的回波光斑。相对于图6所示实施例,该第三子发光区103发光点的分布密度进一步减小,但是随着目标物距离的减小光斑的尺寸快速变大,相邻的回波光斑相交叠且覆盖探测器的探测面。
如图8所示,随着目标物距离的再进一步减小,在目标物距离为0.4m时,回波光斑的位置快速偏移,被探测器探测到的是第二子发光区102发光点产生的回波光斑。第二子发光区102发光点的分布密度最小,只有几个分散的发光点,但是在目标物距离较近时,因为回波光束形成光斑尺寸非常大,相邻的回波光斑有较大的交叠区且覆盖探测器的探测面。
结合图5-图8综合分析,本实施例利用不同距离的目标物形成的回波光斑会在探测器所在平面偏移,且目标物的距离越近,相应地回波光斑尺寸越大的原理,对激光单元发光面上发光点的排布进行了优化设计。
具体地说,基于回波光斑偏移的特点,本实施例在探测器的面积与激光单元的相对位置不变的前提下,在激光单元的第一方向X上设置了多个子发光区,各子发光区发光点发出的光被相应距离的目标物反射后被探测器探测到,通过设置发光点沿第一方向X延伸排布,解决了回波光斑在探测器上沿第一方向偏移的问题,从而实现通过各子发光区对应探测不同目标物距离的功能。
在可选方案中,可以使所述有效发光区105在第一方向X的尺寸大于第二方向Y的尺寸。也就是说,通过使本实施例激光单元的有效发光区沿第一方向X延伸,而成为一长光源,这样除了能够补偿光斑偏移,还能增大激光单元的水平发散角,从而减小盲区。
而基于回波光斑尺寸随目标物距离越近而逐渐增大的特点,一方面,本实施例沿第一方向X逐渐减小子发光区尺寸(沿第二方向Y的尺寸),这样各子发光区第二方向Y边界处的光斑尺寸增大后还能够覆盖探测器,从而不影响激光雷达的测距功能;另一方面,第一方向X上各子发光区的发光点密度逐渐减小,这是基于回波光斑尺寸增大的特点,虽然对应检测近距离目标物时,发光点密度减小,但是相邻发光点的光斑变大到相交叠从而覆盖仍然覆盖探测器,进而能实现激光雷达测距功能。本发明实施例激光单元优化了发光点的排布,通过较少的发光点即能实现探测不同距离目标物的功能,从而降低了激光单元的发射功率。
需要说明的是,本实施例中,所述第一子发光区101和第二子发光区102为矩形,位于中间的所述第三子发光区103为梯形。这是因为第一子发光区101用于对刚刚进入到探测器可探测范围的远距离目标物进行检测,光斑尺寸基本不发生变化,因此,在第一子发光区101密集排布发光点,使光斑排布区域的形状跟探测器相同。而多个第三子发光区103位于光斑尺寸慢慢变大的区域,结合这个特点,将第三子发光区103形状设为梯形,梯形上底的发光点比下底处发光点形成的光斑更大,因而仍然能覆盖探测器。而第一子发光区101用于对靠近盲区的近距离目标物进行探测,在探测器上形成的光斑非常大,能够相互重叠且完全覆盖探测器,因此第一子发光区101设置成探测器形状相同,零散设置几个发光点即可。
探测目标物由远及近的过程中,因为光斑在第一方向X的尺寸也逐渐增大,其沿第一方向X在探测器上的覆盖面积也增大,因此,多个第三子发光区沿第一方向X的划分间隔可以逐渐增大。具体地,所述第三子发光区103靠近第一端A1的边为基准边,所述多个第三子发光区103包括基准边BB’、CC’、DD’,靠近第二端A1的相邻第三子发光区103的基准边BB’和CC’之间为间距d1,靠近第一端A1的相邻第三子发光区103的基准边CC’和DD’之间为间距d2,所述间距沿第一方向X逐渐增大,即d1大于d2。
需要说明的是,本发明实施例的激光单元,沿着第一方向多个第三子发光区的划分间隔还可以有多种方式,比如:相邻各第三子发光区的基准部之间的间距保持不变(即多个第三子发光区均匀分区);或者,相邻各第三子发光区的基准部之间的间距沿第一方向逐渐减小。
需要说明的是,在实际应用中,结合探测器的可探测范围、探测面和发光面的面积以及探测器上第二光学透镜组的参数(比如焦距)等参数对发光点的排布进行拟合,划分不同的子发光区,设置不同子发光区的发光点排布,判断各子发光区发光点形成的光斑是否能够覆盖探测器。之后,可以基于激光雷达的规格要求,再进一步微调节不同的子发光区的形状、间距、第一尺寸、第二尺寸、各个子发光区发光点分布密度值等,得到最终发光面上发光点的优化设置。
还需要说明的是,满足各个子发光区之间发光点密度沿第一方向减小的趋势的要求即可,单个子发光区内部的发光点分布密度值可以是区间范围,即,在一个子发光区内部发光点排布为非均匀式排布,或者说,在一个子发光区内部各局部区域发光点的密度可以有所不同。
此外,VCSEL是在谐振腔的底部和顶部电极加载电压实现出光的。本实施例的激光单元,可以是在一整块基底上形成优化排布的多个发光点,通过对各发光点对应的电极同时加载电压,实现所有发光点能够同时发射光。由于本实施例中发光点数量减少,增大了总的并联电阻,从而减小了激光单元的功率。
在其他实施例中,还可以是,各个子发光区的发光点做在不同基底上并集成在一起。对于这种实施例,激光单元可以对各子发光区的发光点同时进行控制,实现同时发射光,也可以通过对各子发光区的发光点进行单独控制,从而选择对应不同目标物距离的子发光区发光。
需要说明的是,在图3和图4所示的实施例中,所述有效发光区105中多个第三子发光区103组成的发光区为一等腰梯形,且第一子发光区101的边与所述等腰梯形的上底尺寸相同,第二子发光区102的边与所述等腰梯形的下底相同,所述多个第三子发光区103在第二方向Y上沿着所述等腰梯形的腰逐渐减小。
在上述实施例中第一发光区和第二发光区之间还包括第三发光区。参考图9所示的激光单元的第二实施例中,所述激光单元30的有效发光面还可以仅包括:位于第一端的第一子发光区201以及位于第二端的第二子发光区202,分别用于对远距离目标物和近距离目标物进行探测。即在第二实施例中,有效发光面不包括第三子发光区。
如图9所示的实施例中,第二子发光区202的发光点的密度小于所述第一子发光区201的发光点的密度,从而可以减少发光点的数量,进而进一步减小发光功率。
还需要说明的是,图9所示的实施例中,第一子发光区201的发光点采用交替式排布,而第二子发光区202的发光点采用矩阵式排布,在其他实施例中,也可以第一子发光区为矩阵式排布而第二子发光区为交替式排布,也就是说,在同一个有效发光面上不同子发光区可以采用不同的排布方式。在其他实施例中,各子发光区也可以采用相同的排布方式(比如,各子发光区均为交替式排布或均为阵列式排布)。
在如图10所示的激光单元的第三实施例中,所述有效发光区203的边界具有锯齿斜边,多个子发光区的第一尺寸沿第一方向X以突变方式减小,即相邻子发光区的第一尺寸相差较大。
具体地,在所述实施例中,每个子发光区的形状均为矩形,矩形长边沿Y方向,短边沿X方向,相邻矩形子发光区的长边尺寸都有较大的不同,因而是一种突变方式的变化。
参考图11,示出了本发明激光单元第四实施例的示意图。本实施例中,所述子发光区中发光点205沿第一方向X和第二方向Y呈交替式排布。采用交替式排布时,相邻发光点发出的光所形成的光斑比较容易交叠,从而覆盖光接收装置的覆盖面。
在其他实施例中,子发光区中发光点发还可以沿第一方向或第二方向中的一个方向交替排布,而沿另一个方向对齐排布。
参考图12,示出了本发明激光单元第五实施例的示意图。本实施例中,所述子发光区中发光点305呈矩阵式排布,即发光点在第一方向X和第二方向Y均为对齐排布。
需要说明的是前述实施例中发光点的形状均为圆形。参考图13所示的激光单元的第六实施例中,所述发光点405的形状为矩形。为了光斑能在第一方向和第二方向对探测面进行覆盖,此处发光点为正方形。
为了解决激光单元发射功率较高的问题,相应地,本发明还提供一种激光雷达,参考图14,示出了本发明激光雷达一实施例的示意图。
所述激光雷达包括:激光单元10,用于提供投射向目标物的发射光,所述发射光经由目标物后形成回波光束。所述激光单元的相关描述参考前述实施例,在此不再赘述。
光接收装置20,靠近所述激光单元10的第一端设置,用于探测所述回波光束。本实施例中,所述光接收装置20为一种光电探测器,可以是雪崩光电二极管或硅光电倍增管,用于将落入到探测范围的光斑对应的光信号转换为电信号。
如图14所示,激光单元10的所述有效发光面103的形状为等腰梯形,所述光接收装置20包括:探测面,与所述激光单元的发光面104同向设置;所述探测面位于所述等腰梯形的中轴线上,且与所述等腰梯形的下底相邻设置。
所述激光雷达还包括:控制单元30,用于控制有效发光区103的所有发光点发光,并控制所述光接收装置20进行探测并获取回波信号。因为,采用了本发明发光点优化设置后的激光单元,所述激光单元仅在局部区域采用少量的发光点,因此所述激光雷达中激光单元的发射功率较小。
或者,所述控制单元30,还用于根据所有发光点发光获得的回波信号中的距离信息,控制与所述距离信息相对应的子发光区内的发光点发光,并控制所述光接收装置20进行探测。
这样,所述激光雷达可以先通过所有发光点发光对周边物体进行扫描并获得回波信号,之后基于回波信号中的距离信息,控制与所述距离信息对应的子发光区点亮,来减少发光点发光的数量,从而进一步降低发光功率。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (15)

  1. 一种用于激光雷达的激光单元,所述激光单元包括发光面,用于提供投射向目标物的发射光,所述发射光经由目标物后形成回波光束,被光接收装置接收;所述发光面包括:用于靠近所述光接收装置设置的第一端,和远离所述光接收装置设置的第二端,所述第一端至第二端为第一方向,与所述第一方向相垂直的为第二方向;其特征在于,
    所述激光单元的发光面包括:排布有发光点的有效发光区和未排布有发光点的非有效发光区;
    所述有效发光区沿第一方向包括多个子发光区,分别用于对不同距离的目标物进行探测。
  2. 如权利要求1所述的激光单元,其特征在于,沿第一方向,所述多个子发光区的发光点分布密度逐渐减小。
  3. 如权利要求1所述的激光单元,其特征在于,沿第一方向,所述多个子发光区在第二方向的尺寸逐渐减小。
  4. 如权利要求1所述的激光单元,其特征在于,所述有效发光区中所有发光点同时发射光,和/或选择对应不同目标物距离的子发光区发光。
  5. 如权利要求1所述的激光单元,其特征在于,各子发光区沿第一方向用于探测目标物的距离逐渐减小。
  6. 如权利要求1所述的激光单元,其特征在于,靠近第一端的子发光区为第一子发光区,用于探测第一距离以上的目标物;
    靠近第二端的子发光区为第二子发光区,用于探测第二距离以下的目标物,所述第二距离小于所述第一距离。
  7. 如权利要求6所述的激光单元,其特征在于,位于所述第一子发光区和所述第二子发光区之间包括多个第三子发光区,用于探测所述第二距离至所述第一距离之间的目标物。
  8. 如权利要求6所述的激光单元,其特征在于,所述第一子发光区和第二子发光区为矩形,所述第三子发光区为梯形或矩形。
  9. 如权利要求6所述的激光单元,其特征在于,所述多个第三子发光区靠近所述第一端的部分为基准部,相邻各第三子发光区的基准部之间的间距沿第一方向逐渐增大。
  10. 如权利要求1所述的激光单元,其特征在于,所述有效发光区在第一方向的尺寸大于第二方向的尺寸。
  11. 如权利要求1所述的激光单元,其特征在于,所述子发光区中发光点沿第一方向,和/或第二方向呈交替式排布;或者,
    所述子发光区中发光点呈矩阵式排布。
  12. 如权利要求1-11中任一项所述的激光单元,其特征在于,所述发光点为垂直腔面发射激光器。
  13. 一种激光雷达,包括:
    如权利要求1-12中任一项所述的激光单元,用于提供投射向目标物的发射光,所述发射光经由目标物后形成回波光束;
    光接收装置,靠近所述激光单元的第一端设置,用于探测所述回波光束。
  14. 如权利要求13所述的激光雷达,其特征在于,还包括:控制单元,用于控制有效发光区的所有发光点发光,并控制所述光接收装置接收探测信号。
  15. 如权利要求14所述的激光雷达,其特征在于,所述控制单元,基于所述探测信号获得目标物的距离信息,控制与所述距离信息相对应的子发光区内的发光点发光。
PCT/CN2021/109211 2020-08-25 2021-07-29 用于激光雷达的激光单元以及激光雷达 WO2022042196A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21860036.9A EP4206733A1 (en) 2020-08-25 2021-07-29 Laser unit for laser radar, and laser radar
US18/081,002 US20230184901A1 (en) 2020-08-25 2022-12-14 Laser emitting unit for lidar and lidar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010865171.6A CN114185054A (zh) 2020-08-25 2020-08-25 用于激光雷达的激光单元以及激光雷达
CN202010865171.6 2020-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/081,002 Continuation US20230184901A1 (en) 2020-08-25 2022-12-14 Laser emitting unit for lidar and lidar

Publications (1)

Publication Number Publication Date
WO2022042196A1 true WO2022042196A1 (zh) 2022-03-03

Family

ID=80354513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109211 WO2022042196A1 (zh) 2020-08-25 2021-07-29 用于激光雷达的激光单元以及激光雷达

Country Status (4)

Country Link
US (1) US20230184901A1 (zh)
EP (1) EP4206733A1 (zh)
CN (1) CN114185054A (zh)
WO (1) WO2022042196A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116755066B (zh) * 2023-08-16 2023-11-07 探维科技(北京)有限公司 激光雷达、发射器和接收器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171608A1 (en) * 2001-05-07 2002-11-21 Izumi Kanai Image display apparatus for forming an image with a plurality of luminescent points
CN102455513A (zh) * 2010-10-15 2012-05-16 前鼎光电股份有限公司 具有光线回收结构的投影装置
CN104932321A (zh) * 2014-03-19 2015-09-23 上海诺司纬光电仪器有限公司 一种多点激光器
KR101683771B1 (ko) * 2016-03-22 2016-12-21 지스마트 주식회사 발광 면적의 확장이 가능한 투명전광판
CN110260823A (zh) * 2019-07-16 2019-09-20 腾讯科技(深圳)有限公司 一种结构光发射控制方法、装置及计算机设备
CN210109317U (zh) * 2019-03-26 2020-02-21 深圳市路畅智能科技有限公司 一种激光器驱动电路、激光电路及激光雷达
CN111246073A (zh) * 2020-03-23 2020-06-05 维沃移动通信有限公司 成像装置、方法及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171608A1 (en) * 2001-05-07 2002-11-21 Izumi Kanai Image display apparatus for forming an image with a plurality of luminescent points
CN102455513A (zh) * 2010-10-15 2012-05-16 前鼎光电股份有限公司 具有光线回收结构的投影装置
CN104932321A (zh) * 2014-03-19 2015-09-23 上海诺司纬光电仪器有限公司 一种多点激光器
KR101683771B1 (ko) * 2016-03-22 2016-12-21 지스마트 주식회사 발광 면적의 확장이 가능한 투명전광판
CN210109317U (zh) * 2019-03-26 2020-02-21 深圳市路畅智能科技有限公司 一种激光器驱动电路、激光电路及激光雷达
CN110260823A (zh) * 2019-07-16 2019-09-20 腾讯科技(深圳)有限公司 一种结构光发射控制方法、装置及计算机设备
CN111246073A (zh) * 2020-03-23 2020-06-05 维沃移动通信有限公司 成像装置、方法及电子设备

Also Published As

Publication number Publication date
CN114185054A (zh) 2022-03-15
EP4206733A1 (en) 2023-07-05
US20230184901A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
CN213750313U (zh) 光学视窗和激光雷达
US10185027B2 (en) Lidar with smart safety-conscious laser intensity
JP2023516654A (ja) 固体LiDARのためのノイズフィルタリングシステムおよび方法
CN212872895U (zh) 激光光源、光发射单元和激光雷达
US20230117963A1 (en) Laser source, light emitting unit, and lidar
KR102633680B1 (ko) 라이다 장치
WO2021196201A1 (zh) 激光测距装置、激光测距方法和可移动平台
KR101840628B1 (ko) 전방향 장애물 감지 장치, 이를 이용한 자율 이동 로봇 및 자율 이동 로봇의 장애물 감지 방법
KR20220097220A (ko) 서로 다른 지향각을 갖는 복수의 채널을 구비하는 라이다 광원용 발광장치
WO2022042196A1 (zh) 用于激光雷达的激光单元以及激光雷达
JP2024515659A (ja) 光探知装置及び乗り物、レーザーレーダー並びに探知方法
US20240069162A1 (en) Solid-state lidar and method for detection using same
WO2022041137A1 (zh) 激光雷达和测距方法
KR102630090B1 (ko) 레이저 출력 장치
CN114935742B (zh) 发射模组、光电检测装置及电子设备
CN114935743B (zh) 发射模组、光电检测装置及电子设备
CN115480260A (zh) 激光雷达及智能感应设备
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
CN115201844A (zh) 固态激光雷达及使用其进行探测的方法
CN114924257B (zh) 接收模组、光电检测装置及电子设备
CN116660868B (zh) 电子设备
US20240045028A1 (en) Lidar detection method and detection apparatus
CN219065736U (zh) 一种激光雷达、自动驾驶系统及可移动设备
CN112965044B (zh) 一种激光雷达
CN116068531A (zh) 一种用于激光雷达的自适应发射系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860036

Country of ref document: EP

Effective date: 20230327