WO2022041621A1 - 一种移相器和天线 - Google Patents

一种移相器和天线 Download PDF

Info

Publication number
WO2022041621A1
WO2022041621A1 PCT/CN2020/141012 CN2020141012W WO2022041621A1 WO 2022041621 A1 WO2022041621 A1 WO 2022041621A1 CN 2020141012 W CN2020141012 W CN 2020141012W WO 2022041621 A1 WO2022041621 A1 WO 2022041621A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
phase shifter
cavity
shifting
dielectric
Prior art date
Application number
PCT/CN2020/141012
Other languages
English (en)
French (fr)
Inventor
王强
许北明
黎伟韶
刘苑辉
Original Assignee
京信通信技术(广州)有限公司
京信射频技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信射频技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2022041621A1 publication Critical patent/WO2022041621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • the present disclosure relates to the field of mobile communication technologies, and in particular, to a phase shifter and an antenna.
  • the phase shifter is one of the core modules of the base station antenna. It can perform beamforming on the array antenna, such as electrical downtilt angle control, upper sidelobe suppression and zero filling, so as to be suitable for various complex application environments and improve communication quality.
  • phase shifters used in base station antennas in the industry: the first method is to use strong coupling to change the physical length of the electromagnetic wave transmission line to achieve the purpose of phase shifting; the second method is to change the medium covering the electromagnetic wave transmission line.
  • the volume adjusts the relative permittivity of the composite medium composed of the medium and the air, that is, adjusts the rate at which the phase shifter transmits electromagnetic waves to achieve the purpose of phase shifting.
  • both of the two types of phase shifters disclosed at present have the problems of scattered distribution and large loss of matching cables.
  • the technical problem to be solved by the present disclosure is to solve the problems of scattered distribution and large loss of the matching cable of the existing phase shifter.
  • embodiments of the present disclosure provide a phase shifter and an antenna.
  • phase shifter comprising:
  • a phase-shifting conductor strip, a power divider and a signal input line are located in the cavity; the power divider, the signal input line and the phase-shifting conductor strip are all air striplines, and together constitute a phase-shifting conductor transmission line inside the device.
  • the phase shifter further includes at least one dielectric phase shifting unit located in the cavity for controlling the phase of the antenna array element; the dielectric phase shifting unit is provided with the phase shifting conductor strip and a dielectric plate , the dielectric plate moves along the lateral direction of the phase shifter.
  • the cavity includes a stacked first cavity and a second cavity, the dielectric phase shifting unit is located in the first cavity, and the signal input line is located in the second cavity;
  • the cavity wall in the moving direction of the medium plate is provided with a gap, and a part of the medium plate is exposed outside the cavity through the gap.
  • the stacking direction of the first cavity and the second cavity is perpendicular to a basic plane, and the basic plane is a plane defined by the lateral and longitudinal directions of the phase shifter.
  • one end of the signal input line overlaps the input port of the phase shifter, and in the overlapping area of the signal input line and the input port of the phase shifter, the The signal input line is electrically connected to the input port of the phase shifter through a first transfer post.
  • the phase shifter further includes a phase compensation line disposed on the cavity, the first end of the phase compensation line is electrically connected to the output port of the phase shifter, and the second end of the phase compensation line is electrically connected. It is electrically connected to the antenna array element.
  • the printed circuit board includes a circuit layer, a dielectric layer, a ground layer and a protective layer that are stacked in sequence; the phase compensation line is arranged on the circuit layer.
  • the protective layer is attached to the outside of the cavity and is located on the upper surface of the cavity, and in a direction perpendicular to the upper surface of the cavity, the first end of the phase compensation line and the The output ports of the phase shifter overlap, and in the overlapping area of the phase compensation line and the output port of the phase shifter, the phase compensation line and the output port of the phase shifter are electrically connected through a second transfer post.
  • the dielectric board includes a first dielectric board and a second dielectric board that are oppositely arranged, the first dielectric board and the second dielectric board are fixedly connected, and the phase-shifting conductor strip is located on the first dielectric board.
  • the first dielectric board, the second dielectric board and the phase-shifting conductor strip are all parallel to a basic plane, the basic plane being the lateral direction and the horizontal direction of the phase shifter. The plane defined by the longitudinal direction.
  • the dielectric phase-shifting units are arranged along the longitudinal direction of the phase shifter, the phase-shifting conductor strips in two adjacent dielectric phase-shifting units are connected through the power divider, and the power The splitter is in the same plane as the phase-shifting conductor strip.
  • the power divider includes at least a first port, a second port and a third port, and the phase-shifting conductor strips are connected through the first port and the second port of the power divider;
  • the phase-shifting conductor strips in the dielectric phase-shifting unit are connected through two power dividers, and the third port of one of the power dividers is used as the input port of the phase shifter, and the third port of the other power divider is used as the input port of the phase shifter.
  • the third port is used as the output port of the phase shifter, the phase-shifting conductor strips in the other dielectric phase-shifting units are connected through one of the power dividers, and the third port of the power divider is used as the phase shifter Phaser output port.
  • the dielectric plate and the power divider do not overlap.
  • the present disclosure also provides an antenna including the phase shifter provided by the present disclosure.
  • the signal input line, power divider and phase-shifting conductor strip use air strip line, which greatly reduces the loss of the phase shifter, and the signal input line is placed in the cavity of the phase shifter, making the structure layout more concise, Ease of implementation reduces the difficulty of introducing additional air striplines into compact antenna layouts.
  • the entire cavity is used as the ground of the transmission line, and there is no need to introduce additional metal connectors, which reduces the number of metal contact points and is beneficial to the control of third-order intermodulation.
  • phase compensation line is integrated on the phase shifter cavity, replacing the coaxial cable used for adjusting the phase and connecting the vibrator, which makes the integration of the entire phase shifting feed network very high, and simplifies the layout of the whole antenna. Improve the assembly efficiency of the antenna.
  • phase shifter 1 is a partial cross-sectional view of a phase shifter provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic connection diagram of a phase compensation line provided by an embodiment of the present disclosure
  • phase shifter 3 is a schematic cross-sectional view of a phase shifter provided by an embodiment of the present disclosure
  • phase shifter 4 is a schematic cross-sectional view of another phase shifter provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a dielectric plate covering a phase-shifting conductor strip provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the dielectric plate provided by the embodiment of the present disclosure when the phase-shifting conductor strip is not covered;
  • FIG. 7 is a schematic structural diagram of a cavity wall provided with a rectangular gap according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a PCB phase compensation line provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a connection structure of each medium phase-shifting unit provided in an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a power divider provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a specific structure of a phase shifter provided by an embodiment of the present disclosure.
  • the signal input line connected to the input port of the phase shifter is a long coaxial cable joint. Due to the influence of the medium of the coaxial cable, and the longer the antenna, the longer the coaxial cable joint and the greater the loss. Air stripline per unit length is much less lossy than coaxial cable, but it is very difficult to introduce additional air stripline into an already compact antenna layout.
  • coaxial cables are required for connection and phase compensation between the phase shifter and the antenna array element. The complicated cable distribution in the wrong place will increase the complexity of the antenna and reduce the assembly efficiency of the antenna.
  • FIG. 1 is a partial cross-sectional view of a phase shifter provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a connection of a phase compensation line provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of the phase shifter provided by an embodiment of the present disclosure.
  • the phase shifter can be used in base station antennas to form beams for array antennas, and is suitable for situations where electrical downtilt angle control, upper sidelobe suppression and zero filling can improve communication quality.
  • a phase shifter provided in this embodiment includes:
  • phase-shifting conductor strip 22 the power divider (not shown in the figure) and the signal input line 3 are located in the cavity 1, and the power divider, the signal input line 3 and the phase-shifting conductor strip 22 are all air striplines, and Together they form the transmission line inside the phase shifter.
  • the signal input line 3 is electrically connected to the phase shifter input port 201
  • the phase shifter input port 201 can be provided by one port of the power divider
  • the dielectric phase shift unit 2 is electrically connected to the power divider
  • the power divider The other port of the phase shifter is used as the output port 204 of the phase shifter.
  • the signal input line 3 can be made of metal material
  • the cavity 1 can be an integrated metal cavity, which can be formed by a one-time pultrusion process
  • the cavity 1 is used as the ground of the transmission line
  • the cavity 1 is filled with The medium is air.
  • the signal input line 3 is interposed in the air medium between the two ground planes, thereby forming an air stripline. Since the loss per unit length of the air strip line is much smaller than that of the coaxial cable and the PCB microstrip line, the signal input line 3 provided in the technical solution of this embodiment can reduce the loss of the phase shifter, especially the longer the antenna. , the more obvious the reduction of loss.
  • the cavity 1 is formed by a one-time pultrusion forming process, thereby reducing the number of process steps, facilitating processing, and improving dimensional accuracy.
  • the phase shifter may further include at least one dielectric phase shifting unit 2 located in the cavity 1 for controlling the phase of the antenna array element; the dielectric phase shifting unit 2 is provided with a phase shifting conductor strip 22 and a dielectric plate 21 , the medium plate 21 moves along the lateral direction Y of the cavity 1 .
  • the dielectric phase shifting unit 2 in this embodiment may be any existing phase shifter structure, or may be a self-designed phase shifter structure, which is not limited in this embodiment, as long as it can be realized The adjustment of the phasor can be done.
  • the width and thickness of the signal input line 3 are also not limited, and it depends on the actual situation.
  • the signal transmitted by the signal input line 3 is input into the dielectric phase shifting unit 2 through the input port 201 of the phase shifter.
  • the phase unit 2 is used to change the equivalent dielectric constant of the transmission line, thereby changing the signal transmission phase and achieving the purpose of phase shifting.
  • the material of the dielectric plate 21 can be a high dielectric constant material, such as plastic or ceramic, which can realize a wide range of changes in the amount of phase shift, and the material of the phase-shift conductor strip 22 can be metal.
  • the overlapping area of the dielectric plate 21 and the phase-shifting conductor strip 22 can be changed, thereby adjusting the relative permittivity of the composite medium composed of the dielectric plate 21 and the air, that is, The speed at which the phase shifter transmits electromagnetic waves is adjusted, so as to achieve the purpose of phase shifting.
  • 3 to 4 show the process of pulling the dielectric plate 21 out of the cavity 1; This shows that the dielectric plate 21 does not overlap with the phase-shifting conductor strip 22 during the movement.
  • a transmission mechanism that can support and fix the medium plate 21 may be provided outside the cavity 1, so as to push the medium plate into the cavity 1 or pull out the cavity 1.
  • the implementation of the present disclosure For example, the specific structure of the transmission mechanism is not limited.
  • the signal input line of the phase shifter in this embodiment adopts an air strip line, which greatly reduces the loss of the phase shifter, and the signal input line is placed in the cavity of the phase shifter, which makes the structure layout more concise and easy to implement , which reduces the difficulty of introducing additional air striplines in the compact antenna layout; at the same time, the entire cavity is used as the ground of the transmission line, no need to introduce additional metal connectors, reducing metal contact points, which is conducive to the third-order intermodulation control.
  • the cavity includes a stacked first cavity and a second cavity, the dielectric phase shifting unit is located in the first cavity, and the signal input line is located in the second cavity;
  • the cavity wall is provided with a gap, and a part of the dielectric plate is exposed outside the cavity through the gap.
  • the cavity 1 includes a stacked first cavity 11 and a second cavity 12
  • the dielectric phase shifting unit 2 is located in the first cavity 11
  • the signal The input line 3 is located in the second cavity 12 .
  • the dielectric phase-shifting unit 2 and the signal input line 3 are separated by the first cavity 11 and the second cavity 12, which avoids the restriction on the wiring of the signal input line 3 due to the layout of the dielectric phase-shifting unit 2, so that the signal input line 3 can be freely routed in the second cavity 12.
  • the cavity wall in the moving direction of the dielectric plate 21 (ie, the transverse direction Y) is provided with a gap 206 , and a part of the dielectric plate 21 is exposed outside the cavity 1 through the gap 206 . . Therefore, the dielectric plate 21 can be pulled out of the cavity 1 through the gap 206 to realize the movement in the transverse direction Y; meanwhile, since the outward movement of the dielectric plate 21 is not blocked by the cavity wall of the cavity 1, the cavity 1 The width in the lateral direction Y can be further reduced, thereby reducing the footprint of the phase shifter.
  • the width of the second cavity 12 in the lateral direction Y can be smaller than the width of the first cavity 11 in the lateral direction Y, so as to provide enough wiring space for the signal input line 3, so that the width of the second cavity 12 can be reduced. take up space.
  • the present disclosure does not limit the shape of the notch 206 , which may be a rectangle, an ellipse, or a trapezoid, as long as the medium plate 21 can be moved in the lateral direction Y through the notch 206 .
  • the figure enclosed by the cavity wall of the first cavity 11 is a rectangle
  • the figure enclosed by the cavity wall of the second cavity 12 is a rectangle or U shape; where the cross section is set to be perpendicular to the longitudinal direction of the phase shifter.
  • the cross section is set to be perpendicular to the longitudinal direction of the phase shifter.
  • the first cavity and the second cavity share a cavity wall.
  • the first cavity 11 and the second cavity 12 share a cavity wall in the middle.
  • the process material can be reduced and the thickness of the phase shifter can be reduced.
  • the stacking direction Z of the first cavity 11 and the second cavity 12 is perpendicular to the basic plane, wherein the basic plane is the plane of the phase shifter.
  • the stacking direction Z of the first cavity 11 and the second cavity 12 is set to be perpendicular to the plane defined by the lateral Y and the longitudinal X of the phase shifter, that is, the first cavity 11 and the second cavity 12 are along the
  • the phase shifters are stacked in the thickness direction, so that the signal input line 3 and the dielectric phase shifting unit 2 can overlap in the thickness direction of the phase shifter, thereby reducing the length of the phase shifter in the lateral direction Y, that is, reducing the phase shift
  • the width of the phase shifter is reduced, thereby reducing the occupied area of the phase shifter.
  • one end of the signal input line overlaps the input port of the phase shifter, and in the overlapping area of the signal input line and the input port of the phase shifter, the signal input line and the input port of the phase shifter pass through the first The transfer post is electrically connected.
  • one end of the signal input line 3 overlaps with the input port 201 of the phase shifter, and in the overlapping area of the signal input line 3 and the input port 201 of the phase shifter.
  • the signal input line 3 and the phase shifter input port 201 are formed with a welding via hole facing each other, and the first transfer post 202 is passed through the welding via hole of the signal input line 3 and the phase shifter input port 201 to realize signal input.
  • a through hole 203 is opened, wherein , the diameter of the through hole 203 is larger than the diameter of the soldered via hole.
  • the phase shifter further includes a phase compensation line 5 disposed on the cavity 1, and the first end of the phase compensation line 5 is electrically connected to the output port 204 of the phase shifter, The second end of the phase compensation line 5 is electrically connected to the antenna element. Therefore, the present disclosure integrates the phase compensation line on the phase shifter cavity, which replaces the coaxial cable used for adjusting the phase and connecting the vibrator, so that the integration degree of the entire phase shifting feeding network is very high, and the whole antenna is simplified. The layout of the antenna improves the assembly efficiency of the antenna.
  • the phase shifter further includes a printed circuit board, and the printed circuit board includes a circuit layer, a dielectric layer 6 , a ground layer 7 and a protective layer that are stacked in sequence; the phase compensation line 5 can be arranged on the printed circuit board.
  • the circuit layer of the circuit board forms the PCB phase compensation line.
  • the protective layer can be a green oil layer; the protective layer is attached to the outside of the cavity and located on the upper surface of the cavity.
  • the printed circuit board can be fixed on the cavity through plastic rivets or clips, and the phase compensation line can be connected to the cavity through the green oil layer. Insulation separation, to achieve the purpose of improving the intermodulation of the phase shifter.
  • the first end 501 of the phase compensation line overlaps with the phase shifter output port 204, and the phase compensation line 5 and the phase shifter output port 204 overlap.
  • the phase compensation line 5 is electrically connected with the output port 204 of the phase shifter through the second switching column 205, and the second end 502 of the phase compensation line is directly connected with the antenna element, and it is fed with power.
  • the length of the line adjusts the phase of each phase shifter output port.
  • the third port of the power divider is used as the input port of the phase shifter or the output port of the phase shifter. Therefore, the third port of the power divider is provided with a welding via hole, so as to facilitate the first transfer post or the second Adapter column wear.
  • the number of phase compensation lines is at least (N-2), where N is the number of output ports of the phase shifter, and N ⁇ 3.
  • the medium plate 21 includes a first medium plate 211 and a second medium plate 212 arranged oppositely.
  • the first medium plate 211 and The second dielectric plate 212 is fixedly connected, the phase-shifting conductor strip 22 is located between the first dielectric plate 211 and the second dielectric plate 212, and the first dielectric plate 211, the second dielectric plate 212 and the phase-shifting conductor strip 22 are all parallel to the basic plane , the basic plane is the plane defined by the lateral Y and the longitudinal X of the phase shifter.
  • phase-shifting conductor strip 22 is located in the middle of the first cavity 11 , and the first dielectric plate 211 and the second dielectric plate 212 are symmetrically arranged with respect to the plane where the phase-shifting conductor strip 22 is located.
  • the dielectric phase-shifting units 2 are arranged along the longitudinal direction X, and the phase-shifting conductor strips 22 in two adjacent dielectric phase-shifting units 2 are connected through the power divider 4 .
  • the power divider 4 and the phase-shifting conductor strip 22 are located on the same plane.
  • the power divider 4 at least includes a first port 401 , a second port 402 and a third port 403 , and the phase-shifted conductor strip 22 passes through the first port 401 and the first port 401 of the power divider 4 .
  • the second port 402 is connected; the phase-shifting conductor strips 22 in the two dielectric phase-shifting units 2 are connected through the two power dividers 4 and the third port 403 of one of the power dividers (such as the first power divider 41 ) is used as the The input port 201 of the phase shifter, the third port 403 of another power divider (such as the second power divider 42) is used as the output port 204 of the phase shifter, and the phase-shifting conductor strips 22 in the other dielectric phase-shifting units 2 pass through a power
  • the divider 4 is connected and the third port 403 of the power divider 4 is used as the output port 204 of the phase shifter.
  • the phase can be adjusted by designing the length of the first port or the second port.
  • phase shifter multiple power dividers and phase-shifting conductor strips are connected in series to form a phase shifter with multiple output ports of the phase shifter, and the required power ratio can be easily designed by changing the power ratio of the power divider. phase shifter.
  • the length of the phase-shifting conductor strip is effectively controlled, and a phase-shifter with M phase-shifter output ports can be placed within the limited length of a uniform linear array antenna with M antenna elements , in which (M-1) independent phase shifter output ports are phase shifted, and one phase shifter output port (the middle phase shifter output port 204 shown in Figure 9) is not phase shifted, plus the flexible power ratio design,
  • the optimal vertical beam forming can be realized on the premise of ensuring the gain of the array antenna.
  • the dielectric plate and the power divider do not overlap. Therefore, the influence on the power divider is reduced, the linearity of the power ratio of the phase shifter can be improved, and the loss of the phase shifter can be reduced.
  • the phase shifter may specifically include a cavity 1; at least one dielectric phase-shifting unit located in the cavity 1, the dielectric phase-shifting unit includes a A dielectric board 21 composed of a dielectric board and a second dielectric board and a phase-shifting conductor strip located between the first dielectric board and the second dielectric board; the cavity wall in the moving direction of the dielectric board 21 is provided with a gap, and the dielectric board 21 A part of it is exposed outside the cavity 1 through the notch, and the dielectric plate 21 can move laterally through the notch, so as to realize the adjustment of the phase shift; the signal input line located in the cavity 1, the signal input line is connected to the input port of the phase shifter And the phase compensation line 5 located on the upper surface of the cavity 1, the first end of the phase compensation line 5 is connected with the output port of the phase shifter, and the second end of the phase compensation line is connected with the antenna element.
  • the internal transmission line (including the signal input line) of the phase shifter is mainly air stripline, its loss is smaller than that of the PCB microstrip line or the coaxial cable connecting the phase shifter and the antenna element.
  • the length of the phase shifter is equal to the length of the antenna, the length of the connection line between the phase shifter and the antenna array element is shortened to the shortest, thereby reducing the loss of the feeding network.
  • the phase compensation line with phase compensation function is integrated on the phase shifter cavity, so that the feed network of the entire antenna is highly integrated, the layout is simple, and the assembly efficiency is improved.
  • the embodiments of the present disclosure further provide an antenna, including the phase shifter provided by the embodiments of the present disclosure.
  • the antenna provided in this embodiment may include a base station antenna, which includes the phase shifter provided in the embodiment of the present disclosure, and has the same or corresponding functions and beneficial effects as the phase shifter.
  • a base station antenna which includes the phase shifter provided in the embodiment of the present disclosure, and has the same or corresponding functions and beneficial effects as the phase shifter.
  • the phase shifter provided by the present disclosure includes: a cavity; a phase-shifting conductor strip, a power divider and a signal input line, and an air stripline is used for the signal input line, the power divider and the phase-shifting conductor strip, which greatly reduces the phase shifter.
  • the loss of the signal input line is placed in the cavity of the phase shifter, which makes the structure layout more concise and easy to implement, reduces the difficulty of additionally introducing air striplines in the compact antenna layout, and has strong industrial practicality. sex.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开涉及一种移相器和天线。其中,移相器包括:腔体;移相导体带、功分器和信号输入线,位于所述腔体内;所述功分器、所述信号输入线和所述移相导体带均为空气带状线,且共同构成了移相器内部的传输线。本公开具有损耗低,集成度高和简化基站天线馈电网络布局的优点。

Description

一种移相器和天线
本申请要求于2020年8月31日提交中国专利局、申请号为202010899299.4、发明名称为“一种移相器和天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及移动通信技术领域,尤其涉及一种移相器和天线。
背景技术
移动通信发展至今,已进入5G时代,对通信质量的要求越来越高,天线是通信系统的前端设备,其性能对通信质量尤为重要。移相器是基站天线的核心模块之一,可对阵列天线进行波束赋型,比如电下倾角控制,上旁瓣抑制和零点填充,以适用于各种复杂的应用环境,提升通信质量。
业内基站天线中所使用的移相器主要有两种类型:方式一是采用强耦合的方式,改变电磁波传输线的物理长度以达到移相的目的;方式二是通过改变覆盖在电磁波传输线上介质的体积,调节了介质与空气组成的复合介质的相对介电常数,即调节了移相器传输电磁波的速率,以达到移相的目的。但目前公示的这两种形式的移相器均存在配相电缆布局散乱和损耗大的问题。
发明内容
(一)要解决的技术问题
本公开要解决的技术问题是解决现有的移相器的配相电缆布局散乱和损耗大的问题。
(二)技术方案
为了解决上述技术问题,本公开实施例提供了一种移相器和天线。
本公开提供了一种移相器,包括:
腔体;
移相导体带、功分器和信号输入线,位于所述腔体内;所述功分器、所述信号输入线和所述移相导体带均为空气带状线,且共同构成了移相器内部的传输线。
可选的,所述移相器还包括至少一个介质移相单元,位于所述腔体内,用于控制天线阵元的相位;所述介质移相单元设有所述移相导体带和介质板,所述介质板沿所述移相器的横向运动。
可选的,所述腔体包括堆叠的第一腔体和第二腔体,所述介质移相单元位于所述第一腔体内,所述信号输入线位于所述第二腔体内;在所述介质板运动方向上的腔体壁开设有缺口,所述介质板的一部分通过所述缺口裸露在所述腔体外。
可选的,所述第一腔体和所述第二腔体的堆叠方向与基本平面相垂直,所述基本平面为所述移相器的横向及纵向所限定的平面。
可选的,在所述堆叠方向上,所述信号输入线的一端部与所述移相器输入端口重叠,且在所述信号输入线与所述移相器输入端口的重叠区域,所述信号输入线与所述移相器输入端口通过第一转接柱电连接。
可选的,所述移相器还包括相位补偿线,设置于所述腔体上,所述相位补偿线的第一端与移相器输出端口电连接,所述相位补偿线的第二端与天线阵元电连接。
可选的,还包括印刷电路板,所述印刷电路板包括依次层叠设置的线路层、介质层、地层和保护层;所述相位补偿线设置于所述线路层。
可选的,所述保护层贴合于所述腔体外部且位于所述腔体上表面,在垂直于所述腔体上表面的方向上,所述相位补偿线的第一端与所述 移相器输出端口重叠,且在所述相位补偿线与所述移相器输出端口的重叠区域,所述相位补偿线与所述移相器输出端口通过第二转接柱电连接。
可选的,所述介质板包括相对设置的第一介质板和第二介质板,所述第一介质板和所述第二介质板固定连接,所述移相导体带位于所述第一介质板和所述第二介质板之间,所述第一介质板、所述第二介质板和所述移相导体带均与基本平面平行,所述基本平面为所述移相器的横向及纵向所限定的平面。
可选的,所述介质移相单元沿所述移相器的纵向排布,相邻两个所述介质移相单元中的所述移相导体带通过所述功分器连接,所述功分器与所述移相导体带位于同一平面。
可选的,所述功分器至少包括第一端口、第二端口和第三端口,所述移相导体带通过所述功分器的第一端口及第二端口相连;其中两个所述介质移相单元中的所述移相导体带通过两个所述功分器连接且其中一个所述功分器的第三端口作为所述移相器输入端口,另一个所述功分器的第三端口作为所述移相器输出端口,其他所述介质移相单元中的所述移相导体带通过一个所述功分器连接且所述功分器的第三端口均作为所述移相器输出端口。
可选的,在所述第一腔体和所第二腔体的堆叠方向上,所述介质板与所述功分器无交叠。
本公开还提供了一种天线,包括本公开提供的移相器。
(三)有益效果
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
一、信号输入线、功分器和移相导体带采用空气带状线,大大降低了移相器的损耗,且将信号输入线置于移相器的腔体中,使得结构布局更加简洁,易于实现,降低了在紧凑的天线布局中额外引入空气带状线的难度。
二、整个腔体作为传输线的地,不需要引入额外的金属连接件,减少了金属接触点,有利于三阶互调的控制。
三、将相位补偿线集成在移相器腔体上,取代了用于调节相位及连接振子用的同轴电缆,使得整个移相馈电网络的集成度非常高,简化天线整机的布局,提升天线的组装效率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的移相器的部分剖视图;
图2为本公开实施例提供的相位补偿线的连接示意图;
图3为本公开实施例提供的移相器的截面示意图;
图4为本公开实施例提供的另一种移相器的截面示意图;
图5为本公开实施例提供的介质板覆盖移相导体带时的示意图;
图6为本公开实施例提供的介质板未覆盖移相导体带时的示意图;
图7为本公开实施例提供的腔体壁开设有长方形缺口的结构示意图;
图8为本公开实施例提供的PCB相位补偿线的结构示意图;
图9为本公开实施例提供的各介质移相单元的连接结构示意图;
图10为本公开实施例提供的功分器的结构示意图;
图11为本公开实施例提供的移相器的具体结构示意图。
其中,1、腔体;11、第一腔体;12、第二腔体;2、介质移相单元;21、介质板;22、移相导体带;211、第一介质板;212、第二介质板;201、移相器输入端口;202、第一转接柱;203、通孔;204、 移相器输出端口;205、第二转接柱;206、缺口;3、信号输入线;4、功分器;41、第一功分器;42、第二功分器;401、第一端口;402、第二端口;403、第三端口;5、相位补偿线;501、相位补偿线的第一端;502、相位补偿线的第二端;6、介质层;7、地层。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
目前,与移相器输入端口连接的信号输入线是较长的同轴电缆接头,由于同轴电缆自身介质的影响,而且天线越长,同轴电缆接头越长,损耗越大。单位长度的空气带状线比同轴电缆的损耗要小得多,但是在本来就紧凑的天线布局中额外引入空气带状线,难度非常大。另外,移相器与天线阵元之间均需要同轴电缆进行连接和相位补偿,错中复杂的电缆分布会增加天线的复杂性,降低天线的组装效率。
为解决上述技术问题,本公开实施例提供了如下技术方案:
图1为本公开实施例提供的移相器的部分剖视图;图2为本公开实施例提供的相位补偿线的连接示意图;图3为本公开实施例提供的移相器的截面示意图。该移相器可应用于基站天线中,对阵列天线进行波束赋形,适用于电下倾角控制、上旁瓣抑制和零点填充等可提升通信质量的情况。具体的,如图1、图2和图3所示,本实施例提供的一种移相器,包括:
腔体1;
移相导体带22、功分器(图中未示出)和信号输入线3,位于腔体1内,功分器、信号输入线3和移相导体带22均为空气带状线,且共同构成了移相器内部的传输线。
上述移相器结构中,信号输入线3与移相器输入端口201电连接,该移相器输入端口201可由功分器一个端口提供,介质移相单元2与功分器电连接,功分器另外的一个端口作为移相器输出端口204。
本实施例中,信号输入线3可以为金属材质,腔体1可以为一体化金属腔体,可采用一次性拉挤成形工艺形成,腔体1作为传输线的地,且腔体1中填充的介质为空气。此时,信号输入线3介于两个接地板之间的空气介质中,从而形成了空气带状线。由于空气带状线的单位长度的损耗比同轴电缆和PCB微带线小得多,因此,本实施例的技术方案设置的信号输入线3可降低移相器的损耗,特别是天线越长,损耗的降低越明显。另外,腔体1采用一次性拉挤成形工艺形成,从而减少工艺制程,便于加工,提高尺寸精度。
在一些实施例中,移相器还可包括至少一个介质移相单元2,位于腔体1内,用于控制天线阵元的相位;介质移相单元2设有移相导体带22和介质板21,介质板21沿腔体1的横向Y运动。
需要说明的是,本实施例中的介质移相单元2可以为现有的任意一种移相器结构,也可以为自行设计的移相器结构,本实施例对此不作限定,只要可以实现移相量的调节即可。另外,信号输入线3的宽度及厚度也不作限定,具体视实际情况而定。
示例性的,信号输入线3传输的信号经移相器输入端口201输入至介质移相单元2中,可根据各介质移相单元2对应的天线阵元所需的相位,通过调节各介质移相单元2来改变传输线的等效介电常数,从而改变信号传输相位,达到移相的目的。具体的,介质板21的材料 可以是高介电常数材料,如塑料或陶瓷,可以实现大范围的移相量的变化,移相导体带22的材料可以为金属。通过调节介质板21在腔体1的横向Y上的运动,可使介质板21与移相导体带22重叠面积改变,进而调节了介质板21与空气组成的复合介质的相对介电常数,即调节了移相器传输电磁波的速率,从而达到移相的目的。图3到图4示出了介质板21向腔体1外的方向拉出的过程;图5示出了介质板21在运动过程中与移相导体带22存在交叠的情况;图6示出了介质板21在运动过程中与移相导体带22无交叠的情况。本公开实施例中,为了实现介质板21的稳定运动,腔体1的外部可设置可支撑固定介质板21的传动机构,以将介质板推进腔体1或拉出腔体1,本公开实施例对该传动机构的具体结构不作限制。
本实施例中的移相器的信号输入线采用空气带状线,大大降低了移相器的损耗,且将信号输入线置于移相器的腔体中,使得结构布局更加简洁,易于实现,降低了在紧凑的天线布局中额外引入空气带状线的难度;同时将整个腔体作为传输线的地,不需要引入额外的金属连接件,减少了金属接触点,有利于三阶互调的控制。
可选的,腔体包括堆叠的第一腔体和第二腔体,介质移相单元位于第一腔体内,信号输入线位于第二腔体内;在介质板运动方向(即横向Y)上的腔体壁开设有缺口,介质板的一部分通过缺口裸露在腔体外。
作为本公开的一可选实施例,继续参考图1到图3,腔体1包括堆叠的第一腔体11和第二腔体12,介质移相单元2位于第一腔体11内,信号输入线3位于第二腔体12内。此时,介质移相单元2和信号输入线3通过第一腔体11及第二腔体12分离开,避免了介质移相单元2的布设对信号输入线3布线的限制,使得信号输入线3可以在第二腔体12中自由布线。
作为本公开的一优选实施例,如图7所示,在介质板21运动方向(即横向Y)上的腔体壁开设有缺口206,介质板21的一部分通过缺口206裸露在腔体1外。由此,介质板21经缺口206可拉出腔体1,实现在横向Y上的运动;同时,由于介质板21的向外运动不受腔体1的腔体壁的阻挡,因此腔体1在横向Y上的宽度可进步减小,从而减小了移相器的占用面积。另外,第二腔体12在横向Y上的宽度可小于第一腔体11在横向Y上的宽度,为信号输入线3提供足够的布线空间即可,从而可减小第二腔体12的占用空间。需要说明的是,本公开对缺口206的形状不作限制,可以为长方形、椭圆形或梯形等,只要可以使得介质板21经该缺口206在横向Y上运动即可。
另外,在一些实施例中,在设定横截面上,第一腔体11的腔体壁所围成的图形为长方形,第二腔体12的腔体壁所围成的图形为长方形或U形;其中,设定横截面垂直于移相器的纵向。需要说明的是,在设定横截面上,当第二腔体的腔体壁所围成的图形为U形时,第二腔体的腔体壁在横向Y上的一侧(包括图3和图4所示的左侧或右侧)为开口,即第二腔体在横向Y上的一侧不存在腔体壁。
可选的,第一腔体和第二腔体共用有一个腔体壁。如图3和图4所示,第一腔体11和第二腔体12共用中间的腔体壁,此时可减少工艺材料,减小移相器的厚度。
进一步的,在本公开的一优选方案中,继续参考图3和图4,第一腔体11和第二腔体12的堆叠方向Z与基本平面相垂直,其中,基本平面为移相器的横向Y及纵向X所限定的平面。该技术方案通过设置第一腔体11和第二腔体12的堆叠方向Z与移相器的横向Y及纵向X所限定的平面相垂直,即第一腔体11和第二腔体12沿移相器的厚度方向堆叠,使得信号输入线3与介质移相单元2可以在移相器的厚度方向上重叠,从而减小了移相器在横向Y上的长度,即减小了移相器 的宽度,进而减小了移相器的占用面积。
可选的,在堆叠方向上,信号输入线的一端部与移相器输入端口重叠,且在信号输入线与移相器输入端口的重叠区域,信号输入线与移相器输入端口通过第一转接柱电连接。
示例性的,可继续参考图3和图4,在堆叠方向Z上,信号输入线3的一端部与移相器输入端口201重叠,在信号输入线3与移相器输入端口201的重叠区域,信号输入线3与移相器输入端口201形成有正对的焊接过孔,第一转接柱202穿设于信号输入线3与移相器输入端口201的焊接过孔中,实现信号输入线3与移相器输入端口201的电连接。另外,为了装配第一转接柱202,在第一腔体11和第二腔体12的覆盖上述重叠区域的各腔体壁上,且对应上述重叠区域的位置,开设有通孔203,其中,通孔203的直径大于焊接过孔的直径。
在一些实施例中,可继续参考图1至图4,移相器还包括相位补偿线5,设置于腔体1上,相位补偿线5的第一端与移相器输出端口204电连接,相位补偿线5的第二端与天线阵元电连接。由此,本公开将相位补偿线集成在移相器腔体上,取代了用于调节相位及连接振子用的同轴电缆,使得整个移相馈电网络的集成度非常高,简化天线整机的布局,提升天线的组装效率。
在一些实施例中,如图8所示,移相器还包括印刷电路板,印刷电路板包括依次层叠设置的线路层、介质层6、地层7和保护层;相位补偿线5可设置于印刷电路板的线路层,形成PCB相位补偿线。其中保护层可以为绿油层;保护层贴合于腔体外部且位于腔体上表面,可通过塑料铆钉或卡件将印刷电路板固定在腔体上,通过绿油层将相位补偿线与腔体绝缘隔开,达到改善移相器的互调的目的。
同时结合图1至图4,在垂直于腔体1上表面的方向上,相位补偿线的第一端501与移相器输出端口204重叠,且在相位补偿线5与移 相器输出端口204的重叠区域,相位补偿线5与移相器输出端口204通过第二转接柱205电连接,相位补偿线的第二端502直接与天线阵元连接,对其进行馈电,通过设计相位补偿线的长度可调节各移相器输出端口的相位。基于上述实施例,功分器的第三端口作为移相器输入端口或移相器输出端口,因此功分器的第三端口上开设有焊接过孔,以便于第一转接柱或第二转接柱穿设。
可选的,相位补偿线的数量至少为(N-2)个,其中,N为移相器输出端口的数量,且N≥3。
基于上述实施例,在本公开另一可选实施例中,可继续参考图3和图4,介质板21包括相对设置的第一介质板211和第二介质板212,第一介质板211和第二介质板212固定连接,移相导体带22位于第一介质板211和第二介质板212之间,第一介质板211、第二介质板212和移相导体带22均与基本平面平行,基本平面为移相器的横向Y及纵向X所限定的平面。
可选的,移相导体带22位于第一腔体11的中间,且第一介质板211和第二介质板212关于移相导体带22所在平面对称设置。
可选的,如图9所示,介质移相单元2沿纵向X排布,相邻两个介质移相单元2中的移相导体带22通过功分器4连接。可选的,功分器4与移相导体带22位于同一平面。
可选的,如图9和图10所示,功分器4至少包括第一端口401、第二端口402和第三端口403,移相导体带22通过功分器4的第一端口401及第二端口402相连;其中两个介质移相单元2中的移相导体带22通过两个功分器4连接且其中一个功分器(如第一功分器41)的第三端口403作为移相器输入端口201,另一个功分器(如第二功分器42)的第三端口403作为移相器输出端口204,其他介质移相单元2中的移相导体带22通过一个功分器4连接且功分器4的第三端口403 均作为移相器输出端口204。对于末端的两个功分器(如图9所示两端的功分器4),可通过设计第一端口或第二端口的长度来调节相位。
本实施例可通过设置多个功分器和移相导体带串联,组成具有多个移相器输出端口的移相器,同时通过改变功分器的功率比可方便地设计出所需功率比的移相器。另外,由于介质板横向移动,所以移相导体带的长度得到有效的控制,可在具有M个天线阵元的均匀直线阵列天线的有限长度内放置具有M个移相器输出端口的移相器,其中(M-1)个独立移相器输出端口移相,一个移相器输出端口(如图9所示中间的移相器输出端口204)不移相,加上灵活的功率比设计,可在保证阵列天线的增益的前提下实现最优的垂直面波束赋型。
可选的,在堆叠方向上,介质板与功分器无交叠。由此,减少了对功分器的影响,可提升移相器功率比的线性度以及减少移相器的损耗。
基于上述各实施例,如图11所示,本公开提供的移相器具体可包括腔体1;位于腔体1内的至少一个介质移相单元,介质移相单元包括由正对设置的第一介质板和第二介质板构成的介质板21以及位于第一介质板与第二介质板之间的移相导体带;在介质板21运动方向上的腔体壁开设有缺口,介质板21的一部分通过缺口裸露在腔体1外,介质板21经缺口可在横向上运动,从而实现移相量的调节;位于腔体1内的信号输入线,信号输入线与移相器输入端口连接;以及位于腔体1上表面的相位补偿线5,相位补偿线5的第一端与移相器输出端口连接,相位补偿线的第二端与天线阵元连接。
本公开提供的技术方案,由于移相器内部传输线(包括信号输入线)以空气带状线为主,其损耗比连接移相器与天线阵元的PCB微带线或同轴电缆都要小,当移相器长度与天线长度相当时,移相器与天线阵元的连接线长度缩到最短,从而降低了馈电网络的损耗。同时采 用具有相位补偿功能的相位补偿线集成在移相器腔体上,使得整个天线的馈电网络集成度非常高,布局简洁,提升了组装效率。
本公开实施例还提供了一种天线,包括本公开实施例提供的移相器。
本实施例提供的天线可包括基站天线,其包括本公开实施例提供的移相器,具有移相器相同或相应的功能和有益效果,未在本实施例中详尽描述的内容可参见上述各实施例,此处不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开提供的移相器包括:腔体;移相导体带、功分器和信号输入线,通过信号输入线、功分器和移相导体带采用空气带状线,大大降低了移相器的损耗,且将信号输入线置于移相器的腔体中,使得结构布局更加简洁,易于实现,降低了在紧凑的天线布局中额外引入空气带状线的难度,具有很强的工业实用性。

Claims (13)

  1. 一种移相器,其特征在于,包括:
    腔体;
    移相导体带、功分器和信号输入线,位于所述腔体内;所述功分器、所述信号输入线和所述移相导体带均为空气带状线,且共同构成了移相器内部的传输线。
  2. 根据权利要求1所述的移相器,其特征在于,所述移相器还包括至少一个介质移相单元,位于所述腔体内,用于控制天线阵元的相位;所述介质移相单元设有所述移相导体带和介质板,所述介质板沿所述移相器的横向运动。
  3. 根据权利要求2所述的移相器,其特征在于,所述腔体包括堆叠的第一腔体和第二腔体,所述介质移相单元位于所述第一腔体内,所述信号输入线位于所述第二腔体内;在所述介质板运动方向上的腔体壁开设有缺口,所述介质板的一部分通过所述缺口裸露在所述腔体外。
  4. 根据权利要求3所述的移相器,其特征在于,所述第一腔体和所述第二腔体的堆叠方向与基本平面相垂直,所述基本平面为所述移相器的横向及纵向所限定的平面。
  5. 根据权利要求4所述的移相器,其特征在于,在所述堆叠方向上,所述信号输入线的一端部与所述移相器输入端口重叠,且在所述信号输入线与所述移相器输入端口的重叠区域,所述信号输入线与所述移相器输入端口通过第一转接柱电连接。
  6. 根据权利要求1所述的移相器,其特征在于,所述移相器还包括相位补偿线,设置于所述腔体上,所述相位补偿线的第一端与移相器输出端口电连接,所述相位补偿线的第二端与天线阵元电连接。
  7. 根据权利要求6所述的移相器,其特征在于,还包括印刷电路板,所述印刷电路板包括依次层叠设置的线路层、介质层、地层和保 护层;所述相位补偿线设置于所述线路层。
  8. 根据权利要求7所述的移相器,其特征在于,所述保护层贴合于所述腔体外部且位于所述腔体上表面,在垂直于所述腔体上表面的方向上,所述相位补偿线的第一端与所述移相器输出端口重叠,且在所述相位补偿线与所述移相器输出端口的重叠区域,所述相位补偿线与所述移相器输出端口通过第二转接柱电连接。
  9. 根据权利要求3或4所述的移相器,其特征在于,所述介质板包括相对设置的第一介质板和第二介质板,所述第一介质板和所述第二介质板固定连接,所述移相导体带位于所述第一介质板和所述第二介质板之间,所述第一介质板、所述第二介质板和所述移相导体带均与基本平面平行,所述基本平面为所述移相器的横向及纵向所限定的平面。
  10. 根据权利要求3或4所述的移相器,其特征在于,所述介质移相单元沿所述移相器的纵向排布,相邻两个所述介质移相单元中的所述移相导体带通过所述功分器连接,所述功分器与所述移相导体带位于同一平面。
  11. 根据权利要求10所述的移相器,其特征在于,所述功分器至少包括第一端口、第二端口和第三端口,所述移相导体带通过所述功分器的第一端口及第二端口相连;其中两个所述介质移相单元中的所述移相导体带通过两个所述功分器连接且其中一个所述功分器的第三端口作为所述移相器输入端口,另一个所述功分器的第三端口作为所述移相器输出端口,其他所述介质移相单元中的所述移相导体带通过一个所述功分器连接且所述功分器的第三端口均作为所述移相器输出端口。
  12. 根据权利要求10所述的移相器,其特征在于,在所述第一腔体和所第二腔体的堆叠方向上,所述介质板与所述功分器无交叠。
  13. 一种天线,其特征在于,包括如权利要求1-12任一项所述的移相器。
PCT/CN2020/141012 2020-08-31 2020-12-29 一种移相器和天线 WO2022041621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010899299.4A CN111952699A (zh) 2020-08-31 2020-08-31 一种移相器和天线
CN202010899299.4 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022041621A1 true WO2022041621A1 (zh) 2022-03-03

Family

ID=73368095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141012 WO2022041621A1 (zh) 2020-08-31 2020-12-29 一种移相器和天线

Country Status (2)

Country Link
CN (1) CN111952699A (zh)
WO (1) WO2022041621A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976535A (zh) * 2022-05-31 2022-08-30 中信科移动通信技术股份有限公司 传动移相系统及天线
CN114976647A (zh) * 2022-05-09 2022-08-30 南通大学 一种用于基站阵列天线的介质移相器
CN115775960A (zh) * 2022-12-27 2023-03-10 京信通信技术(广州)有限公司 天线装置、移相器及其相位调整方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952699A (zh) * 2020-08-31 2020-11-17 京信通信技术(广州)有限公司 一种移相器和天线
CN115842228B (zh) * 2022-12-30 2023-05-26 京信通信技术(广州)有限公司 天线装置和移相器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060145784A1 (en) * 2003-03-12 2006-07-06 Qinetiq Limited Phase shifter device
CN101651242A (zh) * 2009-01-09 2010-02-17 电子科技大学 小型化td-scdma电调智能天线移相器
CN102082327A (zh) * 2010-11-25 2011-06-01 广东通宇通讯股份有限公司 一体化移相器馈电网络
CN108879035A (zh) * 2018-06-28 2018-11-23 京信通信系统(中国)有限公司 介质滑动式移相器及基站天线
CN111952699A (zh) * 2020-08-31 2020-11-17 京信通信技术(广州)有限公司 一种移相器和天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060145784A1 (en) * 2003-03-12 2006-07-06 Qinetiq Limited Phase shifter device
CN101651242A (zh) * 2009-01-09 2010-02-17 电子科技大学 小型化td-scdma电调智能天线移相器
CN102082327A (zh) * 2010-11-25 2011-06-01 广东通宇通讯股份有限公司 一体化移相器馈电网络
CN108879035A (zh) * 2018-06-28 2018-11-23 京信通信系统(中国)有限公司 介质滑动式移相器及基站天线
CN111952699A (zh) * 2020-08-31 2020-11-17 京信通信技术(广州)有限公司 一种移相器和天线

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976647A (zh) * 2022-05-09 2022-08-30 南通大学 一种用于基站阵列天线的介质移相器
CN114976535A (zh) * 2022-05-31 2022-08-30 中信科移动通信技术股份有限公司 传动移相系统及天线
CN114976535B (zh) * 2022-05-31 2023-12-05 中信科移动通信技术股份有限公司 传动移相系统及天线
CN115775960A (zh) * 2022-12-27 2023-03-10 京信通信技术(广州)有限公司 天线装置、移相器及其相位调整方法
CN115775960B (zh) * 2022-12-27 2024-03-26 京信通信技术(广州)有限公司 天线装置、移相器及其相位调整方法

Also Published As

Publication number Publication date
CN111952699A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2022041621A1 (zh) 一种移相器和天线
TWI568071B (zh) Cavity microwave devices
US8907744B2 (en) Multi-line phase shifter having a fixed plate and a mobile plate in slideable engagement to provide vertical beam-tilt
US8576137B2 (en) Antenna arrangement
WO2011050579A1 (zh) 移相器
JP2005045815A (ja) ミリ波信号変換デバイス
WO2022036994A1 (zh) 一种移相器单元、移相器和阵列天线
CN109742538B (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
CN104681896A (zh) 一种多路一体化介质移相器
US11705614B2 (en) Coupling device and antenna
CN208674382U (zh) 一种紧凑型多波束天线阵列系统
CN112103631A (zh) 一种相控阵天线和卫星通讯终端
Shehab et al. Substrate-integrated-waveguide power dividers: An overview of the current technology
CN204614906U (zh) 一种多路一体化介质移相器
CN108172994B (zh) 一种基于介质集成同轴线的双极化宽带天线装置
WO2021248887A1 (zh) 馈电网络、天线系统及基站
AU1844300A (en) Ultrawide bandwidth electromechanical phase shifter
US11916298B2 (en) Patch antenna
Bilawal et al. The art of substrate-integrated-waveguide power dividers
CN212648437U (zh) 一种移相器和天线
CN109888491A (zh) 基于siw的三波束天线系统
CN113067133B (zh) 一种低剖面低副瓣大角度频扫阵列天线
JP2010283625A (ja) マジックt
KR102251287B1 (ko) 기판집적도파관 구조를 세그먼트 분리하여 층으로 할당하고 적층하는 방식의, 5g 소형 단말기 및 중계기용 광대역 빔 포밍 안테나 면적 축소법
CN114497930A (zh) 合路移相装置与天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951287

Country of ref document: EP

Kind code of ref document: A1