WO2022039531A1 - 파우치 형 이차 전지 - Google Patents

파우치 형 이차 전지 Download PDF

Info

Publication number
WO2022039531A1
WO2022039531A1 PCT/KR2021/011056 KR2021011056W WO2022039531A1 WO 2022039531 A1 WO2022039531 A1 WO 2022039531A1 KR 2021011056 W KR2021011056 W KR 2021011056W WO 2022039531 A1 WO2022039531 A1 WO 2022039531A1
Authority
WO
WIPO (PCT)
Prior art keywords
pouch
secondary battery
edge
cup
electrode assembly
Prior art date
Application number
PCT/KR2021/011056
Other languages
English (en)
French (fr)
Inventor
오세영
하정민
김근희
김현범
권형호
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210074474A external-priority patent/KR102569012B1/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21858618.8A priority Critical patent/EP4184670A1/en
Priority to US18/022,003 priority patent/US20230352773A1/en
Priority to CN202180051295.3A priority patent/CN116097502A/zh
Priority to JP2023511979A priority patent/JP2023538081A/ja
Publication of WO2022039531A1 publication Critical patent/WO2022039531A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the side may include: a first folding unit that is relatively folded at a position closer to the outer end; and a second folding part that is relatively folded at a position closer to the cup part.
  • the battery case is manufactured by molding a pouch film, wherein the pouch film is made of a first polymer and includes a sealant layer formed in an innermost layer; a surface protective layer made of a second polymer and formed on an outermost layer; and a moisture barrier layer laminated between the surface protective layer and the sealant layer, wherein the moisture barrier layer is formed of an aluminum alloy thin film having a thickness of 50 to 80 ⁇ m and a grain size of 10 to 13 ⁇ m, the sealant layer Silver may have a thickness of 60 to 100 ⁇ m.
  • it may further include a stretching auxiliary layer made of the third polymer and laminated between the surface protective layer and the moisture barrier layer.
  • the electrode assembly may have an area of 15000 mm 2 to 100000 mm 2 .
  • FIG 8 is an enlarged schematic view of the cup portion 133 and the bridge 136 according to an embodiment of the present invention.
  • FIG. 13 is a schematic view showing a state of folding the battery case 13 according to an embodiment of the present invention.
  • FIG 14 is a schematic view showing a folded state of the battery case 13 according to an embodiment of the present invention.
  • 15 is an enlarged view of the groove 1391 formed in the battery case 13 according to an embodiment of the present invention.
  • 22 is a block diagram of an inspection apparatus 4 according to an embodiment of the present invention.
  • FIG. 23 is a schematic view showing a state in which the manufacture of the secondary battery 1 is completed by cutting the degassing unit 137 of the battery case 13 according to an embodiment of the present invention.
  • FIG. 30 is a front enlarged view showing a state in which the secondary battery 1 is accommodated in the housing 51 of the battery module 5 according to an embodiment of the present invention.
  • FIG. 1 is an assembly view of a secondary battery 1 according to an embodiment of the present invention.
  • the toughness is increased, and the pouch film 135 is molded to manufacture the pouch-type battery case 13, Formability can be improved.
  • the pouch film 135 includes: a sealant layer 1351 (shown in FIG. 2 ) made of a first polymer and formed in an innermost layer; a surface protection layer 1353 (shown in FIG. 2) made of a second polymer and formed on the outermost layer; and a moisture (or gas) barrier layer 1352 (shown in FIG. 2) laminated between the surface protection layer 1353 and the sealant layer 1351, wherein the moisture barrier layer 1352 has a thickness is 50 to 80 ⁇ m and is formed of an aluminum alloy thin film having a grain size of 10 to 13 ⁇ m, and the sealant layer 1351 may have a thickness of 60 to 100 ⁇ m. In particular, it is preferable that the moisture barrier layer 1352 has a thickness of 55 to 65 ⁇ m, and the sealant layer 1351 has a thickness of 75 to 85 ⁇ m.
  • the electrode assembly 10 is formed by alternately stacking an electrode 101 (shown in FIG. 8 ) and a separator 102 (shown in FIG. 8 ). First, a slurry in which an electrode active material, a binder, and a plasticizer are mixed is applied to a positive electrode current collector and a negative electrode current collector to prepare electrodes 101 such as a positive electrode and a negative electrode. Then, separators 102 are stacked between the electrodes 101 to form the electrode assembly 10 , the electrode assembly 10 is inserted into the battery case 13 , and the electrolyte is injected and then sealed.
  • the electrode assembly (Electrode Assembly, 10) may have an area of 15000 mm 2 to 100000 mm 2 multiplied by an overall length and a full width.
  • the total width of the electrode assembly 10 may be 60 mm or more.
  • the electrode assembly 10 may have a thickness of 6 mm to 20 mm in the stacking direction. Therefore, the electrode assembly 10 according to an embodiment of the present invention can provide a large battery capacity compared to a general small-sized battery.
  • An electrode lead 12 for supplying electricity to the outside of the secondary battery 1 is connected to the electrode tab 11 of the electrode assembly 10 by spot welding or the like.
  • a part of the electrode lead 12 is surrounded by the insulating portion 14 .
  • the insulating part 14 is located limitedly on the side 134 to which the first case 131 and the second case 132 of the battery case 13 are thermally fused, and the electrode lead 12 is connected to the battery case 13 . adhere to
  • electricity generated from the electrode assembly 10 is prevented from flowing to the battery case 13 through the electrode lead 12 , and the sealing of the battery case 13 is maintained.
  • the insulating portion 14 is made of a non-conductive material that does not conduct electricity well.
  • an insulating tape that is easy to attach to the electrode lead 12 and has a relatively thin thickness is often used. there is.
  • the electrode lead 12 has one end connected to the positive electrode tab 111 , and one end connected to the positive electrode lead 121 and the negative electrode tab 112 extending in the protruding direction of the positive electrode tab 111 , and the negative electrode tab 112 includes a negative lead 122 extending in the protruding direction.
  • the positive lead 121 and the negative lead 122 both have the other end protruding to the outside of the battery case 13 . Accordingly, electricity generated inside the electrode assembly 10 may be supplied to the outside.
  • the positive electrode tab 111 and the negative electrode tab 112 are formed to protrude in various directions, respectively, the positive electrode lead 121 and the negative electrode lead 122 may also extend in various directions.
  • cup portion 133 When the cup portion 133 is formed in the pouch film 135 , only one cup portion 133 may be formed in one pouch film 135 , but the present invention is not limited thereto and two cup portions are formed in one pouch film 135 . It is also possible to draw molding 133 adjacent to each other. Then, as shown in FIG. 1 , a cup portion 133 is formed in the first case 131 and the second case 132 , respectively. At this time, each of the cup portions 133 formed in the first case 131 and the second case 132 may have the same depth D, but is not limited thereto and may have different depths D. there is.
  • the two cup portions 133 in the battery case 13 so that the two cup portions 133 face each other.
  • the battery case 13 may be folded around the bridge 136 formed between the .
  • the cup part 133 of the second case 132 also accommodates the electrode assembly 10 from above. Accordingly, since the two cup portions 133 accommodate one electrode assembly 10 , the electrode assembly 10 having a thickness greater than that of one cup portion 133 may be accommodated.
  • the first case 131 and the second case 132 are integrally connected to each other by folding the battery case 13, the number of sides 134 to be sealed when a sealing process is performed later can be reduced. there is. Accordingly, it is possible to improve the process speed and reduce the number of sealing processes.
  • FIG 2 is a cross-sectional view of a pouch film 135 according to an embodiment of the present invention.
  • the pouch which is the battery case 13 of the pouch-type secondary battery 1 according to an embodiment of the present invention, is manufactured by drawing and molding the pouch film 135 . That is, the pouch film 135 is stretched with a punch 22 or the like to form the cup portion 133 .
  • a pouch film 135 is, as shown in FIG. 2, a sealant layer (Sealant Layer, 1351), a moisture barrier layer (Moisture Barrier Layer, 1352), a surface protection layer (Surface Protection) Layer 1353), and may further include a drawing assistance layer (Drawing Assistance Layer, 1354) if necessary.
  • the sealant layer 1351 is made of the first polymer and is formed on the innermost layer to directly contact the electrode assembly 10 .
  • the innermost layer refers to a layer positioned at the end when the electrode assembly 10 is positioned with respect to the moisture barrier layer 1352 .
  • Polypropylene (PP) has excellent mechanical properties such as tensile strength, rigidity, surface hardness, abrasion resistance, heat resistance, and chemical properties such as corrosion resistance, and is mainly used for manufacturing the sealant layer 1351 . Furthermore, it may be composed of Cated Polypropylene or Acid Modified Polypropylene or polypropylene-butylene-ethylene terpolymer. Here, the acid-treated polypropylene may be MAH PP (maleic anhydride polypropylene). In addition, the sealant layer 1351 may have a single-layer structure made of any one material or a composite film structure in which two or more materials are each layered.
  • the thickness of the sealant layer 1351 may be 60 to 100 ⁇ m, and in particular, 75 to 85 ⁇ m. If the thickness of the sealant layer 1351 is less than 60 ⁇ m, there may be a problem in that sealing durability is deteriorated, such as internal destruction during sealing. In addition, if the thickness of the sealant layer 1351 is thicker than 100 ⁇ m, the overall thickness of the pouch becomes excessively thick, and thus the formability may be deteriorated or the energy density relative to the volume of the secondary battery 1 may be reduced. When the thickness of the sealant layer 1351 is small, the insulation breakdown voltage of the pouch film 135 may be lowered, and thus insulation may be deteriorated. there is
  • the moisture barrier layer 1352 is laminated between the surface protective layer 1353 and the sealant layer 1351 to secure the mechanical strength of the pouch, block the ingress of gas or moisture from the outside of the secondary battery 1, and electrolyte to prevent leakage of
  • the moisture barrier layer 1352 may be made of an aluminum alloy thin film.
  • the aluminum alloy thin film may secure a predetermined level or more of mechanical strength, while having a light weight, and supplementing the electrochemical properties of the electrode assembly 10 and the electrolyte and securing heat dissipation.
  • the aluminum alloy thin film according to an embodiment of the present invention may have a grain size of 10 to 13 ⁇ m, preferably 10.5 to 12.5 ⁇ m, and more preferably 11 to 12 ⁇ m.
  • the grain size of the aluminum alloy thin film satisfies the above range, it is possible to increase the forming depth without generating pinholes or cracks during cup forming.
  • Such an aluminum alloy thin film contains metal elements other than aluminum, for example, iron (Fe), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), magnesium (Mg) and zinc (Zn).
  • metal elements other than aluminum for example, iron (Fe), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), magnesium (Mg) and zinc (Zn).
  • Fe iron
  • Cu copper
  • Cr chromium
  • Mn manganese
  • Ni nickel
  • Mg magnesium
  • Zn zinc
  • the moisture barrier layer has a thickness of approximately 30 to 50 ⁇ m, particularly 40 ⁇ m, resulting in poor formability. Therefore, even when the pouch film is draw-molded, the depth D' of the cup part 333 (shown in FIG. 7) is increased, and the outer wall 338 (shown in FIG. 7) of the cup part 333 is formed close to the vertical limit. There was also a limit in reducing the radius of curvature of the edge (36, shown in FIG. 7) of the cup portion 333. In addition, when the battery case receives an impact from the outside due to low puncture strength, there is a problem in that the electrode assembly inside is easily damaged.
  • the moisture barrier layer 1352 may have a thickness of 50 ⁇ m to 80 ⁇ m, in particular 55 ⁇ m to 65 ⁇ m. Accordingly, the moldability of the moisture barrier layer 1352 is improved, so that when the pouch film 135 is draw-molded, the depth D of the cup portion 133 may be formed to be deep, and the outer wall 138 of the cup portion 133 may be formed. As it approaches the vertical, the radius of curvature R2 of the edge 16 (shown in FIG. 8 ) of the cup portion 133 may also decrease. Then, since the volume of the accommodating space 1331 increases, the volume of the electrode assembly 10 accommodated therein may also increase, and energy efficiency relative to the volume of the secondary battery 1 may also increase. Also, the overall thickness of the pouch does not significantly increase without reducing the thickness of the sealant layer 1351 without significantly increasing the manufacturing cost, and sealing durability may not decrease.
  • the puncture strength of the pouch film 135 is improved, even if it is damaged by a large external pressure or pierced by a sharp object, the inner electrode assembly 10 can be more effectively protected.
  • the excellent perforation strength means that the strength when perforating a hole in the pouch film 135 is high.
  • the forming depth can be increased, but pinholes or cracks are generated in the aluminum alloy thin film after forming, resulting in a problem in sealing durability.
  • the gas barrier layer 1352 includes an aluminum alloy thin film having a grain size of 10 ⁇ m to 13 ⁇ m, preferably 10.5 ⁇ m to 12.5 ⁇ m, and more preferably 11 ⁇ m to 12 ⁇ m.
  • the grain size of the aluminum alloy thin film satisfies the above range, it is possible to increase the forming depth without generating pinholes or cracks during cup forming.
  • the grain size of the aluminum alloy thin film exceeds 13 ⁇ m, the strength of the aluminum alloy thin film decreases, and cracks or pinholes are increased due to difficulty in dispersing internal stress during stretching. There is a limit to sexual enhancement.
  • the surface protective layer 1353 is made of the second polymer and is formed on the outermost layer to protect the secondary battery 1 from friction and collision with the outside while electrically insulating the electrode assembly 10 from the outside.
  • the outermost layer refers to a layer that is positioned last when facing in a direction opposite to a direction in which the electrode assembly 10 is positioned with respect to the moisture barrier layer 1352 .
  • the second polymer for manufacturing the surface protective layer 1353 is polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, nylon.
  • polyester, polyparaphenylenebenzobisoxazole, polyarylate may be at least one material selected from the group consisting of Teflon and glass fiber.
  • a polymer such as polyethylene terephthalate (PET) having mainly abrasion resistance and heat resistance is preferably used.
  • PET polyethylene terephthalate
  • the surface protection layer 1353 may have a single-layer structure made of any one material, or a composite film structure in which two or more materials are each layered.
  • the thickness of the surface protective layer 1353 may be 5 ⁇ m to 25 ⁇ m, and in particular, 7 ⁇ m to 12 ⁇ m. If the thickness of the surface protection layer 1353 is thinner than 5 ⁇ m, there may be a problem in that external insulation is deteriorated. Conversely, if the thickness of the surface protective layer 1353 is greater than 25 ⁇ m, the overall thickness of the pouch increases, and thus the energy density relative to the volume of the secondary battery 1 may be reduced.
  • PET is inexpensive, has excellent durability, and has excellent electrical insulation, but has weak adhesion to aluminum, which is often used as the moisture barrier layer 1352 , and may have different behavior when stretched by applying a stress. Accordingly, when the surface protective layer 1353 and the moisture barrier layer 1352 are directly bonded, the surface protective layer 1353 and the moisture barrier layer 1352 may be peeled off during drawing molding. As a result, the moisture barrier layer 1352 is not stretched uniformly, which may cause a problem in that moldability is deteriorated.
  • the battery case 13 may further include an auxiliary stretching layer 1354 made of a third polymer and laminated between the surface protection layer 1353 and the moisture barrier layer 1352 .
  • the stretching auxiliary layer 1354 may be laminated between the surface protection layer 1353 and the moisture barrier layer 1352 to prevent the surface protection layer 1353 and the moisture barrier layer 1352 from being peeled off when stretched.
  • the third polymer for manufacturing the stretching auxiliary layer 1354 is polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, nylon.
  • polyester, polyparaphenylenebenzobisoxazole, polyarylate may be at least one material selected from the group consisting of Teflon and glass fiber.
  • the nylon resin easily adheres to polyethylene terephthalate (PET) of the surface protective layer 1353 and has a similar behavior to the aluminum alloy of the moisture barrier layer 1352 when stretched, the third polymer As the furnace, mainly nylon (Nylon) resin may be used.
  • the stretching auxiliary layer 1354 may have a single film structure made of any one material, or a composite film structure in which two or more materials are each formed in layers.
  • the moisture barrier layer has a thickness of approximately 40 ⁇ m, and thus the stretching auxiliary layer has a fairly thin thickness of approximately 15 ⁇ m. That is, the thickness ratio of the stretching auxiliary layer and the moisture barrier layer was 1:2.67, and the thickness ratio of the moisture barrier layer was quite high.
  • the moisture barrier layer 1352 has a thickness of approximately 50 to 80 ⁇ m, particularly 55 ⁇ m to 65 ⁇ m, the moldability of the moisture barrier layer 1352 is This is improved.
  • the thickness ratio of the stretching auxiliary layer 1354 may be further increased than in the related art. However, if the thickness of the stretching auxiliary layer 1354 is excessively thick, the overall thickness of the pouch increases, so that the thickness ratio may be greater than 1:1.5 in order not to become excessively thick. That is, the thickness ratio may be 1:1.5 to 1:2.5.
  • 3 is a graph showing the iron and silicon content of an aluminum alloy of alloy number AA8079 and an aluminum alloy of alloy number AA8021.
  • the aluminum alloy thin film forming the moisture barrier layer 1352 may have a grain size of 10 to 13 ⁇ m, preferably 10.5 to 12.5 ⁇ m, and more preferably 11 to 12 ⁇ m.
  • the iron (Fe) content of the aluminum alloy thin film may be 1.2wt% to 1.7wt%, preferably 1.3wt% to 1.7wt%, more preferably 1.3wt% to 1.45wt%. If the iron (Fe) content in the aluminum alloy thin film is less than 1.2 wt%, the strength of the aluminum alloy thin film is lowered and cracks and pinholes may occur during molding. If it exceeds 1.7 wt%, the flexibility of the aluminum alloy thin film is reduced. There is a limit to improving the formability.
  • the silicon (Si) content of the aluminum alloy thin film may be 0.2 wt% or less, preferably 0.05 to 0.2 wt%, more preferably 0.1 to 0.2 wt%. When the silicon content exceeds 0.2 wt%, moldability may be deteriorated.
  • the aluminum alloy thin film according to the present invention may be an aluminum alloy having alloy number AA8021.
  • an aluminum alloy thin film having an alloy number AA8079 was mainly used for the conventional battery pouch.
  • the aluminum alloy contains a lot of iron, the mechanical strength is improved, and when the iron is low, the flexibility is improved.
  • Alloy No. AA8079 contains 0.6 wt% to 1.2 wt% of iron, and 0.3 wt% or less of silicon, as shown in FIG. 3 .
  • the aluminum alloy of alloy number AA8079 relatively little iron is included, and when the moisture barrier layer 1352 is manufactured using the same, flexibility may be improved, but strength may be lowered, thereby limiting formability.
  • alloy No. AA8021 may contain 1.2 wt% to 1.7 wt% of iron, particularly 1.3 wt% to 1.7 wt%, and 0.2 wt% or less of silicon, as shown in FIG. 3 .
  • iron is included in a relatively large amount, tensile strength, elongation rate, and puncture strength can be improved. .
  • the relationship between tensile strength and elongation can be expressed in a graph.
  • the vertical axis of the graph is tensile strength and the horizontal axis is elongation
  • the lower area of the graph is the toughness of the material. Toughness refers to the degree of toughness against failure of a material, and the higher the toughness, the more the material can be elongated until it does not break.
  • the moisture barrier layer 1352 is manufactured from the aluminum alloy of alloy number AA8021, tensile strength and elongation are improved, so that toughness may be increased and formability may be improved.
  • FIG. 4 is a graph showing changes in tensile strength (Rm), elongation and grain size according to the iron content of an aluminum alloy of alloy number AA8079 and an aluminum alloy of alloy number AA8021
  • FIG. 5 is an aluminum alloy of alloy number AA8079 and alloy number AA8021 It is an enlarged SEM picture of the crystal grains of phosphorus aluminum alloy.
  • tensile strength, elongation, and grain size change. Specifically, since tensile strength and elongation are proportional to the iron content, as the iron content increases, the tensile strength and elongation also increase. On the other hand, since the grain size is inversely proportional to the iron content, the grain size decreases as the iron content increases.
  • Alloy No. AA8079 has a relatively large grain size of 13 ⁇ m to 21 ⁇ m. Accordingly, there is a problem in that the formability of the battery case 13 is deteriorated because the internal stress is less dispersed when stretched, and the number of pinholes is increased.
  • Alloy No. AA8021 has a relatively small grain size of 10 ⁇ m to 13 ⁇ m. Accordingly, since the internal stress may be more dispersed when stretched, pinholes may be reduced to improve the formability of the battery case 13 .
  • the pouch-type battery case 13 manufactured by molding the pouch film 135 having such a moisture barrier layer 1352 has improved moldability, so that the depth D of the cup portion 133 can be formed more deeply,
  • the outer wall 138 of the cup portion 133 is also close to vertical and the radius of curvature of the edge 16 of the cup portion 133 may be reduced, so that a larger and thicker electrode assembly 10 may be accommodated. Accordingly, the secondary battery 1 manufactured with the battery case 13 may have increased energy efficiency compared to its volume.
  • the pouch film 135 according to the present invention may have a total thickness of 160 ⁇ m to 200 ⁇ m, preferably 180 ⁇ m to 200 ⁇ m.
  • the thickness of the pouch film 135 satisfies the above range, it is possible to increase the molding depth while minimizing the reduction of the battery accommodating space and the deterioration of sealing durability due to the increase in the pouch thickness.
  • the pouch film 135 according to the present invention has excellent tensile strength and elongation, including an aluminum alloy thin film having a specific thickness and grain size.
  • the pouch film 135 according to the present invention has a tensile strength of 200N/15mm to 300N/15mm, preferably 200N/15mm to 300N/15mm, measured while cutting the pouch film 135 to a size of 15 mm ⁇ 80 mm and pulling it at a tensile speed of 50 mm/min preferably 210N/15mm to 270N/15mm, more preferably 220N/15mm to 250N/15mm, and the elongation is 120% to 150%, preferably 120% to 140%, more preferably 120% to 130%.
  • the pouch film laminate according to the present invention has high tensile strength and elongation, and thus toughness is increased, so that cracking is small even when the molding depth is large during cup molding.
  • the pouch film laminate according to the present invention including an aluminum alloy thin film having a specific thickness and grain size, has excellent puncture strength.
  • the pouch film laminate according to the present invention may have a puncture strength of 30N or more.
  • FIG. 6 is a schematic diagram of a forming apparatus 2 according to an embodiment of the present invention.
  • the molding apparatus 2 for molding the pouch film 135 includes a die 21 on which the pouch film 135 is seated on an upper surface, and is disposed above the die 21 and descends. and a punch 22 for forming the pouch film 135 .
  • the die 21 includes a forming portion 211 recessed inwardly from the upper surface, and the punch 22 forms the cup portion 133 by inserting the pouch film 135 into the forming portion 211 and drawing-molding. do.
  • the die 21 when the pouch film 135 is molded using the molding device 2 , as shown in FIG. 6 , the die 21 has two molding parts 211 adjacent to each other. A dog is formed, and a partition wall 212 may be formed between the two forming parts 211 .
  • the pouch film 135 is draw-molded while the punch 22 is inserted into both molding units 211 , one in each of the first case 131 and the second case 132 is formed corresponding to the two molding units 211 .
  • a total of two cup portions 133 are formed, and a bridge 136 may also be formed between the two cup portions 133 to correspond to the partition wall 212 .
  • the bridge 136 may serve as a reference when the battery case 13 is later folded.
  • the bridge 136 may form a folding part 139 (shown in FIG. 14 ) at one side of the secondary battery 1 . Since the folding part 139 integrally connects the first case 131 and the second case 132 to each other, the number of sides 134 to be sealed may be reduced when a sealing process is performed later. Accordingly, it is possible to improve the process speed and reduce the number of sealing processes.
  • the space 17 shown in FIG. 8
  • the outer wall 138 shown in FIG. 8
  • the electrode assembly 10 Since the overall volume of the secondary battery 1 is reduced, the energy density relative to the volume may be increased.
  • the width of the folding part 139 is proportional to the thickness (t, shown in FIG. 8) of the bridge 136, and since the bridge 136 is formed corresponding to the partition wall 212, the thickness of the bridge 136 ( t) is proportional to the thickness of the partition wall 212 . Therefore, when the pouch film 135 is formed, it is preferable to minimize the thickness t of the bridge 136 , and for this purpose, it is also preferable to minimize the thickness of the partition wall 212 . However, if the barrier rib 212 is formed to have an excessively high height in a thin state, the barrier rib 212 may be damaged in the process of drawing forming.
  • the reinforcing part 2121 may be formed below the depth D of the cup part 133 to be formed in the battery case 13 , and may be formed at a position where the partition wall 212 is not damaged.
  • the exact position of the reinforcing part 2121 may be experimentally determined according to the thickness of the partition wall 212 , the material of the partition wall 212 , the pressure of the punch 22 , and the depth D of the cup part 133 to be formed.
  • FIG. 7 is an enlarged schematic view of the conventional cup portion 333 and the bridge 336.
  • the moisture barrier layer had a thickness of about 30 to 50 ⁇ m, particularly 40 ⁇ m, and the stretching auxiliary layer had a fairly thin thickness of about 15 ⁇ m. Therefore, even when the battery case and the secondary battery are manufactured because the formability of the pouch film is not excellent, the depth (D') of the cup part 333 is not deep, and there is a limitation in manufacturing it in a sharp shape as a whole.
  • the edge 36 of the cup portion 333 corresponds to the edge 221 (shown in FIG. 6 ) of the punch 22 and is formed and formed while the punch edge 361 is the edge 213 of the die 21 , shown in FIG. 6 . ) and a die edge 362 (shown in FIG. 11 ) formed corresponding to the .
  • the punch edge 361 connects the plurality of outer walls 338 surrounding the periphery of the cup portion 333 and the bottom portion 3332 , respectively. However, if the edge 221 of the punch 22 is not rounded, the edge 221 of the punch 22 becomes sharp, so when the pouch film 135 is formed, the punch edge 361 of the cup part 333 is There was a problem in that the stress was concentrated on the surface and cracks easily occurred.
  • the die edge 362 connects the plurality of outer walls 338 and the side 134 or the degassing unit 137 , respectively. However, if the edge 213 of the die 21 is not rounded, the edge of the die 21 becomes sharp.
  • being rounded means forming a curved surface to have a curvature, and the curved surface may have only a constant curvature, but is not limited thereto and may have a non-constant curvature.
  • the punch edge 161, the die edge 162, the bridge 136, etc. are rounded and formed with a specific curvature, as well as having only the specific curvature as a whole, but also having the specific curvature only in at least some means to include
  • the edge 221 of the punch 22 and the edge 213 of the die 21 are rounded to the punch edge 361 of the cup part 333 . and the die edge 362 are rounded and formed. Thereby, the stress concentrated on the punch edge 361 and the die edge 362 of the cup part 333 was able to be dispersed to some extent.
  • the depth D' of the cup portion 333 is 2 of the ratio of the radius of curvature of each edge 361 and 362.
  • the radius of curvature R2' of the punch edge 361 and the radius of curvature of the die edge 362 had to be sufficiently large, and the punch edge ( 361 ) and the die edge 362 , when the depth D′ of the cup portion 333 was too deep compared to the radius of curvature, cracks occurred in the punch edge 361 and the die edge 362 .
  • the partition wall 212 when the two cup portions 133 are formed, the partition wall 212 must exist in the die 21 in order to form the bridge 136 .
  • the formability of the pouch film was not excellent, so there was a limit in forming the thickness of the bridge 336 thin. That is, if the barrier rib 212 is also formed to have a predetermined thickness or less in order to form the bridge 336 to a predetermined thickness or less, cracks may occur in the bridge 336 because the barrier rib 212 is sharply formed.
  • a bridge 336 is formed by rounding the barrier rib 212 by a rounding process.
  • the stress concentrating on the bridge 336 was able to be dispersed to some extent.
  • the radius of curvature R1 ′ of the bridge 336 is constant, the radius of curvature R1 ′ corresponds to half of the thickness t′ of the bridge 336 .
  • the thickness t' of the bridge 336 is formed to be close to about 2 mm.
  • the depth D' of the cup part 333 is formed to some extent deep into the bridge 336. There was a problem with cracking. Therefore, in the prior art, while forming the cup portion 333 to a certain depth (D ') (eg, 6.5 mm) or more, the thickness (t ') of the bridge 336 is a predetermined value (eg, 2 mm) or less There was a problem that could not be formed.
  • the clearance CL refers to a vertical distance between the inner wall of the forming portion 211 of the die 21 and the outer wall of the punch 22 .
  • the clearance CL there is a difference in size between the forming part 211 of the die 21 and the punch 22 as fine as the clearance CL. If the clearance CL is excessively small, the distance between the inner wall of the forming portion 211 and the outer wall of the punch 22 is excessively small. Then, the pouch film 135 may not be inserted into the molding unit 211 , or the pouch film 135 may be damaged due to large friction.
  • the bridge 336 is formed to correspond to the partition wall 212 of the die 21
  • the punch edge 361 is formed to correspond to the edge 221 of the punch 22 . Accordingly, the clearance CL ′, which is the vertical distance between the inner wall of the forming portion 211 of the die 21 and the outer wall of the punch 22 , is in the battery case 33 , between the bridge 336 and the punch edge 361 . It can appear as a vertical distance.
  • a bridge vertical line V1 ′ and an edge vertical line V2 ′ are virtually illustrated.
  • the bridge vertical line V1 ′ is an imaginary vertical line passing through the boundary point P1 ′ between the bridge 336 and the bridge 336 side outer wall 338 and perpendicular to the bottom part 3332 .
  • the edge vertical line V2' passes through the boundary point P2' of the bridge 336 side punch edge 361 and the bridge 336 side outer wall 338 and is a virtual vertical line perpendicular to the bottom part 3332.
  • the bridge vertical line V1 ′ corresponds to the inner wall of the forming part 211 of the die 21 , in particular, the inner wall of the partition 212
  • the edge vertical line V2 ′ corresponds to the outer wall of the punch 22 . Accordingly, the vertical distance between the vertical bridge line V1 ′ and the edge vertical line V2 ′ is the clearance CL′ appearing in the battery case 33 .
  • the outer wall 338 of the cup portion 333 is formed to have an inclination angle greater than 95° from the bottom portion 3332 . That is, there was a limit in forming the outer wall 338 of the cup portion 333 to be close to the vertical with an inclination angle of 95° or less.
  • one end of the electrode 101 including the metal is positioned on the punch edge 361 of the cup portion 333 , and one end of the electrode 101 corresponds to the punch edge 361 of the cup portion 333 and is deformed. There was a problem with breakage.
  • the electrode assembly 10 when the electrode assembly 10 is accommodated in the cup part 333 , the electrode assembly 10 is accommodated at a certain distance from the outer wall 338 of the cup part 333 .
  • a vertical distance g' from the edge vertical line V2' is 0.75 mm, particularly 0.5 mm, and a reference vertical line V3' perpendicular to the bottom part 3332 is virtually shown, and then the reference vertical line V3' shown in FIG.
  • the electrode assembly 10 was accommodated so that one end of the electrode 101 was positioned outside the reference vertical line V3'. Accordingly, since the electrode 101 is spaced apart from the outer wall 338 of the cup portion 333 to some extent, it is possible to prevent the electrode 101 from being damaged.
  • the electrode 101 has a high rigidity that is not easily deformed by an external force
  • the separator 102 has a high flexibility that is easily deformed by an external force.
  • the separator 102 is formed to be larger than the electrode 101 . Accordingly, when the electrode assembly 10 is formed, the peripheral portion 1021 in which the separator 102 protrudes outward than the electrode 101 is formed together.
  • the peripheral portions 1021 of the separator 102 were all disorderly crumpled or folded to form the electrode 101. The possibility of a short circuit was high as it was exposed to the outside.
  • the formability of the pouch film is not excellent, so the thickness (t') of the bridge 336, the depth (D') of the cup part 333, and the radius of curvature of the edge 361 of the cup part 333 ( R2') and clearance (CL') were limited.
  • the volume ratio of the electrode assembly 10 to the volume of the cup part 333 is small, and an unnecessary volume in the secondary battery 3 is also large, the energy density to volume ratio is also reduced.
  • the outer wall 338 of the cup portion 333 is not formed close to vertical and the radius of curvature R2 of the edge 361 of the cup portion 133 is also large, there is a limitation in manufacturing a sharp shape as a whole. The appearance of (3) was not beautiful, and there was a problem in that the marketability was also lowered.
  • FIG. 8 is an enlarged schematic view of the cup part 133 and the bridge 136 according to an embodiment of the present invention
  • FIG. 9 is an enlarged view of the cup part 133 and the degassing part 137 according to an embodiment of the present invention. It is a schematic diagram.
  • the thickness t of the bridge 136 is made thinner, and the radius of curvature R2 of the edge 16 of the cup part 133 (R2). And the clearance CL may be made smaller, and the volume of the electrode assembly 10 may be increased. Accordingly, since an unnecessary volume in the secondary battery 1 is also reduced, the energy density relative to the volume may be increased. In addition, since the pouch-type battery case 13 and the pouch-type secondary battery 1 may be manufactured in a sharp shape as a whole, the appearance of the secondary battery 1 may be excellent and marketability may be improved.
  • a cup portion 133 for accommodating the electrode assembly 10 formed by stacking the electrode 101 and the separator 102 therein is formed.
  • the cup portion 133 includes a plurality of punch edges 161 connecting a plurality of outer walls 138 surrounding the periphery and a bottom portion 1332, respectively, and at least one punch edge 161 is a cup portion. It may be rounded and formed with a radius of curvature that is 1/20 to 1/6 of the depth D of (133).
  • the radius of curvature R2 of the punch edge 161 is less than 1/20 of the depth D of the cup portion 133, stress may be excessively concentrated on the punch edge 161 to cause cracks, and the punch edge 161 ), if the radius of curvature R2 is greater than 1/6 of the depth D of the cup portion 133 , the cup portion 133 is not sharply formed, and thus the energy density may decrease.
  • At least one of the punch edges 161 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the bridge 136 may have a thickness of 2 mm or less, particularly 1.4 mm or less.
  • the bridge 136 side outer wall 1381 facing the bridge 136 side and the bridge 136 side punch edge 1611 connecting the bottom portion 1332 to each other. may be rounded and formed with a radius of curvature that is 1/20 to 1/6 of the depth D of the cup portion 133 .
  • the punch edge 1611 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the vertical distance between the edge vertical line V2 passing through the boundary point P2 of the outer wall 1381 on the side of the bridge 1611 and the bridge 136 and perpendicular to the bottom 1332 may be 0.5 mm or less, in particular 0.35 mm or less. there is.
  • the cup part 133 is formed by molding the pouch film 135 having flexibility using a punch 22 or the like.
  • the cup portion 133 is surrounded by a plurality of outer walls 138 and a bottom portion 1332 , and a space formed by the outer wall 138 and the bottom portion 1332 serves as an accommodating space 1331 for the electrode assembly 10 . ) is accepted.
  • the outer wall 138 of the cup portion 133 encloses the periphery of the cup portion 133 to specify the shape of the cup portion 133 .
  • the outer wall 138 is formed in plurality around the cup portion 133 , is formed on the bridge 136 side, is also formed on the degassing portion 137 side to be described below, and is also formed on the electrode lead 12 side.
  • the outer wall 138 has an upper end facing the opening of the cup portion 133 , and a lower end facing the bottom portion 1332 .
  • the edge 16 of the cup part 133 corresponds to the edge 221 of the punch 22 and the punch edge 161 and the edge 213 of the die 21 are formed in FIG. shown) and a die edge 162 formed thereon.
  • a side 134 and a degassing portion 137 are formed outwardly from the upper end of the outer wall 138
  • the die edge 162 is formed between the upper end of the outer wall 138 and the side 134 or degassing portion 137 . connect each And the punch edge 161 connects the lower end of the outer wall 138 and the bottom portion 1332, respectively.
  • the edge 16 of the cup portion 133 is also formed in plurality by the number of the outer wall 138 . That is, if the cup portion 133 is formed in a quadrangular shape, since four outer walls 138 of the cup portion 133 are also formed, four punch edges 161 and four die edges 162 are also formed. And according to an embodiment of the present invention, as the formability of the pouch film 135 is improved, at least one punch edge 161 of the cup portion 133 is 1/1/ of the depth D of the cup portion 133 . It may be rounded and formed with a radius of curvature of 20 to 1/6. Specifically, at least one of the punch edges 161 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • two cup portions 133 are formed on one pouch film 135 , and a bridge 136 is also formed between the two cup portions 133 .
  • a bridge 136 connecting the outer wall 1381 and the bottom 1332 on the side of the bridge 136 toward the bridge 136 side to each other.
  • side punch edge 1611 may be rounded and formed with a radius of curvature that is 1/20 to 1/6 of the depth D of the cup portion 133 .
  • the bridge 136 side punch edge 1611 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the die edge 162 side outer wall facing the die edge 162 formed on the degassing portion 137 or the electrode lead 12 .
  • the punch edge 1612 on the die edge 162 side connecting the 1382 and the bottom 1332 to each other is also rounded with a radius of curvature that is 1/20 to 1/6 of the depth D of the cup part 133, can be formed. If the radius of curvature of the die edge 162 is less than 1/20 of the depth D of the cup portion 133 , stress may be excessively concentrated on the die edge 162 and cracks may occur, and the curvature of the die edge 162 . If the radius is greater than 1/6 of the depth D of the cup portion 133 , the upper end of the cup portion 133 is not sharply formed, and thus energy density may decrease.
  • the punch edge 1612 on the side of the die edge 162 may also be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the slope is continuous.
  • the edge 221 of the punch 22 may also be rounded with a predetermined radius of curvature.
  • the radius of curvature of the edge 221 of the punch 22 may be a value obtained by subtracting the thickness of the pouch film 135 itself from the radius of curvature R2 of the punch edge 161 .
  • the thickness of the pouch film 135 is 0.2 mm
  • the radius of curvature of the edge 221 of the punch 22 is 0.5 mm or less
  • the radius of curvature R2 of the punch edge 161 is 0.7 mm or less .
  • the punch 22 draws the pouch film 135 .
  • the punch 22 draws the pouch film 135 .
  • the punch 22 draws the pouch film 135 .
  • the cup portion 133 is formed to be 7 mm or more based on the case of molding one cup part 133, 6.5 mm or more, or even 10 mm or more based on the case where two cup parts 133 are molded, the A crack may not occur in the punch edge 161 .
  • the depth (D) of the cup part 133 where cracks may occur is a good product, a residual ratio when the residual ratio is 60% or more, based on the residual ratio of the aluminum alloy of the moisture barrier layer 1352 . If this is less than 60%, it is judged as defective.
  • the residual ratio means a ratio of the residual amount after molding to the residual amount before molding of the aluminum alloy of the moisture barrier layer 1352 at a specific point of the pouch film 135 . In fact, when the residual ratio is less than 60%, when the cup part 133 is draw-molded on the pouch film 135, the frequency of cracks occurring at a specific point is high, but when the residual ratio is 60% or more, cracks do not occur. .
  • the residual ratio is relatively The lower the frequency, the higher the occurrence of cracks.
  • the fact that cracks can easily occur means that the residual rate is relatively low and the frequency of occurrence of cracks is high.
  • the outer wall 138 has an upper end facing the opening of the cup portion 133 , and the side 134 and the degassing portion 137 extend to the outside of the cup portion 133 .
  • the cup part 133 may further include a plurality of die edges 162 connecting the upper end of the outer wall 138 and the side 134 or the degassing part 137 , respectively.
  • at least one die edge 162 may also be formed while being rounded with a radius of curvature that is 1/20 to 1/6 of the depth D of the cup portion 133 .
  • the at least one die edge 162 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the edge 213 of the die 21 is also rounded with a predetermined radius of curvature.
  • the radius of curvature of the edge 213 of the die 21 may be a value obtained by subtracting the thickness of the pouch film 135 from the radius of curvature of the die edge 162 . For example, if the thickness of the pouch film 135 is 0.2 mm, when the radius of curvature of the edge 213 of the die 21 is 0.5 mm or less, the radius of curvature of the die edge 162 is 0.7 mm or less.
  • the two cup portions 133 may be formed on one pouch film 135 , and the bridge 136 is also formed between the two cup portions 133 . That is, in the pouch-type battery case 13 according to an embodiment of the present invention, the cup portion 133 for accommodating the electrode assembly 10 formed by stacking the electrode 101 and the separator 102 therein is formed, respectively. a first case 131 and a second case 132; and a bridge 136 formed between the two cup portions 133 . Since the bridge 136 is also formed to correspond to the partition wall 212 of the die 21 , the bridge 136 may be one of the plurality of die edges 162 .
  • the thickness t of the bridge 136 is 1 of the width EW (refer to FIG. 10 ) of the electrode assembly 10 . It may be /200 to 1/30. Specifically, the thickness t of the bridge 136 may be formed to be 2 mm or less, particularly 1.4 mm or less.
  • the thickness t of the bridge 136 is preferably a distance between the two boundary points P1 of the bridge 136 and the bridge 136 side outer wall 1381 as shown in FIG. 8 .
  • the bridge 136 and the bridge 136 pass through the boundary point P1 of the side outer wall 1381 and be the distance between the two vertical bridge lines V1 perpendicular to the bottom 1332 .
  • the radius of curvature of the bridge 136 may correspond to half of the thickness t. That is, the radius of curvature of the bridge 136 may be 1 mm or less, particularly 0.7 mm or less.
  • the upper surface of the partition wall 212 of the forming part 211 may also be rounded with a predetermined radius of curvature.
  • the slope is continuous.
  • the radius of curvature of the upper surface of the partition wall 212 of the forming part 211 may be a value obtained by subtracting the thickness of the pouch film 135 itself from the radius of curvature of the bridge 136 . For example, when the thickness of the pouch film 135 is 0.2 mm, when the radius of curvature of the upper surface of the partition wall 212 is 0.5 mm or less, the radius of curvature of the bridge 136 is 0.7 mm or less.
  • the depth D of the cup part 133 is formed to some degree deep, and the curvature of the edge 213 of the die 21 is improved. Even if the radius is reduced and the thickness of the partition wall 212 is formed thin, cracks may be prevented from occurring in the die edge 162 and the bridge 136 .
  • the bridge 136 may have a sector-shaped cross-section, and as the outer wall 138 of the cup part 133 is formed closer to the vertical, the cross-section may have a shape closer to a semicircle.
  • the clearance CL is reduced to 0.5 mm or less, so that the plurality of outer walls 138 may all be formed to be nearly vertical.
  • the bridge 136 side outer wall 1381 may be formed close to vertical among the plurality of outer walls 138 .
  • the clearance (CL) which is the vertical distance between the boundary point P2 of the outer wall 1381 on the side of 1611 and the bridge 136, and between the bottom 1332 and the vertical edge vertical line V2 is 0.5 mm or less, In particular, it may be 0.35 mm or less.
  • an outer wall 1382 on the die edge 162 side of the plurality of outer walls 138 may also be formed close to vertical. That is, a die edge vertical line V4 passing through the boundary point P3 of the die edge 162 and the die edge 162 side outer wall 1382 and perpendicular to the bottom 1332, and the die edge 162 side A clearance CL, which is a vertical distance between the punch edge 1612 and the die edge 162 and the boundary point P4 of the outer wall 1382 on the side of the die edge 162 and between the bottom 1332 and the vertical edge vertical line V2, is 0.5 mm or less, in particular 0.35 mm or less.
  • the outer wall of the cup portion 133 . (138) may have an inclination angle of between 90 ° to 95 ° from the bottom portion 1332, and further may be formed close to vertical to have an inclination of between 90 ° to 93 °, and the battery case (13) It can prevent cracks from occurring.
  • the space 17 between the outer wall 138 of the cup part 133 and the electrode assembly 10 is also reduced, the energy density relative to the volume of the secondary battery 1 may also increase.
  • the radius of curvature R2 of the punch edge 161 of the cup part 133 can be further reduced, even when the electrode assembly 10 is located very close to the outer wall 138 of the cup part 133 , the electrode assembly 10 ) of the electrode 101 can be prevented from being damaged.
  • a method of manufacturing a pouch-type secondary battery 1 includes: forming an electrode assembly 10 by stacking an electrode 101 and a separator 102; manufacturing a pouch-type battery case 13 by forming a pouch film 135 to form a cup portion 133; accommodating the electrode assembly 10 in the accommodating space 1331 of the cup part 133; and sealing the side 134 extending outwardly of the cup part 133 to manufacture the pouch-type secondary battery 1 .
  • the difference between the width (CW) of the cup part 133 and the width (EW) of the electrode assembly 10 may be 2.5 mm or less, particularly 1.7 mm or less.
  • the width EW of the electrode assembly 10 may mean the width of the electrode 101 . That is, the peripheral portion 1021 protruding from the electrode 101 in the separator 102 may be excluded from the calculation of the width EW.
  • the electrode assembly 10 may be accommodated so that the vertical distance g is 0.75 mm, particularly 0.5 mm or less.
  • the edge vertical line V2 passing through the boundary point P2 of the punch edge 161 and the outer wall 138 and perpendicular from the bottom part 1332 is shown virtually.
  • at least one end of the electrode 101 accommodates the electrode assembly 10 so that the vertical distance g from the edge vertical line V2 is 0.75 mm or less, particularly 0.5 mm or less. More specifically, the vertical distance g from the edge vertical line V2 is 0.75 mm, in particular 0.5 mm, and shows a virtual reference vertical line V3 perpendicular to the bottom portion 1332 .
  • the reference vertical line V3 may pass through the center of curvature C of the punch edge 161 .
  • the electrode assembly 10 is accommodated so that one end of the electrode 101 is positioned between the edge vertical line V2 and the reference vertical line V3. This may be confirmed by disassembling the secondary battery 1 itself, but is not limited thereto and may be confirmed in various ways without disassembling the secondary battery 1, such as CT (Computerized Tomography), MRI (Magnetic Resonance Imaging), X-Ray, etc. there is.
  • the ratio of the volume of the electrode assembly 10 to the volume of the cup part 133 may be further increased while preventing the electrode 101 from being damaged, and thus the energy efficiency compared to the volume may also be increased.
  • the energy efficiency compared to the volume may also be increased.
  • an unnecessary volume inside the cup part 133 is reduced, it is possible to prevent the electrode assembly 10 from moving inside the cup part 133 .
  • the separator 102 may not be disorderly crumpled or folded. As shown in FIG. 8 , the peripheral portion 1021 in which the separator 102 protrudes outward than the electrode 101 is folded toward the opposite direction of the bottom portion 1332 with respect to one end of the electrode 101 . can
  • the electrode assembly 10 is formed by laminating an electrode 101 and a separator 102 , and a plurality of these electrodes 101 and a separator 102 may be formed, respectively.
  • the battery case 13 includes a first case 131 and a second case 132 , and the bridge 136 of the battery case 13 is folded and the upper part of the electrode assembly 10 is also accommodated in the cup part 133 . If yes, the separation membrane 102 accommodated in the cup portion 133 of the first case 131, the peripheral portion 1021, is folded toward the second case 132, the second case 132 ) of the separation membrane 102 accommodated in the cup portion 133 , the peripheral portion 1021 may be folded toward the first case 131 . Thereby, the peripheral portions 1021 of the separation membrane 102 are aligned and folded, so that order can be obtained. In addition, since the separator 102 covers the electrode 101 not to be exposed to the outside, it is also possible to prevent a short circuit from occurring.
  • the width of the separator 102 may be wider than the width CW of the cup portion 133 . Accordingly, while the electrode assembly 10 is accommodated in the cup portion 133 , the peripheral portion 1021 of the separator 102 may be folded in a predetermined direction in contact with the inner circumference of the cup portion 133 .
  • a difference between the width CW of the cup part 133 and the width EW of the electrode assembly 10 may be very small, such as 2.5 mm or less, particularly 1.7 mm or less. Accordingly, a process for easily folding the peripheral portion 1021 of the separator 102 while the electrode assembly 10 is accommodated in the cup portion 133 may be required.
  • the step of accommodating the electrode assembly 10 in the accommodating space 1331 of the cup part 133 may include pressing the electrode assembly 10 into the cup part 133 . Accordingly, as compared with the conventional method of placing the electrode assembly 10 on the cup portion, the separation membrane 102 while maintaining a small difference between the width CW of the cup portion 133 and the width EW of the electrode assembly 10 . ) by folding in a predetermined direction, the electrode assembly 10 can be easily and reliably accommodated in the accommodating space 1331 of the cup part 133 .
  • the step of accommodating the electrode assembly 10 in the receiving space 1331 of the cup part 133 is performed in the electrode assembly 10 before pressing the electrode assembly 10 into the cup part 133 .
  • the method may further include folding each corner (vertex) of the plurality of separation membranes 102 with heat and pressure.
  • each corner (vertex) of the plurality of separators 102 may be folded to gather at a central portion in the stacking direction of the electrode assembly 10 using a separate sealing tool.
  • the electrode assembly 10 may be inserted into the cup portion 133 in a state in which the four corners of the separator 102 are pre-aligned. Accordingly, the electrode assembly 10 can be smoothly inserted into the receiving space 1331 of the cup part 133 .
  • the thickness t of the bridge 136 may be made thinner, the radius of curvature R2 and the clearance CL of the edge 16 of the cup part 133 may be made smaller, and the volume of the electrode assembly 10 may be reduced can increase Accordingly, since an unnecessary volume in the secondary battery 1 is also reduced, the energy density relative to the volume may be increased.
  • the pouch-type battery case 13 and the pouch-type secondary battery 1 may be manufactured in a sharp shape as a whole, the appearance of the secondary battery 1 may also be beautiful and marketability may be improved.
  • FIG. 10 is a schematic top view showing a state that the electrode assembly 10 is accommodated in the cup portion 133 according to an embodiment of the present invention.
  • the radius of curvature R2 of the punch edge 161 of the cup portion 133 can be further reduced, so that one end of the electrode 101 is aligned with the edge vertical line V2 and The electrode assembly 10 is accommodated so as to be positioned between the reference vertical lines V3. Accordingly, even when the electrode assembly 10 is located very close to the outer wall 138 of the cup part 133 , it is possible to prevent the electrode 101 of the electrode assembly 10 from being damaged.
  • the edge vertical line V2 and the reference vertical line V3 may also be illustrated on the bridge 136 side punch edge 1611 , and may also be illustrated on the die edge 162 side punch edge 1612 .
  • the vertical distance g between the edge vertical line V2 and the reference vertical line V3 may be 0.75 mm, particularly 0.5 mm.
  • a bridge vertical line V1 is drawn on one side of the cup portion 133 , and a die edge vertical line V4 is illustrated on the other side of the cup portion 133 . can do.
  • This vertical distance CL between the bridge vertical line V1 and the edge vertical line V2 may be 0.5 mm or less, in particular 0.35 mm or less, and the vertical distance CL between the die edge vertical line V4 and the edge vertical line V2. 0.5 mm or less, in particular 0.35 mm or less.
  • the bridge does not exist.
  • the die edges 162 are formed on both sides of the cup portion 133
  • the die edge vertical lines V4 may be drawn on both sides of the cup portion 133 , respectively.
  • the width CW of the cup portion 133 may be a vertical distance between the upper ends of the outer walls 138 on both sides of the cup portion 133 .
  • the difference between the width CW of the cup part 133 and the width EW of the electrode assembly 10 may be 2.5 mm or less, particularly 1.7 mm or less.
  • the width EW of the electrode assembly 10 may be 60 mm or more.
  • the width CW of the cup portion 133 may be derived by measuring a vertical distance between the upper ends of the outer walls 138 on both sides of the cup portion 133 in the battery case 13 . And, in the secondary battery 1, using a laser displacement sensor, etc., the position between the upper ends of the outer walls 138 on both sides from the outside of the cup part 133 can be grasped, and the distance between the two positions can be calculated. . At this time, from the outside of the cup part 133, a laser displacement sensor or the like moves from the side 134 toward the die edge 162 and the outer wall 138 while irradiating the laser, and detects a point where the displacement changes rapidly. The corresponding point may be recognized as the upper end of the outer wall 138 .
  • the above describes a method of measuring the width (CW) of the cup portion as an example, and only the case where the method is limited to the above measurement method is not included in the scope of the present invention.
  • the width (CW) of the cup part may be the width (CW) of the cup part in the sense of the present invention as long as it corresponds to the description of the claims and the spirit of the present invention.
  • FIG. 11 is a schematic diagram illustrating a conventional corner 364, and FIG. 12 is a schematic diagram illustrating a corner 164 according to an embodiment of the present invention.
  • the edge 16 of the cup portion 133 is a punch edge 161 and a die edge 162, as well as a thickness edge connecting two adjacent outer walls 138 of the cup portion 133 to each other as shown in FIG. 163).
  • the thickness edge 163 is formed in the thickness direction of the cup portion 133 , and is formed while stretching between the corner of the forming portion 211 of the die 21 and the corner of the punch 22 when the pouch film 135 is stretched. do. Also, at least one of the thickness edges 163 may be rounded.
  • the thickness edge 163 may have a radius of curvature equal to the radius of curvature R2 of the two punch edges 161 adjacent to each other, that is, the first punch edge 1613 and the second punch edge 1614, but may be different may be formed.
  • the punch edge 161 may be formed with at least one rounded with a radius of curvature of 1 mm or less, in particular 0.7 mm or less, and the thickness edge 163 may have at least one of 0.5 mm to 0.5 mm or less. It can be rounded and formed with a radius of curvature of 5 mm, in particular 0.5 mm to 2 mm.
  • one of the first punch edge 1613 and the second punch edge 1614 is the bridge 136 side punch edge 1611 and the other one is the electrode lead 12 side punch edge (not shown).
  • one of the two may be a punch edge 1612 on the die edge 162 side and the other one may be a punch edge (not shown) on the electrode lead 12 side.
  • the thickness edge 163 is connected to two punch edges 161 adjacent to each other, that is, the first punch edge 1613 and the second punch edge 1614 as shown in FIG. 12 to form a corner 164 .
  • rounding was performed on the plurality of edges 221 of the punch 22 with the same radius of curvature, and accordingly, the corner (not shown) of the punch 22 naturally also has the same radius of curvature. rounding has been done. Accordingly, when the pouch film 135 is stretched by molding the pouch film 135 with the punch 22 , the corner 364 is naturally rounded with the same radius of curvature as the punch edge 361 .
  • the corner 364 is formed by the meeting of the three edges 36 , so that it elongates more than the punch edge 361 or thick edge 363 , resulting in more stress than the punch edge 361 or thick edge 363 . concentrated a lot. Accordingly, excessive stretching of the pouch film 135 causes a whitening phenomenon in which a specific portion changes to white immediately before cracks occur, and eventually cracks easily occur.
  • the corner 164 is also formed with at least one rounding, and the corner 164 has a radius of curvature of the punch edge 161 and the thickness edge. It may be greater than or equal to a radius of curvature of at least one of (163).
  • the radius of curvature of the corner 164 may be changed inside. That is, the radius of curvature of the central portion 1641 of the corner 164 and the radius of curvature of the peripheral portion 1642 of the corner 164 may be different from each other. In particular, the radius of curvature of the central portion 1641 of the corner 164 may be greater than the radius of curvature of the peripheral portion 1642 of the corner 164 .
  • the radius of curvature of the perimeter 1642 of the corner 164 is relatively adjacent to the first punch edge 1613 , the second punch edge 1614 , and the thickness edge 163 , and thus the punch edge 161 . and a radius of curvature of at least one of the thickness edges 163 .
  • the punch edge 161 and the thickness It may be greater than a radius of curvature of at least one of the edges 163 . That is, the corner 164 may have a radius of curvature equal to or greater than a radius of curvature of at least one of the punch edge 161 and the thickness edge 163 .
  • the radius of curvature of the corner 164 may gradually increase from the peripheral portion 1642 of the corner 164 to the central portion 1641 of the corner 164 .
  • the center 1641 of the corner 164 may have an aspherical shape rather than an exact spherical shape.
  • the corner 164 must be clearly set in the range formed in the cup portion 133 as well as the radius of curvature. If the range in which the corner 164 is formed in the cup portion 133 is excessively narrow, the pouch film 135 is still excessively stretched, causing a problem of whitening or cracking. On the other hand, if the range in which the corner 164 is formed in the cup portion 133 is excessively wide, the space 17 between the outer wall 138 of the cup portion 133 and the electrode assembly 10 decreases, so the rechargeable battery 1 ) can increase the energy density relative to the volume. Accordingly, according to an embodiment of the present invention, as shown in FIG.
  • the corner 164 is 2 mm to 3.5 mm in the longitudinal direction lc of the cup portion 133 from the thickness edge 163 , the thickness edge 163 . ) from 2 mm to 3.5 mm in the width direction (wc) of the cup part 133, and 2 mm to 3.5 mm in the thickness direction (dc) of the cup part 133 from the punch edge 161.
  • the range in which the corner 164 is formed may gradually widen as the depth D of the cup portion 133 increases.
  • corner 164 of the cup portion 133 is formed as described above, stress more concentrated in the corner 164 may be dispersed, thereby preventing the problem of whitening and cracks occurring.
  • FIG. 13 is a schematic diagram showing a state in which the battery case 13 according to an embodiment of the present invention is folded
  • FIG. 14 is a schematic diagram showing a state in which the battery case 13 according to an embodiment of the present invention is folded.
  • the cup portions 133 are respectively formed in the first case 131 and the second case 132 of the battery case 13 .
  • the battery case so that the two cup portions 133 face each other In (13)
  • the bridge 136 formed between the two cup parts 133 is folded.
  • a folding part 139 is formed at one side of the secondary battery 1 .
  • a pouch-type secondary battery is injected by injecting an electrolyte therein and sealing the side 134 extending outwardly of the cup portion 133 of the first case 131 and the second case 132 . (1) can be prepared.
  • the pouch-type secondary battery 1 according to an embodiment of the present invention manufactured as described above includes an electrode assembly 10 in which an electrode 101 and a separator 102 are stacked; and a pouch-type battery case 13 having a cup portion 133 for accommodating the electrode assembly 10 therein, wherein the cup portion 133 includes a plurality of outer walls 138 and a bottom portion ( 1332 may include a plurality of punch edges 161 for connecting, respectively.
  • At least one of the punch edges 161 may be rounded and formed with a radius of curvature of 1/20 to 1/6 of the depth D of the cup portion 133 .
  • at least one of the punch edges 161 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • a difference between the width CW of the cup part 133 and the width EW of the electrode assembly 10 may be 2.5 mm or less, particularly 1.7 mm or less.
  • at least one end of the electrode 101 passes through a boundary point P2 between the punch edge 161 and the outer wall 138 and is perpendicular to the bottom 1332 .
  • the vertical distance g from the in-edge vertical line V2 may be 0.75 mm, particularly 0.5 mm or less.
  • the battery case 13 includes a first case 131 and a second case 132 each having a cup portion 133 formed on at least one; and a folding part 139 for integrally connecting the first case 131 and the second case 132 .
  • the bridge 136 becomes the folding part 139 , so in the secondary battery 1 , the folding part 139 is formed between the first case 131 and the second battery 1 . 2
  • the case 132 is integrally connected.
  • the bridge 136 side punch edge 1611 is the folding part 139 side punch edge 1611, the bridge 136 side outer wall 1381 becomes the folding part 139 side outer wall 1381.
  • the folding part 139 side punch edge connecting the folding part 139 side outer wall 1381 and the bottom part 1332 toward the folding part 139 side to each other 1611 may be formed while being rounded with a radius of curvature that is 1/20 to 1/6 of the depth D of the cup portion 133 .
  • the punch edge 1611 on the side of the folding part 139 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • at least one end of the electrode 101 passes through the boundary point P2 between the punch edge 161 and the outer wall 138 , and is perpendicular to the bottom 1332 .
  • the edge vertical line V2 and the vertical distance g from the edge vertical line V2 may be 0.75 mm, particularly 0.5 mm, and may be located between the bottom portion 1332 and the vertical reference vertical line V3. As described above, this reference vertical line V3 may pass through the center of curvature C of the punch edge 161 .
  • 15 is an enlarged view of the groove 1391 formed in the battery case 13 according to an embodiment of the present invention.
  • the bridge 136 when the battery case 13 is folded to manufacture the secondary battery 1 as described above, the bridge 136 may be in the form of the folding part 139 . Specifically, when the battery case 13 is folded, the rounded shape of the bridge 136 is also spread to some extent, but traces of the bridge 136 are left on the secondary battery 1, and these traces are the folding part 139 . can be Accordingly, the bridge 136 and the folding part 139 of the battery case 13 may correspond to each other.
  • the folding part 139 when the rounded shape of the bridge 136 is not completely flattened out, the folding part 139 includes a groove 1391 recessed inward of the secondary battery 1 as shown in FIG. 15 . is formed by In this case, since the folding part 139 has a smaller curvature than the bridge 136 , it may have a larger radius of curvature.
  • the bridge 136 has a curved surface, and the bridge 136 side outer wall 1381 has a planar shape, the amount of deformation is different from each other. Therefore, when the battery case 13 is folded, the bridge 136 side outer wall 1381 is deformed relatively much, but the bridge 136 is deformed relatively little only to the extent that the rounded shape is stretched to some extent. Then, when the battery case 13 is folded, as shown in FIG. 15 , the increase or decrease of the change amount of the inclination is switched around the boundary point P1 . That is, each of the boundary points P1 becomes an inflection point. Accordingly, the folding part 139 may be formed as a curved surface between the two boundary points P1, that is, the two inflection points.
  • the two boundary points P1 that is, portions corresponding to the two inflection points may protrude outward to form a protrusion. That is, the protrusion may be formed as a pair of protruding portions protruding to the outside with the folding portion 139, more specifically, the groove 1391 interposed therebetween.
  • the boundary point P1 of the bridge 136 and the outer wall 1381 on the side of the bridge 136 is two lines (not shown) in the secondary battery 1, respectively. city), and the folding part 139 is formed as a plane between these two lines.
  • the folding part 139 may be visually confirmed from the external appearance of the secondary battery 1 .
  • the thickness t of the bridge 136 is preferably the distance between the bridge 136 and the two boundary points P1 of the bridge 136 side outer wall 1381, so the folding part 139
  • the width FW of is the distance between the two boundary points P1. If the rounded shape of the bridge 136 is not completely spread out in a plane, the width FW of the folding part 139 is the two boundary points P1 , that is, the distance between the two inflection points. Alternatively, when the rounded shape of the bridge 136 is completely flattened, the folding part 139 is the two boundary points P1, that is, the distance between the two lines.
  • the width FW of the folding part 139 does not exceed the length of the bridge 136, and may be 1 mm to 3.2 mm, in particular 1 mm to 1.6 mm. As described above, the width FW of the folding part 139 may be measured using a direct ruler, but may also be measured using a loupe, or measured using a 3D camera or a laser 2D line sensor. It can be measured in various ways without being limited, such as being able to do it.
  • the thickness t' of the bridge 336 is formed to be thick, and the width of the folding part 339 is also formed to be large, and accordingly, the space 37 between the outer wall 338 of the cup part 333 and the electrode assembly 10. also formed large.
  • the width FW of the folding part 139 may be reduced, the space 17 between the outer wall 138 of the cup part 133 and the electrode assembly 10 may also be reduced. can Accordingly, the energy density relative to the volume of the secondary battery 1 may be increased.
  • the protrusion since the moldability of the pouch film is low in the related art, the protrusion largely protrudes outward.
  • the protrusion may protrude relatively small, and the flatness of the folding part 139 or the outer wall 1381 on the side of the folding part 139 may be improved.
  • a distance p between the innermost portion of the groove 1391 and the outermost portion of the protrusion may be defined as flatness.
  • the flatness is 1 mm or more and even 1.5 mm is formed.
  • the flatness p may be formed to be 0.8 mm or less, preferably 0.3 mm or less. Accordingly, the energy density relative to the volume of the secondary battery 1 may be further increased.
  • FIG. 16 is an enlarged schematic view of the cup portion 133 and the die edge 1621 according to another embodiment of the present invention.
  • two molded parts 211 are formed adjacent to each other on the die 21 , and a partition wall 212 may be formed between the two molded parts 211 . Accordingly, when the pouch film 135 is formed, two cup portions 133 are formed in one pouch film 135 , and a bridge 136 is also formed between the two cup portions 133 . That is, one cup part 133 is formed in each of the first case 131 and the second case 132 .
  • only one molding part 211 is formed on the die 21 , and there is no partition wall. Accordingly, when the pouch film 135 is formed, one cup portion 133 is formed in one pouch film 135 , and there is no bridge. That is, the cup portion 133 is formed only in the first case 131 .
  • At least one of the punch edges 161a of the cup portion 133 is rounded with a radius of curvature that is 1/20 to 1/6 of the depth D of the cup portion 133 and is to be formed.
  • at least one of the punch edges 161a of the cup part 133 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the depth D of the cup portion 133 is made to some extent, and 3 mm or more, particularly 7 mm, based on the case where one cup portion 133 is molded. Above, even if it is molded to 10 mm or more, it is possible to prevent cracks from occurring in the punch edge 161a of the cup portion 133 .
  • the second case 132a side facing the second case 132a side outer wall 1381a and the bottom The punch edge 1611a on the side of the second case 132a connecting the portions 1332 to each other may be formed while being rounded with a radius of curvature that is 1/20 to 1/6 of the depth D of the cup portion 133 .
  • the punch edge 1611a on the side of the second case 132a may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the die edge 162 side punch edge 1612 may also be formed while being rounded with a radius of curvature that is 1/20 to 1/6 of the depth D of the cup portion 133 .
  • the punch edge 1612 on the die edge 162 side may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the inclination is continuous.
  • FIG. 17 is a schematic diagram showing a state in which the battery case 13a according to another embodiment of the present invention is folded
  • FIG. 18 is a schematic diagram showing a state in which the battery case 13a according to another embodiment of the present invention is folded.
  • the outer wall 138 has an upper end facing the open portion of the cup portion 133 , and the second case 132a , the side 134 , and the degassing portion 137 extend to the outside of the cup portion 133 .
  • the die edge 162 connecting the upper end of the outer wall 138 and the second case 132a, the side 134 or the degassing part 137 is also 1/20 to 1/20 of the depth D of the cup part 133 . It can be rounded and formed with a radius of curvature equal to 1/6. Specifically, the die edge 162 may be rounded and formed with a radius of curvature of 1 mm or less, particularly 0.7 mm or less.
  • the outer wall 138a of the cup part 133 may be formed to be close to vertical.
  • the die edge vertical line V4 passes through the boundary point P1 between the die edge 1621 and the second case 132a side outer wall 1381a and is perpendicular to the bottom 1332 .
  • the clearance (CL) being the vertical distance between them may be 0.5 mm or less, in particular 0.35 mm or less.
  • one end of the electrode 101 has a vertical distance of 0.75 mm, particularly 0.5 mm, from the edge vertical line V2 and the edge vertical line V2, and between the bottom portion 1332 and the vertical reference vertical line V3.
  • the electrode assembly 10 may be accommodated so as to be positioned.
  • the depth (D) of the cup portion 133 is increased to some extent, and as a standard for molding one cup portion 133 , the cup portion Prevents cracks from occurring in the punch edge 161a and the die edge 162 of the cup portion 133 even when the depth D of the 133 is approximately 3 mm or more, particularly 7 mm or more, or even 10 mm or more. can do.
  • the outer wall 138 of the cup portion 133 may be formed close to vertical so that the inclination angle from the bottom portion 1332 is 90° to 95°, in particular 90° to 93°, and the electrode 101 . While preventing this breakage, the volume ratio of the electrode assembly 10 to the volume of the cup part 133 may be further increased, and thus energy efficiency compared to the volume may also be increased.
  • 19 is an enlarged view of the groove 1391a formed in the battery case 13a according to another embodiment of the present invention.
  • the die edge 1621 on the second case 132a side becomes the folding part 139a.
  • the rounded shape of the die edge 1621 is also unfolded, but traces of the die edge 1621 remain in the secondary battery 1a, and these traces are the folding part 139a. becomes Accordingly, the die edge 1621 on the second case 132a side of the battery case 13a and the folding part 139a correspond to each other.
  • the folding part 139a may form a groove 1391a recessed inward of the secondary battery 1a as shown in FIG. 19 . formed by including In this case, the folding part 139a has a smaller curvature than the die edge 1621 , and thus may have a larger radius of curvature.
  • the die edge 1621 has a curved surface and the outer wall 1381a on the side of the die edge 1621 has a planar shape, deformation amounts are different from each other. Therefore, when the battery case 13 is folded, the die edge 1621 side outer wall 1381a is deformed relatively much, but the die edge 1621 is deformed relatively little only to the extent that the rounded shape is spread to some extent. Then, when the battery case 13 is folded, as shown in FIG. 19 , the increase/decrease in the change amount of the inclination is switched around the boundary point P1 . That is, each of the boundary points P1 becomes an inflection point. Accordingly, the folding part 139a is formed as a curved surface between the two boundary points P1, that is, the two inflection points.
  • the boundary points of the two cases 132a form two lines (not shown) in the secondary battery 1a, respectively, and the folding part 139a is formed as a plane between the two lines.
  • the width FW of the folding part 139 does not exceed the length of the die edge 1621 and may be 1 mm to 3.2 mm, in particular 1 mm to 1.6 mm.
  • 20 is a schematic diagram showing a state before cutting the degassing unit 337 of the conventional battery case 33 from above.
  • the bridge 136 of the battery case 13 is folded to form a folding part 139 on one side of the secondary battery 1 , and the folding part 139 includes the first case 131 and the second case 132 . connect them together
  • the battery case 13 is formed by drawing-molding the pouch film 135 , and in this case, not only the cup portion 133 is limitedly stretched, but the peripheral sides 134 of the cup portion 133 are also finely stretched as a whole. . Accordingly, when the bridge 136 is folded, the finely elongated portions of the sides 134 are accumulated and appear visually while protruding outward from a portion of both ends of the folding part 139 . This is called a bat ear (35 or 15).
  • the size of the bat ear 35 is the thickness (t') of the bridge 336, the clearance (CL'), the radius of curvature (R2') of the punch edge 361 of the cup part 333, and the depth of the cup part 333 ( D'). That is, the thicker the thickness t' of the bridge 336, the greater the clearance CL', the greater the radius of curvature R2' of the punch edge 361 of the cup part 333, the greater the size also increases.
  • the pouch-type battery case 13 includes a cup portion 133 having an accommodation space 1331 accommodating the electrode assembly 10 , and one side of the cup portion 133 . and a degassing unit 137 for discharging gas generated in the cup unit 133 through the degassing hole H.
  • a formation process and a degassing process may be performed. Specifically, after the electrode assembly 10 is accommodated in the cup part 133 , in the battery case 13 , the corner 1371 included in the degassing part 137 is opened, and the remaining side 134 is sealed. can do. When the opening is formed by opening the edge 1371 of the battery case 13 , the electrolyte is injected into the battery case 13 through the opening.
  • the degassing unit 137 After injecting the electrolyte into the battery case 13 , the degassing unit 137 is first sealed to form the temporary sealing unit 1340 . Since the sealing part 1341 is formed by the secondary sealing of the degassing part 137 later, it is preferable that the temporary sealing part 1340 is formed in the degassing part 137 at a position close to the edge 1371 .
  • the activation process (formation process) is a process of finally completing charging so that the secondary battery 1 can supply electric power. Since the activation process is performed after the temporary sealing part 1340 is formed and the battery case 13 is completely sealed, the charging rate is high and the gas is rapidly discharged to complete the manufacture of the secondary battery 1 within the predetermined process time. there is.
  • a degassing hole H is punched in the degassing portion 137 of the battery case 13 .
  • gas is discharged from the inside of the battery case 13 to the outside.
  • the injected electrolyte may leak through the degassing hole H while the gas is easily discharged.
  • the degassing hole H is perforated at a position close to the temporary sealing part 1340 .
  • the sealing portion 1341 is formed by secondary sealing the boundary between the cup portion 133 and the degassing portion 137 .
  • the sealing part 1341 is formed between the cup part 133 and the degassing hole H, and is preferably formed in a position close to the cup part 133 .
  • the degassing hole H must be drilled, and primary sealing and secondary sealing must be performed. Furthermore, when mass-producing the secondary batteries 1 , it is necessary to collectively manage the specifications and quality of the secondary batteries 1 . To this end, the battery case 13 or the secondary battery 1 may be inspected using the inspection device 4 (shown in FIG. 22 ) including the vision sensor 41 .
  • the battery module 5 may be manufactured by connecting the electrode leads 12 of the plurality of secondary batteries 1 to each other.
  • the positions of the electrode leads 12 formed in the plurality of secondary batteries 1 should all be constant.
  • the electrode assembly 10 can move inside the cup part 333 before sealing the side 134 . Therefore, when the secondary batteries 3 are mass-produced, even though the volume of the cup part 333 and the volume of the electrode assembly 10 are all constant, the position of the electrode assembly 10 is slightly different, so that the position of the electrode lead 12 is were also slightly different. Therefore, it is necessary to accurately measure the position of the electrode lead 12 using the inspection device 4 .
  • the position of the degassing unit 137 in order to drill the degassing hole H at an accurate position and size, and perform the primary sealing and the secondary sealing at the correct position and size, the position of the degassing unit 137 must be accurately measured.
  • the battery case 13 such as the side 134 , the folding part 139 , and the insulating part 14 protruding from the battery case 13 .
  • the positions of the various components of the secondary battery 1 and even the widths between the cup portions 133 should be accurately measured.
  • the bat-ear 35 is formed by folding the bridge 136 in a state in which the peripheral sides 134 of the cup part 133 are also slightly elongated as a whole, the bat-ear 35 for each of the plurality of secondary batteries 1 . ) was slightly different in size. Then, even when the positions of the components are measured with the vision sensor, since the size of the bat-ear 35 as a reference is different, the deviation of the positions of the components between the secondary batteries 3 increases, making quality control difficult.
  • the position of the electrode lead 12 is measured by photographing the battery case 33 with a vision sensor, the position of the electrode lead 12 is slightly different, so that the electrode leads 12 are used to manufacture the battery module 5 .
  • the connection was not easy.
  • the position of the cup part 333 is not correct, so the alignment of the plurality of secondary batteries 1 is also There was also the problem of lowering.
  • the battery module 5 is manufactured by accommodating the secondary batteries 3 in a separate housing 51 (shown in FIG. 27 ), the deviation of the measured values is large, so the design tolerance when designing the housing 51 . is set unnecessarily large, there was also a problem in that the energy density compared to the volume of the battery module 5 is also lowered.
  • FIG. 21 is a schematic diagram showing a state from above before cutting the degassing unit 137 of the battery case 13 according to an embodiment of the present invention
  • FIG. 22 is an inspection device 4 according to an embodiment of the present invention.
  • ) is a block diagram of
  • the thickness t of the bridge 136 is made thinner, and the punch edge ( 1611), the radius of curvature R2 and the clearance CL may be made smaller, and accordingly, the size of the bat ear 15 may be further reduced. Accordingly, the secondary batteries 1 can be easily assembled into the battery module 5 , and since an unnecessary volume of the secondary battery 1 is reduced, the energy density relative to the volume can be increased.
  • the punch edge 1611 of the cup part 133 clearly appears in the image taken of the battery case 13 , so the inspection device 4 is
  • the punch edge 161 of the cup part 133 can be automatically set as the reference line ST, and various configurations of the battery case 13 or the secondary battery 1 based on the punch edge 161 of the cup part 133 .
  • the distance to the fields can be accurately measured, and further, even the width (CW) between the cup parts 133 can be accurately measured. Accordingly, by accurately measuring the positions of the components of the battery case 13 or the secondary battery 1 , an error in a measurement value may be reduced and a deviation between the secondary batteries 1 may also be reduced.
  • the battery case 13 or the secondary battery 1 inspection apparatus 4 photographs the battery case 13 and inspects the battery case 13 or the secondary battery 1 .
  • a vision sensor 41 for acquiring an image
  • an outline extraction unit 421 for extracting outlines of the components of the battery case 13 or the secondary battery 1 from the image
  • Image analysis for analyzing the image to detect the outline corresponding to the punch edge 161 of the cup part 133 in which the accommodating space 1331 accommodating the electrode assembly 10 is provided in the battery case 13 . part 422; a reference line setting unit 423 for setting the outline corresponding to the punch edge 161 as a reference line ST; and a distance calculating unit 424 for calculating a distance from the reference line ST to the components.
  • the vision sensor 41 captures the battery case 13 and the battery case ( 13) or acquiring an image of the secondary battery (1); extracting, by the outline extraction unit 421, outlines of the components of the battery case 13 or the secondary battery 1 from the image;
  • the image analysis unit 422 analyzes the image, and the accommodating space 1331 accommodating the electrode assembly 10 in the battery case 13 is provided, which corresponds to the punch edge 161 of the cup unit 133 . detecting an outline; setting, by the reference line setting unit 423, the outline corresponding to the punch edge 161 as a reference line (ST); and calculating, by the distance calculating unit 424, the distances from the reference line ST to the components.
  • the inspection apparatus 4 includes a vision sensor 41 and a controller 42 as shown in FIG. 22 .
  • these components may be connected to each other through a bus (not shown) to communicate. All components included in the control unit 42 may be connected to the bus through at least one interface or adapter, or may be directly connected to the bus.
  • the bus may be connected to other subsystems in addition to the above-described components. These buses include a memory bus, a memory controller, a peripheral bus, and a local bus.
  • the vision sensor 41 acquires an image by photographing a specific area and receiving an image signal for the specific area.
  • the vision sensor 41 includes an imaging device such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) image sensor.
  • CCD charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the vision sensor 41 after the bridge 136 of the battery case 13 is folded, the battery case 13 is photographed to obtain the battery case 13 or the secondary battery 1 . ) of each component can be acquired.
  • the components include the above-described cup part 133, degassing part 137, electrode lead 12, bat ear 15, side 134, folding part 139 and insulating part 14, etc.
  • the manufacture of the secondary battery 1 is completed. Therefore, if the vision sensor 41 captures the battery case 13 before cutting the degassing unit 137 , images of the battery case 13 and the electrode lead 12 may be acquired, and the degassing unit If the battery case 13 is photographed after cutting 137 , an image of the secondary battery 1 can be obtained.
  • the outline extractor 421 extracts outlines of components of the battery case 13 or the secondary battery 1 from the image received from the vision sensor 41 .
  • the outline extraction unit 421 may extract the outlines of all components appearing in the image, but is not limited thereto, and an ROI (Region Of Interest) is set in a part of the image, and It is also possible to extract only the outline.
  • an ROI Region Of Interest
  • information about the pixels of the image is first extracted, and for this purpose, a gradient formula generally used may be used.
  • the outline of the battery case 13 and the electrode lead 12 is revealed through the extracted pixel information.
  • the radius of curvature R2 and the clearance CL of the punch edge 161 of the cup portion 133 can be formed smaller, and the outer wall 138 of the cup portion 133 is perpendicular to the Since they can be formed close together, the gradient of pixel information corresponding to the punch edge 161 of the cup part 133 in the image is large. Accordingly, since the boundary between the outline and the background is clear, the outline corresponding to the punch edge 161 of the cup part 133 can be clearly extracted.
  • the image analysis unit 422 analyzes the image to detect an outline corresponding to the punch edge 161 of the cup unit 133 in the battery case 13 . To this end, the image analysis unit 422 matches the pre-stored reference outline information of the punch edge 161 of the cup portion 133 with the extracted outline information, and the punch edge 161 of the cup portion 133 is performed. It is possible to detect an outline corresponding to . In this case, the image analyzer 422 may match the two pieces of information using a template matching technique.
  • the reference line setting unit 423 may set the outline corresponding to the punch edge 161 as the reference line ST. Since the cup part 133 includes a plurality of punch edges 161 , a plurality of outlines corresponding to the punch edges 161 are also extracted. At this time, in order to accurately measure the positions of the respective components of the battery case 13 or the secondary battery 1 , the reference line setting unit 423 is the closest to the component to be measured among the plurality of punch edges 161 . It is preferable to set the outline corresponding to the punch edge 161 as the reference line ST.
  • the reference line setting unit 423 since the positions of the components have to measure the vertical distance from the reference line ST, the reference line setting unit 423 includes the corners of the components to be measured among the plurality of punch edges 161 and The outline corresponding to the parallel punch edge 161 may be set as the reference line ST.
  • the inspection device 4 may have to measure the position of the degassing unit 137 .
  • the reference line setting unit 423 is close to the degassing unit 137 among the plurality of punch edges 161 and parallel to the edge 1371 included in the degassing unit 137, the die edge The outline corresponding to the (162) side punch edge 1612 may be set as the reference line ST.
  • the inspection apparatus 4 may have to measure the positions of the electrode leads 12 .
  • the reference line setting unit 423 is close to the electrode lead 12 among the plurality of punch edges 161 and parallel to the left or right edge of the electrode lead 12, the folding unit 139 side An outline on the side of the electrode lead 12 corresponding to the punch edge 1611 may be set as the reference line ST.
  • the reference line setting unit 423 includes the two punch edges 161 corresponding to the boundary of the width of the cup portion 133 among the plurality of punch edges 161 .
  • the outline of any one of the lines may be set as the reference line ST.
  • the reference line setting unit 423 is not limited and may set various outlines as the reference line ST.
  • the distance calculating unit 424 calculates a distance from the reference line ST to the respective components of the battery case 13 or the secondary battery 1 in the image. For example, if the outline corresponding to the punch edge 1612 on the die edge 162 side is set as the reference line ST, the distance calculating unit 424 from the reference line ST to the degassing unit 137. The distance to the included edge can be calculated. Alternatively, if the outline corresponding to the punch edge 1611 on the side of the folding unit 139 is set as the reference line ST, the distance calculating unit 424 is from the reference line ST to one edge of the electrode lead 12 . The distance may be calculated, and the distance to the outline corresponding to the punch edge 1612 on the side of the die edge 162 may be calculated.
  • the distance calculating unit 424 may use information about the relationship between the number of pixels in the image stored in advance and the actual distance. That is, in the image, the distance calculating unit 424 counts the distance from the reference line ST to the respective elements in the number of pixels, and then using information on the relationship between the number of pixels in the image and the actual distance stored in advance. , an actual distance corresponding to the counted number of pixels may be calculated.
  • the test device 4 may further include a storage unit 44 .
  • the storage unit 44 stores a program for processing and controlling operations of the inspection device 4 and various data or received signals generated during execution of each program.
  • reference information about the battery case 13 may be stored so that the image analysis unit 422 may detect an outline corresponding to the punch edge 1611 of the cup unit 133 .
  • the reference information about the battery case 13 includes reference outline information about the punch edge 1611 of the cup part 133 and the distance to the components of the battery case 13 or the secondary battery 1 . It may include reference information and the like. This may be directly stored in the storage unit 44 by the user, or the test apparatus 4 may generate and store the reference information through repeated learning.
  • the storage unit 44 may store information on the relationship between the number of pixels in the image and the actual distance so that the distance calculating unit 424 can calculate the actual distance from the reference line ST to each component. Furthermore, it is also possible to store inspection result information of the battery case 13 to be inspected.
  • This storage unit 44 may be built in the test device 4, it may be provided as a separate storage server.
  • the storage unit 44 includes a non-volatile memory device and a volatile memory device.
  • the non-volatile memory device may be a NAND flash memory having a small volume, light weight, and strong resistance to external impact, and the volatile memory device may be a DDR SDRAM.
  • the control unit 42 may further include a failure determination unit 425 for determining whether the battery case 13 to be inspected is defective.
  • the failure determining unit 425 may compare the reference information about the battery case 13 stored in the storage unit 44 with the inspection result information of the battery case 13 to be inspected. And, when the test result information is included within the error range of the reference information, it is determined that the battery case 13 is normal. However, if the inspection result information is out of the error range of the reference information, it is determined that the battery case 13 is defective.
  • the test apparatus 4 may further include a display unit 43 for receiving and displaying an image signal.
  • the display unit 43 receives the signal of the image and displays it to the user. Furthermore, when the outline extraction unit 421 extracts the outline of the battery case 13 , the outline is displayed on the image so that the user may check it through the display unit 43 .
  • the display unit 43 may use various methods such as a liquid crystal display (LCD), an organic liquid crystal display (OLED), a cathode ray tube (CRT), and a plasma display panel (PDP).
  • the display unit 43 is connected to the bus through a video interface, and data transmission between the display unit 43 and the bus may be controlled by the graphic controller.
  • the inspection apparatus 4 may further include an alarm unit 45 that generates an alarm when the failure determination unit 425 determines that the battery case 13 is defective.
  • an alarm unit 45 that generates an alarm when the failure determination unit 425 determines that the battery case 13 is defective.
  • an audible or visual alarm such as lighting of a lamp or a warning sound so that the user can intuitively know.
  • Each of the components of the vision sensor 41, the control unit 42, the storage unit 44, and the display unit 43 described so far is a task, a class, a subroutine, a process, an object, and an execution performed in a predetermined area on the memory. It may be implemented in software such as threads and programs, or hardware such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC), or a combination of the software and hardware. there is.
  • the components may be included in a computer-readable storage medium, or a part thereof may be distributed and distributed among a plurality of computers.
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical functions. It is also possible for the functions recited in blocks to occur out of order in some alternative implementations. For example, two blocks shown one after another may be performed substantially simultaneously, and it is also possible that the blocks are sometimes performed in the reverse order according to a corresponding function.
  • the punch edge 1611 of the cup part 133 is clearly displayed, so that the inspection device 4 cuts the punch edge 161 of the cup part 133 .
  • It can be automatically set as the reference line ST, and the distance to each component of the battery case 13 can be accurately measured based on the punch edge 1611 of the cup part 133 .
  • the size and position of the degassing unit 137 may be measured, and even after the manufacture of the secondary battery 1 is completed, the cup unit 133 , the electrode lead 12 , the bat ear 15 , and the side 134 . , the size and positions of the folding part 139 and the insulating part 14 can be accurately identified. Accordingly, it is possible to easily determine whether the secondary battery 1 is defective, and even if the secondary battery 1 is mass-produced, its specifications and quality can be efficiently and collectively managed.
  • the position of the electrode lead 12 can be accurately measured, it can be connected when easily connecting the electrode leads 12 to manufacture the battery module 5 .
  • the position of the cup portion 333 can be accurately measured, so when sequentially stacking or arranging a plurality of secondary batteries 1 in a line to manufacture the battery module 5, the alignment of the plurality of secondary batteries 1 diagram may be improved.
  • FIG. 23 is a schematic view showing a state in which the manufacture of the secondary battery 1 is completed by cutting the degassing unit 137 of the battery case 13 according to an embodiment of the present invention.
  • the degassing part 137 is cut by setting a cutting line CT on the outside of the sealing part 1341 . As a result, as shown in FIG. 23 , the length of the degassing unit 137 may be shortened and the volume of the secondary battery 1 may be reduced. Through the above process, the manufacture of the pouch-type secondary battery 1 is completed.
  • the electrode lead 12 is not formed to protrude among the plurality of sides 134 .
  • the side 134 is left as it is after sealing, the overall volume of the secondary battery 1 increases. Accordingly, to reduce the energy density to volume ratio, it is desirable to fold the side 134 .
  • the side 134 may include a sealing part 1341 and an unsealing part 1342 as shown in FIG. 23 .
  • the sealing part 1341 is a region that is located relatively outside and is sealed
  • the unsealed part 1342 is a region that is not sealed because it is located relatively inside.
  • the sealing part 1341 when the sealing part 1341 is formed by the secondary sealing of the battery case 13 , the sealing part 1341 is not directly connected from the cup part 133 , but may be formed to be spaced apart to a certain extent.
  • heat and pressure must be applied to the side 134 using a separate sealing tool (not shown).
  • the sealant layer 1351 located inside the side 134 is partially melted and leaked toward the electrode assembly 10 . , it may contaminate the electrode assembly 10 .
  • the heat of the sealing tool may be transferred to the electrode assembly 10 and the electrode assembly 10 may be damaged.
  • sealing the side 134 with the sealing tool spaced from the cup part 133 to some extent is desirable. Then, the portion sealed by the sealing tool becomes the sealing portion 1341 , and the portion that is not sealed because the sealing tool is spaced apart from the cup portion 133 becomes the unsealed portion 1342 .
  • FIG. 24 is a schematic view showing a state in which the conventional side 334 is folded from the side
  • FIG. 25 is a schematic view showing a state in which the conventional side 334 is folded from the top.
  • the pouch film 135 is formed by laminating a sealant layer 1351 , a moisture barrier layer 1352 , an extension auxiliary layer 1354 , and a surface protection layer 1353 .
  • the sealant layer 1351 includes the first polymer, particularly polypropylene (PP), flexibility and elasticity are great. Therefore, when the side 134 is folded, the restoring force to return to the original state is large.
  • the moisture barrier layer 1352 is made of a metal, particularly an aluminum alloy, after the side 334 is folded, the limit of elastic deformation is exceeded, and the retention force to maintain the folded state is large.
  • the moisture barrier layer had a thickness of about 30 to 50 ⁇ m, and the sealant layer had a thickness of about 60 to 100 ⁇ m. That is, the thickness of the moisture barrier layer was formed to be considerably thinner than the thickness of the sealant layer. Therefore, the restoring force is greater than the retention force, so that the side 334 is not fixed and unfolded again at a predetermined angle. Then, there is a problem in that an unnecessary volume of the secondary battery 3 increases due to the side 334 .
  • a tape 38 was separately attached to the side 334 .
  • the tape 38 was attached together to the side 334 and the outer surface of the bottom 3332 of the cup portion 333, thereby fixing the side 334 to the cup portion 333, preventing it from being unfolded again.
  • FIG. 24 there is a problem in that the overall thickness of the secondary battery 3 increases due to the thickness of the tape 38 itself.
  • an additional process of attaching the tape 38 is required, and this process takes a lot of time, increasing the number of processes and lowering the manufacturing yield of the secondary battery 3 There was also a problem.
  • the electrode assembly 10 is disposed to be spaced apart from the outer wall 338 of the cup part 333 to some extent. Accordingly, in order to reduce the volume of the space 37 between the outer wall 338 of the cup portion 333 and the electrode assembly 10 while the internal pressure of the cup portion 333 is reduced, the outer wall 338 or The bottom portion 3332 could be deformed. In particular, as shown in FIG.
  • 26 is a schematic view showing the folded side 134 according to an embodiment of the present invention from the side.
  • the pouch film 135 since the moisture barrier layer 1352 has a thickness of 50 to 70 ⁇ m and the sealant layer 1351 has a thickness of 70 to 100 ⁇ m, the pouch film 135 has a thickness of 70 to 100 ⁇ m.
  • the thickness of the moisture barrier layer 1352 is further increased. Accordingly, since the retention force is further increased when the side 134 is folded, it is possible to prevent the side 134 from being unfolded again without the need for a separate tape 38 to be attached thereto.
  • the secondary battery 1 includes an electrode assembly 10 in which an electrode 101 and a separator 102 are stacked; and a pouch-type battery case 13 having a cup portion 133 for accommodating the electrode assembly 10 therein, wherein the pouch-type battery case 13 includes a side ( 134), and the side 134 includes a sealing portion 1344 that is relatively positioned on the outside and is sealed; and an unsealed portion 1345 that is relatively positioned inside and is not adhered to the cup portion 133 , and is folded in the unsealed portion 1345 .
  • the side 134 is not adhered to the cup portion 133 while maintaining the folded state. It may not be unfolded.
  • the side 134 may be folded at an angle of 85° to 95°, in particular, an angle of 88° to 92°.
  • the side 134 may be folded at a position adjacent to the cup portion 133 so that the side 134 may contact the outer wall 138 of the cup portion 133 .
  • the side 134 may include a sealing portion 1341 disposed relatively outside and sealed, and an unsealed portion 1342 disposed relatively inside and not sealed.
  • the unsealed portion 1342 relatively closer to the cup portion 133 is folded. Thereby, the unnecessary volume of the secondary battery 1 can be further reduced. However, even in this case, the side 134 and the cup portion 133 are not adhered to each other, and the retention force of the side 134 is increased to maintain the folded state.
  • the depth D of the cup portion 133 may be shallower than when one cup portion 133 is formed. This is because, as described above, not only the cup part 133 is intensively stretched, but also the peripheral sides 134 of the cup part 133 are finely stretched as a whole. However, if the width of the side 134 is longer than the depth D of the cup portion 133 , when the side 134 is folded only once, the outer end 1343 of the side 134 is the bottom of the cup portion 133 . It may protrude further outward than (1332).
  • the side 134 may include a first folding part 1344 and a second folding part 1345 .
  • the first folding part 1344 is a folded part at a position relatively closer to the outer end 1343
  • the second folding part 1345 is a part folded at a position relatively closer to the cup part 133 . Accordingly, after the side 134 is first folded based on the first folding part 1344 , the side 134 may be secondarily folded based on the second folding part 1345 .
  • the first folding part 1344 may be positioned on the sealing part 1341 on the side 134
  • the second folding part 1345 may be positioned on the unsealing part 1342 on the side 134 .
  • the side 134 may be folded at an angle of 170° to 180°, in particular, an angle of 180° in the first folding unit 1344 .
  • the second folding unit 1345 may be folded at an angle of 85° to 95°, particularly, 88° to 92°. Thereby, it is possible to prevent the outer end 1343 of the side 134 from protruding further outward than the bottom 1332 of the cup portion 133 .
  • the electrode assembly 10 since the electrode assembly 10 may be located very close to the outer wall 138 of the cup portion 133 , an unnecessary volume of the cup portion 133 is reduced. Accordingly, even if the internal pressure of the cup part 133 is reduced by performing the degassing process, it is possible to prevent the outer wall 138 or the bottom part 1332 of the cup part 133 from being deformed. That is, as shown in FIG. 26 , it is possible to prevent the edge high phenomenon from occurring, so that the energy density to volume ratio may not decrease.
  • FIG. 27 is a schematic diagram of a battery module 5 according to an embodiment of the present invention.
  • the battery module 5 may be manufactured. When a plurality of secondary batteries 1 are installed in the battery module 5 , electricity can be stably supplied to the outside.
  • the battery module 5 includes a cooling system for cooling the secondary battery 1 .
  • the cooling system is largely divided into a water cooling type cooling with cooling water and an air cooling type cooling with air. Among them, the water-cooled cooling system has a higher cooling efficiency than the air-cooled cooling system, and thus is used more.
  • the cooling system includes a cooling plate that directly cools the secondary battery 1 , and a separate flow path is formed inside the cooling plate so that cooling water can flow.
  • a separate flow path is formed inside the cooling plate so that cooling water can flow.
  • the battery module 5 In order to manufacture the battery module 5 , first, a plurality of secondary batteries 1 are manufactured, and then these secondary batteries 1 are connected to each other and accommodated in the housing 51 .
  • the secondary batteries 1 may be arranged in a line and stacked. 27 , when the secondary battery 1 is accommodated in the housing 51 , the long side of the secondary battery 1 faces downward, and a cooling plate (not shown) is provided on the lower surface of the housing 51 . ) can be formed. Accordingly, by cooling the cooling plate from the long side of the secondary battery 1 , it is possible to increase the cooling efficiency.
  • a folding part 139 formed by folding the bridge 136 is formed on one side of the secondary battery 1 , and a side 134 , which is a region remaining after the degassing part 137 is cut, is formed on the other side.
  • the cooling plate cools the secondary battery 1 from the side on which the side 134 is formed, the distance between the cooling plate and the electrode assembly 10 increases by the side 134 , so the cooling efficiency is reduced. can be lowered Accordingly, it is preferable to cool the cooling plate from the side where the folding part 139 is formed among the long side surfaces of the secondary battery 1 .
  • the folding part 139 may be accommodated in a direction toward the cooling plate, that is, downward.
  • FIG. 28 is a front enlarged view showing a state in which the conventional secondary battery 3 is accommodated in the housing 51 of the battery module 5, and FIG. 29 is the conventional secondary battery 3 in the housing of the battery module 5. It is an enlarged side view showing the state stored in (51).
  • the angle ⁇ ' formed between the folding part 339 and the inner edge 35a of the bat ear 35 was formed to be less than or equal to 151 degrees.
  • the angle ⁇ ′ is a virtual first line L1 corresponding to the folding part 339 and a virtual second line L2 corresponding to the inner edge 35a of the bat ear 35 . It may mean an angle formed.
  • the first line L1 and the second line L2 may be determined through image analysis.
  • the first line L1 and the second line L2 may be extracted by connecting a plurality of edge points identified within a region of interest (ROI) in the vision device. Accordingly, even when the folding part 339 or the inner edge 35a of the bat ear 35 is partially bent or bent, the first line L1 and the second line L2 can be clearly defined. Since such image analysis is a well-known technique, a detailed description thereof will be omitted.
  • the bat ear 35 when the secondary battery 3 is accommodated in the housing 51 , the bat ear 35 provides a large gap d' (eg, between the housing 51 and the folding part 339 ). For example, greater than 1.5 mm). Therefore, this gap d' may interfere with cooling of the cooling plate, and thus cooling efficiency may be reduced.
  • a heat transfer material 52 is injected into the space between the cooling plate and the folding part 339 of the secondary battery 1 , so that the cooling plate cools the folding part 139 through the heat transfer material 52 .
  • the heat transfer material 52 may be thermal grease.
  • the folding part 339 of the battery case 33 is formed by the electrode assembly. (10) was adhered to.
  • the clearance CL' there is a limit in reducing the clearance CL' in the prior art, and the width of the folding part 339 is also formed to be large. Accordingly, the space 37 between the outer wall 338 of the cup part 333 and the electrode assembly 10 is formed to be large, and there is a problem in that the energy density relative to the volume of the secondary battery 3 is reduced.
  • the distance the electrode assembly 10 is separated from the thermal grease 52 also increases, there is a problem in that cooling efficiency is further lowered.
  • FIG. 30 is a front enlarged view showing a state in which the secondary battery 1 according to an embodiment of the present invention is accommodated in the housing 51 of the battery module 5, and FIG. 31 is a secondary battery according to an embodiment of the present invention. It is an enlarged side view showing a state in which the battery 1 is accommodated in the housing 51 of the battery module 5 .
  • the pouch-type secondary battery 1 includes an electrode assembly 10 in which an electrode 101 and a separator 102 are stacked; and a pouch-type battery case 13 having a cup portion 133 accommodating the electrode assembly 10 therein, wherein the battery case 13 includes a first case in which the cup portion 133 is formed in at least one (131) and the second case (132); a folding part 139 for integrally connecting the first case 131 and the second case 132; and a bat ear 15 protruding outward from a portion of both ends of the folding part 139 , wherein the bat ear 15 has a length d of 1.5 mm or less.
  • the angle ⁇ between the folding part 139 and the inner edge 15a of the bat ear 15 may be formed to be greater than 151 degrees. Also, the angle ⁇ may be 180 degrees or less. And, when the angle ⁇ is 180 degrees, it may mean a state in which the bat ear 15 does not exist.
  • the angle ⁇ is formed by a virtual first line L1 corresponding to the folding part 139 and a virtual second line L2 corresponding to the inner edge 15a of the bat ear 15 . It can mean angle.
  • first line (L1) and the second line (L2) the above description is used.
  • the battery module 5 according to an embodiment of the present invention is formed by stacking the electrode 101 and the separator 102 .
  • the electrode assembly 10 to be the pouch-type secondary battery 1 accommodated in the inside of the cup portion 133 formed in the pouch-type battery case 13; and a housing 51 in which the secondary battery 1 is accommodated, wherein the battery case 13 includes: a first case 131 and a second case 132 in which the cup part 133 is formed, respectively; a folding part 139 for integrally connecting the first case 131 and the second case 132; and a bat ear 15 protruding outward from a portion of both ends of the folding part 139 , wherein the bat ear 15 has a length d of 1.5 mm or less.
  • the bat ear 15 is formed to protrude outward from a portion of both ends of the folding part 139 by folding the bridge 136 .
  • the length of this bat ear 15 may be 1.5 mm or less, in particular 1 mm or less.
  • the length of the bat-ear 15 may be a length measured from the outer wall 1381 on the side of the folding part 139 to the outermost end of the bat-ear 15 .
  • the outer wall 1381 on the side of the folding part 139 may have an inclination angle of 90° to 95° from the bottom part 1332 due to the clearance CL.
  • the length of the bat ear 15 is measured from the most outwardly protruding portion of the outer wall 1381 on the side of the folding part 139 to the outermost end of the bat ear 15 It can be one length.
  • the length of the bat ear 15 may be measured in direct contact with the secondary battery 1 using a ruler or vernier calipers, or may be measured in a non-contact manner using a laser displacement sensor or a vision sensor.
  • the method for measuring the length of the bat ear is described as an example, and only the case where the method is limited to the above measurement method is not included in the scope of the present invention.
  • the length of the bat-ear may be the length of the bat-ear within the meaning of the present invention as long as it falls within the scope of the claims and the spirit of the present invention.
  • the thickness t of the bridge 136 is made thinner, and the radius of curvature R2 of the punch edge 1611 of the cup part 133 is ) and the clearance CL can be made smaller.
  • the length d of the bat ear 15 may also be further reduced to 1.5 mm or less, particularly 1 mm or less. Therefore, as shown in FIG. 30 , the distance d between the housing 51 and the folding part 139 may be narrowed to 1.5 mm or less. As a result, the thickness of the heat transfer material 52 inside the housing 51 may be 1.5 mm or less, and thus the injection amount of the thermal grease 52 may be further reduced, thereby reducing costs and increasing cooling efficiency. can do.
  • the clearance CL may be made smaller, and the width FW of the folding part 139 may be made smaller. Accordingly, the space 17 between the outer wall 138 of the cup part 133 and the electrode assembly 10 is reduced, so that the energy density relative to the volume of the secondary battery 1 may increase. In addition, since the distance between the electrode assembly 10 and the thermal grease 52 is also reduced, cooling efficiency may be further increased.
  • separator 111 positive electrode tab
  • edge of die 221 edge of punch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명의 실시예에 따른 파우치 형 이차 전지는 전극 및 분리막이 적층되어 형성되는 전극 조립체; 상기 전극 조립체를 내부에 수용하는 컵부가 형성된 파우치 형 전지 케이스를 포함하되, 상기 파우치 형 전지 케이스는, 상기 컵부의 외측으로 연장 형성된 사이드를 포함하되, 상기 사이드는, 상대적으로 외측에 위치하여 실링된 실링부; 및 상대적으로 내측에 위치하여 미실링된 미실링부를 포함하고, 상기 컵부에 미접착되면서, 상기 미실링부에서 폴딩된다.

Description

파우치 형 이차 전지
관련출원과의 상호인용
본 출원은 2020년 08월 19일자 한국특허출원 제10-2020-0104225호 및 2021년 06월 08일자 한국특허출원 제10-2021-0074474호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 파우치 형 이차 전지에 관한 것으로서, 보다 상세하게는 사이드를 폴딩하더라도 사이드와 컵부가 서로 접착되지 않고, 사이드의 보존력이 증가하여 폴딩 상태를 유지하는 파우치 형 이차 전지에 관한 것이다.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품뿐만 아니라, 전기 자동차나 하이브리드 자동차와 같은 고출력이 요구되는 대형 제품과 잉여 발전 전력이나 신재생 에너지를 저장하는 전력 저장 장치와 백업용 전력 저장 장치에도 적용되어 사용되고 있다.
이러한 이차 전지를 제조하기 위해, 먼저 전극 활물질 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극을 제조하고, 이를 분리막(Separator)의 양 측에 적층함으로써 소정 형상의 전극 조립체(Electrode Assembly)를 형성한다. 그리고 전지 케이스에 전극 조립체를 수납하고 전해질 주입 후 실링한다.
이차 전지는 전극 조립체를 수용하는 케이스의 재질에 따라, 파우치 형(Pouch Type) 및 캔 형(Can Type) 등으로 분류된다. 파우치 형(Pouch Type)은 유연한 폴리머 재질로 제조된 파우치에 전극 조립체를 수용한다. 그리고, 캔 형(Can Type)은 금속 또는 플라스틱 등의 재질로 제조된 케이스에 전극 조립체를 수용한다.
파우치 형 이차 전지의 케이스인 파우치는, 유연성을 가지는 파우치 필름에 프레스 가공을 수행하여, 컵부를 형성함으로써 제조된다. 그리고, 컵부가 형성되면, 상기 컵부의 수용 공간에 전극 조립체를 수납하고 사이드를 실링하여 이차 전지를 제조한다.
이러한 프레스 가공 중에서 드로잉(Drawing) 성형은 프레스 장비와 같은 성형 장치에 파우치 필름을 삽입하고 펀치로 파우치 필름에 압력을 인가하여, 파우치 필름을 연신시킴으로써 수행된다. 파우치 필름은 복수의 층으로 형성되며, 그 중에 내부에 위치한 수분 배리어층은 금속으로 제조된다. 그런데, 종래에는 이러한 수분 배리어층의 금속이 알루미늄 합금 중에서 결정립도가 크고, 수분 배리어층의 두께가 얇게 형성되었다. 따라서, 부피 대비 에너지 밀도를 감소시키기 위해 사이드를 폴딩하면, 사이드가 고정되지 않고 소정의 각도 다시 언폴딩되었다. 이에 사이드에 별도로 테이프를 부착하면, 테이프의 자체 두께에 의해 이차 전지의 전체 두께가 증가하는 문제가 있었다. 또한 사이드를 폴딩하는 공정 이후에, 테이프를 부착하는 추가적인 공정이 필요하여, 공정 수를 증가시키고 이차 전지의 제조 수율을 저하시키는 문제도 있었다.
선행문헌으로 일본특허등록 제6022956호가 존재한다.
본 발명이 해결하고자 하는 과제는, 사이드를 폴딩하더라도 사이드와 컵부가 서로 접착되지 않고, 사이드의 보존력이 증가하여 폴딩 상태를 유지하는 파우치 형 이차 전지를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 파우치 형 이차 전지는 전극 및 분리막이 적층되어 형성되는 전극 조립체; 상기 전극 조립체를 내부에 수용하는 컵부가 형성된 파우치 형 전지 케이스를 포함하되, 상기 파우치 형 전지 케이스는, 상기 컵부의 외측으로 연장 형성된 사이드를 포함하되, 상기 사이드는, 상대적으로 외측에 위치하여 실링된 실링부; 및 상대적으로 내측에 위치하여 미실링된 미실링부를 포함하고, 상기 컵부에 미접착되면서, 상기 미실링부에서 폴딩된다.
또한, 상기 사이드는, 상기 컵부의 외벽에 접촉하며 폴딩될 수 있다.
또한, 상기 사이드는, 85° 내지 95° 의 각도로 폴딩될 수 있다.
또한, 상기 사이드는, 상대적으로 외측 단부에 더 가까운 위치에서 폴딩된 제1 폴딩부; 및 상대적으로 컵부에 더 가까운 위치에서 폴딩된 제2 폴딩부를 포함할 수 있다.
또한, 상기 제1 폴딩부는, 상기 실링부에 위치하고, 상기 제2 폴딩부는, 상기 미실링부에 위치할 수 있다.
또한, 상기 사이드는, 상기 제1 폴딩부를 기준으로 170° 내지 180° 의 각도로 폴딩될 수 있다.
또한, 상기 사이드는, 상기 제2 폴딩부를 기준으로 85° 내지 95° 의 각도로 폴딩될 수 있다.
또한, 상기 사이드는, 상기 제2 폴딩부를 기준으로 88° 내지 92° 의 각도로 폴딩될 수 있다.
또한, 상기 전지 케이스는, 파우치 필름을 성형하여 제조되고, 상기 파우치 필름은, 제1 폴리머로 제조되고, 최내층에 형성되는 실란트층; 제2 폴리머로 제조되고, 최외층에 형성되는 표면 보호층; 및 상기 표면 보호층 및 상기 실란트층의 사이에 적층되는 수분 배리어층을 포함하되, 상기 수분 배리어층은, 두께가 50 내지 80 μm이고 결정립도가 10 ~ 13μm인 알루미늄 합금 박막으로 형성되고, 상기 실란트층은, 두께가 60 내지 100 μm일 수 있다.
또한, 상기 알루미늄 합금은, 합금번호 AA8021일 수 있다.
또한, 상기 알루미늄 합금은, 철을 1.3 wt% 내지 1.7 wt% 포함하고, 실리콘을 0.2 wt% 이하 포함할 수 있다.
또한, 상기 수분 배리어층은, 두께가 55 내지 65 μm이고, 상기 실란트층은, 두께가 75 내지 85 μm일 수 있다.
또한, 제3 폴리머로 제조되고, 상기 표면 보호층 및 상기 수분 배리어층 사이에 적층되는 연신 보조층을 더 포함할 수 있다.
또한, 상기 연신 보조층은, 두께가 20 내지 50 μm일 수 있다.
또한, 상기 전극 조립체의 면적은 15000mm2 내지 100000 mm2 일 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
사이드를 폴딩하더라도 사이드가 컵부에 미접착되면서도, 사이드의 보존력이 증가하여 폴딩 상태를 유지할 수 있다.
또한, 사이드가 컵부를 향해 폴딩될 때, 85° 내지 95° 의 각도, 바람직하게는 88° 내지 92° 의 각도로 폴딩을 유지할 수 있으며, 그에 따라 이차 전지의 불필요한 부피를 감소시킬 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 이차 전지(1)의 조립도이다.
도 2는 본 발명의 일 실시예에 따른 파우치 필름(135)의 단면도이다.
도 3은 합금번호 AA8079인 알루미늄 합금과 합금번호 AA8021인 알루미늄 합금의 철 및 실리콘 함량을 나타낸 그래프이다.
도 4는 합금번호 AA8079인 알루미늄 합금과 합금번호 AA8021인 알루미늄 합금의 철 함량에 따른 인장강도, 연신율 및 결정립도의 변화를 나타내는 그래프이다.
도 5는 합금번호 AA8079인 알루미늄 합금과 합금번호 AA8021인 알루미늄 합금의 결정립을 확대한 SEM 사진이다.
도 6은 본 발명의 일 실시예에 따른 성형 장치(2)의 개략도이다.
도 7은 종래의 컵부(333)와 브릿지(336)를 확대한 개략도이다.
도 8은 본 발명의 일 실시예에 따른 컵부(133)와 브릿지(136)를 확대한 개략도이다.
도 9는 본 발명의 일 실시예에 따른 컵부(133)와 디가싱부(137)를 확대한 개략도이다.
도 10은 본 발명의 일 실시예에 따른 컵부(133)에 전극 조립체(10)가 수납된 모습을 나타낸 상면 개략도이다.
도 11은 종래의 코너(364)를 나타낸 개략도이다.
도 12는 본 발명의 일 실시예에 따른 코너(164)를 나타낸 개략도이다.
도 13은 본 발명의 일 실시예에 따른 전지 케이스(13)를 폴딩하는 모습을 나타낸 개략도이다.
도 14는 본 발명의 일 실시예에 따른 전지 케이스(13)가 폴딩된 모습을 나타낸 개략도이다.
도 15는 본 발명의 일 실시예에 따른 전지 케이스(13)에 형성된 그루브(1391)의 확대도이다.
도 16은 본 발명의 다른 실시예에 따른 컵부(133)와 다이 엣지(1621)를 확대한 개략도이다.
도 17은 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩하는 모습을 나타낸 개략도이다.
도 18은 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩한 모습을 나타낸 개략도이다.
도 19는 본 발명의 다른 실시예에 따른 전지 케이스(13)에 형성된 그루브(1391a)의 확대도이다.
도 20은 종래의 전지 케이스(33)의 디가싱부(337)를 절단하기 전의 모습을 상방에서 나타낸 개략도이다.
도 21은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하기 전의 모습을 상방에서 나타낸 개략도이다.
도 22는 본 발명의 일 실시예에 따른 검사 장치(4)의 블록도이다.
도 23은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하여 이차 전지(1)의 제조를 완료한 모습을 나타낸 개략도이다.
도 24는 종래의 사이드(334)를 폴딩한 모습을 측면에서 나타낸 개략도이다.
도 25는 종래의 사이드(334)를 폴딩한 모습을 상면에서 나타낸 개략도이다.
도 26은 본 발명의 일 실시예에 따른 사이드(134)를 폴딩한 모습을 측면에서 나타낸 개략도이다.
도 27은 본 발명의 일 실시예에 따른 전지 모듈(5)의 개략도이다.
도 28은 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이다.
도 29는 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
도 30은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이다.
도 31은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 이차 전지(1)의 조립도이다.
본 발명의 일 실시예에 따르면, 파우치 필름(135)의 인장강도 및 연신율이 개선됨으로써 인성(Toughness)이 증가하여, 파우치 필름(135)을 성형하여 파우치 형 전지 케이스(13)를 제조할 때, 성형성이 향상될 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 파우치 필름(135)은 제1 폴리머로 제조되고, 최내층에 형성되는 실란트층(1351, 도 2에 도시됨); 제2 폴리머로 제조되고, 최외층에 형성되는 표면 보호층(1353, 도 2에 도시됨); 및 상기 표면 보호층(1353) 및 상기 실란트층(1351)의 사이에 적층되는 수분(또는 가스) 배리어층(1352, 도 2에 도시됨)을 포함하되, 상기 수분 배리어층(1352)은, 두께가 50 내지 80 μm 이고 결정립도가 10 ~ 13μm인 알루미늄 합금 박막으로 형성되고, 상기 실란트층(1351)은, 두께가 60 내지 100 μm일 수 있다. 특히, 상기 수분 배리어층(1352)은, 두께가 55 내지 65 μm 이고, 상기 실란트층(1351)은, 두께가 75 내지 85 μm 인 것이 바람직하다.
전극 조립체(10)는 전극(101, 도 8에 도시됨) 및 분리막(102, 도 8에 도시됨)을 교대로 적층하여 형성한다. 먼저 전극 활물질과 바인더 및 가소제를 혼합한 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극 등의 전극(101)들을 제조한다. 그리고 분리막(Separator, 102)들을 전극(101)들 사이에 적층하여 전극 조립체(10)를 형성하고, 전극 조립체(10)를 전지 케이스(13)에 삽입하고 전해질 주입 후 실링한다.
전극 조립체(Electrode Assembly, 10)는 전장과 전폭을 곱한 면적이 15000mm2 내지 100000 mm2 일 수 있다. 특히, 전극 조립체(10)의 전폭은 60mm 이상일 수 있다. 또한, 전극 조립체(10)는, 적층 방향에 대해 6mm 내지 20mm의 두께를 가질 수 있다. 따라서, 본 발명의 일 실시예에 따른 전극 조립체(10)는 일반적인 소형 전지와 비교하여 큰 전지 용량을 제공할 수 있다.
구체적으로, 전극 조립체(10)는 양극 및 음극 두 종류의 전극(101)과, 상기 전극(101)들을 상호 절연시키기 위해 전극(101)들 사이에 개재되는 분리막(102)을 포함한다. 이러한 전극 조립체(10)는 스택형, 젤리롤형, 스택 앤 폴딩형 등이 있다. 두 종류의 전극(101), 즉 양극과 음극은 각각 알루미늄과 구리를 포함하는 금속 포일 또는 금속 메쉬 형태의 전극 집전체에 활물질 슬러리가 도포된 구조이다. 활물질 슬러리는 통상적으로 입상의 활물질, 도전재 등을 용매가 첨가된 상태에서 교반하여 형성될 수 있다. 용매는 후속 공정에서 제거된다.
전극 조립체(10)는 도 1에 도시된 바와 같이, 전극 탭(Electrode Tab, 11)을 포함한다. 전극 탭(11)은 전극 조립체(10)의 양극 및 음극과 각각 연결되고, 전극 조립체(10)로부터 외부로 돌출되어, 전극 조립체(10)의 내부와 외부 사이에 전자가 이동할 수 있는 경로가 된다. 전극 조립체(10)의 전극 집전체는 전극 활물질이 도포된 부분과 전극 활물질이 도포되지 않은 말단 부분, 즉 무지부로 구성된다. 그리고 전극 탭(11)은 무지부를 재단하여 형성되거나 무지부에 별도의 도전부재를 초음파 용접 등으로 연결하여 형성될 수도 있다. 이러한 전극 탭(11)은 도 1에 도시된 바와 같이, 전극 조립체(10)의 각각 다른 방향으로 돌출될 수도 있으나, 이에 제한되지 않고 일측으로부터 동일한 방향으로 나란히 돌출되는 등 다양한 방향을 향해 돌출 형성될 수도 있다.
전극 조립체(10)의 전극 탭(11)에는 이차 전지(1)의 외부로 전기를 공급하는 전극 리드(Electrode Lead, 12)가 스팟(Spot) 용접 등으로 연결된다. 그리고, 전극 리드(12)의 일부는 절연부(14)로 주위가 포위된다. 절연부(14)는 전지 케이스(13)의 제1 케이스(131)와 제2 케이스(132)가 열 융착되는 사이드(134)에 한정되어 위치하여, 전극 리드(12)를 전지 케이스(13)에 접착시킨다. 그리고, 전극 조립체(10)로부터 생성되는 전기가 전극 리드(12)를 통해 전지 케이스(13)로 흐르는 것을 방지하며, 전지 케이스(13)의 실링을 유지한다. 따라서, 이러한 절연부(14)는 전기가 잘 통하지 않는 비전도성을 가진 부도체로 제조된다. 일반적으로 절연부(14)로는, 전극 리드(12)에 부착하기 용이하고, 두께가 비교적 얇은 절연테이프를 많이 사용하나, 이에 제한되지 않고 전극 리드(12)를 절연할 수 있다면 다양한 부재를 사용할 수 있다.
전극 리드(12)는 일단이 상기 전극 탭(11)과 연결되고 타단이 상기 전지 케이스(13)의 외부로 각각 돌출된다. 즉, 전극 리드(12)는 양극 탭(111)에 일단이 연결되고, 양극 탭(111)이 돌출된 방향으로 연장되는 양극 리드(121) 및 음극 탭(112)에 일단이 연결되고, 음극 탭(112)이 돌출된 방향으로 연장되는 음극 리드(122)를 포함한다. 한편, 양극 리드(121) 및 음극 리드(122)는 도 1에 도시된 바와 같이, 모두 타단이 전지 케이스(13)의 외부로 돌출된다. 그럼으로써, 전극 조립체(10)의 내부에서 생성된 전기를 외부로 공급할 수 있다. 또한, 양극 탭(111) 및 음극 탭(112)이 각각 다양한 방향을 향해 돌출 형성되므로, 양극 리드(121) 및 음극 리드(122)도 각각 다양한 방향을 향해 연장될 수 있다.
양극 리드(121) 및 음극 리드(122)는 서로 그 재질이 다를 수 있다. 즉, 양극 리드(121)는 양극 집전체와 동일한 알루미늄(Al) 재질이며, 음극 리드(122)는 음극 집전체와 동일한 구리(Cu) 재질 또는 니켈(Ni)이 코팅된 구리 재질일 수 있다. 그리고 전지 케이스(13)의 외부로 돌출된 전극 리드(12)의 일부분은 단자부가 되어, 외부 단자와 전기적으로 연결된다.
전지 케이스(13)는 전극 조립체(10)를 내부에 수납하는, 유연성의 재질을 갖는 파우치 필름(135)을 성형하여 제조된 파우치이다. 이하, 전지 케이스(13)는 파우치인 것으로 설명한다. 펀치(22, 도 6에 도시됨) 등을 이용하여 유연성을 가지는 파우치 필름(135)을 드로잉(Drawing) 성형하면, 일부가 연신되어 주머니 형태의 수용 공간(1331)을 포함하는 컵부(133)가 형성됨으로써, 전지 케이스(13)가 제조된다.
전지 케이스(13)는 전극 리드(12)의 일부가 노출되도록 전극 조립체(10)를 수용하고 실링된다. 이러한 전지 케이스(13)는 도 1에 도시된 바와 같이, 제1 케이스(131)와 제2 케이스(132)를 포함한다. 제1 케이스(131)에는 컵부(133)가 형성되어 전극 조립체(10)를 수용할 수 있는 수용 공간(1331)이 마련되고, 제2 케이스(132)는 상기 전극 조립체(10)가 전지 케이스(13)의 외부로 이탈되지 않도록 상기 수용 공간(1331)을 상방에서 커버한다. 제1 케이스(131)와 제2 케이스(132)는 도 1에 도시된 바와 같이 일측이 서로 연결되어 제조될 수 있으나, 이에 제한되지 않고 서로 분리되어 별도로 제조되는 등 다양하게 제조될 수 있다.
파우치 필름(135)에 컵부(133)를 성형할 때, 하나의 파우치 필름(135)에 하나의 컵부(133)만이 형성될 수도 있으나, 이에 제한되지 않고 하나의 파우치 필름(135)에 두 개의 컵부(133)를 서로 이웃하게 드로잉 성형할 수도 있다. 그러면 도 1에 도시된 바와 같이, 제1 케이스(131)와 제2 케이스(132)에는 각각 컵부(133)가 형성된다. 이 때, 제1 케이스(131)와 제2 케이스(132)에 형성된 각각의 컵부(133)는, 서로 깊이(D)가 동일할 수 있으나, 이에 제한되지 않고 서로 깊이(D)가 상이할 수도 있다.
본 발명의 일 실시예의 경우, 컵부(133)의 깊이(D)는 3mm 이상, 특히 6.5mm 이상일 수 있다. 따라서, 본 발명의 일 실시예에 따른 컵부(133)는 일반적인 소형 전지와 비교하여 큰 전극 용량을 갖는 전극 조립체(10)를 수납할 수 있다.
제1 케이스(131)의 컵부(133)에 마련된 수용 공간(1331)에 전극 조립체(10)를 수납한 후에, 두 개의 컵부(133)가 서로 마주보도록 전지 케이스(13)에서 두 컵부(133)의 사이에 형성된 브릿지(136)를 중심으로 전지 케이스(13)를 폴딩할 수 있다. 그러면 제2 케이스(132)의 컵부(133)가 전극 조립체(10)를 상방에서도 수용한다. 따라서, 두 개의 컵부(133)가 하나의 전극 조립체(10)를 수용하므로, 컵부(133)가 하나일 때보다 두께가 더 두꺼운 전극 조립체(10)도 수용할 수 있다. 또한, 전지 케이스(13)가 폴딩됨으로써 제1 케이스(131)와 제2 케이스(132)가 서로 일체로 연결되므로, 추후에 실링 공정을 수행할 때 실링할 사이드(134)의 개수가 감소할 수 있다. 따라서, 공정 속도를 향상시킬 수 있고, 실링 공정 수도 감소시킬 수도 있다.
한편 전지 케이스(13)는 전극 조립체(10)를 수용하는 수용 공간(1331)이 마련된 컵부(133), 컵부(133)의 측부에 형성되어 디가싱 홀(H)을 통해 상기 컵부(133)의 내부에 생성되는 가스를 배출하는 디가싱부(137)를 포함할 수 있다. 전지 케이스(13)의 컵부(133)에 전극 조립체(10)를 수납하고 전해액을 주입한 후, 활성화 공정을 수행하면, 전지 케이스(13)의 내부에서 가스가 발생하고 이러한 가스를 외부로 배출하기 위해 디가싱 공정을 수행한다. 디가싱부(137)에 대한 자세한 설명은 후술한다.
전극 조립체(10)의 전극 탭(11)에 전극 리드(12)가 연결되고, 전극 리드(12)의 일부분에 절연부(14)가 형성되면, 제1 케이스(131)의 컵부(133)에 마련된 수용 공간(1331)에 전극 조립체(10)가 수용되고, 제2 케이스(132)가 상기 공간을 상부에서 커버한다. 그리고, 내부에 전해질을 주입하고 제1 케이스(131)와 제2 케이스(132)의 컵부(133)의 외측으로 연장 형성된 사이드(134)를 실링한다. 전해질은 이차 전지(1)의 충, 방전 시 전극(101)의 전기 화학적 반응에 의해 생성되는 리튬 이온을 이동시키기 위한 것으로, 리튬염과 고순도 유기 용매류의 혼합물인 비수질계 유기 전해액 또는 고분자 전해질을 이용한 폴리머를 포함할 수 있다. 나아가, 전해질은 황화물계, 산화물계 또는 폴리머계의 고체 전해질을 포함할 수도 있고, 이러한 고체 전해질은 외력에 의해 쉽게 변형되는 유연성을 가질 수도 있다. 이와 같은 방법을 통해, 파우치 형 이차 전지(1)가 제조될 수 있다.
도 2는 본 발명의 일 실시예에 따른 파우치 필름(135)의 단면도이다.
본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)의 전지 케이스(13)인 파우치는 파우치 필름(135)을 드로잉(Drawing) 성형하여 제조된다. 즉, 파우치 필름(135)을 펀치(22) 등으로 연신시켜 컵부(133)를 형성함으로써 제조된다. 본 발명의 일 실시예에 따르면, 이러한 파우치 필름(135)은 도 2에 도시된 바와 같이, 실란트층(Sealant Layer, 1351), 수분 배리어층(Moisture Barrier Layer, 1352), 표면 보호층(Surface Protection Layer, 1353)을 포함하며, 필요에 따라 연신 보조층(Drawing Assistance Layer, 1354)을 더 포함할 수 있다.
실란트층(1351)은 제1 폴리머로 제조되고, 최내층에 형성되어 전극 조립체(10)와 직접 접촉할 수 있다. 여기서 최내층이란, 상기 수분 배리어층(1352)을 기준으로 전극 조립체(10)가 위치하는 방향으로 향할 때 가장 마지막에 위치한 층을 말한다. 전지 케이스(13)는 상기와 같은 적층 구조의 파우치 필름(135)을, 펀치(22) 등을 이용하여 드로잉(Drawing) 성형하면, 일부가 연신되어 주머니 형태의 수용 공간(1331)을 포함하는 컵부(133)를 형성하면서 제조된다. 그리고, 이러한 수용 공간(1331)에 전극 조립체(10)가 내부에 수용되면 전해질을 주입한다. 그 후에 제1 케이스(131)와 제2 케이스(132)를 서로 마주보도록 접촉시키고, 사이드(134)에 열 압착을 하면 실란트층(1351)끼리 접착됨으로써 파우치가 실링된다. 이 때, 실란트층(1351)은 전극 조립체(10)와 직접적으로 접촉하므로 절연성을 가져야 하며, 전해질과도 접촉하므로 내식성을 가져야 한다. 또한, 내부를 완전히 밀폐하여 내부 및 외부간의 물질 이동을 차단해야 하므로, 높은 실링성을 가져야 한다. 즉, 실란트층(1351)끼리 접착된 사이드(134)는 우수한 열 접착 강도를 가져야 한다. 일반적으로 이러한 실란트층(1351)을 제조하는 제1 폴리머는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론, 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있다. 특히, 주로 폴리프로필렌(PP) 또는 폴리에틸렌(PE) 등의 폴리올레핀계 수지가 사용된다. 폴리프로필렌(PP)은 인장강도, 강성, 표면경도, 내마모성, 내열성 등의 기계적 물성과 내식성 등의 화학적 물성이 뛰어나, 실란트층(1351)을 제조하는데 주로 사용된다. 나아가, 무연신 폴리프로필렌(Cated Polypropylene) 또는 산처리된 폴리프로필렌(Acid Modified Polypropylene) 또는 폴리프로필렌-부틸렌-에틸렌 삼원 공중합체로 구성될 수도 있다. 여기서 산처리된 폴리프로필렌은 MAH PP(말레익 안하이드라이드 폴리프로필렌)일 수 있다. 또한, 실란트층(1351)은, 어느 하나의 물질로 이루어진 단일막 구조를 갖거나, 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수 있다.
본 발명의 일 실시예에 따르면, 실란트층(1351)의 두께는 60 내지 100 μm일 수 있으며, 특히 75 내지 85 μm 일 수 있다. 만약 실란트층(1351)의 두께가 60 μm보다 얇다면, 실링시 내부가 파괴되는 등 실링 내구성이 저하되는 문제가 있을 수 있다. 그리고 만약 실란트층(1351)의 두께가 100 μm 보다 두껍다면, 파우치 전체의 두께가 과도하게 두꺼워지므로, 오히려 성형성이 떨어지거나 이차 전지(1)의 부피 대비 에너지 밀도가 저하될 수 있다. 실런트층(1351)의 두께가 작을 경우, 파우치 필름(135)의 절연파괴전압이 낮아져 절연성이 저하될 수 있으며, 절연성이 떨어지는 파우치 필름(135)를 이용하여 전지를 제조할 경우, 불량율이 높아질 수 있다
수분 배리어층(1352)은 표면 보호층(1353) 및 실란트층(1351)의 사이에 적층되어 파우치의 기계적 강도를 확보하고, 이차 전지(1) 외부의 가스 또는 수분 등의 출입을 차단하며, 전해질의 누수를 방지한다. 수분 배리어층(1352)은 알루미늄 합금 박막으로 제조될 수 있다. 알루미늄 합금 박막은 소정 수준 이상의 기계적 강도를 확보할 수 있으면서도 무게가 가볍고 전극 조립체(10)와 전해질에 의한 전기 화학적 성질에 대한 보완 및 방열성 등을 확보할 수 있다.
보다 구체적으로는, 본 발명의 일 실시예에 따른 알루미늄 합금 박막은 결정립도가 10 ~ 13μm, 바람직하게는 10.5 ~ 12.5μm, 더 바람직하게는 11 ~ 12μm일 수 있다. 알루미늄 합금 박막의 결정립도가 상기 범위를 만족할 때, 컵 성형 시에 핀 홀(Pinhole)이나 균열 발생 없이 성형 깊이를 증가시킬 수 있다.
이러한 알루미늄 합금 박막에는 알루미늄 이외의 금속 원소, 예를 들어, 철(Fe), 구리(Cu), 크롬(Cr), 망간(Mn), 니켈(Ni), 마그네슘(Mg) 및 아연(Zn)으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상이 포함될 수 있다.
종래에는 수분 배리어층이 대략 30 내지 50 μm, 특히 40 μm의 두께를 가져, 성형성이 저하되었다. 따라서, 파우치 필름을 드로잉 성형하더라도, 컵부(333, 도 7에 도시됨)의 깊이(D')가 깊어지면서 컵부(333)의 외벽(338, 도 7에 도시됨)을 수직에 가깝게 성형하는데 한계가 있었고, 컵부(333)의 엣지(36, 도 7에 도시됨)의 곡률 반경을 감소하는 데에도 한계가 있었다. 또한, 천공 강도가 약하여 전지 케이스가 외부로부터 충격을 받으면, 내부의 전극 조립체가 쉽게 파손되는 문제도 있었다.
이를 해결하기 위해 수분 배리어층(1352)의 두께를 대략 80 μm보다 두껍게 증가시킨다면, 제조 비용이 증가할 뿐만 아니라 파우치 전체의 두께가 과도하게 두꺼워져 이차 전지(1)의 부피 대비 에너지 밀도가 저하되는 문제가 있다. 만약 파우치 전체의 두께를 감소시키기 위해 실란트층(1351)의 두께를 60 μm보다 얇게 감소시킨다면, 상기 기술한 바와 같이 실링 내구성이 저하되는 문제가 있다.
본 발명의 일 실시예에 따르면 이를 개선하여, 이러한 수분 배리어층(1352)은 두께가 50 μm 내지 80 μm일 수 있고, 특히 55 μm 내지 65 μm 일 수 있다. 따라서, 수분 배리어층(1352)의 성형성이 향상되어, 파우치 필름(135)을 드로잉 성형할 때 컵부(133)의 깊이(D)가 깊게 형성될 수 있고, 컵부(133)의 외벽(138)이 수직에 가까워지며 컵부(133)의 엣지(16, 도 8에 도시됨)의 곡률 반경(R2)도 감소할 수 있다. 그러면, 수용 공간(1331)의 부피가 증가하므로, 내부에 수납되는 전극 조립체(10)의 부피도 증가할 수 있고, 이차 전지(1)의 부피 대비 에너지 효율도 증가할 수 있다. 그리고 제조 비용이 크게 증가하지 않으면서, 실란트층(1351)의 두께를 감소시키지 않고도 파우치 전체의 두께도 크게 증가하지 않고, 실링 내구성도 저하되지 않을 수 있다.
또한, 파우치 필름(135)의 천공 강도가 향상되므로, 외부로부터 큰 압력을 받거나 첨예한 물체에 찔려 파손되더라도, 내부의 전극 조립체(10)를 더욱 효과적으로 보호할 수 있다. 여기서 천공 강도가 우수하다는 것은, 파우치 필름(135)에 홀을 천공할 때의 강도가 높다는 것을 의미한다.
그러나, 단순히 알루미늄 합금 박막의 두께만 증가시킬 경우, 성형 깊이는 증가시킬 수 있으나, 성형 후에 알루미늄 합금 박막에 핀홀이나 크랙이 발생하여 밀봉 내구성에 문제가 발생한다.
이에 본 발명자들은 연구를 거듭한 결과, 가스 배리어층의 재질로 특정 결정립도를 갖는 알루미늄 합금 박막을 적용하고, 가스 배리어층과 실런트층 두께를 특정 범위로 제어할 경우, 컵부를 깊게 성형할 수 있고, 밀봉 내구성도 우수하게 유지할 수 있음을 알아내고 본 발명을 완성하였다.
구체적으로는, 본 발명에 따른 가스 배리어층(1352)는 결정립도가 10μm 내지 13μm, 바람직하게는 10.5 ~ 12.5μm, 더 바람직하게는 11 ~ 12μm인 알루미늄 합금 박막을 포함한다. 알루미늄 합금 박막의 결정립도가 상기 범위를 만족할 때, 컵 성형 시에 핀 홀(Pinhole)이나 균열 발생 없이 성형 깊이를 증가시킬 수 있다. 알루미늄 합금 박막의 결정립도가 13μm를 초과할 경우, 알루미늄 합금 박막의 강도가 떨어지고, 연신 시에 내부 응력 분산이 어려워 크랙이나 핀홀 발생이 증가하였으며, 결정립도가 10μm 미만인 경우에는 알루미늄 합금 박막의 유연성이 떨어져 성형성 향상에 한계가 있다.
한편, 상기 결정립도는, 알루미늄 합금 박막의 조성 및 알루미늄 합금 박막의 가공 방법에 따라 달라지며, 알루미늄 합금 박막의 두께 방향 단면을 주사전자현미경(Scanning Electron Microscope, SEM)으로 관측하여 측정할 수 있다. 구체적으로는, 본 발명에서는, 주사전자현미경을 이용하여 알루미늄 합금 박막의 두께 방향 단면 SEM 이미지를 획득하고, 상기 SEM 이미지에서 관찰되는 결정립 중 기설정된 개수의 결정립의 최대 지름을 측정한 후 이들의 평균값을 결정립도로 평가하였다.
표면 보호층(1353)은 제2 폴리머로 제조되고, 최외층에 형성되어 외부와의 마찰 및 충돌로부터 이차 전지(1)를 보호하면서, 전극 조립체(10)를 외부로부터 전기적으로 절연시킨다. 여기서 최외층이란, 상기 수분 배리어층(1352)을 기준으로 전극 조립체(10)가 위치하는 방향의 반대 방향으로 향할 때 가장 마지막에 위치한 층을 말한다. 이러한 표면 보호층(1353)을 제조하는 제2 폴리머는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다. 특히, 주로 내마모성 및 내열성을 가지는 폴리에틸렌테레프탈레이트(PET) 등의 폴리머가 사용되는 것이 바람직하다. 그리고 표면 보호층(1353)은 어느 하나의 물질로 이루어진 단일막 구조를 가지거나, 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수도 있다.
본 발명의 일 실시예에 따르면, 이러한 표면 보호층(1353)의 두께는 5 μm 내지 25 μm일 수 있으며, 특히 7 μm 내지 12 μm 일 수 있다. 만약 표면 보호층(1353)의 두께가 5 μm 보다 얇다면, 외부 절연성이 저하되는 문제가 있을 수 있다. 반대로 만약 표면 보호층(1353)의 두께가 25 μm 보다 두껍다면, 파우치 전체의 두께가 두꺼워지므로, 오히려 이차 전지(1)의 부피 대비 에너지 밀도가 저하될 수 있다.
한편, PET는 저렴하고 내구성이 뛰어나며 전기 절연성이 우수하나, 상기 수분 배리어층(1352)으로 자주 사용되는 알루미늄과 접착성도 약하고, 응력을 인가하여 연신될 때의 거동도 서로 상이할 수 있다. 따라서, 표면 보호층(1353)과 수분 배리어층(1352)을 직접 접착하면, 드로잉 성형 도중에 표면 보호층(1353)과 수분 배리어층(1352)과 박리될 수도 있다. 그럼으로써, 수분 배리어층(1352)이 균일하게 연신되지 않아, 성형성이 저하되는 문제가 발생할 수 있다.
본 발명의 일 실시예에 따르면, 전지 케이스(13)는 제3 폴리머로 제조되고, 표면 보호층(1353) 및 수분 배리어층(1352) 사이에 적층되는 연신 보조층(1354)을 더 포함할 수 있다. 연신 보조층(1354)은 표면 보호층(1353) 및 수분 배리어층(1352) 사이에 적층되어, 표면 보호층(1353)과 수분 배리어층(1352)이 연신될 때 박리되는 것을 방지할 수 있다. 이러한 연신 보조층(1354)을 제조하는 제3 폴리머는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다. 특히, 나일론(Nylon) 수지는 표면 보호층(1353)의 폴리에틸렌테레프탈레이트(PET)와는 접착이 용이하고, 수분 배리어층(1352)의 알루미늄 합금과는 연신될 때의 거동이 유사하므로, 제3 폴리머로는 주로 나일론(Nylon) 수지가 사용될 수 있다. 그리고 연신 보조층(1354)은 어느 하나의 물질로 이루어진 단일막 구조를 가지거나, 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수도 있다.
종래에는 수분 배리어층이 대략 40 μm의 두께를 가졌고, 이에 따라 연신 보조층은 대략 15 μm의 상당히 얇은 두께를 가졌다. 즉, 연신 보조층과 수분 배리어층의 두께 비율이 1:2.67로, 수분 배리어층의 두께 비율이 상당히 높았다. 그런데 상기 기술한 바와 같이, 본 발명의 일 실시예에 따르면, 수분 배리어층(1352)이 대략 50 내지 80 μm, 특히 55 μm 내지 65 μm의 두께를 가지므로, 수분 배리어층(1352)의 성형성이 향상된다. 이 때, 연신 보조층(1354) 또한 성형성을 향상시키기 위해, 연신 보조층(1354)은, 20 μm 내지 50 μm의 두께를 가질 수 있으며, 특히 25 μm 내지 38 μm의 두께를 가지는 것이 바람직하다. 만약 20 μm 보다 얇다면, 연신 보조층(1354)이 수분 배리어층(1352)의 향상된 성형성을 따르지 못하여, 연신되는 도중에 파손될 수 있다. 반대로, 만약 50 μm 보다 두껍다면, 파우치 전체의 두께가 두꺼워지므로, 이차 전지(1)의 부피가 증가하고 에너지 밀도가 저하될 수 있다. 특히, 본 발명의 일 실시예에 따르면, 연신 보조층(1354)과 수분 배리어층(1352)의 두께 비율이 1:2.5보다 작을 수 있다. 즉 종래보다 연신 보조층(1354)의 두께 비율이 더욱 증가할 수 있다. 다만, 연신 보조층(1354)의 두께가 과도하게 두꺼워지면, 파우치 전체의 두께가 두꺼워지므로, 과도한 두께가 되지 않기 위해 상기 두께 비율은 1:1.5보다 클 수 있다. 즉, 상기 두께 비율은 1:1.5 내지 1:2.5일 수 있다.
도 3은 합금번호 AA8079인 알루미늄 합금과 합금번호 AA8021인 알루미늄 합금의 철 및 실리콘 함량을 나타낸 그래프이다.
앞서 설명한 바와 같이, 수분 배리어층(1352)을 이루는 알루미늄 합금 박막은, 결정립도가 10 ~ 13μm, 바람직하게는 10.5 ~ 12.5μm, 더 바람직하게는 11 ~ 12μm일 수 있다.
또한, 상기 알루미늄 합금 박막의 철(Fe) 함유량은 1.2wt% 내지 1.7wt%, 바람직하게는 1.3wt% 내지 1.7wt%, 더 바람직하게는 1.3wt% 내지 1.45wt%일 수 있다. 알루미늄 합금 박막 내의 철(Fe) 함유량이 1.2wt% 미만인 경우에는, 알루미늄 합금 박막의 강도가 저하되어 성형 시에 크랙 및 핀홀이 발생할 수 있으며, 1.7wt%를 초과할 경우에는 알루미늄 합금 박막의 유연성이 떨어져 성형성 향상에 한계가 있다.
또한, 상기 알루미늄 합금 박막의 실리콘(Si) 함유량은 0.2wt% 이하, 바람직하게는 0.05 내지 0.2wt%, 더 바람직하게는 0.1 내지 0.2wt%일 수 있다. 실리콘 함유량이 0.2wt%를 초과하는 경우에는 성형성이 저하될 수 있다.
구체적으로는. 본 발명에 따른 알루미늄 합금 박막은 합금번호 AA8021인 알루미늄 합금일 수 있다.
반면, 종래용 전지용 파우치에는 주로 합금번호 AA8079인 알루미늄 합금 박막이 사용되었다. 알루미늄 합금에 철이 많이 함유되는 경우에는 기계적 강도가 향상되고, 철이 적게 함유되는 경우에는 유연성이 향상된다.
합금번호 AA8079는 도 3에 도시된 바와 같이, 철을 0.6 wt% 내지 1.2 wt% 포함하였고, 실리콘은 0.3 wt% 이하 포함한다. 합금번호 AA8079의 알루미늄 합금의 경우, 철이 상대적으로 적게 포함되고, 이를 이용하여 수분 배리어층(1352)을 제조할 경우 유연성이 향상될 수는 있으나 강도가 저하되어 성형성에 한계가 존재할 수 있다.
반면에 합금번호 AA8021은 도 3에 도시된 바와 같이, 철을 1.2 wt% 내지 1.7 wt%, 특히 1.3 wt% 내지 1.7 wt% 포함할 수 있고, 실리콘은 0.2 wt% 이하 포함할 수 있다. 이러한 합금번호 AA8021의 알루미늄 합금으로 수분 배리어층(1352)을 제조하는 경우, 철이 상대적으로 많이 포함되므로, 인장강도(Tensile Strength), 연신율(Elongation Rate) 및 천공 강도(puncture Strength) 가 개선될 수 있다.
한편, 어떤 재료에 인장력을 인가하였을 때, 인장강도와 연신율 사이의 관계를 그래프로 나타낼 수 있다. 이 때, 그래프의 세로축을 인장강도, 가로축을 연신율이라 하면, 그래프의 아래 면적이 해당 재료의 인성(Toughness)이다. 인성이란, 재료의 파괴에 대한 질긴 정도를 나타내며, 인성이 높을수록 재료가 파괴되지 않을 때까지 더욱 많이 연신될 수 있다.
따라서, 합금번호 AA8021의 알루미늄 합금으로 수분 배리어층(1352)을 제조하는 경우, 인장강도와 연신율이 개선되므로, 인성(Toughness)이 증가하고 성형성이 향상될 수 있다.
도 4는 합금번호 AA8079인 알루미늄 합금과 합금번호 AA8021인 알루미늄 합금의 철 함량에 따른 인장강도(Rm), 연신율 및 결정립도의 변화를 나타내는 그래프이고, 도 5는 합금번호 AA8079인 알루미늄 합금과 합금번호 AA8021인 알루미늄 합금의 결정립을 확대한 SEM 사진이다.
도 4에 도시된 바와 같이, 알루미늄 합금의 철 함량에 따라, 인장강도, 연신율 및 결정립도가 변화한다. 구체적으로, 인장강도와 연신율은 철 함량에 비례하므로, 철 함량이 증가할수록 인장강도와 연신율도 증가한다. 반면에, 결정립도는 철 함량에 반비레하므로, 철 함량이 증가할수록 결정립도는 감소한다.
합금번호 AA8079는 결정립도가 13 μm 내지 21 μm로 상대적으로 크다. 따라서, 연신될 때 내부 응력이 덜 분산되어, 핀 홀(Pinhole)이 많아지므로 전지 케이스(13)의 성형성이 저하되는 문제가 있다.
합금번호 AA8021은 결정립도가 10 μm 내지 13 μm로 상대적으로 작다. 따라서, 연신될 때 내부 응력이 더 많이 분산될 수 있으므로, 핀 홀(Pinhole)이 감소하여 전지 케이스(13)의 성형성이 향상될 수 있다.
이러한 수분 배리어층(1352)을 갖는 파우치 필름(135)을 성형하여 제조된 파우치 형 전지 케이스(13)는 성형성이 향상되어, 컵부(133)의 깊이(D)를 더욱 깊게 형성할 수 있고, 컵부(133)의 외벽(138)도 수직에 가까워지며 컵부(133)의 엣지(16)의 곡률 반경도 감소할 수 있어, 더욱 크고 두꺼운 전극 조립체(10)도 수용할 수 있다. 따라서, 이러한 전지 케이스(13)로 제조된 이차 전지(1)는 부피 대비 에너지 효율이 증가할 수 있다.
한편, 본 발명에 따른 파우치 필름(135)은 총 두께가 160μm 내지 200μm, 바람직하게는 180μm 내지 200μm일 수 있다. 파우치 필름(135)의 두께가 상기 범위를 만족할 때, 파우치 두께 증가로 인한 전지 수용 공간의 감소, 밀봉 내구성 저하 등을 최소화하면서 성형 깊이를 증가시킬수 있다.
본 발명에 따른 파우치 필름(135)은, 특정 두께 및 결정립도를 갖는 알루미늄 합금 박막을 포함하여 인장 강도 및 연신율이 우수하다. 구체적으로는, 본 발명에 따른 파우치 필름(135)은 15 mm Υ 80 mm의 크기로 재단한 후, 50mm/min의 인장 속도로 잡아당기면서 측정한 인장강도가 200N/15mm 내지 300N/15mm, 바람직하게는 210N/15mm 내지 270N/15mm, 더 바람직하게는 220N/15mm 내지 250N/15mm이고, 연신율이 120% 내지 150%, 바람직하게는 120% 내지 140%, 더 바람직하게는 120% 내지 130%일 수 있다. 이와 같이 본 발명에 따른 파우치 필름 적층체는 인장 강도 및 연신율이 높고, 그로 인해 인성(Toughness)가 증가하여, 컵 성형 시에 성형 깊이가 큰 경우에도 크랙 발생이 적다.
또한, 본 발명에 따른 파우치 필름 적층체는, 특정 두께 및 결정립도를 갖는 알루미늄 합금 박막을 포함하여 천공 강도가 우수하다. 구체적으로는, 본 발명에 따른 파우치 필름 적층체는, 천공 강도가 30N 이상일 수 있다.
도 6은 본 발명의 일 실시예에 따른 성형 장치(2)의 개략도이다.
본 발명의 일 실시예에 따른 파우치 필름(135)을 성형하는 성형 장치(2)는, 상면에 파우치 필름(135)이 안착되는 다이(21)와, 다이(21)의 상방에 배치되고 하강하여 파우치 필름(135)을 성형하는 펀치(22)를 포함한다. 그리고 다이(21)는 상면으로부터 내측으로 함몰 형성된 성형부(211)를 포함하고, 펀치(22)는 파우치 필름(135)을 상기 성형부(211)에 삽입하면서 드로잉 성형함으로써 컵부(133)를 형성한다.
본 발명의 일 실시예에 따르면 이러한 성형 장치(2)를 이용하여 파우치 필름(135)을 성형할 때, 도 6에 도시된 바와 같이, 다이(21)에는 성형부(211)가 서로 이웃하도록 두 개가 형성되고, 두 성형부(211) 사이에는 격벽(212)이 형성될 수 있다. 펀치(22)가 두 성형부(211)에 모두 삽입하면서 파우치 필름(135)을 드로잉 성형하면, 두 성형부(211)에 대응하여 제1 케이스(131)와 제2 케이스(132)에는 각각 하나씩, 총 두 개의 컵부(133)가 형성되고, 이러한 두 개의 컵부(133) 사이에는 격벽(212)에 대응하여 브릿지(136)도 함께 형성될 수 있다.
브릿지(136)는 추후에 전지 케이스(13)를 폴딩할 때, 기준이 되는 부분일 수 있다. 이차 전지(1)의 제조가 완료되면, 브릿지(136)는 이차 전지(1)의 일측에서 폴딩부(139, 도 14에 도시됨)를 형성할 수 있다. 이러한 폴딩부(139)는 제1 케이스(131)와 제2 케이스(132)를 서로 일체로 연결하므로, 추후에 실링 공정을 수행할 때 실링할 사이드(134)의 개수가 감소할 수 있다. 따라서, 공정 속도를 향상시키고, 실링 공정 수도 감소시킬 수도 있다. 이 때, 폴딩부(139)의 폭이 작을수록 컵부(133)의 외벽(138, 도 8에 도시됨)과 전극 조립체(10) 사이의 공간(17, 도 8에 도시됨)도 감소하므로, 이차 전지(1)의 전체 부피가 감소하여 부피 대비 에너지 밀도가 증가할 수 있다.
이러한 폴딩부(139)의 폭은 브릿지(136)의 두께(t, 도 8에 도시됨)에 비례하고, 브릿지(136)는 격벽(212)에 대응하여 형성되므로, 브릿지(136)의 두께(t)는 격벽(212)의 두께에 비례한다. 따라서, 파우치 필름(135)을 성형할 때에는 브릿지(136)의 두께(t)를 최소화하는 것이 바람직하고, 이를 위해 격벽(212)의 두께도 최소화하는 것이 바람직하다. 그런데 격벽(212)이 두께가 얇은 상태에서 높이가 과도하게 높게 형성된다면, 드로잉 성형하는 과정에서 격벽(212)이 파손될 수 있다. 특히, 종래에는 다이에 바닥이 존재하였으나, 이러한 경우에 펀치(22)가 파우치 필름(135)을 성형할 때 파우치 필름(135)과 성형부(211) 사이의 공간에 존재하는 기체가 배출되지 못하는 문제가 있었다. 따라서, 최근에는 이러한 다이에 바닥을 제거함으로써 파우치 필름(135)과 성형부(211) 사이의 공간에 존재하는 기체가 용이하게 배출될 수는 있으나, 격벽(212)의 높이가 과도하게 높게 형성되는 문제가 있었다. 따라서, 본 발명의 일 실시예에 따르면 도 6에 도시된 바와 같이, 격벽(212)의 하부에 격벽(212)의 두께보다 더 두꺼운 보강부(2121)가 형성될 수 있다. 보강부(2121)는 전지 케이스(13)에 형성될 컵부(133)의 깊이(D)보다는 하방에 형성되면서, 격벽(212)이 파손되지 않을 정도의 위치에 형성될 수 있다. 보강부(2121)의 정확한 위치는 격벽(212)의 두께, 격벽(212)의 재료, 펀치(22)의 압력, 형성될 컵부(133)의 깊이(D)에 따라 실험적으로 결정될 수 있다.
도 7은 종래의 컵부(333)와 브릿지(336)를 확대한 개략도이다.
상기 기술한 바와 같이, 종래에는 수분 배리어층을 제조할 때 합금번호가 AA30XX계열의 알루미늄 합금이 자주 사용되었다. 그리고, 수분 배리어층은 대략 30 내지 50 μm, 특히 40 μm의 두께를 가졌고, 연신 보조층은 대략 15 μm의 상당히 얇은 두께를 가졌다. 따라서, 파우치 필름의 성형성이 우수하지 않아 전지 케이스 및 이차 전지를 제조하더라도 컵부(333)의 깊이(D')가 깊지 않고, 전체적으로 샤프한 형상으로 제조하는데 한계가 있었다.
구체적으로, 종래에는 컵부(333)의 엣지(36)의 곡률 반경을 감소하는 데에도 한계가 있었다.
컵부(333)의 엣지(36)는, 펀치(22)의 엣지(221, 도 6에 도시됨)에 대응되며 형성되는 펀치 엣지(361) 다이(21)의 엣지(213, 도 6에 도시됨)에 대응되며 형성되는 다이 엣지(362, 도 11에 도시됨)를 포함한다.
펀치 엣지(361)는 컵부(333)의 주변을 포위하는 복수의 외벽(338)과 바닥부(3332)를 각각 연결한다. 그런데, 펀치(22)의 엣지(221)에 라운딩 처리가 되지 않는다면 펀치(22)의 엣지(221)가 첨예하게 되므로, 파우치 필름(135)을 성형할 때 컵부(333)의 펀치 엣지(361)에 응력이 집중되어 쉽게 크랙이 발생하는 문제가 있었다. 또한, 다이 엣지(362)는 상기 복수의 외벽(338)과 사이드(134) 또는 디가싱부(137)를 각각 연결한다. 그런데 다이(21)의 엣지(213)에도 라운딩 처리가 되지 않는다면 다이(21)의 엣지가 첨예하게 되므로, 파우치 필름(135)을 성형할 때 컵부(333)의 다이 엣지(362)에도 응력이 집중되어 쉽게 크랙이 발생하는 문제가 있었다. 여기서 라운딩된다는 것은, 곡률을 가지도록 곡면을 형성하는 것을 의미하며, 이러한 곡면은 일정한 곡률만을 가질 수도 있으나, 이에 제한되지 않고 일정하지 않은 곡률을 가질 수도 있다. 본 명세서에서 펀치 엣지(161), 다이 엣지(162), 브릿지(136) 등이 특정 곡률을 가지고 라운딩되며 형성된다는 것은, 전체적으로 상기 특정 곡률만을 가지는 것뿐만 아니라, 적어도 일부에서만 상기 특정 곡률을 가지는 것도 포함한다는 것을 의미한다.
상기의 문제를 해결하기 위해, 도 7에 도시된 바와 같이, 펀치(22)의 엣지(221)와 다이(21)의 엣지(213)에 라운딩 처리를 하여 컵부(333)의 펀치 엣지(361)와 다이 엣지(362)가 라운딩되며 형성되었다. 그럼으로써 컵부(333)의 펀치 엣지(361) 및 다이 엣지(362)에 집중하는 응력을 어느 정도 분산시킬 수 있었다.
그러나, 컵부(333)의 펀치 엣지(361) 및 다이 엣지(362)가 라운딩되며 형성되더라도, 컵부(333)의 깊이(D')는 각 엣지(361)(362)의 곡률 반경의 비율의 2배 내지 5배, 특히 2배 내지 3.25배 내에서 제작 가능한 한계가 있었다.
따라서, 컵부(333)의 깊이(D')를 어느 정도 깊게 성형하기 위해서는 펀치 엣지(361)의 곡률 반경(R2') 및 다이 엣지(362)의 곡률 반경을 충분히 크게 형성하여야 했으며, 펀치 엣지(361) 및 다이 엣지(362)의 곡률 반경과 비교하여 컵부(333)의 깊이(D')가 너무 깊으면, 펀치 엣지(361) 및 다이 엣지(362)에 크랙이 발생하였다.
따라서, 종래에는 컵부(333)의 깊이(D')를 충분히 깊게(예를 들어, 6.5mm 이상) 성형하면서, 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2') 및 다이 엣지(362)의 곡률 반경을 일정 수치(예를 들어, 2 mm) 이하로 형성할 수 없는 문제가 있었다.
또한, 두 개의 컵부(133)가 형성되는 경우에, 상기 브릿지(136)가 형성되기 위해서는 다이(21)에 격벽(212)이 존재해야 한다. 그런데, 종래에는 파우치 필름의 성형성이 우수하지 않아, 이러한 브릿지(336)의 두께를 얇게 형성하는 데에 한계가 있었다. 즉, 브릿지(336)를 일정 두께 이하로 형성하기 위해 상기 격벽(212)도 일정 두께 이하로 형성한다면, 격벽(212)이 첨예하게 형성되므로 브릿지(336)에 크랙이 발생하는 문제가 있었다.
이러한 문제를 해결하기 위해, 도 7에 도시된 바와 같이 격벽(212)에 라운딩 처리를 하여 브릿지(336)가 라운딩되며 형성되었다. 그럼으로써 브릿지(336)에 집중하는 응력을 어느 정도 분산시킬 수 있었다. 특히, 브릿지(336)의 곡률 반경(R1')이 일정한 경우, 상기 곡률 반경(R1')은 브릿지(336)의 두께(t')의 절반에 대응된다. 예를 들어, 브릿지(336)의 곡률 반경(R1')을 약 1 mm에 가깝도록 형성하는 경우, 브릿지(336)의 두께(t')는 약 2 mm에 가깝도록 형성되었다.
그러나, 브릿지(336)가 라운딩되며 형성되더라도, 브릿지(336)의 곡률 반경(R1')을 작게 형성한다면, 컵부(333)의 깊이(D')를 어느 정도 깊게 성형할 때 브릿지(336)에 크랙이 발생하는 문제가 있었다. 따라서, 종래에는 컵부(333)를 일정 깊이(D')(예를 들어, 6.5mm) 이상으로 성형하면서, 브릿지(336)의 두께(t')를 일정 수치(예를 들어, 2 mm) 이하로 형성할 수 없는 문제가 있었다.
나아가, 클리어런스(CL')의 크기도 상당히 커서, 컵부(333)의 외벽(338)을 수직에 가깝게 성형하는 데에도 한계가 있었다. 클리어런스(CL)란, 다이(21)의 성형부(211) 내벽과 펀치(22)의 외벽 사이의 수직 거리를 지칭한다. 실제로 다이(21)의 성형부(211)와 펀치(22)는 클리어런스(CL)만큼 미세한 크기의 차이가 있다. 만약 이러한 클리어런스(CL)가 과도하게 작다면, 성형부(211) 내벽과 펀치(22)의 외벽 사이의 거리가 과도하게 작게 된다. 그러면 파우치 필름(135)이 성형부(211)로 삽입될 수가 없거나, 마찰이 크게 발생하여 파우치 필름(135)이 손상될 수 있다. 반대로 클리어런스(CL)가 과도하게 크다면, 컵부(333)의 외벽(338)의 경사각이 커져, 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)이 증가하는 문제가 있다. 따라서, 파우치 필름(135)을 성형할 때에는 적당한 크기의 클리어런스(CL)를 설정하여야 한다.
브릿지(336)는 다이(21)의 격벽(212)에 대응되어 형성되고, 펀치 엣지(361)는 펀치(22)의 엣지(221)에 대응되어 형성된다. 따라서, 다이(21)의 성형부(211) 내벽과 펀치(22)의 외벽 사이의 수직 거리인 클리어런스(CL')는 전지 케이스(33)에서, 브릿지(336)와 펀치 엣지(361) 사이의 수직 거리로 나타날 수 있다.
구체적으로 도 7에 도시된 바와 같이, 브릿지 수직선(V1')과 엣지 수직선(V2')을 가상으로 도시한다. 브릿지 수직선(V1')은 브릿지(336)와 브릿지(336) 측 외벽(338)의 경계점(P1')을 통과하고 바닥부(3332)와 수직인 가상의 수직선이다. 그리고, 엣지 수직선(V2')은 브릿지(336) 측 펀치 엣지(361)와 브릿지(336) 측 외벽(338)의 경계점(P2')을 통과하고 바닥부(3332)와 수직인 가상의 수직선이다. 이러한 브릿지 수직선(V1')은 다이(21)의 성형부(211)의 내벽, 특히 격벽(212)의 내벽에 대응되고, 엣지 수직선(V2')은 펀치(22)의 외벽에 대응된다. 따라서, 브릿지 수직선(V1')과 엣지 수직선(V2')의 수직 거리가, 전지 케이스(33)에서 나타나는 클리어런스(CL')이다.
그런데 종래에는 이러한 클리어런스(CL)를 0.5 mm 이하로 감소시키면, 컵부(333)의 깊이(D')를 어느 정도 깊게 성형할 때 파우치 필름(135)에 크랙이 쉽게 발생하는 문제가 발생할 수 있었다.
상기 기술한 바와 같이, 종래에는 클리어런스(CL')를 더욱 작게, 컵부(333)의 깊이(D')를 더욱 깊이 성형하는 데에 한계가 있으므로, 컵부(333)를 일정 깊이(D')(예를 들어, 6.5 mm) 이상으로 성형하면, 컵부(333)의 외벽(338)은 바닥부(3332)로부터 경사각이 95°보다 크게 형성되었다. 즉, 컵부(333)의 외벽(338)을 경사각 95°이하로, 수직에 가깝게 성형하는 데에도 한계가 있었다.
한편, 컵부(333)의 엣지의 곡률 반경(R2')을 개선하는데 한계가 있으므로, 컵부(333)에 수납되는 전극 조립체(10)의 부피가 작아지는 문제도 있었다. 구체적으로, 도 7에 도시된 바와 같이, 종래에는 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2')이 크므로, 전극 조립체(10)가 컵부(333)의 외벽(338)에 과도하게 가까이 위치하면, 전극 조립체(10)의 전극(101)이 컵부(333)의 펀치 엣지(361)에 의해 파손되는 문제가 있었다. 즉, 금속을 포함하는 전극(101)의 일단이 컵부(333)의 펀치 엣지(361) 상에 위치하게 되어, 전극(101)의 일단이 컵부(333)의 펀치 엣지(361)와 대응되어 변형되면서 파손되는 문제가 있었다.
이러한 문제를 해결하기 위해, 종래에는 전극 조립체(10)를 컵부(333)에 수납할 때, 전극 조립체(10)를 컵부(333)의 외벽(338)으로부터 어느 정도 이격시켜 수납하였다. 먼저, 상기 엣지 수직선(V2')으로부터 수직 거리(g')가 0.75 mm, 특히 0.5 mm 이고 바닥부(3332)와 수직인 기준 수직선(V3')을 가상으로 도시한 후, 도 7에 도시된 바와 같이 전극(101)의 일단이 상기 기준 수직선(V3')의 외측에 위치하도록 전극 조립체(10)를 수납하였다. 그럼으로써, 전극(101)이 컵부(333)의 외벽(338)으로부터 어느 정도 이격되므로, 전극(101)이 파손되는 것을 방지할 수 있었다. 그러나, 이러한 경우에는 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)이 증가하여 컵부(333)의 부피 대비 전극 조립체(10)의 부피 비율이 작아지므로, 이차 전지(3)의 부피 대비 에너지 밀도가 저하되는 문제가 있었다. 또한, 컵부(333)의 내부에 불필요한 공간의 부피가 커져, 사이드를 실링하기 전에 전극 조립체(10)가 컵부(333)의 내부에서 움직이는 문제도 있었다.
그리고, 전극 조립체(10)에서 전극(101)은 외력에 의해 쉽게 변형되지 않는 강성이 큰 반면에, 분리막(102)은 외력에 의해 쉽게 변형되는 유연성이 크다. 그런데, 이웃하는 전극(101)이 직접 접촉하면 단락(short, 쇼트)이 발생하므로, 이를 방지하기 위해 분리막(102)이 전극(101)보다 크게 형성된다. 따라서, 전극 조립체(10)가 형성되면, 분리막(102)이 전극(101)보다 외측으로 돌출된 주변부(1021)가 함께 형성된다. 그런데, 종래에는 전극 조립체(10)를 컵부(333)의 외벽(338)으로부터 어느 정도 이격시켜 수납하였으므로, 이러한 분리막(102)의 주변부(1021)들이 모두 무질서하게 구겨지거나 폴딩되어 전극(101)이 외부로 노출됨으로써 단락이 발생할 가능성도 높았다.
이와 같이, 종래에는 파우치 필름의 성형성이 우수하지 않아, 브릿지(336)의 두께(t'), 컵부(333)의 깊이(D'), 컵부(333)의 엣지(361)의 곡률 반경(R2') 및 클리어런스(CL')를 개선하는데 한계가 있었다. 그리고 컵부(333)의 부피 대비 전극 조립체(10)의 부피 비율도 작아, 이차 전지(3)에서 불필요한 부피도 크므로, 부피 대비 에너지 밀도도 저하되었다. 나아가, 컵부(333)의 외벽(338)이 수직에 가깝게 성형되지 않고 컵부(133)의 엣지(361)의 곡률 반경(R2)도 크므로, 전체적으로 샤프한 형상으로 제조하는데 한계가 있었고, 이에 이차 전지(3)의 외관도 미려하지 않아서 상품성도 저하되는 문제가 있었다.
도 8은 본 발명의 일 실시예에 따른 컵부(133)와 브릿지(136)를 확대한 개략도이고, 도 9는 본 발명의 일 실시예에 따른 컵부(133)와 디가싱부(137)를 확대한 개략도이다.
본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라, 브릿지(136)의 두께(t)를 더욱 얇게, 컵부(133)의 엣지(16)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있고, 전극 조립체(10)의 부피를 증가시킬 수 있다. 따라서, 이차 전지(1)에서 불필요한 부피도 감소시키므로, 부피 대비 에너지 밀도가 증가할 수 있다. 또한, 파우치 형 전지 케이스(13) 및 파우치 형 이차 전지(1)를 전체적으로 샤프한 형상으로 제조할 수 있으므로, 이차 전지(1)의 외관도 우수하고 상품성도 향상될 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 파우치 형 전지 케이스(13)는, 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10)를 내부에 수용하는 컵부(133)가 형성되되, 상기 컵부(133)는, 주변을 포위하는 복수의 외벽(138)과 바닥부(1332)를 각각 연결하는 복수의 펀치 엣지(161)를 포함하고, 펀치 엣지(161)는 적어도 하나가 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 펀치 엣지(161)의 곡률 반경(R2)이 컵부(133)의 깊이(D)의 1/20보다 작으면, 펀치 엣지(161)에 응력이 지나치게 집중되어 크랙이 발생할 수 있고, 펀치 엣지(161)의 곡률 반경(R2)이 컵부(133)의 깊이(D)의 1/6보다 크면, 컵부(133)가 샤프하게 형성되지 않으므로 에너지 밀도가 떨어질 수 있다.
구체적으로, 상기 펀치 엣지(161)는, 적어도 하나가 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
또한, 상기 컵부(133)가 각각 형성된 제1 케이스(131)와 제2 케이스(132); 및 두 개의 상기 컵부(133) 사이에 형성되는 브릿지(136)를 포함하되, 상기 브릿지(136)는, 전극 조립체(10)의 폭의 1/200 내지 1/30인 두께를 가질 수 있다. 브릿지(136)의 두께(t)가 전극 조립체(10)의 폭의 1/200 보다 작으면, 브릿지(136)에 응력이 지나치게 집중되어 크랙이 발생할 수 있고, 전극 조립체(10)의 폭의 1/30 보다 크면, 브릿지(136)가 샤프하게 형성되지 않으므로 에너지 밀도가 떨어질 수 있다.
구체적으로, 브릿지(136)는 두께가 2 mm 이하, 특히 1.4 mm 이하일 수 있다.
또한, 복수의 상기 펀치 엣지(161) 중에서, 상기 브릿지(136) 측을 향하는 브릿지(136) 측 외벽(1381)과 상기 바닥부(1332)를 서로 연결하는 브릿지(136) 측 펀치 엣지(1611)가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 펀치 엣지(1611)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
또한, 상기 브릿지(136)와 상기 브릿지(136) 측 외벽(1381)의 경계점(P1)을 통과하고 상기 바닥부(1332)와 수직인 브릿지 수직선(V1)과, 상기 브릿지(136) 측 펀치 엣지(1611)와 상기 브릿지(136) 측 외벽(1381)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 사이의 수직 거리가 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
컵부(133)는 펀치(22) 등을 이용하여 유연성을 가지는 파우치 필름(135)을 성형함으로써 형성된다. 이러한 컵부(133)는 복수의 외벽(138)과 바닥부(1332)로 주변이 포위되고, 이러한 외벽(138)과 바닥부(1332)로 형성되는 공간이 수용 공간(1331)으로 전극 조립체(10)를 수용한다.
컵부(133)의 외벽(138)은, 컵부(133)의 주변을 포위하여 컵부(133)의 형상을 구체화한다. 외벽(138)은 컵부(133)의 주변에 복수로 형성되며, 브릿지(136) 측에도 형성되고, 하기 기술할 디가싱부(137) 측에도 형성되며, 전극 리드(12) 측에도 형성된다. 이러한 외벽(138)은 상단이 컵부(133)의 개방부를 향하고, 하단이 바닥부(1332)를 향한다.
한편 상기 기술한 바와 같이, 컵부(133)의 엣지(16)는, 펀치(22)의 엣지(221)에 대응되며 형성되는 펀치 엣지(161) 및 다이(21)의 엣지(213, 도 6에 도시됨)에 대응되며 형성되는 다이 엣지(162)를 포함한다. 상기 외벽(138)의 상단으로부터 외측으로 사이드(134) 및 디가싱부(137)가 형성되며, 다이 엣지(162)는 외벽(138)의 상단과 사이드(134) 또는 디가싱부(137)를 각각 연결한다. 그리고 펀치 엣지(161)는 외벽(138)의 하단과 바닥부(1332)를 각각 연결한다.
컵부(133)의 외벽(138)이 복수로 형성되므로, 컵부(133)의 엣지(16)들도 외벽(138)의 개수만큼 복수로 형성된다. 즉, 컵부(133)가 사각형으로 형성된다면, 컵부(133)의 외벽(138)도 4개가 형성되므로, 펀치 엣지(161)도 4개, 다이 엣지(162)도 4개가 형성된다. 그리고 본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라, 상기 컵부(133)의 펀치 엣지(161)는 적어도 하나가 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 펀치 엣지(161) 중 적어도 하나는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
특히 본 발명의 일 실시예에 따르면, 하나의 파우치 필름(135)에 두 개의 컵부(133)를 형성하고, 두 개의 컵부(133) 사이에 브릿지(136)도 함께 형성된다. 그러면 도 8에 도시된 바와 같이, 복수의 상기 펀치 엣지(161) 중에서, 상기 브릿지(136) 측을 향하는 브릿지(136) 측 외벽(1381)과 상기 바닥부(1332)를 서로 연결하는 브릿지(136) 측 펀치 엣지(1611)가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 브릿지(136) 측 펀치 엣지(1611)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
또한, 도 9에 도시된 바와 같이, 복수의 상기 펀치 엣지(161) 중에서, 상기 디가싱부(137) 또는 전극 리드(12)에 형성된 다이 엣지(162) 측을 향하는 다이 엣지(162) 측 외벽(1382)과 상기 바닥부(1332)를 서로 연결하는 다이 엣지(162) 측 펀치 엣지(1612)도, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 다이 엣지(162)의 곡률 반경이 컵부(133)의 깊이(D)의 1/20보다 작으면, 다이 엣지(162)에 응력이 지나치게 집중되어 크랙이 발생할 수 있고, 다이 엣지(162)의 곡률 반경이 컵부(133)의 깊이(D)의 1/6보다 크면, 컵부(133)의 상단이 샤프하게 형성되지 않으므로 에너지 밀도가 떨어질 수 있다.
구체적으로, 상기 다이 엣지(162) 측 펀치 엣지(1612)도 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수도 있다. 이 때, 펀치 엣지(161)와 외벽(138)의 경계점(P2, P4)에서, 기울기가 연속적인 것이 바람직하다.
이를 위해, 펀치(22)의 엣지(221)에도 소정의 곡률 반경으로 라운딩 처리가 될 수 있다. 여기서, 펀치(22)의 엣지(221)의 곡률 반경은, 펀치 엣지(161)의 곡률 반경(R2)에서 파우치 필름(135) 자체의 두께를 뺀 수치일 수 있다. 예를 들어, 파우치 필름(135)의 두께가 0.2mm이면, 펀치(22)의 엣지(221)의 곡률 반경이 0.5 mm 이하일 때, 펀치 엣지(161)의 곡률 반경(R2)은 0.7 mm 이하이다.
본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라 컵부(133)의 깊이(D)를 어느 정도 깊게 성형하더라도, 이러한 펀치(22)가 파우치 필름(135)을 드로잉 성형하면, 컵부(133)의 펀치 엣지(161)에 크랙이 발생하는 것을 방지할 수 있다. 예를 들어, 컵부(133)를 한 개 성형하는 경우를 기준으로 7 mm 이상, 컵부(133)를 두 개 성형하는 경우를 기준으로 6.5 mm 이상, 심지어 10 mm 이상으로 성형하더라도 컵부(133)의 펀치 엣지(161)에 크랙이 발생하지 않을 수 있다.
여기서 상기 기술한, 크랙이 발생할 수 있는 컵부(133)의 깊이(D)는, 수분 배리어층(1352)의 알루미늄 합금의 잔존율을 기준으로, 상기 잔존율이 60% 이상일 경우에는 양품, 잔존율이 60% 미만일 경우에는 불량으로 판단한다. 상기 잔존율이란, 파우치 필름(135)의 특정 지점에서, 수분 배리어층(1352)의 알루미늄 합금의 성형 전 잔존량 대비 성형 후 잔존량의 비율을 의미한다. 실제로, 상기 잔존율이 60% 미만일 경우에는, 파우치 필름(135)에 컵부(133)를 드로잉 성형하면 특정 지점에서 크랙이 발생하는 빈도가 높으나, 잔존율이 60% 이상일 경우에는 크랙이 발생하지 않는다.
종래에는 컵부(333)의 깊이(D')를 펀치 엣지(361)의 곡률 반경(R2') 또는 다이 엣지(362)의 곡률 반경의 5배, 특히 3.25배 보다 크게 형성하면 잔존율이 상대적으로 낮아 크랙이 발생하는 빈도가 높았다. 이하, 크랙이 쉽게 발생할 수 있다는 것은, 잔존율이 상대적으로 낮아 크랙이 발생하는 빈도가 높다는 것을 의미한다.
한편, 외벽(138)은 상단이 컵부(133)의 개방부를 향하며, 컵부(133)의 외측으로 사이드(134) 및 디가싱부(137)가 연장된다. 이 때 도 9에 도시된 바와 같이, 컵부(133)는 외벽(138)의 상단과 사이드(134) 또는 디가싱부(137)를 각각 연결하는 복수의 다이 엣지(162)를 더 포함할 수 있다. 그리고 적어도 하나의 다이 엣지(162)도 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 적어도 하나의 다이 엣지(162)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.이를 위해, 다이(21)의 엣지(213)도 소정의 곡률 반경으로 라운딩 처리가 될 수 있다. 여기서, 다이(21)의 엣지(213)의 곡률 반경은 다이 엣지(162)의 곡률 반경에서 파우치 필름(135) 자체의 두께를 뺀 수치일 수 있다. 예를 들어, 파우치 필름(135)의 두께가 0.2mm이면, 다이(21)의 엣지(213)의 곡률 반경이 0.5 mm 이하일 때, 다이 엣지(162)의 곡률 반경은 0.7 mm 이하이다.
특히 상기 기술한 바와 같이, 하나의 파우치 필름(135)에 두 개의 컵부(133)를 형성할 수도 있고, 두 개의 컵부(133) 사이에 브릿지(136)도 함께 형성된다. 즉, 본 발명의 일 실시예에 따른 파우치 형 전지 케이스(13)는 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10)를 내부에 수용하는 컵부(133)가 각각 형성된 제1 케이스(131)와 제2 케이스(132); 및 두 개의 상기 컵부(133) 사이에 형성되는 브릿지(136)를 포함한다. 브릿지(136)도 다이(21)의 격벽(212)에 대응되어 형성되므로, 브릿지(136)는 복수의 다이 엣지(162) 중 하나의 종류가 될 수 있다.
따라서 본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라, 브릿지(136)의 두께(t)는 전극 조립체(10)의 폭(EW)(도 10 참조)의 1/200 내지 1/30 일 수 있다. 구체적으로, 브릿지(136)의 두께(t)를 2 mm 이하, 특히 1.4 mm 이하로 형성할 수 있다.
여기서 브릿지(136)의 두께(t)는 도 8에 도시된 바와 같이, 브릿지(136)와 브릿지(136) 측 외벽(1381)의 두 경계점(P1) 사이의 거리인 것이 바람직하다. 구체적으로, 브릿지(136)와 브릿지(136) 측 외벽(1381)의 경계점(P1)을 각각 통과하고 바닥부(1332)와 수직인 두 개의 브릿지 수직선(V1) 사이의 거리인 것이 바람직하다. 따라서, 브릿지(136)가 일정한 곡률 반경을 갖는 경우, 브릿지(136)의 곡률 반경은 두께(t)의 절반에 대응될 수 있다. 즉, 브릿지(136)의 곡률 반경은 1mm 이하, 특히 0.7mm 이하일 수 있다.
이를 위해, 성형부(211)의 격벽(212)의 상면에도 소정의 곡률 반경으로 라운딩 처리가 될 수 있다. 이 때, 브릿지(136)와 상기 브릿지(136) 측 외벽(1381)의 경계점(P1)에서, 기울기가 연속적인 것이 바람직하다. 여기서, 성형부(211)의 격벽(212)의 상면의 곡률 반경은, 브릿지(136)의 곡률 반경에서 파우치 필름(135) 자체의 두께를 뺀 수치일 수 있다. 예를 들어, 파우치 필름(135)의 두께가 0.2mm 이면, 격벽(212)의 상면의 곡률 반경이 0.5 mm 이하일 때, 브릿지(136)의 곡률 반경은 0.7 mm 이하이다.
본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라, 컵부(133)의 깊이(D)를 어느 정도 깊게 성형하며, 이러한 다이(21)의 엣지(213)의 곡률 반경이 감소하고 격벽(212)의 두께가 얇게 형성되더라도, 다이 엣지(162) 및 브릿지(136)에 크랙이 발생하는 것을 방지할 수 있다. 이러한 브릿지(136)는 단면이 부채꼴 형상을 가질 수 있으며, 컵부(133)의 외벽(138)이 수직에 가깝게 형성될수록, 단면이 반원에 가까운 형상을 가질 수 있다.
여기서 컵부(133)의 깊이(D)를, 컵부(133)를 두 개 성형하는 경우를 기준으로 3 mm 이상, 특히 6.5 mm 이상, 심지어 10 mm 이상으로 성형하더라도, 브릿지(136)에 크랙이 발생하는 것을 방지할 수 있다.
나아가, 파우치 필름(135)의 성형성이 개선됨에 따라, 클리어런스(CL)를 0.5 mm 이하로 감소시켜, 복수의 외벽(138)이 모두 수직에 가깝게 형성될 수 있다. 예를 들어 도 8에 도시된 바와 같이, 복수의 외벽(138) 중에서 브릿지(136) 측 외벽(1381)이 수직에 가깝게 형성될 수 있다. 즉, 상기 브릿지(136)와 상기 브릿지(136) 측 외벽(1381)의 경계점(P1)을 통과하고 상기 바닥부(1332)와 수직인 브릿지 수직선(V1)과, 상기 브릿지(136) 측 펀치 엣지(1611)와 상기 브릿지(136) 측 외벽(1381)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 사이의 수직 거리인 클리어런스(CL)가 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
또한 도 9에 도시된 바와 같이, 복수의 외벽(138) 중에서 다이 엣지(162) 측 외벽(1382)도 수직에 가깝게 형성될 수 있다. 즉, 다이 엣지(162)와 다이 엣지(162) 측 외벽(1382)의 경계점(P3)을 통과하고 상기 바닥부(1332)와 수직인 다이 엣지 수직선(V4)과, 상기 다이 엣지(162) 측 펀치 엣지(1612)와 상기 다이 엣지(162) 측 외벽(1382)의 경계점(P4)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 사이의 수직 거리인 클리어런스(CL)가 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
그럼으로써, 컵부(133)의 깊이(D)를, 컵부(133)를 두 개 성형하는 경우를 기준으로 3 mm 이상, 특히 6.5 mm 이상, 심지어 10 mm 이상으로 성형하더라도, 컵부(133)의 외벽(138)이 바닥부(1332)로부터 경사각이 90° 내지 95° 사이인 경사를 가질 수 있으며, 나아가 90°내지 93° 사이인 경사를 가지도록 수직에 가깝게 형성할 수 있고, 전지 케이스(13)에 크랙이 발생하는 것을 방지할 수 있다. 또한, 컵부(133)의 외벽(138)과 전극 조립체(10) 사이의 공간(17)도 감소하므로, 이차 전지(1)의 부피 대비 에너지 밀도도 증가할 수 있다.
한편, 컵부(133)의 펀치 엣지(161)의 곡률 반경(R2)을 더욱 감소시킬 수 있으므로, 전극 조립체(10)가 컵부(133)의 외벽(138)에 매우 가까이 위치하더라도, 전극 조립체(10)의 전극(101)이 파손되는 것을 방지할 수 있다.
이를 위해 본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)의 제조 방법은, 전극(101) 및 분리막(102)을 적층하여 전극 조립체(10)를 형성하는 단계; 파우치 필름(135)을 성형하여 컵부(133)를 형성함으로써 파우치 형 전지 케이스(13)를 제조하는 단계; 상기 컵부(133)의 수용 공간(1331)에 상기 전극 조립체(10)를 수납하는 단계; 및 상기 컵부(133)의 외측으로 연장 형성된 사이드(134)를 실링하여 파우치 형 이차 전지(1)를 제조하는 단계를 포함할 수 있다.
특히, 상기 전극 조립체(10)를 수납하는 단계에 있어서, 상기 컵부(133)의 폭(CW)과 상기 전극 조립체(10)의 폭(EW)의 차이는, 2.5 mm 이하, 특히 1.7 mm 이하일 수 있다. 여기서, 전극 조립체(10)의 폭(EW)은 전극(101)의 폭을 의미할 수 있다. 즉, 분리막(102)에서 전극(101)보다 돌출된 주변부(1021)는 상기 폭(EW)의 산출에서 제외될 수 있다.
또한, 상기 전극(101)의 적어도 하나의 일단이, 상기 펀치 엣지(161)와 상기 외벽(138)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2)으로부터, 수직 거리(g)가 0.75 mm, 특히 0.5 mm 이하에 위치하도록 상기 전극 조립체(10)를 수납할 수 있다.
구체적으로 도 8 및 도 9에 도시된 바와 같이, 펀치 엣지(161)와 외벽(138)의 경계점(P2)을 통과하고 바닥부(1332)로부터 수직인 엣지 수직선(V2)을 가상으로 도시한다. 그리고 전극(101)의 적어도 하나의 일단이, 상기 엣지 수직선(V2)으로부터, 수직 거리(g)가 0.75 mm 이하, 특히 0.5 mm 이하에 위치하도록 전극 조립체(10)를 수납한다. 더욱 구체적으로, 엣지 수직선(V2)으로부터 수직 거리(g)가 0.75 mm, 특히 0.5 mm 이고 바닥부(1332)와 수직인 기준 수직선(V3)을 가상으로 도시한다. 이 때, 펀치 엣지(161)의 곡률 반경(R2)이 특히 0.7 mm 이하일 수 있으므로, 기준 수직선(V3)은 펀치 엣지(161)의 곡률 중심(C)을 통과할 수도 있다. 그리고 전극(101)의 일단이 엣지 수직선(V2)과 기준 수직선(V3)의 사이에 위치하도록 전극 조립체(10)를 수납한다. 이는, 이차 전지(1) 자체를 분해하여 확인할 수도 있으나, 이에 제한되지 않고 CT(Computerized Tomography), MRI(Magnetic Resonance Imaging), X-Ray 등 이차 전지(1)를 분해하지 않고도 다양한 방법으로 확인할 수도 있다. 그럼으로써, 전극(101)이 파손되는 것을 방지하면서 컵부(133)의 부피 대비 전극 조립체(10)의 부피 비율이 더욱 증가할 수 있어, 부피 대비 에너지 효율도 증가할 수 있다. 또한, 컵부(133)의 내부에 불필요한 부피가 감소하므로, 전극 조립체(10)가 컵부(133)의 내부에서 움직이는 것을 방지할 수 있다.
나아가, 전극 조립체(10)를 컵부(133)의 외벽(138)에 매우 가까이 위치하도록 수납할 수 있으므로, 분리막(102)이 무질서하게 구겨지거나 폴딩되지 않을 수 있다. 도 8에 도시된 바와 같이, 분리막(102)이 전극(101)보다 외측으로 돌출된 주변부(1021)가, 전극(101)의 일단을 기준으로, 바닥부(1332)의 반대 방향을 향하여 폴딩될 수 있다.
전극 조립체(10)는 전극(101) 및 분리막(102)이 적층되어 형성되며, 이러한 전극(101) 및 분리막(102)이 각각 복수로 형성될 수 있다. 전지 케이스(13)가 제1 케이스(131) 및 제2 케이스(132)를 포함하고, 전지 케이스(13)의 브릿지(136)가 폴딩되어 전극 조립체(10)의 상부도 컵부(133)에 수납된다면, 상기 제1 케이스(131)의 상기 컵부(133)에 수납된 상기 분리막(102)은, 상기 주변부(1021)가, 상기 제2 케이스(132)를 향하여 폴딩되고, 상기 제2 케이스(132)의 상기 컵부(133)에 수납된 상기 분리막(102)은, 상기 주변부(1021)가, 상기 제1 케이스(131)를 향하여 폴딩될 수 있다. 그럼으로써, 분리막(102)의 주변부(1021)들이 정렬되어 폴딩됨으로써, 질서를 가질 수 있다. 그리고 전극(101)이 외부로 노출되지 않도록 분리막(102)이 커버하므로, 단락이 발생하는 것을 방지할 수도 있다.
좀 더 상세히, 전극 조립체(10)가 컵부(133)에 수납되기 이전 상태에서, 분리막(102)의 폭은 컵부(133)의 폭(CW)보다 넓을 수 있다. 따라서, 전극 조립체(10)가 컵부(133)에 수납되는 과정에서, 분리막(102)의 주변부(1021)는 컵부(133)의 내둘레에 접하여 일정 방향으로 폴딩될 수 있다.
컵부(133)의 폭(CW)과 상기 전극 조립체(10)의 폭(EW)의 차이는, 2.5 mm 이하, 특히 1.7 mm 이하로 매우 작을 수 있다. 따라서, 전극 조립체(10)가 컵부(133)로 수납되는 과정에서 분리막(102)의 주변부(1021)가 용이하게 폴딩되기 위한 공정이 요구될 수 있다.
따라서, 상기 컵부(133)의 수용 공간(1331)에 상기 전극 조립체(10)를 수납하는 단계는, 전극 조립체(10)를 컵부(133)의 내부로 가압하는 과정을 포함할 수 있다. 이로써, 전극 조립체(10)를 컵부에 얹히는 종래의 방식과 비교하여, 컵부(133)의 폭(CW)과 상기 전극 조립체(10)의 폭(EW)의 차이를 작게 유지하면서도, 분리막(102)을 일정 방향으로 폴딩시켜 전극 조립체(10)를 컵부(133)의 수용 공간(1331)으로 용이하고 신뢰성있게 수납시킬 수 있다.
또한, 상기 컵부(133)의 수용 공간(1331)에 상기 전극 조립체(10)를 수납하는 단계는, 전극 조립체(10)를 컵부(133)의 내부로 가압하기 이전에, 전극 조립체(10)에서 복수개 분리막(102)의 각 코너(꼭지점)를 열과 압력으로 폴딩시키는 과정을 더 포함할 수 있다. 상기 과정은, 별도의 실링툴을 사용하여 복수개 분리막(102)의 각 코너(꼭지점)가, 전극 조립체(10)의 적층 방향에 대한 중앙부로 모이도록 폴딩시킬 수 있다.
즉, 분리막(102)의 4개 코너가 기 정렬된 상태에서 전극 조립체(10)가 컵부(133)의 내부로 삽입될 수 있다. 이로써, 전극 조립체(10)를 컵부(133)의 수용 공간(1331)으로 원활하게 삽입될 수 있다.이와 같이, 본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라, 브릿지(136)의 두께(t)를 더욱 얇게, 컵부(133)의 엣지(16)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있고, 전극 조립체(10)의 부피를 증가시킬 수 있다. 따라서, 이차 전지(1)에서 불필요한 부피도 감소시키므로, 부피 대비 에너지 밀도가 증가할 수 있다. 또한, 파우치 형 전지 케이스(13) 및 파우치 형 이차 전지(1)를 전체적으로 샤프한 형상으로 제조할 수 있으므로, 이차 전지(1)의 외관도 미려하고 상품성도 향상될 수 있다.
도 10은 본 발명의 일 실시예에 따른 컵부(133)에 전극 조립체(10)가 수납된 모습을 나타낸 상면 개략도이다.
본 발명의 일 실시예에 따르면 상기 기술한 바와 같이, 컵부(133)의 펀치 엣지(161)의 곡률 반경(R2)을 더욱 감소시킬 수 있으므로, 전극(101)의 일단이 엣지 수직선(V2)과 기준 수직선(V3)의 사이에 위치하도록 전극 조립체(10)를 수납한다. 그럼으로써, 전극 조립체(10)가 컵부(133)의 외벽(138)에 매우 가까이 위치하더라도, 전극 조립체(10)의 전극(101)이 파손되는 것을 방지할 수 있다.
엣지 수직선(V2)과 기준 수직선(V3)은 브릿지(136) 측 펀치 엣지(1611)에도 도시할 수 있고, 다이 엣지(162) 측 펀치 엣지(1612)에도 도시할 수 있다. 이러한 엣지 수직선(V2)과 기준 수직선(V3) 사이의 수직 거리(g)는 0.75 mm, 특히 0.5 mm 일 수 있다.
또한, 전지 케이스(13)에 컵부(133)가 두 개 형성된다면, 브릿지(136)가 존재하므로, 컵부(133)의 일측에는 브릿지 수직선(V1)을, 타측에는 다이 엣지 수직선(V4)을 도시할 수 있다. 이러한 브릿지 수직선(V1)과 엣지 수직선(V2) 사이의 수직 거리(CL)는 0.5 mm 이하, 특히 0.35 mm 이하일 수 있고, 다이 엣지 수직선(V4)과 엣지 수직선(V2) 사이의 수직 거리(CL)도 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
그런데 전지 케이스(13)에 컵부(133)가 하나만 형성된다면, 브릿지가 존재하지 않는다. 다만, 컵부(133)의 양 측에 모두 다이 엣지(162)가 형성되므로, 컵부(133)의 양 측에 각각 다이 엣지 수직선(V4)을 도시할 수 있다.
전지 케이스(13)에 컵부(133)가 두 개 형성된다면, 컵부(133)의 폭(CW)을 브릿지 수직선(V1)으로부터 다이 엣지 수직선(V4)까지의 수직 거리로 볼 수 있다. 그런데, 컵부(133)가 하나만 형성된다면, 컵부(133)의 폭(CW)을 두 개의 다이 엣지 수직선(V4) 사이의 수직 거리로 볼 수도 있다.
브릿지 수직선(V1) 및 다이 엣지 수직선(V4)은 모두 컵부(133)의 외벽(138)의 상단을 통과한다. 따라서 본 발명의 일 실시예에 따르면, 컵부(133)의 폭(CW)은, 컵부(133)의 양 측 외벽(138)의 상단 사이의 수직 거리일 수 있다. 컵부(133)의 폭(CW)과 전극 조립체(10)의 폭(EW)의 차이는 2.5 mm 이하, 특히 1.7 mm 이하일 수 있다. 그리고, 앞서 설명한 바와 같이 전극 조립체(10)의 폭(EW)은 60mm 이상일 수 있다.
컵부(133)의 폭(CW)은, 전지 케이스(13)에서는 상기 컵부(133)의 양 측 외벽(138)의 상단 사이의 수직 거리를 측정함으로써 도출할 수 있다. 그리고, 이차 전지(1)에서는 레이저 변위 센서 등을 이용하여, 컵부(133)의 외부에서 양 측 외벽(138)의 상단 사이의 위치를 파악하고, 두 위치 사이의 거리를 연산함으로써 도출할 수 있다. 이 때 컵부(133)의 외부에서, 레이저 변위 센서 등이 레이저를 조사하면서 사이드(134)로부터 다이 엣지(162) 및 상기 외벽(138)을 향해 이동하고, 급격하게 변위가 변화하는 지점을 감지하면 해당 지점을 외벽(138)의 상단으로 인식할 수 있다. 이상은 컵부의 폭(CW)을 측정하는 방법을 일 예로 기재한 것이며, 반드시 상기 측정 방법으로 한정되는 경우만이 본 발명의 범위에 속하게 되는 것은 아니다. 컵부의 폭(CW)은 청구항의 기재와 본 발명의 취지에 해당하는 것이라면 모두 본 발명에서 의미하는 컵부의 폭(CW)이 될 수 있다.
도 11은 종래의 코너(364)를 나타낸 개략도이고, 도 12는 본 발명의 일 실시예에 따른 코너(164)를 나타낸 개략도이다.
컵부(133)의 엣지(16)는 펀치 엣지(161) 및 다이 엣지(162) 뿐만 아니라, 도 12에 도시된 바와 같이 컵부(133)의 인접한 두 개의 외벽(138)을 서로 연결하는 두께 엣지(163)를 더 포함한다. 두께 엣지(163)는 컵부(133)의 두께 방향으로 형성되며, 파우치 필름(135)이 연신될 때 다이(21)의 성형부(211)의 코너와 펀치(22)의 코너 사이에서 연신되면서 형성된다. 그리고 두께 엣지(163)도 적어도 하나가 라운딩되며 형성될 수 있다.
이러한 두께 엣지(163)는 곡률 반경이, 서로 인접한 두 개의 펀치 엣지(161), 즉 제1 펀치 엣지(1613) 및 제2 펀치 엣지(1614)의 곡률 반경(R2)과 동일할 수도 있으나 상이하게 형성될 수도 있다. 예를 들어, 상기 기술한 바와 같이 펀치 엣지(161)는, 적어도 하나가 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있고, 두께 엣지(163)는, 적어도 하나가 0.5 mm 내지 5 mm, 특히 0.5 mm 내지 2 mm 의 곡률 반경으로 라운딩되며 형성될 수 있다. 종래에는 두께 엣지(363)가 5 mm 이하, 특히 2 mm 이하의 곡률 반경으로 라운딩되며 형성될 경우, 컵부(333)의 두께 엣지(363)에도 응력이 집중되어 쉽게 크랙이 발생하는 문제가 있었다. 그러나, 본 발명의 일 실시예에 따르면, 컵부(133)의 깊이(D)를 어느 정도 깊게 성형하더라도 컵부(133)의 두께 엣지(163)에 크랙이 발생하는 것을 방지할 수 있다. 이 때, 상기 제1 펀치 엣지(1613) 및 제2 펀치 엣지(1614)는, 둘 중 하나가 브릿지(136) 측 펀치 엣지(1611)이고 나머지 하나는 전극 리드(12) 측 펀치 엣지(미도시)일 수 있다. 또는 둘 중 하나가 다이 엣지(162) 측 펀치 엣지(1612)이고 나머지 하나는 전극 리드(12) 측 펀치 엣지(미도시)일 수도 있다.
두께 엣지(163)는 도 12에 도시된 바와 같이 서로 인접한 두 개의 펀치 엣지(161) 즉, 제1 펀치 엣지(1613) 및 제2 펀치 엣지(1614)와 연결되어 코너(164)를 형성한다. 종래에는 도 11에 도시된 바와 같이, 펀치(22)의 복수의 엣지(221)들에 모두 동일한 곡률 반경으로 라운딩 처리를 하였고, 그에 따라 펀치(22)의 코너(미도시)에도 자연스럽게 동일한 곡률 반경으로 라운딩 처리가 되었다. 따라서, 이러한 펀치(22)로 파우치 필름(135)을 성형하여 파우치 필름(135)이 연신되면, 코너(364)도 자연스럽게 펀치 엣지(361)와 동일한 곡률 반경으로 라운딩되며 형성되었다.
그런데, 파우치 필름(135)이 연신될 때 코너(364)에 응력이 집중되는 문제가 있었다. 특히, 코너(364)는 세 개의 엣지(36)가 만나서 형성되므로, 펀치 엣지(361) 또는 두께 엣지(363)보다 더욱 많이 연신되어, 펀치 엣지(361) 또는 두께 엣지(363)보다 더욱 응력이 많이 집중되었다. 따라서 파우치 필름(135)의 연신이 과도하여, 크랙이 발생하기 직전에 특정 부분이 하얀색으로 변화하는 백화현상이 발생하였고, 결국 쉽게 크랙이 발생하는 문제가 있었다.
따라서 본 발명의 일 실시예에 따르면 도 12에 도시된 바와 같이, 상기 코너(164)도 적어도 하나가 라운딩되며 형성되고, 이러한 코너(164)는 곡률 반경이 상기 펀치 엣지(161) 및 상기 두께 엣지(163) 중 적어도 하나의 곡률 반경 이상일 수 있다.
구체적으로 본 발명의 일 실시예에 따르면, 코너(164)는 내부에서 곡률 반경이 변화할 수 있다. 즉, 코너(164)의 중심부(1641)의 곡률 반경과 코너(164)의 주변부(1642)의 곡률 반경이 서로 상이할 수 있다. 특히, 코너(164)의 중심부(1641)의 곡률 반경이, 코너(164)의 주변부(1642)의 곡률 반경보다 더 클 수 있다. 예를 들면, 코너(164)의 주변부(1642)의 곡률 반경은, 제1 펀치 엣지(1613), 제2 펀치 엣지(1614) 및 두께 엣지(163)에 상대적으로 인접하므로, 펀치 엣지(161) 및 두께 엣지(163) 중 적어도 하나의 곡률 반경과 동일할 수 있다. 반면에 코너(164)의 중심부(1641)의 곡률 반경은, 제1 펀치 엣지(1613), 제2 펀치 엣지(1614) 및 두께 엣지(163)에 상대적으로 이격되므로, 펀치 엣지(161) 및 두께 엣지(163) 중 적어도 하나의 곡률 반경보다 클 수 있다. 즉, 코너(164)는 곡률 반경이 상기 펀치 엣지(161) 및 상기 두께 엣지(163) 중 적어도 하나의 곡률 반경 이상일 수 있다.
따라서, 코너(164)의 곡률 반경은, 코너(164)의 주변부(1642)로부터 코너(164)의 중심부(1641)로 갈수록 점점 커질 수 있다. 그리고 상기 기술한 바와 같이 코너(164)는 내부에서 곡률 반경이 일정하지 않고 변화하므로, 코너(164)의 중심부(1641)는 정확한 구면이 아닌, 비구면 형상을 가질 수 있다.
코너(164)는 펀치 엣지(161)와 달리, 곡률 반경뿐만 아니라 컵부(133)에서 형성되는 범위도 명확히 설정되어야 한다. 만약 코너(164)가 컵부(133)에서 형성되는 범위가 과도하게 좁다면, 여전히 파우치 필름(135)의 연신이 과도하여, 백화현상 또는 크랙이 발생하는 문제가 있다. 반면에 코너(164)가 컵부(133)에서 형성되는 범위가 과도하게 넓다면, 오히려 컵부(133)의 외벽(138)과 전극 조립체(10) 사이의 공간(17)이 감소하므로 이차 전지(1)의 부피 대비 에너지 밀도가 증가할 수 있다. 따라서, 본 발명의 일 실시예에 따르면 도 12에 도시된 바와 같이, 코너(164)는 두께 엣지(163)로부터 컵부(133)의 길이 방향(lc)으로 2 mm 내지 3.5 mm, 두께 엣지(163)로부터 컵부(133)의 폭 방향(wc)으로 2 mm 내지 3.5 mm, 펀치 엣지(161)로부터 컵부(133)의 두께 방향(dc)으로 2 mm 내지 3.5 mm 내에 형성될 수 있다. 그리고 이러한 코너(164)가 형성되는 범위는, 컵부(133)의 깊이(D)가 깊을수록 점점 넓어질 수 있다.
컵부(133)의 코너(164)가 상기와 같이 형성됨으로써, 코너(164)에 더욱 집중되는 응력이 분산될 수 있어 백화현상 및 크랙이 발생하는 문제를 방지할 수 있다.
도 13은 본 발명의 일 실시예에 따른 전지 케이스(13)를 폴딩하는 모습을 나타낸 개략도이고, 도 14는 본 발명의 일 실시예에 따른 전지 케이스(13)가 폴딩된 모습을 나타낸 개략도이다.
파우치 필름(135)에 두 개의 컵부(133)를 형성하면, 전지 케이스(13)의 제1 케이스(131) 및 제2 케이스(132)에는 각각 컵부(133)가 형성된다. 그 후에 제1 케이스(131)의 컵부(133)에 마련된 수용 공간(1331)에 전극 조립체(10)를 수납한 후에, 도 13에 도시된 바와 같이 두 개의 컵부(133)가 서로 마주보도록 전지 케이스(13)에서 두 컵부(133)의 사이에 형성된 브릿지(136)를 폴딩한다. 이러한 브릿지(136)가 폴딩되면서 이차 전지(1)의 일측에서 폴딩부(139)가 형성된다. 그리고, 내부에 전해질을 주입하고 제1 케이스(131)와 제2 케이스(132)의 컵부(133)의 외측으로 연장 형성된 사이드(134)를 실링함으로써 도 14에 도시된 바와 같이, 파우치 형 이차 전지(1)가 제조될 수 있다.
이와 같이 제조된 본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)는, 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10); 및 상기 전극 조립체(10)를 내부에 수용하는 컵부(133)가 형성된 파우치 형 전지 케이스(13)를 포함하되, 상기 컵부(133)는, 주변을 포위하는 복수의 외벽(138)과 바닥부(1332)를 각각 연결하는 복수의 펀치 엣지(161)를 포함할 수 있다. 상기 펀치 엣지(161)는, 적어도 하나가 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 펀치 엣지(161)는 적어도 하나가 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
상기 컵부(133)의 폭(CW)과 상기 전극 조립체(10)의 폭(EW)의 차이는, 2.5 mm 이하, 특히 1.7 mm 이하일 수 있다. 그리고, 상기 전극 조립체(10)는, 상기 전극(101)의 적어도 하나의 일단이, 상기 펀치 엣지(161)와 상기 외벽(138)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 으로부터 수직 거리(g)가 0.75 mm, 특히 0.5 mm 이하에 위치할 수 있다. 그리고 상기 전지 케이스(13)는, 컵부(133)가 적어도 하나에 형성된 제1 케이스(131)와 제2 케이스(132); 및 상기 제1 케이스(131)와 상기 제2 케이스(132)를 일체로 연결하는 폴딩부(139)를 포함할 수 있다.
전지 케이스(13)를 폴딩하여 이차 전지(1)를 제조하면, 브릿지(136)가 폴딩부(139)로 되므로, 이차 전지(1)에서는 폴딩부(139)가 제1 케이스(131)와 제2 케이스(132)를 일체로 연결한다. 그리고 브릿지(136) 측 펀치 엣지(1611)는 폴딩부(139) 측 펀치 엣지(1611), 브릿지(136) 측 외벽(1381)은 폴딩부(139) 측 외벽(1381)이 된다.
*그러면, 복수의 펀치 엣지(161) 중에서, 상기 폴딩부(139) 측을 향하는 폴딩부(139) 측 외벽(1381)과 상기 바닥부(1332)를 서로 연결하는 폴딩부(139) 측 펀치 엣지(1611)가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 폴딩부(139) 측 펀치 엣지(1611)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다. 그리고, 상기 전극 조립체(10)는, 상기 전극(101)의 적어도 하나의 일단이, 펀치 엣지(161)와 외벽(138)의 경계점(P2)을 통과하고, 상기 바닥부(1332)와 수직인 엣지 수직선(V2)과, 상기 엣지 수직선(V2)으로부터 수직 거리(g)가 0.75 mm, 특히 0.5 mm 이고 상기 바닥부(1332)와 수직인 기준 수직선(V3)의 사이에 위치할 수 있다. 상기 기술한 바와 같이, 이러한 기준 수직선(V3)은 펀치 엣지(161)의 곡률 중심(C)을 통과할 수 있다.
도 15는 본 발명의 일 실시예에 따른 전지 케이스(13)에 형성된 그루브(1391)의 확대도이다.
본 발명의 일 실시예에 따르면, 상기 기술한 바와 같이 이차 전지(1)를 제조하기 위해 전지 케이스(13)를 폴딩하면, 브릿지(136)는 폴딩부(139) 형태가 될 수 있다. 구체적으로, 전지 케이스(13)를 폴딩하면 브릿지(136)의 라운딩된 형상도 어느 정도 펴지게 되나, 브릿지(136)의 흔적이 이차 전지(1)에 남게 되며, 이러한 흔적이 폴딩부(139)가 될 수 있다. 따라서, 전지 케이스(13)의 브릿지(136)와 폴딩부(139)는 서로 대응될 수 있다.
예를 들어, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지지 않게 되면, 폴딩부(139)는 도 15에 도시된 바와 같이 이차 전지(1)의 내측으로 함몰된 그루브(1391)를 포함하여 형성된다. 이러한 경우, 폴딩부(139)는 브릿지(136)보다 곡률이 더 작으므로, 더 큰 곡률 반경을 가질 수 있다.
브릿지(136)는 곡면, 브릿지(136) 측 외벽(1381)은 평면 형상을 가지므로, 서로 변형량이 상이하다. 따라서 전지 케이스(13)를 폴딩하면 브릿지(136) 측 외벽(1381)은 상대적으로 많이 변형되나, 브릿지(136)는 라운딩된 형상이 어느 정도 펴지는 정도로만, 상대적으로 적게 변형된다. 그러면 전지 케이스(13)를 폴딩하였을 때 도 15에 도시된 바와 같이, 상기 경계점(P1)을 중심으로 기울기의 변화량의 증감이 전환된다. 즉, 상기 경계점(P1)이 각각 변곡점이 된다. 따라서 폴딩부(139)는 상기 두 개의 경계점(P1) 즉, 두 개의 변곡점 사이의 곡면으로 형성될 수 있다.
또한, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지지 않게 되면, 상기 두 경계점(P1), 즉 두 변곡점에 대응되는 부분은 외측으로 돌출되어 돌출부를 형성할 수 있다. 즉, 상기 돌출부는 폴딩부(139), 좀 더 상세히는 그루브(1391)를 사이에 두고 외측으로 돌출된 한 쌍이 형성될 수 있다.
또는, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지더라도, 브릿지(136)와 브릿지(136) 측 외벽(1381)의 경계점(P1)이 각각 이차 전지(1)에 두 개의 라인(미도시)을 형성하며, 폴딩부(139)는 이러한 두 개의 라인 사이의 평면으로 형성된다.
폴딩부(139)는 이차 전지(1)의 외관에서 육안으로 확인할 수도 있다. 그리고 상기 기술한 바와 같이, 브릿지(136)의 두께(t)는 브릿지(136)와 브릿지(136) 측 외벽(1381)의 두 경계점(P1) 사이의 거리인 것이 바람직하므로, 폴딩부(139)의 폭(FW)은, 상기 두 개의 경계점(P1) 사이의 거리이다. 만약 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지지 않게 되면, 폴딩부(139)의 폭(FW)은 두 개의 경계점(P1) 즉, 상기 두 개의 변곡점 사이의 거리이다. 또는, 브릿지(136)의 라운딩된 형상이 평면으로 완전하게 펴지게 되면, 폴딩부(139)는 두 개의 경계점(P1) 즉, 두 개의 라인 사이의 거리이다.
폴딩부(139)의 폭(FW)은, 브릿지(136)의 길이를 초과하지 않으며, 1 mm 내지 3.2 mm, 특히 1 mm 내지 1.6 mm 일 수 있다. 상기 기술한 바와 같이, 이러한 폴딩부(139)의 폭(FW)은 직접 자를 이용하여 측정할 수도 있으나, 루페(Lupe)를 이용하여 측정할 수도 있고, 3D 카메라 또는 레이저 2D 라인 센서를 이용하여 측정할 수도 있는 등 제한되지 않고 다양한 방법으로 측정할 수 있다.
종래에는 브릿지(336)의 두께(t')가 두껍게 형성되어 폴딩부(339)의 폭도 크게 형성되었고, 그에 따라 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)도 크게 형성되었다. 그러나 본 발명의 일 실시예에 따르면, 폴딩부(139)의 폭(FW)이 감소할 수 있으므로, 컵부(133)의 외벽(138)과 전극 조립체(10) 사이의 공간(17)도 감소할 수 있다. 그럼으로써, 이차 전지(1)의 부피 대비 에너지 밀도가 증가할 수 있다.
또한, 종래에는 파우치 필름의 성형성이 낮으므로 상기 돌출부가 외측으로 크게 돌출되었다. 그러나, 본 발명의 일 실시예에 따르면, 상기 돌출부가 상대적으로 작게 돌출될 수 있고, 폴딩부(139) 또는 폴딩부(139) 측 외벽(1381)의 평탄도가 향상될 수 있다.
구체적으로, 그루브(1391)의 최내측부와 상기 돌출부의 최외측부 간 간격(p)은 평탄도로 정의될 수 있다. 종래의 전지 케이스의 경우, 상기 평탄도는 1mm 이상이고 1.5mm까지도 형성되었다. 반면, 본 발명의 실시예에 따르면, 상기 평탄도(p)는 0.8 mm 이하, 바람직하게는 0.3mm 이하로 형성될 수 있다. 이로써, 이차 전지(1)의 부피 대비 에너지 밀도가 더욱 증가할 수 있다.
도 16은 본 발명의 다른 실시예에 따른 컵부(133)와 다이 엣지(1621)를 확대한 개략도이다.
본 발명의 일 실시예에 따르면, 다이(21)에 성형부(211)가 서로 이웃하도록 두 개가 형성되고, 두 성형부(211) 사이에는 격벽(212)이 형성될 수 있다. 따라서, 파우치 필름(135)을 성형하면 하나의 파우치 필름(135)에 두 개의 컵부(133)가 형성되고, 두 개의 컵부(133) 사이에 브릿지(136)도 함께 형성된다. 즉, 제1 케이스(131) 및 제2 케이스(132)에는 각각 컵부(133)가 하나씩 형성된다.
그런데, 본 발명의 다른 실시예에 따르면, 다이(21)에 성형부(211)가 하나만 형성되고, 격벽이 존재하지 않는다. 따라서, 파우치 필름(135)을 성형하면 하나의 파우치 필름(135)에 하나의 컵부(133)가 형성되며, 브릿지도 존재하지 않는다. 즉, 제1 케이스(131)에만 컵부(133)가 형성된다.
본 발명의 다른 실시예에 따르면, 상기 컵부(133)의 펀치 엣지(161a)는 적어도 하나가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 상기 컵부(133)의 펀치 엣지(161a)는 적어도 하나가 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다. 그럼으로써, 파우치 필름(135)의 성형성이 개선됨에 따라, 컵부(133)의 깊이(D)를 어느 정도 깊게, 컵부(133)를 한 개 성형하는 경우를 기준으로 3 mm 이상, 특히 7 mm 이상, 심지어 10 mm 이상으로 성형하더라도, 컵부(133)의 펀치 엣지(161a)에 크랙이 발생하는 것을 방지할 수 있다.
특히 본 발명의 다른 실시예에 따르면 도 16에 도시된 바와 같이, 복수의 상기 펀치 엣지(161a) 중에서, 제2 케이스(132a) 측을 향하는 제2 케이스(132a) 측 외벽(1381a)과 상기 바닥부(1332)를 서로 연결하는 제2 케이스(132a) 측 펀치 엣지(1611a)가, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 제2 케이스(132a) 측 펀치 엣지(1611a)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
또한, 다이 엣지(162) 측 펀치 엣지(1612)도, 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 다이 엣지(162) 측 펀치 엣지(1612)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수도 있다. 이 때, 펀치 엣지(161a)와 외벽(138)의 경계점(P2)에서, 기울기가 연속적인 것이 바람직하다.
이하, 본 발명의 다른 실시예에 대하여, 본 발명의 일 실시예와 중복되는 내용은 설명을 생략한다. 다만, 이는 설명의 편의를 위한 것이며 권리범위를 제한하기 위함이 아니다.
도 17은 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩하는 모습을 나타낸 개략도이고, 도 18은 본 발명의 다른 실시예에 따른 전지 케이스(13a)를 폴딩한 모습을 나타낸 개략도이다.
외벽(138)은 상단이 컵부(133)의 개방부를 향하며, 컵부(133)의 외측으로 제2 케이스(132a), 사이드(134) 및 디가싱부(137)가 연장된다. 이 때 외벽(138)의 상단과 제2 케이스(132a), 사이드(134) 또는 디가싱부(137)를 연결하는 다이 엣지(162)도 컵부(133)의 깊이(D)의 1/20 내지 1/6인 곡률 반경으로 라운딩되며 형성될 수 있다. 구체적으로, 다이 엣지(162)는 1 mm 이하, 특히 0.7 mm 이하인 곡률 반경으로 라운딩되며 형성될 수 있다.
즉, 본 발명의 다른 실시예에 따르면 도 17에 도시된 바와 같이, 전지 케이스(13a)에 브릿지가 존재하지 않고, 다이 엣지(1621)가 제1 케이스(131)의 컵부(133)와 제2 케이스(132a)를 서로 연결한다. 이를 위해, 다이(21)의 엣지(213)는 다이 엣지(162)에서 파우치 필름(135)의 두께를 뺀 곡률 반경으로 라운딩 처리가 될 수 있다. 예를 들어 파우치 필름(135)의 두께가 0.2mm이면, 다이(21)의 엣지(213)는 0.8mm 이하, 특히 0.5 mm 이하인 곡률 반경으로 라운딩 처리가 될 수 있다.
나아가, 클리어런스(CL)를 0.5 mm 이하로 감소시켜, 컵부(133)의 외벽(138a)이 수직에 가깝게 형성될 수도 있다. 예를 들어 도 16에 도시된 바와 같이, 다이 엣지(1621)와 제2 케이스(132a) 측 외벽(1381a)의 경계점(P1)을 통과하고 상기 바닥부(1332)와 수직인 다이 엣지 수직선(V4)과, 상기 제2 케이스(132a) 측 펀치 엣지(1611a)와 상기 제2 케이스(132a) 측 외벽(1381a)의 경계점(P2)을 통과하고 상기 바닥부(1332)와 수직인 엣지 수직선(V2) 사이의 수직 거리인 클리어런스(CL)가 0.5 mm 이하, 특히 0.35 mm 이하일 수 있다.
또한, 전극(101)의 일단이 상기 엣지 수직선(V2)과 상기 엣지 수직선(V2)으로부터 수직 거리가 0.75 mm, 특히 0.5 mm 이고 상기 바닥부(1332)와 수직인 기준 수직선(V3)의 사이에 위치하도록 전극 조립체(10)를 수납할 수 있다.
그럼으로써 본 발명의 다른 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라 컵부(133)의 깊이(D)를 어느 정도 깊게, 컵부(133)를 한 개 성형하는 기준으로, 컵부(133)의 깊이(D)를 대략 3 mm 이상, 특히 7 mm 이상, 심지어 10 mm 이상으로 성형하더라도, 컵부(133)의 펀치 엣지(161a) 및 다이 엣지(162)에 크랙이 발생하는 것을 방지할 수 있다. 또한, 컵부(133)의 외벽(138)이 바닥부(1332)로부터 경사각이 90° 내지 95°, 특히 90°내지 93° 사이인 경사를 가지도록 수직에 가깝게 형성할 수 있으며, 전극(101)이 파손되는 것을 방지하면서 컵부(133)의 부피 대비 전극 조립체(10)의 부피 비율이 더욱 증가할 수 있어, 부피 대비 에너지 효율도 증가할 수 있다.
도 19는 본 발명의 다른 실시예에 따른 전지 케이스(13a)에 형성된 그루브(1391a)의 확대도이다.
본 발명의 다른 실시예에 따르면, 이차 전지(1a)를 제조하기 위해 전지 케이스(13a)를 폴딩하면, 제2 케이스(132a) 측 다이 엣지(1621)는 폴딩부(139a)가 된다. 구체적으로, 전지 케이스(13)를 폴딩하면 다이 엣지(1621)의 라운딩된 형상도 펴지게 되나, 다이 엣지(1621)의 흔적이 이차 전지(1a)에 남게 되며, 이러한 흔적이 폴딩부(139a)가 된다. 따라서, 전지 케이스(13a)의 제2 케이스(132a) 측 다이 엣지(1621)와 폴딩부(139a)는 서로 대응된다.
예를 들어, 다이 엣지(1621)의 라운딩된 형상이 평면으로 완전하게 펴지지 않게 되면, 폴딩부(139a)는 도 19에 도시된 바와 같이 이차 전지(1a)의 내측으로 함몰된 그루브(1391a)를 포함하여 형성된다. 이러한 경우, 폴딩부(139a)는 다이 엣지(1621)보다 곡률이 더 작으므로, 더 큰 곡률 반경을 가질 수 있다.
다이 엣지(1621)는 곡면, 다이 엣지(1621) 측 외벽(1381a)은 평면 형상을 가지므로, 서로 변형량이 상이하다. 따라서 전지 케이스(13)를 폴딩하면 다이 엣지(1621) 측 외벽(1381a)은 상대적으로 많이 변형되나, 다이 엣지(1621)는 라운딩된 형상이 어느 정도 펴지는 정도로만, 상대적으로 적게 변형된다. 그러면 전지 케이스(13)를 폴딩하였을 때 도 19에 도시된 바와 같이, 상기 경계점(P1)을 중심으로 기울기의 변화량의 증감이 전환된다. 즉, 상기 경계점(P1)이 각각 변곡점이 된다. 따라서 폴딩부(139a)는 상기 두 개의 경계점(P1) 즉, 두 개의 변곡점 사이의 곡면으로 형성된다.
또는, 다이 엣지(1621)의 라운딩된 형상이 평면으로 완전하게 펴지더라도, 다이 엣지(1621)와 제2 케이스(132a) 측 외벽(1381)의 경계점(P1)과, 다이 엣지(1621)와 제2 케이스(132a)의 경계점이 이차 전지(1a)에 각각 두 개의 라인(미도시)을 형성하며, 폴딩부(139a)는 이러한 두 개의 라인 사이의 평면으로 형성된다.
이러한 폴딩부(139)의 폭(FW)은, 다이 엣지(1621)의 길이를 초과하지 않으며, 1 mm 내지 3.2 mm, 특히 1 mm 내지 1.6 mm 일 수 있다.
도 20은 종래의 전지 케이스(33)의 디가싱부(337)를 절단하기 전의 모습을 상방에서 나타낸 개략도이다.
전지 케이스(13)의 브릿지(136)가 폴딩되면서 이차 전지(1)의 일측에서 폴딩부(139)를 형성하며, 이러한 폴딩부(139)는 제1 케이스(131)와 제2 케이스(132)를 일체로 연결한다. 그런데, 전지 케이스(13)는 파우치 필름(135)을 드로잉 성형하여 형성되며, 이 때 컵부(133)만이 한정되어 연신되는 것이 아니라 컵부(133)의 주변 사이드(134)들도 전체적으로 미세하게 연신된다. 따라서, 브릿지(136)를 폴딩하면, 사이드(134)들의 미세하게 연신된 부분들이 누적되어, 폴딩부(139)의 양 단 일부에서 외측으로 돌출되면서 가시적으로 나타난다. 이를 배트 이어(Bat ear, 35 또는 15)라 한다.
배트 이어(35)의 크기는 브릿지(336)의 두께(t'), 클리어런스(CL'), 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2'), 컵부(333)의 깊이(D')에 따라 상이하다. 즉, 브릿지(336)의 두께(t')가 두꺼울수록, 클리어런스(CL')가 클수록, 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2')이 클수록, 배트 이어(35)의 크기도 증가한다. 그런데 종래에는 브릿지(336)의 두께(t'), 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2') 및 클리어런스(CL')를 개선하는데 한계가 있었다. 따라서, 도 20에 도시된 바와 같이 배트 이어(35)의 크기가 상당히 크게 형성되었고, 이를 감소시키는 데에도 한계가 있었다.
이러한 배트 이어(35)의 크기가 크게 형성되면, 이차 전지(3)의 불필요한 부피가 더 증가하므로, 이차 전지(3)의 형상 및 크기의 설계 값과 실제 값에서 오차가 발생하였다. 따라서, 이차 전지(3)들을 전지 모듈(5, 도 27에 도시됨)에 조립할 때 조립이 용이하지 않고, 이러한 배트 이어(35)를 고려하여 처음부터 이차 전지(3)의 크기를 작게 설계해야 하는 문제가 있었다. 또한, 이차 전지(3)의 부피를 증가시키므로, 부피 대비 에너지 밀도가 감소하는 문제도 있었다.
한편 상기 기술한 바와 같이, 본 발명의 일 실시예에 따른 파우치 형 전지 케이스(13)는 전극 조립체(10)를 수용하는 수용 공간(1331)이 마련된 컵부(133)와, 컵부(133)의 일측에 형성되어 디가싱 홀(H)을 통해 상기 컵부(133)의 내부에 생성되는 가스를 배출하는 디가싱부(137)를 포함한다.
그리고 사이드(134)를 실링하는 과정에서, 활성화(Formation) 공정 및 디가싱(Degassing) 공정을 수행할 수 있다. 구체적으로, 전극 조립체(10)를 컵부(133)에 수납한 후에, 전지 케이스(13)에서, 상기 디가싱부(137)에 포함되는 모서리(1371)를 개방하고, 나머지 사이드(134)를 실링할 수 있다. 전지 케이스(13)의 모서리(1371)가 개방됨으로써 개구부가 형성되면, 개구부를 통해 전지 케이스(13)의 내부에 전해액을 주입한다.
전지 케이스(13)의 내부에 전해액을 주입한 후, 디가싱부(137)를 1차 실링하여 임시 실링부(1340)를 형성한다. 추후에 디가싱부(137)를 2차 실링하여 실링부(1341)를 형성하므로, 임시 실링부(1340)는 디가싱부(137)에서 모서리(1371)에 근접한 위치에 형성되는 것이 바람직하다.
그 후, 활성화(Formation) 공정을 수행할 수 있다. 활성화 공정(화성 공정)이란, 이차 전지(1)가 전력을 공급할 수 있도록 최종적으로 충전을 완료하는 공정이다. 활성화 공정은 임시 실링부(1340)를 형성하여, 전지 케이스(13)를 완전히 밀폐한 후에 수행하므로, 충전률이 높고 빠르게 가스를 배출하여 정해진 공정 시간 내에 이차 전지(1)의 제조를 완료할 수 있다.
활성화 공정을 완료하면 전지 케이스(13)의 내부에서 가스가 발생한다. 따라서, 전지 케이스(13)의 디가싱부(137)에 디가싱 홀(H)을 타공한다. 이러한 디가싱 홀(H)을 통해, 가스가 전지 케이스(13)의 내부로부터 외부로 배출된다. 이 때, 가스가 용이하게 배출되면서 디가싱 홀(H)을 통해 상기 주입된 전해액이 누출될 수도 있다. 이를 방지하기 위해, 디가싱 홀(H)은 임시 실링부(1340)에 근접한 위치에 타공되는 것이 바람직하다. 디가싱 홀(H)이 타공되면 상기 가스를 전지 케이스(13)의 외부로 배출하는 디가싱(Degassing) 공정을 수행한다.
디가싱 홀(H)이 타공되면 전지 케이스(13)의 내부는 다시 개방되어 내부의 전해액이 외부로 누출될 수 있다. 따라서, 컵부(133)와 디가싱부(137) 사이의 경계를 2차 실링하여 실링부(1341)를 형성한다. 이 때, 실링부(1341)는 컵부(133)와 디가싱 홀(H)의 사이에 형성되며, 특히 컵부(133)에 근접한 위치에 형성되는 것이 바람직하다.
이와 같이 활성화 공정과 디가싱 공정을 수행하면서, 디가싱 홀(H)을 타공하고, 1차 실링 및 2차 실링을 수행해야 한다. 나아가 이차 전지(1)들을 대량 생산할 때, 이차 전지(1)들의 규격 및 품질을 일괄적으로 관리할 필요가 있다. 이를 위해, 비전 센서(41)가 포함된 검사 장치(4, 도 22에 도시됨)를 이용하여 전지 케이스(13) 또는 이차 전지(1)를 검사할 수 있다.
종래에는 전지 케이스(33) 및 이차 전지(3)를 전체적으로 샤프한 형상으로 제조하는데 한계가 있었다. 따라서, 비전 센서로 전지 케이스(33)를 촬영하면, 각각의 구성들의 크기 및 위치의 오차가 크게 발생하였다.
구체적으로, 추후에 이차 전지(1)의 제조가 완료되면, 복수의 이차 전지(1)들의 전극 리드(12)들을 서로 연결하여 전지 모듈(5, 도 27에 도시됨)을 제조할 수 있다. 이를 위해 복수의 이차 전지(1)들에 형성된 전극 리드(12)의 위치가 모두 일정하여야 한다. 그런데 종래에는 전극(101)이 컵부(333)의 외벽(338)으로부터 어느 정도 이격되어 배치되므로, 사이드(134)를 실링하기 전에 전극 조립체(10)가 컵부(333)의 내부에서 움직일 수 있었다. 따라서, 이차 전지(3)들을 대량 생산하면, 컵부(333)의 부피 및 전극 조립체(10)의 부피가 모두 일정하더라도, 전극 조립체(10)의 위치가 조금씩 상이하여, 전극 리드(12)의 위치도 조금씩 상이하였다. 따라서, 상기 검사 장치(4)를 이용하여 이러한 전극 리드(12)의 위치를 정확하게 측정하여야 한다.
뿐만 아니라, 디가싱 홀(H)을 정확한 위치 및 크기로 타공하고, 1차 실링 및 2차 실링을 정확한 위치 및 크기로 수행하기 위해서는, 디가싱부(137)의 위치를 정확하게 측정해야 한다. 그 외에도, 복수의 이차 전지(1)들의 전체적인 품질을 효율적으로 관리하기 위해, 사이드(134), 폴딩부(139), 전지 케이스(13)로부터 돌출된 절연부(14) 등 전지 케이스(13) 또는 이차 전지(1)의 다양한 구성들의 위치, 나아가 컵부(133) 사이의 폭까지도 정확하게 측정하여야 한다.
상기 구성들의 위치를 측정하기 위해서는, 특정 기준 라인을 설정하고, 상기 기준 라인으로부터 측정 대상이 되는 구성까지의 수직 거리를 측정해야 한다. 예를 들어, 전극 조립체(10)가 컵부(333)의 내부에서 움직일 때에는 일반적으로, 도 20에 도시된 바를 기준으로 좌우측 방향, 즉 폴딩부(339) 및 디가싱부(337)를 향하는 방향으로 움직이는 경우가 많다. 따라서 전극 리드(12)의 위치를 측정하기 위해서는, 전극 리드(12)의 좌측 또는 우측 모서리의 위치를 측정해야 하고, 상기 좌측 또는 우측 모서리까지의 수직 거리를 측정하기 위해, 상기 좌측 또는 우측 모서리와 평행한 기준을 설정해야 한다.
그러나, 종래에는 컵부(333)의 외벽(338)이 수직에 가깝게 성형되지 않고 컵부(333)의 펀치 엣지(361)의 곡률 반경(R2')도 크므로, 비전 센서(41)로 전지 케이스(33)를 촬영하면 영상에서는, 도 20에 도시된 바와 같이 컵부(333)의 펀치 엣지(361)가 선명하게 나타나지 않았다. 따라서, 컵부(333)의 펀치 엣지(361)를 기준으로는 상기 구성들의 위치를 측정할 수 없었고, 펀치 엣지(361)에 가까운 배트 이어(35)를 기준으로 설정하거나, 사용자가 직접 수동으로 컵부(333)의 펀치 엣지(361)를 기준으로 설정하였다.
그런데, 배트 이어(35)는 컵부(133)의 주변 사이드(134)들도 전체적으로 미세하게 연신된 상태에서 브릿지(136)를 폴딩하여 형성되므로, 복수의 이차 전지(1)들 마다 배트 이어(35)의 크기가 조금씩 상이하였다. 그러면 비전 센서로 상기 구성들의 위치를 측정하더라도, 기준이 되는 배트 이어(35)의 크기가 상이하므로, 이차 전지(3)들 사이에 구성들의 위치의 편차가 커져 품질 관리가 어려운 문제도 있었다.
특히, 비전 센서로 전지 케이스(33)를 촬영하여 전극 리드(12)의 위치를 측정하더라도 전극 리드(12)의 위치가 조금씩 상이하여, 전지 모듈(5)을 제조하기 위해 전극 리드(12)들을 연결할 때 연결이 용이하지 않은 문제가 있었다. 또한 전지 모듈(5)을 제조하기 위해, 복수의 이차 전지(1)들을 순차적으로 적층하거나 일렬로 정렬시킬 때, 컵부(333)의 위치가 정확하지 않아서, 복수의 이차 전지(1)들의 정렬도가 저하되는 문제도 있었다.
그리고 이차 전지(3)들을 별도의 하우징(51, 도 27에 도시됨)에 수납하여 전지 모듈(5)을 제조하는 경우에, 측정 값들의 편차가 크므로 하우징(51)을 설계할 때 설계 공차를 불필요하게 크게 설정하여, 전지 모듈(5)의 부피 대비 에너지 밀도도 저하되는 문제도 있었다.
도 21은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하기 전의 모습을 상방에서 나타낸 개략도이고, 도 22는 본 발명의 일 실시예에 따른 검사 장치(4)의 블록도이다.
본 발명의 일 실시예에 따르면 도 21에 도시된 바와 같이, 파우치 필름(135)의 성형성이 개선됨에 따라, 브릿지(136)의 두께(t)를 더욱 얇게, 컵부(133)의 펀치 엣지(1611)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있고, 그에 따라 배트 이어(15)의 크기도 더욱 감소할 수 있다. 따라서, 이차 전지(1)들을 전지 모듈(5)에 용이하게 조립할 수 있고, 이차 전지(1)의 불필요한 부피를 감소시키므로 부피 대비 에너지 밀도를 증가시킬 수도 있다.
또한, 본 발명의 일 실시예에 따르면 도 21에 도시된 바와 같이, 전지 케이스(13)를 촬영한 영상에서 컵부(133)의 펀치 엣지(1611)가 선명하게 나타나므로, 검사 장치(4)가 컵부(133)의 펀치 엣지(161)를 자동으로 기준 라인(ST)으로 설정할 수 있고, 컵부(133)의 펀치 엣지(161)를 기준으로 전지 케이스(13) 또는 이차 전지(1)의 다양한 구성들까지의 거리를 정확하게 측정할 수 있으며, 나아가 컵부(133) 사이의 폭(CW)까지도 정확하게 측정할 수 있다. 그에 따라 전지 케이스(13) 또는 이차 전지(1)의 구성들의 위치를 정확히 측정하여, 측정값의 오차가 감소하고 이차 전지(1)들 사이의 편차도 감소할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 전지 케이스(13) 또는 이차 전지(1)의 검사 장치(4)는 전지 케이스(13)를 촬영하여 상기 전지 케이스(13) 또는 이차 전지(1)의 영상을 획득하는 비전 센서(41); 상기 영상으로부터 상기 전지 케이스(13) 또는 이차 전지(1)의 구성들의 아웃라인을 추출하는 아웃라인 추출부(421); 상기 영상을 분석하여, 상기 전지 케이스(13)에서 전극 조립체(10)를 수용하는 수용 공간(1331)이 마련된, 컵부(133)의 펀치 엣지(161)에 해당하는 상기 아웃라인을 검출하는 영상 분석부(422); 상기 펀치 엣지(161)에 해당하는 상기 아웃라인을 기준 라인(ST)으로 설정하는 기준 라인 설정부(423); 및 상기 기준 라인(ST)으로부터 상기 구성들까지의 거리를 연산하는 거리 연산부(424)를 포함한다.
그리고 이러한 검사 장치(4)를 이용한 본 발명의 일 실시예에 따른 전지 케이스(13) 또는 이차 전지(1)의 검사 방법은 비전 센서(41)가 전지 케이스(13)를 촬영하여 상기 전지 케이스(13) 또는 이차 전지(1)의 영상을 획득하는 단계; 아웃라인 추출부(421)가 상기 영상으로부터 상기 전지 케이스(13) 또는 상기 이차 전지(1)의 구성들의 아웃라인을 추출하는 단계; 영상 분석부(422)가 상기 영상을 분석하여, 상기 전지 케이스(13)에서 전극 조립체(10)를 수용하는 수용 공간(1331)이 마련된, 컵부(133)의 펀치 엣지(161)에 해당하는 상기 아웃라인을 검출하는 단계; 기준 라인 설정부(423)가 상기 펀치 엣지(161)에 해당하는 상기 아웃라인을 기준 라인(ST)으로 설정하는 단계; 및 거리 연산부(424)가 상기 기준 라인(ST)으로부터 상기 구성들까지의 거리를 연산하는 단계를 포함한다.
구체적으로 검사 장치(4)는 도 22에 도시된 바와 같이, 비전 센서(41)와 제어부(42)를 포함한다. 그리고, 이들 구성요소들은 버스(미도시)를 통해 상호간에 연결되어 통신할 수 있다. 제어부(42)에 포함된 모든 구성요소들은 적어도 하나의 인터페이스 또는 어댑터를 통해 버스에 접속되거나, 직접 버스에 연결될 수 있다. 또한, 버스는 상기 기술한 구성요소 외에 다른 서브 시스템들과 연결될 수도 있다. 이러한 버스는 메모리 버스, 메모리 컨트롤러, 주변 버스(Peripheral Bus), 로컬 버스를 포함한다.
비전 센서(41)는 특정 영역을 촬영하여 특정 영역에 대한 이미지 신호를 수신함으로써 영상을 획득한다. 이를 위해 일반적으로 비전 센서(41)에는, CCD(Charge Coupled Device)나 CMOS(Complementary Metal-Oxide Semiconductor) 이미지 센서 등의 촬상 소자가 포함된다. 특히, 본 발명의 일 실시예에 따른 비전 센서(41)는, 전지 케이스(13)의 브릿지(136)가 폴딩된 후, 전지 케이스(13)를 촬영하여 전지 케이스(13) 또는 이차 전지(1)의 각 구성들에 대한 영상을 획득할 수 있다. 여기서 구성들이란, 상기 기술한 컵부(133), 디가싱부(137), 전극 리드(12), 배트 이어(15), 사이드(134), 폴딩부(139) 및 절연부(14) 등을 포함한다. 그리고, 추후에 디가싱부(137)를 절단함으로써, 이차 전지(1)의 제조가 완료된다. 따라서, 비전 센서(41)가 디가싱부(137)를 절단하기 전에 전지 케이스(13)를 촬영하면, 전지 케이스(13) 및 전극 리드(12) 등의 영상을 획득할 수 있고, 디가싱부(137)를 절단한 후에 전지 케이스(13)를 촬영하면, 이차 전지(1)의 영상을 획득할 수 있다.
제어부(42)는 비전 센서(41)가 획득한 영상 신호를 수신하고, 상기 영상 신호로부터 전지 케이스(13) 또는 이차 전지(1)의 각 구성들의 위치를 파악한다. 이러한 제어부(42)는 아웃라인 추출부(421), 영상 분석부(422), 기준 라인 설정부(423) 및 거리 연산부(424)를 포함한다. 제어부(42)로는 CPU(Central Processing Unit), MCU(Micro Controller Unit) 또는 DSP(Digital Signal Processor) 등을 사용하는 것이 바람직하나, 이에 제한되지 않고 다양한 논리 연산 프로세서가 사용될 수 있다.
아웃라인 추출부(421)는 비전 센서(41)로부터 수신된 영상으로부터 전지 케이스(13) 또는 이차 전지(1)의 각 구성들의 아웃라인을 추출한다. 이 때, 아웃라인 추출부(421)는 상기 영상에 나타나는 모든 구성들의 아웃라인을 추출할 수도 있으나, 이에 제한되지 않고 영상에서 일부분에 ROI(Region Of Interest)가 설정되고, 상기 ROI 내에 나타나는 구성들의 아웃라인만을 추출할 수도 있다. 아웃라인을 추출하기 위해서는, 먼저 상기 이미지의 픽셀에 대한 정보를 추출하며, 이를 위해 일반적으로 사용되는 그라디언트 공식을 사용할 수 있다. 상기 추출한 픽셀 정보를 통해 전지 케이스(13) 및 전극 리드(12)의 아웃라인이 드러난다.
본 발명의 일 실시에에 따르면, 컵부(133)의 펀치 엣지(161)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있고, 컵부(133)의 외벽(138)이 수직에 가깝게 형성될 수 있으므로, 영상에서 컵부(133)의 펀치 엣지(161)에 대응하는 픽셀 정보의 그라디언트가 크다. 따라서, 아웃라인과 배경의 경계가 명확하므로, 컵부(133)의 펀치 엣지(161)에 해당하는 아웃라인을 명확하게 추출할 수 있다.
영상 분석부(422)는 상기 영상을 분석하여, 전지 케이스(13)에서 컵부(133)의 펀치 엣지(161)에 해당하는 아웃라인을 검출한다. 이를 위해 영상 분석부(422)는, 미리 저장된 컵부(133)의 펀치 엣지(161)의 기준 아웃라인 정보와, 상기 추출된 아웃라인의 정보를 매칭하여, 컵부(133)의 펀치 엣지(161)에 해당하는 아웃라인을 검출할 수 있다. 이 때, 영상 분석부(422)는 템플레이트 매칭(Template Matching) 기법을 사용하여, 상기 두 정보를 매칭할 수 있다.
기준 라인 설정부(423)는 상기 펀치 엣지(161)에 해당하는 상기 아웃라인을 기준 라인(ST)으로 설정할 수 있다. 컵부(133)는 복수의 펀치 엣지(161)를 포함하므로, 펀치 엣지(161)에 해당하는 아웃라인도 복수로 추출된다. 이 때, 기준 라인 설정부(423)는 전지 케이스(13) 또는 이차 전지(1)의 각 구성들의 위치를 정확히 측정하기 위해서, 복수의 펀치 엣지(161) 중에서, 측정 대상이 되는 구성과 가장 가까운 펀치 엣지(161)에 해당하는 아웃라인을, 기준 라인(ST)으로 설정하는 것이 바람직하다. 또한 상기 기술한 바와 같이, 구성들의 위치는 기준 라인(ST)으로부터의 수직 거리를 측정하여야 하므로, 기준 라인 설정부(423)는 복수의 펀치 엣지(161) 중에서, 측정 대상이 되는 구성의 모서리와 평행한 펀치 엣지(161)에 해당하는 아웃라인을, 기준 라인(ST)으로 설정할 수 있다.
예를 들어, 디가싱 홀(H)을 타공하고 1차 실링 및 2차 실링을 수행하기 위해, 검사 장치(4)는 디가싱부(137)의 위치를 측정해야 할 수 있다. 이러한 경우에는, 기준 라인 설정부(423)는 복수의 펀치 엣지(161) 중에서, 디가싱부(137)에 가까우면서, 디가싱부(137)에 포함된 모서리(1371)와 평행한, 다이 엣지(162) 측 펀치 엣지(1612)에 해당하는 아웃라인을 기준 라인(ST)으로 설정할 수 있다.
그리고 예를 들어, 전극 리드(12)의 위치가 모두 일정한지 여부를 검사하기 위해, 검사 장치(4)가 전극 리드(12)의 위치를 측정해야 할 수도 있다. 이러한 경우에는, 기준 라인 설정부(423)는 복수의 펀치 엣지(161) 중에서, 전극 리드(12)에 가까우면서, 전극 리드(12)의 좌측 또는 우측 모서리와 평행한, 폴딩부(139) 측 펀치 엣지(1611)에 해당하는 전극 리드(12) 측 아웃라인을 기준 라인(ST)으로 설정할 수도 있다.
나아가 컵부(133) 사이의 폭을 측정하기 위해서는, 기준 라인 설정부(423)는 복수의 펀치 엣지(161) 중에서, 컵부(133)의 폭의 경계에 해당하는 두 개의 펀치 엣지(161)의 아웃라인 중 어느 하나의 아웃라인을 기준 라인(ST)으로 설정할 수도 있다.
즉, 기준 라인 설정부(423)는 전지 케이스(13) 또는 이차 전지(1)의 각 구성들의 위치를 정확히 측정할 수 있다면, 제한되지 않고 다양한 아웃라인을 기준 라인(ST)으로 설정할 수 있다.
거리 연산부(424)는 상기 영상에서, 상기 기준 라인(ST)으로부터 상기 전지 케이스(13) 또는 이차 전지(1)의 각 구성들까지의 거리를 연산한다. 예를 들어, 다이 엣지(162) 측 펀치 엣지(1612)에 해당하는 아웃라인이 기준 라인(ST)으로 설정된다면, 거리 연산부(424)는 상기 기준 라인(ST)으로부터 디가싱부(137)에 포함된 모서리까지의 거리를 연산할 수 있다. 또는, 폴딩부(139) 측 펀치 엣지(1611)에 해당하는 아웃라인이 기준 라인(ST)으로 설정된다면, 거리 연산부(424)는 상기 기준 라인(ST)으로부터 전극 리드(12)의 일측 모서리까지의 거리를 연산할 수도 있고, 상기 다이 엣지(162) 측 펀치 엣지(1612)에 해당하는 아웃라인까지의 거리를 연산할 수도 있다.
거리 연산부(424)는 미리 저장된 영상의 픽셀 수와 실제 거리의 관계에 대한 정보를 이용할 수 있다. 즉, 거리 연산부(424)는 상기 영상에서, 상기 기준 라인(ST)으로부터 상기 각 구성들까지의 거리를 픽셀 수로 카운팅한 후, 미리 저장된 영상의 픽셀 수와 실제 거리의 관계에 대한 정보를 이용하여, 상기 카운팅한 픽셀 수에 대응되는 실제 거리를 연산할 수 있다.
검사 장치(4)는 저장부(44)를 더 포함할 수 있다. 저장부(44)는 검사 장치(4)의 동작들을 처리 및 제어하기 위한 프로그램과 각 프로그램 수행 중에 발생되는 각종 데이터 또는 수신된 신호 등을 저장한다. 특히, 영상 분석부(422)가 컵부(133)의 펀치 엣지(1611)에 해당하는 아웃라인을 검출할 수 있도록, 전지 케이스(13)에 대한 기준 정보를 저장할 수 있다. 여기서, 전지 케이스(13)에 대한 기준 정보는, 컵부(133)의 펀치 엣지(1611)에 대한 기준 아웃라인 정보와, 전지 케이스(13) 또는 이차 전지(1)의 구성들까지의 거리에 대한 기준 정보 등을 포함할 수 있다. 이는 사용자가 직접 저장부(44)에 저장할 수도 있으나, 검사 장치(4)가 반복적인 학습을 통해 상기 기준 정보들을 생성하여 저장할 수도 있다. 또한, 저장부(44)는 거리 연산부(424)가 기준 라인(ST)으로부터 각 구성들까지의 실제 거리를 연산할 수 있도록, 영상의 픽셀 수와 실제 거리의 관계에 대한 정보를 저장할 수도 있다. 나아가, 검사 대상이 되는 전지 케이스(13)의 검사 결과 정보를 저장할 수도 있다. 이러한 저장부(44)는 검사 장치(4)에 내장될 수도 있으나, 별도의 저장 서버로서 마련될 수도 있다. 저장부(44)는 비휘발성 메모리 장치 및 휘발성 메모리 장치를 포함한다. 비휘발성 메모리 장치는 부피가 작고 가벼우며 외부의 충격에 강한 NAND 플래시 메모리이고, 휘발성 메모리 장치는 DDR SDRAM일 수 있다.
제어부(42)는 검사 대상이 되는 전지 케이스(13)의 불량 여부를 판단하는 불량 판단부(425)를 더 포함할 수 있다. 이러한 불량 판단부(425)는 저장부(44)에 저장된, 전지 케이스(13)에 대한 기준 정보와, 검사 대상이 되는 전지 케이스(13)의 검사 결과 정보를 비교할 수 있다. 그리고, 검사 결과 정보가 상기 기준 정보의 오차 범위 내로 포함되면, 전지 케이스(13)를 정상으로 판단한다. 그런데 검사 결과 정보가 상기 기준 정보의 오차 범위를 벗어나면, 전지 케이스(13)를 불량으로 판단한다.
한편, 검사 장치(4)는 영상의 신호를 수신하여 디스플레이하는 디스플레이부(43)를 더 포함할 수 있다. 디스플레이부(43)는 상기 영상의 신호를 수신하여 사용자에게 디스플레이한다. 나아가, 상기 아웃라인 추출부(421)가 전지 케이스(13)의 아웃라인을 추출하면, 아웃라인이 영상 상에서 표시되어 사용자가 디스플레이부(43)를 통해 확인할 수도 있다. 디스플레이부(43)는 LCD(Liquid Crystal Display), OLED(Organic Liquid Crystal Display), CRT(Cathode Ray Tube), PDP(Plasma Display Panel) 등 다양한 방식이 사용될 수 있다. 그리고 디스플레이부(43)는 비디오 인터페이스를 통하여 버스에 연결되고, 디스플레이부(43)와 버스 간의 데이터 전송은 그래픽 컨트롤러에 의해 제어될 수 있다.
검사 장치(4)는 불량 판단부(425)가 전지 케이스(13)를 불량이라고 판단하면, 알람을 발생시키는 알람부(45)를 더 포함할 수도 있다. 알람을 발생시킬 때에는, 램프의 점등 또는 경고음 등 청각적 또는 시각적으로 알람이 발생하여 사용자가 직관적으로 알 수 있도록 하는 것이 바람직하다.
지금까지 기술한 비전 센서(41), 제어부(42), 저장부(44) 및 디스플레이부(43)의 각 구성요소들은 메모리 상의 소정 영역에서 수행되는 태스크, 클래스, 서브 루틴, 프로세스, 오브젝트, 실행 쓰레드, 프로그램과 같은 소프트웨어(software)나, FPGA(field-programmable gate array)나 ASIC(application-specific integrated circuit)과 같은 하드웨어(hardware)로 구현될 수 있으며, 또한 상기 소프트웨어 및 하드웨어의 조합으로 이루어질 수도 있다. 상기 구성요소들은 컴퓨터로 판독 가능한 저장 매체에 포함되어 있을 수도 있고, 복수의 컴퓨터에 그 일부가 분산되어 분포될 수도 있다.
또한, 각 블록은 특정된 논리적 기능들을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능하다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
본 발명의 일 실시예에 따른 검사 장치(4)를 이용하면, 컵부(133)의 펀치 엣지(1611)가 선명하게 나타나므로, 검사 장치(4)가 컵부(133)의 펀치 엣지(161)를 자동으로 기준 라인(ST)으로 설정할 수 있고, 컵부(133)의 펀치 엣지(1611)를 기준으로 전지 케이스(13)의 각 구성들까지의 거리를 정확하게 측정할 수 있다. 예를 들어, 디가싱부(137)의 크기 및 위치를 측정할 수 있고, 이차 전지(1)의 제조가 완료된 후에도 컵부(133), 전극 리드(12) 배트 이어(15), 사이드(134), 폴딩부(139) 및 절연부(14) 등의 크기 및 위치들을 정확히 파악할 수 있다. 그럼으로써, 이차 전지(1)의 불량 여부를 용이하게 판단할 수도 있고, 이차 전지(1)를 대량으로 생산하더라도 이들의 규격 및 품질을 효율적이고 일괄적으로 관리할 수도 있다.
특히, 전극 리드(12)의 위치를 정확하게 측정할 수 있어, 전지 모듈(5)을 제조하기 위해 전극 리드(12)들을 용이하게 연결할 때 연결할 수 있다. 또한 컵부(333)의 위치가 정확하게 측정할 수 있어, 전지 모듈(5)을 제조하기 위해 복수의 이차 전지(1)들을 순차적으로 적층하거나 일렬로 정렬시킬 때, 복수의 이차 전지(1)들의 정렬도를 개선할 수도 있다.
도 23은 본 발명의 일 실시예에 따른 전지 케이스(13)의 디가싱부(137)를 절단하여 이차 전지(1)의 제조를 완료한 모습을 나타낸 개략도이다.
전지 케이스(13)를 2차 실링하여 실링부(1341)를 형성한 후, 상기 실링부(1341)의 외측에 커팅라인(CT)을 설정하여 디가싱부(137)를 절단한다. 그럼으로써, 도 23에 도시된 바와 같이, 디가싱부(137)의 길이가 짧아지고, 이차 전지(1)의 부피가 감소할 수 있다. 상기와 같은 과정을 통해, 파우치 형 이차 전지(1)의 제조가 완료된다.
한편, 디가싱부(137)를 절단하고 남은 사이드(134)는, 복수의 사이드(134) 중에서, 전극 리드(12)가 돌출 형성되지 않는다. 그런데 사이드(134)를 실링한 후에 그대로 방치하면, 이차 전지(1)의 전체 부피가 증가한다. 따라서, 부피 대비 에너지 밀도를 감소시키기 위해, 사이드(134)를 폴딩하는 것이 바람직하다.
한편, 사이드(134)는 도 23에 도시된 바와 같이, 실링부(1341) 및 미실링부(1342)를 포함할 수 있다. 실링부(1341)는 상대적으로 외측에 위치하여 실링된 영역이고, 미실링부(1342)는 상대적으로 내측에 위치하여 미실링된 영역이다.
구체적으로, 상기 전지 케이스(13)를 2차 실링하여 실링부(1341)를 형성할 때, 실링부(1341)가 컵부(133)로부터 바로 연결되지 않고, 어느 정도 이격되어 형성될 수 있다. 사이드(134)를 실링할 때에는 별도의 실링 툴(미도시)을 이용하여 사이드(134)에 열 및 압력을 인가하여야 한다. 그런데 만약, 이러한 실링 툴을 컵부(133)에 밀착한 상태로 사이드(134)를 실링한다면, 사이드(134)의 내측에 위치한 실란트층(1351)이 일부 용융되면서 전극 조립체(10)를 향해 누출되어, 전극 조립체(10)를 오염시킬 수 있다. 또한, 실링 툴의 열이 전극 조립체(10)까지 전달되어 전극 조립체(10)가 손상될 수도 있다, 따라서, 실링 툴을 컵부(133)로부터 어느 정도 이격한 상태로 사이드(134)를 실링하는 것이 바람직하다. 그러면, 실링 툴로 실링된 부분이 실링부(1341)가 되고, 실링 툴이 컵부(133)로부터 이격되어 실링되지 않는 부분이 미실링부(1342)가 된다.
도 24는 종래의 사이드(334)를 폴딩한 모습을 측면에서 나타낸 개략도이고, 도 25는 종래의 사이드(334)를 폴딩한 모습을 상면에서 나타낸 개략도이다.
종래에는 사이드(334)를 폴딩하면, 사이드(334)가 고정되지 않고 소정의 각도로 다시 언폴딩되는 문제가 있었다. 구체적으로 상기 기술한 바와 같이, 파우치 필름(135)은 실란트층(1351), 수분 배리어층(1352), 연신 보조층(1354) 및 표면 보호층(1353)이 적층되어 형성된다. 이 중에서, 실란트층(1351)은 제1 폴리머, 특히 폴리프로필렌(PP)을 포함하므로 유연성 및 탄성력이 크다. 따라서, 사이드(134)가 폴딩되면 원래의 상태로 되돌아가려는 복원력이 크다. 반면에, 수분 배리어층(1352)은 금속, 특히 알루미늄 합금으로 제조되므로, 사이드(334)가 폴딩되고 나면 탄성 변형의 한계를 초과하여, 폴딩된 상태를 유지하려는 보존력이 크다.
그런데, 종래의 파우치 필름은, 수분 배리어층이 대략 30 내지 50 μm의 두께를 가졌고, 실란트층이 대략 60 내지 100 μm의 두께를 가졌다. 즉, 수분 배리어층의 두께가 실란트층의 두께에 비해 상당히 얇게 형성되었다. 따라서, 보존력보다 복원력이 더 커서, 사이드(334)가 고정되지 않고 소정의 각도 다시 언폴딩되었다. 그러면, 사이드(334)에 의해 이차 전지(3)의 불필요한 부피가 증가하는 문제가 있었다.
이를 해결하기 위해 도 24 및 도 25에 도시된 바와 같이, 사이드(334)에 별도로 테이프(38)를 부착하였다. 특히, 테이프(38)는 컵부(333)의 바닥부(3332) 외측면과 사이드(334)에 함께 부착되었고, 그럼으로써 사이드(334)가 컵부(333)에 고정되어, 다시 언폴딩되는 것을 방지할 수 있었다. 그러나, 이러한 경우에는 도 24에 도시된 바와 같이, 테이프(38)의 자체 두께에 의해 이차 전지(3)의 전체 두께가 증가하는 문제가 있었다. 또한 사이드(334)를 폴딩하는 공정 이후에, 테이프(38)를 부착하는 추가적인 공정이 필요하며, 이러한 공정에 많은 시간이 소요되어, 공정 수를 증가시키고 이차 전지(3)의 제조 수율을 저하시키는 문제도 있었다.
한편, 디가싱 공정을 수행하면 가스가 전지 케이스(13)의 내부로부터 외부로 배출되면서 컵부(133)의 내부 압력이 감소한다. 종래에는 전극 조립체(10)가 컵부(333)의 외벽(338)으로부터 어느 정도 이격되며 배치되었다. 따라서, 컵부(333)의 내부 압력이 감소하면서 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)의 부피도 감소하기 위해, 컵부(333)의 외벽(338) 또는 바닥부(3332)가 변형될 수 있었다. 특히, 도 24에 도시된 바와 같이, 이차 전지(3)의 폴딩부 측 외벽(338)이 내측으로 함몰되면서, 컵부(333)의 폴딩부(339) 측 펀치 엣지(361)가 외부로 돌출되며 높이가 높아지는, 엣지 하이(Edge High) 현상이 발생할 수 있었다. 이러한 엣지 하이 현상에 의해 이차 전지(3)의 불필요한 두께가 증가하여, 부피 대비 에너지 밀도가 저하되는 문제가 있었다. 또한, 컵부(333)의 폴딩부(339) 측 외벽(338)이 변형되므로, 이차 전지(3)의 외관이 미려하지 않아서 상품성도 저하되는 문제도 있었다. 나아가, 엣지 하이 현상에 의해 배트 이어(15)가 더욱 크기가 증가하고 형상이 도드라지는 문제도 있었다.
도 26은 본 발명의 일 실시예에 따른 사이드(134)를 폴딩한 모습을 측면에서 나타낸 개략도이다.
본 발명의 일 실시예에 따르면, 파우치 필름(135)은 수분 배리어층(1352)이 50 내지 70 μm의 두께를 가지고, 상기 실란트층(1351)이 70 내지 100 μm의 두께를 가지므로, 종래보다 수분 배리어층(1352)의 두께가 더욱 두꺼워진다. 따라서, 사이드(134)를 폴딩하였을 때 보존력이 더욱 증가하므로, 별도의 테이프(38)가 부착될 필요가 없이 사이드(134)가 다시 언폴딩되는 것을 방지할 수 있다.
이를 위해 본 발명의 일 실시예에 따른 이차 전지(1)는, 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10); 상기 전극 조립체(10)를 내부에 수용하는 컵부(133)가 형성된 파우치 형 전지 케이스(13)를 포함하되, 상기 파우치 형 전지 케이스(13)는, 상기 컵부(133)의 외측으로 연장 형성된 사이드(134)를 포함하고, 상기 사이드(134)는, 상대적으로 외측에 위치하여 실링된 실링부(1344); 및 상대적으로 내측에 위치하여 미실링된 미실링부(1345)를 포함하고, 상기 컵부(133)에 미접착되면서, 상기 미실링부(1345)에서 폴딩된다.
즉 도 26에 도시된 바와 같이, 이차 전지(1)에서 사이드(134)가 컵부(133)를 향해 폴딩된 후, 사이드(134)가 컵부(133)에 미접착되면서도, 폴딩된 상태를 유지하며 언폴딩되지 않을 수 있다. 이 때, 사이드(134)는 85° 내지 95° 의 각도, 특히 88° 내지 92° 의 각도로 폴딩될 수 있다. 또한, 사이드(134)가 컵부(133)에 인접한 위치에서 폴딩되어, 사이드(134)가 컵부(133)의 외벽(138)에 접촉할 수 있다. 특히, 상기 기술한 바와 같이 사이드(134)는 상대적으로 외측에 배치되어 실링된 실링부(1341) 및 상대적으로 내측에 배치되어 미실링된 미실링부(1342)를 포함할 수 있다. 그리고 사이드(134)가 폴딩될 때에는, 컵부(133)에 상대적으로 더 가까운 미실링부(1342)가 폴딩되는 것이 바람직하다. 그럼으로써, 이차 전지(1)의 불필요한 부피를 더욱 감소시킬 수 있다. 그러나, 이러한 경우에도 사이드(134)와 컵부(133)는 서로 접착되는 것이 아니며, 사이드(134)의 보존력이 증가하여 폴딩 상태를 유지하는 것이다.
파우치 필름(135)에 두 개의 컵부(133)를 형성하면, 한 개의 컵부(133)를 형성할 때보다 컵부(133)의 깊이(D)가 얕아질 수 있다. 상기 기술한 바와 같이, 컵부(133)만이 집중적으로 연신되는 것이 아니라 컵부(133)의 주변 사이드(134)들도 전체적으로 미세하게 연신되기 때문이다. 그런데, 사이드(134)의 폭이 이러한 컵부(133)의 깊이(D)보다 길다면, 사이드(134)를 한 번만 폴딩하였을 때 사이드(134)의 외측 단부(1343)가 컵부(133)의 바닥부(1332)보다 더 외측으로 돌출될 수도 있다.
따라서, 파우치 필름(135)에 두 개의 컵부(133)가 형성된다면, 도 26에 도시된 바와 같이 사이드(134)를 두 번 폴딩하는 더블 사이드 폴딩(Double Side Folding, DSF) 방법을 사용할 수 있다. 구체적으로, 사이드(134)는 제1 폴딩부(1344)와 제2 폴딩부(1345)를 포함할 수 있다. 제1 폴딩부(1344)는 상대적으로 외측 단부(1343)에 더 가까운 위치에서 폴딩된 부분이고, 제2 폴딩부(1345)는 상대적으로 컵부(133)에 더 가까운 위치에서 폴딩된 부분이다. 따라서, 제1 폴딩부(1344)를 기준으로 사이드(134)를 1차 폴딩을 한 후에, 제2 폴딩부(1345)를 기준으로 사이드(134)를 2차 폴딩할 수 있다. 이 때, 제1 폴딩부(1344)는 사이드(134)에서 실링부(1341)에 위치할 수 있고, 제2 폴딩부(1345)는 사이드(134)에서 미실링부(1342)에 위치할 수 있다. 그리고 사이드(134)는 제1 폴딩부(1344)에서 170° 내지 180° 의 각도, 특히 180°의 각도로 폴딩될 수 있다. 그리고 제2 폴딩부(1345)에서 85° 내지 95°, 특히 88° 내지 92° 의 각도로 폴딩될 수 있다. 그럼으로써, 사이드(134)의 외측 단부(1343)가 컵부(133)의 바닥부(1332)보다 더 외측으로 돌출되는 것을 방지할 수 있다.
한편, 본 발명의 일 실시예에 따르면 전극 조립체(10)가 컵부(133)의 외벽(138)에 매우 가까이 위치할 수 있으므로, 컵부(133)의 불필요한 부피가 감소한다. 따라서, 디가싱 공정을 수행하여 컵부(133)의 내부 압력이 감소하더라도, 컵부(133)의 외벽(138) 또는 바닥부(1332)가 변형되는 것을 방지할 수 있다. 즉 도 26에 도시된 바와 같이, 엣지 하이 현상이 발생하는 것을 방지할 수 있으므로, 부피 대비 에너지 밀도가 저하되지 않을 수 있다.
도 27은 본 발명의 일 실시예에 따른 전지 모듈(5)의 개략도이다.
자동차 등과 같은 중대형 전자 기기는 출력이 커야 하므로, 많은 이차 전지(1)들이 필요하다. 이러한 이차 전지(1)들을 용이하게 이동하고 설치하기 위해, 전지 모듈(5)을 제조할 수 있다. 이러한 전지 모듈(5)에 복수의 이차 전지(1)들을 설치하면, 외부로 전기를 안정적으로 공급할 수 있다.
한편, 이차 전지(1)의 전극 조립체(10)에서 전기가 생산되기 위해, 전극(101)과 전해액 간의 화학 반응이 발생하며, 이러한 과정에서 열이 발생한다. 그런데 열에 의해 주변 온도가 과도하게 상승하면, 이차 전지(1)가 설치된 전기 기기의 회로에 오작동이 발생하거나 전기 기기의 수명이 단축되는 문제가 있다. 따라서, 전지 모듈(5)에는 이차 전지(1)를 냉각하기 위한 냉각 시스템이 포함된다. 냉각 시스템에는 크게 냉각수로 냉각하는 수냉식 및 공기로 냉각하는 공랭식 등의 방식이 있다. 이 중에서 수냉식 냉각 시스템이 공랭식 냉각 시스템보다 냉각 효율이 더 높아, 더욱 많이 활용된다.
냉각 시스템은 이차 전지(1)를 직접 냉각시키는 냉각 플레이트를 포함하며, 이러한 냉각 플레이트의 내부에는 별도의 유로가 형성되어 냉각수가 유동할 수 있다. 그리고, 유로는 굵기가 가늘고 길이가 길수록, 표면적이 넓어져 냉각 효율이 증가할 수 있다.
전지 모듈(5)을 제조하기 위해서는, 먼저 이차 전지(1)를 복수로 제조한 후, 이러한 이차 전지(1)들을 서로 연결하며 하우징(51)에 수납한다. 이 때, 이차 전지(1)들을 일렬로 정렬시켜 적층할 수 있다. 도 27에 도시된 바와 같이, 이차 전지(1)가 하우징(51)에 수납될 때, 이차 전지(1)의 길이가 긴 측면이 하방을 향하고, 하우징(51)의 하면에는 냉각 플레이트(미도시)가 형성될 수 있다. 따라서, 냉각 플레이트가 이차 전지(1)의 길이가 긴 측면부터 냉각시킴으로써, 냉각 효율을 증대시킬 수 있다.
한편, 이차 전지(1)의 일측에는 브릿지(136)가 폴딩되어 형성된 폴딩부(139)가 형성되고, 타측에는 디가싱부(137)가 절단되고 남은 영역인 사이드(134)가 형성된다. 그런데 냉각 플레이트가 이차 전지(1)의 복수의 면들 중에서, 사이드(134)가 형성된 측면부터 냉각시킨다면, 사이드(134)에 의해 냉각 플레이트와 전극 조립체(10) 사이의 거리가 멀어지므로, 냉각 효율이 저하될 수 있다. 따라서, 냉각 플레이트는 이차 전지(1)의 길이가 긴 측면들 중에서, 폴딩부(139)가 형성된 측면부터 냉각시키는 것이 바람직하다. 이를 위해, 이차 전지(1)를 하우징(51)에 수납할 때에는, 폴딩부(139)가 냉각 플레이트를 향하는 방향, 즉 하방을 향하도록 수납될 수 있다.
도 28은 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이고, 도 29는 종래의 이차 전지(3)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
*상기 기술한 바와 같이, 종래에는 배트 이어(35)의 크기를 감소시키는 데에 한계가 있었다. 특히, 컵부(333)의 깊이(D')를 충분히 깊게(예를 들어, 6.5 mm 이상) 성형하면서, 배트 이어(35)의 크기를 일정 수치(예를 들어, 1.5 mm) 이하로 감소시키는 데에 한계가 있었다.
또한, 종래에는 폴딩부(339)와 배트 이어(35)의 내측 모서리(35a)가 이루는 각도(θ')가 151도 이하로 형성되었다.
여기서, 상기 각도(θ')는 폴딩부(339)에 대응되는 가상의 제1라인(L1)과, 배트 이어(35)의 내측 모서리(35a)에 대응되는 가상의 제2라인(L2)이 이루는 각도를 의미할 수 있다. 특히, 상기 제1라인(L1) 및 제2라인(L2)은 영상 분석을 통해 결정될 수 있다. 일례로, 상기 제1라인(L1) 및 제2라인(L2)은 비전 장치에서 ROI(Region of interest) 내에서 확인되는 다수의 엣지 포인트를 연결함으로써 추출될 수 있다. 따라서, 폴딩부(339)나 배트이어(35)의 내측 모서리(35a)가 일부 휘어지거나 구부러지게 형성된 경우에도 제1라인(L1) 및 제2라인(L2)이 명확하게 정의될 수 있다. 이러한 영상 분석은 주지의 기술이므로 자세한 설명은 생략한다.
따라서 도 28에 도시된 바와 같이, 이차 전지(3)를 하우징(51)에 수납하면, 배트 이어(35)가 하우징(51)과 폴딩부(339) 사이를 큰 간격(d')(예를 들어, 1.5mm 초과)으로 이격시켰다. 따라서, 이러한 간격(d')이 냉각 플레이트의 냉각을 방해하여, 냉각 효율이 저하될 수 있었다. 이를 해결하기 위해, 상기 냉각 플레이트와 이차 전지(1)의 폴딩부(339) 사이의 공간에 열전달 물질(52)을 주입하여, 냉각 플레이트가 열전달 물질(52)를 통해 폴딩부(139)를 냉각시키도록 하였다. 예를 들어, 상기 열전달 물질(52)은 서멀 그리스(Thermal Grease)일 수 있다.
그런데, 배트 이어(15)의 크기가 크면, 이러한 열전달 물질(52)를 많이 주입하여야 하므로 비용이 증가하고, 냉각 플레이트와 폴딩부(139) 사이의 간격(d')이 크므로, 여전히 냉각 효율이 낮다는 문제가 있었다.
또한 디가싱 홀(H)을 통해 디가싱 공정을 수행하면, 전지 케이스(33) 내부 압력이 감소하면서 도 29에 도시된 바와 같이, 전지 케이스(33)의 폴딩부(339)가 전극 조립체(10)에 밀착하였다. 그런데 종래에는 클리어런스(CL')를 감소시키는데 한계가 있었고, 폴딩부(339)의 폭도 크게 형성되었다. 따라서, 컵부(333)의 외벽(338)과 전극 조립체(10) 사이의 공간(37)이 크게 형성되어, 이차 전지(3)의 부피 대비 에너지 밀도가 감소하는 문제가 있었다. 나아가, 전극 조립체(10)가 서멀 그리스(52)로부터 이격된 거리도 증가하므로, 냉각 효율이 더욱 낮아지는 문제도 있었다.
도 30은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 정면 확대도이고, 도 31은 본 발명의 일 실시예에 따른 이차 전지(1)가 전지 모듈(5)의 하우징(51)에 수납된 모습을 나타낸 측면 확대도이다.
본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)는 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10); 및 상기 전극 조립체(10)를 내부에 수용하는 컵부(133)가 형성된 파우치 형 전지 케이스(13)를 포함하되, 상기 전지 케이스(13)는, 상기 컵부(133)가 적어도 하나에 형성된 제1 케이스(131)와 제2 케이스(132); 상기 제1 케이스(131)와 상기 제2 케이스(132)를 일체로 연결하는 폴딩부(139); 및 상기 폴딩부(139)의 양 단 일부에서, 외측을 향해 돌출 형성되는 배트 이어(15)를 포함하고, 상기 배트 이어(15)는, 길이(d)가 1.5 mm 이하이다.
또한, 폴딩부(139)와 배트 이어(15)의 내측 모서리(15a)가 이루는 각도(θ)는 151도보다 크게 형성될 수 있다. 또한, 상기 각도(θ)는 180도 이하일 수 있다. 그리고, 상기 각도(θ)가 180도 이면 배트 이어(15)가 존재하지 않는 상태를 의미할 수 있다.
여기서, 상기 각도(θ)는 폴딩부(139)에 대응되는 가상의 제1라인(L1)과, 배트 이어(15)의 내측 모서리(15a)에 대응되는 가상의 제2라인(L2)이 이루는 각도를 의미할 수 있다. 제1라인(L1) 및 제2라인(L2)에 대해서는 앞서 설명한 내용을 원용한다.그리고 본 발명의 일 실시예에 따른 전지 모듈(5)은 전극(101) 및 분리막(102)이 적층되어 형성되는 전극 조립체(10)가, 파우치 형 전지 케이스(13)에 형성된 컵부(133)의 내부에 수납된 파우치 형 이차 전지(1); 및 상기 이차 전지(1)가 내부에 수납된 하우징(51)을 포함하되, 상기 전지 케이스(13)는, 상기 컵부(133)가 각각 형성된 제1 케이스(131)와 제2 케이스(132); 상기 제1 케이스(131)와 상기 제2 케이스(132)를 일체로 연결하는 폴딩부(139); 및 상기 폴딩부(139)의 양 단 일부에서, 외측을 향해 돌출 형성되는 배트 이어(15)를 포함하고, 상기 배트 이어(15)는, 길이(d)가 1.5 mm 이하이다.
상기 기술한 바와 같이 배트 이어(15)는 브릿지(136)를 폴딩하여 폴딩부(139)의 양 단 일부에서, 외측으로 돌출 형성된다. 본 발명의 일 실시예에 따르면, 이러한 배트 이어(15)의 길이는 1.5 mm 이하, 특히 1 mm 이하일 수있다. 이러한 배트 이어(15)의 길이는, 상기 폴딩부(139) 측 외벽(1381)으로부터 상기 배트 이어(15)의 최외측 단부까지 측정한 길이일 수 있다. 이 때, 상기 기술한 바와 같이 폴딩부(139) 측 외벽(1381)은 클리어런스(CL)에 의해 바닥부(1332)로부터 경사각이 90° 내지 95° 사이인 경사를 가질 수 있다. 이를 고려할 때, 배트 이어 측정의 일 예로, 배트 이어(15)의 길이는 폴딩부(139) 측 외벽(1381) 중에서 가장 외측으로 돌출된 부분부터, 상기 배트 이어(15)의 최외측 단부까지 측정한 길이일 수 있다.
배트 이어(15)의 길이는 자 또는 버니어 캘리퍼스 등을 이용하여 이차 전지(1)에 직접 접촉하여 측정할 수도 있고, 레이저 변위 센서 또는 비전 센서 등을 이용하여 비접촉 방식으로 측정할 수도 있다.
이상은, 이는 배트 이어 길이를 측정하는 방법을 일 예로 기재한 것이며, 반드시 상기 측정 방법으로 한정되는 경우만이 본 발명의 범위에 속하게 되는 것은 아니다. 배트 이어의 길이는 청구항의 기재와 본 발명의 취지에 해당하는 것이라면 모두 본 발명에서 의미하는 배트 이어의 길이가 될 수 있다.
본 발명의 일 실시예에 따르면, 파우치 필름(135)의 성형성이 개선됨에 따라, 브릿지(136)의 두께(t)를 더욱 얇게, 컵부(133)의 펀치 엣지(1611)의 곡률 반경(R2) 및 클리어런스(CL)를 더욱 작게 형성할 수 있다.
그에 따라 컵부(133)의 깊이(D)를 3mm 이상, 특히 6.5 mm 이상으로 성형하면서, 배트 이어(15)의 길이(d)도 1.5 mm 이하, 특히 1 mm 이하로 더욱 감소할 수 있다. 따라서 도 30에 도시된 바와 같이, 하우징(51)과 폴딩부(139) 사이의 간격(d)이 1.5 mm 이하로 좁아질 수 있다. 그럼으로써, 하우징(51)의 내부에서 열전달 물질(52)의 두께가 1.5 mm 이하가 될 수 있어, 서멀 그리스(52)의 주입량을 더욱 감소시킬 수 있으므로 비용을 절감할 수 있고, 냉각 효율도 증가할 수 있다.
또한 도 31에 도시된 바와 같이, 클리어런스(CL)를 더욱 작게 형성할 수 있고, 폴딩부(139)의 폭(FW)도 작게 형성할 수 있다. 따라서, 컵부(133)의 외벽(138)과 전극 조립체(10) 사이의 공간(17)이 감소하게 되어, 이차 전지(1)의 부피 대비 에너지 밀도가 증가할 수 있다. 그리고 전극 조립체(10)가 서멀 그리스(52)로부터 이격된 거리도 감소하므로, 냉각 효율도 더욱 증가할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
[부호의 설명]
1: 이차 전지 2: 성형 장치
3: 종래의 이차 전지 4: 검사 장치
5: 전지 모듈 10: 전극 조립체
11: 전극 탭 12: 전극 리드
13: 전지 케이스 14: 절연부
15: 배트 이어 16: 엣지
17: 공간 21: 다이
22: 펀치 33: 종래의 전지 케이스
35: 종래의 배트 이어 36: 종래의 엣지
37: 종래의 공간 38: 종래의 테이프
41: 비전 센서 42: 제어부
43: 디스플레이부 44: 저장부
45: 알람부 51: 하우징
52: 서멀 그리스 101: 전극
102: 분리막 111: 양극 탭
112: 음극 탭 121: 양극 리드
122: 음극 리드 131: 제1 케이스
132: 제2 케이스 133: 컵부
134: 사이드 135: 파우치 필름
136: 브릿지 137: 디가싱부
138: 외벽 139: 폴딩부
161: 펀치 엣지 162: 다이 엣지
163: 두께 엣지 164: 코너
211: 성형부 212: 격벽
213: 다이의 엣지 221: 펀치의 엣지
333: 종래의 컵부 334: 종래의 사이드
336: 종래의 브릿지 337: 종래의 디가싱부
338: 종래의 외벽 339: 종래의 폴딩부
361: 종래의 펀치 엣지 362: 종래의 다이 엣지
421: 아웃라인 추출부 422: 영상 분석부
423: 기준 라인 설정부 424: 거리 연산부
425: 불량 판단부 1021: 주변부
1331: 수용 공간 1332: 바닥부
1333: 외벽 1340: 임시 실링부
1341: 실링부 1342: 미실링부
1343: 외측 단부 1344: 제1 폴딩부
1345: 제2 폴딩부 1351: 실란트층
1352: 수분 배리어층 1353: 표면 보호층
1354: 연신 보조층 1371: 모서리
1381: 브릿지 측 외벽 1382: 디가싱부 측 외벽
1391: 그루브 1611: 브릿지 측 펀치 엣지
1612: 디가싱부 측 펀치 엣지 1613: 제1 펀치 엣지
1614: 제2 펀치 엣지

Claims (15)

  1. 전극 및 분리막이 적층되어 형성되는 전극 조립체;
    상기 전극 조립체를 내부에 수용하는 컵부가 형성된 파우치 형 전지 케이스를 포함하되,
    상기 파우치 형 전지 케이스는,
    상기 컵부의 외측으로 연장 형성된 사이드를 포함하되,
    상기 사이드는,
    상대적으로 외측에 위치하여 실링된 실링부; 및
    상대적으로 내측에 위치하여 미실링된 미실링부를 포함하고,
    상기 컵부에 미접착되면서, 상기 미실링부에서 폴딩된 파우치 형 이차 전지.
  2. 제1항에 있어서,
    상기 사이드는,
    상기 컵부의 외벽에 접촉하며 폴딩된 파우치 형 이차 전지.
  3. 제1항에 있어서,
    상기 사이드는,
    85° 내지 95° 의 각도로 폴딩된 파우치 형 이차 전지.
  4. 제1항에 있어서,
    상기 사이드는,
    상대적으로 외측 단부에 더 가까운 위치에서 폴딩된 제1 폴딩부; 및
    상대적으로 컵부에 더 가까운 위치에서 폴딩된 제2 폴딩부를 포함하는 파우치 형 이차 전지.
  5. 제4항에 있어서,
    상기 제1 폴딩부는,
    상기 실링부에 위치하고,
    상기 제2 폴딩부는,
    상기 미실링부에 위치하는 파우치 형 이차 전지.
  6. 제4항에 있어서,
    상기 사이드는,
    상기 제1 폴딩부를 기준으로 170° 내지 180° 의 각도로 폴딩된 파우치 형 이차 전지.
  7. 제4항에 있어서,
    상기 사이드는,
    상기 제2 폴딩부를 기준으로 85° 내지 95° 의 각도로 폴딩된 파우치 형 이차 전지.
  8. 제7항에 있어서,
    상기 사이드는,
    상기 제2 폴딩부를 기준으로 88° 내지 92° 의 각도로 폴딩된 파우치 형 이차 전지.
  9. 제1항에 있어서,
    상기 전지 케이스는,
    파우치 필름을 성형하여 제조되고,
    상기 파우치 필름은,
    제1 폴리머로 제조되고, 최내층에 형성되는 실란트층;
    제2 폴리머로 제조되고, 최외층에 형성되는 표면 보호층; 및
    상기 표면 보호층 및 상기 실란트층의 사이에 적층되는 수분 배리어층을 포함하되,
    상기 수분 배리어층은,
    두께가 50 내지 80 μm이고 결정립도가 10 ~ 13μm인 알루미늄 합금 박막으로 형성되고,
    상기 실란트층은,
    두께가 60 내지 100 μm인 파우치 형 이차 전지.
  10. 제9항에 있어서,
    상기 알루미늄 합금은,
    합금번호 AA8021인 파우치 형 이차 전지.
  11. 제9항에 있어서,
    상기 알루미늄 합금은,
    철을 1.3 wt% 내지 1.7 wt% 포함하고, 실리콘을 0.2 wt% 이하 포함하는 파우치 형 이차 전지.
  12. 제9항에 있어서,
    상기 수분 배리어층은,
    두께가 55 내지 65 μm이고,
    상기 실란트층은,
    두께가 75 내지 85 μm인 파우치 형 이차 전지.
  13. 제9항에 있어서,
    제3 폴리머로 제조되고, 상기 표면 보호층 및 상기 수분 배리어층 사이에 적층되는 연신 보조층을 더 포함하는 파우치 형 이차 전지.
  14. 제13항에 있어서,
    상기 연신 보조층은,
    두께가 20 내지 50 μm인 파우치 형 이차 전지.
  15. 제1항에 있어서,
    상기 전극 조립체의 면적은 15000mm2 내지 100000 mm2 인 파우치 형 이차 전지.
PCT/KR2021/011056 2020-08-19 2021-08-19 파우치 형 이차 전지 WO2022039531A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21858618.8A EP4184670A1 (en) 2020-08-19 2021-08-19 Pouch type secondary battery
US18/022,003 US20230352773A1 (en) 2020-08-19 2021-08-19 Pouch-Type Secondary Battery
CN202180051295.3A CN116097502A (zh) 2020-08-19 2021-08-19 软包型二次电池
JP2023511979A JP2023538081A (ja) 2020-08-19 2021-08-19 パウチ型二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0104225 2020-08-19
KR20200104225 2020-08-19
KR10-2021-0074474 2021-06-08
KR1020210074474A KR102569012B1 (ko) 2020-08-19 2021-06-08 파우치 형 이차 전지

Publications (1)

Publication Number Publication Date
WO2022039531A1 true WO2022039531A1 (ko) 2022-02-24

Family

ID=80323046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011056 WO2022039531A1 (ko) 2020-08-19 2021-08-19 파우치 형 이차 전지

Country Status (5)

Country Link
US (1) US20230352773A1 (ko)
EP (1) EP4184670A1 (ko)
JP (1) JP2023538081A (ko)
CN (1) CN116097502A (ko)
WO (1) WO2022039531A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120138848A (ko) * 2011-06-16 2012-12-27 에스케이이노베이션 주식회사 파우치형 이차전지 및 그 제조방법
JP5321853B2 (ja) * 2011-04-04 2013-10-23 大日本印刷株式会社 ポリマー電池用包装材料
KR101366217B1 (ko) * 2013-02-26 2014-02-24 한화폴리드리머 주식회사 전지용 포장재 및 그의 제조 방법
JP6022956B2 (ja) 2012-01-26 2016-11-09 昭和電工パッケージング株式会社 成形用包装材及びリチウム二次電池
KR20180057926A (ko) * 2016-11-23 2018-05-31 율촌화학 주식회사 내화학성 및 성형성이 우수한 셀 파우치
KR20190054735A (ko) * 2017-11-14 2019-05-22 삼성에스디아이 주식회사 미실링부를 갖는 파우치 타입 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321853B2 (ja) * 2011-04-04 2013-10-23 大日本印刷株式会社 ポリマー電池用包装材料
KR20120138848A (ko) * 2011-06-16 2012-12-27 에스케이이노베이션 주식회사 파우치형 이차전지 및 그 제조방법
JP6022956B2 (ja) 2012-01-26 2016-11-09 昭和電工パッケージング株式会社 成形用包装材及びリチウム二次電池
KR101366217B1 (ko) * 2013-02-26 2014-02-24 한화폴리드리머 주식회사 전지용 포장재 및 그의 제조 방법
KR20180057926A (ko) * 2016-11-23 2018-05-31 율촌화학 주식회사 내화학성 및 성형성이 우수한 셀 파우치
KR20190054735A (ko) * 2017-11-14 2019-05-22 삼성에스디아이 주식회사 미실링부를 갖는 파우치 타입 이차 전지

Also Published As

Publication number Publication date
EP4184670A1 (en) 2023-05-24
CN116097502A (zh) 2023-05-09
JP2023538081A (ja) 2023-09-06
US20230352773A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2022039529A1 (ko) 파우치 형 이차 전지 및 그의 제조 방법
WO2022158863A2 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2018124494A2 (ko) 버스바 어셈블리 및 프레임 조립체
WO2010027168A2 (ko) 버스 바 구비 리튬 2차 전지 단위 셋 및 버스 바 구비 리튬 2차 전지 셋
WO2017188798A1 (ko) 액체 렌즈를 포함하는 카메라 모듈, 이를 포함하는 광학 기기, 및 액체 렌즈를 포함하는 카메라 모듈의 제조 방법
WO2018124751A1 (ko) 연성회로기판 및 이를 포함하는 프레임 조립체
WO2013157742A1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2019088714A1 (ko) 버스바 어셈블리를 포함하는 배터리 모듈
WO2017126842A2 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2018021722A1 (ko) 카메라 모듈 및 그 조립방법
WO2022039534A1 (ko) 파우치 형 이차 전지 및 전지 모듈
WO2022039533A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2022039536A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2019225882A1 (ko) 이차 전지용 전극 리드 조립체 및 그의 제조 방법
WO2022203412A1 (ko) 액추에이터 장치
WO2022019504A1 (ko) 이차전지용 초음파 용접장치 및 용접방법
WO2020004935A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2018084450A1 (ko) 다품종 캡조립체의 제조장치 및 그 방법
WO2022039531A1 (ko) 파우치 형 이차 전지
WO2022039530A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2023096062A1 (ko) 전극 단자의 리벳팅 구조 및 이를 포함하는 배터리 셀, 배터리 팩 및 자동차
WO2020242039A1 (ko) 액체렌즈
WO2022055303A1 (ko) 이차전지 및 그의 제조방법
WO2020197349A1 (ko) 카메라 모듈
WO2019059720A2 (ko) 액정 배향용 필름의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511979

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021858618

Country of ref document: EP

Effective date: 20230217

NENP Non-entry into the national phase

Ref country code: DE