WO2022041042A1 - 一种基于混沌保密的物联网商品信息防追溯系统及方法 - Google Patents

一种基于混沌保密的物联网商品信息防追溯系统及方法 Download PDF

Info

Publication number
WO2022041042A1
WO2022041042A1 PCT/CN2020/111738 CN2020111738W WO2022041042A1 WO 2022041042 A1 WO2022041042 A1 WO 2022041042A1 CN 2020111738 W CN2020111738 W CN 2020111738W WO 2022041042 A1 WO2022041042 A1 WO 2022041042A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
operational amplifier
inverting input
respectively connected
capacitor
Prior art date
Application number
PCT/CN2020/111738
Other languages
English (en)
French (fr)
Inventor
陈勇
李隽诗
李凯
田敏
徐建俊
李洪昌
冷育荣
顾振飞
张律
Original Assignee
南京龙渊微电子科技有限公司
江苏意渊工业大数据平台有限公司
南京泰慧联电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京龙渊微电子科技有限公司, 江苏意渊工业大数据平台有限公司, 南京泰慧联电子科技有限公司 filed Critical 南京龙渊微电子科技有限公司
Publication of WO2022041042A1 publication Critical patent/WO2022041042A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/018Certifying business or products
    • G06Q30/0185Product, service or business identity fraud
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device

Definitions

  • the invention relates to an anti-tracing system and method for Internet of Things commodity information based on chaos and confidentiality, and belongs to the field of Internet of Things.
  • the current traceability method of commodity information is mainly by recording commodity information and sharing resources on the network. Customers can easily obtain public commodity information through electronic tags. However, because commodity information is in a state of resource sharing, it is easy to be attacked. If the shared information is destroyed, there is a security risk of being tampered with. At this time, the traceability of commodity information no longer exists.
  • An Internet of Things commodity information anti-traceability system based on chaos and confidentiality comprising a horizontal positioning unit, a temperature detection unit, a balance observation unit and a signal emission unit;
  • the horizontal positioning unit determines that the infrared receiver of the temperature detection unit is in the same horizontal position
  • the temperature detection unit including a plurality of infrared receivers, is arranged in a circle on the outer wall of the building at the same level to detect the ambient temperature;
  • the balance observation unit judges the current building balance state by judging whether there is a temperature difference in the ambient temperature detected by the temperature detection unit;
  • the network transmission unit connected to the network, updates the balance observations daily and sends them to the cloud for recording.
  • the temperature detection unit includes an infrared receiving circuit, including a dynamic temperature measurement module and a multi-stage amplification module;
  • the dynamic temperature measurement module includes resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, resistor R7, resistor R8, resistor R9, resistor R10, infrared receiver tube D1, diode D2, diode D3, and arithmetic Amplifier U1: A, operational amplifier U1: B, operational amplifier U1: C and capacitor C1;
  • One end of the resistor R1 is connected to a square wave voltage, and the other end of the resistor R1 is respectively connected to one end of the resistor R2, the positive electrode of the infrared receiving tube D1 and the inverting input end of the operational amplifier U1:A,
  • the other end of the resistor R2 is connected to the reference power supply voltage
  • the non-inverting input end of the operational amplifier U1:A is connected to one end of the resistor R3, the other end of the resistor R3 is grounded
  • the negative electrodes of the infrared receiving tube D1 are respectively Connect to the output end of the operational amplifier U1:A and one end of the capacitor C1, and the other end of the capacitor C1 is respectively connected to one end of the resistor R4, one end of the resistor R5 and one end of the resistor R9 , the other end of the resistor R5 is grounded, the other end of the resistor R4 is connected to the non-inverting input terminal of the operational amplifier U1:B, and the inverting input terminal
  • One end, one end of the resistor R7 is connected to the cathode of the diode D2, the other end of the resistor R6 is grounded, and the output ends of the operational amplifiers U1:B are respectively connected to the anode of the diode D2 and the anode of the diode D3.
  • the negative electrode is connected, and the positive electrode of the diode D3 is connected to the other end of the resistor R7 and one end of the resistor R8 respectively, and the other end of the resistor R8 is respectively connected to one end of the resistor R10 and the operational amplifier U1:C
  • the other end of the resistor R9 is connected to the non-inverting input end of the operational amplifier U1:C, and the other end of the resistor R10 is connected to the output end of the operational amplifier U1:C;
  • the multi-stage amplifying module includes resistor R11, resistor R12, resistor R13, resistor R14, resistor R15, resistor R16, resistor R17, resistor R18, adjustable resistor VR1, adjustable resistor VR2, operational amplifier U1:D, operational amplifier U2: A and op-amp U2: B;
  • One end of the resistor R11 is respectively connected to the other end of the resistor R10, the output end of the operational amplifier U1:C and the non-inverting input end of the operational amplifier U1:D, the inverting phase of the operational amplifier U1:D
  • the input ends are respectively connected with the output ends of the operational amplifier U1:D and one end of the resistor R12, and the other end of the resistor R12 is respectively connected with one end of the resistor R14, one end of the resistor R15 and the operational amplifier U2: connected to the inverting input of A, the other end of the resistor R14 is connected to one end of the adjustable resistor VR1, the other end of the adjustable resistor VR1 is grounded, the operational amplifier U2: the non-inverting input of A is connected to one end of the resistor R13, the other end of the resistor R13 and one end of the resistor R17 are both grounded, and the output ends of the operational amplifier U2:A are respectively connected to the other end of the resistor R15, the resistor
  • the infrared sensors are arranged according to the number of floors of the building, and infrared sensors with a uniform level are arranged on each floor of the building.
  • the horizontal positioning unit including a spirit level, is connected to an infrared sensor to determine the level of the infrared sensor, each infrared sensor is positioned at a uniform level, and is arranged on the outer wall of the building to be surrounded by a ring.
  • the balance observation unit judges the balance state of the building according to the ambient temperature difference detected by the temperature detection unit, and determines that the building is tilted when the infrared receiver at the same level detects the temperature difference.
  • the network transmission unit includes a WiFi transmission module, is connected to the network, updates observation data daily, and regularly uploads cloud records
  • Step 1 Set infrared receivers on the outer walls of each floor of the building, and make sure that the infrared receivers on the same floor are at the same level;
  • Step 2 Summarize the ambient temperature detected by the infrared receiver in this direction, and determine whether there is a temperature difference in the ambient temperature detected by the infrared receiver at the same level;
  • Step 3 Update the observation data every day and upload the data to the cloud record
  • Step 4 The cloud saves the recorded data. When an unbalanced data record occurs, the cloud sends a signal to alarm.
  • the altitude affects the ambient temperature.
  • the higher the altitude the lower the ambient temperature.
  • the infrared receivers on the outer wall of the settlement side are lower than the infrared receivers in the other positions, and the detection temperature is higher than the other positions. , there is a temperature difference with the ambient temperature detection result.
  • the invention detects the ambient temperature through infrared, judges the equilibrium state of the building according to whether there is a temperature difference in the environment, understands whether the building settles, and solves the problem that high-rise buildings are difficult to observe.
  • FIG. 1 is a system block diagram of the anti-traceability system for Internet of Things commodity information based on chaos and confidentiality of the present invention.
  • FIG. 2 is a schematic diagram of the infrared receiving circuit of the present invention.
  • the traditional method of building balance detection is mainly to carry out balance detection in the construction stage, which is severely limited by the construction site. Difficulty in determining the point. At the same time, because these observation methods need to be implemented at higher observation sites than buildings, and now the buildings in our country are getting taller and taller, it is difficult to implement them during the construction stage, and they will not be tested after completion.
  • the invention judges the building balance by detecting the surrounding environment temperature. When the surrounding environment temperature is consistent, the building is in a balanced state, and when the surrounding environment has a temperature difference, it means that the building has subsided.
  • a chaotic security-based IoT commodity information anti-traceability system includes a horizontal positioning unit, a temperature detection unit, a balance observation unit and a signal transmission unit;
  • the horizontal positioning unit determines that the infrared receiver of the temperature detection unit is in the same horizontal position
  • the temperature detection unit including a plurality of infrared receivers, is arranged in a circle on the outer wall of the building at the same level to detect the ambient temperature;
  • the balance observation unit judges the current building balance state by judging whether there is a temperature difference in the ambient temperature detected by the temperature detection unit;
  • the network transmission unit connected to the network, updates the balance observations daily and sends them to the cloud for recording.
  • the infrared receiver of the temperature detection unit is installed on the outer wall of the building to detect the ambient temperature outside the building wall, because it is necessary to detect the ambient temperature at the same level to determine the wall Whether the body is tilted, so you need to pay attention to whether all infrared receivers are at the same level when installing.
  • a horizontal positioning unit composed of level gauges is designed, each infrared receiver is connected with a level gauge, and the infrared receivers are all at the same level through these level gauges.
  • the infrared receiver is installed on each outer wall of the building to ensure a circle around the building, to detect the ambient temperature of each wall surface, and to know the ambient temperature in all directions of the building.
  • the ambient temperature at the same altitude is the same, and the ambient temperature decreases with the increase of the altitude.
  • the infrared receiver located on this wall detects the ambient temperature more than the infrared receivers on other walls.
  • the detected ambient temperature should be high, and the temperature difference in the detection result proves that the building has subsided.
  • the temperature detection unit includes an infrared receiving circuit, including a dynamic temperature measurement module and a multi-stage amplification module;
  • the dynamic temperature measurement module includes resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, resistor R7, resistor R8, resistor R9, resistor R10, infrared receiver tube D1, diode D2, diode D3, and arithmetic Amplifier U1: A, operational amplifier U1: B, operational amplifier U1: C and capacitor C1;
  • One end of the resistor R1 is connected to a square wave voltage, and the other end of the resistor R1 is respectively connected to one end of the resistor R2, the positive electrode of the infrared receiving tube D1 and the inverting input end of the operational amplifier U1:A,
  • the other end of the resistor R2 is connected to the reference power supply voltage
  • the non-inverting input end of the operational amplifier U1:A is connected to one end of the resistor R3, the other end of the resistor R3 is grounded
  • the negative electrodes of the infrared receiving tube D1 are respectively Connect to the output end of the operational amplifier U1:A and one end of the capacitor C1, and the other end of the capacitor C1 is respectively connected to one end of the resistor R4, one end of the resistor R5 and one end of the resistor R9 , the other end of the resistor R5 is grounded, the other end of the resistor R4 is connected to the non-inverting input terminal of the operational amplifier U1:B, and the inverting input terminal
  • One end, one end of the resistor R7 is connected to the cathode of the diode D2, the other end of the resistor R6 is grounded, and the output ends of the operational amplifiers U1:B are respectively connected to the anode of the diode D2 and the anode of the diode D3.
  • the negative electrode is connected, and the positive electrode of the diode D3 is connected to the other end of the resistor R7 and one end of the resistor R8 respectively, and the other end of the resistor R8 is respectively connected to one end of the resistor R10 and the operational amplifier U1:C
  • the other end of the resistor R9 is connected to the non-inverting input end of the operational amplifier U1:C, and the other end of the resistor R10 is connected to the output end of the operational amplifier U1:C;
  • the multi-stage amplifying module includes resistor R11, resistor R12, resistor R13, resistor R14, resistor R15, resistor R16, resistor R17, resistor R18, adjustable resistor VR1, adjustable resistor VR2, operational amplifier U1:D, operational amplifier U2: A and op-amp U2: B;
  • One end of the resistor R11 is respectively connected to the other end of the resistor R10, the output end of the operational amplifier U1:C and the non-inverting input end of the operational amplifier U1:D, the inverting phase of the operational amplifier U1:D
  • the input ends are respectively connected with the output ends of the operational amplifier U1:D and one end of the resistor R12, and the other end of the resistor R12 is respectively connected with one end of the resistor R14, one end of the resistor R15 and the operational amplifier U2: connected to the inverting input of A, the other end of the resistor R14 is connected to one end of the adjustable resistor VR1, the other end of the adjustable resistor VR1 is grounded, the operational amplifier U2: the non-inverting input of A is connected to one end of the resistor R13, the other end of the resistor R13 and one end of the resistor R17 are both grounded, and the output ends of the operational amplifier U2:A are respectively connected to the other end of the resistor R15, the resistor
  • the ambient temperature needs to be detected, it is decided to use non-contact measurement, and infrared thermometry is used to detect the temperature in the experiment.
  • Infrared temperature measurement judges the ambient temperature according to the infrared rays of the surrounding environment without disturbing the temperature distribution.
  • the pulse current changed by the infrared receiving tube according to the received infrared signal is used to realize dynamic temperature measurement.
  • the operational amplifier U1:A and the infrared receiving tube D1 form a measuring circuit, which flows through the infrared receiving tube.
  • D1 includes a current including a square wave voltage and a reference power supply voltage flowing through a DC component.
  • the operational amplifiers U1:B and the operational amplifiers U1:C form a high input impedance type precision diode full-wave rectifier circuit.
  • a multi-stage amplification module is designed to amplify the detection signal.
  • the first-stage amplifying circuit in the multi-stage amplifying module is impedance matched by a voltage follower composed of the operational amplifiers U1:D, and the output voltage is changed by adjusting the resistance value of the adjustable resistor VR1.
  • the second-stage amplifying circuit is composed of the operational amplifiers U2:A to form a proportional adder. By adjusting the resistance value of the adjustable resistor VR2, the amplification ratio is corresponding to the first-stage amplifying circuit.
  • the third-stage amplifying circuit consists of the operational amplifiers U2:B to form an amplifier, and the corresponding amplification factor is determined by adjusting the resistance value of the resistor R18.
  • the final detection data is in line with expectations.
  • the daily balance observation results are saved locally and uploaded at the same time, and the locally saved data is cleared and the observation results are updated and saved again the next day to save system memory capacity.
  • the observation results are uploaded to the cloud, the cloud receives the data and saves it, and when the cloud receives the temperature difference data, an alarm signal is sent to the bound smart terminal.
  • the horizontal positioning unit determines that the infrared receiver of the temperature detection unit is in the same horizontal position
  • the balance observation unit judges the current building balance state by judging whether there is a temperature difference in the ambient temperature detected by the temperature detection unit;
  • the network transmission unit connected to the network, updates the balance observations daily and sends them to the cloud for recording.
  • the infrared receiver of the temperature detection unit is installed on the outer wall of the high-rise building to detect the ambient temperature outside the wall of the high-rise building, because it is necessary to detect the ambient temperature at the same level to detect the ambient temperature. Determine whether the wall is inclined, so you need to pay attention to whether all infrared receivers are at the same level when installing.
  • a horizontal positioning unit composed of level gauges is designed, each infrared receiver is connected with a level gauge, and the infrared receivers are all at the same level through these level gauges.
  • the infrared receiver is installed on each outer wall of the high-rise building to ensure a circle around the high-rise building, detects the ambient temperature of each wall surface, knows the ambient temperature of the high-rise building in all directions, and Infrared receivers are installed on each floor of high-rise buildings to collect ambient temperature information on each floor.
  • the ambient temperature at the same altitude is the same, and the ambient temperature decreases with the increase of the altitude.
  • the infrared receiver located on this wall detects the ambient temperature more than the infrared receivers on other walls.
  • the detected ambient temperature should be high, and the temperature difference in the detection result proves that the building has subsided.
  • the temperature detection unit includes an infrared receiving circuit, including a dynamic temperature measurement module and a multi-stage amplification module;
  • the dynamic temperature measurement module includes resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, resistor R7, resistor R8, resistor R9, resistor R10, infrared receiver tube D1, diode D2, diode D3, and arithmetic Amplifier U1: A, operational amplifier U1: B, operational amplifier U1: C and capacitor C1;
  • One end of the resistor R1 is connected to a square wave voltage, and the other end of the resistor R1 is respectively connected to one end of the resistor R2, the positive electrode of the infrared receiving tube D1 and the inverting input end of the operational amplifier U1:A,
  • the other end of the resistor R2 is connected to the reference power supply voltage
  • the non-inverting input end of the operational amplifier U1:A is connected to one end of the resistor R3, the other end of the resistor R3 is grounded
  • the negative electrodes of the infrared receiving tube D1 are respectively Connect to the output end of the operational amplifier U1:A and one end of the capacitor C1, and the other end of the capacitor C1 is respectively connected to one end of the resistor R4, one end of the resistor R5 and one end of the resistor R9 , the other end of the resistor R5 is grounded, the other end of the resistor R4 is connected to the non-inverting input terminal of the operational amplifier U1:B, and the inverting input terminal
  • the negative electrode is connected, and the positive electrode of the diode D3 is connected to the other end of the resistor R7 and one end of the resistor R8 respectively, and the other end of the resistor R8 is respectively connected to one end of the resistor R10 and the operational amplifier U1:C
  • the other end of the resistor R9 is connected to the non-inverting input end of the operational amplifier U1:C, and the other end of the resistor R10 is connected to the output end of the operational amplifier U1:C;
  • the multi-stage amplifying module includes resistor R11, resistor R12, resistor R13, resistor R14, resistor R15, resistor R16, resistor R17, resistor R18, adjustable resistor VR1, adjustable resistor VR2, operational amplifier U1:D, operational amplifier U2: A and op-amp U2: B;
  • One end of the resistor R11 is respectively connected to the other end of the resistor R10, the output end of the operational amplifier U1:C and the non-inverting input end of the operational amplifier U1:D, the inverting phase of the operational amplifier U1:D
  • the input ends are respectively connected with the output ends of the operational amplifier U1:D and one end of the resistor R12, and the other end of the resistor R12 is respectively connected with one end of the resistor R14, one end of the resistor R15 and the operational amplifier U2: connected to the inverting input of A, the other end of the resistor R14 is connected to one end of the adjustable resistor VR1, the other end of the adjustable resistor VR1 is grounded, the operational amplifier U2: the non-inverting input of A is connected to one end of the resistor R13, the other end of the resistor R13 and one end of the resistor R17 are both grounded, and the output ends of the operational amplifier U2:A are respectively connected to the other end of the resistor R15, the resistor
  • the ambient temperature needs to be detected, it is decided to use non-contact measurement, and infrared thermometry is used to detect the temperature in the experiment.
  • Infrared temperature measurement judges the ambient temperature according to the infrared rays of the surrounding environment without disturbing the temperature distribution.
  • the pulse current changed by the infrared receiving tube according to the received infrared signal is used to realize dynamic temperature measurement.
  • the operational amplifier U1:A and the infrared receiving tube D1 form a measuring circuit, which flows through the infrared receiving tube.
  • D1 includes a current including a square wave voltage and a reference power supply voltage flowing through a DC component.
  • the operational amplifiers U1:B and the operational amplifiers U1:C form a high input impedance type precision diode full-wave rectifier circuit.
  • a multi-stage amplification module is designed to amplify the detection signal.
  • the first-stage amplifying circuit in the multi-stage amplifying module is impedance matched by a voltage follower composed of the operational amplifiers U1:D, and the output voltage is changed by adjusting the resistance value of the adjustable resistor VR1.
  • the second-stage amplifying circuit is composed of the operational amplifiers U2:A to form a proportional adder. By adjusting the resistance value of the adjustable resistor VR2, the amplification ratio is corresponding to the first-stage amplifying circuit.
  • the third-stage amplifying circuit consists of the operational amplifiers U2:B to form an amplifier, and the corresponding amplification factor is determined by adjusting the resistance value of the resistor R18.
  • the final detection data is in line with expectations.
  • the daily balance observation results are saved locally and uploaded at the same time, and the locally saved data is cleared and the observation results are updated and saved again the next day to save system memory capacity.
  • the observation results are uploaded to the cloud, the cloud receives the data and saves it, and when the cloud receives the temperature difference data, an alarm signal is sent to the bound smart terminal.
  • the temperature detected by the multi-layer infrared receiver is consistent with the result that the higher the level, the lower the temperature.
  • the ambient temperature of the lower layer is detected to be lower than the ambient temperature of the upper layer, it is judged that the infrared receiver may be faulty, and a prompt signal is sent to the bound smart terminal .
  • the foundation settlement of the building may settle smoothly, that is, the overall settlement of the building does not appear inclined. At this time, the existing balance detection method cannot detect the settlement of the building.
  • the present invention can judge according to the recorded data in the cloud.
  • a chaotic security-based IoT commodity information anti-traceability system includes a horizontal positioning unit, a temperature detection unit, a balance observation unit and a signal transmission unit;
  • the horizontal positioning unit determines that the infrared receiver of the temperature detection unit is in the same horizontal position
  • the temperature detection unit including a plurality of infrared receivers, is arranged in a circle on the outer wall of the building at the same level to detect the ambient temperature;
  • the balance observation unit judges the current building balance state by judging whether there is a temperature difference in the ambient temperature detected by the temperature detection unit;
  • the network transmission unit connected to the network, updates the balance observations daily and sends them to the cloud for recording.
  • the infrared receiver of the temperature detection unit is installed on the outer wall of the high-rise building to detect the ambient temperature outside the wall of the high-rise building, because it is necessary to detect the ambient temperature at the same level to detect the ambient temperature. Determine whether the wall is inclined, so you need to pay attention to whether all infrared receivers are at the same level when installing.
  • a horizontal positioning unit composed of level gauges is designed, each infrared receiver is connected with a level gauge, and the infrared receivers are all at the same level through these level gauges.
  • the infrared receiver is installed on each outer wall of the high-rise building to ensure a circle around the high-rise building, detects the ambient temperature of each wall surface, knows the ambient temperature of the high-rise building in all directions, and Infrared receivers are installed on each floor of high-rise buildings to collect ambient temperature information on each floor.
  • the ambient temperature at the same altitude is the same, and the ambient temperature decreases with the increase of the altitude.
  • the infrared receiver located on this wall detects the ambient temperature more than the infrared receivers on other walls.
  • the detected ambient temperature should be high, and the temperature difference in the detection result proves that the building has subsided.
  • the temperature detection unit includes an infrared receiving circuit, including a dynamic temperature measurement module and a multi-stage amplification module;
  • the dynamic temperature measurement module includes resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, resistor R7, resistor R8, resistor R9, resistor R10, infrared receiver tube D1, diode D2, diode D3, and arithmetic Amplifier U1: A, operational amplifier U1: B, operational amplifier U1: C and capacitor C1;
  • One end of the resistor R1 is connected to a square wave voltage, and the other end of the resistor R1 is respectively connected to one end of the resistor R2, the positive electrode of the infrared receiving tube D1 and the inverting input end of the operational amplifier U1:A,
  • the other end of the resistor R2 is connected to the reference power supply voltage
  • the non-inverting input end of the operational amplifier U1:A is connected to one end of the resistor R3, the other end of the resistor R3 is grounded
  • the negative electrodes of the infrared receiving tube D1 are respectively Connect to the output end of the operational amplifier U1:A and one end of the capacitor C1, and the other end of the capacitor C1 is respectively connected to one end of the resistor R4, one end of the resistor R5 and one end of the resistor R9 , the other end of the resistor R5 is grounded, the other end of the resistor R4 is connected to the non-inverting input terminal of the operational amplifier U1:B, and the inverting input terminal
  • One end, one end of the resistor R7 is connected to the cathode of the diode D2, the other end of the resistor R6 is grounded, and the output ends of the operational amplifiers U1:B are respectively connected to the anode of the diode D2 and the anode of the diode D3.
  • the negative electrode is connected, and the positive electrode of the diode D3 is connected to the other end of the resistor R7 and one end of the resistor R8 respectively, and the other end of the resistor R8 is respectively connected to one end of the resistor R10 and the operational amplifier U1:C
  • the other end of the resistor R9 is connected to the non-inverting input end of the operational amplifier U1:C, and the other end of the resistor R10 is connected to the output end of the operational amplifier U1:C;
  • the multi-stage amplifying module includes resistor R11, resistor R12, resistor R13, resistor R14, resistor R15, resistor R16, resistor R17, resistor R18, adjustable resistor VR1, adjustable resistor VR2, operational amplifier U1:D, operational amplifier U2: A and op-amp U2: B;
  • One end of the resistor R11 is respectively connected to the other end of the resistor R10, the output end of the operational amplifier U1:C and the non-inverting input end of the operational amplifier U1:D, the inverting phase of the operational amplifier U1:D
  • the input ends are respectively connected with the output ends of the operational amplifier U1:D and one end of the resistor R12, and the other end of the resistor R12 is respectively connected with one end of the resistor R14, one end of the resistor R15 and the operational amplifier U2: connected to the inverting input of A, the other end of the resistor R14 is connected to one end of the adjustable resistor VR1, the other end of the adjustable resistor VR1 is grounded, the operational amplifier U2: the non-inverting input of A is connected to one end of the resistor R13, the other end of the resistor R13 and one end of the resistor R17 are both grounded, and the output ends of the operational amplifier U2:A are respectively connected to the other end of the resistor R15, the resistor
  • the ambient temperature needs to be detected, it is decided to use non-contact measurement, and infrared thermometry is used to detect the temperature in the experiment.
  • Infrared temperature measurement judges the ambient temperature according to the infrared rays of the surrounding environment without disturbing the temperature distribution.
  • the pulse current changed by the infrared receiving tube according to the received infrared signal is used to realize dynamic temperature measurement.
  • the operational amplifier U1:A and the infrared receiving tube D1 form a measuring circuit, which flows through the infrared receiving tube.
  • D1 includes a current including a square wave voltage and a reference power supply voltage flowing through a DC component.
  • the operational amplifiers U1:B and the operational amplifiers U1:C form a high input impedance type precision diode full-wave rectifier circuit.
  • a multi-stage amplification module is designed to amplify the detection signal.
  • the first-stage amplifying circuit in the multi-stage amplifying module is impedance matched by a voltage follower composed of the operational amplifiers U1:D, and the output voltage is changed by adjusting the resistance value of the adjustable resistor VR1.
  • the second-stage amplifying circuit is composed of the operational amplifiers U2:A to form a proportional adder. By adjusting the resistance value of the adjustable resistor VR2, the amplification ratio is corresponding to the first-stage amplifying circuit.
  • the third-stage amplifying circuit consists of the operational amplifiers U2:B to form an amplifier, and the corresponding amplification factor is determined by adjusting the resistance value of the resistor R18.
  • the final detection data is in line with expectations.
  • the daily balance observation results are saved locally and uploaded at the same time, and the locally saved data is cleared and the observation results are updated and saved again the next day to save system memory capacity.
  • the observation results are uploaded to the cloud, the cloud receives the data and saves it, and when the cloud receives the temperature difference data, an alarm signal is sent to the bound smart terminal.
  • the temperature detected by the multi-layer infrared receiver is consistent with the result that the higher the level, the lower the temperature.
  • the ambient temperature of the lower layer is detected to be lower than the ambient temperature of the upper layer, it is judged that the infrared receiver may be faulty, and a prompt signal is sent to the bound smart terminal .
  • the cloud will compare the recent data with the recorded data. There is no subsidence of the building. The recent data should be kept in the same interval as the recorded data. When the building subsides, the recent data change interval will be changed. When there is a deviation from the recorded data, the cloud sends a warning signal.
  • a method for preventing traceability of Internet of Things commodity information based on chaos and confidentiality characterized in that the specific steps include:
  • Step 1 Set infrared receivers on the outer walls of each floor of the building, and make sure that the infrared receivers on the same floor are at the same level;
  • Step 2 Summarize the ambient temperature detected by the infrared receiver in this direction, and determine whether there is a temperature difference in the ambient temperature detected by the infrared receiver at the same level;
  • Step 3 Update the observation data every day and upload the data to the cloud record
  • Step 4 The cloud saves the recorded data. When an unbalanced data record occurs, the cloud sends a signal to alarm.
  • the present invention has the following advantages:

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • Development Economics (AREA)
  • Computer Hardware Design (AREA)
  • Bioethics (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Accounting & Taxation (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Finance (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种基于混沌保密的物联网商品信息防追溯系统及方法,包括网络记录单元、信息管理单元、射频读取单元和公共追溯单元;网络记录单元,记录下商品从出厂到运输到摆上货架的所有信息;信息管理单元,包括专有的信息上传设备,更新上传商品信息;射频读取单元,包括RFID,通过RFID射频识别可对商品信息链进行读取;公共追溯单元,商品信息的公共共享端口,顾客可读取商品生产、加工、仓储、运输、消费的所有环节信息。本发明在商品信息可追溯的物联网设备下,在商品信息上传的设备上增加硬件保密电路,确保商品信息无法被入侵篡改,大大增加了商品信息链的安全性,提高了商品信息追溯的可靠性。

Description

一种基于混沌保密的物联网商品信息防追溯系统及方法 技术领域
本发明涉及基于混沌保密的物联网商品信息防追溯系统及方法,属于物联网领域。
背景技术
商品安全问题一直是市场上商品消费的重要问题,随着假冒伪劣产品越来越多,同时商品本身的质量问题越来越严重,消费者对商品信息的可追溯化需求越来越大。近年来食品或食材的保质期也存在消费者难以辨别的问题,为了确保商品的品质安全,也为了让消费者得到商品的全部信息,对商品更放心,市场对商品信息可追溯的技术手段要求越来越高。
现在的商品信息可追溯手段主要是通过将商品信息记录并在网络进行资源共享,顾客通过电子标签可以轻松得到公开的商品信息,但因为商品信息处于资源共享的状态导致容易被攻击,当防护被破坏共享信息就存在被篡改的安全隐患,此时商品信息可追溯的意义也不复存在。
技术问题
提供一种基于混沌保密的物联网商品信息防追溯系统及方法,以解决上述问题。
技术解决方案
一种基于混沌保密的物联网商品信息防追溯系统,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
根据本发明的一个方面,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
根据本发明的一个方面,所述温度检测单元,红外传感器根据建筑物层数设置,在建筑物每层均设置统一水平高度的红外传感器。
根据本发明的一个方面,所述水平定位单元,包括水平仪,设置与红外传感器连接,确定红外传感器的水平高度,每个红外传感器定位于统一水平高度,设置在建筑物外墙呈环形包围。
根据本发明的一个方面,所述平衡观测单元,根据上述温度检测单元检测出的环境温差判断建筑物平衡状态,当同水平高度的红外接收器检测出温差,判定建筑物发生倾斜。
根据本发明的一个方面,所述网络传输单元,包括WiFi传输模块,连接网络,每日更新观测数据,定时上传云端记录
一种测温平衡方法,基于混沌保密的物联网商品信息防追溯方法,其特征在于,具体步骤包括:
步骤1、在建筑物每一层外墙设置红外接收器,确定同层红外接收器处于同一水平高度;
步骤2、总结红外接收器检测该方向的环境温度,判断同水平高度的红外接收器检测的环境温度是否存在温差;
步骤3、每日更新观测数据,将数据上传云端记录;
步骤4、云端对保存记录数据,当出现非平衡数据记录,云端发送信号进行报警。
根据本发明的一个方面,海拔高度影响环境温度,海拔约高,环境温度越低,建筑倾斜时,沉降一侧外墙的红外接收器低于其余方位的红外接收器,检测温度高于其余方位,与周围环境温度检测结果出现温差。
有益效果
本发明在建筑物建成以后通过红外检测环境温度,根据环境是否存在温差判断建筑平衡状态,了解建筑物是否出现沉降,解决了高层建筑难以观测的问题。
附图说明
图1是本发明的基于混沌保密的物联网商品信息防追溯系统的系统框图。
图2是本发明的红外接收电路的原理图。
本发明的实施方式
实施例1
传统的建筑检测平衡的方法主要是在建筑施工阶段进行平衡检测,受施工现场限制严重,经纬仪正交垂直投点标定法很难顺利实施,使用免棱镜全站仪进行建筑物平衡检测也存在检测点位难以确定的问题。同时因为这些观测方法需要在比建筑物更高的观测位点实施,而现今我国建筑物越来越高,在施工阶段就难以实施,建成后也不会再进行检测。本发明通过检测周围环境温度来判断建筑平衡,当周围环境温度一致时建筑处于平衡状态,当周围环境出现温差,就说明建筑出现沉降。
在该实施例中,如图1所示,一种基于混沌保密的物联网商品信息防追溯系统,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
在进一步的实施例中,将所述温度检测单元的红外接收器安装在建筑物的外墙上,用来检测建筑物墙外的环境温度,因为需要通过检测同水平高度的环境温度来判断墙体有没有倾斜,所以在安装时需要注意所有红外接收器是否处于同一水平高度。为了解决让所有红外接收器都能在同一水平高度的问题,设计了水平仪组成的水平定位单元,每个红外接收器都与一个水平仪连接,通过这些水平仪确定红外接收器都处于同一水平高度。
在进一步的实施例中,红外接收器安装在建筑物的每一面外墙,确保包围建筑物一圈,检测每个墙面的环境温度,了解建筑物各个方向的环境温度。同一海拔的环境温度相同,且环境温度随海拔高度增加而降低,当建筑物沉降,沉降的墙体海拔高度下降,位于此墙面的红外接收器检测的环境温度比其他墙面的红外接收器检测的环境温度要高,检测结果出现温差则证明建筑物出现沉降现象。
如图2所示,在更进一步的实施例中,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
在此实施例中,因为要检测周围环境温度,所以决定采用非接触式测量,实验中使用红外测温来检测温度。红外测温根据周围环境的红外射线判断周围环境温度,不会干扰温度分布。在电路中使用红外接收管根据接收的红外信号变化而改变的脉冲电流来实现动态测温,由所述运算放大器U1:A与所述红外接收管D1组成测量电路,流过所述红外接收管D1包括电流包括方波电压、参考电源电压流过直流分量,所述运算放大器U1:B、所述运算放大器U1:C组成高输入阻抗型精密二极管全波整流电路。
在实验中动态测温模块检测的温度数据精度不够,不能反映温差变化,为了提高温度检测的精度,所以设计了多级放大模块放大检测信号。所述多级放大模块中的第一级放大电路由所述运算放大器U1:D组成的电压跟随器进行阻抗匹配,通过调整所述可调电阻VR1的电阻值,改变输出电压大小。第二级放大电路由所述运算放大器U2:A组成比例加法器,通过调整所述可调电阻VR2的电阻值,使放大比例与第一级放大电路相对应。第三级放大电路由所述运算放大器U2:B组成放大器,通过调整所述电阻R18的电阻值,确定相应的放大倍数。最后得到的检测数据符合预期。
在进一步的实施例中,每日的平衡观测结果保存本地,同时进行上传,第二天清除本地保存数据更新观测结果再次保存,节约系统内存容量。
在进一步的实施例中,观测结果上传云端,云端接收数据保存,当云端接收到温差数据,发送报警信号到绑定的智能终端。
实施例2
高层建筑观测平衡,仅在一层安装红外接收器,检测结果不够精准,需要在建筑物的每一层都安装红外接收器。
在该实施例中,如图1所示,一种基于混沌保密的物联网商品信息防追溯系统,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
在进一步的实施例中,将所述温度检测单元的红外接收器安装在高层建筑物的外墙上,用来检测高层建筑物墙外的环境温度,因为需要通过检测同水平高度的环境温度来判断墙体有没有倾斜,所以在安装时需要注意所有红外接收器是否处于同一水平高度。为了解决让所有红外接收器都能在同一水平高度的问题,设计了水平仪组成的水平定位单元,每个红外接收器都与一个水平仪连接,通过这些水平仪确定红外接收器都处于同一水平高度。
在进一步的实施例中,红外接收器安装在高层建筑物的每一面外墙,确保包围高层建筑物一圈,检测每个墙面的环境温度,了解高层建筑物各个方向的环境温度,并且在高层建筑物的每一层均如此安装红外接收器,收集每一层的环境温度信息。同一海拔的环境温度相同,且环境温度随海拔高度增加而降低,当建筑物沉降,沉降的墙体海拔高度下降,位于此墙面的红外接收器检测的环境温度比其他墙面的红外接收器检测的环境温度要高,检测结果出现温差则证明建筑物出现沉降现象。
如图2所示,在更进一步的实施例中,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
在此实施例中,因为要检测周围环境温度,所以决定采用非接触式测量,实验中使用红外测温来检测温度。红外测温根据周围环境的红外射线判断周围环境温度,不会干扰温度分布。在电路中使用红外接收管根据接收的红外信号变化而改变的脉冲电流来实现动态测温,由所述运算放大器U1:A与所述红外接收管D1组成测量电路,流过所述红外接收管D1包括电流包括方波电压、参考电源电压流过直流分量,所述运算放大器U1:B、所述运算放大器U1:C组成高输入阻抗型精密二极管全波整流电路。
在实验中动态测温模块检测的温度数据精度不够,不能反映温差变化,为了提高温度检测的精度,所以设计了多级放大模块放大检测信号。所述多级放大模块中的第一级放大电路由所述运算放大器U1:D组成的电压跟随器进行阻抗匹配,通过调整所述可调电阻VR1的电阻值,改变输出电压大小。第二级放大电路由所述运算放大器U2:A组成比例加法器,通过调整所述可调电阻VR2的电阻值,使放大比例与第一级放大电路相对应。第三级放大电路由所述运算放大器U2:B组成放大器,通过调整所述电阻R18的电阻值,确定相应的放大倍数。最后得到的检测数据符合预期。
在进一步的实施例中,每日的平衡观测结果保存本地,同时进行上传,第二天清除本地保存数据更新观测结果再次保存,节约系统内存容量。
在进一步的实施例中,观测结果上传云端,云端接收数据保存,当云端接收到温差数据,发送报警信号到绑定的智能终端。多层红外接收器检测的温度结果符合水平面越高,温度越低的结果,当检测到低层环境温度低于高层环境温度,则判断红外接收器可能出现故障,发送提示信号到绑定的智能终端。
实施例3
建筑物地基沉降可能平稳沉降,即建筑物整体沉降不出现倾斜状态,此时现有平衡检测方法无法检测出建筑物沉降,本发明可根据云端的记录数据进行判断。
在该实施例中,如图1所示,一种基于混沌保密的物联网商品信息防追溯系统,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
在进一步的实施例中,将所述温度检测单元的红外接收器安装在高层建筑物的外墙上,用来检测高层建筑物墙外的环境温度,因为需要通过检测同水平高度的环境温度来判断墙体有没有倾斜,所以在安装时需要注意所有红外接收器是否处于同一水平高度。为了解决让所有红外接收器都能在同一水平高度的问题,设计了水平仪组成的水平定位单元,每个红外接收器都与一个水平仪连接,通过这些水平仪确定红外接收器都处于同一水平高度。
在进一步的实施例中,红外接收器安装在高层建筑物的每一面外墙,确保包围高层建筑物一圈,检测每个墙面的环境温度,了解高层建筑物各个方向的环境温度,并且在高层建筑物的每一层均如此安装红外接收器,收集每一层的环境温度信息。同一海拔的环境温度相同,且环境温度随海拔高度增加而降低,当建筑物沉降,沉降的墙体海拔高度下降,位于此墙面的红外接收器检测的环境温度比其他墙面的红外接收器检测的环境温度要高,检测结果出现温差则证明建筑物出现沉降现象。
如图2所示,在更进一步的实施例中,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
在此实施例中,因为要检测周围环境温度,所以决定采用非接触式测量,实验中使用红外测温来检测温度。红外测温根据周围环境的红外射线判断周围环境温度,不会干扰温度分布。在电路中使用红外接收管根据接收的红外信号变化而改变的脉冲电流来实现动态测温,由所述运算放大器U1:A与所述红外接收管D1组成测量电路,流过所述红外接收管D1包括电流包括方波电压、参考电源电压流过直流分量,所述运算放大器U1:B、所述运算放大器U1:C组成高输入阻抗型精密二极管全波整流电路。
在实验中动态测温模块检测的温度数据精度不够,不能反映温差变化,为了提高温度检测的精度,所以设计了多级放大模块放大检测信号。所述多级放大模块中的第一级放大电路由所述运算放大器U1:D组成的电压跟随器进行阻抗匹配,通过调整所述可调电阻VR1的电阻值,改变输出电压大小。第二级放大电路由所述运算放大器U2:A组成比例加法器,通过调整所述可调电阻VR2的电阻值,使放大比例与第一级放大电路相对应。第三级放大电路由所述运算放大器U2:B组成放大器,通过调整所述电阻R18的电阻值,确定相应的放大倍数。最后得到的检测数据符合预期。
在进一步的实施例中,每日的平衡观测结果保存本地,同时进行上传,第二天清除本地保存数据更新观测结果再次保存,节约系统内存容量。
在进一步的实施例中,观测结果上传云端,云端接收数据保存,当云端接收到温差数据,发送报警信号到绑定的智能终端。多层红外接收器检测的温度结果符合水平面越高,温度越低的结果,当检测到低层环境温度低于高层环境温度,则判断红外接收器可能出现故障,发送提示信号到绑定的智能终端。
在更进一步的实施例中,云端会将近期数据与记录数据进行比对,建筑物没有沉降现象,近期数据应该与记录数据保持在同一个区间变化,当建筑物发生沉降,近期数据变化区间会与记录数据出现偏差,此时云端发送警告信号。
一种基于混沌保密的物联网商品信息防追溯方法,其特征在于,具体步骤包括:
步骤1、在建筑物每一层外墙设置红外接收器,确定同层红外接收器处于同一水平高度;
步骤2、总结红外接收器检测该方向的环境温度,判断同水平高度的红外接收器检测的环境温度是否存在温差;
步骤3、每日更新观测数据,将数据上传云端记录;
步骤4、云端对保存记录数据,当出现非平衡数据记录,云端发送信号进行报警。
总之,本发明具有以下优点:
1、通过检测环境温度判断建筑物平衡状态,在建筑物建成后观测;
2、观测建筑物平衡状态不受建筑物高度影响;
3、观测建筑物平衡状态的同时自检故障;
4、记录观测结果,即便建筑物整体发生沉降也可观测到。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,用于通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (8)

  1. 一种基于混沌保密的物联网商品信息防追溯系统,其特征在于,包括网络记录单元、信息管理单元、射频读取单元和公共追溯单元;
    网络记录单元,记录下商品从出厂到运输到摆上货架的所有信息;
    信息管理单元,包括专有的信息上传设备,更新上传商品信息;
    射频读取单元,包括RFID,通过RFID射频识别可对商品信息链进行读取;
    公共追溯单元,商品信息的公共共享端口,顾客可读取商品生产、加工、仓储、运输、消费的所有环节信息。
  2. 根据权利要求1所述的一种基于混沌保密的物联网商品信息防追溯系统,其特征在于,所述网络记录单元,包括二级节点,由商品供应链、安全监管数据中心和商品产业链中的检测节点组成,数据中心提供存储空间,进行资源共享,设商品链各个环节可视化。
  3. 根据权利要求1所述的一种基于混沌保密的物联网商品信息防追溯系统,其特征在于,所述信息管理单元,包括混沌加密电路,包括超混沌调制模块,混沌加密模块;
    所述超混沌调制模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C、运算放大器U1:D、运算放大器U2:A、电容C1和电容C2;
    所述电阻R1的一端分别与所述电阻R2的一端、所述电阻R3的一端和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端与所述电容C1的一端、所述运算放大器U1:B的输出端和所述电阻R5的一端均接输入信号,所述运算放大器U1:A的同相输入端接地,所述运算放大器U1:A的输出端分别与所述电阻R3的另一端、所述电阻R4的一端连接,所述电阻R4的另一端分别与所述电容C1的另一端、所述运算放大器U1:B的反相输入端连接,所述运算放大器U1:B的同相输入端接地,所述电阻R5的另一端分别与所述电阻R6的一端、所述电阻R7的一端和所述运算放大器U1:C的反相输入端连接,所述运算放大器U1:C的同相输入端接地,所述运算放大器U1:C的输出端分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电容C2的一端、所述运算放大器U1:D的反相输入端连接,所述运算放大器U1:D的同相输入端接地,所述运算放大器U1:D的输出端分别与所述电容C2的另一端、所述电阻R9的一端连接,所述电阻R9的另一端分别与所述电阻R10的一端、所述运算放大器U2:A的反相输入端连接,所述运算放大器U2:A的同相输入端接地,所述运算放大器U2:A的输出端分别与所述电阻R1的另一端、所述电阻R10的一端连接;
    所述混沌加密模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、运算放大器U2:B、运算放大器U2:C、电容C3、电容C4和电感L1;
    所述电阻R6的另一端分别与所述电阻R11的一端、所述电容C4的一端、所述运算放大器U2:B的同相输入端、所述电阻R12的一端、所述运算放大器U2:C的同相输入端和所述电阻R15的一端连接,所述电阻R11的另一端分别与所述电容C3的一端、所述电感L1的一端连接,所述电感L1的另一端与所述电容C3的另一端、所述电容C4的另一端、所述电阻R14的一端和所述电阻R17的一端均接地,所述运算放大器U2:B的反相输入端分别与所述电阻R13的一端、所述电阻R14的另一端连接,所述运算放大器U2:B的输出端分别与所述电阻R12的另一端、所述电阻R13的另一端连接,所述运算放大器U2:C的反相输入端分别与所述电阻R16的一端、所述电阻R17的另一端连接,所述运算放大器U2:C的输出端分别与所述电阻R15的另一端、所述电阻R16的另一端连接。
  4. 根据权利要求1所述的一种基于混沌保密的物联网商品信息防追溯系统,其特征在于,所述信息管理单元,包括混沌同步电路,包括超混沌解调模块,混沌同步模块;
    所述超混沌解调模块,包括电阻R18、电阻R19、电阻R20、电阻R21、电阻R22、电阻R23、电阻R24、电阻R25、电阻R26、电阻R27、电阻R28、电阻R29、电阻R30、电阻R31、运算放大器U2:D、运算放大器U3:A、运算放大器U3:B、运算放大器U3:C、运算放大器U3:D、运算放大器U4:A、电容C5和电容C6;
    所述电阻R18的一端分别与所述电阻R19的一端、所述电阻R20的一端、所述电阻R24的一端和所述运算放大器U2:D的反相输入端连接,所述电阻R24的另一端接输入信号,所述运算放大器U2:D的同相输入端接地,所述运算放大器U2:D的输出端分别与所述电阻R20的另一端、所述电阻R21的一端连接,所述电阻R21的另一端分别与所述电容C5的一端、所述运算放大器U3:A的反相输入端连接,所述运算放大器U3:A的同相输入端接地,所述运算放大器U3:A的输出端分别与所述电容C5的另一端、所述电阻R22的一端和所述电阻R31的一端连接,所述电阻R22的另一端分别与所述电阻R23的一端、所述运算放大器U3:B的反相输入端连接,所述运算放大器U3:B的同相输入端接地,所述运算放大器U3:B的输出端分别与所述电阻R23的另一端、所述电阻R19的另一端均接输出信号,所述电阻R31的另一端分别与所述电阻R25的一端、所述电阻R26的一端、所述电阻R27的一端和所述运算放大器U3:C的反相输入端连接,所述运算放大器U3:C的同相输入端接地,所述运算放大器U3:C的输出端分别与所述电阻R27的另一端、所述电阻R28的一端连接,所述电阻28的另一端分别与所述电容C6的一端、所述运算放大器U3:D的反相输入端连接,所述运算放大器U3:D的同相输入端接地,所述运算放大器U3:D的输出端分别与所述电容C6的另一端、所述电阻R29的一端和所述电阻R26的另一端连接,所述电阻R29的另一端分别与所述电阻R30的一端、所述运算放大器U4:A的反相输入端连接,所述运算放大器U4:A的同相输入端接地,所述运算放大器U3:D的输出端分别与所述电阻R18的另一端、所述电阻R30的另一端连接;
    所述混沌同步模块,包括电阻R32、电阻R33、电阻R34、电阻R35、电阻R36、电阻R37、电阻R38、运算放大器U4:B、运算放大器U4:C、电容C7、电容C8和电感L2;
    所述电阻R25的另一端分别与所述电阻R32的一端、所述电容C8的一端、所述运算放大器U4:B的同相输入端、所述电阻R33的一端、所述运算放大器U4:C的同相输入端和所述电阻R36的一端连接,所述电阻R32的另一端分别与所述电容C7的一端、所述电感L2的一端连接,所述电感L2的另一端与所述电容C7的另一端、所述电容C8的另一端、所述电阻R35的一端和所述电阻R37的一端均接地,所述运算放大器U4:B的反相输入端分别与所述电阻R34的一端、所述电阻R35的另一端连接,所述运算放大器U4:B的输出端分别与所述电阻R33的另一端、所述电阻R34的另一端连接,所述运算放大器U4:C的反相输入端分别与所述电阻R38的一端、所述电阻R37的另一端连接,所述运算放大器U4:C的输出端分别与所述电阻R36的另一端、所述电阻R38的另一端连接。
  5. 根据权利要求1所述的一种基于混沌保密的物联网商品信息防追溯系统,其特征在于,所述射频读取单元,将RFID电子标签加贴在使用该系统的商品上,从生产环节开始,实现从生产、加工、流通、消费四个环节的全过程追踪。
  6. 根据权利要求1所述的一种基于混沌保密的物联网商品信息防追溯系统,其特征在于,所述公共追溯单元,包括信息追溯平台,作为RFID运作的中枢,实现不同节点不同追溯环节的信息传递,实现RFID读写设备的运行。
  7. 一种基于混沌保密的物联网商品信息防追溯方法,其特征在于,具体步骤包括:
    步骤1、在生产阶段给每一件商品贴上RFID电子标签;
    步骤2、在商品经过生产、加工、流通、消费各个环节时通过各个安全监测节点将商品信息上传存储,进行资源共享;
    步骤3、记录的信息通过专用设备进行更新上传;
    步骤4、顾客或检查人员通过RFID电子标签读取安全的商品信息进行追溯。
  8. 根据权利要求7所述的一种基于混沌保密的物联网商品信息防追溯方法,其特征在于,所述专用设备包括硬件加密电路,只有通过专用设备的混沌加密信号才能进入信息管理单元对商品信息进行更新和管理。
PCT/CN2020/111738 2020-08-26 2020-08-27 一种基于混沌保密的物联网商品信息防追溯系统及方法 WO2022041042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010866908.6 2020-08-26
CN202010866908.6A CN112734442A (zh) 2020-08-26 2020-08-26 一种基于混沌保密的物联网商品信息防追溯系统及方法

Publications (1)

Publication Number Publication Date
WO2022041042A1 true WO2022041042A1 (zh) 2022-03-03

Family

ID=75597207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111738 WO2022041042A1 (zh) 2020-08-26 2020-08-27 一种基于混沌保密的物联网商品信息防追溯系统及方法

Country Status (2)

Country Link
CN (1) CN112734442A (zh)
WO (1) WO2022041042A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1978475A1 (en) * 2007-04-04 2008-10-08 Cheng-Yuan Hsiao A commodity logistics service system and a counterfeit-impeding method thereof
CN101383028A (zh) * 2008-10-06 2009-03-11 四川正道天和信息科技有限公司 基于epc物联网的全国商品电子监管方法及其系统
CN102436596A (zh) * 2011-11-08 2012-05-02 北京博大光通国际半导体技术有限公司 一种基于射频有源rfid技术的商品防伪溯源系统和方法
CN107358350A (zh) * 2017-04-01 2017-11-17 浙江汉脑数码科技有限公司 一种第三方智能商标标识防伪认证云服务系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1978475A1 (en) * 2007-04-04 2008-10-08 Cheng-Yuan Hsiao A commodity logistics service system and a counterfeit-impeding method thereof
CN101383028A (zh) * 2008-10-06 2009-03-11 四川正道天和信息科技有限公司 基于epc物联网的全国商品电子监管方法及其系统
CN102436596A (zh) * 2011-11-08 2012-05-02 北京博大光通国际半导体技术有限公司 一种基于射频有源rfid技术的商品防伪溯源系统和方法
CN107358350A (zh) * 2017-04-01 2017-11-17 浙江汉脑数码科技有限公司 一种第三方智能商标标识防伪认证云服务系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU XINHUA: "A Digital Anti-counterfeiting and Traceable System Based on Chaotic Cryptography", JISUANJI YU SHUZI GONGCHENG - COMPUTER AND DIGITAL ENGINEERING, ZHONGGUO CHUANBO ZHONGGONG JITUAN GONGSI. DI-709 YANJIUSUO, CN, vol. 42, no. 9, 1 September 2014 (2014-09-01), CN , pages 1678 - 1682, XP055904164, ISSN: 1672-9722, DOI: 10.39697j.issn1672-9722.2014.09.032 *

Also Published As

Publication number Publication date
CN112734442A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
US8341449B2 (en) Battery management system and method for transferring data within the battery management system
US20090303052A1 (en) Freshness tracking and monitoring system and method
CN110196075B (zh) 一种环境试验设备校准用远程温湿度测试方法
US20190166648A1 (en) System, Method and Apparatus for Enabling Environment Tracking at a Monitored Location
CN103154841A (zh) 自动远程监视诊断系统
KR101963305B1 (ko) 물류환경정보 관리 시스템
KR950704753A (ko) 다중 센서모듈을 가진 계측장치(instrumentation system with multiple sensor modules)
WO2018018606A1 (zh) 一种基于智能货架的物品流通管理方法及系统
EP2989599A1 (en) Smart wireless loggers
EP3855371A2 (en) Method and apparatus for managing measurement device based on blockchain
WO2015052662A1 (en) Vehicle overload management system
CN108225262A (zh) 基于亚毫米位移传感器的隧道断面沉降测量装置、系统及方法
US20220384858A1 (en) Battery monitoring system
WO2022041042A1 (zh) 一种基于混沌保密的物联网商品信息防追溯系统及方法
CN109729097B (zh) 一种基于物联网技术的基础结构安全智能在线监测系统
CN116222723A (zh) 垃圾重量确定方法、装置、计算机设备和存储介质
US20060068754A1 (en) System and method for securing a large infrastructure
Pallai et al. Order Picking System Evaluation Using Rtls Method
CN110599668B (zh) 钞箱纸币数量的异常检测方法、系统、服务器和金融设备
CN113295255A (zh) 一种汽车衡防作弊方法及系统
WO2021260452A1 (en) Tamper resistant data management in a sensor network
CN113033726A (zh) 一种地下电缆巡检系统和方法
CN112034910A (zh) 一种基于大数据的物流容器监控平台
US11481382B2 (en) Method and system to ensure trustworthy data exchange in a distributed ledger system
KR102403185B1 (ko) 2차원 바코드 및 rfid를 이용한 종량제 봉투의 수거 및 검증시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950714

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20950714

Country of ref document: EP

Kind code of ref document: A1