WO2022039126A1 - SARS-CoV-2予防抗原ペプチドおよびその使用 - Google Patents

SARS-CoV-2予防抗原ペプチドおよびその使用 Download PDF

Info

Publication number
WO2022039126A1
WO2022039126A1 PCT/JP2021/029904 JP2021029904W WO2022039126A1 WO 2022039126 A1 WO2022039126 A1 WO 2022039126A1 JP 2021029904 W JP2021029904 W JP 2021029904W WO 2022039126 A1 WO2022039126 A1 WO 2022039126A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
virus
cov
sars
modification
Prior art date
Application number
PCT/JP2021/029904
Other languages
English (en)
French (fr)
Inventor
和志 平糠
哲也 中面
クズィネ アーノ
利宙 鈴木
Original Assignee
ブライトパス・バイオ株式会社
国立研究開発法人国立がん研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブライトパス・バイオ株式会社, 国立研究開発法人国立がん研究センター filed Critical ブライトパス・バイオ株式会社
Publication of WO2022039126A1 publication Critical patent/WO2022039126A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/165Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to an antigenic peptide that can be used to prevent SARS-CoV-2 infection or the onset of COVID-19, and its use.
  • B cells sensitized to a virus in vivo produce a neutralizing antibody that captures the virus.
  • SARS-CoV-2 Since the new corona virus SARS-CoV-2 was confirmed in early 2020, vaccines that have been under consideration for development against the SARS-CoV-2 virus also use this mechanism to neutralize antibodies. Most of them are intended to induce SARS-CoV-2 virus neutralization using the spike protein on the surface of the SARS-CoV-2 virus, which is used when the virus invades cells. It is believed that the ability to induce antibodies could block the SARS-CoV-2 virus spike protein from binding to the ACE2 receptor in cells and prevent the SARS-CoV-2 virus from entering the cell. ..
  • Non-Patent Document 1 Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, Quan-Xin Long, et al., Nature Medicine, Letter, Published: 18 June 2020).
  • AD antibody-dependent enhancement
  • Non-Patent Document 2 Intrafamilial Exposure to SARS-CoV-2 Induces Cellular Immuno Response without Seroconversion. MedRxiv. Posted June 22, 2020).
  • T cells CD8-positive T cells: killer T cells
  • kill the infected cells or helper T cells cause the virus. It is necessary to generate an immune response that eliminates the virus. Therefore, it is an object of the present invention to develop a vaccine capable of inducing cell-mediated immunity by such virus-specific T cells for virus protection.
  • the present invention selects a peptide or a modification thereof, which comprises inducing cell-mediated immunity against SARS-CoV-2 virus, which comprises a peptide having an amino acid sequence derived from a protein constituting SARS-CoV-2 virus. It was clarified that the above problem can be solved by doing so.
  • a peptide or a modification thereof which comprises a peptide having an amino acid sequence derived from a protein constituting the SARS-CoV-2 virus and has a function of inducing cell-mediated immunity against the SARS-CoV-2 virus.
  • the peptide modification is an N-terminal or C-terminal, or a peptide modification with amino acids added at both ends thereof, a peptide modification with a peptide in the membrane region of diphtheria toxin, and an HLA binding site.
  • the peptide according to [1] or a modification thereof which is any or a combination of a modification of a peptide in which amino acids are substituted for easier binding, and a modification of a peptide to which a protein carrier is added;
  • [4] The peptide according to any one of [1] to [3] or a modification thereof, wherein the amino acid sequence of the peptide is any amino acid sequence selected from the group consisting of SEQ ID NO: 1 to 96.
  • [5] The cell-mediated immunity against SARS-CoV-2 virus described in any of [1] to [4], which occurs through the binding of a peptide or a modification thereof to an MHC class I molecule. Peptides or modifications thereof; [6]: To eliminate the SARS-CoV-2 virus in vivo, or to prevent or treat the onset of COVID-19, which comprises the peptide according to any one of [1] to [5] or a modification thereof.
  • composition [7]: The pharmaceutical composition according to [6] by inducing cell-mediated immunity against SARS-CoV-2 virus; [8]: The pharmaceutical composition according to [6] or [7], which comprises a plurality of peptides or modifications thereof; [9]: (a) A step of culturing leukocyte cells taken from blood collected from a subject together with the peptide according to any one of [1] to [5] or a modified product thereof; (B) A step of detecting whether or not the peptide or a modification thereof induces interferon gamma (IFN- ⁇ ) production from leukocyte cells; A method for confirming whether or not the memory of cell-mediated immunity against SARS-CoV-2 virus is established in the living body of the subject, including.
  • IFN- ⁇ interferon gamma
  • [10] If the subject has a memory of cell-mediated immunity against SARS-CoV-2 virus, it is determined that this subject has been infected with SARS-CoV-2 virus in the past.
  • a step of detecting whether or not interferon gamma (IFN- ⁇ ) production from leukocyte cells is induced by the peptide or a modification thereof;
  • C If interferon gamma production is induced after vaccination compared to before vaccination, the vaccine administered to the subject has an effective immune response to SARS-CoV-2 virus in the subject.
  • Step to determine that the virus was induced A method for determining whether a vaccine against SARS-CoV-2 virus, including, has caused an immune response against SARS-CoV-2 virus in a living body of a subject; [12]: The method according to any one of [9] to [11], wherein the leukocyte cell is a peripheral blood mononuclear cell (PBMC); [13]: The method according to any one of [9] to [12], wherein detection of whether IFN- ⁇ production is induced is performed using an ELISPOT assay.
  • PBMC peripheral blood mononuclear cell
  • the peptide of the present invention or a modification thereof is a CD8-positive T cell (killer) that causes cytotoxicity to virus-infected cells in the living body when the living body is infected with SARS-CoV-2 virus by administration to the living body. It can activate T cells) and create immunological memory of its CD8-positive T cells (killer T cells). From this, the peptide of the present invention or a modification thereof suppresses the growth of SARS-CoV-2 virus in vivo when the living body is infected with SARS-CoV-2 virus, and SARS-CoV-2 virus infection. The onset of disease (COVID-19) can be prevented or treated.
  • the peptide of the present invention or a modification thereof also confirms the establishment of cell-mediated immunity memory based on past infection with SARS-CoV-2 virus, confirms the presence or absence of past infection with SARS-CoV-2 virus, and It can also be used to confirm the efficacy of the vaccine against SARS-CoV-2 virus.
  • FIG. 1 is a diagram showing an overall picture of immunity generated in a living body infected with SARS-CoV-2 virus.
  • FIG. 2 is a diagram showing an overall picture of immunological memory generated in a living body infected with SARS-CoV-2 virus.
  • FIG. 3 is a diagram showing the immune protocol of the peptide.
  • FIG. 4 is a diagram showing an example of the results of the ELISPOT assay when a mixture of a plurality of peptides is administered to HLA-A * 02: 01 transgenic mice.
  • SARS-CoV-2 virus is one of the coronaviruses, also called the new coronavirus. Named by the International Committee on Taxonomy of Viruses (ICTV) in February 2020 as a sister species of the virus (SARS-CoV) that causes SARS (Severe Acute Respiratory Syndrome);
  • SARS-CoV severe Acute Respiratory Syndrome
  • COVID-19 is the official name of the new coronavirus infection caused by SARS-CoV-2 virus infection
  • HLA Human Leukocyte Antigen
  • MHC human major histocompatibility complex
  • Class II antigen Class II antigen
  • Class I antigens are classified into class Ia antigens (HLA-A, B, C) and class Ib antigens (HLA-E, F, G), and are present in most nucleated cells, platelets, and plasma.
  • Class II antigens include HLA-DR antigen, HLA-DQ antigen, and HLA-DP antigen, and are distributed in antigen-presenting cells such as macrophages and monocytes, B lymphocytes, and activated T lymphocytes;
  • the "ELISPOT Assay” Enzyme-Linked ImmunoSpot Assay
  • Enzyme-Linked ImmunoSpot Assay is an assay that uses antibodies to detect protein analytes (biological or chemical substances). A kind of technique. Developed for the analysis of specific antibody-secreting cells based on ELISA, it can be used as a highly accurate in vitro cell assay for detecting individual immune cells that secrete soluble mediators in response to stimuli. ..
  • ⁇ Peptide of the present invention or a modification thereof> vaccines developed and used to prevent infection with a virus are administered to a living body using a protein or a partial peptide thereof exposed outside the virus particles as an immunogen, and the virus is administered in the living body.
  • the purpose is to produce a neutralizing antibody against the virus.
  • Neutralizing antibodies produced in vivo by such vaccines can capture and eliminate viruses present in blood and the like.
  • IgG antibodies have disappeared from the blood within a few months after recovery from the human body recovered from SARS-CoV-2 virus infection (Non-Patent Document 1), and SARS-CoV-2 virus. From reports that antibodies were not detected even though T cells were detected in close contacts with infected persons (Non-Patent Document 2), neutralization was achieved against SARS-CoV-2 virus infection. It was considered that antibody production alone was not sufficient for biological defense.
  • the present inventors decided to search for a peptide capable of inducing an immune response against SARS-CoV-2 virus infection. That is, the outline of immunity against SARS-CoV-2 virus is shown in FIG. 1, but the present inventors have a function of activating CD8-positive T cells (killer T cells) via dendritic cells, and by extension, actual SARS. -The function of causing cytotoxic immunity that causes cytotoxicity of infected cells by CD8-positive T cells (killer T cells) during CoV-2 virus infection, or CD4-positive T cells (helper) mediated by dendritic cells.
  • peptides which are partial sequences of the amino acid sequences of the proteins constituting the SARS-CoV-2 virus, they bind to the class I HLA protein and are cellular in vivo infected with the SARS-CoV-2 virus.
  • the present invention has, as a first aspect, a function of inducing cell-mediated immunity against SARS-CoV-2 virus, which comprises a peptide having an amino acid sequence derived from a protein constituting SARS-CoV-2 virus.
  • a peptide characterized by the above or a modification thereof can be provided.
  • a short peptide derived from a virus (MHC class I epitope) bound to an MHC class I molecule is presented on the cell surface of a virus-infected cell in vivo, whereas CD8-positive T cells (killer T cells) are present. It is thought that it exerts a cell-mediated immunity function that inhibits virus growth by recognizing and activating a short peptide presented on the cell surface together with this MHC class I molecule and cytotoxicizing infected cells ().
  • Figure 1 A short peptide derived from a virus (MHC class I epitope) bound to an MHC class I molecule is presented on the cell surface of a virus-infected cell in vivo, whereas CD8-positive T cells (killer T cells) are present. It is thought that it exerts a cell-mediated immunity function that inhibits virus growth by recognizing and activating a short peptide presented on the cell surface together with this MHC class I molecule and cytotoxicizing infected cells ().
  • Figure 1 A short
  • MHC class II epitope a virus-derived peptide (MHC class II epitope) bound to MHC class II molecules is presented on the cell surface of dendritic cells sensitized to the virus in vivo, and CD4-positive T cells (helper T cells) are presented. Is thought to recognize the peptide presented on the cell surface together with this MHC class II molecule, activate it, and exert the function of activating killer T cells (Fig. 1).
  • the peptides of the invention or modifications thereof mimic the SARS-CoV-2 virus-derived peptides presented on the cell surface of cells infected with the SARS-CoV-2 virus, and MHC class I molecules or MHC on the cell surface.
  • CD8-positive T cells killer T cells
  • HLA protein which is a class II molecule
  • CD4-positive T cells helper T cells
  • CD8-positive T cells are cells that carry cell-mediated immunity when a living body is infected with SARS-CoV-2 virus, and destroy infected cells that present peptides derived from SARS-CoV-2 virus. Therefore, it can exert the function of cell-mediated immunity, which blocks the growth of SARS-CoV-2 virus.
  • CD4-positive T cells helper T cells are cells that play a role in regulating the entire immune response, such as activating other immune cells when the body is infected with SARS-CoV-2 virus, and are killer T cells. It can activate cells and exert the function of activating cell-mediated immunity.
  • the HLA protein which is an MHC class I molecule to which the peptide of the present invention or a modification thereof can bind, includes A02 antigen and A24 antigen, which are antigens belonging to HLA-A.
  • the HLA protein which is an MHC class II molecule to which the peptide of the present invention or a modification thereof can bind, includes DPA1 * 02: 02, DPA1 * 01: 03, and DPA1 * 02: 01, which are antigens belonging to HLA-DP.
  • DQB1 * 06 01
  • DQB1 * 04 01
  • DRB1_0901 DRB1_0405
  • DRB1_1502 DRB1_1501, DRB1_0101, DRB1_0803, DRB1_1201, which are antigens belonging to HLA-DR.
  • the protein constituting the SARS-CoV-2 virus from which the peptide is derived may be a protein inside the virus particle or a protein outside the virus particle, and specifically. Is a protein that is external to (ie, exposed to the surface) of the SARS-CoV-2 virus (eg, enveloped protein, spiked protein) but is present inside the virus (ie, exposed to the surface). It may be a protein (eg, a nucleocapsid protein).
  • the proteins constituting the SARS-CoV-2 virus that can be used in the present invention can be obtained based on the complete genomic sequence of the SARS-CoV-2 virus already registered in a public database.
  • a complete genome sequence the reference genome sequence of SARS-CoV-2 virus registered in the NCBI RefSeq database, the genome sequence registered in the GISAID EpiCoV TM database, and the like can be used.
  • the SARS-CoV-2 virus reference genome sequence NC_045512 registered in the NCBI RefSeq database is used, and the SARS-CoV-2 virus specified based on this reference genome sequence is used. It is preferable to use the proteins constituting the above.
  • peptides that are partial sequences of the proteins that make up these SARS-CoV-2 viruses they can actually bind to the HLA protein, which is an MHC class I molecule, and activate CD8-positive T cells (killer T cells).
  • HLA protein which is an MHC class I molecule
  • CD8-positive T cells killer T cells
  • a peptide having an amino acid sequence of any of SEQ ID NO: 1 to 56 can be mentioned as an example, but the peptide is not limited thereto.
  • Peptides having these specific amino acid sequences or modifications thereof are presented with MHC class I molecules on the cell surface of dendritic cells and are thought to have the ability to activate CD8 positive T cells (killer T cells). ..
  • the peptide of the present invention binds to an MHC class I molecule and is presented to immune cells, it is structurally characterized by having 8 to 11 amino acids.
  • a modified version of the above peptide is actually an HLA protein which is an MHC class I molecule. Anything that can bind and activate CD8-positive T cells (killer T cells) can be used as a constituent of the present invention.
  • a modified peptide of the present invention include a modified peptide having amino acids added to the N-terminal or C-terminal of these peptides, or both ends thereof, and a peptide having a peptide in the membrane region of diphtheria toxin added.
  • a peptide modification in which the amino acid at the HLA binding site is substituted for easier binding, a peptide modification such as a peptide modification to which a protein carrier is added, and the like may be included.
  • peptides that are partial sequences of the proteins constituting the SARS-CoV-2 virus described above they can actually bind to the HLA protein, which is an MHC class II molecule, and activate CD4-positive T cells (helper T cells).
  • HLA protein which is an MHC class II molecule
  • helper T cells CD4-positive T cells
  • a peptide having an amino acid sequence of any one of SEQ ID NO: 57 to 96 or a processed and shortened peptide thereof can be mentioned as an example. Is not limited. Peptides having these specific amino acid sequences or modifications thereof are presented with MHC class II molecules on the cell surface of dendritic cells and are thought to have the ability to activate CD4-positive T cells (helper T cells). ..
  • the peptide of the present invention binds to an MHC class II molecule and is presented to immune cells, it is structurally characterized by having 15 to 21 amino acids.
  • a modified version of the above peptide is actually an HLA protein which is an MHC class II molecule. Anything that can bind and activate CD4-positive T cells (helper T cells) can be used as a constituent of the present invention.
  • a modified peptide of the present invention include a modified peptide having amino acids added to the N-terminal or C-terminal of these peptides, or both ends thereof, and a peptide having a peptide in the membrane region of diphtheria toxin added.
  • a peptide modification in which the amino acid at the HLA binding site is substituted for easier binding, a peptide modification such as a peptide modification to which a protein carrier is added, and the like may be included.
  • Such memories include immunological memory for helper T cells against the virus, immunological memory for B cells that are antibody-producing cells, and immunological memory for CD8-positive cells (killer T cells) that are responsible for cell-mediated immunity.
  • FIG. 2 An overview of immunological memory against the SARS-CoV-2 virus is shown in FIG. 2, but the peptide or modification thereof, which is the MHC class I epitope of the present invention, also has at least the peptide or modification thereof on the cell surface together with the MHC class I molecule.
  • memory killer T cells which are memory cells of CD8-positive T cells (killer T cells) that recognize and injure the cells presented in.
  • memory cells are memory killer T based on the presentation of SARS-CoV-2 virus-derived peptides by dendritic cells via MHC class I molecules when the body is infected with SARS-CoV-2 virus. It can induce rapid activation of cells and rapidly exert the action of cell-mediated immunity against cells infected with SARS-CoV-2 virus.
  • the peptide or its modification which is an MHC class II epitope of the present invention is also a CD4 positive T cell activated by a dendritic cell which presents at least the peptide or its modification on the cell surface together with an MHC class II molecule ( It is possible to induce memory helper T cells, which are memory cells of helper T cells).
  • memory helper T cells which are memory cells of helper T cells.
  • memory cells are based on the presentation of SARS-CoV-2 virus-derived peptides by dendritic cells via MHC class II molecules when the body is infected with SARS-CoV-2 virus. It can induce rapid activation of cells and rapidly exert the action of cell-mediated immunity against cells infected with SARS-CoV-2 virus.
  • the aforementioned peptides or modifications thereof of the present invention can bind to the HLA protein, which is an MHC class I molecule, or the HLA protein, which is an MHC class II molecule, and in the former case, CD8-positive T cells (killer T cells).
  • CD8-positive T cells killer T cells
  • CD4-positive T cells helper T cells
  • SARS-CoV-2 virus is removed in vivo.
  • Effective removal of such cells infected with SARS-CoV-2 virus results in the removal of SARS-CoV-2 virus, and as a pharmaceutical composition for preventing or treating the onset of COVID-19. Can be used.
  • the present invention is intended to eliminate the SARS-CoV-2 virus in vivo, or to prevent or treat the onset of COVID-19, which comprises the above-mentioned peptide of the present invention or a modification thereof.
  • Pharmaceutical compositions of the same can also be provided.
  • the pharmaceutical composition means a ethical drug used by a doctor or supplied for the purpose of being used by a doctor's prescription or instruction, and is not limited to a therapeutic drug (therapeutic drug). It is a concept that includes those for preventive purposes (vaccines).
  • virus particles having infectious power released to the outside of the cell by damaging and destroying cells infected with the virus by cell-mediated immunity of the living body it means to reduce the number of viruses.
  • the present invention when it comes to prevention or treatment of the onset of COVID-19, an infection in which cells infected with SARS-CoV-2 virus are damaged and destroyed by the cellular immunity of the living body and released extracellularly.
  • the onset of COVID-19 which is an infectious symptom of SARS-CoV-2 virus, can be prevented, or even if it does occur, the symptom can be treated or alleviated. say.
  • the characteristics of the peptide or its modified product, which is the active ingredient of the pharmaceutical composition of the present invention, are as described above with respect to its structure and action.
  • the peptide of the present invention or a modification thereof may contain a single peptide or a modification thereof, or may contain a plurality of peptides or modifications thereof. ..
  • CD8-positive T cells killer T cells
  • CD4-positive T cells helper T cells
  • CD8-positive T cells killer T cells
  • CD4-positive T cells helper T cells
  • the pharmaceutical composition of the present invention is combined with other pharmaceutical compositions for removing the SARS-CoV-2 virus in vivo or preventing or treating the onset of COVID-19 by other mechanisms. It can also be administered.
  • a drug antiviral drug, antiserum, etc.
  • aimed at reducing the SARS-CoV-2 virus in an infected living body can be used.
  • the pharmaceutical composition of the present invention contains other additive components such as carriers, excipients, adjuvants and the like commonly used in the art, if necessary, based on the dosage form, route of administration and the like. You may.
  • the leukocyte cells collected from the living body already have the immune memory of cell-mediated immunity against the SARS-CoV-2 virus, the leukocyte cells are cultured in vitro with the peptide of the present invention or a modification thereof added.
  • Interferon gamma IFN- ⁇ is produced from.
  • B A step of detecting whether or not interferon gamma (IFN- ⁇ ) production from leukocyte cells is induced by the peptide of the present invention or a modification thereof; It is possible to provide a method for confirming whether or not the memory of cell-mediated immunity against SARS-CoV-2 virus is established in the living body of the subject including.
  • IFN- ⁇ interferon gamma
  • the leukocyte cell fraction obtained by fractionating the whole blood collected from the subject blood with Ficoll-Paque PREMIUM can be used, but further, the MACS system (Mill) can be used. It is also possible to use leukocyte cells that produce IFN- ⁇ , such as peripheral blood mononuclear cells (PBMC), by fractionating according to the procedure of Tenney Biotech Co., Ltd.).
  • PBMC peripheral blood mononuclear cells
  • Detection of whether IFN- ⁇ production is induced in leukocyte cells can be performed using the ELISPOT assay.
  • the above-mentioned pharmaceutical composition of the present invention is administered to the subject.
  • the memory of cell-mediated immunity against SARS-CoV-2 virus can be established.
  • (A) Leukocyte cells taken from blood collected from a subject before vaccination against SARS-CoV-2 virus are cultured with the peptide of the present invention or a modification thereof, and the peptide of the present invention or a modification thereof is used. Steps to detect whether interferon gamma (IFN- ⁇ ) production from leukocyte cells is induced; (B) Leukocyte cells taken from blood collected from a subject after administration of a vaccine against SARS-CoV-2 virus are cultured together with the peptide of the present invention or a modification thereof, and the peptide of the present invention or a modification thereof is used.
  • IFN- ⁇ interferon gamma
  • (C) A step of determining that the vaccine has induced an effective immune response against SARS-CoV-2 virus when interferon gamma production is induced after vaccination as compared to before vaccination;
  • Vaccines against SARS-CoV-2 virus including, can provide a method for determining whether an immune response against SARS-CoV-2 virus has occurred in a living body of a subject.
  • Example 1 Epitope analysis and selection of experimental target peptide
  • candidate epitope sequences were selected and their epitopes were synthesized.
  • the protein sequence from which the epitope is derived is 9 amino acids derived from the structural proteins Envelope (E), Membrane (M), Nucleocapsid (N), Spike (S, indicated as surface on the data). Epitope sequences with residues and 10 amino acid residue lengths were selected. As a result, 170 candidate epitopes were selected.
  • HCoV_229E HCoV_HKU1, HCoV__NL63, HCoV_OC43
  • MERS Middle East Respiratory Syndrome
  • SARS-CoV-2 virus when compared to the reference protein sequence of the species (MERS_EMC) and amino acid segments with a length of 5 residues or more common to each epitope sequence are found in those 5 reference protein sequences. Excluded as not a selective epitope.
  • NC_045512 registered in the NCBI Virus database as of April 27, 2020.
  • the concordance rate at the amino acid level of the corresponding epitope sequence was calculated, and the epitopes with a low concordance rate were excluded.
  • peptides of 126 candidate epitope sequences which are expected to be restricted to HLA-A * 02: 01 or HLA-A * 24: 02, were chemically synthesized.
  • Example 2 Immunoinduction experiment using transgenic mice
  • HLA-A * 02: 01 or HLA-A * 24: was selected using the candidate epitope peptide selected in Example 1 and chemically synthesized.
  • Example 1 The candidate epitope peptides chemically synthesized in Example 1 were divided into peptide groups of 4 to 6 types (Table 1), and 50 ⁇ g of a peptide mixture in which each of the 4 to 6 types of peptides was dissolved was prepared to prepare 16 ⁇ g of polyI. : After mixing with CLC, HLA-A * 02: 01 transgenic mice or HLA-A * 24: 02 transgenic mice were administered subcutaneously to the ridge three times every other week by the immune protocol shown in FIG. (Two mice were used for each peptide mixture group).
  • spleen cells were prepared, and each cell derived from the individual was put into a well multi-well plate of an ELISPOT set (BD TM ELISPOT mouse IFN- ⁇ ELISPOT Set, BD Bioscience) per well.
  • the number of cells in the cell was adjusted to 2 ⁇ 10 6 and the cells were seeded, and any one peptide contained in the peptide mixture was mixed in each well.
  • ELISPOT set BD TM ELISPOT mouse IFN- ⁇ ELISPOT Set
  • any candidate peptide of CovA02_01, CovA02_02, CovA02_03, CovA02_04, CovA02_05, CovA02_06 was mixed.
  • Add cells to culture medium RPMI 1640 medium with 10% FCS, 200 ⁇ M L-glutamine, 100 ⁇ M 2-ME, 100 ⁇ M pyruvate, MEM Non Essential Amino Acid, 10 mM HEPES and 100 U / ml penicillin, 100 ⁇ g / ml streptomycin as antibiotics.
  • ELISPOT assay capable of detecting interferon ⁇ (IFN- ⁇ ), and the number of cells releasing IFN- ⁇ was measured.
  • Three wells were assigned to each peptide and evaluated by triplet.
  • Example 3 Judgment of positive peptide
  • a cell-mediated immune activation positive peptide was selected based on the result of the ELISPOT assay performed in Example 2.
  • the ELISPOT assay cultivates splenocytes (10% FCS in RPMI1640 medium, 200 ⁇ M L-glutamine, 100 ⁇ M 2-ME, 100 ⁇ M pyruvate, MEM Non Essential Amino Acid, 10 mM HEPES and 100 U / ml penicillin as antibiotic, 100 ⁇ g / After culturing on a well multi-well plate of an ELISPOT set (BD TM ELISPOT mouse IFN- ⁇ ELISPOT Set, BD Bioscience) using ml streptomycin (added ml streptomycin), the cells were removed by washing the plate and labeled with biotin.
  • the assay was performed by incubating with an anti-IFN- ⁇ monoclonal antibody (BD TM ELISPOT mouse IFN- ⁇ ELISPOT Set, BD Bioscience) at room temperature for 2 hours. Detection was performed at room temperature for 1 hour with HRP-labeled-avidin (BD TM ELISPOT mouse IFN- ⁇ ELISPOT Set, BD Bioscience) diluted 1: 100 after washing the plate incubated with biotin-labeled anti-IFN- ⁇ monoclonal antibody. After the treatment, an ACE Substrate solution (BD Bioscience) was added to develop a color, and the developed plate was measured using an automatic spot counting device (Eliphotocount, Minerva Tech Co., Ltd.). Cells treated with PMA and Ionomycin (Sigma) were used as positive controls in all experiments. The experiment confirmed the number of spots on triplets of splenocytes collected from each of the two immunized mice for each peptide mixture group.
  • FIG. 4 shows the results of the ELISPOT assay when the peptide of GROUP A02-1 was administered to HLA-A * 02: 01 transgenic mice.
  • Negative control Poly I: CLC only
  • Poly I Poly I: CLC only
  • Poly I Poly I
  • -Positive control immunized mouse-derived splenocytes (denoted as "Positive control (GPC3 + Poly I: CLC)”) administered with a mixture of GPC3-A02Short peptide (50 ⁇ g) and Poly I: CLC (16 ⁇ g), -Experimental group to which a mixture of GROUP A02-1 peptide (50 ⁇ g) and Poly I: CLC (16 ⁇ g) was administered Splenocytes derived from immunized mice (denoted as “Group A02-1 peputides + Poly I: CLC
  • the number at the bottom right of each well indicates the number of IFN- ⁇ positive spots in each well, and for wells where IFN- ⁇ production exceeds the detection limit, the number of spots in the PMA / Iono well is 1600. The calculated number of spots in the well is shown. Such studies were performed on all peptides in all groups (photos for other groups omitted).
  • the immunogenic reaction intensity of the candidate peptide was adjusted in 4 steps (0: none, 1: weak, 2) according to the measured value of the maximum number of interferon gamma-releasing cell spots in each peptide 6-well measured by the ELISPOT assay. : Medium, 3: Strong). Specifically, when the maximum number of spots per well is 0 to 100, the reaction intensity is 0, when it is 101 to 600, the reaction intensity is 1, when it is 601-1200, the reaction intensity is 2, and when it is 1201, the reaction intensity is 2. It was set to 3.
  • the ELISPOT assay was performed for all groups, and candidate peptides with a reaction intensity of 1 or higher in the number of interferon gamma-releasing cell spots were designated as positive peptides.
  • Information on 56 positive peptides is summarized in Table 2 (peptides that bind to HLA-A02: 01) and Table 3 (peptides that bind to HLA-A24: 02).
  • N nucleocapsid protein
  • M membrane glycoprotein
  • S spike protein
  • E envelope protein are shown respectively.
  • Example 4 Immunostimulation experiment using a long peptide using a transgenic mouse
  • a long peptide (long peptide) prepared based on the candidate epitope peptide selected and chemically synthesized in Example 1 was used. Used and immunized with HLA-A * 02: 01 or HLA-A * 24: 02 transgenic mice.
  • the long peptide (long peptide) prepared based on the candidate epitope peptide selected and chemically synthesized in Example 1 should be taken up by the antigen-presenting cells and presented to the immune system by the MHC class II pathway. Even if it is a long peptide, "cross-presentation" is known in which an epitope is presented on MHC class I through cleavage by intracellular processing, and in the present invention, cross-presentation is also generated and transferred onto MHC class I. This is because the purpose is to present an epitope.
  • the long peptide was prepared by the following method. That is, from the SARS-CoV-2 reference genome sequence (NC_045512), a total pattern of 15 amino acid residue length peptides that completely contained the peptide prepared in Example 1 was listed, and each of them and HLA-A were listed. The binding of * 02: 01 and HLA-A * 24: 02 to the DRB1 allele, which has a high frequency of Japanese haplotypes, was calculated using NetMHCIIpan-4.0 (Denmark Institute of Technology). A 15-amino acid residue-length peptide having a percent rank of 10% or less was extracted as a binder candidate, and if there were multiple binder candidates, those bound to each other were designed as a long peptide. When no binder candidate was predicted, the 19-amino acid residue-length peptide centered on the peptide prepared in Example 1 was used as the long peptide.
  • Example 2 Based on the peptide chemically synthesized in Example 1, amino acids were added to one side or both sides of the peptide to prepare a peptide (long peptide) having a residue length of 15 to 21 amino acids, and the same method as in Example 2 was used. Then, 50 ⁇ g of a peptide mixture in which each of the four peptides was dissolved was prepared, mixed with 16 ⁇ g of polyI: CLC, and then HLA-A * 02: 01 transgenic mouse or HLA- by the immune protocol shown in FIG.
  • a * 24 02 Transgenic mice were administered a different peptide mixture to two locations on the left and right three times every other week (8 types of peptides were administered to each mouse on the left and right, and the mice were administered to each peptide mixture group. Use 2 animals). However, long peptides whose synthesis failed were excluded.
  • a mixed solution of DMSO and PolyI: CLC (16 ⁇ g) was administered to each of the left and right mice, and as a positive control, it was confirmed that one mouse was already immunogenic.
  • FVGEFFTDV A02 Short peptide
  • CRQYDPVAALFFFDIDL A24 Long peptide
  • CMV cytomegalovirus
  • the immunogenic reaction intensity of the candidate peptide was adjusted in 4 steps (0: none, 1: weak, 2) according to the measured value of the maximum number of interferon gamma-releasing cell spots in each peptide 6-well measured by the ELISPOT assay. : Medium, 3: Strong). Specifically, when the maximum number of spots per well is 0 to 100, the reaction intensity is 0, when it is 101 to 600, the reaction intensity is 1, when it is 601-1200, the reaction intensity is 2, and when it is 1201, the reaction intensity is 2. It was set to 3.
  • the ELISPOT assay was performed for all groups, and candidate peptides with a reaction intensity of 1 or higher in the number of interferon gamma-releasing cell spots were designated as positive peptides.
  • the results are summarized in Table 4 (peptides that bind to HLA-A02: 01) and Table 5 (peptides that bind to HLA-A24: 02).
  • the long peptide Since the long peptide is taken up by antigen-presenting cells and the epitope is presented on MHC class I via intracellular processing, it does not necessarily cause an immune response in the administered individual.
  • As a result of examination in this example as a result of stimulating and detecting immune cells derived from an individual to which a long peptide was administered with the same long peptide, 16 out of 24 types of A02-restricted long peptides and A24-restricted long peptides were used. It became clear that 13 out of 16 species were positive.
  • the ELISPOT assay was performed for all groups, and candidate peptides with a reaction intensity of 1 or higher in the number of interferon gamma-releasing cell spots were designated as positive peptides.
  • the results are summarized in Table 6 (peptides that bind to HLA-A02: 01) and Table 7 (peptides that bind to HLA-A24: 02).
  • Tables 6 and 7 the peptide moieties from which the long peptides used to stimulate cells in the ELISPOT assay were derived were underlined.
  • the epitope presented on MHC class I became the source of each long peptide. Not necessarily the peptide of Example 1.
  • the immune cells derived from the individual to which the long peptide was administered were stimulated and detected with the peptide of Example 1 which is the source of the long peptide.
  • Species, A24-restricted long peptides, were found to be positive in 9 of 16 species.
  • Example 5 Detection of infection against SARS-CoV-2 virus
  • PBMC peripheral blood mononuclear cells
  • Example 4 As subjects, 5 non-infected individuals (2 individuals with HLA-A02: 01, 3 individuals with HLA-A24: 02) and 9 post-infection recovery individuals (HLA-A02: 01) Peripheral blood mononuclear cells (PBMC) collected from 5 individuals and 4 individuals carrying HLA-A24: 02) were subjected to the A02-binding peptide, A24-binding peptide or implementation obtained in Example 1. Stimulation with the A02-restricted long peptide and A24-restricted long peptide obtained in Example 4 confirmed the production of IFN- ⁇ by ELISPOT assay. The ELISPOT assay for investigating the production of IFN- ⁇ was performed in the same manner as described in Example 3.
  • the score conversion of the number of spots of ELISPOT is converted as 0 points for those with a small number of spots and 5 points for those with a large number of spots for non-infected individuals, while for non-infected individuals.
  • the one with a large number of spots was converted as 0 points, and the one with a small number of spots was converted as 5 points. This is because it is assumed that the infected recovery individual tends to have a large number of spots in response to the stimulation by the stimulating peptide, so the score was set higher for the one with a larger number of spots, whereas the non-infected individual had a higher score. Since it is assumed that the stimulating peptide does not respond to the stimulus, the score is set higher for the one with the smaller number of spots.
  • Table 9 shows data stimulated with the A02 restrictive peptide obtained in Example 1 for PBMCs of HLA-A02: 01-carrying individuals (infected recovery individuals, non-infected individuals).
  • Table 10 shows the data obtained by stimulating PBMCs of HLA-A02: 01-carrying individuals (infectious recovery individuals, non-infected individuals) with the A02-restricted long peptide obtained in Example 4
  • Table 11 shows the data of HLA-A24: 02-carrying individuals (infectious recovery individuals, non-infected individuals) stimulated with the A24-restrictive peptide obtained in Example 1 against PBMC.
  • Table 12 shows the data obtained by stimulating PBMCs of HLA-A24: 02-carrying individuals (infectious recovery individuals, non-infected individuals) with the A02-restricted long peptide obtained in Example 4, Are shown respectively.
  • peptides with an average score of 2.0 or higher for recovered individuals and a mean score of 4.0 or higher for non-infected individuals ie, CovA02-08, CovA24-01, CovA24-04, CovA24-) 33, CovA24-37, CovA24-1002, CovA24-18L, CovA24-37L, CovA24-1005L) were obtained.
  • Example 6 Confirmation of immune response to approved vaccination The purpose of this example was to investigate how the immune response to virus-derived peptides changes before and after vaccination with the approved vaccine.
  • the score conversion of the number of spots of ELISPOT is scored according to the same criteria as the conversion method for infected recovery individuals in Table 8 above. 0 points for 0 to 5 spots, 1 point for 6 to 10 spots, 2 spots 11-50, 3 spots 51-100, 4 spots 101-200, 5 spots from 201 to Converted as.
  • Tables 13 to 16 After converting the ELISPOT for PBMC derived from each individual, each subject is summarized in Tables 13 to 16.
  • -Table 13 shows the A02 restraint obtained in Example 1 for PBMCs before and after vaccination of HLA-A02: 01-carrying individuals (non-infected individuals (Table 13-1) and infected recovery individuals (Table 13-2)). Data stimulated by sex peptides
  • -Table 14 shows the A02 restraint obtained in Example 4 for PBMCs before and after vaccination of HLA-A02: 01-carrying individuals (non-infected individuals (Table 14-1) and infected recovery individuals (Table 14-2)).
  • -Table 15 shows the A24 restraint obtained in Example 1 for PBMC before and after vaccination of HLA-A24: 02-carrying individuals (non-infected individuals (Table 15-1) and infected recovery individuals (Table 15-2)).
  • Data stimulated by sex peptides, -Table 16 shows the A02 restraint obtained in Example 4 for PBMCs before and after vaccination of HLA-A24: 02-carrying individuals (non-infected individuals (Table 16-1) and infected recovery individuals (Table 16-2)).
  • Data stimulated by sex long peptides Are shown respectively. Since the Pfizer vaccine uses peplomer as an immunogen, the peptides used for stimulation were limited to those derived from peplomer.
  • the peptide was selected on the condition that it is an effective peptide when the result that the intensity difference of the number of spots after vaccination increased by 2 or more compared with the number of spots of ELISPOT before vaccination of non-infected persons was obtained.
  • CovA02-33, CovA02-34, CovA02-45, CovA02-1001, CovA02-1004, CovA02-1008, CovA02-1012, CovA02-04L, CovA02-29L, CovA02-1001L, CovA02-1008L, CovA24-04, CovA24 -21, CovA24-23, CovA24-38, etc. were found, and it was found that the effect of vaccination of non-infected persons can be determined by using the peptide of the present invention as a set.
  • these peptides can be used to stimulate PBMCs taken from an individual before and after vaccination to determine if the individual has an effective immune response as a result of vaccination. ..
  • CovA24-01, CovA24-37, CovA24-1002, etc. were found as peptides that react specifically to those who have recovered from infection and whose number of spots does not increase before and after vaccination. Can be used for diagnostic purposes.
  • CD8-positive T cells that cause cytotoxicity to virus-infected cells in the living body when the living body is infected with SARS-CoV-2 virus. T cells
  • the peptide of the present invention or a modification thereof suppresses the growth of SARS-CoV-2 virus in vivo and prevents or treats the onset of SARS-CoV-2 virus infection (COVID-19). Can be done.
  • the peptide of the present invention or a modification thereof also confirms the establishment of cell-mediated immunity memory based on past infection with SARS-CoV-2 virus, confirms the presence or absence of past infection with SARS-CoV-2 virus, and It can also be used to confirm the efficacy of the vaccine against SARS-CoV-2 virus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Communicable Diseases (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Food Science & Technology (AREA)

Abstract

ウイルス感染が進行してしまった細胞は細胞内でウイルスを増殖させるため、T細胞(CD8陽性T細胞:キラーT細胞)によって感染細胞を殺傷することが必要になる。そのため、本発明は、ウイルス防御のため、このようなウイルス特異的T細胞免疫を誘導できるペプチドを取得することを課題とする。 本発明は、SARS-CoV-2ウイルスを構成するタンパク質に由来するアミノ酸配列を有するペプチドを含む、SARS-CoV-2ウイルスに対する細胞性免疫を誘導することを特徴とするペプチドまたはその修飾物により上記課題を解決するための手段を提供する。

Description

SARS-CoV-2予防抗原ペプチドおよびその使用
 本発明は、SARS-CoV-2感染予防もしくはCOVID-19発症予防に使用できる抗原ペプチドおよびその用途に関する。
 一般に、生体内でウイルスに感作されたB細胞は、ウイルスを捕捉する中和抗体を産生することが知られている。2020年初めに新型コロナウイルス、SARS-CoV-2が確認されてからこれまで、SARS-CoV-2ウイルスに対して開発が検討されているワクチンも、この機序を利用して、中和抗体を誘導することを意図したものがほとんどであり、SARS-CoV-2ウイルスが細胞に侵入するときに使用されるSARS-CoV-2ウイルス表面上のスパイクタンパク質を免疫原として使用してかかる中和抗体を誘導できれば、SARS-CoV-2ウイルスのスパイクタンパク質が細胞のACE2受容体と結合するのをブロックして、SARS-CoV-2ウイルスの細胞への侵入を妨げることができると考えられている。
 COVID-19を引き起こすSARS-CoV-2ウイルスは、スパイクタンパク質が細胞のACE2受容体に結合して細胞に感染し、細胞外から消えるため、このスパイクタンパク質のACE2結合部位を認識する抗体は、中和能を発揮できる場合が多いと考えられている。また、SARS-CoV-2ウイルス感染からの回復者の血液中に存在するSARS-CoV-2ウイルスに対する抗体を測定した結果、多くの回復者において、回復後数か月以内に血液中からIgG抗体が消失しているという報告もある(非特許文献1:Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, Quan-Xin Long, et al., Nature Medicine, Letter, Published: 18 June 2020)。
 また、ワクチンの接種などにより起こりうる「抗体依存性感染増強(ADE)」と呼ばれる現象により、ウイルスに感染した場合に症状が重症化するリスクが指摘されている。
 これに対して、フランスの7家族を調べた試験の結果、SARS-CoV-2感染者と密に接したその家族8人のうち6人からは、抗体は見つからなかったにも拘わらず、T細胞が検出されたことが報告されている(非特許文献2:Intrafamilial Exposure to SARS-CoV-2 Induces Cellular Immune Response without Seroconversion. medRxiv. Posted June 22, 2020)。
Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, Quan-Xin Long, et al., Nature Medicine, Letter, Published: 18 June 2020 Intrafamilial Exposure to SARS-CoV-2 Induces Cellular Immune Response without Seroconversion. medRxiv. Posted June 22, 2020
 かかる状況のもと、ウイルス感染が進行してしまった細胞は細胞内でウイルスを増殖させるため、T細胞(CD8陽性T細胞:キラーT細胞)によって感染細胞を殺傷することあるいはヘルパーT細胞によってウイルスを排除する免疫反応を生じさせることが必要になる。そのため、本発明は、ウイルス防御のため、このようなウイルス特異的T細胞による細胞性免疫を誘導できるワクチンを開発することを課題とする。
 本発明は、SARS-CoV-2ウイルスを構成するタンパク質に由来するアミノ酸配列を有するペプチドを含む、SARS-CoV-2ウイルスに対する細胞性免疫を誘導することを特徴とするペプチドまたはその修飾物を選択することにより上記課題を解決することができることを明らかにした。
 より具体的には、本件出願は、前述した課題を解決するため、以下の態様を提供する:
[1]: SARS-CoV-2ウイルスを構成するタンパク質に由来するアミノ酸配列を有するペプチドを含む、SARS-CoV-2ウイルスに対する細胞性免疫を誘導する機能を有することを特徴とするペプチドまたはその修飾物;
[2]: ペプチドの修飾物が、N末端またはC末端、あるいはその両端にアミノ酸が付加されたペプチドの修飾物、ジフテリア毒素の膜領域のペプチドを付加されたペプチドの修飾物、HLA結合部位のアミノ酸をさらに結合しやすいように置換したペプチドの修飾物、タンパク質キャリアを付加されたペプチドの修飾物のいずれかまたは組み合わせである、[1]に記載のペプチドまたはその修飾物;
[3]: SARS-CoV-2ウイルスを構成するタンパク質が、エンベロープタンパク質、メンブレンタンパク質、ヌクレオカプシドタンパク質、スパイクタンパク質からなる群から選択される、[1]または[2]に記載のペプチドまたはその修飾物;
[4]: ペプチドのアミノ酸配列が、SEQ ID NO: 1~96からなる群から選択されるいずれかのアミノ酸配列である、[1]~[3]のいずれかに記載のペプチドまたはその修飾物;
[5]: SARS-CoV-2ウイルスに対する細胞性免疫が、ペプチドまたはその修飾物がMHCクラスI分子に対して結合することを介して生じる、[1]~[4]のいずれかに記載のペプチドまたはその修飾物;
[6]: [1]~[5]のいずれかに記載のペプチドまたはその修飾物を含む、生体内におけるSARS-CoV-2ウイルスを除去し、またはCOVID-19の発症を予防または治療するための医薬組成物;
[7]: SARS-CoV-2ウイルスに対する細胞性免疫を誘導することによる、[6]に記載の医薬組成物;
[8]: 複数のペプチドまたはその修飾物を含む、[6]または[7]に記載の医薬組成物;
[9]: (a)被検体から採取した血液から取り出された白血球細胞を、[1]~[5]のいずれか1項に記載するペプチドまたはその修飾物とともに培養する工程;
 (b)当該ペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
を含む、被検体生体内においてSARS-CoV-2ウイルスに対する細胞性免疫の記憶が成立しているかどうかを確認する方法;
[10]: 被検体がSARS-CoV-2ウイルスに対する細胞性免疫の記憶を有している場合、この被検体が過去にSARS-CoV-2ウイルスに対して感染したことがあると判定する、[9]に記載の方法;
[11]: (a)SARS-CoV-2ウイルスに対するワクチン投与前の被検体から採取した血液から取り出された白血球細胞を、[1]~[5]のいずれかに記載するペプチドまたはその修飾物とともに培養し、前記ペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
 (b)SARS-CoV-2ウイルスに対するワクチン投与後の被検体から採取した血液から取り出された白血球細胞を、[1]~[5]のいずれかに記載するペプチドまたはその修飾物とともに培養し、前記ペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
 (c)ワクチン投与前と比較して、ワクチン投与後において、インターフェロンγ産生が誘導されている場合、被検体に投与されたワクチンが、被検体内においてSARS-CoV-2ウイルスに対する有効な免疫反応を誘導したと判定する工程;
を含む、SARS-CoV-2ウイルスに対するワクチンにより、被検体生体内においてSARS-CoV-2ウイルスに対する免疫反応が生じたかどうかを判定する方法;
[12]: 白血球細胞が、末梢血単核細胞(PBMC)である、[9]~[11]のいずれかに記載の方法;
[13]: IFN-γ産生が誘導されているかどうかの検出を、ELISPOTアッセイを用いて行う、[9]~[12]のいずれかに記載の方法。
 本発明のペプチドまたはその修飾物は、生体に投与することにより、その生体がSARS-CoV-2ウイルスに感染した場合にその生体内でウイルス感染細胞に対する細胞傷害を生じさせるCD8陽性T細胞(キラーT細胞)を活性化することができ、また、そのCD8陽性T細胞(キラーT細胞)の免疫記憶を作ることができる。このことから本発明のペプチドまたはその修飾物は、生体がSARS-CoV-2ウイルスに感染した場合に、SARS-CoV-2ウイルスの生体内での増殖を抑制し、SARS-CoV-2ウイルス感染症(COVID-19)の発症を予防または治療することができる。本発明のペプチドまたはその修飾物はまた、過去のSARS-CoV-2ウイルスに対する感染に基づく細胞性免疫の記憶の成立の確認、過去のSARS-CoV-2ウイルスへの感染の有無の確認や、SARS-CoV-2ウイルスに対するワクチンの効果の確認のためにも使用することができる。
図1は、SARS-CoV-2ウイルスに感染した生体内で生じる免疫の全体像を示す図である。 図2は、SARS-CoV-2ウイルスに感染した生体内で生じる免疫記憶の全体像を示す図である。 図3は、ペプチドの免疫プロトコルを示す図である。 図4は、HLA-A*02:01トランスジェニックマウスに対して複数のペプチドの混合物を投与した場合の、ELISPOTアッセイの結果の一例を示す図である。
 本発明において使用する用語を以下の通り定義する:
(a)「SARS-CoV-2ウイルス」は、新型コロナウイルスとも呼ばれる、コロナウイルスの一つ。国際ウイルス分類委員会(International Committee on Taxonomy of Viruses:ICTV)が2020年2月に、SARS(重症急性呼吸器症候群)を引き起こすウイルス(SARS-CoV)の姉妹種であるとして命名されたもの;
(b)「COVID-19」は、SARS-CoV-2ウイルスの感染により発症する新型コロナウイルス感染症の正式名称;
(c)「HLA」(Human Leukocyte Antigen;ヒト白血球型抗原)は、ヒトの主要組織適合遺伝子複合体(MHC)のことであり、大きくクラスI抗原(MHCクラスI抗原)とクラスII抗原(MHCクラスII抗原)とに分類される。クラスI抗原は、クラスIa抗原(HLA-A、B、C)、クラスIb抗原(HLA-E、F、G)に分類され、ほとんどの有核細胞や血小板、血漿中に存在する。クラスII抗原には、HLA-DR抗原、HLA-DQ抗原、HLA-DP抗原が含まれマクロファージや単球等の抗原提示細胞やBリンパ球、活性化Tリンパ球などに分布している;
(d)「ELISPOTアッセイ」(Enzyme-Linked ImmunoSpot Assay)は、酵素結合免疫スポットアッセイとも呼ばれるアッセイで、抗体を使用してタンパク質分析物(生物学的物質または化学的物質)を検出する、免疫染色の一種の手法。ELISAをベースに特定の抗体分泌細胞の分析のために開発されたもので、刺激に反応して可溶性メディエーターを分泌する個々の免疫細胞を検出するための精度が高いin vitro 細胞アッセイとして使用できるアッセイ。
 <本発明のペプチドまたはその修飾物>
 一般的に、ウイルスへの感染を防止するために開発され、使用されているワクチンは、ウイルス粒子の外側に露出したタンパク質またはその部分ペプチドを免疫原として生体に投与して、生体内においてそのウイルスに対する中和抗体を産生させることを目的とするものである。このようなワクチンにより生体内で産生された中和抗体は、血液中などに存在するウイルスを捕捉し、排除することができる。しかしながら、SARS-CoV-2ウイルスの感染から回復したヒト体内からは回復後数か月以内に血液中からIgG抗体が消失しているという報告(非特許文献1)や、SARS-CoV-2ウイルス感染者との濃厚接触者においてT細胞が検出されたにも関わらず抗体は検出されなかったとの報告(非特許文献2)などから、SARS-CoV-2ウイルスの感染に対しては、中和抗体の産生のみでは生体防御として十分ではないと考えられた。
 そのため、本発明者らは、SARS-CoV-2ウイルスの感染に対して免疫反応を誘導することができるペプチドを探索することとして検討を行うこととした。すなわち、SARS-CoV-2ウイルスに対する免疫の概要を図1に示すが、本発明者らは、樹状細胞を介したCD8陽性T細胞(キラーT細胞)を活性化させる機能、ひいては実際のSARS-CoV-2ウイルスの感染時においてCD8陽性T細胞(キラーT細胞)による感染細胞の細胞傷害を引き起こす細胞性免疫の免疫記憶を生じさせる機能、あるいは樹状細胞を介したCD4陽性T細胞(ヘルパーT細胞)を活性化させる機能、ひいては実際のSARS-CoV-2ウイルスの感染時においてCD4陽性T細胞(ヘルパーT細胞)による免疫反応を活性化させる機能を発揮することができるペプチドまたはその修飾物を探索することとして、検討を行うこととした。
 その結果、SARS-CoV-2ウイルスを構成するタンパク質のアミノ酸配列の部分配列であるペプチドのうち、クラスI型のHLAタンパク質と結合して、SARS-CoV-2ウイルスに感染した生体内で細胞性免疫を生じさせるCD8陽性T細胞を活性化することができるペプチドとして、SEQ ID NO: 1~96の96種類のペプチドを取得することに成功し、本発明を完成するに至った。
 すなわち、本発明は、第一の態様として、SARS-CoV-2ウイルスを構成するタンパク質に由来するアミノ酸配列を有するペプチドを含む、SARS-CoV-2ウイルスに対する細胞性免疫を誘導する機能を有することを特徴とするペプチドまたはその修飾物を提供することができる。
 生体内においてウイルスに感染された細胞の細胞表面には、MHCクラスI分子と結合したウイルス由来の短いペプチド(MHCクラスIエピトープ)が提示されるが、CD8陽性T細胞(キラーT細胞)は、このMHCクラスI分子とともに細胞表面に提示された短いペプチドを認識し、活性化され、感染細胞を細胞傷害することにより、ウイルス増殖を阻止する、細胞性免疫の機能を発揮すると考えられている(図1)。
 また、生体内においてウイルスに感作された樹状細胞の細胞表面には、MHCクラスII分子と結合したウイルス由来のペプチド(MHCクラスIIエピトープ)が提示され、CD4陽性T細胞(ヘルパーT細胞)は、このMHCクラスII分子とともに細胞表面に提示されたペプチドを認識し、活性化され、キラーT細胞を活性化する機能を発揮させると考えられている(図1)。
 本発明のペプチドまたはその修飾物は、SARS-CoV-2ウイルスに感染された細胞の細胞表面に提示されるSARS-CoV-2ウイルス由来のペプチドを模倣し、細胞表面にMHCクラスI分子またはMHCクラスII分子であるHLAタンパク質と結合してHLAとともに提示されるものであり、結果的に当該ペプチドまたはその修飾物を細胞表面に提示する細胞を認識して細胞傷害するCD8陽性T細胞(キラーT細胞)や、当該ペプチドまたはその修飾物を細胞表面に提示する樹状細胞を認識するCD4陽性T細胞(ヘルパーT細胞)を活性化することができる。CD8陽性T細胞(キラーT細胞)は、生体にSARS-CoV-2ウイルスが感染した場合に細胞性免疫を担う細胞であり、SARS-CoV-2ウイルスに由来するペプチドを提示する感染細胞を破壊して、SARS-CoV-2ウイルスの増殖を阻止する、細胞性免疫の機能を発揮することができる。また、CD4陽性T細胞(ヘルパーT細胞)は、生体にSARS-CoV-2ウイルスが感染した場合に他の免疫細胞を活性化するなどの免疫反応全体の調整機能を担う細胞であり、キラーT細胞を活性化して細胞性免疫の活性化機能を発揮することができる。
 本発明のペプチドまたはその修飾物が結合することができるMHCクラスI分子であるHLAタンパク質としては、HLA-Aに属する抗原であるA02抗原、A24抗原などが含まれる。
 本発明のペプチドまたはその修飾物が結合することができるMHCクラスII分子であるHLAタンパク質としては、HLA-DPに属する抗原であるDPA1*02:02、DPA1*01:03、DPA1*02:01,
DPB1*05:01、DPB1*02:01など、HLA-DQに属する抗原であるDQA1*01:03、DQA1*03:03、DQA1*03:02、DQA1*01:02、DQA1*03:01、DQB1*06:01、DQB1*03:03、DQB1*04:01、DQB1*03:01など、およびHLA-DRに属する抗原であるDRB1_0901、DRB1_0405、DRB1_1502、DRB1_1501、DRB1_0101、DRB1_0803、DRB1_1201、DRB1_1454、DRB1_1202、DRB1_0802、DRB1_0403、DRB1_1101、DRB1_1405、DRB1_0410、DRB1_0406、DRB1_1403、DRB1_1302、DRB1_1406、DRB1_0401などが含まれるが、これらのものに限定されない。
 本発明において、ペプチドの由来となるSARS-CoV-2ウイルスを構成するタンパク質は、ウイルス粒子の内部にあるタンパク質であっても、ウイルス粒子の外部に存在するタンパク質であってもよく、具体的には、SARS-CoV-2ウイルスの外部に存在する(すなわち、表面に露出している)タンパク質(例えば、エンベロープタンパク質、スパイクタンパク質)であっても、ウイルス内部に存在する(すなわち、表面に露出していない)タンパク質(例えば、ヌクレオカプシドタンパク質)であってもよい。
 本発明において使用することができるSARS-CoV-2ウイルスを構成するタンパク質は、すでに公的データベースに登録されているSARS-CoV-2ウイルスの完全ゲノム配列に基づいて取得することができる。このような完全ゲノム配列としては、NCBI RefSeqデータベース に登録されているSARS-CoV-2ウイルスの参照ゲノム配列、GISAID EpiCoVTMデータベースに登録されているゲノム配列などを使用することができる。本発明においては、代表性の観点から、NCBI RefSeqデータベースに登録されているSARS-CoV-2ウイルスの参照ゲノム配列NC_045512を使用し、この参照ゲノム配列に基づいて特定されるSARS-CoV-2ウイルスを構成するタンパク質を使用することが好ましい。
 これらのSARS-CoV-2ウイルスを構成するタンパク質の部分配列であるペプチドのうち、実際にMHCクラスI分子であるHLAタンパク質と結合することができ、そしてCD8陽性T細胞(キラーT細胞)を活性化することができるペプチドとして、本発明においては、アミノ酸配列がSEQ ID NO: 1~56のいずれかであるペプチドを例として挙げることができるが、これらには限定されない。これらの特定のアミノ酸配列を有するペプチドまたはその修飾物は、樹状細胞の細胞表面においてMHCクラスI分子とともに提示され、CD8陽性T細胞(キラーT細胞)を活性化する能力を有するものと考えられる。
 本発明のペプチドは、MHCクラスI分子と結合して、免疫細胞に提示されるものであることから、構造的にアミノ酸数が8から11個のペプチドであることを特徴とする。
 本発明においては、上記のアミノ酸配列がSEQ ID NO: 1~56のいずれかであるペプチドそのものだけでなく、上記のペプチドの修飾物であっても、実際にMHCクラスI分子であるHLAタンパク質と結合することができ、そしてCD8陽性T細胞(キラーT細胞)を活性化することができるものであれば、本発明の構成物として使用することができる。このような本発明のペプチドの修飾物として、例えば、これらのペプチドのN末端またはC末端、あるいはその両端にアミノ酸が付加されたペプチドの修飾物、ジフテリア毒素の膜領域のペプチドを付加されたペプチドの修飾物、HLA結合部位のアミノ酸をさらに結合しやすいように置換したペプチドの修飾物、タンパク質キャリアを付加されたペプチドの修飾物などのペプチドの修飾物などが含まれてもよい。
 上述したSARS-CoV-2ウイルスを構成するタンパク質の部分配列であるペプチドのうち、実際にMHCクラスII分子であるHLAタンパク質と結合することができ、そしてCD4陽性T細胞(ヘルパーT細胞)を活性化することができるペプチドとして、本発明においては、アミノ酸配列がSEQ ID NO: 57~96のいずれかであるペプチドまたはそのプロセッシングされて短縮化されたペプチドを例として挙げることができるが、これらには限定されない。これらの特定のアミノ酸配列を有するペプチドまたはその修飾物は、樹状細胞の細胞表面においてMHCクラスII分子とともに提示され、CD4陽性T細胞(ヘルパーT細胞)を活性化する能力を有するものと考えられる。
 本発明のペプチドは、MHCクラスII分子と結合して、免疫細胞に提示されるものであることから、構造的にアミノ酸数が15から21個のペプチドであることを特徴とする。
 本発明においては、上記のアミノ酸配列がSEQ ID NO: 57~96のいずれかであるペプチドそのものだけでなく、上記のペプチドの修飾物であっても、実際にMHCクラスII分子であるHLAタンパク質と結合することができ、そしてCD4陽性T細胞(ヘルパーT細胞)を活性化することができるものであれば、本発明の構成物として使用することができる。このような本発明のペプチドの修飾物として、例えば、これらのペプチドのN末端またはC末端、あるいはその両端にアミノ酸が付加されたペプチドの修飾物、ジフテリア毒素の膜領域のペプチドを付加されたペプチドの修飾物、HLA結合部位のアミノ酸をさらに結合しやすいように置換したペプチドの修飾物、タンパク質キャリアを付加されたペプチドの修飾物などのペプチドの修飾物などが含まれてもよい。
 一般的に、ウイルス感染から回復すると、そのウイルスに対する免疫記憶が成立することが知られている。そのような記憶は、当該ウイルスに対するヘルパーT細胞に関する免疫記憶、抗体産生細胞であるB細胞に関する免疫記憶とともに、細胞性免疫を担うCD8陽性細胞(キラーT細胞)についての免疫記憶が存在する。
 SARS-CoV-2ウイルスに対する免疫記憶の概要を図2に示すが、本発明のMHCクラスIエピトープであるペプチドまたはその修飾物はまた、少なくとも当該ペプチドまたはその修飾物をMHCクラスI分子とともに細胞表面に提示する細胞を認識して細胞傷害するCD8陽性T細胞(キラーT細胞)の記憶細胞であるメモリーキラーT細胞を誘導することができる。このような記憶細胞は、生体にSARS-CoV-2ウイルスが感染した場合に、樹状細胞によるSARS-CoV-2ウイルス由来のペプチドのMHCクラスI分子を介した提示に基づいて、メモリーキラーT細胞の迅速な活性化を誘導して、SARS-CoV-2ウイルスへの感染細胞に対する細胞性免疫の作用を迅速に発揮することができる。
 また、本発明のMHCクラスIIエピトープであるペプチドまたはその修飾物はまた、少なくとも当該ペプチドまたはその修飾物をMHCクラスII分子とともに細胞表面に提示する樹状細胞により活性化されるCD4陽性T細胞(ヘルパーT細胞)の記憶細胞であるメモリーヘルパーT細胞を誘導することができる。このような記憶細胞は、生体にSARS-CoV-2ウイルスが感染した場合に、樹状細胞によるSARS-CoV-2ウイルス由来のペプチドのMHCクラスII分子を介した提示に基づいて、メモリーヘルパーT細胞の迅速な活性化を誘導して、SARS-CoV-2ウイルスへの感染細胞に対する細胞性免疫の作用を迅速に発揮することができる。
 <本発明のペプチドまたはその修飾物の医薬用途>
 本発明の上述したペプチドまたはその修飾物は、MHCクラスI分子であるHLAタンパク質あるいはMHCクラスII分子であるHLAタンパク質と結合することができ、そして前者の場合にはCD8陽性T細胞(キラーT細胞)を活性化することができ、後者の場合にはCD4陽性T細胞(ヘルパーT細胞)を活性化することができ、そして生体内においてSARS-CoV-2ウイルスに対する細胞性免疫の免疫記憶を生じさせることができるものであることから、結果として、生体内においてSARS-CoV-2ウイルスに感染した細胞を効果的に除去して、結果的に生体内におけるSARS-CoV-2ウイルスを除去することができるものである。このようなSARS-CoV-2ウイルスに感染した細胞の効果的な除去により、結果的にSARS-CoV-2ウイルスを除去し、ひいてはCOVID-19の発症を予防または治療するための医薬組成物として使用することができる。
 すなわち、本発明は、別の一態様において、本発明の上述したペプチドまたはその修飾物を含む、生体内におけるSARS-CoV-2ウイルスを除去し、またはCOVID-19の発症を予防または治療するための医薬組成物もまた、提供することができる。
 本発明において医薬組成物は、医師によって使用され又は医師の処方せん若しくは指示によって使用されることを目的として供給される医療用医薬品のことを意味し、治療用途のもの(治療薬)だけでなく、予防用途のもの(ワクチン)を含む概念である。
 本発明において、生体内におけるSARS-CoV-2ウイルスの除去という場合、ウイルスが感染した細胞を、生体の細胞性免疫により細胞傷害して破壊し、細胞外に放出される感染力を有するウイルス粒子の数を減少させることをいう。
 本発明において、COVID-19の発症の予防または治療という場合、生体内においてSARS-CoV-2ウイルスが感染した細胞を生体の細胞性免疫により細胞傷害して破壊し、細胞外に放出される感染力を有するウイルス粒子の数を減少させることで、SARS-CoV-2ウイルスの感染症状であるCOVID-19の発症を予防し、あるいは仮に発症したとしてもその症状を治療・軽減することができることをいう。
 本発明の医薬組成物の有効成分であるペプチドまたはその修飾物の特徴は、その構造および作用に関してすでに説明した通りのものである。本発明の医薬組成物においては、本発明のペプチドまたはその修飾物として、単一のペプチドまたはその修飾物を含むものであっても、複数のペプチドまたはその修飾物を含むものであってもよい。
 医薬組成物中に複数のペプチドまたはその修飾物を含む場合、様々なペプチド配列により活性化される様々なCD8陽性T細胞(キラーT細胞)またはCD4陽性T細胞(ヘルパーT細胞)による細胞性免疫を生じさせることができる。このような多様性があることにより、ウイルスのタンパク質の特定の部位にアミノ酸変異が生じた場合でも、他のペプチド部分に対するCD8陽性T細胞(キラーT細胞)またはCD4陽性T細胞(ヘルパーT細胞)が細胞性免疫を生じさせることができ、より実効性の高い医薬組成物として使用することができる。
 本発明においては、本発明の医薬組成物を、他の機構により生体内におけるSARS-CoV-2ウイルスを除去しまたはCOVID-19の発症を予防または治療するための他の医薬組成物と組み合わせて投与することもできる。例えば、他の医薬組成物としては、感染した生体におけるSARS-CoV-2ウイルスを減少させることを目的とした薬剤(抗ウイルス薬、抗血清など)などを使用することができる。
 本発明の医薬組成物は、剤型、投与経路などに基づいて、必要に応じて、当該技術分野において一般的に使用されている担体、賦形剤、アジュバントなどのその他の添加成分を含んでいてもよい。
 <本発明のペプチドまたはその修飾物の診断用途>
 すでにSARS-CoV-2ウイルスに対する細胞性免疫の免疫記憶を有している場合、その生体から採取した白血球細胞は、本発明のペプチドまたはその修飾物を添加してin vitroにおいて培養すると、白血球細胞からインターフェロンγ(IFN-γ)が産生される。
 この機能を利用して、本発明の別の一態様において、
(a)被検体から採取した血液から取り出された白血球細胞を、本発明のペプチドまたはその修飾物とともに培養する工程;
(b)本発明のペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
を含む、被検体生体内においてSARS-CoV-2ウイルスに対する細胞性免疫の記憶が成立しているかどうかを確認する方法を提供することができる。
 この態様で使用する白血球細胞は、被検体血液から採取した全血液をFicoll-Paque PREMIUM(サイティバ(Cytiva)社)で分画した白血球細胞画分を使用することができるが、さらにMACSシステム(ミルテニーバイオテク株式会社)の手順で分画し、末梢血単核細胞(PBMC)などのIFN-γを産生する白血球細胞を使用することもできる。
 白血球細胞においてIFN-γ産生が誘導されているかどうかの検出は、ELISPOTアッセイを用いて行うことができる。
 この方法において確認することにより、すでに被検体がSARS-CoV-2ウイルスに対する免疫記憶を有している場合、この被検体が過去にSARS-CoV-2ウイルスに対して感染したことがあると判定することができる。
 この方法において確認した結果、すでに被検体がSARS-CoV-2ウイルスに対する細胞性免疫の記憶が成立していないことが明らかになった場合、前述した本発明の医薬組成物を投与して、被検体生体内においてSARS-CoV-2ウイルスに対する細胞性免疫を生じさせることにより、SARS-CoV-2ウイルスに対する細胞性免疫の記憶を成立させることができる。
 別の一態様において、
(a)SARS-CoV-2ウイルスに対するワクチン投与前の被検体から採取した血液から取り出された白血球細胞を、本発明のペプチドまたはその修飾物とともに培養し、本発明のペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
(b)SARS-CoV-2ウイルスに対するワクチン投与後の被検体から採取した血液から取り出された白血球細胞を、本発明のペプチドまたはその修飾物とともに培養し、本発明のペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
(c)ワクチン投与前と比較して、ワクチン投与後において、インターフェロンγ産生が誘導されている場合、ワクチンがSARS-CoV-2ウイルスに対する有効な免疫反応を誘導したと判定する工程;
を含む、SARS-CoV-2ウイルスに対するワクチンにより、被検体生体内においてSARS-CoV-2ウイルスに対する免疫反応が生じたかどうかを判定する方法を提供することができる。
 以下、実施例を挙げて本発明を具体的に示す。下記に示す実施例はいかなる方法によっても本発明を限定するものではない。
 実施例1:エピトープ解析と実験対象ペプチドの選択
 本実施例においては、候補となるエピトープ配列の選択およびそのエピトープの合成を行った。
 NCBI RefSeqデータベースに登録されているSARS-CoV-2の参照ゲノム配列(NC_045512)から翻訳されるタンパク質配列の情報に基づいて、8から11アミノ酸残基長のペプチド配列の総パターンを切り出し、それぞれについてHLA型(HLA-A*02:01、HLA-A*24:02など)ごとに拘束性のエピトープとしての可能性をスコア付けし、エピトープとなる可能性の高いペプチド配列を選抜した。
 本実施例においては、エピトープが由来するタンパク質配列として、構造タンパク質であるEnvelope(E)、Membrane(M)、Nucleocapsid(N)、Spike(S、データ上ではsurfaceと表記)に由来する、9アミノ酸残基及び10アミノ酸残基長のエピトープ配列を選択した。その結果、170個の候補エピトープが選抜された。
 次にSARS-CoV-2ウイルスに選択的なエピトープ配列に限定するため、一般的なヒト感染コロナウイルスであるHCoV株4種(HCoV_229E、HCoV_HKU1、HCoV__NL63、HCoV_OC43)と中東呼吸症候群(MERS)株1種(MERS_EMC)の参照タンパク質配列と比較し、各エピトープ配列と共通する5残基長以上の長さのアミノ酸セグメントがそれらの5種の参照タンパク質配列内に見つかる場合に、SARS-CoV-2ウイルス選択的なエピトープではないとして、除外した。
 次にSARS-CoV-2ウイルスで変異が生じている箇所を含むエピトープを除外するため、参照ゲノム配列(NC_045512)以外の解読ゲノム(2020年4月27日時点でNCBI Virusデータベースに登録されていた約900種)から翻訳されるタンパク質配列と比較し、該当エピトープ配列のアミノ酸レベルでの一致率を計算し、一致率が低いエピトープを除外した。
 最終的にHLA-A*02:01またはHLA-A*24:02に拘束性と予想される、126種の候補エピトープ配列のペプチドを化学合成した。
 実施例2:トランスジェニックマウスを用いた免疫誘導実験
 本実施例においては、実施例1で選択し、化学合成した候補エピトープペプチドを用いて、HLA-A*02:01またはHLA-A*24:02トランスジェニックマウスを免疫した。
 実施例1において化学合成した候補エピトープペプチドを、4~6種ごとのペプチドのグループに分け(表1)、それぞれの4~6種のペプチドを溶解したペプチド混合液50μgを作製し、16μgのpolyI:CLCと混合後、図3に示す免疫プロトコルにて、HLA-A*02:01トランスジェニックマウスまたはHLA-A*24:02トランスジェニックマウスに1週間おきに3回、尾根部皮下に投与した(各ペプチド混合液グループにつきマウスは2匹使用)。
 なお、GROUP A02-3およびGROUP A02-4のペプチド、GROUP A02-5およびGROUP A02-6のペプチド、GROUP A02-7およびGROUP A02-8のペプチド、GROUP A02-9およびGROUP A02-10のペプチド、GROUP A02-11およびGROUP A02-12のペプチド、そしてGROUP A02-13およびGROUP A02-14のペプチドについては、2グループを同時投与する方法で免疫を行い、上記のプロトコルとは別に、それぞれのペプチド混合液50μgとpolyI:CLC 16μgを1匹のトランスジェニックマウスの左右の尾根部皮下2か所へ投与する実験を行った(表1中GROUP A02-3+4、GROUP A02-5+6、GROUP A02-7+8、GROUP A02-9+10、GROUP A02-11+12、そしてGROUP A02-13+14と表記)。
 なお、ネガティブコントロールとして、マウス1匹に対してPolyI:CLC(16μg)のみを投与し、ポジティブコントロールとして、マウス1匹に対して、既に免疫原性があることが確認されている胎児性抗原であるglypican-3(GPC3)由来のA02 Shortペプチド(FVGEFFTDV)50μgもしくはサイトメガロウイルス(CMV)由来のA24 Shortペプチド(QYDPVAALF)50μgとPolyI:CLC 16μgとの混合物を投与した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ペプチドの最終投与から1週間後に脾臓を回収し、脾細胞を調製し、それぞれ個体由来の細胞について、ELISPOTセット(BDTM ELISPOT マウスIFN-γELISPOT Set、BD Bioscience社)のウェルマルチウェルプレートにウェル当たりの細胞数を2×106個に調整して細胞を播種し、ペプチド混合液に含まれるいずれか一つのペプチドを各ウェルに混合した。具体的には、例として、GROUP A02-1のペプチドを投与したHLA-A*02:01トランスジェニックマウスの場合には、このマウスから脾細胞を調製して播種し、6つのウェルのそれぞれにCovA02_01、CovA02_02、CovA02_03、CovA02_04、CovA02_05、CovA02_06のいずれかの候補ペプチドを混合した。細胞を、培養液(RPMI1640培地に10% FCS、200μM L-glutamine, 100μM 2-ME, 100μMピルビン酸、MEM Non Essential Amino Acid, 10mM HEPESならびに抗生剤として100U/mlペニシリン、100μg/mlストレプトマイシンを添加)の培養液を使用して20時間培養した後、インターフェロンγ(IFN-γ)を検出できるELISPOTアッセイに供して、IFN-γ放出細胞数を測定した。それぞれのペプチドごとに3つのウェルを割り当て、トリプレットで評価した。
 実施例3:陽性ペプチドの判定
 本実施例においては、実施例2で行ったELISPOTアッセイの結果に基づく、細胞性免疫活性化陽性ペプチドの選択を行った。
 ELISPOTアッセイは、脾細胞を培養液(RPMI1640培地に10% FCS、200μM L-glutamine, 100μM 2-ME, 100μMピルビン酸、MEM Non Essential Amino Acid, 10mM HEPESならびに抗生剤として100U/mlペニシリン、100μg/mlストレプトマイシンを添加)を使用してELISPOTセット(BDTM ELISPOT マウスIFN-γELISPOT Set、BD Bioscience社)のウェルマルチウェルプレート上で培養した後、プレートを洗浄することで細胞を除去し、ビオチン標識した抗IFN-γモノクローナル抗体(BDTM ELISPOT マウスIFN-γELISPOT Set、BD Bioscience社)と共に室温で2時間インキュベートすることにより行った。検出は、ビオチン標識した抗IFN-γモノクローナル抗体と共にインキュベーションしたプレートを洗浄した後、1:100に希釈したHRP標識-アビジン(BDTM ELISPOT マウスIFN-γELISPOT Set、BD Bioscience社)と共に室温で1時間処理した後、ACE Substrate溶液(BD Bioscience社)を加え発色させ、発色させたプレートを自動スポットカウント装置(エリフォトカウント、ミネルヴァテック株式会社)を使用して計測することにより行った。PMAとイオノマイシン(Ionomycin)(シグマ(Sigma)社)で処理した細胞を、全ての実験のポジティブコントロールとして用いた。実験は、各ペプチド混合液グループにつき免疫された2匹のマウスそれぞれについて採取された脾細胞について、トリプレットでスポット数を確認した。
 例として、HLA-A*02:01トランスジェニックマウスにGROUP A02-1のペプチドを投与した場合の、ELISPOTアッセイの結果を図4に示す。上から順に、
・PolyI:CLC(16μg)のみを投与したネガティブコントロール免疫されたマウス由来の脾細胞(「Negative control (Poly I:CLC only)」と表記)、
・GPC3-A02Shortペプチド(50μg)とPolyI:CLC(16μg)との混合物を投与したポジティブコントロール免疫されたマウス由来の脾細胞(「Positive control (GPC3 + Poly I:CLC)」と表記)、
・GROUP A02-1のペプチド(50μg)とPolyI:CLC(16μg)との混合物を投与した実験群免疫されたマウス由来の脾細胞(「Group A02-1 peputides + Poly I:CLC」と表記)、
についての結果を示し、それぞれのウェルは、トリプレットのウェル写真の上に表記されているペプチド(例えば、CovA01-01、CovA01-02など)とともに培養したことを示している。各ウェルの右下の数字は、各ウェルでのIFN-γ陽性スポット数を示し、IFN-γ産生が検出上限を超えてサチュレーションしたウェルについては、PMA/Ionoのウェルのスポット数を1600としてそれぞれのウェルの算出したスポット数を示す。このような検討を、すべてのグループのすべてのペプチドについて行った(他のグループについての写真は省略)。
 ELISPOTアッセイにより計測された各ペプチド6ウェルのインターフェロンγ放出細胞スポット数の最大スポット数の計測値に応じて、候補ペプチドの免疫原性の反応強度を4段階(0: 無、1:弱、2:中、3:強)で分類した。具体的には、ウェルあたりの最大スポット数が、0~100の場合は反応強度0、101~600の場合は反応強度1、601~1200の場合は反応強度2、1201上の場合は反応強度3とした。
 すべてのグループについてELISPOTアッセイを行い、インターフェロンγ放出細胞スポット数が反応強度1以上と判定された候補ペプチドを、陽性ペプチドとした。陽性ペプチド56個についての情報を、表2(HLA-A02:01に結合するペプチド)および表3(HLA-A24:02に結合するペプチド)にまとめた。本明細書の以下において、N:ヌクレオカプシドタンパク質、M:膜糖タンパク質、S:スパイクタンパク質、E:エンベロープタンパク質をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例4:トランスジェニックマウスを用いたロングペプチドによる免疫誘導実験
 本実施例においては、実施例1で選択し、化学合成した候補エピトープペプチドをベースに作成した長さの長いペプチド(ロングペプチド)を使用し、HLA-A*02:01またはHLA-A*24:02トランスジェニックマウスを免疫した。
 実施例1で選択し化学合成した候補エピトープペプチドをベースに長さの長いペプチド(ロングペプチド)を作成したのは、抗原提示細胞に取り込まれ、MHC class II経路で免疫系に提示されるはずのロングペプチドであっても、細胞内プロセッシングによる切断を経てMHC class I上にエピトープが提示される「クロスプレゼンテーション」が知られており、本発明においてもクロスプレゼンテーションを生じさせて、MHC class I上へエピトープを提示させることを目的としたためである。
 ロングペプチドの作成は、以下の方法で作製した。すなわち、SARS-CoV-2の参照ゲノム配列(NC_045512)の中から、実施例1で作製したペプチドを完全に含むような15アミノ酸残基長ペプチドの総パターンをリストし、それら各々とHLA-A*02:01およびHLA-A*24:02と日本人ハプロタイプ頻度が多いDRB1アリルとの結合性をNetMHCIIpan-4.0(デンマーク工科大学)で計算した。パーセントランクが10%以下の15アミノ酸残基長ペプチドをバインダー候補として抽出し、複数のバインダー候補がある場合はそれらを結合したものをロングペプチドとして設計した。バインダー候補が一つも予測されない場合は、実施例1で作製したペプチドを中心とした19アミノ酸残基長ペプチドをロングペプチドとした。
 実施例1において化学合成したペプチドに基づいて、ペプチドの片側または両側にアミノ酸を追加して15~21アミノ酸残基長のペプチド(ロングペプチド)を作成し、実施例2の方法と同様の方法にて、それぞれの4種のペプチドを溶解したペプチド混合液50μgを作製し、16μgのpolyI:CLCと混合後、図3に示す免疫プロトコルにて、HLA-A*02:01トランスジェニックマウスまたはHLA-A*24:02トランスジェニックマウスに1週間おきに3回、左右2か所へ異なるペプチド混合液を投与した(マウス1匹につき左右合わせてペプチド8種を投与、各ペプチド混合液グループにつきマウスは2匹使用)。ただし合成が失敗したロングペプチドは除外した。
 なお、ネガティブコントロールとして、マウス1匹に対してDMSOとPolyI:CLC(16μg)の混合液を左右へそれぞれ投与し、ポジティブコントロールとして、マウス1匹に対して、既に免疫原性があることが確認されている胎児性抗原であるglypican-3(GPC3)由来のA02 Shortペプチド(FVGEFFTDV)50μgもしくはサイトメガロウイルス(CMV)由来のA24 Longペプチド(CRQYDPVAALFFFDIDL)50μgとPolyI:CLC 16μgとの混合物を左側へ投与し、右側にはDMSOとPolyI:CLC(16μg)の混合液を投与した。
 (4-1)ロングペプチドを使用した免疫活性化の検出
 上述したロングペプチドを、A02拘束性のロングペプチドについてはHLA-A*02:01トランスジェニックマウスに投与することにより、A24拘束性のロングペプチドについてはHLA-A*24:02トランスジェニックマウスに投与することによりそれぞれ免疫誘導した場合のマウス由来の細胞を、免疫誘導に使用したそれぞれのロングペプチドを使用して刺激し、ELISPOTアッセイによりIFN-γの生成を確認した。IFN-γの生成を調べるためのELISPOTアッセイは、実施例3に記載した方法と同じ方法にて行った。
 ELISPOTアッセイにより計測された各ペプチド6ウェルのインターフェロンγ放出細胞スポット数の最大スポット数の計測値に応じて、候補ペプチドの免疫原性の反応強度を4段階(0: 無、1:弱、2:中、3:強)で分類した。具体的には、ウェルあたりの最大スポット数が、0~100の場合は反応強度0、101~600の場合は反応強度1、601~1200の場合は反応強度2、1201上の場合は反応強度3とした。
 すべてのグループについてELISPOTアッセイを行い、インターフェロンγ放出細胞スポット数が反応強度1以上と判定された候補ペプチドを、陽性ペプチドとした。結果を、表4(HLA-A02:01に結合するペプチド)および表5(HLA-A24:02に結合するペプチド)にまとめた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 ロングペプチドは、抗原提示細胞に取り込まれ、細胞内プロセッシングによる切断を経てMHC class I上にエピトープが提示されることから、必ずしも投与した個体において免疫反応を生じさせるとは限らない。本実施例で検討した結果、ロングペプチドを投与した個体由来の免疫細胞について、同一のロングペプチドで刺激・検出した結果、A02拘束性のロングペプチドでは24種中16種、A24拘束性のロングペプチドでは16種中13種が陽性となることが明らかになった。
 (4-2)実施例1のペプチドを使用した免疫活性化の検出
 上述したロングペプチドの投与により免疫誘導した場合のマウス由来の細胞を、それぞれのロングペプチドの由来となるペプチド(例えば、CovA02_03Lを含むロングペプチド群により免疫誘導した場合には、その由来となるCovA02_03)を使用して刺激し、ELISPOTアッセイによりIFN-γの生成を確認した。IFN-γの生成を調べるためのELISPOTアッセイは、実施例3に記載した方法と同じ方法にて行った。
 すべてのグループについてELISPOTアッセイを行い、インターフェロンγ放出細胞スポット数が反応強度1以上と判定された候補ペプチドを、陽性ペプチドとした。結果を、表6(HLA-A02:01に結合するペプチド)および表7(HLA-A24:02に結合するペプチド)にまとめた。表6および表7において、ELISPOTアッセイにおいて細胞を刺激するために使用したロングペプチドの由来となるペプチド部分に下線を引いた。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 ロングペプチドは、抗原提示細胞に取り込まれ、細胞内プロセッシングによる切断を経てMHC class I上にエピトープが提示されることから、MHC class I上に提示されたエピトープがそれぞれのロングペプチドの元となった実施例1のペプチドとは限らない。本実施例で検討した結果、ロングペプチドを投与した個体由来の免疫細胞について、そのロングペプチドの元となる実施例1のペプチドで刺激・検出した結果、A02拘束性のロングペプチドでは24種中6種、A24拘束性のロングペプチドでは16種中9種が陽性となることが明らかになった。
 実施例5:SARS-CoV-2ウイルスに対する感染の検出
 本実施例においては、非感染者および感染後回復者に由来する末梢血単核球(PBMC)の、本発明のペプチドに対する免疫反応を調べた。
 被験者として、非感染者個体5人(HLA-A02:01を保有する個体2人、HLA-A24:02を保有する個体3人)および感染後回復者個体9人(HLA-A02:01を保有する個体5人、HLA-A24:02を保有する個体4人)から採取した末梢血単核細胞(PBMC)に対して、実施例1で得られたA02拘束性ペプチド、A24拘束性ペプチドあるいは実施例4で得られたA02拘束性ロングペプチド、A24拘束性ロングペプチドにより刺激して、ELISPOTアッセイによりIFN-γの生成を確認した。IFN-γの生成を調べるためのELISPOTアッセイは、実施例3に記載した方法と同じ方法にて行った。
 ELISPOTのスポット数のスコア換算は、下記の表8に記載の通り、感染回復個体についてはスポット数が少ない方を0点、スポット数が多い方を5点として換算し、一方非感染個体についてはスポット数が多い方を0点、スポット数が少ない方を5点として換算した。これは、感染回復個体は刺激用ペプチドによる刺激に反応してスポット数が多くなる傾向があると想定されることからスポット数が多い方に点数を高く設定したのに対して、非感染個体は刺激用ペプチドによる刺激に対して反応しないことが想定されることから、スポット数が少ない方に点数を高く設定することとした。
Figure JPOXMLDOC01-appb-T000009
 それぞれの個体由来のPBMCについてのELISPOTを換算したのち、平均値を算出して表9~表12にまとめた。ここで、
・表9はHLA-A02:01保有個体(感染回復個体、非感染個体)のPBMCに対して実施例1で得られたA02拘束性ペプチドで刺激したデータ、
・表10はHLA-A02:01保有個体(感染回復個体、非感染個体)のPBMCに対して実施例4で得られたA02拘束性ロングペプチドで刺激したデータ、
・表11はHLA-A24:02保有個体(感染回復個体、非感染個体)のPBMCに対して実施例1で得られたA24拘束性ペプチドで刺激したデータ、
・表12はHLA-A24:02保有個体(感染回復個体、非感染個体)のPBMCに対して実施例4で得られたA02拘束性ロングペプチドで刺激したデータ、
をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 これらの結果から、感染回復個体のスコアの平均値が2.0以上であり、かつ非感染個体のスコアの平均値が4.0以上のペプチド(すなわち、CovA02-08、CovA24-01、CovA24-04、CovA24-33、CovA24-37、CovA24-1002、CovA24-18L、CovA24-37L、CovA24-1005L)が得られた。
 これらのペプチドを使用して、個体から採取したPBMCを刺激することにより、当該個体が過去にSARS-CoV-2ウイルスに感染したことがあるかどうかを判定することができることが示された。
 実施例6:承認済みワクチン接種に対する免疫反応の確認
 本実施例は、承認済みのワクチンの接種前後でのウイルス由来ペプチドに対する免疫反応がどのように変化するかを調べることを目的として行った。
 被験者として、非感染者個体5人(HLA-A02:01を保有する個体1人、HLA-A24:02を保有する個体4人)および感染後回復者個体10人(HLA-A02:01を保有する個体5人、HLA-A24:02を保有する個体5人)から、承認済みワクチン(ファイザー製、コミナティ筋注)を投与する前および投与2回目の14日後に採取した末梢血単核細胞(PBMC)に対して、実施例1で得られたA02拘束性ペプチド、A24拘束性ペプチドあるいは実施例4で得られたA02拘束性ロングペプチド、A24拘束性ロングペプチドにより刺激して、ELISPOTアッセイによりIFN-γの生成を確認した。IFN-γの生成を調べるためのELISPOTアッセイは、実施例3に記載した方法と同じ方法にて行った。
 ELISPOTのスポット数のスコア換算は、上記の表8の感染回復個体についての換算方法と同じ基準でスコア化し、
スポット数0~5を0点、
スポット数6~10を1点、
スポット数11~50を2点、
スポット数51~100を3点、
スポット数101~200を4点、
スポット数201~を5点、
として換算した。
 それぞれの個体由来のPBMCについてのELISPOTを換算したのち、被検体ごと表13~表16にまとめた。ここで、
・表13はHLA-A02:01保有個体(非感染個体(表13-1)、感染回復個体(表13-2))のワクチン接種前後のPBMCに対して実施例1で得られたA02拘束性ペプチドで刺激したデータ、
・表14はHLA-A02:01保有個体(非感染個体(表14-1)、感染回復個体(表14-2))のワクチン接種前後のPBMCに対して実施例4で得られたA02拘束性ロングペプチドで刺激したデータ、
・表15はHLA-A24:02保有個体(非感染個体(表15-1)、感染回復個体(表15-2))のワクチン接種前後のPBMCに対して実施例1で得られたA24拘束性ペプチドで刺激したデータ、
・表16はHLA-A24:02保有個体(非感染個体(表16-1)、感染回復個体(表16-2))のワクチン接種前後のPBMCに対して実施例4で得られたA02拘束性ロングペプチドで刺激したデータ、
をそれぞれ示す。ファイザー製のワクチンがスパイクタンパク質を免疫原としていることから、刺激するために使用したペプチドはスパイクタンパク質由来のものに限定した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 これらの結果から、感染回復者のワクチン接種前のELISPOTのスポット数と比較してワクチン接種後のスポット数の強度差が2以上増加した結果が得られた被検体が2名以上の場合に有効なペプチドであるという条件でペプチドを選択し、CovA02-01、CovA02-04L、CovA02-19L、CovA02-33L、CovA02-1008L、CovA24-04、CovA24-18、CovA24-1001、CovA24-01L、CovA24-04L、CovA24-18L、CovA24-23L、CovA23-33L、CovA24-1001Lなどが見いだされ、本発明のペプチドをセットとして使用することにより、感染回復者のワクチン接種の効果を判定することができることが分かった。
 また非感染者のワクチン接種前のELISPOTのスポット数と比較してワクチン接種後のスポット数の強度差が2以上増加した結果が得られた場合に有効なペプチドであるという条件でペプチドを選択し、CovA02-33、CovA02-34、CovA02-45、CovA02-1001、CovA02-1004、CovA02-1008、CovA02-1012、CovA02-04L、CovA02-29L、CovA02-1001L、CovA02-1008L、CovA24-04、CovA24-21、CovA24-23、CovA24-38などが見いだされ、本発明のペプチドをセットとして使用することにより、非感染者のワクチン接種の効果を判定することができることが分かった。
 これらのペプチドを使用して、ワクチン接種前後に個体から採取したPBMCを刺激することにより、当該個体がワクチン接種の結果、効果的な免疫反応をあるかどうかを判定することができることが示された。
 また、感染回復者特異的に反応が出るペプチドでかつワクチン接種前後ではスポット数が増加しないものとして、例えばCovA24-01、CovA24-37、CovA24-1002などが見いだされ、これらのペプチドは感染状況の診断用に使用することができる。
 本発明のペプチドまたはその修飾物は、生体に投与することにより、その生体がSARS-CoV-2ウイルスに感染した場合にその生体内でウイルス感染細胞に対する細胞傷害を生じさせるCD8陽性T細胞(キラーT細胞)を活性化することができる。このことから本発明のペプチドまたはその修飾物は、SARS-CoV-2ウイルスの生体内での増殖を抑制し、SARS-CoV-2ウイルス感染症(COVID-19)の発症を予防または治療することができる。本発明のペプチドまたはその修飾物はまた、過去のSARS-CoV-2ウイルスに対する感染に基づく細胞性免疫の記憶の成立の確認、過去のSARS-CoV-2ウイルスへの感染の有無の確認や、SARS-CoV-2ウイルスに対するワクチンの効果の確認のためにも使用することができる。

Claims (13)

  1.  SARS-CoV-2ウイルスを構成するタンパク質に由来するアミノ酸配列を有するペプチドを含む、SARS-CoV-2ウイルスに対する細胞性免疫を誘導する機能を有することを特徴とするペプチドまたはその修飾物。
  2.  ペプチドの修飾物が、N末端またはC末端、あるいはその両端にアミノ酸が付加されたペプチドの修飾物、ジフテリア毒素の膜領域のペプチドを付加されたペプチドの修飾物、HLA結合部位のアミノ酸をさらに結合しやすいように置換したペプチドの修飾物、タンパク質キャリアを付加されたペプチドの修飾物のいずれかまたは組み合わせである、請求項1に記載のペプチドまたはその修飾物。
  3.  SARS-CoV-2ウイルスを構成するタンパク質が、エンベロープタンパク質、メンブレンタンパク質、ヌクレオカプシドタンパク質、スパイクタンパク質からなる群から選択される、請求項1または2に記載のペプチドまたはその修飾物。
  4.  ペプチドのアミノ酸配列が、SEQ ID NO: 1~96からなる群から選択されるいずれかのアミノ酸配列である、請求項1~3のいずれか1項に記載のペプチドまたはその修飾物。
  5.  SARS-CoV-2ウイルスに対する細胞性免疫が、ペプチドまたはその修飾物がMHCクラスI分子またはMHCクラスII分子に対して結合することを介して生じる、請求項1~4のいずれか1項に記載のペプチドまたはその修飾物。
  6.  請求項1~5のいずれか1項に記載のペプチドまたはその修飾物を含む、生体内におけるSARS-CoV-2ウイルスを除去し、またはCOVID-19の発症を予防または治療するための医薬組成物。
  7.  SARS-CoV-2ウイルスに対する細胞性免疫を誘導することによる、請求項6に記載の医薬組成物。
  8.  複数のペプチドまたはその修飾物を含む、請求項6または7に記載の医薬組成物。
  9.  (a)被検体から採取した血液から取り出された白血球細胞を、請求項1~5のいずれか1項に記載するペプチドまたはその修飾物とともに培養する工程;
     (b)当該ペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
    を含む、被検体生体内においてSARS-CoV-2ウイルスに対する細胞性免疫の記憶が成立しているかどうかを確認する方法。
  10.  被検体がSARS-CoV-2ウイルスに対する細胞性免疫の記憶を有している場合、この被検体が過去にSARS-CoV-2ウイルスに対して感染したことがあると判定する、請求項9に記載の方法。
  11.  (a)SARS-CoV-2ウイルスに対するワクチン投与前の被検体から採取した血液から取り出された白血球細胞を、請求項1~5のいずれか1項に記載するペプチドまたはその修飾物とともに培養し、前記ペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
     (b)SARS-CoV-2ウイルスに対するワクチン投与後の被検体から採取した血液から取り出された白血球細胞を、請求項1~5のいずれか1項に記載するペプチドまたはその修飾物とともに培養し、前記ペプチドまたはその修飾物により、白血球細胞からのインターフェロンγ(IFN-γ)産生が誘導されているかどうかを検出する工程;
     (c)ワクチン投与前と比較して、ワクチン投与後において、インターフェロンγ産生が誘導されている場合、被検体に投与されたワクチンが、被検体内においてSARS-CoV-2ウイルスに対する有効な免疫反応を誘導したと判定する工程;
    を含む、SARS-CoV-2ウイルスに対するワクチンにより、被検体生体内においてSARS-CoV-2ウイルスに対する免疫反応が生じたかどうかを判定する方法。
  12.  白血球細胞が、末梢血単核細胞(PBMC)である、請求項9~11のいずれか1項に記載の方法。
  13.  IFN-γ産生が誘導されているかどうかの検出を、ELISPOTアッセイを用いて行う、請求項9~12のいずれか1項に記載の方法。
     

     
PCT/JP2021/029904 2020-08-17 2021-08-16 SARS-CoV-2予防抗原ペプチドおよびその使用 WO2022039126A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-137364 2020-08-17
JP2020137364A JP2023159468A (ja) 2020-08-17 2020-08-17 SARS-CoV-2予防抗原ペプチドおよびその使用

Publications (1)

Publication Number Publication Date
WO2022039126A1 true WO2022039126A1 (ja) 2022-02-24

Family

ID=80350323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029904 WO2022039126A1 (ja) 2020-08-17 2021-08-16 SARS-CoV-2予防抗原ペプチドおよびその使用

Country Status (2)

Country Link
JP (1) JP2023159468A (ja)
WO (1) WO2022039126A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832099A (zh) * 2022-04-08 2022-08-02 国科宁波生命与健康产业研究院 一种用于治疗SARS-CoV-2变异毒株感染的多肽制剂
CN114949194A (zh) * 2022-04-08 2022-08-30 国科宁波生命与健康产业研究院 一种用于治疗SARS-CoV-2病毒感染的多肽制剂
WO2022180163A1 (en) * 2021-02-24 2022-09-01 University Of Ulster An isolated polypeptide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061919A1 (ja) * 2008-11-28 2010-06-03 日油株式会社 Sarsコロナウイルスの細胞傷害性t細胞エピトープペプチド及びその用途
CN111228483A (zh) * 2020-03-19 2020-06-05 四川大学 用于新型冠状病毒和非典病毒的广谱抗体喷剂
CN111440229A (zh) * 2020-04-13 2020-07-24 中国人民解放军军事科学院军事医学研究院 新型冠状病毒t细胞表位及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061919A1 (ja) * 2008-11-28 2010-06-03 日油株式会社 Sarsコロナウイルスの細胞傷害性t細胞エピトープペプチド及びその用途
CN111228483A (zh) * 2020-03-19 2020-06-05 四川大学 用于新型冠状病毒和非典病毒的广谱抗体喷剂
CN111440229A (zh) * 2020-04-13 2020-07-24 中国人民解放军军事科学院军事医学研究院 新型冠状病毒t细胞表位及其应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHOUR WILLIAM, XU ALEX M, NG ALPHONSUS H.C., CHOI JONGCHAN, XIE JINGYI, YUAN DAN, LEE JOHN K., DELUCIA DIANE C., EDMARK RICK, JONE: "Shared Antigen-specific CD8+ T cell Responses Against the SARS-COV-2 Spike Protein in HLA A*02:01 COVID-19 Participants", MEDRXIV, 8 May 2020 (2020-05-08), XP055902167, Retrieved from the Internet <URL:https://www.medrxiv.org/content/10.1101/2020.05.04.20085779v1.full.pdf> [retrieved on 20220316], DOI: 10.1101/2020.05.04.20085779 *
HERST C.V., BURKHOLZ S., SIDNEY J., SETTE A., HARRIS P.E., MASSEY S., BRASEL T., CUNHA-NETO E., ROSA D.S., CHAO W.C.H., CARBACK R.: "An effective CTL peptide vaccine for Ebola Zaire Based on Survivors’ CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design", VACCINE, ELSEVIER, AMSTERDAM, NL, vol. 38, no. 28, 1 June 2020 (2020-06-01), AMSTERDAM, NL , pages 4464 - 4475, XP055901114, ISSN: 0264-410X, DOI: 10.1016/j.vaccine.2020.04.034 *
KIYOTANI KAZUMA; TOYOSHIMA YUJIRO; NEMOTO KENSAKU; NAKAMURA YUSUKE: "Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2", JOURNAL OF HUMAN GENETICS, SPRINGER SINGAPORE, SINGAPORE, vol. 65, no. 7, 6 May 2020 (2020-05-06), Singapore, pages 569 - 575, XP037153205, ISSN: 1434-5161, DOI: 10.1038/s10038-020-0771-5 *
LIN LI; TING SUN; YUFEI HE; WENDONG LI; YUBO FAN; JING ZHANG: "Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2", VIRUS RESEARCH, AMSTERDAM, NL, vol. 288, 1 July 2020 (2020-07-01), NL , XP086262746, ISSN: 0168-1702, DOI: 10.1016/j.virusres.2020.198082 *
NAZ ANAM, SHAHID FATIMA, BUTT TARIQ TAHIR, AWAN FARYAL MEHWISH, ALI AMJAD, MALIK ARIF: "Designing Multi-Epitope Vaccines to Combat Emerging Coronavirus Disease 2019 (COVID-19) by Employing Immuno-Informatics Approach", FRONTIERS IN IMMUNOLOGY, vol. 11, 1663, 1 January 2020 (2020-01-01), pages 1 - 13, XP055775359, DOI: 10.3389/fimmu.2020.01663 *
PORAN ASAF, HARJANTO DEWI, MALLOY MATTHEW, ARIETA CHRISTINA M., ROTHENBERG DANIEL A., LENKALA DIVYA, VAN BUUREN MARIT M., ADDONA T: "Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes", GENOME MEDICINE, vol. 12, no. 1, 1 December 2020 (2020-12-01), XP055902162, DOI: 10.1186/s13073-020-00767-w *
RAKIB AHMED, SAMI SAAD AHMED, MIMI NUSRAT JAHAN, CHOWDHURY MD. MUSTAFIZ, EVA TASLIMA AKTER, NAINU FIRZAN, PAUL ARKAJYOTI, SHAHRIAR: "Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein", COMPUTERS IN BIOLOGY AND MEDICINE, NEW YORK, NY, US, vol. 124, 1 September 2020 (2020-09-01), US , XP055902147, ISSN: 0010-4825, DOI: 10.1016/j.compbiomed.2020.103967 *
RONG DONG, CHU ZHUGANG, YU FUXUN, ZHA YAN: "Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches", FRONTIERS IN IMMUNOLOGY, vol. 11, 1784, 28 July 2020 (2020-07-28), pages 1 - 18, XP055735128, DOI: 10.3389/fimmu.2020.01784 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180163A1 (en) * 2021-02-24 2022-09-01 University Of Ulster An isolated polypeptide
CN114832099A (zh) * 2022-04-08 2022-08-02 国科宁波生命与健康产业研究院 一种用于治疗SARS-CoV-2变异毒株感染的多肽制剂
CN114949194A (zh) * 2022-04-08 2022-08-30 国科宁波生命与健康产业研究院 一种用于治疗SARS-CoV-2病毒感染的多肽制剂
CN114832099B (zh) * 2022-04-08 2023-11-28 国科宁波生命与健康产业研究院 一种用于治疗SARS-CoV-2变异毒株感染的多肽制剂
CN114949194B (zh) * 2022-04-08 2023-11-28 国科宁波生命与健康产业研究院 一种用于治疗SARS-CoV-2病毒感染的多肽制剂

Also Published As

Publication number Publication date
JP2023159468A (ja) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2022039126A1 (ja) SARS-CoV-2予防抗原ペプチドおよびその使用
Doherty et al. Dissecting the host response to a γ–herpesvirus
Giavedoni Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using luminex technology
Lusso et al. Human herpesvirus 6 in AIDS
Ward et al. Phase 1 trial of a candidate recombinant virus-like particle vaccine for Covid-19 disease produced in plants
Graham et al. Safety and immunogenicity of a candidate HIV-1 vaccine in healthy adults: recombinant glycoprotein (rgp) 120: a randomized, double-blind trial
Eo et al. Modulation of immunity against herpes simplex virus infection via mucosal genetic transfer of plasmid DNA encoding chemokines
Laing et al. Zoster vaccination increases the breadth of CD4+ T cells responsive to varicella zoster virus
Flynn et al. Feline leukaemia virus: protective immunity is mediated by virus‐specific cytotoxic T lymphocytes
CN116056722A (zh) Sars-cov-2疫苗
Ku et al. CD8+ T‐cell clones in old mice
Martins et al. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239
Van Rompay et al. CD8+-cell-mediated suppression of virulent simian immunodeficiency virus during tenofovir treatment
Gauttier et al. Tissue-resident memory CD8 T-cell responses elicited by a single injection of a multi-target COVID-19 vaccine
Bonagura et al. Infections that cause secondary immune deficiency
Song et al. Identification of a linear B-cell epitope on the African swine fever virus CD2v protein
Qiao et al. Personalized workflow to identify optimal T-cell epitopes for peptide-based vaccines against COVID-19
Pewe et al. Infection with cytotoxic T-lymphocyte escape mutants results in increased mortality and growth retardation in mice infected with a neurotropic coronavirus
CN115894708B (zh) 一种人巨细胞病毒抗原表位嵌合肽及其应用
Seighali et al. Human T-cell lymphotropic virus type 1 (HTLV-1) proposed vaccines: a systematic review of preclinical and clinical studies
CN105693832B (zh) 一种布鲁氏菌Omp10蛋白抗原表位多肽及其应用
McGuire et al. Cytotoxic T lymphocytes in protection against equine infectious anemia virus
LU102995B1 (en) Immunization against coronavirus
CN105669845B (zh) 一种布鲁氏菌Omp16蛋白抗原表位多肽及其应用
WO2024038157A1 (en) Immunization against coronavirus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP