WO2022041785A1 - Ground coat glaze of stainless steel enamel plate, and preparation method therefor and application thereof - Google Patents

Ground coat glaze of stainless steel enamel plate, and preparation method therefor and application thereof Download PDF

Info

Publication number
WO2022041785A1
WO2022041785A1 PCT/CN2021/087687 CN2021087687W WO2022041785A1 WO 2022041785 A1 WO2022041785 A1 WO 2022041785A1 CN 2021087687 W CN2021087687 W CN 2021087687W WO 2022041785 A1 WO2022041785 A1 WO 2022041785A1
Authority
WO
WIPO (PCT)
Prior art keywords
glaze
stainless steel
temperature
enamel
time
Prior art date
Application number
PCT/CN2021/087687
Other languages
French (fr)
Chinese (zh)
Inventor
邢翰学
曹益亭
傅昂挺
张军
黄新亮
Original Assignee
浙江开尔新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江开尔新材料股份有限公司 filed Critical 浙江开尔新材料股份有限公司
Publication of WO2022041785A1 publication Critical patent/WO2022041785A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/02Coating with enamels or vitreous layers by wet methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel

Definitions

  • the invention relates to the field of enamel material preparation, in particular to a bottom glaze glaze of a stainless steel enamel plate and a preparation method and application thereof.
  • Enamel plate refers to a composite material in which inorganic vitreous materials are condensed on the base steel plate by melting and firmly combined with the steel plate. Enamel coating on the surface of the steel plate can prevent the steel plate from rusting, so that the steel plate will not form an oxide layer on the surface when it is heated and can resist the erosion of various liquids. Enamel products have excellent properties such as high hardness, high temperature resistance, wear resistance, insulation, safety and non-toxicity, and easy washing and cleaning, and the enamel layer can also give the products a beautiful appearance. Inner and outer walls, decorative wall panels for tunnels, sterile operating room walls, pedestrian underpass wall panels and heat exchangers, etc.
  • the enamel plate is generally made of low carbon steel plate, but once the edge and corner of the low carbon steel enamel plate explodes, the bottom plate exposed to the external environment will be rusted. Furthermore, when it is used as an outer curtain wall, due to the The larger perforation rate pursued by the exterior curtain wall decoration will also cause the problem of plate deformation.
  • These problems have been the main reasons for limiting the application of mild steel enamel panels in exterior curtain wall decoration.
  • stainless steel has the properties of corrosion resistance, high strength, steel deformation is not easy to break, and environmental protection, and stainless steel has good ductility and toughness, suitable for harsh environments (humidity, acid and alkali and other indoor and outdoor environments) use. Therefore, replacing low carbon steel with stainless steel base material will be able to solve some problems existing in the current exterior curtain wall decoration.
  • the present invention achieves the goals of good enamel adhesion and high quality of the porcelain surface by improving the formulation and preparation process of the enamel layer bottom glaze glaze.
  • a base glaze for a stainless steel enamel plate comprising the following components: in terms of mass percentage, including the following components: SiO 2 30-38%; B 2 O 3 15-19%; Al 2 O 3 6-10%; TiO2 1-2 %; BaO 1-4%; Na2O 14-19%; K2O 5-10 %; MgO 0.1-0.6%; P2O5 2-4 %; ZnO 0.2-0.8%; Cr2O3 0.1-0.3%; CuO 0.4-0.8%; CoO 0.3-0.9%; NiO 0.7-1.2% and MnO2 0.8-1.3%.
  • bottom glaze There are two types of stainless steel enamel glaze: bottom glaze and top glaze.
  • the bottom glaze needs to be combined with stainless steel. How to make the bottom glaze and stainless steel achieve high adhesion is the technical difficulty of stainless steel enamel plates.
  • SiO 2 is the main component and is the main glass network forming body.
  • Increasing the content of SiO 2 in the range of 30-38% can improve the mechanical strength and hardness of the glaze, as well as the gloss, chemical stability and thermal stability of the glaze.
  • the B 2 O 3 in the glaze provided by the present invention is not only a solvent for the enamel but also a network former of the enamel, which can promote the formation of a glass phase at a low temperature stage.
  • the increase of B 2 O 3 content will increase the mechanical strength and abrasion resistance of the enamel.
  • B 2 O 3 has a good fluxing effect, which can reduce the softening temperature, viscosity, surface tension and expansion coefficient of the enamel, which is beneficial to the melting of metal oxides and the formation of adhesion.
  • Al 2 O 3 in the glaze provided by the present invention is an intermediate oxide, which can not only combine with silicon dioxide, but also combine with alkaline oxides. It can not only improve the vitrification ability of the enamel, but also inhibit the crystallization, and can significantly improve the elasticity, hardness and chemical stability of the glaze, and improve the resistance to chemical corrosion.
  • the TiO2 in the glaze provided by the present invention is to increase the opacity, acid resistance and luster of the enamel. Due to the good opacity, the enamel only needs to be coated with a thin layer, so this porcelain layer has high thermal stability, impact resistance and flexural strength, and has good chemical stability; at the same time, TiO 2 improves the luster of the enamel. , make the surface of enamel products more smooth and delicate.
  • BaO in the glaze provided by the invention is a fluxing agent, barium has the largest ionic radius among alkali metals, the strongest alkalinity is also the best fluxing effect among alkali metal oxidations, and can also improve the anti-organic resistance of the glaze. Acid corrosion ability.
  • K 2 O and Na 2 O in the glaze provided by the invention are strong fluxes of the glaze, which can significantly reduce the melting temperature and high temperature viscosity of the glaze, increase the refractive index of the glaze, and thereby improve the gloss of the glaze.
  • K 2 O and Na 2 O have low melting points. During the melting process of enamel, they are prone to chemical reaction with SiO 2 , and the reaction will release a lot of heat, thereby reducing the external heating temperature and reducing the viscosity at high temperature.
  • MgO is also a fluxing agent of the glaze, which can not only reduce the melt viscosity, but also reduce the expansion coefficient of the glaze, reduce the cracking of the glaze surface, and improve the quality of the porcelain surface.
  • the P 2 O 5 in the glaze provided by the invention can increase the opacity of the glaze, increase the reflection coefficient of the porcelain layer, and cooperate with titanium dioxide to jointly improve the chemical stability of the glaze.
  • the ZnO in the glaze provided by the invention can play a good fluxing effect in a large range, reduce the expansion coefficient of the glaze, and improve the gloss.
  • the mass fraction of zinc oxide is selected to be 0.2-0.8%.
  • the Cr 2 O 3 in the glaze provided by the invention can improve the chemical stability and high temperature resistance performance of the enamel, and at the same time can also be beneficial to the formation of the stainless steel enamel adhesion in the invention.
  • CuO, CoO, NiO and MnO 2 in the glaze provided by the present invention are adhesives, and the four adhesives have an interaction relationship, and their interaction can react with iron, so that the enamel penetrates into the surface layer of the steel plate and promotes the enamel glaze Infiltrating the stainless steel surface at high temperature promotes the dissolution of iron and iron oxide, and controls the oxidation conditions of the interface, which is conducive to the formation of a more uniform bubble structure in the porcelain layer and a good adhesion between the bottom glaze and the stainless steel.
  • the bottom glaze of the above-mentioned stainless steel enamel plate in terms of mass percentage, includes the following components: SiO 2 36.39%; B 2 O 3 17.87%; Al 2 O 3 7.06%; TiO 2 1.15%; BaO 2.79% ; Na 2 O 17.59%; K 2 O 9.96%; MgO 0.18%; P 2 O 5 2.95%; ZnO 0.57%; Cr 2 O 3 0.15% ; %.
  • the invention also discloses a method for preparing the base glaze of the above-mentioned stainless steel enamel plate, comprising the following steps: (1) mixing the components according to the proportion;
  • the enamel frit is turned into a ball mill and ground to form a glaze.
  • the melting temperature is 1000-1200° C.
  • the enamel frit is ground and passed through a 70-90 mesh sieve.
  • a stainless steel enamel plate comprising a stainless steel substrate, a bottom glaze and a top glaze; the bottom glaze and the top glaze are sequentially attached to the stainless steel substrate; and the raw material of the bottom glaze is any one of claims 1-2 The bottom glaze glaze.
  • the surface glaze formula in the present invention has no particularity, and the general surface glaze formula can realize enamel coating.
  • the components of the surface glaze are: SiO 2 : 30%-50%, B 2 O 3 : 15%-25%, Al 2 O 3 : 5%-10%, CaO: 3%-5% %, TiO 2 : 15% to 18%, BaO: 7% to 10%, Na 2 O: 10% to 16%, K 2 O: 3% to 5%, MgO: 0.5% to 0.8%, P 2 O 5 : 2% to 4%, ZnO: 2% to 5%.
  • the thickness of the bottom glaze is controlled at 90-140um; the thickness of the top glaze is controlled at 80-120um.
  • the thickness of the porcelain layer has a great influence on the porcelain surface and the adhesion.
  • the thickness of the bottom glaze is between 90-140um to obtain a better porcelain surface and a better adhesion level.
  • the problem of chromatic aberration if the thickness of the surface glaze exceeds 120um, it is easy to have insufficient surface uniformity, and the problem of chromatic aberration will also occur.
  • the firing temperature of the bottom glaze is 800-840°C, and the firing time is 4 minutes; the firing temperature of the top glaze is 800-840°C, and the firing time is 4-5 minutes.
  • the stainless steel substrate is austenitic stainless steel, and the content of some chemical elements in it is as follows: carbon ⁇ 0.030%, silicon ⁇ 1.00%, manganese ⁇ 2.00%, phosphorus ⁇ 0.035%, sulfur ⁇ 0.030%, nickel 8.00- 20.00%, chromium 18.00-20.00%.
  • the commonly used stainless steel is austenitic stainless steel, so the present invention focuses on the enamelling on austenitic stainless steel.
  • the bottom glaze glaze provided by the present invention has the best enamel coating effect on the austenitic stainless steel with the above chemical element content.
  • the invention also discloses the preparation method of the above-mentioned stainless steel enamel plate, comprising the following steps:
  • S1 stainless steel substrate preparation stainless steel plate is obtained after laser nitrogen cutting, corner bending, laser welding, grinding and surface treatment;
  • S2 glaze spraying glaze spraying by wet spraying process
  • the bottom glaze firing temperature is 800-840 °C, and the firing time is 4 minutes; the surface glaze firing temperature is 800-840 °C, and the firing time is 4-5 minutes.
  • the invention uses laser cutting to complete the cutting of the stainless steel plate, which can ensure the accuracy of the cutting size and facilitate the installation of the plate; and nitrogen cutting is used to protect the cutting surface from being oxidized, reduce the probability of the knife edge bursting, and the laser automatically cuts, reducing labor operation, to maximize the production capacity, the used stainless steel laser cutting process is consistent with the existing process, and the present invention will not describe it in detail. Corner bending is formed according to the existing production process. Due to the special material of stainless steel, the deformation of manual welding is large, and the process test is changed to laser welding. Since the oxidation of the laser welding seam is less, the welding seam can be slightly polished. In addition, the present invention achieves the purpose of good enamel adhesion and high quality of the enamel surface at a firing temperature of 800° C. at a low temperature.
  • the thickness of the stainless steel plate during laser welding in S1 is 1.5mm, the welding power is 800W, the welding speed is 0.8m/min, and the focal length is the positive focus point.
  • the welding parameters of the normal production steel plate are the welding power of 2400W, the welding speed of 1m/min, and the focal length of the positive focus point.
  • the present invention reduces the power to reduce the amount of deformation, and then reduces the welding speed by reducing the welding speed. In order to achieve the effect of full welding seam, but the power is too low, the plate cannot be fully welded, and the laser light output is unstable.
  • the welding effect of stainless steel plate is the best under the above parameters.
  • the surface treatment in the S1 is specifically:
  • the first course degreasing, sodium carbonate concentration: 8-10%, temperature: 60-70 °C, time: 7-8min;
  • Second pass degreasing, sodium carbonate concentration: 8-10%, temperature: 60-70°C, time: 7-8min;
  • the third course hot water rinse, temperature: 50-60 °C, time: 3-4min;
  • the fourth course rinse with cold water, normal temperature, time: 2-3min;
  • the fifth step drying, temperature: 300-350 °C, time: 8-10min.
  • the method to increase the adhesion of stainless steel in the industry is surface sandblasting, which forms a certain roughness on the surface of the stainless steel plate, but the sandblasting of the large plate is difficult for the site, equipment and uniformity.
  • the invention adopts the chemical immersion method to treat the surface of the stainless steel, which has the advantages of small treatment difficulty and good effect.
  • the present invention obtains a smooth and delicate porcelain surface through the overall ratio of the above-mentioned components, using titanium dioxide and phosphorus pentoxide with good turbidity, and cooperates with CuO, CoO, NiO, MnO 2 to promote adhesion, and then combine with
  • the bottom glaze of the stainless steel enamel plate provided by the present invention has the characteristics of high adhesion, high weather resistance and high corrosion resistance;
  • the stainless steel enamel plate prepared by using the glaze provided by the present invention at a relatively low firing temperature has good adhesion, and the obtained enamel porcelain surface is smooth and delicate;
  • Table 1 List of mass fractions (%) of each component in Examples 1-3
  • a preparation method of bottom glaze glaze of stainless steel enamel plate comprising the following steps:
  • Examples 4-6 were prepared by using the glaze formulations of Examples 1-3 respectively.
  • a preparation method of a stainless steel enamel plate comprising the following steps:
  • S1 stainless steel substrate preparation 304 stainless steel plate is obtained after laser nitrogen cutting, corner bending, laser welding, grinding and surface treatment;
  • the thickness of the stainless steel plate is 1.5mm, the welding power is 800W, the welding speed is 0.8m/min, and the focal length is the positive focus point;
  • the surface treatment is as follows:
  • the first course degreasing, concentration: 8%, temperature: 70°C, time: 8min;
  • Second pass degreasing, concentration: 8%, temperature: 70°C, time: 8min;
  • the third course hot water rinse, temperature: 50-60 °C, time: 3min;
  • the fourth course rinse with cold water, normal temperature, time: 2min;
  • the fifth step drying, temperature: 300°C, time: 8min;
  • S2 glaze spraying use the base glaze glaze of Example 4 to carry out glaze spraying by wet spraying process; the base glaze thickness is controlled at 90-140um; the top glaze thickness is controlled at 80-120um;
  • Examples 7-9 all adopt the above-mentioned preparation method, the difference is that the firing temperature of the bottom glaze is 800°C, 820°C and 840°C, respectively.
  • Example 7-9 The base glaze in Example 7-9 was changed to the base glaze glaze prepared in Example 5, and the rest was the same as that of Example 7-9.
  • Example 4-6 The bottom glaze in Example 4-6 was changed to the bottom glaze glaze prepared in Example 6 and fired, and the rest were the same as those in Example 7-9.
  • the stainless steel enamel glaze is obtained according to the components and mass fractions of Example 1 to Example 3. After firing at different temperatures, the porcelain surfaces fired by the glaze formula of Example 1 are all smooth and delicate. , the lowest temperature required to form a level 1 bond. Therefore, the base glaze glaze formula of Example 1 is the best formula, and the obtained stainless steel enamel glaze has good porcelain surface quality while ensuring good adhesion.
  • the spraying thickness of the bottom glaze was modified to 90-120um and 120-140um respectively, and the rest were the same as those in Example 7.
  • the spraying thickness of the bottom glaze was modified to 30-50um, 50-70um, 70-90um, and 140-160um respectively, and the rest were the same as those in Example 7.
  • the thickness of the underglaze porcelain layer has a great influence on the porcelain surface and the adhesion.
  • the porcelain layer thickness between 90-140um can obtain better porcelain surface and better adhesion.
  • the 304 stainless steel plate was welded by laser welding, and the welding power and welding speed were changed.
  • the welding effect is shown in Table 4.
  • Table 4 Stainless steel welding process test record table: using laser welding process.

Abstract

A ground coat glaze of a stainless steel enamel plate, comprising the following components in mass percentage: 30-38% of SiO2; 15-19% of B2O3; 6-10% of Al2O3; 1-2% of TiO2; 1-4% of BaO; 14-19% of Na2O; 5-10% of K2O; 0.1-0.6% of MgO; 2-4% of P2O5; 0.2-0.8% of ZnO; 0.1-0.3% of Cr2O3; 0.4-0.8% of CuO; 0.3-0.9% of CoO; 0.7-1.2% of NiO; and 0.8-1.3% of MnO2. The stainless steel enamel plate prepared from the glaze at a low sintering temperature has good adhesion, and the obtained enamel surface is smooth and fine.

Description

一种不锈钢搪瓷板的底釉釉料及其制备方法和应用Bottom glaze for stainless steel enamel plate and preparation method and application thereof 技术领域technical field
本发明涉及搪瓷材料制备领域,具体的说涉及一种不锈钢搪瓷板的底釉釉料及其制备方法和应用。The invention relates to the field of enamel material preparation, in particular to a bottom glaze glaze of a stainless steel enamel plate and a preparation method and application thereof.
背景技术Background technique
搪瓷板,是指一种将无机玻璃质材料通过熔融凝于基体钢板并与钢板牢固结合在一起的复合材料。在钢板表面进行瓷釉涂搪可以防止钢板生锈,使钢板在受热时不至于在表面形成氧化层并且能抵抗各种液体的侵蚀。搪瓷制品具有硬度高、耐高温、耐磨、绝缘、安全无毒和易于洗涤洁净等优良性能,并且瓷釉层还可以赋予制品美丽的外表,因此,被广泛用于地铁车站用装饰墙板、建筑内外墙、隧道用装饰墙板、无菌手术室墙面、人行地下通道墙板和换热器等领域。Enamel plate refers to a composite material in which inorganic vitreous materials are condensed on the base steel plate by melting and firmly combined with the steel plate. Enamel coating on the surface of the steel plate can prevent the steel plate from rusting, so that the steel plate will not form an oxide layer on the surface when it is heated and can resist the erosion of various liquids. Enamel products have excellent properties such as high hardness, high temperature resistance, wear resistance, insulation, safety and non-toxicity, and easy washing and cleaning, and the enamel layer can also give the products a beautiful appearance. Inner and outer walls, decorative wall panels for tunnels, sterile operating room walls, pedestrian underpass wall panels and heat exchangers, etc.
目前,搪瓷板一般是选用低碳钢钢板,但是低碳钢搪瓷板一旦出现边角爆瓷,就会使暴露在外环境中的底板出现锈蚀问题,再者,将其用作外幕墙时,由于外幕墙装饰追求的较大穿孔率也会引起板块变形问题。这些问题一直是限制低碳钢搪瓷板在外幕墙装饰的应用中的主要原因。而不锈钢相比一般的低碳钢板具有耐腐蚀、高强度、钢材变形不易破裂和环保的性能,且不锈钢具有良好的延展性和韧性,适用于恶劣环境(湿、酸碱等户内外环境)下使用。所以用不锈钢基材替代低碳钢将能够顺利的解决目前外幕墙装饰上存在的一些问题,但是不锈钢搪瓷板存在底釉与不锈钢结合不牢固、搪瓷层易脱落的问题。At present, the enamel plate is generally made of low carbon steel plate, but once the edge and corner of the low carbon steel enamel plate explodes, the bottom plate exposed to the external environment will be rusted. Furthermore, when it is used as an outer curtain wall, due to the The larger perforation rate pursued by the exterior curtain wall decoration will also cause the problem of plate deformation. These problems have been the main reasons for limiting the application of mild steel enamel panels in exterior curtain wall decoration. Compared with ordinary low-carbon steel plates, stainless steel has the properties of corrosion resistance, high strength, steel deformation is not easy to break, and environmental protection, and stainless steel has good ductility and toughness, suitable for harsh environments (humidity, acid and alkali and other indoor and outdoor environments) use. Therefore, replacing low carbon steel with stainless steel base material will be able to solve some problems existing in the current exterior curtain wall decoration.
因此,如何提供一种底釉与不锈钢结合牢固、且具有优异化学性能的不锈钢搪瓷板是本领域亟需解决的技术问题。Therefore, how to provide a stainless steel enamel plate in which the base glaze is firmly combined with the stainless steel and has excellent chemical properties is a technical problem that needs to be solved urgently in the art.
发明内容SUMMARY OF THE INVENTION
鉴于上述问题,本发明通过搪瓷层底釉釉料配方和制备工艺的改进实现了搪瓷密着好,且瓷面质量高的目的。In view of the above problems, the present invention achieves the goals of good enamel adhesion and high quality of the porcelain surface by improving the formulation and preparation process of the enamel layer bottom glaze glaze.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种不锈钢搪瓷板的底釉釉料,按质量百分比计,包括以下组分:按质量百分比计,包括以下组分:SiO 2 30-38%;B 2O 3 15-19%;Al 2O 3 6-10%;TiO 2 1-2%;BaO 1-4%;Na 2O 14-19%;K 2O 5-10%;MgO 0.1-0.6%;P 2O 5 2-4%;ZnO 0.2-0.8%;Cr 2O 3 0.1-0.3%;CuO 0.4-0.8%;CoO 0.3-0.9%;NiO 0.7-1.2%和MnO 2 0.8-1.3%。 A base glaze for a stainless steel enamel plate, in terms of mass percentage, comprising the following components: in terms of mass percentage, including the following components: SiO 2 30-38%; B 2 O 3 15-19%; Al 2 O 3 6-10%; TiO2 1-2 %; BaO 1-4%; Na2O 14-19%; K2O 5-10 %; MgO 0.1-0.6%; P2O5 2-4 %; ZnO 0.2-0.8%; Cr2O3 0.1-0.3%; CuO 0.4-0.8%; CoO 0.3-0.9%; NiO 0.7-1.2% and MnO2 0.8-1.3%.
不锈钢搪瓷釉料分两种:底釉釉料和面釉釉料,其中底釉是需要与不锈钢进行结合的,如何使底釉与不锈钢能够实现高附着是不锈钢搪瓷板的技术难点。There are two types of stainless steel enamel glaze: bottom glaze and top glaze. The bottom glaze needs to be combined with stainless steel. How to make the bottom glaze and stainless steel achieve high adhesion is the technical difficulty of stainless steel enamel plates.
本发明提供的釉料中SiO 2是主要成分,是主要的玻璃网络形成体,釉料中SiO 2的量越高,烧成温度也越高。在SiO 2的含量在30-38%的范围内提高可以提高釉料的机械强度和硬度,也能够提高釉面的光泽度、化学稳定性和热稳定性。 In the glaze provided by the present invention, SiO 2 is the main component and is the main glass network forming body. The higher the amount of SiO 2 in the glaze, the higher the firing temperature. Increasing the content of SiO 2 in the range of 30-38% can improve the mechanical strength and hardness of the glaze, as well as the gloss, chemical stability and thermal stability of the glaze.
本发明提供的釉料中的B 2O 3不仅是瓷釉的溶剂亦是瓷釉的网络形成体,会在低温阶段促进玻璃相的形成。B 2O 3含量增加会使瓷釉的机械强度增大,抗磨性提高。B 2O 3有很好的助熔作用,能降低瓷釉的软化温度、粘度、表面张力及膨胀系数,利于熔解金属氧化物,有助于密着的形成。 The B 2 O 3 in the glaze provided by the present invention is not only a solvent for the enamel but also a network former of the enamel, which can promote the formation of a glass phase at a low temperature stage. The increase of B 2 O 3 content will increase the mechanical strength and abrasion resistance of the enamel. B 2 O 3 has a good fluxing effect, which can reduce the softening temperature, viscosity, surface tension and expansion coefficient of the enamel, which is beneficial to the melting of metal oxides and the formation of adhesion.
本发明提供的釉料中的Al 2O 3是中间体氧化物,不仅能与二氧化硅结合,也能与碱性氧化物结合。不仅能够提高瓷釉的玻璃化能力,也能够抑制析晶,能够显著提高釉料的弹性、硬度和化学稳定性,提高抗化学腐蚀能力。 Al 2 O 3 in the glaze provided by the present invention is an intermediate oxide, which can not only combine with silicon dioxide, but also combine with alkaline oxides. It can not only improve the vitrification ability of the enamel, but also inhibit the crystallization, and can significantly improve the elasticity, hardness and chemical stability of the glaze, and improve the resistance to chemical corrosion.
本发明提供的釉料中的TiO 2是增加瓷釉的乳浊作用,耐酸性和光泽。由于乳浊性好,瓷釉只需薄薄的涂布一层,因而这种瓷层具有高的热稳定性和 耐冲击以及抗折强度,具有良好的化学稳定性;同时TiO 2提高瓷釉的光泽,使搪瓷制品的表面更加光滑细腻。 The TiO2 in the glaze provided by the present invention is to increase the opacity, acid resistance and luster of the enamel. Due to the good opacity, the enamel only needs to be coated with a thin layer, so this porcelain layer has high thermal stability, impact resistance and flexural strength, and has good chemical stability; at the same time, TiO 2 improves the luster of the enamel. , make the surface of enamel products more smooth and delicate.
本发明提供的釉料中的BaO是一种助熔剂,钡在碱金属中离子半径最大,碱性最强也是碱金属氧化中中助熔效果最佳的一个,也能够提高釉面的抗有机酸腐蚀能力。BaO in the glaze provided by the invention is a fluxing agent, barium has the largest ionic radius among alkali metals, the strongest alkalinity is also the best fluxing effect among alkali metal oxidations, and can also improve the anti-organic resistance of the glaze. Acid corrosion ability.
本发明提供的釉料中的K 2O和Na 2O为釉料的强助熔剂,能显著的降低釉的熔融温度和高温粘度,增大釉的折射率,从而提高釉面的光泽度。K 2O和Na 2O熔点较低,在瓷釉熔制的过程中,容易与SiO 2发生化学反应,反应会放出大量的热量,从而降低外界的加热温度,并且在高温下能降低粘度。 K 2 O and Na 2 O in the glaze provided by the invention are strong fluxes of the glaze, which can significantly reduce the melting temperature and high temperature viscosity of the glaze, increase the refractive index of the glaze, and thereby improve the gloss of the glaze. K 2 O and Na 2 O have low melting points. During the melting process of enamel, they are prone to chemical reaction with SiO 2 , and the reaction will release a lot of heat, thereby reducing the external heating temperature and reducing the viscosity at high temperature.
本发明中MgO也是釉料的一种助熔剂,不仅能够降低熔体粘度,还可以降低釉的膨胀系数,减少釉面龟裂,提高瓷面品质。In the present invention, MgO is also a fluxing agent of the glaze, which can not only reduce the melt viscosity, but also reduce the expansion coefficient of the glaze, reduce the cracking of the glaze surface, and improve the quality of the porcelain surface.
本发明提供的釉料中的P 2O 5能增加瓷釉的乳浊作用,增加瓷层的反射系数,配合二氧化钛,共同提高釉料的化学稳定性。 The P 2 O 5 in the glaze provided by the invention can increase the opacity of the glaze, increase the reflection coefficient of the porcelain layer, and cooperate with titanium dioxide to jointly improve the chemical stability of the glaze.
本发明提供的釉料中的ZnO能在较大范围内起到良好的助熔作用,降低釉料的膨胀系数,提高光泽度。但是使用过量会使釉料析晶导致釉面失去通透性,因此选择选择氧化锌的质量分数在0.2-0.8%。The ZnO in the glaze provided by the invention can play a good fluxing effect in a large range, reduce the expansion coefficient of the glaze, and improve the gloss. However, excessive use will cause the glaze to crystallize and cause the glaze to lose its permeability. Therefore, the mass fraction of zinc oxide is selected to be 0.2-0.8%.
本发明提供的釉料中的Cr 2O 3能提高瓷釉的化学稳定性和耐高温性能,同时也能有利于本发明中不锈钢瓷釉密着的形成。 The Cr 2 O 3 in the glaze provided by the invention can improve the chemical stability and high temperature resistance performance of the enamel, and at the same time can also be beneficial to the formation of the stainless steel enamel adhesion in the invention.
本发明提供的釉料中的CuO、CoO、NiO、MnO 2为密着剂,四种密着剂存在互相作用的关系,它们的互相作用能够与铁发生反应,从而让瓷釉渗透到钢板表层,促进瓷釉在高温下浸润不锈钢表面,促进铁与氧化铁的溶解,控制界面的氧化条件,有利于瓷层形成较为均匀的气泡结构,对底釉与不锈钢形成良好的密着。 CuO, CoO, NiO and MnO 2 in the glaze provided by the present invention are adhesives, and the four adhesives have an interaction relationship, and their interaction can react with iron, so that the enamel penetrates into the surface layer of the steel plate and promotes the enamel glaze Infiltrating the stainless steel surface at high temperature promotes the dissolution of iron and iron oxide, and controls the oxidation conditions of the interface, which is conducive to the formation of a more uniform bubble structure in the porcelain layer and a good adhesion between the bottom glaze and the stainless steel.
优选的,上述不锈钢搪瓷板的底釉釉料,按质量百分比计,包括以下组分:SiO 2 36.39%;B 2O 3 17.87%;Al 2O 3 7.06%;TiO 2 1.15%;BaO 2.79%;Na 2O  17.59%;K 2O 9.96%;MgO 0.18%;P 2O 5 2.95%;ZnO 0.57%;Cr 2O 3 0.15%;CuO 0.57%;CoO 0.57%;NiO 1.05%和MnO 2 1.15%。 Preferably, the bottom glaze of the above-mentioned stainless steel enamel plate, in terms of mass percentage, includes the following components: SiO 2 36.39%; B 2 O 3 17.87%; Al 2 O 3 7.06%; TiO 2 1.15%; BaO 2.79% ; Na 2 O 17.59%; K 2 O 9.96%; MgO 0.18%; P 2 O 5 2.95%; ZnO 0.57%; Cr 2 O 3 0.15% ; %.
本发明还公开了上述不锈钢搪瓷板的底釉釉料的制备方法,包括以下步骤:(1)将各组分按照比例混合;The invention also discloses a method for preparing the base glaze of the above-mentioned stainless steel enamel plate, comprising the following steps: (1) mixing the components according to the proportion;
(2)将混合物放入高温炉中熔融;(2) put the mixture into the high temperature furnace to melt;
(3)熔平后放入水中急冷,形成瓷釉熔块;(3) put into water after melting and quench to form enamel frit;
(4)将瓷釉熔块翻入球磨机中研磨形成釉料。(4) The enamel frit is turned into a ball mill and ground to form a glaze.
优选的,所述步骤(2)中熔融温度为1000-1200℃,所述瓷釉熔块研磨后过70-90目筛。Preferably, in the step (2), the melting temperature is 1000-1200° C., and the enamel frit is ground and passed through a 70-90 mesh sieve.
一种不锈钢搪瓷板,包括不锈钢基板、底釉和面釉;所述底釉和所述面釉依次附着在所述不锈钢基板上;且所述底釉的原料为权利要求1-2任一项所述的底釉釉料。A stainless steel enamel plate, comprising a stainless steel substrate, a bottom glaze and a top glaze; the bottom glaze and the top glaze are sequentially attached to the stainless steel substrate; and the raw material of the bottom glaze is any one of claims 1-2 The bottom glaze glaze.
本发明中的面釉配方无特殊性,一般面釉配方均可实现涂搪。例如:按重量份计,面釉组分为:SiO 2:30%~50%,B 2O 3:15%~25%,Al 2O 3:5%~10%,CaO:3%~5%,TiO 2:15%~18%,BaO:7%~10%,Na 2O:10%~16%,K 2O:3%~5%,MgO:0.5%~0.8%,P 2O 5:2%~4%,ZnO:2%~5%。 The surface glaze formula in the present invention has no particularity, and the general surface glaze formula can realize enamel coating. For example, in parts by weight, the components of the surface glaze are: SiO 2 : 30%-50%, B 2 O 3 : 15%-25%, Al 2 O 3 : 5%-10%, CaO: 3%-5% %, TiO 2 : 15% to 18%, BaO: 7% to 10%, Na 2 O: 10% to 16%, K 2 O: 3% to 5%, MgO: 0.5% to 0.8%, P 2 O 5 : 2% to 4%, ZnO: 2% to 5%.
优选的,所述S2釉料喷涂时底釉厚度控制在90-140um;面釉厚度控制在80-120um。Preferably, when the S2 glaze is sprayed, the thickness of the bottom glaze is controlled at 90-140um; the thickness of the top glaze is controlled at 80-120um.
瓷层厚度对瓷面和密着有较大影响,底釉厚度在90-140um之间可以获得较好的瓷面与较好的密着等级,面釉厚度低于80um易出现无法遮盖底釉,产生色差的问题;面釉厚度超过120um,易出现表面均匀性不够,也会产生色差的问题。The thickness of the porcelain layer has a great influence on the porcelain surface and the adhesion. The thickness of the bottom glaze is between 90-140um to obtain a better porcelain surface and a better adhesion level. The problem of chromatic aberration; if the thickness of the surface glaze exceeds 120um, it is easy to have insufficient surface uniformity, and the problem of chromatic aberration will also occur.
优选的,所述底釉烧成温度800-840℃,烧成时间4min;所述面釉烧成温度800-840℃,烧成时间4-5min。Preferably, the firing temperature of the bottom glaze is 800-840°C, and the firing time is 4 minutes; the firing temperature of the top glaze is 800-840°C, and the firing time is 4-5 minutes.
优选的,所述不锈钢基板为奥氏体不锈钢,且其中的部分化学元素含量 如下:碳﹤0.030%,硅﹤1.00%,锰﹤2.00%,磷﹤0.035%,硫﹤0.030%,镍8.00-20.00%,铬18.00-20.00%。Preferably, the stainless steel substrate is austenitic stainless steel, and the content of some chemical elements in it is as follows: carbon < 0.030%, silicon < 1.00%, manganese < 2.00%, phosphorus < 0.035%, sulfur < 0.030%, nickel 8.00- 20.00%, chromium 18.00-20.00%.
由于不锈钢种类较多,有铁素体不锈钢、奥氏体不锈钢、奥氏体-铁素体双相不锈钢、马氏体不锈钢。而我们常用的不锈钢是奥氏体不锈钢,所以本发明重点研究的是在奥体不锈钢上的涂搪。本发明提供的底釉釉料在上述化学元素含量下的奥氏体不锈钢上涂搪的效果最佳。Due to the many types of stainless steel, there are ferritic stainless steel, austenitic stainless steel, austenitic-ferritic duplex stainless steel, and martensitic stainless steel. The commonly used stainless steel is austenitic stainless steel, so the present invention focuses on the enamelling on austenitic stainless steel. The bottom glaze glaze provided by the present invention has the best enamel coating effect on the austenitic stainless steel with the above chemical element content.
本发明还公开了上述不锈钢搪瓷板的制备方法,包括以下步骤:The invention also discloses the preparation method of the above-mentioned stainless steel enamel plate, comprising the following steps:
S1不锈钢基板准备:不锈钢板材经过激光氮气切割、边角折弯、激光焊接、打磨和表面处理后得到不锈钢基板;S1 stainless steel substrate preparation: stainless steel plate is obtained after laser nitrogen cutting, corner bending, laser welding, grinding and surface treatment;
S2釉料喷涂:采用湿法喷涂工艺进行釉料喷涂;S2 glaze spraying: glaze spraying by wet spraying process;
S3烘干:烘干温度150-200℃,时间10-15min;S3 drying: drying temperature 150-200 ℃, time 10-15min;
S4烧成:底釉烧成温度800-840℃,烧成时间4min;面釉烧成温度800-840℃,烧成时间4-5min。S4 firing: the bottom glaze firing temperature is 800-840 ℃, and the firing time is 4 minutes; the surface glaze firing temperature is 800-840 ℃, and the firing time is 4-5 minutes.
本发明采用激光切割完成对不锈钢板的切割,能够保证切割尺寸的精度,便于板块的安装;且选用氮气切割,保护切割面防止被氧化,减少刀口爆瓷的概率,激光自动切割,减少人工作业,实现产能的最大化,使用的不锈钢激光切割工艺与现有工艺是一致的,本发明不再具体描述。边角折弯按照现有的生产工艺折弯成型。由于不锈钢材质的特殊,人工焊接变形量较大,通过工艺试验改成激光焊接,由于激光焊接焊缝氧化较少,轻微抛光焊缝即可。并且本发明实现了在低温800℃的烧成温度下搪瓷密着好,瓷面质量高的目的。The invention uses laser cutting to complete the cutting of the stainless steel plate, which can ensure the accuracy of the cutting size and facilitate the installation of the plate; and nitrogen cutting is used to protect the cutting surface from being oxidized, reduce the probability of the knife edge bursting, and the laser automatically cuts, reducing labor operation, to maximize the production capacity, the used stainless steel laser cutting process is consistent with the existing process, and the present invention will not describe it in detail. Corner bending is formed according to the existing production process. Due to the special material of stainless steel, the deformation of manual welding is large, and the process test is changed to laser welding. Since the oxidation of the laser welding seam is less, the welding seam can be slightly polished. In addition, the present invention achieves the purpose of good enamel adhesion and high quality of the enamel surface at a firing temperature of 800° C. at a low temperature.
优选的,S1中所述激光焊接时不锈钢板的厚度为1.5mm,焊接功率为800W,焊接速度为0.8m/min,焦距为正对焦点。Preferably, the thickness of the stainless steel plate during laser welding in S1 is 1.5mm, the welding power is 800W, the welding speed is 0.8m/min, and the focal length is the positive focus point.
正常生产钢板的焊接参数为焊接功率2400W,焊接速度为1m/min,焦距为正对焦点,但焊接奥氏体不锈钢时不锈钢变形严重,本发明将功率降低使 变形量减少,然后通过降低焊接速度来达到焊缝饱满的效果,但功率过低板块焊不透,且激光器出光不稳定。上述参数下不锈钢板的焊接效果最好。The welding parameters of the normal production steel plate are the welding power of 2400W, the welding speed of 1m/min, and the focal length of the positive focus point. However, when welding austenitic stainless steel, the stainless steel is seriously deformed. The present invention reduces the power to reduce the amount of deformation, and then reduces the welding speed by reducing the welding speed. In order to achieve the effect of full welding seam, but the power is too low, the plate cannot be fully welded, and the laser light output is unstable. The welding effect of stainless steel plate is the best under the above parameters.
优选的,所述S1中表面处理具体为:Preferably, the surface treatment in the S1 is specifically:
第一道:脱脂,碳酸钠浓度:8-10%,温度:60-70℃,时间:7-8min;The first course: degreasing, sodium carbonate concentration: 8-10%, temperature: 60-70 ℃, time: 7-8min;
第二道:脱脂,碳酸钠浓度:8-10%,温度:60-70℃,时间:7-8min;Second pass: degreasing, sodium carbonate concentration: 8-10%, temperature: 60-70℃, time: 7-8min;
第三道:热水冲洗,温度:50-60℃,时间:3-4min;The third course: hot water rinse, temperature: 50-60 ℃, time: 3-4min;
第四道:冷水冲洗,常温,时间:2-3min;The fourth course: rinse with cold water, normal temperature, time: 2-3min;
第五道:烘干,温度:300-350℃,时间:8-10min。The fifth step: drying, temperature: 300-350 ℃, time: 8-10min.
现在行业内增加不锈钢密着的方法是表面喷砂处理,在不锈钢板表面形成一定的粗糙度,但大板喷砂对场地、设备、均匀性难度较大。本发明采用化学浸泡的方式对不锈钢表面处理,处理难度小、效果好。At present, the method to increase the adhesion of stainless steel in the industry is surface sandblasting, which forms a certain roughness on the surface of the stainless steel plate, but the sandblasting of the large plate is difficult for the site, equipment and uniformity. The invention adopts the chemical immersion method to treat the surface of the stainless steel, which has the advantages of small treatment difficulty and good effect.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明通过上述各组分的整体配比,利用二氧化钛和五氧化二磷具有好的乳浊度得到光滑细腻的瓷面,配合CuO、CoO、NiO、MnO 2的促进密着作用,再与其他组分配合,使本发明提供的不锈钢搪瓷板底釉釉料具备高附着、高耐候、高耐腐的特性; 1. The present invention obtains a smooth and delicate porcelain surface through the overall ratio of the above-mentioned components, using titanium dioxide and phosphorus pentoxide with good turbidity, and cooperates with CuO, CoO, NiO, MnO 2 to promote adhesion, and then combine with In combination with other components, the bottom glaze of the stainless steel enamel plate provided by the present invention has the characteristics of high adhesion, high weather resistance and high corrosion resistance;
2、使用本发明提供的釉料在较低的烧成温度下制备的不锈钢搪瓷板密着性好,且获得的搪瓷瓷面光滑细腻;2. The stainless steel enamel plate prepared by using the glaze provided by the present invention at a relatively low firing temperature has good adhesion, and the obtained enamel porcelain surface is smooth and delicate;
3、通过对制备方法的改进,进一步提高了不锈钢搪瓷板的密着性,解决了低碳钢搪瓷板碰撞后瓷层脱落,内部钢板没有搪瓷层保护,发生锈蚀的问题。3. Through the improvement of the preparation method, the adhesion of the stainless steel enamel plate is further improved, and the problem that the porcelain layer falls off after the collision of the low carbon steel enamel plate, the inner steel plate is not protected by the enamel layer, and the corrosion occurs.
具体实施方式detailed description
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发 明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be described clearly and completely below. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1-3Examples 1-3
一种不锈钢搪瓷板的底釉釉料,具体组分含量见表1。A kind of bottom glaze glaze of stainless steel enamel plate, the specific component content is shown in Table 1.
表1:实施例1-3各组分的质量分数列表(%)Table 1: List of mass fractions (%) of each component in Examples 1-3
组分component 实施例1Example 1 实施例2Example 2 实施例3Example 3
SiO 2 SiO2 36.3936.39 36.3936.39 3838
B 2O 3 B 2 O 3 17.8717.87 17.8717.87 1919
Al 2O 3 Al 2 O 3 7.067.06 7.067.06 7.067.06
TiO 2 TiO 2 1.151.15 1.151.15 1.151.15
BaOBaO 2.792.79 2.792.79 2.792.79
Na 2O Na 2 O 17.5917.59 17.5917.59 14.8514.85
K 2O K 2 O 9.969.96 9.969.96 9.969.96
MgOMgO 0.180.18 0.180.18 0.180.18
P 2O 5 P 2 O 5 2.952.95 2.952.95 2.952.95
ZnOZnO 0.570.57 0.570.57 0.570.57
Cr 2O 3 Cr 2 O 3 0.150.15 0.150.15 0.150.15
CuOCuO 0.570.57 0.660.66 0.570.57
CoOCoO 0.570.57 0.570.57 0.570.57
NiONiO 1.051.05 1.051.05 1.051.05
MnO 2 MnO 2 1.151.15 1.061.06 1.151.15
实施例4-6Examples 4-6
一种不锈钢搪瓷板的底釉釉料的制备方法,包括以下步骤:A preparation method of bottom glaze glaze of stainless steel enamel plate, comprising the following steps:
(1)将各组分按照比例混合;(1) mix each component according to the proportion;
(2)将混合物放入高温炉中,在1000-1200℃下熔融;(2) Put the mixture into a high-temperature furnace and melt at 1000-1200 °C;
(3)熔平后放入水中急冷,形成瓷釉熔块;(3) put into water after melting and quench to form enamel frit;
(4)将瓷釉熔块翻入球磨机中研磨过70-90目筛形成釉料。(4) Turn the enamel frit into a ball mill and grind it through a 70-90 mesh sieve to form a glaze.
实施例4-6分别采用实施例1-3的釉料配方进行制备。Examples 4-6 were prepared by using the glaze formulations of Examples 1-3 respectively.
实施例7-9Examples 7-9
一种不锈钢搪瓷板的制备方法,包括以下步骤:A preparation method of a stainless steel enamel plate, comprising the following steps:
S1不锈钢基板准备:304不锈钢板材经过激光氮气切割、边角折弯、激光焊接、打磨和表面处理后得到不锈钢基板;S1 stainless steel substrate preparation: 304 stainless steel plate is obtained after laser nitrogen cutting, corner bending, laser welding, grinding and surface treatment;
激光焊接时不锈钢板的厚度为1.5mm,焊接功率为800W,焊接速度为0.8m/min,焦距为正对焦点;During laser welding, the thickness of the stainless steel plate is 1.5mm, the welding power is 800W, the welding speed is 0.8m/min, and the focal length is the positive focus point;
表面处理具体为:The surface treatment is as follows:
第一道:脱脂,浓度:8%,温度:70℃,时间:8min;The first course: degreasing, concentration: 8%, temperature: 70℃, time: 8min;
第二道:脱脂,浓度:8%,温度:70℃,时间:8min;Second pass: degreasing, concentration: 8%, temperature: 70℃, time: 8min;
第三道:热水冲洗,温度:50-60℃,时间:3min;The third course: hot water rinse, temperature: 50-60 ℃, time: 3min;
第四道:冷水冲洗,常温,时间:2min;The fourth course: rinse with cold water, normal temperature, time: 2min;
第五道:烘干,温度:300℃,时间:8min;The fifth step: drying, temperature: 300℃, time: 8min;
S2釉料喷涂:使用实施例4的底釉釉料采用湿法喷涂工艺进行釉料喷涂;底釉厚度控制在90-140um;面釉厚度控制在80-120um;S2 glaze spraying: use the base glaze glaze of Example 4 to carry out glaze spraying by wet spraying process; the base glaze thickness is controlled at 90-140um; the top glaze thickness is controlled at 80-120um;
S3烘干:烘干温度160℃,时间12min;S3 drying: drying temperature 160 ℃, time 12min;
S4烧成:底釉烧成烧成时间4min;面釉烧成温度820℃,烧成时间4min。S4 firing: the bottom glaze is fired for 4 minutes; the top glaze is fired at 820°C and fired for 4 minutes.
实施例7-9均采用上述制备方法,不同的是底釉烧成温度分别为800℃、820℃和840℃。Examples 7-9 all adopt the above-mentioned preparation method, the difference is that the firing temperature of the bottom glaze is 800°C, 820°C and 840°C, respectively.
实施例10-12Examples 10-12
将实施例7-9中的底釉改成由实施例5制备的底釉釉料烧制,其余与实施例7-9相同。The base glaze in Example 7-9 was changed to the base glaze glaze prepared in Example 5, and the rest was the same as that of Example 7-9.
对比例13-15Comparative Examples 13-15
将实施例4-6中的底釉改成由实施例6制备的底釉釉料烧制,其余与实施 例7-9相同。The bottom glaze in Example 4-6 was changed to the bottom glaze glaze prepared in Example 6 and fired, and the rest were the same as those in Example 7-9.
将实施例7-15制成的不锈钢搪瓷板分别用密着仪测试密着。将密着测试结果以及瓷面质量记录在表2中。The stainless steel enamel plates made in Examples 7-15 were tested for adhesion with an adhesion tester respectively. The adhesion test results and the quality of the porcelain surface are recorded in Table 2.
表2:实施例4-12制成的不锈钢搪瓷板的各项测试结果Table 2: Various test results of the stainless steel enamel plates made in Examples 4-12
项目project 烧成工艺Firing process 密着等级Adhesion level 瓷面质量Porcelain surface quality
实施例7Example 7 800℃;4.0min800℃; 4.0min 1级Level 1 光滑细腻smooth and delicate
实施例8Example 8 820℃;4.0min820℃; 4.0min 1级Level 1 光滑细腻smooth and delicate
实施例9Example 9 840℃;4.0min840℃; 4.0min 1级Level 1 光滑细腻smooth and delicate
实施例10Example 10 800℃;4.0min800℃; 4.0min 3级Level 3 光滑细腻smooth and delicate
实施例11Example 11 820℃;4.0min820℃; 4.0min 3级Level 3 光滑细腻smooth and delicate
实施例12Example 12 840℃;4.0min840℃; 4.0min 1级Level 1 瓷面发沸、有针孔Porcelain surface is boiling and has pinholes
实施例13Example 13 800℃;4.0min800℃; 4.0min 3级Level 3 光滑细腻smooth and delicate
实施例14Example 14 820℃;4.0min820℃; 4.0min 1级Level 1 光滑细腻smooth and delicate
实施例15Example 15 840℃;4.0min840℃; 4.0min 1级Level 1 瓷面发沸、有针孔Porcelain surface is boiling and has pinholes
结合表1和表2可知,按照实施例1至实施例3的组分和质量分数获得不锈钢搪瓷釉料经过不同温度的烧成后,实施例1的釉料配方烧成的瓷面均光滑细腻,形成1级密着所需的温度最低。因此,实施例1的底釉釉料配方是最佳配方,获得的不锈钢搪瓷釉料在保证了良好的密着情况下,同时具有良好的瓷面质量。In combination with Table 1 and Table 2, it can be known that the stainless steel enamel glaze is obtained according to the components and mass fractions of Example 1 to Example 3. After firing at different temperatures, the porcelain surfaces fired by the glaze formula of Example 1 are all smooth and delicate. , the lowest temperature required to form a level 1 bond. Therefore, the base glaze glaze formula of Example 1 is the best formula, and the obtained stainless steel enamel glaze has good porcelain surface quality while ensuring good adhesion.
实施例16-17Examples 16-17
将底釉喷涂厚度分别修改为90-120um、120-140um,其余同实施例7。The spraying thickness of the bottom glaze was modified to 90-120um and 120-140um respectively, and the rest were the same as those in Example 7.
对比例1-4Comparative Examples 1-4
将底釉喷涂厚度分别修改为30-50um、50-70um、70-90um、140-160um,其余同实施例7。The spraying thickness of the bottom glaze was modified to 30-50um, 50-70um, 70-90um, and 140-160um respectively, and the rest were the same as those in Example 7.
将实施例16-17和对比例1-4制成的不锈钢搪瓷板分别用密着仪测试密 着。将密着测试结果以及瓷面质量记录在表3中。The stainless steel enamel plates prepared in Examples 16-17 and Comparative Examples 1-4 were tested for adhesion with an adhesion tester, respectively. The adhesion test results and the quality of the porcelain surface are recorded in Table 3.
表3:实施例4、13和对比例1-4制成的不锈钢搪瓷板的各项测试结果Table 3: Various test results of stainless steel enamel plates made in Examples 4, 13 and Comparative Examples 1-4
Figure PCTCN2021087687-appb-000001
Figure PCTCN2021087687-appb-000001
从表3可以看出,底釉瓷层厚度对瓷面和密着有较大影响,瓷层厚度在90-140um之间可以获得较好的瓷面与较好的密着。It can be seen from Table 3 that the thickness of the underglaze porcelain layer has a great influence on the porcelain surface and the adhesion. The porcelain layer thickness between 90-140um can obtain better porcelain surface and better adhesion.
不同焊接工艺的研究Research on Different Welding Processes
采用激光焊接对304不锈钢板进行焊接,改变焊接功率和焊接速度,焊接效果如表4所示。The 304 stainless steel plate was welded by laser welding, and the welding power and welding speed were changed. The welding effect is shown in Table 4.
表4:不锈钢焊接工艺试验记录表:采用激光焊接工艺。Table 4: Stainless steel welding process test record table: using laser welding process.
Figure PCTCN2021087687-appb-000002
Figure PCTCN2021087687-appb-000002
Figure PCTCN2021087687-appb-000003
Figure PCTCN2021087687-appb-000003
从表4中可以看出,本发明限定的焊接参数下不锈钢板的焊接效果最好。It can be seen from Table 4 that the welding effect of the stainless steel plate is the best under the welding parameters defined by the present invention.
以上对本发明所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The technical solutions provided by the present invention have been described in detail above, and specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; At the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific embodiments and application scope. To sum up, the content of this specification should not be construed as a limitation of the present invention.

Claims (10)

  1. 一种不锈钢搪瓷板的底釉釉料,其特征在于,按质量百分比计,包括以下组分:A bottom glaze glaze for a stainless steel enamel plate is characterized in that, by mass percentage, it comprises the following components:
    SiO 230-38%;B 2O 315-19%;Al 2O 36-10%;TiO 21-2%;BaO 1-4%;Na 2O 14-19%;K 2O 5-10%;MgO 0.1-0.6%;P 2O 52-4%;ZnO 0.2-0.8%;Cr 2O 30.1-0.3%;CuO 0.4-0.8%;CoO 0.3-0.9%;NiO 0.7-1.2%和MnO 20.8-1.3%。 SiO2 30-38%; B2O3 15-19%; Al2O3 6-10% ; TiO2 1-2 % ; BaO 1-4%; Na2O 14-19% ; K2O5 -10%; MgO 0.1-0.6%; P2O5 2-4 %; ZnO 0.2-0.8%; Cr2O3 0.1-0.3%; CuO 0.4-0.8%; CoO 0.3-0.9%; NiO 0.7-1.2 % and MnO 2 0.8-1.3%.
  2. 根据权利要求1所述的一种不锈钢搪瓷板的底釉釉料,其特征在于,按质量百分比计,包括以下组分:The bottom glaze glaze of a kind of stainless steel enamel plate according to claim 1, is characterized in that, by mass percentage, comprises the following components:
    SiO 236.39%;B 2O 317.87%;Al 2O 37.06%;TiO 21.15%;BaO 2.79%;Na 2O 17.59%;K 2O 9.96%;MgO 0.18%;P 2O 52.95%;ZnO 0.57%;Cr 2O 30.15%;CuO 0.57%;CoO 0.57%;NiO 1.05%和MnO 21.15%。 SiO 2 36.39%; B 2 O 3 17.87%; Al 2 O 3 7.06%; TiO 2 1.15%; BaO 2.79%; Na 2 O 17.59%; K 2 O 9.96%; MgO 0.18%; P 2 O 5 2.95% ; ZnO 0.57%; Cr2O3 0.15%; CuO 0.57%; CoO 0.57%; NiO 1.05% and MnO2 1.15%.
  3. 根据权利要求1或2所述的一种不锈钢搪瓷板的底釉釉料的制备方法,其特征在于,包括以下步骤:The preparation method of the bottom glaze glaze of a kind of stainless steel enamel plate according to claim 1 and 2, is characterized in that, comprises the following steps:
    (1)将各组分按照比例混合;(1) mix each component according to the proportion;
    (2)将混合物放入高温炉中熔融;(2) put the mixture into the high temperature furnace to melt;
    (3)熔平后放入水中急冷,形成瓷釉熔块;(3) put into water after melting and quench to form enamel frit;
    (4)将瓷釉熔块翻入球磨机中研磨形成釉料。(4) The enamel frit is turned into a ball mill and ground to form a glaze.
  4. 一种不锈钢搪瓷板,其特征在于,包括:不锈钢基板、底釉和面釉;A stainless steel enamel plate, characterized in that it comprises: a stainless steel substrate, a bottom glaze and a top glaze;
    其中,所述底釉和所述面釉依次附着在所述不锈钢基板上;且所述底釉的原料为权利要求1-2任一项所述的底釉釉料。Wherein, the bottom glaze and the top glaze are sequentially attached on the stainless steel substrate; and the raw material of the bottom glaze is the bottom glaze glaze according to any one of claims 1-2.
  5. 根据权利要求4所述的一种不锈钢搪瓷板,其特征在于,所述底釉厚度为90-140um;所述面釉厚度为80-120um。The stainless steel enamel plate according to claim 4, wherein the thickness of the bottom glaze is 90-140um; the thickness of the surface glaze is 80-120um.
  6. 根据权利要求4所述的一种不锈钢搪瓷板,其特征在于,所述底釉烧成温度800-840℃,烧成时间4min;所述面釉烧成温度800-840℃,烧成时间4-5min。The stainless steel enamel plate according to claim 4, wherein the firing temperature of the bottom glaze is 800-840°C, and the firing time is 4 minutes; the firing temperature of the top glaze is 800-840°C, and the firing time is 4 minutes. -5min.
  7. 根据权利要求4所述的一种不锈钢搪瓷板,其特征在于,所述不锈钢基板为奥氏体不锈钢,且其中的部分化学元素含量如下:碳﹤0.030%,硅﹤1.00%, 锰﹤2.00%,磷﹤0.035%,硫﹤0.030%,镍8.00-20.00%,铬18.00-20.00%。The stainless steel enamel plate according to claim 4, wherein the stainless steel substrate is austenitic stainless steel, and the content of some chemical elements is as follows: carbon < 0.030%, silicon < 1.00%, manganese < 2.00% , Phosphorus <0.035%, Sulfur <0.030%, Nickel 8.00-20.00%, Chromium 18.00-20.00%.
  8. 根据权利要求4-7所述的一种不锈钢搪瓷板的制备方法,其特征在于,包括以下步骤:A kind of preparation method of stainless steel enamel plate according to claim 4-7, is characterized in that, comprises the following steps:
    S1不锈钢基板准备:不锈钢板材经过激光氮气切割、边角折弯、激光焊接、打磨和表面处理后得到不锈钢基板;S1 stainless steel substrate preparation: stainless steel plate is obtained after laser nitrogen cutting, corner bending, laser welding, grinding and surface treatment;
    S2釉料喷涂:采用湿法喷涂工艺进行釉料喷涂;S2 glaze spraying: glaze spraying by wet spraying process;
    S3烘干:烘干温度150-200℃,时间10-15min;S3 drying: drying temperature 150-200 ℃, time 10-15min;
    S4烧成:底釉烧成温度800-840℃,烧成时间4min;面釉烧成温度800-840℃,烧成时间4-5min。S4 firing: the bottom glaze firing temperature is 800-840 ℃, and the firing time is 4 minutes; the surface glaze firing temperature is 800-840 ℃, and the firing time is 4-5 minutes.
  9. 根据权利要求8所述的一种不锈钢搪瓷板的制备方法,其特征在于,S1中所述激光焊接时不锈钢板的厚度为1.5mm,焊接功率为800W,焊接速度为0.8m/min,焦距为正对焦点。The method for preparing a stainless steel enamel plate according to claim 8, wherein the thickness of the stainless steel plate during laser welding described in S1 is 1.5mm, the welding power is 800W, the welding speed is 0.8m/min, and the focal length is Aiming at the focal point.
  10. 根据权利要求8所述的一种不锈钢搪瓷板的制备方法,其特征在于,所述S1中表面处理具体为:The preparation method of a kind of stainless steel enamel plate according to claim 8, is characterized in that, the surface treatment in described S1 is specifically:
    第一道:脱脂,碳酸钠浓度:8-10%,温度:60-70℃,时间:7-8min;The first course: degreasing, sodium carbonate concentration: 8-10%, temperature: 60-70 ℃, time: 7-8min;
    第二道:脱脂,碳酸钠浓度:8-10%,温度:60-70℃,时间:7-8min;Second pass: degreasing, sodium carbonate concentration: 8-10%, temperature: 60-70℃, time: 7-8min;
    第三道:热水冲洗,温度:50-60℃,时间:3-4min;The third course: hot water rinse, temperature: 50-60 ℃, time: 3-4min;
    第四道:冷水冲洗,常温,时间:2-3min;The fourth course: rinse with cold water, normal temperature, time: 2-3min;
    第五道:烘干,温度:300-350℃,时间:8-10min。The fifth step: drying, temperature: 300-350 ℃, time: 8-10min.
PCT/CN2021/087687 2020-08-28 2021-04-16 Ground coat glaze of stainless steel enamel plate, and preparation method therefor and application thereof WO2022041785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010889270.8A CN112062469B (en) 2020-08-28 2020-08-28 Bottom glaze material of stainless steel enamel plate and preparation method and application thereof
CN202010889270.8 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022041785A1 true WO2022041785A1 (en) 2022-03-03

Family

ID=73659690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087687 WO2022041785A1 (en) 2020-08-28 2021-04-16 Ground coat glaze of stainless steel enamel plate, and preparation method therefor and application thereof

Country Status (2)

Country Link
CN (1) CN112062469B (en)
WO (1) WO2022041785A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789514A (en) * 2021-08-23 2021-12-14 江阴硅普搪瓷股份有限公司 Preparation method of high-temperature-resistant, wear-resistant and strong-impact-resistant anticorrosive microcrystalline glaze
CN114873915A (en) * 2022-04-26 2022-08-09 九牧厨卫股份有限公司 Ceramic glaze for stainless steel bathroom products and application thereof
CN115386875A (en) * 2022-08-26 2022-11-25 湖南星城壹品装饰工程有限公司 Process for coating porcelain on inner and outer surfaces of water purification filter element sleeve
CN115817061A (en) * 2022-12-02 2023-03-21 浙江开尔新材料股份有限公司 Production method of enamel plate with hollowed-out artistic pattern on plate surface

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062469B (en) * 2020-08-28 2022-06-03 浙江开尔新材料股份有限公司 Bottom glaze material of stainless steel enamel plate and preparation method and application thereof
CN114368245A (en) * 2021-12-23 2022-04-19 张柳松 Method for making stainless steel porcelain picture
CN115818962A (en) * 2022-12-16 2023-03-21 江阴硅普搪瓷股份有限公司 Acid-resistant enamel pre-ground powder based on nano material and preparation method thereof
KR102546576B1 (en) * 2023-03-07 2023-06-23 주식회사 디디글로벌 Manufacturing Method of SUS Plate for manufacturing Copper Foil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52810B2 (en) * 1973-11-07 1977-01-11
SU697419A1 (en) * 1977-06-20 1979-11-15 Всесоюзный Проектно-Технологический Институт По Электробытовым Машинам И Приборам Ground enamel
JPH1171686A (en) * 1997-08-29 1999-03-16 Nisshin Steel Co Ltd Porcelain enameled stainless steel sheet excellent in rain stripe stain sticking resistance and its production
CN101215709A (en) * 2007-12-27 2008-07-09 南京航空航天大学 Hydrogen or hydrogen isotope infiltration resisting vitreous vallation layer for stainless steel and preparation method thereof
CN102408196A (en) * 2010-09-21 2012-04-11 湖南立发釉彩科技有限公司 Fish-scaling-resistant enamel glaze for hot-rolled steel plates
CN103193387A (en) * 2013-04-23 2013-07-10 大唐国际化工技术研究院有限公司 Enamel material for 1Cr18Ni9Ti stainless steel surface and preparation method thereof
CN112062469A (en) * 2020-08-28 2020-12-11 浙江开尔新材料股份有限公司 Bottom glaze material of stainless steel enamel plate and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463646A (en) * 1964-11-20 1969-08-26 Sybron Corp Semi-crystalline ground coats having controlled p2o5/b2o3 ratio
JPS5477616A (en) * 1977-12-01 1979-06-21 Ngk Frit Kk Production of enameled stainless
JPS54106529A (en) * 1978-02-09 1979-08-21 Ngk Frit Kk Enamelled stainless products and preparation thereof
US6001494A (en) * 1997-02-18 1999-12-14 Technology Partners Inc. Metal-ceramic composite coatings, materials, methods and products
CN1319684A (en) * 1999-10-12 2001-10-31 东陶机器株式会社 Enamel products
CN1314610C (en) * 2003-01-22 2007-05-09 王强 Method for producing blackboard and whiteboard made from enamel in super strength, and glaze of enamel
JP2005248189A (en) * 2004-03-01 2005-09-15 Nisshin Steel Co Ltd ENAMELLED Al-PLATED STAINLESS STEEL SHEET
EP1879836A4 (en) * 2005-05-12 2009-06-10 Ferro Corp Porcelain enamel having a metallic appearance
CN1799873B (en) * 2006-01-10 2011-05-04 张维 Process for preparing metallic enamel embossment
CN103215591B (en) * 2013-02-01 2015-05-27 浙江开尔新材料股份有限公司 Preparation method of imitated-metal enameled steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52810B2 (en) * 1973-11-07 1977-01-11
SU697419A1 (en) * 1977-06-20 1979-11-15 Всесоюзный Проектно-Технологический Институт По Электробытовым Машинам И Приборам Ground enamel
JPH1171686A (en) * 1997-08-29 1999-03-16 Nisshin Steel Co Ltd Porcelain enameled stainless steel sheet excellent in rain stripe stain sticking resistance and its production
CN101215709A (en) * 2007-12-27 2008-07-09 南京航空航天大学 Hydrogen or hydrogen isotope infiltration resisting vitreous vallation layer for stainless steel and preparation method thereof
CN102408196A (en) * 2010-09-21 2012-04-11 湖南立发釉彩科技有限公司 Fish-scaling-resistant enamel glaze for hot-rolled steel plates
CN103193387A (en) * 2013-04-23 2013-07-10 大唐国际化工技术研究院有限公司 Enamel material for 1Cr18Ni9Ti stainless steel surface and preparation method thereof
CN112062469A (en) * 2020-08-28 2020-12-11 浙江开尔新材料股份有限公司 Bottom glaze material of stainless steel enamel plate and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789514A (en) * 2021-08-23 2021-12-14 江阴硅普搪瓷股份有限公司 Preparation method of high-temperature-resistant, wear-resistant and strong-impact-resistant anticorrosive microcrystalline glaze
CN113789514B (en) * 2021-08-23 2023-07-28 江阴硅普搪瓷股份有限公司 Preparation method of high-temperature-resistant, wear-resistant and strong-impact-resistant anti-corrosion microcrystalline glaze
CN114873915A (en) * 2022-04-26 2022-08-09 九牧厨卫股份有限公司 Ceramic glaze for stainless steel bathroom products and application thereof
CN115386875A (en) * 2022-08-26 2022-11-25 湖南星城壹品装饰工程有限公司 Process for coating porcelain on inner and outer surfaces of water purification filter element sleeve
CN115386875B (en) * 2022-08-26 2024-04-23 湖南星城壹品装饰工程有限公司 Porcelain coating process for inner and outer surfaces of water purification filter element sleeve
CN115817061A (en) * 2022-12-02 2023-03-21 浙江开尔新材料股份有限公司 Production method of enamel plate with hollowed-out artistic pattern on plate surface

Also Published As

Publication number Publication date
CN112062469A (en) 2020-12-11
CN112062469B (en) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2022041785A1 (en) Ground coat glaze of stainless steel enamel plate, and preparation method therefor and application thereof
CN101570397B (en) Porcelain enamel with superior adherence and acid resistance simultaneously and preparation method thereof
CN102219383B (en) Enamel glaze material
CA2253133C (en) Porcelain-enameled steel sheets and frits for enameling
KR101523411B1 (en) Low v2o5 - content and v2o5 - free porcelain enamels
US3397076A (en) Semicrystallized ground coats and enameled articles manufactured therefrom
EP2006410B1 (en) Thermal sprayed protective layer for metallic substrates
ES2764465T3 (en) Method of providing a glassy enamel metal-coated steel substrate with a Co and Ni-free primer coat and a primer composition therefor
US6831027B2 (en) Porcelain enamel having metallic appearance
CN100580333C (en) Water heater porcelain enamel inner bag and manufacturing method thereof
EP1047554A1 (en) Porcelain enamel composition for electronic applications
CN100582040C (en) Porcelain enamel glaze for acid-resistant cast iron sanitary ware
CN102070299B (en) Protective technology of stainless steel high-temperature surface
CN105948495A (en) Low-temperature corrosion-resistant glaze material used for enamel pipe
CN1291594A (en) Low-temp enamel powder and paste
JP3136125B2 (en) Enamel frit
CN110877959A (en) One-step enameling and low-temperature firing glass-lined glaze for oilfield pipeline corrosion prevention and preparation method and application thereof
CN102557446A (en) Enamel glaze for enamel rolled plate, preparation method of the enamel glaze as well as method for preparing the enamel rolled plate by the enamel glaze
CN105800935B (en) A kind of base enamel material, preparation method and application
KR102490919B1 (en) Cold-rolled steel sheet for porcelain enamel with excellent adherence of enamel and manufacturing method thereof
JPH0121104B2 (en)
MXPA02003747A (en) Water resistant porcelain enamel coatings and method of manufacturing same.
JPH0121102B2 (en)
TR2022011612A2 (en) Lithium-free enamel coating material applied with aqueous application methods
JPS6042251A (en) Transparent enamel frit with low softening point

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859633

Country of ref document: EP

Kind code of ref document: A1