WO2022041363A1 - Procédé d'initialisation de commande de dispositif électronique de puissance - Google Patents

Procédé d'initialisation de commande de dispositif électronique de puissance Download PDF

Info

Publication number
WO2022041363A1
WO2022041363A1 PCT/CN2020/116987 CN2020116987W WO2022041363A1 WO 2022041363 A1 WO2022041363 A1 WO 2022041363A1 CN 2020116987 W CN2020116987 W CN 2020116987W WO 2022041363 A1 WO2022041363 A1 WO 2022041363A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
integrator
power electronic
value
initialization method
Prior art date
Application number
PCT/CN2020/116987
Other languages
English (en)
Chinese (zh)
Inventor
李周
詹若培
Original Assignee
东南大学溧阳研究院
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学溧阳研究院, 东南大学 filed Critical 东南大学溧阳研究院
Publication of WO2022041363A1 publication Critical patent/WO2022041363A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention belongs to the technical field of power electronics, and relates to a control initialization method for power electronic equipment.
  • VSC-HVDC high voltage direct current transmission technology based on voltage source converter
  • DFIG double-fed induction motor
  • SVC static reactive power compensator
  • STATCOM static Synchronous compensator
  • the control strategy of power electronic equipment needs a suitable control initialization method.
  • the traditional control initialization method first sets the control target reference value to be the same as the actual value to reduce the influence of control startup, and after the system is stabilized, the reference value will be changed to the ideal value.
  • the initial value of the integrator is unknown before the control strategy for the power electronic device starts, it will bring unpredictable problems, so the output value of the integrator needs to be reset to zero.
  • clearing the initial value of the integrator is one of the reasons for the circuit shock during the control start-up process, which leads to a larger shock at the start of some control strategies, thus increasing the difficulty of control start-up. This is because the initial value of the integrator is cleared, and the output value of the integrator is zero, which causes the control quantity to be different from the corresponding electrical quantity in the actual circuit.
  • the present invention provides a control initialization method for power electronic equipment.
  • the initial value of the integral is considered according to the actual circuit model to reduce the impact caused by the start of the control strategy, which can improve the control of power electronic equipment.
  • the strategy's startup stability, while improving the startup speed, enables power electronic devices to have more application scenarios.
  • the present invention provides the following technical solutions:
  • a power electronic equipment control initialization method comprising the following steps:
  • step (2) According to the setting value information required by the control loop in step (1), realize the setting of the initial value of the integrator in the control loop, and lock the initial value of the integrator before starting the control;
  • the target control strategy reference value is set as the electrical quantity measurement value obtained in step (1), and the control system sends the control start signal to the modulation and valve group control to start the control strategy.
  • step (2) after the initial value of the integrator is locked, the initial value of the integrator in the control loop is equal to the set value of the integrator.
  • the setting value information required by the control loop includes: the control target reference value and the setting value of the integrator.
  • the activation of the control strategy includes: activation of the control strategy when the device valve is unlocked and switching of the device control strategy.
  • the power electronic equipment includes: STATCOM static synchronous compensator, SVC static reactive power compensator, TCSC controllable series compensator, UPFC unified power flow controller, DFIG double-fed induction motor, and HVDC high-voltage direct current transmission system.
  • the initial value of the integrator is set as follows:
  • Us is the AC voltage at the PCC point of the converter
  • Ps and Qs are the active power and reactive power at the PCC point, respectively
  • X is the commutation impedance
  • K I and K P are the proportional coefficients set by the integrator and the proportional link
  • the time t 0 is the unlocking time
  • the time t 1 is a certain time after the actual operation
  • U sref is the reference value of the AC voltage.
  • the four integrators are set in the following ways:
  • P s is the active power on the grid side of the converter
  • U s is the RMS AC voltage on the grid side of the converter
  • U c is the RMS AC voltage at the PCC point
  • t 0 is the start time of the control strategy
  • Q s is the grid side Reactive power
  • i sd and i sq are the d and q axis components of the grid-side AC current respectively
  • X c is the equivalent impedance of the commutation inductance
  • R is the equivalent resistance of the converter.
  • t 0 is the start time of the control strategy
  • t 1 is a certain time when the control strategy is in normal operation
  • V dc is the DC voltage of the converter
  • V dcref is the DC voltage reference value
  • Q sref is the reactive power reference value
  • i sdref is the d-axis current reference value
  • i sqref is the q-axis current reference value.
  • the present invention has the following advantages and beneficial effects:
  • the invention realizes that when the control strategy is initialized, the initial value of the integrator in the control system and the reference value of the control target are adjusted, the circuit impact is reduced, the rapidity and stability of the power electronic equipment control during startup are improved, and the power electronic equipment is improved. It provides more application scenarios and can be widely used in the field of power electronics.
  • FIG. 1 is a schematic diagram of a power electronic device control initialization method of the present invention
  • Fig. 2 is the flow chart of the power electronic equipment control initialization method of the present invention
  • FIG. 3 is a schematic diagram for verifying the flexible straight grid-connected system of the microgrid of the present invention.
  • Figure 4 is a schematic diagram of the amplitude and phase control of the flexible DC transmission
  • Fig. 5 is a simulation result diagram for verifying the microgrid via the flexible straight grid-connected system of the present invention, wherein (a) is the AC busbar voltage (effective value) of the microgrid, (b) is the frequency of the microgrid AC bus, and (c) is the The active power of the PCC point of VSC1, (d) is the a-phase current of VSC1, (e) is the DC voltage of VSC1;
  • FIG. 6 is a schematic diagram for verifying the grid-side control of the doubly-fed fan of the present invention.
  • Figure 7 shows a control loop with an integrator.
  • the invention provides a control initialization method for power electronic equipment.
  • the control strategy of the power electronic equipment needs to be started, in order to reduce the impact of the start-up process, it is adopted before the target control strategy is started to perform initialization.
  • One or more control loops of the power electronic equipment control system include an integrator, which uses a certain control strategy to control the valve stage, thereby realizing the corresponding functions of the power electronic equipment.
  • a control loop with an integrator is generally shown in Figure 7.
  • the input variable r n (t) of a control loop of the control system obtains the output variable c n (t) through the integrator, and its output value is continuously integrated from the initial control time, and is related to the initial value of the integration.
  • the startup of the power electronic equipment control strategy includes the process of starting the control strategy when the valve control of the equipment is unlocked, and switching the equipment control strategy. It should be noted that the startup refers to the startup of a certain control strategy, and does not mean the startup of the power electronic device.
  • the power electronic device may be in an operating state, and the operating state does not necessarily need to be a steady state.
  • the power electronic equipment control initialization method provided in this example includes the following steps:
  • the state is obtained from the measured electrical quantities of the actual system, and the real-time electrical quantity data related to the control part is collected.
  • the setting value information required by the control loop is obtained. It should be noted that the real-time electrical quantity data is the electrical quantity necessary for the original control, and there is no need to add a new measurement interface, and the system collects the actual electrical quantity value at all times.
  • the setting value information required by the control loop including the control target reference value and the setting value of the integrator;
  • the output value of (t 0 ) is equal to the initial value, that is, the setting value of the integrator, which can ensure that there is no deviation between the output value and the actual value when the control starts.
  • the initial value of the integrator in the control loop is set, because the output of the integrator satisfies:
  • t 0 is the starting time of the control strategy
  • t 1 is a certain time when the control strategy is running normally
  • rn ( ⁇ ) is the input of the integrator.
  • c n (t 0 ) is the initial value that the integrator needs to set, and it usually needs to be calculated according to the actual circuit and mathematical model of the system.
  • FIG. 3 it is an application of the present invention in the flexible direct current transmission VSC-HVDC
  • FIG. 4 is a block diagram of amplitude and phase control.
  • the figure shows a double-ended VSC-HVDC system, and the left end is an equivalent microgrid system, which includes generator sets, motor sets, and fixed loads and energy storage devices.
  • the AC bus voltage is 500kV
  • the voltage source converter VSC AC voltage is 255kV
  • the DC voltage is ⁇ 250kV
  • the DC capacitance 500uF.
  • the equivalent generator set outputs 375MW of active power
  • the equivalent motor set consumes 150MW of active power
  • the fixed load is 225MW.
  • the VSC-HVDC is put into operation, the VSC at the micro grid end is controlled by amplitude and phase, and the VSC at the main grid end is controlled by constant DC voltage.
  • the AC bus voltage of the micro-grid is measured before 10s, and the phase and AC amplitude required for the amplitude-phase control are obtained as the control target reference value of the control strategy.
  • the reference value U sref of the AC voltage at the PCC point controlled by the amplitude and phase is set to 229kV, and the initial value of the integrator is set as follows:
  • K I and K P are the proportional coefficients set by the integrator and the proportional link
  • the time t 0 is the unlocking time
  • the time t 1 is a certain time after the actual operation
  • U sref is the reference value of the AC voltage.
  • the AC outlet side voltage of the VSC is calculated or directly measured from the above process, and this voltage is used as the initial value of the amplitude-phase control integrator, and the initial value of the integrator is locked before the control strategy is started.
  • a control start signal is sent to the control loop and the VSC valve stage control, and then the initial value of the integrator is unlocked.
  • the frequency is stable at 50Hz, the whole process is fast and smooth, the current has no overcurrent problem, and the voltage has no overvoltage problem.
  • the amplitude and phase control is adopted, and the traditional control strategy initialization method is used to connect to the grid, since the integrator is cleared, the AC outlet voltage amplitude and phase of the converter will be the same as the parallel one. If there is a large gap between the network points, it will cause system oscillation or even cause the system to collapse, making it difficult to realize grid connection.
  • the present invention can realize a good micro-grid grid connection process under the control of VSC amplitude and phase, which reflects the function of the present invention providing more application scenarios for power electronic equipment.
  • t 0 is the starting time of the control strategy
  • t 1 is a certain time when the control strategy is running normally
  • V dc is the DC voltage of the converter
  • Q s is the grid-side reactive power
  • i sd and i sq are the grid-side reactive power, respectively
  • V dcref is the DC voltage reference value
  • Q sref is the reactive power reference value
  • sdref is the d-axis current reference value
  • i sqref is the q-axis current reference value.
  • i sdref (t 0 ) and i sqref (t 0 ) can be directly measured, and U kd (t 0 ) and U kq (t 0 ) need to be calculated.
  • the calculation formula is:
  • P s is the active power on the grid side of the converter
  • U s is the rms value of the AC voltage on the grid side of the converter
  • U c is the rms value of the AC voltage at the PCC point
  • X c is the equivalent impedance of the commutation inductance
  • R is the commutation inductance. Current equivalent resistance.
  • the above two application embodiments are only examples and should not be used as limitations of the present invention.
  • the power electronic devices to which the present invention can be applied include but are not limited to the following devices shown in Table 1:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

La présente invention concerne un procédé d'initialisation de commande de dispositif électronique de puissance, comprenant les étapes consistant à : (1) avant le démarrage d'une stratégie de commande cible, mesurer la quantité électrique à partir d'un système réel pour effectuer une acquisition d'état, collecter les données de quantité électrique en temps réel et obtenir des informations de valeur de réglage requises par une boucle de commande ; (2) en fonction des informations de valeur de réglage requises par la boucle de commande dans l'étape (1), régler une valeur initiale d'un intégrateur dans la boucle de commande et bloquer la valeur initiale de l'intégrateur avant le démarrage de la commande ; et (3) régler une valeur de référence de stratégie de commande cible en tant que valeur de mesure de quantité électrique obtenue à l'étape (1) ; et un système de commande envoie un signal de début de commande à une commande de modulation et de groupe de soupapes pour démarrer la stratégie de commande. Par réglage de la valeur initiale de l'intégrateur dans le système de commande et par commande d'une valeur de référence cible lorsque la stratégie de commande est initialisée, le procédé peut réduire l'impact du circuit, améliorer la rapidité et la stabilité avec lesquelles le dispositif électronique de puissance commande pendant le démarrage et fournir davantage de scénarios d'application pour le dispositif électronique de puissance. L'invention peut être largement appliquée dans le domaine de l'électronique de puissance.
PCT/CN2020/116987 2020-08-26 2020-09-23 Procédé d'initialisation de commande de dispositif électronique de puissance WO2022041363A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010872902.XA CN112086989B (zh) 2020-08-26 2020-08-26 一种电力电子设备控制初始化方法
CN202010872902.X 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022041363A1 true WO2022041363A1 (fr) 2022-03-03

Family

ID=73729624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116987 WO2022041363A1 (fr) 2020-08-26 2020-09-23 Procédé d'initialisation de commande de dispositif électronique de puissance

Country Status (2)

Country Link
CN (1) CN112086989B (fr)
WO (1) WO2022041363A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016340A1 (fr) * 2007-07-28 2009-02-05 Converteam Technology Ltd Procédés de commande pour un redresseur/onduleur actif de convertisseur de source de tension dans des conditions fonctionnelles non équilibrées
CN105680475A (zh) * 2016-03-08 2016-06-15 太原理工大学 一种抑制双馈风力发电机并网瞬间冲击电流的方法
CN109830970A (zh) * 2019-01-08 2019-05-31 中国电力科学研究院有限公司 双馈风电机组换流器控制模型电磁暂态仿真初始化方法
CN110350565A (zh) * 2018-12-24 2019-10-18 国网天津市电力公司 一种基于比例谐振控制器的vsc-hvdc系统控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225285A1 (de) * 1982-07-03 1984-01-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zum betrieb einer hochspannungs-gleichstromuebertragungsanlage mit beliebig vielen umformerstationen
CN102386627B (zh) * 2011-11-15 2013-08-21 中国海洋石油总公司 一种动态无功补偿器的控制系统及其控制方法
CN102891497A (zh) * 2012-09-24 2013-01-23 华北电力大学 利用静止同步补偿启动极弱受端高压直流输电系统的方法
CN103280842B (zh) * 2013-04-22 2014-12-17 华中科技大学 一种由直流电压生成变换器内频的同步控制方法及系统
CN103825293B (zh) * 2014-03-04 2015-09-23 浙江大学 一种提高电力系统惯性水平的风电场-柔性直流输电系统的协同控制方法
CN104362662B (zh) * 2014-11-26 2016-08-24 湖北工业大学 一种lcc-vsc型混合直流输电系统拓扑结构及启动方法
JP6456183B2 (ja) * 2015-02-24 2019-01-23 シャープ株式会社 制御装置、通信システム、および消費電力制御方法
CN105140938B (zh) * 2015-08-05 2017-06-16 东南大学 基于储能系统的双馈异步风电机组自启动控制方法
CN107039992B (zh) * 2017-03-23 2020-02-21 许继电气股份有限公司 基于下垂控制的mmc换流器的启动控制方法和控制系统
CN108923448B (zh) * 2018-06-19 2022-04-29 东南大学 一种多端柔性直流输电协调控制方法及系统
CN108923468B (zh) * 2018-06-26 2022-11-25 全球能源互联网研究院有限公司 一种虚拟同步电机无缝平滑切换方法及系统
CN109921454B (zh) * 2019-04-17 2021-05-28 国家电网有限公司 基于模块化多电平换流器的柔性直流系统启动方法及装置
CN111431557B (zh) * 2020-06-12 2020-09-11 长沙北斗产业安全技术研究院有限公司 适用于多模调制体制的信号跟踪方法及信号跟踪系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016340A1 (fr) * 2007-07-28 2009-02-05 Converteam Technology Ltd Procédés de commande pour un redresseur/onduleur actif de convertisseur de source de tension dans des conditions fonctionnelles non équilibrées
CN105680475A (zh) * 2016-03-08 2016-06-15 太原理工大学 一种抑制双馈风力发电机并网瞬间冲击电流的方法
CN110350565A (zh) * 2018-12-24 2019-10-18 国网天津市电力公司 一种基于比例谐振控制器的vsc-hvdc系统控制方法
CN109830970A (zh) * 2019-01-08 2019-05-31 中国电力科学研究院有限公司 双馈风电机组换流器控制模型电磁暂态仿真初始化方法

Also Published As

Publication number Publication date
CN112086989A (zh) 2020-12-15
CN112086989B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN113381421B (zh) 电力系统等效惯量评估方法、系统、存储介质
CN105958548B (zh) 一种适用于弱电网工况的逆变器功率-电压控制方法
Hussain et al. Power quality improvement of grid connected wind energy system using DSTATCOM-BESS
CN110048455A (zh) 具有弱电网故障穿越能力的下垂控制逆变器及其控制方法
CN109586337B (zh) 基于频域建模的vsc并网系统次同步振荡风险评估方法
WO2020019550A1 (fr) Procédé de commande d'harmonique d'onduleur connecté à un réseau multifonction basé sur un système de coordonnées de rotation multi-synchrone
WO2023221287A1 (fr) Procédé de commande d'éolienne formant un réseau pour système de transmission d'énergie éolienne en mer basé sur une unité de redresseur à diodes
Ajami et al. Fixed speed wind farm operation improvement using current-source converter based UPQC
Fu et al. Inertial and primary frequency response of PLL synchronized VSC interfaced energy resources
Li et al. PLL synchronization stability of grid-connected VSCs under asymmetric AC faults
CN110266044A (zh) 一种基于储能变流器的微电网并网控制系统及方法
WO2022041364A1 (fr) Procédé de commutation douce pour une politique de commande d'un convertisseur de type source de tension
WO2022041363A1 (fr) Procédé d'initialisation de commande de dispositif électronique de puissance
CN112186748A (zh) 基于虚拟同步阻尼控制的三相锁相环及交流微电网暂态稳定性提升方法
Deng et al. An optimal short-circuit current control method for self-synchronization controlled wind turbines
CN112952863A (zh) 一种基于相图的双馈系统切换型振荡分析方法
Ding et al. Low Voltage Ride Through of Doubly-fed Wind Farm Based on STATCOM with Fuzzy PI Control
Liu et al. Adaptive Virtual Impedance Current Limiting Strategy for Grid-Forming Converter
Argüello Setpoint feasibility and stability of wind park control interactions at weak grids
Gao et al. An Improved Virtual Impedance Control Based Oscillation Suppression Method for MMC DC System
Xiaoyu et al. Sub-synchronous oscillation (SSO) analysis of directdriven permanent magnet synchronous generators (DPMSG) considering influence of phase-locked loop (PLL)
Wang et al. Active and Reactive Power Coupling Characteristics Based Inertial and Primary Frequency Control Strategy of Battery Energy Storage Station
Li et al. Impedance Analysis and Stability Optimization based on Phase-Optimization PLL of VSC-HVDC Connected to Weak AC Grids
Ren et al. Research on Control Strategy of Offshore Wind Power Transmission System via MMC-HVDC
CN114094627B (zh) 集中式电池储能稳定风电场接入点交流电压的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951031

Country of ref document: EP

Kind code of ref document: A1