WO2021196201A1 - 激光测距装置、激光测距方法和可移动平台 - Google Patents

激光测距装置、激光测距方法和可移动平台 Download PDF

Info

Publication number
WO2021196201A1
WO2021196201A1 PCT/CN2020/083300 CN2020083300W WO2021196201A1 WO 2021196201 A1 WO2021196201 A1 WO 2021196201A1 CN 2020083300 W CN2020083300 W CN 2020083300W WO 2021196201 A1 WO2021196201 A1 WO 2021196201A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
receiving
measuring device
distance measuring
units
Prior art date
Application number
PCT/CN2020/083300
Other languages
English (en)
French (fr)
Inventor
洪小平
黄潇
马亮亮
郑国光
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080005195.2A priority Critical patent/CN113767303A/zh
Priority to PCT/CN2020/083300 priority patent/WO2021196201A1/zh
Publication of WO2021196201A1 publication Critical patent/WO2021196201A1/zh
Priority to US17/958,427 priority patent/US20230022688A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the present invention generally relates to the technical field of laser ranging, and more specifically to a laser ranging device, a laser ranging method and a movable platform.
  • the lidar actively emits and receives laser pulses and calculates the distance information of the detected object through information such as the flight time difference or phase difference of the laser echo signal.
  • Lidar As an advanced sensor device that can perceive three-dimensional information of the environment, Lidar has been widely used in various intelligent robots and autonomous driving fields in recent years.
  • lidar products In order to realize wide-field, large-range, and high-precision three-dimensional information perception, current lidar products use a more complex system structure, especially in order to improve detection efficiency. Calibration, the system structure is complex, and the automated assembly is difficult, which greatly affects the mass production and production cost of the lidar. At the same time, in order to use a small number of sensor units for large-scale detection, it is often necessary to introduce a scanning system for mechanical scanning and other operations. The moving parts greatly reduce the reliability and service life of the lidar system, and often cannot adapt to high vibrations such as automatic driving. , The working temperature range is large, the working cycle is long and other requirements.
  • the first aspect of the embodiments of the present invention provides a laser ranging device, the laser ranging device includes a transmitting module and a receiving module, wherein:
  • the transmitting module includes a transmitting circuit and a transmitting optical system, the transmitting circuit is used for transmitting laser pulses, and the transmitting optical system is used for diverging the laser pulses so as to cover a designated field of view area;
  • the receiving module includes a receiving circuit and a receiving optical system, and the receiving circuit includes an APD array working in a linear mode for receiving at least a part of the return light pulse reflected by the laser pulse by the measured object and converting it into For electrical signals, the receiving optical system is used to converge the return light pulses onto the APD array.
  • a second aspect of the embodiments of the present invention provides a laser ranging device, the laser ranging device includes a transmitting module and a receiving module, wherein:
  • the transmitting module includes a transmitting circuit and a transmitting optical system.
  • the transmitting circuit includes a plurality of emitting units that emit light in sequence, and the transmitting optical system is used to diverge the laser pulse emitted by each of the transmitting units to a corresponding field of view. area;
  • the receiving module includes a receiving circuit and a receiving optical system, the receiving circuit includes a plurality of receiving units, and the receiving unit is used to receive at least part of the return light pulses reflected by the laser pulse from the object to be measured and convert them into For electrical signals, the receiving optical system is used to converge the return light pulses of each field of view area to the corresponding receiving circuit.
  • a third aspect of the embodiments of the present invention provides a laser ranging method, and the laser ranging method includes:
  • the receiving unit is controlled to be turned on to receive at least part of the return light pulses reflected by the laser pulses from the object to be measured, and convert them into electrical signals.
  • a fourth aspect of the embodiments of the present invention provides a movable platform, the movable platform includes the above-mentioned laser distance measuring device and a movable platform body, and the laser distance measuring device is provided on the movable platform body.
  • the laser ranging device, the laser ranging method and the movable platform of the embodiment of the present invention on the one hand, use the APD array working in the linear mode, the ranging range is large, the dynamic range is large, and the signal-to-noise ratio is high, which can effectively reduce
  • the interference of ambient light noise on the laser ranging device can adapt to the complex use environment; on the other hand, it adopts multiple transmitting unit time-sharing emission, one-to-one design of transmitting unit and receiving unit, without mechanical moving parts, making laser ranging
  • the overall volume of the device is light and handy, and there is no need to align the transmitter and receiver units one by one, the assembly difficulty is low, the mass production is good, and the reliability is high.
  • Fig. 1 shows a structural block diagram of a laser ranging device according to an embodiment of the present invention
  • Fig. 2 shows a schematic diagram of the spatial layout of a laser ranging device according to an embodiment of the present invention
  • Fig. 3 shows a schematic diagram of the working state of the laser ranging device in a single time window according to an embodiment of the present invention
  • Fig. 4 shows a schematic diagram of a laser driving circuit according to an embodiment of the present invention
  • Fig. 5 shows a structural block diagram of a laser ranging device according to another embodiment of the present invention.
  • Fig. 6 shows a schematic flowchart of a laser ranging method according to an embodiment of the present invention.
  • the laser ranging device may be a laser radar.
  • the laser distance measuring device can detect the distance of the measured object to the laser distance measurement by measuring the time of laser propagation between the laser distance measuring device and the measured object, that is, the time-of-flight (TOF) The distance of the device.
  • TOF time-of-flight
  • the laser ranging device 100 includes a transmitting module 110 and a receiving module 120.
  • the transmitting module 110 includes a transmitting circuit 111 and a transmitting optical system 112.
  • the transmitting circuit 111 is used to transmit laser pulses.
  • the transmitting optical system 112 is used to diverge the laser pulse so as to cover a designated field of view area;
  • the receiving module 120 includes a receiving circuit 121 and a receiving optical system 122, and the receiving circuit 121 includes an APD working in a linear mode
  • the (avalanche photodiode, avalanche photodiode) array 1211 is configured to receive at least part of the return light pulses reflected by the laser pulses emitted by the transmitter module 110 from the object under test in the field of view area, and convert them into electrical signals.
  • the receiving optical system 122 is used to converge the return light pulses onto the APD array 1211.
  • the laser distance measuring device 100 can perform scanning without the need of a scanning system through the cooperation of the transmitting circuit 111, the transmitting optical system, the receiving optical system 122, and the receiving circuit 121, and the transmitting module 110 and the receiving module 120 do not need to be precise Focusing can realize long-distance three-dimensional imaging without mechanical moving parts.
  • the laser ranging device 100 of the embodiment of the present invention adopts the APD array 1211 working in the linear mode, which achieves a more optimized effect.
  • the working mode of APD is generally divided into linear mode and Geiger mode.
  • the APD's bias voltage is lower than its avalanche voltage, it will linearly amplify the incident photoelectrons. This working state is called linear mode.
  • linear mode the higher the reverse voltage, the greater the gain.
  • APD amplifies the input photoelectrons with equal gain to form a continuous current, and obtains a laser continuous echo signal with time information.
  • the bias voltage of the APD is higher than its avalanche voltage, the gain of the APD increases rapidly.
  • the output current of the detector can be saturated by the absorption of a single photon.
  • This working state is called Geiger mode. Since a single photon can cause an avalanche when working in Geiger mode, an APD working in Geiger mode also becomes a single photon avalanche diode (SPAD).
  • SBAD single photon avalanche diode
  • APD In Geiger mode
  • the APD array working in Geiger mode has low photon detection efficiency, is extremely susceptible to noise interference, and is prone to saturation and failure in sunlight.
  • the laser ranging device 100 of the embodiment of the present invention adopts the APD array 1211 working in the linear mode. Compared with the single-photon avalanche diode working in the Geiger mode, the photon detection probability is high, the dynamic range is large, and it can be compared with laser measurement. Closely fit with other modules of the device 100.
  • the APD array 1211 is composed of a plurality of APDs, and the plurality of APDs can be arranged as an APD linear array or an APD area array.
  • the APD array 1211 may be a matrix composed of M ⁇ N APDs, and M and N are arbitrary integers greater than 1. Among them, the size of the APD is on the order of microns, and the photon detection probability is generally greater than 50%.
  • the APD array 1211 can adopt Si APD, Ge APD, InGaAs APD, HgCdTe APD, etc. Considering the safety of human eyes and the demand for high-power lasers, the APD array 1211 can use InGaAs APD or HgCdTe APD with an operating wavelength of 1.5 um, but it is not limited to this.
  • the APD array 1211 may be interconnected with the signal processing chip 1212 at the pixel level.
  • the light beam emitted by the transmitting module 110 is reflected by the measured object and then received by the receiving optical system 122.
  • the return light pulses returned by the measured object in different field of view areas are respectively converged by the receiving optical system 122 to different positions on the photosensitive surface of the APD array 122 ,
  • the APD at the corresponding position in the APD array performs photoelectric conversion to generate electrical signals, and the signal processing chip 1212 performs signal processing.
  • the signal processing chip 1212 may include a time-counting CMOS readout-integrated circuit (readout-integrated circuit, ROIC), and the APD array 1211 and the signal processing chip 1212 may be integrated through Z-stack technology or vertical interconnection detector array technology.
  • ROIC adopts silicon CMOS application specific integrated circuit, which is mainly composed of pre-amplifier circuit, main amplifier, comparator, high-precision timing circuit and other modules.
  • the detector assembly is formed by flip-chip integration of In column array and APD array.
  • the transmitting module 100 of the laser ranging device 100 in the embodiment of the present invention is configured to adopt a time-sharing and partitioned working mode, which can closely cooperate with the APD array 1211 working in a linear mode.
  • the emitting circuit 111 may include multiple emitting units, each of which includes one or more lasers that emit light simultaneously, the multiple emitting units emit light sequentially in different time windows, and the emitting optical system 112 separates each emitting unit.
  • the laser pulse emitted by the unit diverges to the corresponding field of view area. Due to the limited total power, dividing the transmitting circuit 111 into multiple transmitting units that are turned on in different time windows can centrally distribute the power to one or more lasers in each transmitting unit, thereby increasing the optical power density per unit field of view.
  • the APD array 1211 used in the laser distance measuring device 100 of the embodiment of the present invention works in a linear mode, it has a large dynamic range and is not prone to saturation and failure, so it can be used with a higher power transmitting unit.
  • the SPAD array in Geiger mode is in a severely saturated failure state under strong background light conditions, and increasing the optical power density per unit field of view is less helpful to increase the range under strong background light conditions.
  • the laser may have a higher power to meet the requirements for long-distance laser emission.
  • Lasers may include various types of lasers, such as semiconductor lasers (e.g., GaAlAs semiconductor diode lasers), solid-state lasers (e.g., fiber lasers, neodymium-doped yttrium aluminum garnet lasers, neodymium-doped yttrium vanadate lasers, etc.), gas lasers (e.g., , Carbon dioxide lasers, helium-neon lasers, etc.), liquid lasers, chemical lasers, free electron lasers, etc.
  • the laser can be a diode, such as a positive intrinsic negative (PIN) photodiode, to emit a laser pulse sequence of a specific wavelength.
  • PIN positive intrinsic negative
  • the operating parameters of the laser can be selected according to actual needs.
  • the laser of the corresponding wavelength range can be selected according to the process maturity, cost, volume, and performance parameters of the laser and the corresponding detector.
  • semiconductor lasers with operating wavelengths of 800 to 1000 nanometers and their silicon-based detectors have mature technology and high cost performance, and lasers with operating wavelengths of 800 to 1000 nanometers can be selected.
  • the laser of the corresponding wavelength band can be selected according to the safety of human vision. Since the safety of human vision at 1550 nanometers is relatively high, the laser of 1300 nanometers to 1580 nanometers can be selected when the safety of human vision is concerned.
  • other working parameters of the laser may include: emission frequency 1KHz ⁇ 200KHz, peak power 0.1W ⁇ 1000W, pulse width 0.5ns ⁇ 20ns.
  • One or more lasers in each emitting unit can be packaged in the same package structure.
  • edge emitting lasers EEL
  • at least part of the lasers in the same package structure can be integrated on the same target bar (bar).
  • all lasers of each emitting unit are integrated on the same target bar to form an edge emitting laser target bar
  • one package module may include multiple edge emitting laser target bars.
  • a vertical cavity surface emitting laser VCSEL
  • at least part of the lasers in the same package structure are integrated into an array.
  • all lasers in each emitting unit are integrated on the same array to form a vertical cavity surface emitting laser array.
  • a package module may include multiple vertical cavity surface emitting laser arrays.
  • the packaging structure may include a substrate and a cover provided on the surface of the substrate, an accommodating space is formed between the substrate and the cover, and the laser diode is provided in the accommodating space.
  • one or more synchronously emitting lasers integrated on the same target bar are connected to the same driver, and are driven by the same driver to simultaneously emit light.
  • the driver can use a GaN (gallium nitride) driver to achieve high-speed, high-voltage, and high-current light source driving.
  • Figure 4 shows a schematic diagram of the laser drive circuit.
  • the three lasers of each emitting unit are driven by a driver to emit light simultaneously, and the lasers of multiple emitting units are all packaged in the same package module.
  • the driver for driving one or more lasers of each emitting unit to emit light synchronously may also be packaged in the same package module as the one or more lasers.
  • the transmitting circuit 111 may also include a laser power supply.
  • the laser power supply needs to meet the conditions of high voltage, human eye safety, and extremely fast transient response.
  • the charging method of LC resonant charging is used to provide the laser with luminous energy.
  • the transmitting circuit 111 may also include a human eye safety protection circuit, which is used to make the laser light emitted by the laser meet the requirements for human eye safety.
  • the laser ranging device 100 further includes an emission control circuit, which can send a drive signal to the driver of the emission module, so that the driver drives the corresponding emission module to emit light, and can make the driver according to the received drive signal At least one of the control parameters such as the emission power of the laser, the wavelength of the emitted laser, and the emission direction are controlled.
  • the multiple emission units in the emission circuit 111 can emit light sequentially in any order, and each light emission illuminates a field of view area, and the working state of a single light emission can be as shown in FIG. 3.
  • multiple emitting units can emit light in a certain preset sequence.
  • a plurality of emission units may emit light in a circular sequence in a spatial arrangement, for example, in the order of number 1, 2,..., N, 1, 2...
  • multiple emitting units can also emit light in cycles in other set sequences, such as the sequence of number 1, N/2+1, 2, N/2+2,..., N/2, N.
  • multiple emitting units can also emit light in any other set sequence.
  • multiple emission units may emit light in a random order.
  • the emission optical system 122 is used to scatter the laser light emitted by each emission unit to the field of view area corresponding to the emission unit.
  • the transmitting optical system 122 may include an optical diffusion sheet or a cylindrical lens group.
  • the optical diffuser may be a micro-optical diffuser structure processed on the surface of a glass material by using micro-nano optics manufacturing technology, which is used to obtain a light field distribution that meets the requirements after incident light passes through the diffuser.
  • the cylindrical lens group can be introduced during the laser packaging process to adjust the divergence angle of the laser fast and slow axes to meet the light output angle required by the required field of view.
  • the cross-sectional shape of the cylindrical lens group includes, but is not limited to, a circle, an ellipse, a triangle, a rectangle, a trapezoid, and the like.
  • each emitting unit corresponds to a different optical element in the emitting optical system 122.
  • a diffuser or a cylindrical lens group is arranged in front of each emitting unit, and the laser light emitted by different emitting units is transmitted through different optical elements. Disperse to their respective field of view areas.
  • multiple emitting units can also share a set of optical elements, such as sharing an optical diffuser, and by adjusting the directions of the laser's fast and slow axes, the requirements for the horizontal and vertical field angles can be met. .
  • the laser pulses emitted by multiple emitting units respectively cover different field of view areas, that is, the field of view areas covered by the laser pulses emitted by each emitting unit do not overlap each other, thereby covering a larger field of view. .
  • the field of view areas covered by the laser pulses emitted by the multiple emitting units may also partially overlap.
  • the field of view area covered by the laser pulses emitted by multiple emitting units can overlap in the key area, thereby achieving directional enhanced perception under strong background light conditions.
  • the accumulated signal intensity in the key area can be enhanced, the signal-to-noise ratio of the key area can be improved, and the range under the background light condition can be increased. Since the laser ranging device 100 according to the embodiment of the present invention adopts the APD array 1211 working in the linear mode, it has a large dynamic range and is not prone to saturation and failure, so the return light pulses in key areas can be accumulated.
  • the key area may be the area of interest that the user focuses on.
  • the key area may be the central area of the field of view of the laser ranging device 100, and the field of view area covered by the laser pulses emitted by part or all of the emitting units may overlap in the central area of the field of view.
  • the center area of the field of view corresponds to the front of the road surface, which is an area that needs to be focused on during the driving of the vehicle.
  • the key area can also be located in other positions of the field of view of the laser ranging device 100.
  • the launch unit can have a variety of spatial arrangements.
  • the receiving optical system 122 may include a lens group arranged on the side of the APD array 1211, and a plurality of transmitting units may be integrally arranged on the side of the lens group.
  • the emitting units are arranged in a one-dimensional array on a plane perpendicular to the axial direction of the lens group, or may also be arranged in a two-dimensional array.
  • multiple emitting units can be packaged in one package module, reducing the number of packaged modules.
  • the six emitting units shown in FIG. 2 can be packaged in the same package module.
  • multiple emitting units may also be scattered around the lens group.
  • a plurality of emission units may be arranged at four corners around the lens group, or arranged in a circle around the lens group.
  • Distributing multiple transmitting units can improve space utilization and meet the needs of miniaturization of laser ranging devices.
  • multiple emitting units may also be arranged at each position, for example, multiple emitting units are respectively arranged at the four corners around the lens group. In this case, multiple emitting units arranged at the same position can also be packaged in the same package structure.
  • the emitting unit and the lens group at least partially overlap in the axial direction of the lens group. That is, in the axial direction of the lens group, the distance between the transmitting unit and the receiving unit is not greater than the distance between the foremost end of the lens group and the receiving unit. Under the condition that the emitted light of the transmitting unit is not blocked, the transmitting unit can be made closer to the receiving unit than shown in FIG. 2, thereby making the layout more compact.
  • the receiving circuit 120 may include multiple receiving units, the multiple receiving units correspond to the multiple transmitting units one-to-one, and each of the receiving units includes one or more APDs in the APD array 1211. , Used to receive at least part of the return light pulses reflected by the measured object from the laser pulse emitted by the corresponding transmitting unit.
  • the shapes of the multiple receiving units and the number of APDs included may be the same or different, and can be specifically set according to the field of view area corresponding to each receiving unit.
  • a plurality of receiving units may be arranged in a one-dimensional array, such as the one-dimensional array with six receiving units arranged in one dimension as shown in FIG. 2.
  • multiple receiving units may also be arranged in a two-dimensional array.
  • the APDs in each receiving unit can also be arranged in a one-dimensional array or a two-dimensional array. Since the receiving unit corresponds to the transmitting unit one-to-one, the arrangement of the receiving unit is generally consistent with the transmitting unit. For example, when the transmitting unit is arranged in a 1 ⁇ N one-dimensional array, the receiving unit is also arranged in a 1 ⁇ N array. One-dimensional array; when the transmitting units are arranged in an M ⁇ N two-dimensional array, the receiving units are also arranged in an M ⁇ N two-dimensional array.
  • multiple receiving units may also adopt a time-sharing mode of operation to cooperate with the transmitting unit. Specifically, multiple receiving units are turned on in different time windows, that is, the APD of a specific receiving unit in each time window is turned on to receive the return light pulses converged thereon, and the remaining APDs are turned off. Adopting the time-sharing and partitioning working mode can reduce the total power consumption of the laser ranging device 100, and reduce the heat dissipation requirement of the APD array 1211, and can also reduce the design difficulty of the switch circuit. Of course, in other embodiments, multiple receiving units can also be turned on synchronously, but only some of the receiving units will receive the return light pulse.
  • the return light pulses returning from the field of view area only cover a part of the APD array 1211, so it can be set to make the receiving unit and The transmitting unit corresponds to one by one.
  • the transmitting unit is turned on in a time window
  • the corresponding receiving unit is turned on synchronously in the time window to receive the return light pulse of the laser pulse emitted by the transmitting unit.
  • the unit is closed.
  • the receiving optical system 122 can be designed accordingly, so that it can at least partially converge the return light pulses returned from the field of view area covered by the laser pulses emitted by each emitting unit to the receiving unit corresponding to the emitting unit.
  • the transmitting unit and the corresponding receiving unit are turned on at the same time, and the transmitting unit emits a laser pulse sequence, which is processed by the receiving circuit, sampling circuit, and arithmetic circuit in turn, and finally determines the result of this measurement .
  • the time required from the launching circuit to emit the laser pulse to the calculation circuit to calculate the distance depends on the distance between the measured object and the laser distance measuring device. The longer the distance, the longer the time.
  • the light signal reflected by the object is weaker.
  • the laser distance measuring device will not be able to detect the light signal.
  • the distance between the object corresponding to the weakest optical signal that can be detected by the laser distance measuring device and the laser distance measuring device is called the farthest detection distance of the laser distance measuring device.
  • the duration of each time window is greater than the duration corresponding to the farthest detection distance, for example, the duration of each time window is at least more than five times the duration corresponding to the farthest detection distance.
  • the laser ranging device 100 may also include a transmission control circuit and a reception control circuit.
  • the transmitting control circuit is used to control the transmitting unit whose current time window is opened, and the receiving control circuit is used to control the receiving unit whose current time window is opened.
  • the transmitting control circuit and the receiving control circuit are coupled to each other, and when the transmitting control circuit controls the transmitting unit to emit laser pulses, the corresponding receiving control circuit is notified to control the corresponding receiving unit to be turned on synchronously.
  • the transmitting unit and the receiving unit can be turned on synchronously in any order for transmitting and receiving. Since the transmitting unit and the receiving unit correspond to the same field of view area, generally speaking, the corresponding transmitting unit and the receiving unit are located in symmetrical positions in the array. For example, as shown in Figure 3, the transmitting unit on the right side of the array corresponds to the left side of the array. Receiving unit on the side.
  • the adjacent transmitting units are sequentially turned on to emit laser pulses, and correspondingly, the adjacent receiving units are turned on sequentially to receive the return light pulses of the laser pulses.
  • the transmitting units are numbered 1, 2, Turn on in sequence of 3, 4, 5, and 6.
  • the transmitting units arranged at intervals are sequentially turned on to emit laser pulses, and correspondingly, the receiving units arranged at intervals are turned on sequentially to receive the return light pulses of the laser pulses.
  • the firing units arranged at intervals are turned on sequentially, which means that the two firing units at adjacent positions are not turned on sequentially in two adjacent time windows, but there is no restriction on the specific turn-on sequence of the firing units.
  • the transmitting unit may be turned on in the order of numbers 1, 4, 2, 5, 3, 6,..., or sequentially turned on in the order of numbers 1, 5, 2, 6, 3, and so on.
  • two adjacent receiving units can share a part of the APD, that is, the shared part APD will be in the on state when the corresponding transmitting units of the two receiving units emit light beams to receive the two transmitting units.
  • the outgoing beam is reflected back to the return light pulse
  • the limited APD array 1211 can be used to set more receiving units.
  • the first receiving unit includes APDs numbered 1, 2, 3, and 4
  • the adjacent second receiving unit includes APD waiting numbers of 4, 5, 6, and 7.
  • adjacent receiving units can share a part of the APD, thereby ensuring the heat dissipation effect of the APD, and avoiding the shared part of the APD from being turned on for too long and causing overheating .
  • the field of view area covered by the laser pulses emitted by part or all of the emitting unit includes the central area of the field of view of the laser ranging device 100.
  • part or all of the receiving units may share one or more APDs located in the central area of the APD array to receive the return light pulses returned from the central area.
  • a part of the laser pulse emitted by the transmitting module 110 irradiates the central area of the field of view, and the APD in the central area of the APD array shared by multiple receiving units can increase the central area of the APD array.
  • the opening frequency of the APD is such that it is turned on in multiple time windows to receive the return light pulses returned from the central area of the field of view.
  • the receiving unit located in the central area of the APD array 1211 is The part or all of the transmitting units are turned on synchronously to receive the return light pulses returned from the central area.
  • each transmitting unit can correspond to two receiving units.
  • One of the receiving units is used to receive the return light pulses returned from the respective different field of view areas, and the other receiving unit is located in the central area of the APD array 1211 and used to receive the return light pulses returned from the central area of the field of view.
  • the above description takes the key area covered by part or all of the transmitting units as the central area of the field of view as an example, but it is understandable that when the key area is other areas of the field of view, the receiving unit should also be adjusted accordingly .
  • the receiving unit and the transmitting unit are matched to realize the directional enhanced perception of the key areas as described above.
  • the receiving optical system 122 may include a lens group arranged on one side of the APD array 1211.
  • the lens group can be designed to be composed of a single or multiple lenses, and the lens surface type is spherical, aspheric or a combination of spherical and aspherical.
  • the lens material of the lens may include glass, plastic, or a combination of glass and plastic. Exemplarily, a sufficient athermal design can be performed on the lens group structure to compensate for the influence of temperature drift on imaging.
  • the receiving optical system 122 further includes a micro lens array.
  • the microlens array may be integrally formed with the APD array 1211, for example, formed by etching on the surface of the APD array. Alternatively, the microlens array may be formed separately and glued on the surface of the APD array. By arranging the micro lens array before the APD array 1211, the light collection efficiency can be improved, and the effective fill factor can be improved.
  • the receiving optical system 122 further includes a narrow-band filter, and the passband of the narrow-band filter matches the working band of the receiving optical system 122 to filter out the wavelength bands other than the transmitting band, reducing natural light for distance measurement. Interference.
  • the narrow-band filter can be installed at any position in the receiving optical path, and its plane is perpendicular to the optical axis of the receiving optical path. Exemplarily, the narrowband filter can be placed close to the APD array 1211 to reduce its aperture.
  • the receiving optical system 122 converges the return light pulses to a range smaller than the size of the receiving unit, even if the range of the APD array illuminated by the return light pulses does not exceed the boundary of the receiving unit, so as to improve energy utilization and then Increase the system range, while reducing crosstalk between receiving units.
  • the receiving optical system 122 converges the return light pulses to a range larger than the size of the receiving unit, even if the range of the APD array illuminated by the return light pulses covers the boundary of the receiving unit, so as to avoid the receiving unit from receiving Return light pulses with low signal-to-noise ratio in the edge area of the field of view.
  • the field of view areas covered by adjacent emitting units partially overlap.
  • the laser distance measuring device 100 further includes an amplifying circuit, a sampling circuit, and an arithmetic circuit.
  • the amplifying circuit is used to amplify the electrical signal converted by the receiving module 120;
  • the sampling circuit is used to sample the amplified electrical signal and output the sampled signal;
  • the arithmetic circuit is used to calculate the measured signal according to the sampled signal Three-dimensional information of objects.
  • the amplifying circuit may include a primary amplifying circuit and a secondary amplifying circuit, wherein the primary amplifying circuit is used for amplifying the electrical signal output from the photoelectric conversion device, for example, converting the APD from The photocurrent signal is converted into a voltage signal to provide a conversion gain; the second-level amplifying circuit is used to further provide gain to the electrical signal from the first-level amplifying circuit, so as to amplify the weak signal output by the APD to a value that can be identified by the comparator Voltage.
  • the primary amplifying circuit may include a transimpedance amplifier (TIA) array, and the secondary amplifying circuit may include other types of signal amplifiers.
  • TIA transimpedance amplifier
  • each APD in the APD array 1211 is connected to an amplifier circuit, and the primary or secondary amplifier circuit may be disposed on the signal processing chip 1212 interconnected with the pixel level of the APD array 1211.
  • the sampling circuit is used to sample the electrical signal amplified by the amplifying circuit.
  • the sampling circuit can be implemented in at least two ways.
  • the sampling circuit includes a comparator (for example, an analog comparator (COMP), which is used to convert an electrical signal into a digital signal) and a time measurement circuit, which is amplified by a primary or secondary amplifier circuit The latter electrical signal enters the time measurement circuit after passing through the comparator, and the time measurement circuit measures the time difference between the laser pulse sequence from emission to reception.
  • a comparator for example, an analog comparator (COMP)
  • a time measurement circuit which is amplified by a primary or secondary amplifier circuit The latter electrical signal enters the time measurement circuit after passing through the comparator, and the time measurement circuit measures the time difference between the laser pulse sequence from emission to reception.
  • the time measurement circuit may be a time-to-data converter (TDC).
  • TDC can be an independent TDC chip, or based on Field-Programmable Gate Array (FPGA) or Application Specific Integrated Circuit (ASIC) or Complex Programmable Logic Device ,
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • Complex Programmable Logic Device The internal delay chain of programmable devices such as CPLD to realize the TDC circuit of time measurement, or the circuit structure of time measurement using high-frequency clock or the circuit structure of time measurement by counting method.
  • the first input terminal of the comparator is used to receive the electric signal input from the amplifying circuit
  • the second input terminal is used to receive the preset threshold value
  • the electric signal input to the comparator is compared with the preset threshold value.
  • the output signal of the comparator is connected to TDC.
  • TDC can measure the time information of the output signal edge of the comparator. The measured time is based on the laser emission signal, that is, the time difference between laser signal emission and reception can be measured.
  • the sampling circuit includes an analog-to-digital converter (Analog-to-Digital Converter, ADC). After the analog signal input to the sampling circuit undergoes analog-to-digital conversion by the ADC, the digital signal can be output to the arithmetic circuit.
  • ADC Analog-to-Digital Converter
  • the ADC can be an independent ADC chip.
  • the sampling signal output by the sampling circuit is handed over to the arithmetic circuit.
  • the arithmetic circuit can calculate the distance information of the measured object according to the time difference between laser signal transmission and reception and the laser transmission rate. At the same time, it can also obtain the measured object according to the position of the APD. Then, the three-dimensional information of the measured object can be obtained by solving the angle information. After that, the arithmetic circuit can also generate an image based on the calculated information, etc., which is not limited here.
  • the distance and orientation detected by the laser ranging device 100 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, and the like.
  • the laser ranging device 100 adopts the APD array working in linear mode, which has a large ranging range, a large dynamic range, and a high signal-to-noise ratio, which can effectively reduce the impact of ambient light noise on the laser.
  • the interference of the distance measuring device can adapt to the complicated use environment; and, the laser distance measuring device 100 adopts the design of multiple transmitting units for time-sharing transmission, and one-to-one correspondence between the transmitting unit and the receiving unit, and no mechanical moving parts are required, so that the laser measurement
  • the overall volume of the distance device is light and handy, and there is no need to align the transmitter and receiver units one by one.
  • the assembly difficulty is low, the mass production is good, and the reliability is high.
  • a laser distance measuring device 500 according to an embodiment of the present invention will be described with reference to FIG. 5.
  • the main structure of the laser distance measuring device 500 is described, and specific details of some parts that are the same or similar to those of the laser distance measuring device 100 are omitted.
  • the laser ranging device 500 includes a transmitting module 510 and a receiving module 520.
  • the transmitting module 510 includes a transmitting circuit 511 and a transmitting optical system 512, and the transmitting circuit 511 includes a plurality of transmitting units that emit light in sequence.
  • the transmitting optical system 512 is used to diverge the laser pulses emitted by each transmitting unit to the corresponding field of view area;
  • the receiving module 520 includes a receiving circuit 521 and a receiving optical system 522, and the receiving circuit 521 includes A plurality of receiving units, the receiving unit is used to receive at least part of the return light pulse of the laser pulse reflected by the measured object and convert it into an electrical signal, the receiving optical system 522 is used to convert each field of view area The return light pulses are converged to the corresponding receiving circuit.
  • the laser distance measuring device 100 can scan through the cooperation of the transmitting circuit 511, the transmitting optical system, the receiving optical system 522, and the receiving circuit 521, without the need for a scanning system, and the transmitting module 510 and the receiving module 520 are not required to be precise one by one. Focusing can realize long-distance three-dimensional imaging without mechanical moving parts.
  • each emission unit in the emission circuit 511 includes one or more lasers that emit light synchronously.
  • the multiple emission units emit light sequentially in different time windows, and the emission optical system 512 separately transmits the laser light emitted by each emission unit.
  • the pulse diverges to the corresponding field of view area. Due to the limited total power, dividing the transmitting circuit 511 into multiple transmitting units that are turned on in different time windows can centrally distribute the power to one or more lasers in each transmitting unit, thereby increasing the optical power per unit field of view
  • the density is beneficial to increase the proportion of signal light in the photons incident on the receiving module 520, increase the signal-to-noise ratio, and increase the range of the laser ranging device 500 under strong background light conditions.
  • One or more lasers in each emitting unit can be packaged in the same package structure. At least part of the lasers in the same package structure are integrated on the same target bar or the same array. For example, all lasers of each emitting unit are integrated on the same target bar or the same array to form an edge emitting laser target bar or a vertical cavity surface emitting laser array.
  • a package module may include multiple edge emitting laser target bars or multiple A vertical cavity surface emitting laser array.
  • the packaging structure may include a substrate and a cover provided on the surface of the substrate, an accommodating space is formed between the substrate and the cover, and the laser diode is provided in the accommodating space.
  • one or more synchronously emitting lasers integrated on the same target bar or the same array are connected to the same driver, and are driven by the same driver to simultaneously emit light.
  • the driver can use a GaN (gallium nitride) driver to achieve high-speed, high-voltage, and high-current light source driving.
  • the transmitting circuit 511 may also include a laser power supply.
  • the laser power supply needs to meet the conditions of high voltage, human eye safety, and extremely fast transient response.
  • the charging method of LC resonant charging is used to provide the laser with luminous energy.
  • the transmitting circuit 511 may further include a human eye safety protection circuit, which is used to prevent the laser from continuously emitting light when the circuit has a path failure, so that the laser light emitted by the laser meets the requirements for human eye safety.
  • the laser ranging device 100 further includes an emission control circuit, which can send a drive signal to the driver of the emission module, so that the driver drives the corresponding emission module to emit light, and can make the driver according to the received drive signal At least one of the control parameters such as the emission power of the laser, the wavelength of the emitted laser, and the emission direction are controlled.
  • the multiple emission units in the emission circuit 511 can emit light sequentially in any order, and each light emission illuminates a field of view area.
  • multiple emitting units can emit light in a certain preset sequence.
  • a plurality of emission units can emit light in a circular sequence in a spatial arrangement.
  • multiple emitting units can also emit light in cycles in other set sequences.
  • multiple emitting units can also emit light in any other set sequence.
  • multiple emission units may emit light in a random order.
  • the emitting optical system 522 is used to scatter the laser light emitted by each emitting unit to the field of view area corresponding to the emitting unit.
  • the transmitting optical system 522 may include an optical diffusion sheet or a cylindrical lens group.
  • the optical diffuser may be a micro-optical diffuser structure processed on the surface of a glass material by using micro-nano optics manufacturing technology, which is used to obtain a light field distribution that meets the requirements after incident light passes through the diffuser.
  • the cylindrical lens group can be introduced during the laser packaging process to adjust the divergence angle of the laser fast and slow axes to meet the light output angle required by the required field of view.
  • the cross-sectional shape of the cylindrical lens group includes, but is not limited to, a circle, an ellipse, a triangle, a rectangle, a trapezoid, and the like.
  • each emitting unit corresponds to a different optical element in the emitting optical system 522.
  • a diffuser or a cylindrical lens group is arranged in front of each emitting unit, and the laser light emitted by different emitting units is transmitted through different optical elements. Disperse to their respective field of view areas.
  • multiple emitting units can also share a set of optical elements, such as sharing an optical diffuser, and by adjusting the directions of the fast and slow axes of the laser to meet the requirements for the horizontal and vertical field of view angles. .
  • the laser pulses emitted by multiple emitting units respectively cover different field of view areas, that is, the field of view areas covered by the laser pulses emitted by each emitting unit do not overlap each other, thereby covering a larger field of view. .
  • the field of view areas covered by the laser pulses emitted by the multiple emitting units may also partially overlap.
  • the field of view area covered by the laser pulses emitted by multiple emitting units can overlap in the key area, thereby achieving directional enhanced perception under strong background light conditions.
  • the accumulated signal intensity in the key area can be enhanced, the signal-to-noise ratio of the key area can be improved, and the range under the background light condition can be increased.
  • the key area may be the area of interest that the user focuses on.
  • the key area may be the central area of the field of view of the laser ranging device 500, and the field of view area covered by part or all of the laser pulses emitted by the emitting unit may overlap in the central area of the field of view.
  • the center area of the field of view corresponds to the front of the road surface, which is an area that needs to be focused on during the driving of the vehicle.
  • the key area can also be located in other positions of the field of view of the laser ranging device 500.
  • the launch unit can have a variety of spatial arrangements.
  • the receiving optical system 522 may include a lens group arranged on the side of the APD array, and a plurality of transmitting units may be integrally arranged on the side of the lens group.
  • multiple emitting units can be packaged in one package module, reducing the number of package modules.
  • multiple emitting units may also be scattered around the lens group.
  • a plurality of emission units may be arranged at four corners around the lens group, or arranged in a circle around the lens group. Distributing multiple transmitting units can improve space utilization and meet the needs of miniaturization of laser ranging devices.
  • multiple emitting units can also be arranged at each position, for example, multiple emitting units are respectively arranged at the four corners around the lens group. In this case, multiple emitting units arranged at the same position can also be packaged in the same package structure.
  • the emitting unit and the lens group at least partially overlap in the axial direction of the lens group. That is, in the axial direction of the lens group, the distance between the transmitting unit and the receiving unit is not greater than the distance between the foremost end of the lens group and the receiving unit.
  • the receiving circuit 520 may include an APD array, and each of the receiving units includes one or more APDs in the APD array. Further, the APD array may be an APD array working in a linear mode.
  • the shapes of the multiple receiving units and the number of APDs included can be the same or different, and can be specifically set according to the field of view area corresponding to each receiving unit.
  • a plurality of receiving units may be arranged in a one-dimensional array, for example, a one-dimensional array composed of six receiving units arranged one-dimensionally.
  • multiple receiving units may also be arranged in a two-dimensional array.
  • the APDs in each receiving unit can also be arranged in a one-dimensional array or a two-dimensional array. Since the receiving unit corresponds to the transmitting unit one-to-one, the arrangement of the receiving unit is generally consistent with that of the transmitting unit.
  • multiple receiving units may also adopt a time-sharing mode of operation to cooperate with the transmitting unit. Specifically, multiple receiving units are turned on in different time windows, that is, a specific receiving unit is turned on in each time window to receive the return light pulses converged thereon, and the remaining receiving units are turned off. Adopting the time-sharing divisional working mode can reduce the total power consumption of the laser ranging device 500, and reduce the heat dissipation requirement of the receiving unit, and at the same time can reduce the design difficulty of the switch circuit. Of course, in other embodiments, multiple receiving units can also be turned on synchronously, but only some of the receiving units will receive the return light pulse.
  • the receiving optical system 522 can be designed accordingly to enable it to at least partially converge the return light pulses returned from the field of view area covered by the laser pulses emitted by each emitting unit to the receiving unit corresponding to the emitting unit.
  • the transmitting unit and the receiving unit can be turned on synchronously in any order for transmitting and receiving. Because both the transmitting unit and the receiving unit correspond to the same field of view area. In one embodiment, adjacent emitting units are sequentially turned on to emit laser pulses.
  • the transmitting units arranged at intervals are sequentially turned on to emit laser pulses, and correspondingly, the receiving units arranged at intervals are turned on sequentially to receive the return light pulses of the laser pulses.
  • the firing units arranged at intervals are turned on sequentially, which means that the two firing units at adjacent positions are not turned on sequentially in two adjacent time windows, but there is no restriction on the specific turn-on sequence of the firing units.
  • two adjacent receiving units may share a part of the APD, so that more receiving units can be set up using the limited APD array 1211.
  • adjacent receiving units can share a part of the APD, thereby ensuring the heat dissipation effect of the APD, and avoiding the shared part of the APD from being turned on for too long and causing overheating .
  • the field of view area covered by the laser pulses emitted by part or all of the emitting unit includes the central area of the field of view of the laser ranging device 500.
  • part or all of the receiving units may share one or more APDs located in the central area of the APD array to receive the return light pulses returned from the central area.
  • the receiving unit located in the central area of the APD array 1211 is The part or all of the transmitting units are turned on synchronously to receive the return light pulses returned from the central area.
  • the above description takes the key area covered by part or all of the transmitting units as the central area of the field of view as an example, but it is understandable that when the key area is other areas of the field of view, the receiving unit should also be adjusted accordingly .
  • the receiving unit and the transmitting unit are matched to realize the directional enhanced perception of the key areas as described above.
  • the receiving optical system 522 may include a lens group provided on one side of the receiving circuit 521.
  • the lens group can be designed to be composed of single or multiple lenses, and the lens surface type is spherical, aspheric or a combination of spherical and aspherical.
  • the lens material of the lens may include glass, plastic, or a combination of glass and plastic. Exemplarily, a sufficient athermal design can be performed on the lens group structure to compensate for the influence of temperature drift on imaging.
  • the receiving optical system 522 further includes a micro lens array.
  • the microlens array can be formed integrally with the APD array, for example, formed by etching on the surface of the APD array.
  • the microlens array may be formed separately and glued on the surface of the APD array.
  • the receiving optical system 522 further includes a narrowband filter, and the passband of the narrowband filter matches the working band of the receiving optical system 522, so as to filter out the wavelength bands other than the transmitting waveband and reduce the impact of natural light on distance measurement. Interference.
  • the receiving optical system 522 converges the return light pulses to a range smaller than the size of the receiving unit, even if the range of the APD array illuminated by the return light pulse does not exceed the boundary of the receiving unit, so as to improve the energy utilization rate and then Increase the system range, while reducing crosstalk between receiving units.
  • the receiving optical system 522 converges the return light pulses to a range larger than the size of the receiving unit, even if the range of the APD array illuminated by the return light pulses covers the boundary of the receiving unit, so as to prevent the receiving unit from receiving Return light pulses with low signal-to-noise ratio in the edge area of the field of view.
  • the field of view areas covered by adjacent emitting units partially overlap.
  • the laser distance measuring device 500 further includes an amplifying circuit, a sampling circuit, and an arithmetic circuit.
  • the amplifying circuit is used to amplify the electrical signal converted by the receiving module 520;
  • the sampling circuit is used to sample the amplified electrical signal and output the sampled signal;
  • the arithmetic circuit is used to calculate the measured signal according to the sampled signal Three-dimensional information of objects.
  • the specific details of the amplifying circuit, the sampling circuit and the arithmetic circuit can be referred to the above, and will not be repeated here.
  • the laser ranging device 500 of the embodiment of the present invention adopts multiple transmitting units for time-sharing emission, one-to-one corresponding design of the transmitting unit and the receiving unit, without mechanical moving parts, making the overall volume of the laser ranging device light and compact. Assemble and align the transmitter and receiver units one by one, with low assembly difficulty, good mass production and high reliability.
  • FIG. 6 shows a flowchart of a laser ranging method 600.
  • the laser ranging method 600 can be implemented by the laser ranging device described in any of the above embodiments. In the following, only the main steps of the laser ranging method 600 are described, and part of the above detailed details are omitted.
  • the laser ranging method 600 includes the following steps:
  • step S610 controlling multiple emitting units to turn on sequentially to emit laser pulses, and the laser pulses emitted by each emitting unit diverge to the corresponding field of view area;
  • step S620 the receiving unit is controlled to turn on to receive at least part of the return light pulses reflected by the laser pulses from the object to be measured, and convert them into electrical signals.
  • step S610 may be implemented by a transmission control circuit.
  • controlling the multiple emitting units to emit laser pulses sequentially includes: controlling the multiple emitting units to emit light in a set order or in a random order.
  • the laser pulses emitted by the multiple emitting units respectively cover different field of view areas.
  • the field of view areas covered by the laser pulses emitted by the multiple emitting units partially overlap.
  • step S620 may be specifically implemented by a receiving control circuit.
  • the receiving circuit includes an APD array, each of the receiving units includes one or more APDs in the APD array, and the field of view area covered by the laser pulses emitted by part or all of the transmitting units Both include the central area of the field of view of the laser ranging device, and the controlling the receiving unit to turn on includes: controlling the receiving unit located in the central area of the APD array to turn on synchronously with the part or all of the transmitting units to receive The return light pulse returned to the central area.
  • controlling the receiving unit to turn on includes: controlling a plurality of the receiving units to turn on in different time windows, respectively.
  • the receiving unit corresponds to the transmitting unit one-to-one
  • controlling the receiving unit to turn on includes: controlling each receiving unit and the corresponding transmitting unit to turn on synchronously to receive the The return light pulse of the laser pulse emitted by the emitting unit.
  • controlling each of the receiving units and the corresponding transmitting units to turn on synchronously includes: controlling the adjacent transmitting units to turn on sequentially to emit laser pulses, and controlling the adjacent ones The receiving unit is sequentially turned on to receive the return light pulse of the laser pulse.
  • controlling each of the receiving unit and the corresponding transmitting unit to turn on synchronously includes: controlling the transmitting units arranged at intervals to turn on sequentially to emit laser pulses, and controlling the interval arranged at The receiving unit is sequentially turned on to receive the return light pulse of the laser pulse.
  • the laser ranging method 600 of the embodiment of the present invention adopts a control method of controlling multiple emitting units to emit in a time-sharing manner, and controlling the emitting unit and the receiving unit to turn on in a one-to-one correspondence, and realizes laser ranging without controlling the movement of mechanical moving parts.
  • the embodiment of the present invention also provides a movable platform, the movable platform includes any of the above-mentioned laser ranging device and a movable platform body, and the laser ranging device is arranged on the movable platform body.
  • the movable platform includes but is not limited to at least one of a drone, a car, a robot, and a remote control car.
  • the movable platform body is the body of the drone.
  • the movable platform body is the body of the car. Since the movable platform adopts the laser distance measuring device according to the embodiment of the present invention, it also has the advantages described above.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明提供一种激光测距装置、激光测距方法和可移动平台,所述激光测距装置包括发射模块和接收模块,其中:所述发射模块包括发射电路和发射光学系统,所述发射电路用于发射激光脉冲,所述发射光学系统用于发散所述激光脉冲,以使其覆盖指定的视场区域;所述接收模块包括接收电路和接收光学系统,所述接收电路包括工作在线性模式下的APD阵列,用于接收所述激光脉冲经被测物反射回的至少部分回光脉冲并将其转换为电信号,所述接收光学系统用于将所述回光脉冲汇聚到所述APD阵列上。本发明采用工作在线性模式下的APD阵列,测距量程大,动态范围大,信噪比高,可以有效地减小环境光噪声的干扰,能够适应复杂的使用环境。

Description

激光测距装置、激光测距方法和可移动平台
说明书
技术领域
本发明总地涉及激光测距技术领域,更具体地涉及一种激光测距装置、激光测距方法和可移动平台。
背景技术
激光雷达通过主动发射接收激光脉冲并通过激光回波信号的飞行时间差或相位差等信息计算得出探测物的距离信息。激光雷达作为一种可以感知环境三维信息的先进传感器件,近年来在各类智能机器人、自动驾驶领域中获得了广泛的应用。
目前的激光雷达产品为了实现宽视场、大量程、高精度的三维信息感知,采用了较为复杂的系统结构,尤其是为了提高探测效率,需要采用多个独立传感单元,要求对光路进行精确校准,系统结构复杂,自动化组装难度大,极大地影响了激光雷达的可量产性和生产成本。同时,为了利用少量传感单元进行大范围的检测,往往还需要引入扫描系统进行机械扫描等操作,运动部件使得激光雷达系统的可靠性和使用寿命大为降低,往往无法适应自动驾驶等高振动、工作温度范围大、工作周期长等要求。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
针对现有技术的不足,本发明实施例第一方面提供一种激光测距装置,所述激光测距装置包括发射模块和接收模块,其中:
所述发射模块包括发射电路和发射光学系统,所述发射电路用于发射激光脉冲,所述发射光学系统用于发散所述激光脉冲,以使其覆盖指定的视场区域;
所述接收模块包括接收电路和接收光学系统,所述接收电路包括工作在 线性模式下的APD阵列,用于接收所述激光脉冲经被测物反射回的至少部分回光脉冲并将其转换为电信号,所述接收光学系统用于将所述回光脉冲汇聚到所述APD阵列上。
本发明实施例第二方面提供一种激光测距装置,所述激光测距装置包括发射模块和接收模块,其中:
所述发射模块包括发射电路和发射光学系统,所述发射电路包括依次发光的多个发射单元,所述发射光学系统用于分别将每个所述发射单元发射的激光脉冲发散到对应的视场区域;
所述接收模块包括接收电路和接收光学系统,所述接收电路包括多个接收单元,所述接收单元用于接收所述激光脉冲经被测物反射回的至少部分回光脉冲并将其转换为电信号,所述接收光学系统用于将每个视场区域的回光脉冲汇聚到相应的所述接收电路上。
本发明实施例第三方面提供一种激光测距方法,所述激光测距方法包括:
控制多个发射单元依次开启以发射激光脉冲,每个所述发射单元发射的激光脉冲发散到对应的视场区域;
控制接收单元开启,以接收所述激光脉冲经被测物反射回的至少部分回光脉冲,并将其转换为电信号。
本发明实施例第四方面提供一种可移动平台,所述可移动平台包括上述激光测距装置和可移动平台本体,所述激光测距装置设置于所述可移动平台本体上。
本发明实施例的激光测距装置、激光测距方法和可移动平台,一方面采用工作在线性模式下的APD阵列,测距量程大,动态范围大,信噪比高,可以有效地减小环境光噪声对激光测距装置的干扰,能够适应复杂的使用环境;另一方面采用多个发射单元分时发射、发射单元和接收单元一一对应的设计,无需机械运动部件,使得激光测距装置整体体积轻巧,无需逐一装调对准发射接收单元,装配难度低,可量产性好,可靠性高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性 劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明一个实施例的激光测距装置的结构框图;
图2示出了根据本发明一个实施例的激光测距装置的空间布局示意图;
图3示出了根据本发明一个实施例的激光测距装置单个时间窗口内的工作状态示意图;
图4示出了根据本发明一个实施例的激光器驱动电路的原理图;
图5示出了根据本发明另一实施例的激光测距装置的结构框图;
图6示出了根据本发明一个实施例的激光测距方法的示意性流程图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的结构,以便阐释本发明提出的技术方案。本发明的可选实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
下面结合附图,对本申请的激光测距装置进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
首先,参考图1-图4对本发明一个实施例的激光测距装置的结构进行详细的示例性描述。所述激光测距装置可以是激光雷达。所述激光测距装置可以通过测量激光在所述激光测距装置和被测物之间传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测被测物到激光测距装置的距离。
如图1所示,激光测距装置100包括发射模块110和接收模块120,其中,所述发射模块110包括发射电路111和发射光学系统112,所述发射电路111用于发射激光脉冲,所述发射光学系统112用于发散所述激光脉冲,以使其覆盖指定的视场区域;所述接收模块120包括接收电路121和接收光学系统122,所述接收电路121包括工作在线性模式下的APD(avalanche photodiode,雪崩光电二极管)阵列1211,用于接收发射模块110发射的激光脉冲经视场区域内的被测物反射回的至少部分回光脉冲,并将其转换为电信号。所述接收光学系统122用于将所述回光脉冲汇聚到所述APD阵列1211上。
本发明实施例的激光测距装置100通过发射电路111、发射光学系统、接收光学系统122和接收电路121的配合,无需扫描系统即可进行扫描,无需将发射模块110与接收模块120一一精准对焦,可以实现无机械运动部件的远距离三维成像。
并且,本发明实施例的激光测距装置100采用工作在线性模式下的APD阵列1211,实现了更优化的效果。具体地,APD的工作模式一般分为线性模式和盖革模式两种。当APD的偏置电压低于其雪崩电压时,对入射光电子起到线性放大作用,这种工作状态称为线性模式。在线性模式下,反向电压越高,增益就越大。APD对输入的光电子进行等增益放大后形成连续电流,获得带有时间信息的激光连续回波信号。当APD的偏置电压高于其雪崩电压时,APD增益迅速增加,此时单个光子吸收即可使探测器输出电流达到饱和,这种工作状态称为盖革模式。由于工作在盖革模式下时,单光子即可引起雪崩,因此工作在盖革模式下的APD也成为单光子雪崩二极管(SPAD)。
受制于制造工艺和与其他模块间的配合等因素,以往的激光测距装置一般采用盖革模式下的APD进行光电转换。盖革模式下工作的APD阵列光子探测效率低、极易受到噪声干扰、且在日光环境下容易饱和失效。本发明实施例的激光测距装置100采用工作在线性模式下的APD阵列1211,与工作 在盖革模式下的单光子雪崩二极管相比,光子探测概率高,动态范围大,且能够与激光测距装置100其他模块紧密配合。
APD阵列1211由多个APD构成,多个APD可以排列为APD线阵或APD面阵。例如,APD阵列1211可以是M×N个APD所构成的矩阵,M和N为任意大于1的整数。其中,APD的尺寸为微米量级,光子探测概率一般大于50%。
根据不同的基底半导体材料,APD阵列1211可以采用Si APD、Ge APD、InGaAs APD、HgCdTe APD等。考虑到人眼安全以及对高功率激光的需求,APD阵列1211可以采用工作波长在1.5um的InGaAs APD或HgCdTe APD,但不限于此。
参照图2,APD阵列1211可以与信号处理芯片1212像素级互联。发射模块110出射的光束经被测物反射后由接收光学系统122接收,不同视场区域的被测物返回的回光脉冲分别被接收光学系统122汇聚到APD阵列122的光敏面上的不同位置,由APD阵列中相应位置处的APD进行光电转换以生成电信号,并交由信号处理芯片1212进行信号处理。
作为示例,信号处理芯片1212可以包括时间计数型CMOS读出电路芯片(readout-integrated circuit,ROIC),APD阵列1211与信号处理芯片1212可以通过Z堆叠技术或垂直互联探测器阵列技术等集成为一体。ROIC采用硅CMOS专用集成电路,主要由前放电路、主放大器、比较器、高精度计时电路等模块构成,通过In柱阵列与APD阵列倒装集成形成探测器组件。
进一步地,本发明实施例的激光测距装置100的发射模块100配置为采用分时分区的工作方式,该工作方式能够与工作在线性模式下的APD阵列1211紧密配合。
具体地,发射电路111可以包括多个发射单元,每个发射单元包括同步发光的一个或多个激光器,多个发射单元在不同的时间窗口依次发光,并由发射光学系统112分别将每个发射单元发射的激光脉冲发散到对应的视场区域。由于总功率有限,将发射电路111分为在不同时间窗口开启的多个发射单元,可以使功率集中分配到每个发射单元中的一个或多个激光器上,从而提高单位视场的光功率密度,有利于提高入射到接收模块120的光子中信号光的比例,提高信噪比,以及提高激光测距装置100在强背景光条件下的量程。
由于本发明实施例的激光测距装置100所采用的APD阵列1211工作在 线性模式下,其动态范围大,不易饱和失效,因而可以配合较高功率的发射单元使用。而与之相比,采用盖革模式下的SPAD阵列在较强背景光条件下处于严重饱和失效状态,增强单位视场区域的光功率密度对于提高强背景光环境下的量程则帮助较小。
在一些实施例中,激光器可以具有较高的功率,来满足远距离发射激光的要求。激光器可以包括各种类型的激光器,例如半导体激光器(例如,GaAlAs半导体二极管激光器)、固体激光器(例如,光纤激光器、掺钕钇铝石榴石激光器、掺钕钒酸钇激光器等)、气体激光器(例如,二氧化碳激光器、氦-氖激光器等)、液体激光器、化学激光器、自由电子激光器等。作为示例,激光器可以选用二极管,例如可以是正极本征负极(PIN)光电二极管,以发射特定波长的激光脉冲序列。
在一些实施例中,可以根据实际需要选择激光器的工作参数。例如,可根据激光器及对应探测器的工艺成熟度、成本、体积、性能参数选择相应波长段的激光。例如,工作波长为800~1000纳米的半导体激光器及其硅基探测器工艺成熟、性价比高,可以选择工作波长为800~1000纳米的激光。例如,可以根据对人类视觉的安全性选择相应的波段的激光,由于1550纳米的人类视觉安全度较高,因而在关注人类视觉安全的情况下可以选择1300纳米到1580纳米的激光。作为示例,激光器的其他工作参数可以包括:发射频率1KHz~200KHz,峰值功率0.1W~1000W,脉冲宽度0.5ns~20ns。
每个发射单元中的一个或多个激光器可以封装在同一封装结构中。以边发射激光器(EEL)为例,同一封装结构中的至少部分激光器可以集成在同一靶条(bar条)上。例如,每个发射单元的全部激光器集成在同一靶条上,以构成一个边发射激光器靶条,一个封装模块中可以包括多个边发射激光器靶条。以垂直腔面发射激光器(VCSEL)为例,同一封装结构中的至少部分激光器集成为阵列。例如,每个发射单元中的全部激光器集成在同一阵列上,以构成一个垂直腔面发射激光器阵列。一个封装模块中可以包括多个垂直腔面发射激光器阵列。作为示例,封装结构可以包括基板和设置在基板表面上的罩体,所述基板和所述罩体之间形成容纳空间,所述激光二极管设置于所述容纳空间中。
示例性地,集成在同一靶条上的同步发光的一个或多个激光器连接至同一个驱动器,由同一个驱动器进行驱动以同步发光。驱动器可以采用GaN(氮 化镓)驱动器,来实现高速、高压、大电流的光源驱动。图4示出了激光器驱动电路原理图。在图4的例子中,每个发射单元的三个激光器有一个驱动器进行驱动,以同步发光,多个发射单元的激光器均封装在同一个封装模块中。示例性地,用于驱动每个发射单元的一个或多个激光器同步发光的驱动器也可以与所述一个或多个激光器封装在同一封装模块中。
进一步地,发射电路111还可以包括激光器电源。激光器电源需要满足高压、人眼安全、极快的瞬态响应等条件,使用LC谐振充电的充电方式为激光器提供发光能量。在一个实施例中,发射电路111还可以包括人眼安全保护电路,用于使激光器出射的激光满足对人眼安全的要求。
在一个示例中,所述激光测距装置100还包括发射控制电路,发射控制电路可以向发射模块的驱动器发送驱动信号,使驱动器驱动对应的发射模块发光,并可以使驱动器根据接收到的驱动信号对激光器的发射功率、发射激光的波长、发射方向等控制参数中的至少一种进行控制。
发射电路111中的多个发射单元可以以任意顺序依次发光,每次发光照亮一个视场区域,单次发光的工作状态可以如图3所示。在一个示例中,多个发射单元可以按照某种预先设定好的顺序发光。例如,多个发射单元可以按照空间排列顺序循环发光,例如以编号1,2,…,N,1,2…的顺序依次循环发光。或者,多个发射单元也可以按其他的设定好的顺序循环发光,例如编号1,N/2+1,2,N/2+2,…,N/2,N的顺序。当然,多个发射单元也可以按照其他任意设定顺序发光。或者,多个发射单元也可以按随机顺序发光。
发射光学系统122用于将每个发射单元发射的激光散射到与该发射单元对应的视场区域。
示例性地,所述发射光学系统122可以包括光学散射片或柱透镜组。其中,光学散射片可以是利用微纳光学制造技在玻璃材料表面加工出的微光学散射体结构,用于使入射光经过散射体之后得到符合需求的光场分布。当采用柱透镜组时,可以在激光器封装过程中引入柱透镜组,分别对激光器快慢轴的发散角进行调控,使其符合需求视场所需的出光角度。柱透镜组的截面形状包括但不限于圆形、椭圆形、三角形、矩形、梯形等。
在一个实施例中,每个发射单元对应发射光学系统122中的不同光学元件,例如,每个发射单元前方设置一个散射片或柱透镜组,通过不同的光学元件,将不同发射单元发射的激光发散到各自的视场区域。在其他实施例中, 多个发射单元也可以共用一套光学元件,例如共用一个光学散射片,并通过调节激光器快、慢轴的方向,来满足对水平、竖直方向的视场角的需求。
在一个实施例中,多个发射单元发射的激光脉冲分别覆盖不同的视场区域,即各个发射单元发射的激光脉冲所覆盖的视场区域相互之间不重叠,从而覆盖较大的视场范围。
在另一个实施例中,多个发射单元的发射的激光脉冲所覆盖的视场区域也可以部分重叠。例如,多个发射单元发射的激光脉冲所覆盖的视场区域可以在重点区域重叠,从而实现强背景光条件下的定向增强感知。通过使多个视场区域在重点区域重叠,可以增强重点区域内的累积信号光强,提高重点区域的信噪比,以提高背景光条件下的量程。由于根据本发明实施例的激光测距装置100采用工作在线性模式下的APD阵列1211,其动态范围大,不易饱和失效,因而可以对重点区域的回光脉冲进行累加。
其中,重点区域可以是用户重点关注的感兴趣区域。例如,重点区域可以是激光测距装置100的视场的中心区域,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域可以在视场的中心区域重叠。当激光测距装置100应用于车辆时,视场的中心区域对应于路面前方,为车辆行驶过程中需要重点关注的区域。根据实际需要,重点区域也可以位于激光测距装置100的视场的其他位置。
发射单元可以有多种空间排布方式。例如,继续参照图2,接收光学系统122可以包括设置在APD阵列1211一侧的透镜组,多个发射单元可以在透镜组一侧一体化设置,例如,如图2中所示的,多个发射单元在垂直于透镜组轴向的平面上排布为一维阵列,或者也可以排布为二维阵列。当采用一体化设置方式时,多个发射单元可以封装在一个封装模块中,减少封装模块的个数,例如,图2中示出的6个发射单元可以封装在同一个封装模块中。
作为另一种实现方式,多个发射单元也可以在透镜组周围分散设置。例如,多个发射单元可以设置在透镜组周围的四个拐角处,或者围绕透镜组排列为一圈。将多个发射单元分散设置可以提高空间利用率,满足激光测距装置小型化的需求。进一步地,当将多个发射单元分散设置时,每个位置处也可以设置多个发射单元,例如在透镜组周围的四个拐角处分别设置多个发射单元。在这种情况下,设置在同一位置处的多个发射单元也可以封装在同一封装结构中。
在一个实施例中,发射单元与透镜组在透镜组的轴向上至少部分重合。 也就是说,在透镜组轴向上,发射单元与接收单元之间的距离不大于透镜组的最前端与接收单元之间的距离。在满足发射单元的出射光不被遮挡的条件下,可以使发射单元比图2中所示的更加靠近接收单元,从而使布局更为紧凑。
进一步地,接收电路120可以包括多个接收单元,所述多个接收单元和所述多个发射单元一一对应,每个所述接收单元包括在所述APD阵列1211中的一个或多个APD,用于接收对应的发射单元出射的激光脉冲经被测物反射回的至少部分回光脉冲。多个接收单元的形状和包括的APD的个数可以相同,也可以不同,具体可以根据每个接收单元所对应的视场区域进行设置。
其中,多个接收单元可以排布为一维阵列,例如图2中所示的由六个接收单元一维排布的一维阵列。或者,多个接收单元也可以排布为二维阵列。此外,每个接收单元中的APD也可以排布为一维阵列或二维阵列。由于接收单元与发射单元一一对应,因而接收单元的排布方式一般与发射单元相一致,例如当发射单元排布为1×N的一维阵列时,接收单元也排布为1×N的一维阵列;当发射单元排布为M×N的二维阵列时,接收单元也排布为M×N二维阵列。
进一步地,多个接收单元也可以采用分时工作方式,以与发射单元相互配合。具体地,多个接收单元分别在不同的时间窗口内开启,即每个时间窗口内特定的接收单元的APD开启以接收汇聚于其上的回光脉冲,其余的APD关闭。采用分时分区的工作方式可以降低激光测距装置100的总功耗,并降低APD阵列1211的散热需求,同时还能够降低开关电路的设计难度。当然其他实施例中,多个接收单元也可以同步开启,但只有部分接收单元会接收到回光脉冲。
进一步地,由于在每个时间窗口内只有一个发射单元开启并扫描相应的视场区域,从该视场区域返回的回光脉冲仅覆盖APD阵列1211的一部分区域,因而可以设置为使接收单元与发射单元一一对应,当发射单元在一个时间窗口内开启时,与之对应的接收单元在该时间窗口内同步开启,以接收该发射单元发射的激光脉冲的回光脉冲,此时其他的接收单元关闭。可以对接收光学系统122进行相应设计,使其能够将每个发射单元发射的激光脉冲所覆盖的视场区域返回的回光脉冲至少部分地汇聚到与该发射单元对应的接收单元上。
具体地,在每个时间窗口内,发射单元和与之对应的接收单元同时开启, 发射单元发射一路激光脉冲序列,依次经过接收电路、采样电路和运算电路处理后,最后确定本次测量的结果。实际应用中,在一个时间窗口内,从发射电路发射激光脉冲到运算电路计算出距离所需要的时长取决于被测物与激光测距装置的距离的远近,距离越远,时长越大。当物体距离激光测距装置越远时,经物体反射回的光信号越弱。当反射回的光信号弱到一定程度时,激光测距装置将无法探测到该光信号。因此,激光测距装置所能探测到的最弱的光信号对应的物体,与激光测距装置之间的距离称为激光测距装置的最远探测距离。本发明实施例中,每个时间窗口的时长大于最远探测距离对应的时长,例如,每个时间窗口的时长至少在最远探测距离所对应的时长的五倍以上。
进一步地,激光测距装置100还可以包括发射控制电路和接收控制电路。发射控制电路用于控制当前时间窗口开启的发射单元,接收控制电路用于控制当前时间窗口开启的接收单元。发射控制电路和接收控制电路相互耦连,当发射控制电路控制发射单元发射激光脉冲时,通知相应的接收控制电路控制相应的接收单元同步开启。
发射单元和接收单元可以以任意顺序同步开启以进行发射和接收。由于发射单元和接收单元均对应同一个视场区域,因此一般来说,相应的发射单元和接收单元位于阵列中的对称位置,例如图3中所示的,阵列右侧的发射单元对应阵列左侧的接收单元。
在一个实施例中,相邻的发射单元依次开启以发射激光脉冲,相应地,相邻的所述接收单元依次开启以接收所述激光脉冲的回光脉冲,例如发射单元以编号1,2,3,4,5、6的顺序依次开启。
在另一个实施例中,间隔排列的发射单元依次开启以发射激光脉冲,相应地,间隔排列的接收单元依次开启以接收所述激光脉冲的回光脉冲。其中,间隔排列的发射单元依次开启表示相邻位置处的两个发射单元不在相邻的两个时间窗口内依次开启,但对发射单元的具体的开启顺序不做限制。例如,发射单元可以以编号1,4,2,5,3,6……的顺序开启,或者以编号1,5,2,6,3……的顺序依次开启等等。
在一个实施例中,相邻两个接收单元可以共用部分APD,也即该共用部分APD在该两个接收单元分别对应的发射单元出射光束时都会处于开启的状态,以接收该两个发射单元出射的光束被反射回的回光脉冲,可以利用有限的APD阵列1211设置更多的接收单元。例如,第一个接收单元包括编号 为1、2、3、4的APD,相邻的第二个接收单元包括编号为4、5、6、7的APD等待。作为示例,可以在间隔排列的接收单元依次开启以接收回光脉冲的情况下,使相邻的接收单元共用部分APD,从而保证APD的散热效果,避免共用的部分APD开启时间过长而导致过热。
如上所述,在一个实施例中,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括激光测距装置100的视场的中心区域。则为了与之配合,作为一种实现方式,部分或全部的所述接收单元可以共用位于所述APD阵列中心区域的一个或多个APD,以接收由所述中心区域返回的回光脉冲。具体地,由于在部分或全部的时间窗口内,发射模块110所发射的激光脉冲均有一部分照射到视场的中心区域,而多个接收单元共用APD阵列中心区域的APD可以提高APD阵列中心区域的APD的开启频次,使其在多个时间窗口内开启以接收视场中心区域返回的回光脉冲。
作为另一种实现方式,当部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括激光测距装置100的视场的中心区域时,位于APD阵列1211中心区域的接收单元与所述部分或全部的发射单元同步开启,以接收由所述中心区域返回的回光脉冲。具体地,部分或全部的发射单元在开启时,除了覆盖各自不同的视场区域以外,还有部分激光脉冲覆盖到视场的中心区域,因而每个发射单元可以与两个接收单元相对应,其中一个接收单元用于接收从所述各自不同的视场区域返回的回光脉冲,另一个接收单元位于APD阵列1211的中心区域,用于接收从视场的中心区域返回的回光脉冲。
上文以部分或全部的发射单元共同覆盖的重点区域为视场的中心区域为例进行描述,但可以理解的是,当重点区域为视场的其他区域时,接收单元也应相应地进行调整。通过采用上述设计,使接收单元与发射单元相配合,实现了上文所述的对重点区域进行定向增强感知。
如图2所示,接收光学系统122可以包括设置在APD阵列1211一侧的透镜组。根据使用环境条件,透镜组可以设计为由单片或多片透镜组成,镜片面型为球面、非球面或球面与非球面的组合。透镜的镜片材料可以包括玻璃、塑料或玻璃与塑料的组合。示例性地,可以对透镜组结构进行充分的消热差设计,以补偿温度漂移对成像的影响。
在一些实施例中,接收光学系统122还包括微透镜阵列。所述微透镜阵列可以与APD阵列1211一体化形成,例如蚀刻形成在APD阵列的表面上。 或者,微透镜阵列可以是单独形成的,并胶合于APD阵列的表面上。通过在APD阵列1211之前设置微透镜阵列,可以提高聚光效率,提高有效填充因子。
示例性地,所述接收光学系统122还包括窄带滤波片,所述窄带滤波片的通带波段匹配所述接收光学系统122的工作波段,以滤除发射波段以外的波段,降低自然光对测距的干扰。窄带滤波片可安装于接收光路中任意位置,其平面与接收光路的光轴垂直。示例性地,可以使窄带滤波片紧贴APD阵列1211设置以减小其口径。
在一个实施例中,接收光学系统122将回光脉冲汇聚到小于所述接收单元尺寸的范围之内,即使APD阵列被回光脉冲照射的范围不超过接收单元的边界,以提高能量利用率进而提高系统量程,同时可以降低接收单元之间的串扰。
在另一个实施例中,接收光学系统122将回光脉冲汇聚到大于所述接收单元尺寸的范围之内,即使APD阵列被回光脉冲照射的范围覆盖接收单元的边界,以避免接收单元接收到视场边缘区域返回的信噪比较低的回光脉冲。在这种情况下,为了覆盖完整的视场区域,相邻发射单元所覆盖的视场区域部分重叠。
在一个实施例中,激光测距装置100还包括放大电路、采样电路和运算电路。其中,放大电路用于放大所述接收模块120转换的电信号;采样电路用于对放大后的电信号进行采样,并输出采样信号;运算电路用于根据所述采样信号运算得到所述被测物的三维信息。
具体地,所述放大电路可以包括一级放大电路和二级放大电路,其中,所述一级放大电路用于对来自所述光电转换器件输出的电信号进行放大处理,例如将APD转换而来的光电流信号转换为电压信号,提供转换增益;所述二级放大电路用于对来自所述一级放大电路的电信号进一步提供增益,以将APD输出的弱信号放大到比较器能够识别的电压。例如,该一级放大电路可以包括跨阻放大器(TIA)阵列,该二级放大电路可以包括其他类型的信号放大器。示例性地,APD阵列1211中的每个APD均连接一个放大电路,所述一级或二级放大电路可以设置于与APD阵列1211像素级互联的信号处理芯片1212上。
采样电路用于对放大电路放大后的电信号进行采样。采样电路可以具 有至少两种实现方式。
作为一种实现方式,采样电路包括比较器(例如,可以为模拟比较器(analog comparator,COMP),用于将电信号转换为数字信号)和时间测量电路,经由一级或二级放大电路放大后的电信号经所述比较器后进入时间测量电路,由时间测量电路测量激光脉冲序列从发射到接收之间的时间差。
其中,时间测量电路可以是时间数字转换器(Time-to-Data Converter,TDC)时。其中TDC可以是独立的TDC芯片,或者是基于现场可编程门阵列(Field-Programmable Gate Array,FPGA)或特定应用集成电路(Application Specific Integrated Circuit,ASIC)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD等可编程器件的内部延时链来实现时间测量的TDC电路,或者,采用高频时钟实现时间测量的电路结构或者计数方式实现时间测量的电路结构。
示例性地,比较器的第一输入端用于接收从放大电路输入的电信号,第二输入端用于接收预设阈值,输入到比较器的电信号与预设阈值进行比较运算。比较器的输出信号接TDC,TDC可以测量比较器输出信号沿的时间信息,所测量时间是以激光发射信号作为参考,也就是可以测量到激光信号从发射到接收之间的时间差。
作为另一种实现方式,采样电路包括模数转换器(Analog-to-Digital Converter,ADC)。输入到采样电路的模拟信号经过ADC的模数转换之后,可以输出数字信号至运算电路。同样地,ADC可以是独立的ADC芯片。
采样电路输出的采样信号交由运算电路,运算电路可以根据激光信号从发射到接收的时间差以及激光传输速率计算得出被测物的距离信息,同时,还可以根据APD的位置得出被测物的角度信息,进而解算得出被测物的三维信息,之后,运算电路还可以根据解算出的信息生成图像等,在此不做限制。激光测距装置100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
综上所述,根据本发明实施例的激光测距装置100采用工作在线性模式下的APD阵列,测距量程大,动态范围大,信噪比高,可以有效地减小环境光噪声对激光测距装置的干扰,能够适应复杂的使用环境;并且,所述激光测距装置100采用多个发射单元分时发射、发射单元和接收单元一一对应的 设计,无需机械运动部件,使得激光测距装置整体体积轻巧,无需逐一装调对准发射接收单元,装配难度低,可量产性好,可靠性高。
下面,参考图5对本发明一个实施例的激光测距装置500进行描述。以下仅对激光测距装置500的主要结构进行描述,而省略了与激光测距装置100的一些相同或相似的部件的具体细节。
如图5所示,激光测距装置500包括发射模块510和接收模块520,其中,所述发射模块510包括发射电路511和发射光学系统512,所述发射电路511包括依次发光的多个发射单元,所述发射光学系统512用于分别将每个所述发射单元发射的激光脉冲发散到对应的视场区域;所述接收模块520包括接收电路521和接收光学系统522,所述接收电路521包括多个接收单元,所述接收单元用于接收所述激光脉冲经被测物反射回的至少部分回光脉冲并将其转换为电信号,所述接收光学系统522用于将每个视场区域的回光脉冲汇聚到相应的所述接收电路上。
本发明实施例的激光测距装置100通过发射电路511、发射光学系统、接收光学系统522和接收电路521的配合,无需扫描系统即可进行扫描,无需将发射模块510与接收模块520一一精准对焦,可以实现无机械运动部件的远距离三维成像。
具体地,发射电路511中的每个发射单元包括同步发光的一个或多个激光器,多个发射单元在不同的时间窗口内依次发光,并由发射光学系统512分别将每个发射单元发射的激光脉冲发散到对应的视场区域。由于总功率有限,将发射电路511分为在不同时间窗口内开启的多个发射单元,可以使功率集中分配到每个发射单元中的一个或多个激光器上,从而提高单位视场的光功率密度,有利于提高入射到接收模块520的光子中信号光的比例,提高信噪比,以及提高激光测距装置500在强背景光条件下的量程。
每个发射单元中的一个或多个激光器可以封装在同一封装结构中。同一封装结构中的至少部分激光器集成在同一靶条或同一阵列上。例如,每个发射单元的全部激光器集成在同一靶条或同一阵列上,以构成一个边发射激光器靶条或垂直腔面发射激光器阵列,一个封装模块中可以包括多个边发射激光器靶条或多个垂直腔面发射激光器阵列。作为示例,封装结构可以包括基板和设置在基板表面上的罩体,所述基板和所述罩体之间形成容纳空间, 所述激光二极管设置于所述容纳空间中。
示例性地,集成在同一靶条或同一阵列上的同步发光的一个或多个激光器连接至同一个驱动器,由同一个驱动器进行驱动以同步发光。驱动器可以采用GaN(氮化镓)驱动器,来实现高速、高压、大电流的光源驱动。
进一步地,发射电路511还可以包括激光器电源。激光器电源需要满足高压、人眼安全、极快的瞬态响应等条件,使用LC谐振充电的充电方式为激光器提供发光能量。在一个实施例中,发射电路511还可以包括人眼安全保护电路,用于防止电路出现通路故障时激光器连续发光,以使激光器出射的激光满足对人眼安全的要求。
在一个示例中,所述激光测距装置100还包括发射控制电路,发射控制电路可以向发射模块的驱动器发送驱动信号,使驱动器驱动对应的发射模块发光,并可以使驱动器根据接收到的驱动信号对激光器的发射功率、发射激光的波长、发射方向等控制参数中的至少一种进行控制。
发射电路511中的多个发射单元可以以任意顺序依次发光,每次发光照亮一个视场区域。在一个示例中,多个发射单元可以按照某种预先设定好的顺序发光。例如,多个发射单元可以按照空间排列顺序循环发光。或者,多个发射单元也可以按其他的设定好的顺序循环发光。当然,多个发射单元也可以按照其他任意设定顺序发光。或者,多个发射单元也可以按随机顺序发光。
发射光学系统522用于将每个发射单元发射的激光散射到与该发射单元对应的视场区域。
示例性地,所述发射光学系统522可以包括光学散射片或柱透镜组。其中,光学散射片可以是利用微纳光学制造技在玻璃材料表面加工出的微光学散射体结构,用于使入射光经过散射体之后得到符合需求的光场分布。当采用柱透镜组时,可以在激光器封装过程中引入柱透镜组,分别对激光器快慢轴的发散角进行调控,使其符合需求视场所需的出光角度。柱透镜组的截面形状包括但不限于圆形、椭圆形、三角形、矩形、梯形等。
在一个实施例中,每个发射单元对应发射光学系统522中的不同光学元件,例如,每个发射单元前方设置一个散射片或柱透镜组,通过不同的光学元件,将不同发射单元发射的激光发散到各自的视场区域。在其他实施例中,多个发射单元也可以共用一套光学元件,例如共用一个光学散射片,并通过 调节激光器快、慢轴的方向,来满足对水平、竖直方向的视场角的需求。
在一个实施例中,多个发射单元发射的激光脉冲分别覆盖不同的视场区域,即各个发射单元发射的激光脉冲所覆盖的视场区域相互之间不重叠,从而覆盖较大的视场范围。
在另一个实施例中,多个发射单元的发射的激光脉冲所覆盖的视场区域也可以部分重叠。例如,多个发射单元发射的激光脉冲所覆盖的视场区域可以在重点区域重叠,从而实现强背景光条件下的定向增强感知。通过使多个视场区域在重点区域重叠,可以增强重点区域内的累积信号光强,提高重点区域的信噪比,以提高背景光条件下的量程。
其中,重点区域可以是用户重点关注的感兴趣区域。例如,重点区域可以是激光测距装置500的视场的中心区域,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域可以在视场的中心区域重叠。当激光测距装置500应用于车辆时,视场的中心区域对应于路面前方,为车辆行驶过程中需要重点关注的区域。根据实际需要,重点区域也可以位于激光测距装置500的视场的其他位置。
发射单元可以有多种空间排布方式。例如,接收光学系统522可以包括设置在APD阵列一侧的透镜组,多个发射单元可以在透镜组一侧一体化设置。当采用一体化设置方式时,多个发射单元可以封装在一个封装模块中,减少封装模块的个数。作为另一种实现方式,多个发射单元也可以在透镜组周围分散设置。例如,多个发射单元可以设置在透镜组周围的四个拐角处,或者围绕透镜组排列为一圈。将多个发射单元分散设置可以提高空间利用率,满足激光测距装置小型化的需求。进一步地,当将多个发射单元分散设置时,每个位置处也可以设置多个发射单元,例如在透镜组周围的四个拐角处分别设置多个发射单元。在这种情况下,设置在同一位置处的多个发射单元也可以封装在同一封装结构中。
在一个实施例中,发射单元与透镜组在透镜组的轴向上至少部分重合。也就是说,在透镜组轴向上,发射单元与接收单元之间的距离不大于透镜组的最前端与接收单元之间的距离。
在一个实施例中,接收电路520可以包括APD阵列,每个所述接收单元包括在所述APD阵列中的一个或多个APD。进一步地,所述APD阵列可以为工作在线性模式下的APD阵列。多个接收单元的形状和包括的APD的个数可以相同,也可以不同,具体可以根据每个接收单元所对应的视场区域进 行设置。
其中,多个接收单元可以排布为一维阵列,例如由六个接收单元一维排布的一维阵列。或者,多个接收单元也可以排布为二维阵列。此外,每个接收单元中的APD也可以排布为一维阵列或二维阵列。由于接收单元与发射单元一一对应,因而接收单元的排布方式一般与发射单元相一致。
进一步地,多个接收单元也可以采用分时工作方式,以与发射单元相互配合。具体地,多个接收单元分别在不同的时间窗口内开启,即每个时间窗口内特定的接收单元开启以接收汇聚于其上的回光脉冲,其余的接收单元关闭。采用分时分区的工作方式可以降低激光测距装置500的总功耗,并降低接收单元的散热需求,同时还能够降低开关电路的设计难度。当然其他实施例中,多个接收单元也可以同步开启,但只有部分接收单元会接收到回光脉冲。
进一步地,由于在每个时间窗口内只有一个发射单元开启并扫描相应的视场区域,当发射单元在一个时间窗口内开启时,与之对应的接收单元在该时间窗口内同步开启,以接收该发射单元发射的激光脉冲的回光脉冲,此时其他的接收单元关闭。可以对接收光学系统522进行相应设计,使其能够将每个发射单元发射的激光脉冲所覆盖的视场区域返回的回光脉冲至少部分地汇聚到与该发射单元对应的接收单元上。
发射单元和接收单元可以以任意顺序同步开启以进行发射和接收。由于发射单元和接收单元均对应同一个视场区域。在一个实施例中,相邻的发射单元依次开启以发射激光脉冲。
在另一个实施例中,间隔排列的发射单元依次开启以发射激光脉冲,相应地,间隔排列的接收单元依次开启以接收所述激光脉冲的回光脉冲。其中,间隔排列的发射单元依次开启表示相邻位置处的两个发射单元不在相邻的两个时间窗口内依次开启,但对发射单元的具体的开启顺序不做限制。
在一个实施例中,相邻两个接收单元可以共用部分APD,以利用有限的APD阵列1211设置更多的接收单元。作为示例,可以在间隔排列的接收单元依次开启以接收回光脉冲的情况下,使相邻的接收单元共用部分APD,从而保证APD的散热效果,避免共用的部分APD开启时间过长而导致过热。
如上所述,在一个实施例中,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括激光测距装置500的视场的中心区域。则为了与之配合,作为一种实现方式,部分或全部的所述接收单元可以共用位于所述APD 阵列中心区域的一个或多个APD,以接收由所述中心区域返回的回光脉冲。作为另一种实现方式,当部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括激光测距装置500的视场的中心区域时,位于APD阵列1211中心区域的接收单元与所述部分或全部的发射单元同步开启,以接收由所述中心区域返回的回光脉冲。
上文以部分或全部的发射单元共同覆盖的重点区域为视场的中心区域为例进行描述,但可以理解的是,当重点区域为视场的其他区域时,接收单元也应相应地进行调整。通过采用上述设计,使接收单元与发射单元相配合,实现了上文所述的对重点区域进行定向增强感知。
接收光学系统522可以包括设置在接收电路521一侧的透镜组。根据使用环境条件,透镜组可以设计为由单片或多片透镜组成,镜片面型为球面、非球面或球面与非球面的组合。透镜的镜片材料可以包括玻璃、塑料或玻璃与塑料的组合。示例性地,可以对透镜组结构进行充分的消热差设计,以补偿温度漂移对成像的影响。在一些实施例中,接收光学系统522还包括微透镜阵列。所述微透镜阵列可以与APD阵列一体化形成,例如蚀刻形成在APD阵列的表面上。或者,微透镜阵列可以是单独形成的,并胶合于APD阵列的表面上。通过在APD阵列之前设置微透镜阵列,可以提高聚光效率,提高有效填充因子。示例性地,所述接收光学系统522还包括窄带滤波片,所述窄带滤波片的通带波段匹配所述接收光学系统522的工作波段,以滤除发射波段以外的波段,降低自然光对测距的干扰。
在一个实施例中,接收光学系统522将回光脉冲汇聚到小于所述接收单元尺寸的范围之内,即使APD阵列被回光脉冲照射的范围不超过接收单元的边界,以提高能量利用率进而提高系统量程,同时可以降低接收单元之间的串扰。
在另一个实施例中,接收光学系统522将回光脉冲汇聚到大于所述接收单元尺寸的范围之内,即使APD阵列被回光脉冲照射的范围覆盖接收单元的边界,以避免接收单元接收到视场边缘区域返回的信噪比较低的回光脉冲。在这种情况下,为了覆盖完整的视场区域,相邻发射单元所覆盖的视场区域部分重叠。
在一个实施例中,激光测距装置500还包括放大电路、采样电路和运算电路。其中,放大电路用于放大所述接收模块520转换的电信号;采样电路用于对放大后的电信号进行采样,并输出采样信号;运算电路用于根据所述 采样信号运算得到所述被测物的三维信息。放大电路、采样电路和运算电路的具体细节可以参照上文,在此不做赘述。
综上所述,本发明实施例的激光测距装置500采用多个发射单元分时发射、发射单元和接收单元一一对应的设计,无需机械运动部件,使得激光测距装置整体体积轻巧,无需逐一装调对准发射接收单元,装配难度低,可量产性好,可靠性高。
本发明实施例另一方面提供一种激光测距方法。图6示出了激光测距方法600的流程图。该激光测距方法600可以由上文任一实施例所述的激光测距装置实现。以下仅对激光测距方法600的主要步骤进行描述,而省略上文中的部分详细细节。
如图6所示,激光测距方法600包括如下步骤:
在步骤S610,控制多个发射单元依次开启以发射激光脉冲,每个所述发射单元发射的激光脉冲发散到对应的视场区域;
在步骤S620,控制接收单元开启,以接收所述激光脉冲经被测物反射回的至少部分回光脉冲,并将其转换为电信号。
示例性地,步骤S610可以由发射控制电路实现。
在一个实施例中,所述控制多个发射单元依次发射激光脉冲包括:控制多个所述发射单元按设定顺序发光或按随机顺序发光。
在一个实施例中,多个所述发射单元发射的激光脉冲分别覆盖不同的视场区域。
在一个实施例中,多个所述发射单元的发射的激光脉冲所覆盖的视场区域部分重叠。
示例性地,步骤S620可以具体由接收控制电路实现。
在一个实施例中,所述接收电路包括APD阵列,每个所述接收单元包括在所述APD阵列中的一个或多个APD,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括所述激光测距装置的视场的中心区域,所述控制接收单元开启包括:控制位于所述APD阵列中心区域的接收单元与所述部分或全部的发射单元同步开启,以接收由所述中心区域返回的回光脉冲。
在一个实施例中,所述控制接收单元开启包括:控制多个所述接收单元分别在不同的时间窗口内开启。
在一个实施例中,所述接收单元与所述发射单元一一对应,所述控制接 收单元开启包括:控制每个所述接收单元和与之对应的所述发射单元同步开启,以接收所述发射单元发射的激光脉冲的回光脉冲。
在一个实施例中,所述控制每个所述接收单元和与之对应的所述发射单元同步开启,包括:控制相邻的所述发射单元依次开启以发射激光脉冲,控制相邻的所述接收单元依次开启以接收所述激光脉冲的回光脉冲。
在一个实施例中,所述控制每个所述接收单元和与之对应的所述发射单元同步开启,包括:控制间隔排列的所述发射单元依次开启以发射激光脉冲,控制间隔排列的所述接收单元依次开启以接收所述激光脉冲的回光脉冲。
本发明实施例的激光测距方法600采用控制多个发射单元分时发射、控制发射单元和接收单元一一对应开启的控制方式,无需控制机械运动部件运动即可实现激光测距。
本发明实施例还提供了一种可移动平台,所述可移动平台包括上述任一激光测距装置以及可移动平台本体,所述激光测距装置设置在所述可移动平台本体上。进一步地,所述可移动平台包括但不限于无人机、汽车、机器人和遥控车中的至少一种。示例性地,当激光测距装置应用于无人机时,可移动平台本体为无人机的机身。当激光测距装置应用于汽车时,可移动平台本体为汽车的车身。由于可移动平台采用根据本发明实施例的激光测距装置,因而也具备了上文所述的优点。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编 程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (58)

  1. 一种激光测距装置,其特征在于,所述激光测距装置包括发射模块和接收模块,其中:
    所述发射模块包括发射电路和发射光学系统,所述发射电路用于发射激光脉冲,所述发射光学系统用于发散所述激光脉冲,以使其覆盖指定的视场区域;
    所述接收模块包括接收电路和接收光学系统,所述接收电路包括工作在线性模式下的APD阵列,用于接收所述激光脉冲经被测物反射回的至少部分回光脉冲并将其转换为电信号,所述接收光学系统用于将所述回光脉冲汇聚到所述APD阵列上。
  2. 如权利要求1所述的激光测距装置,其特征在于,所述发射电路包括依次发光的多个发射单元,所述发射光学系统分别将每个所述发射单元发射的激光脉冲发散到对应的视场区域。
  3. 如权利要求2所述的激光测距装置,其特征在于,每个所述发射单元对应所述发射光学系统中的不同光学元件。
  4. 如权利要求2或3所述的激光测距装置,其特征在于,每个所述发射单元包括同步发光的、封装在同一封装结构中的一个或多个激光器。
  5. 如权利要求4所述的激光测距装置,其特征在于,所述封装在同一封装结构中的至少部分激光器集成在同一靶条上。
  6. 如权利要求4所述的激光测距装置,其特征在于,所述同步发光的、封装在同一封装结构中的一个或多个激光器连接至同一个驱动器。
  7. 如权利要求2所述的激光测距装置,其特征在于,多个所述发射单元按设定顺序发光或按随机顺序发光。
  8. 如权利要求2所述的激光测距装置,其特征在于,多个所述发射单元发射的激光脉冲分别覆盖不同的视场区域。
  9. 如权利要求2所述的激光测距装置,其特征在于,多个所述发射单元的发射的激光脉冲所覆盖的视场区域部分重叠。
  10. 如权利要求9所述的激光测距装置,其特征在于,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括所述激光测距装置的视场的中心区域。
  11. 如权利要求2-10之一所述的激光测距装置,其特征在于,所述接收光学系统包括在所述APD阵列一侧的透镜组,多个所述发射单元在所述透镜 组一侧一体化设置或在所述透镜组周围分散设置。
  12. 如权利要求11所述的激光测距装置,其特征在于,多个所述发射单元在垂直于所述透镜组轴向的平面上排布为一维阵列。
  13. 如权利要求11或12所述的激光测距装置,其特征在于,所述发射单元与所述透镜组在所述透镜组的轴向上至少部分重合。
  14. 如权利要求1-13之一所述的激光测距装置,其特征在于,所述发射光学系统包括光学散射片或柱透镜组。
  15. 如权利要求2-14之一所述的激光测距装置,其特征在于,所述接收电路包括多个接收单元,所述多个接收单元和所述多个发射单元一一对应,
    每个所述接收单元包括在所述APD阵列中的一个或多个APD,用于接收对应的发射单元出射的激光脉冲经被测物反射回的至少部分回光脉冲。
  16. 如权利要求15所述的激光测距装置,其特征在于,所述接收光学系统将从每个所述发射单元的视场区域返回的回光脉冲至少部分汇聚到与所述发射单元相对应的接收单元上。
  17. 如权利要求16所述的激光测距装置,其特征在于,所述接收光学系统将所述回光脉冲汇聚到小于所述接收单元尺寸的范围之内。
  18. 如权利要求16所述的激光测距装置,其特征在于,相邻所述发射单元所覆盖的视场区域部分重叠,所述接收光学系统将所述回光脉冲汇聚到大于所述接收单元尺寸的范围之内。
  19. 如权利要求15所述的激光测距装置,其特征在于,多个所述接收单元分别在不同的时间窗口内开启。
  20. 如权利要求19所述的激光测距装置,其特征在于,所述接收单元和与之对应的所述发射单元同步开启,以接收所述发射单元发射的激光脉冲的回光脉冲。
  21. 如权利要求15所述的激光测距装置,其特征在于,所述多个接收单元排布为一维或二维阵列。
  22. 如权利要求15所述的激光测距装置,其特征在于,每个所述接收单元中的APD排布为一维或二维阵列。
  23. 如权利要求15所述的激光测距装置,其特征在于,相邻的所述发射单元依次开启以发射激光脉冲,相邻的所述接收单元依次开启以接收所述激光脉冲的回光脉冲。
  24. 如权利要求15所述的激光测距装置,其特征在于,间隔排列的所述 发射单元依次开启以发射激光脉冲,间隔排列的所述接收单元依次开启以接收所述激光脉冲的回光脉冲。
  25. 如权利要求15或24所述的激光测距装置,其特征在于,相邻两个所述接收单元共用部分所述APD。
  26. 如权利要求25所述的激光测距装置,其特征在于,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括所述激光测距装置的视场的中心区域,部分或全部的所述接收单元共用位于所述APD阵列中心区域的APD,以接收由所述中心区域返回的回光脉冲。
  27. 如权利要求15所述的激光测距装置,其特征在于,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括所述激光测距装置的视场的中心区域,位于所述APD阵列中心区域的接收单元与所述部分或全部的发射单元同步开启,以接收由所述中心区域返回的回光脉冲。
  28. 如权利要求15所述的激光测距装置,其特征在于,所述接收光学系统包括在所述APD阵列前方同轴设置的透镜组,所述多个接收单元共用一套所述透镜组。
  29. 如权利要求1所述的激光测距装置,其特征在于,所述接收光学系统还包括窄带滤波片,所述窄带滤波片的通带波段匹配所述接收光学系统的工作波段,以滤除发射波段以外的波段。
  30. 如权利要求1所述的激光测距装置,其特征在于,所述接收光学系统还包括刻蚀形成于所述APD阵列表面上或胶合于所述APD阵列表面上的微透镜阵列。
  31. 如权利要求1所述的激光测距装置,其特征在于,还包括:
    放大电路,用于放大所述接收模块转换的电信号;
    采样电路,用于对放大后的电信号进行采样,并输出采样信号;
    运算电路,用于根据所述采样信号运算得到所述被测物的三维信息。
  32. 一种激光测距装置,其特征在于,所述激光测距装置包括发射模块和接收模块,其中:
    所述发射模块包括发射电路和发射光学系统,所述发射电路包括依次发光的多个发射单元,所述发射光学系统用于分别将每个所述发射单元发射的激光脉冲发散到对应的视场区域;
    所述接收模块包括接收电路和接收光学系统,所述接收电路包括多个接收单元,所述接收单元用于接收所述激光脉冲经被测物反射回的至少部分回 光脉冲并将其转换为电信号,所述接收光学系统用于将每个视场区域的回光脉冲汇聚到相应的所述接收电路上。
  33. 如权利要求32所述的激光测距装置,其特征在于,每个所述发射单元对应所述发射光学系统中的不同的光学元件。
  34. 如权利要求32或33所述的激光测距装置,其特征在于,所述接收光学系统包括在所述接收电路一侧的透镜组,所述多个接收单元共用一套所述透镜组。
  35. 如权利要求34所述的激光测距装置,其特征在于,多个所述发射单元在所述透镜组一侧一体化设置或在所述透镜组周围分散设置。
  36. 如权利要求33所述的激光测距装置,其特征在于,每个所述发射单元包括同步发光的、封装在同一封装结构中的一个或多个激光器。
  37. 如权利要求36所述的激光测距装置,其特征在于,所述封装在同一封装结构中的至少部分激光器集成在同一靶条上。
  38. 如权利要求32所述的激光测距装置,其特征在于,多个所述发射单元按设定顺序发光或按随机顺序发光。
  39. 如权利要求32所述的激光测距装置,其特征在于,多个所述发射单元发射的激光脉冲分别覆盖不同的视场区域。
  40. 如权利要求32所述的激光测距装置,其特征在于,多个所述发射单元的发射的激光脉冲所覆盖的视场区域部分重叠。
  41. 如权利要求32-40之一所述的激光测距装置,其特征在于,多个所述接收单元分别在不同的时间窗口内工作。
  42. 如权利要求41所述的激光测距装置,其特征在于,所述接收单元与所述发射单元一一对应,每个所述接收单元和与之对应的所述发射单元同步开启,以接收所述发射单元发射的激光脉冲的回光脉冲。
  43. 如权利要求42所述的激光测距装置,其特征在于,相邻的所述发射单元依次开启以发射激光脉冲,相邻的所述接收单元依次开启以接收所述激光脉冲的回光脉冲。
  44. 如权利要求42所述的激光测距装置,其特征在于,间隔排列的所述发射单元依次开启以发射激光脉冲,间隔排列的所述接收单元依次开启以接收所述激光脉冲的回光脉冲。
  45. 如权利要求32所述的激光测距装置,其特征在于,所述接收电路包括APD阵列,每个所述接收单元包括在所述APD阵列中的一个或多个APD。
  46. 如权利要求43所述的激光测距装置,其特征在于,相邻两个所述接收单元共用部分所述APD。
  47. 如权利要求44所述的激光测距装置,其特征在于,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括所述激光测距装置的视场的中心区域,部分或全部的所述接收单元共用位于所述APD阵列中心区域的APD,以接收由所述中心区域返回的回光脉冲。
  48. 如权利要求45所述的激光测距装置,其特征在于,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括所述激光测距装置的视场的中心区域,位于所述APD阵列中心区域的接收单元与所述部分或全部的发射单元同步开启,以接收由所述中心区域返回的回光脉冲。
  49. 一种激光测距方法,其特征在于,所述激光测距方法包括:
    控制多个发射单元依次开启以发射激光脉冲,每个所述发射单元发射的激光脉冲发散到对应的视场区域;
    控制接收单元开启,以接收所述激光脉冲经被测物反射回的至少部分回光脉冲,并将其转换为电信号。
  50. 如权利要求49所述的激光测距方法,其特征在于,所述控制多个发射单元依次发射激光脉冲包括:
    控制多个所述发射单元按设定顺序发光或按随机顺序发光。
  51. 如权利要求49所述的激光测距方法,其特征在于,多个所述发射单元发射的激光脉冲分别覆盖不同的视场区域。
  52. 如权利要求49所述的激光测距方法,其特征在于,多个所述发射单元的发射的激光脉冲所覆盖的视场区域部分重叠。
  53. 如权利要求52所述的激光测距方法,其特征在于,所述接收电路包括APD阵列,每个所述接收单元包括在所述APD阵列中的一个或多个APD,部分或全部的发射单元发射的激光脉冲所覆盖的视场区域均包括所述激光测距装置的视场的中心区域,所述控制接收单元开启包括:
    控制位于所述APD阵列中心区域的接收单元与所述部分或全部的发射单元同步开启,以接收由所述中心区域返回的回光脉冲。
  54. 如权利要求49所述的激光测距方法,其特征在于,所述控制接收单元开启包括:
    控制多个所述接收单元分别在不同的时间窗口内开启。
  55. 如权利要求54所述的激光测距方法,其特征在于,所述接收单元与 所述发射单元一一对应,所述控制接收单元开启包括:
    控制每个所述接收单元和与之对应的所述发射单元同步开启,以接收所述发射单元发射的激光脉冲的回光脉冲。
  56. 如权利要求55所述的激光测距方法,其特征在于,所述控制每个所述接收单元和与之对应的所述发射单元同步开启,包括:
    控制相邻的所述发射单元依次开启以发射激光脉冲,控制相邻的所述接收单元依次开启以接收所述激光脉冲的回光脉冲。
  57. 如权利要求55所述的激光测距方法,其特征在于,所述控制每个所述接收单元和与之对应的所述发射单元同步开启,包括:
    控制间隔排列的所述发射单元依次开启以发射激光脉冲,控制间隔排列的所述接收单元依次开启以接收所述激光脉冲的回光脉冲。
  58. 一种可移动平台,其特征在于,包括:
    如权利要求1-48中任一项所述的激光测距装置;
    可移动平台本体,所述激光测距装置设置于所述可移动平台本体上。
PCT/CN2020/083300 2020-04-03 2020-04-03 激光测距装置、激光测距方法和可移动平台 WO2021196201A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080005195.2A CN113767303A (zh) 2020-04-03 2020-04-03 激光测距装置、激光测距方法和可移动平台
PCT/CN2020/083300 WO2021196201A1 (zh) 2020-04-03 2020-04-03 激光测距装置、激光测距方法和可移动平台
US17/958,427 US20230022688A1 (en) 2020-04-03 2022-10-02 Laser distance measuring device, laser distance measuring method, and movable platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083300 WO2021196201A1 (zh) 2020-04-03 2020-04-03 激光测距装置、激光测距方法和可移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/958,427 Continuation US20230022688A1 (en) 2020-04-03 2022-10-02 Laser distance measuring device, laser distance measuring method, and movable platform

Publications (1)

Publication Number Publication Date
WO2021196201A1 true WO2021196201A1 (zh) 2021-10-07

Family

ID=77927570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083300 WO2021196201A1 (zh) 2020-04-03 2020-04-03 激光测距装置、激光测距方法和可移动平台

Country Status (3)

Country Link
US (1) US20230022688A1 (zh)
CN (1) CN113767303A (zh)
WO (1) WO2021196201A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206723A1 (en) * 2021-12-29 2023-07-05 Suteng Innovation Technology Co., Ltd Ranging method and device, storage medium, and lidar
WO2023164944A1 (zh) * 2022-03-04 2023-09-07 深圳市大疆创新科技有限公司 雪崩光电二极管阵列芯片、接收器、测距装置及可移动平台
CN116736267A (zh) * 2023-08-16 2023-09-12 深圳市灵明光子科技有限公司 一种激光测距接收芯片及其在标定过程中的配置方法
CN116413730B (zh) * 2021-12-29 2024-05-31 深圳市速腾聚创科技有限公司 测距方法、装置、存储介质及激光雷达

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184436B (zh) * 2023-03-07 2023-11-17 哈尔滨工业大学 阵列轨道角动量穿云透雾量子探测成像系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836046A (ja) * 1994-07-25 1996-02-06 Idec Izumi Corp アバランシェフォトダイオード光検知システム及びアバランシェフォトダイオード光検知システムを用いた光波測距装置
CN103412313A (zh) * 2013-07-30 2013-11-27 桂林理工大学 低空轻小型面阵激光雷达测量系统
CN109917354A (zh) * 2019-04-26 2019-06-21 上海禾赛光电科技有限公司 激光雷达的接收装置、激光雷达及其回波处理方法
CN110456374A (zh) * 2019-08-30 2019-11-15 上海禾赛光电科技有限公司 激光雷达的发射电路、激光雷达及激光雷达的测距方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169272B2 (ja) * 2016-11-16 2022-11-10 イノヴィズ テクノロジーズ リミテッド Lidarシステム及び方法
CN106840420A (zh) * 2017-02-23 2017-06-13 北京邮电大学 一种红外单光子探测设备
SG11201913642VA (en) * 2017-07-05 2020-01-30 Ouster Inc Light ranging device with electronically scanned emitter array and synchronized sensor array
CN108845331B (zh) * 2018-06-28 2021-01-12 中国电子科技集团公司信息科学研究院 一种激光雷达探测系统
CN110109085B (zh) * 2019-04-15 2022-09-30 东南大学 基于双模切换的低功耗宽量程阵列型光子计时读出电路
CN110927734B (zh) * 2019-11-24 2024-03-08 深圳奥锐达科技有限公司 一种激光雷达系统及其抗干扰方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836046A (ja) * 1994-07-25 1996-02-06 Idec Izumi Corp アバランシェフォトダイオード光検知システム及びアバランシェフォトダイオード光検知システムを用いた光波測距装置
CN103412313A (zh) * 2013-07-30 2013-11-27 桂林理工大学 低空轻小型面阵激光雷达测量系统
CN109917354A (zh) * 2019-04-26 2019-06-21 上海禾赛光电科技有限公司 激光雷达的接收装置、激光雷达及其回波处理方法
CN110456374A (zh) * 2019-08-30 2019-11-15 上海禾赛光电科技有限公司 激光雷达的发射电路、激光雷达及激光雷达的测距方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206723A1 (en) * 2021-12-29 2023-07-05 Suteng Innovation Technology Co., Ltd Ranging method and device, storage medium, and lidar
CN116413730A (zh) * 2021-12-29 2023-07-11 深圳市速腾聚创科技有限公司 测距方法、装置、存储介质及激光雷达
CN116413730B (zh) * 2021-12-29 2024-05-31 深圳市速腾聚创科技有限公司 测距方法、装置、存储介质及激光雷达
WO2023164944A1 (zh) * 2022-03-04 2023-09-07 深圳市大疆创新科技有限公司 雪崩光电二极管阵列芯片、接收器、测距装置及可移动平台
CN116736267A (zh) * 2023-08-16 2023-09-12 深圳市灵明光子科技有限公司 一种激光测距接收芯片及其在标定过程中的配置方法
CN116736267B (zh) * 2023-08-16 2023-12-15 深圳市灵明光子科技有限公司 一种激光测距接收芯片及其在标定过程中的配置方法

Also Published As

Publication number Publication date
CN113767303A (zh) 2021-12-07
US20230022688A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2021196201A1 (zh) 激光测距装置、激光测距方法和可移动平台
US11296137B2 (en) High quantum efficiency Geiger-mode avalanche diodes including high sensitivity photon mixing structures and arrays thereof
CN107346062B (zh) 一种二极管激光器光束准直的方法
US20230014366A1 (en) Laser transceiver system, lidar, and autonomous driving apparatus
CN111954827B (zh) 利用波长转换的lidar测量系统
CN113167870B (zh) 激光收发系统、激光雷达及自动驾驶设备
US20210239801A1 (en) Laser-ranging device and mobile apparatus
CN106371101A (zh) 一种智能测距及避障的装置
WO2020237764A1 (zh) 激光雷达装置
Lee et al. Single-chip beam scanner with integrated light source for real-time light detection and ranging
CN114200426A (zh) 光接收模块、光接收方法、激光雷达系统以及车辆
CN112558105A (zh) 激光雷达系统及激光雷达系统的控制方法
CN113589317A (zh) 一种激光雷达和二维扫描方法
US11978754B2 (en) High quantum efficiency Geiger-mode avalanche diodes including high sensitivity photon mixing structures and arrays thereof
KR20220012319A (ko) 필드 각도에 따라 조명 파장을 변화시키기 위한 능동 조명 시스템들
EP3797317B1 (en) Short wavelength infrared lidar
WO2022061821A1 (zh) 器件及其制备方法、接收芯片、测距装置、可移动平台
CN108828559A (zh) 激光雷达装置和激光雷达系统
WO2022198386A1 (zh) 激光测距装置、激光测距方法和可移动平台
CN111413687A (zh) 激光雷达光学系统与激光雷达
CN112462387A (zh) 一种仿生复眼式激光雷达系统及方法
WO2023164944A1 (zh) 雪崩光电二极管阵列芯片、接收器、测距装置及可移动平台
Hallman et al. On two-dimensional rangefinding using a∼ 1 nJ/∼ 100 ps laser diode transmitter and a CMOS SPAD matrix
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
Qian et al. Single Photon Detectors for Automotive LiDAR Applications: State-of-the-Art and Research Challenges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929413

Country of ref document: EP

Kind code of ref document: A1