WO2022039026A1 - 人工タンパク質、Ras阻害剤及び抗がん剤 - Google Patents

人工タンパク質、Ras阻害剤及び抗がん剤 Download PDF

Info

Publication number
WO2022039026A1
WO2022039026A1 PCT/JP2021/028880 JP2021028880W WO2022039026A1 WO 2022039026 A1 WO2022039026 A1 WO 2022039026A1 JP 2021028880 W JP2021028880 W JP 2021028880W WO 2022039026 A1 WO2022039026 A1 WO 2022039026A1
Authority
WO
WIPO (PCT)
Prior art keywords
ras
artificial protein
seq
amino acid
acid sequence
Prior art date
Application number
PCT/JP2021/028880
Other languages
English (en)
French (fr)
Inventor
諒 本田
幸博 赤尾
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Publication of WO2022039026A1 publication Critical patent/WO2022039026A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • the present invention relates to an artificial protein that inhibits the function of Ras, which is an oncogene product, and suppresses the growth of cancer cells, and Ras inhibitors and anticancer agents using the same.
  • Ras a protein of oncogene products
  • many cancers such as pancreatic cancer and colon cancer to become mutant Ras.
  • this mutant Ras activates the MEK / ERK signal pathway and the AKT / mTOR signal pathway, which are downstream signals, and promotes the development, maintenance, and growth of cancer. Therefore, as a method for developing a therapeutic drug for cancer, a search for a substance that targets a mutant Ras as a molecule and inhibits its function is being conducted all over the world (for example, Non-Patent Document 1).
  • Patent Document 1 an inhibitor consisting of a small molecule compound targeting K-Ras G12C, which is a type of mutant Ras, has been developed, and its anticancer activity has been confirmed in clinical studies.
  • the inhibitor consisting of this small molecule compound inhibits the function of Ras by forming a covalent bond with the mutated cysteine residue present in K-Ras G12C.
  • K-Ras G12C accounts for only about 15% of all mutant Ras, and it is extremely difficult to develop inhibitors for other mutant Ras.
  • Ras inhibitors have been proposed (Patent Document 2, Non-Patent Document 2, etc.), all of them have low inhibitory activity and have not yet reached clinical application.
  • Ras inhibitors Since the molecular surface of Ras has few irregularities and there are no pockets (keyholes) to which small molecule compounds can bind, it is difficult for small molecule compounds to become Ras inhibitors. 2) Since Ras is localized in cells, it is essential that Ras inhibitors can penetrate the cell membrane. However, since proteins such as antibodies have a large molecular weight, they are difficult to permeate through cell membranes.
  • a small molecule compound easily passes through the cell membrane, it is not adsorbed on the surface of Ras existing in the cell and has a problem that it cannot function as a Ras inhibitor.
  • large molecules such as proteins are easily adsorbed on the surface of Ras, they do not easily permeate the cell membrane, so that they cannot meet Ras existing in cells and cannot function as a Ras inhibitor.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and is an artificial protein capable of inhibiting the function of Ras existing in cancer cells and suppressing the growth of cancer cells, and an artificial protein thereof. Providing the used Ras inhibitor and anticancer agent is an issue to be solved.
  • the present inventors bind a cell membrane penetrating peptide (CPP: Cell permeable peptide) to a Ras binding sequence (RBS: Ras-binding sequence) which is a peptide chain that inhibits the function of Ras.
  • CPP Cell permeable peptide
  • RBS Ras-binding sequence
  • the artificial protein of the present invention is an artificial protein that suppresses the growth of cancer cells, and has a cell membrane-permeable peptide moiety for imparting cell membrane permeability to the molecular structure and a Ras bond for inhibiting Ras. It contains a sequence portion and is characterized by having a total number of amino acid residues of 300 or less.
  • the Ras-binding sequence refers to a peptide chain capable of inhibiting the function of Ras by binding to Ras.
  • Preferred conditions for the Ras-binding sequence having such a function include the following requirements 1) to 3).
  • 1) The number of amino acid residues in the Ras binding sequence is 200 or less. This is because when the number of amino acid residues exceeds 200, it becomes difficult to pass through the cell membrane, and it becomes difficult to bind to Ras existing in the cell membrane. More preferably, the number of amino acid residues in the Ras binding sequence is 180 or less, and most preferably 160 or less. 2) The number of amino acid residues in the Ras binding sequence is 30 or more.
  • the dissociation constant for binding to Ras is 2 ⁇ M or less. If the dissociation constant is 2 ⁇ M or less, it is considered that the inhibitory effect due to the binding to Ras is likely to be exerted.
  • the Ras binding sequence is preferably a Ras-binding domain (RBD) derived from a protein that interacts with Ras in vivo.
  • the Ras-binding domain refers to a peptide chain that satisfies the following two conditions in addition to the above three conditions.
  • 1) Have a three-dimensional structure similar to ubiquitin. That is, it has 5 ⁇ -sheet structures and 2 ⁇ -helix structures or 3 10 helix structures. It is known that the addition of a cell membrane-permeable peptide to ubiquitin permeates the cell membrane of cancer (Inomata, K., et al. (2009). "High-resolution multi-dimensional NMR spectroscopy of proteins in”. human cells.
  • the cell membrane-permeable peptide moiety constituting the artificial protein of the present invention exerts a drug delivery function for moving the Ras-binding sequence moiety into the cell membrane of cancer. Furthermore, since the total number of amino acid residues of the artificial protein of the present invention is limited to 300 or less, the drug delivery function of the cell membrane-permeable peptide moiety allows the cell membrane to easily permeate the cancer.
  • the artificial protein of the present invention that has migrated into the cancer cell membrane inhibits the activity of Ras by the Ras binding sequence portion. Therefore, according to the artificial protein of the present invention, the growth of cancer cells can be suppressed.
  • the cell membrane permeable peptide portion has at least one amino acid sequence of SEQ ID NOs: 1 to 12, and the Ras binding sequence portion has at least one amino acid sequence of SEQ ID NOs: 13 to 23.
  • the present inventors have found that the cell membrane-permeable peptide moiety and the Ras-binding sequence moiety inhibit the function of Ras and suppress the growth of cancer cells when they have such an amino acid sequence.
  • the amino acid sequence of the Ras-binding sequence portion may be a modified amino acid sequence in which one, two or three amino acid residues are deleted, substituted or added. This is because even with such a modified amino acid sequence, it is possible to inhibit the function of Ras.
  • the Ras binding sequence portion has the amino acid sequence of SEQ ID NO: 19, it is possible to inhibit the particularly excellent Ras function and suppress the growth of cancer cells.
  • the cell membrane permeable peptide moiety has any of the amino acid sequences of SEQ ID NOs: 2, 4 and 5, it can inhibit the particularly excellent Ras function and suppress the growth of cancer cells.
  • a particularly preferred combination is when the cell membrane permeable peptide moiety has the amino acid sequence set forth in SEQ ID NO: 2 and the Ras binding sequence portion has the amino acid sequence of SEQ ID NO: 19. According to the test results of the present inventors, such a combination of artificial proteins exerts Ras inhibitory property specifically for cancer cells, whereas Ras inhibitory property for normal cells is hardly exhibited. Therefore, when used as an anticancer agent, there is an advantage that side effects are reduced.
  • the cell membrane-permeable peptide portion and the Ras-binding sequence portion in the artificial protein of the present invention may be directly linked by a peptide bond without using a linker, or may be linked via a molecule serving as a linker.
  • the linker is not particularly limited, but for example, another peptide can be used as a linker and linked by a peptide bond or a disulfide bond.
  • the number of amino acid residues when the peptide is used as a linker is not particularly limited, but those having about 4 to 16 amino acid residues are preferable.
  • an peptide serving as a linker an HA tag sequence having about 11 amino acid residues can be used.
  • the artificial protein of the present invention can be rapidly detected in the cell or the living body by utilizing the antigen-antibody reaction against the HA tag sequence. Therefore, it is extremely convenient when used as a research tool, for example.
  • linkers such as GSSSG and EAAAK may be used instead of the HA tag sequence. This is because even these linkers do not significantly affect the cell permeability of the cell membrane-permeable peptide moiety and the Ras inhibitory property of the Ras-binding sequence moiety.
  • Binding the His tag sequence has the advantage that the artificial protein can be easily purified using affinity chromatography. However, it is possible to purify the artificial protein of the present invention using an ion exchange resin or reverse phase chromatography without binding the His tag sequence.
  • the artificial protein of the present invention inhibits Ras-related signal pathways, it can be used as a Ras inhibitor. Moreover, since the artificial protein of the present invention inhibits the Ras-related signal pathway, it can be used as an anticancer agent.
  • the expression vector of the present invention is characterized by containing a nucleic acid sequence encoding the artificial protein of the present invention.
  • the artificial protein of the present invention can be easily synthesized by introducing it into a host cell, culturing it, and purifying it.
  • FIG. 5 is a graph showing the anticancer activity of the artificial proteins of SEQ ID NOs: 54, 56 and 57 and their alanine mutant (AA) on pancreatic cancer cell lines.
  • FIG. 3 is a schematic diagram showing a pull-down assay for the active Ras of the artificial protein of SEQ ID NO: 54, and an electrophoretic photograph showing the results. It is a graph which shows the result of the phosphorylation suppression test by the Western blotting method of the artificial protein of SEQ ID NO: 54. It is a graph which shows the result of the split luciferase assay for the artificial protein of SEQ ID NO: 54. It is a graph which shows the analysis result of the gene expression using the microarray of the artificial protein of SEQ ID NO: 54.
  • FIG. 5 is a graph showing a performance comparison between the artificial protein of SEQ ID NO: 54 by NanoBiT assay and Western blotting and a commercially available small molecule Ras inhibitor.
  • cancer cell is synonymous with “tumor cell” and is a cell that forms cancer, which typically leads to abnormal growth regardless of the surrounding normal tissue.
  • a cell (so-called cancerous cell). Therefore, unless otherwise specified, cells classified into cancer cells (tumor cells) rather than normal cells are called cancer cells regardless of the origin or properties of the cells.
  • Epithelial tumors flat epithelial cancer, adenocarcinoma, etc.
  • non-epithelial tumors various cell tumors (neuroblastoma, retinoblastoma, etc.), lymphomas, melanoma, etc.
  • the cells constituting the above are typical examples included in the cancer cells referred to herein.
  • amino acid residue is a term that includes the N-terminal amino acid and the C-terminal amino acid of the peptide chain, unless otherwise specified.
  • the left side is always the N-terminal side and the right side is the C-terminal side.
  • modified amino acid sequence with respect to a predetermined amino acid sequence means one to several (typically) without impairing the functions (for example, anticancer activity and cell membrane permeation performance) of the predetermined amino acid sequence.
  • a sequence generated by a so-called conservative amino acid replacement in which one, two, or three amino acid residues are conservatively substituted (for example, a basic amino acid residue is replaced with another basic amino acid residue).
  • the artificial protein of the present invention contains one, two or three amino acid residues in the amino acid sequence of each SEQ ID NO:.
  • artificial proteins consisting of substituted (eg, similar substitutions described above), deleted or added modified amino acid sequences, which also consist of amino acid sequences exhibiting anticancer activity.
  • the amino acid sequence of the cell membrane permeable peptide portion constituting the artificial protein of the present invention the amino acid sequence of the previously discovered cell membrane permeable peptide (CPP: Cell permeable peptide) can be adopted.
  • CPP Cell permeable peptide
  • amino acid sequences of SEQ ID NOs: 1 to 12 can be mentioned (see Table 1).
  • amino acid sequence of the Ras-binding sequence portion constituting the artificial protein of the present invention the amino acid sequence of the Ras-binding sequence previously discovered can be adopted.
  • amino acid sequences of SEQ ID NOs: 13 to 23 can be mentioned (see Table 2).
  • the artificial protein of the present invention can be synthesized using an expression vector containing a nucleic acid sequence encoding the same.
  • the methods conventionally used in the art may be adopted as they are, and the method itself does not particularly characterize the present invention. , Detailed explanation is omitted.
  • the artificial protein of the present invention constructs template DNA for a cell-free protein synthesis system (that is, a synthetic gene fragment containing a nucleotide sequence encoding an amino acid sequence of an antitumor peptide) without using an expression vector, and peptide synthesis is performed.
  • a cell-free protein synthesis system that is, a synthetic gene fragment containing a nucleotide sequence encoding an amino acid sequence of an antitumor peptide
  • Various compounds ATP, RNA polymerase, amino acids, etc.
  • a single-stranded or double-stranded polynucleotide containing a nucleotide sequence encoding an artificial protein of the present invention and / or a nucleotide sequence complementary to the sequence can be easily synthesized by a conventionally known method. That is, by selecting the codon corresponding to each amino acid residue constituting the designed amino acid sequence, the nucleotide sequence corresponding to the amino acid sequence of the artificial protein is easily determined and provided. Then, once the nucleotide sequence is determined, a polynucleotide (single strand) corresponding to the desired nucleotide sequence can be easily obtained by using a DNA synthesizer or the like.
  • the obtained single-stranded DNA can be used as a template, and the desired double-stranded DNA can be obtained by adopting an enzymatic synthesis means such as PCR method.
  • the polynucleotide may be in the form of DNA or may be in the form of RNA (mRNA or the like).
  • DNA can be provided in double or single strands. When provided as a single strand, it may be a coding strand (sense strand) or a non-coding strand (antisense strand) having a complementary sequence.
  • the polynucleotide thus obtained can be used as a material for constructing a recombinant gene (expression cassette) for the production of an artificial protein as an anticancer agent in various host cells or in a cell-free protein synthesis system. Can be used.
  • the artificial protein of the present invention can be suitably used as an active ingredient of a composition for use in suppressing (or inhibiting) the growth of cancer cells (that is, a pharmaceutical anticancer composition such as an anticancer agent).
  • the artificial protein of the present invention may be in the form of a salt as long as it does not lose its activity as an anticancer agent.
  • an acid addition salt of an artificial protein obtained by an addition reaction with an inorganic acid or an organic acid usually used according to a conventional method can be used. Accordingly, the "artificial protein" described herein and in the claims is a concept including those in such salt form.
  • FIG. 2 shows a schematic structural diagram of an artificial protein having a cell membrane penetrating peptide moiety and a Ras binding sequence moiety.
  • CPP in the figure indicates a cell membrane penetrating peptide portion, which is a portion intended to impart a cell membrane permeability function.
  • RBS indicates the Ras binding sequence part, which is a part intended to impart a function of binding to Ras.
  • HA showed an HA tag sequence, and the one derived from the human influenza virus hemagglutinin was used. His 6 is a tag peptide consisting of 6 consecutive histidine residues.
  • the nucleic acid sequence encoding the target artificial protein was incorporated into an Escherichia coli vector, cultured in a medium, and purified to synthesize 49 types of artificial proteins.
  • the selected CPPs are the peptides of SEQ ID NOs: 1-12 shown in Table 1.
  • a and B in the column of construct in Table 1 show a schematic structural diagram of an artificial protein including an HA tag sequence and a His tag sequence portion.
  • the selected RBS is the peptide of SEQ ID NOs: 13 to 23 shown in Table 2.
  • Table 3 shows the amino acid sequences of the 49 synthetic proteins synthesized, and Table 4 shows the total number of amino acid residues and the number of amino acid residues in the Ras-bound sequence portion.
  • Table 5 shows the combinations of CPP and RBS in these 49 types of artificial proteins.
  • the Ras binding sequences in the artificial proteins prepared in the examples used are SEQ ID NOs: 13 to 23 (see Table 2), and the number of amino acid residues thereof is in the range of 33 to 156 (see Table 4). ..
  • the dissociation constant of these Ras-binding sequences is 2 ⁇ M or less as shown in Table 6.
  • the Ras-binding sequences of SEQ ID NOs: 13 to 20 are Ras-binding domains (RBDs) and have the following characteristics. -Has five ⁇ -sheet structures and two ⁇ -helix or 310 helix structures similar to ubiquitin. -Has a function of binding to the ⁇ 2 peripheral region of Ras.
  • the artificial protein of SEQ ID NO: 54, the artificial protein of SEQ ID NO: 56 including GET (SEQ ID NO: 4) and cRaf-v1 (SEQ ID NO: 19), and SEQ ID NO: 57 including MAP (SEQ ID NO: 5) and cRaf-v1 (SEQ ID NO: 19). was an artificial protein).
  • the anticancer effects of the above three artificial proteins mutated with alanine on the Ras mutant cancer cell line were investigated.
  • the cells were administered at a concentration of 0 to 20 ⁇ M, and after 6 hours of treatment, the number of surviving cells was counted using the Cell Counting Kit-8.
  • the artificial protein of SEQ ID NO: 56 including GET (SEQ ID NO: 4) and cRaf-v1 (SEQ ID NO: 19
  • the artificial protein of SEQ ID NO: 57 including MAP (SEQ ID NO: 5) and cRaf-v1 (SEQ ID NO: 19).
  • the AA form of the protein showed a non-specific anticancer effect (Fig. 5, graph, right).
  • the AA form of the artificial protein of SEQ ID NO: 54 including Pen (SEQ ID NO: 2) and cRaf-v1 (SEQ ID NO: 19) showed almost no anticancer effect (Fig. 5, left graph).
  • the artificial protein of SEQ ID NO: 57 containing Pen (SEQ ID NO: 2) as CPP and cRaf-v1 (SEQ ID NO: 19) as RBD is a Ras inhibitor having no non-specific cytotoxicity. It was found that it has a specific anticancer effect due to Ras inhibition.
  • the active Ras extracted from the colorectal cancer cell line (HCT116) was pulled down by cRaf-RBD-GST, and then detected by the Western blotting method using an anti-Ras antibody.
  • the artificial protein of SEQ ID NO: 54 including Pen (SEQ ID NO: 2) and cRaf-v1 (SEQ ID NO: 19) competitively inhibits the pull-down of active Ras even at a low concentration of about 10 nM. I found out that I would do it. From the above results, it was found that the artificial protein of SEQ ID NO: 54 binds to the active Ras in vitro with a high affinity of several nM levels.
  • Tests 1 to 3 shown below were performed on the artificial protein of SEQ ID NO: 54 including Pen (SEQ ID NO: 2) and cRaf-v1 (SEQ ID NO: 19) in order to investigate the intracellular Ras inhibitory property.
  • Test 1 suppression test of phosphorylation by Western blotting
  • the phosphorylation of ERK and AKT was investigated by Western blotting.
  • IC 50 11.2 ⁇ M in the presence of 10% serum (Fig. 8, top).
  • Test 2 split luciferase assay
  • a split luciferase assay was performed using the NanoBiT system. In this assay, LgBiT-tagged KRas and SmBiT-tagged cRaf-RBD were first expressed intracellularly (see FIG. 9). In the absence of Ras inhibitors, KRas and cRaf-RBD bind, and the luciferase consisting of LgBiT and SmBiT is also reconstituted and the cells emit light.
  • MAPK pathway (Note: synonymous with MEK / ERK pathway), cancer-related signaling pathway, apoptosis pathway, ErbB pathway (). Note: Synonymous with EGFR pathway).
  • GSEA Gene Set Enrichment Analysis
  • Annexin V and PI sodium iodide
  • Annexin V-positive cells increased at low concentration treatment (5 ⁇ M), indicating early apoptosis.
  • PI-positive cells increased at high concentration treatment (15 ⁇ M), indicating late apoptosis. From the above, it was found that the artificial protein of SEQ ID NO: 56 exerts an anticancer effect by inducing apoptosis in cancer cells.
  • the artificial protein of SEQ ID NO: 54 including Pen (SEQ ID NO: 2) and cRaf-v1 (SEQ ID NO: 19), specifically inhibits only the Ras signal pathway by microarray analysis, as shown in FIG. It was proved.
  • the artificial protein of SEQ ID NO: 54 including Pen (SEQ ID NO: 2) and cRaf-v1 (SEQ ID NO: 19) has 1) strong target inhibitory activity and anticancer activity as compared with the above-mentioned conventional products. 2) It was found that it has a specific inhibitory effect on molecular targets.
  • the present invention is not limited to the embodiment of the above invention and the description of the examples. Various modifications are also included in the present invention to the extent that those skilled in the art can easily conceive without departing from the scope of claims. Further, the upper limit and the lower limit of the total number of remaining amino acids of the artificial protein are limited to the following within the range of the total number of remaining amino acids of the artificial protein listed in the above-mentioned examples, and can be arbitrarily set.
  • the artificial protein of the present invention inhibits the function of Ras, which is an oncogene product, and suppresses the growth of cancer cells, it can be used as a research tool for cancer cells utilizing this characteristic. It can also be used as a Ras inhibitor or an anticancer agent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Abstract

【課題】がん細胞内に存在するRasの機能を阻害し、がん細胞の増殖を抑制することが可能な人工タンパク質、並びに、それを用いたRas阻害剤及び抗がん剤を提供する。 【解決手段】本発明の人工タンパク質は、がん細胞の増殖を抑制する人工タンパク質であって、分子構造中に細胞膜透過性を付与するための細胞膜透過性ペプチド部分と、Rasを阻害するためのRas結合配列部分とを含み、総アミノ酸残基数が300以下であることを特徴とする。

Description

人工タンパク質、Ras阻害剤及び抗がん剤
 本発明は、がん遺伝子産物であるRasの機能を阻害し、がん細胞の増殖を抑制する人工タンパク質、並びにそれを用いたRas阻害剤及び抗がん剤に関する。
 がん遺伝子産物のタンパク質であるRasは、すい臓がんや大腸がん等、多くのがんにおいて活性化して変異型Rasとなっていることが知られている。この変異型Rasは、下流シグナルであるMEK/ERKのシグナル経路及びAKT/mTORのシグナル経路を活性化し、がんの発生・維持・増殖を促進することが分かっている。このため、がん治療薬の開発手法として、変異型Rasを分子標的とし、その機能を阻害する物質の探求が世界中で行われている(例えば非特許文献1)。
 近年、変異型Rasの一種であるK-Ras G12Cを分子標的とした低分子化合物からなる阻害剤が開発され、臨床試験においても抗がん作用が確認されている(特許文献1)。この低分子化合物からなる阻害剤は、K-Ras G12Cに存在する変異したシステイン残基と共有結合を形成することにより、Rasの機能を阻害する。
 しかし、K-Ras G12Cは変異型Ras全体の約15%程度しかなく、その他の変異型Rasでは阻害剤の開発は困難を極めている。いくつかのRas阻害剤が提案されたが(特許文献2、非特許文献2など)、いずれも阻害活性は低く、いまだに臨床応用に至っていない。
その理由として、次のことが考えられている。
1)Rasの分子表面は凹凸が少なく、低分子化合物が結合できるようなポケット(鍵穴)が存在しないため、低分子化合物ではRas阻害剤になり難い。
2)Rasは細胞内に局在するため、Ras阻害剤は細胞膜を透過できることが必須となる。しかしながら、抗体などのタンパク質は分子量が大きいため、細胞膜を透過し難い。
 すなわち、低分子化合物では細胞膜を通過し易いものの、細胞内に存在するRasの表面に吸着されず、Ras阻害剤として機能できないという問題がある。一方、タンパク質などの大きな分子はRasの表面に吸着され易いものの、細胞膜を透過し難いため、細胞内に存在するRasと出会うことができず、Ras阻害剤として機能できないという問題がある。
特表2016‐532656号公報 特許第6014816号公報
Ledford, H. (2015). "The ras renaissance." Nature 520(7547): 278. Kessler, D., et al. (2019). "Drugging an undruggable pocket on KRAS." Proc Natl Acad Sci U S A 116(32): 15823-15829.
 本発明は、上記従来の実情に鑑みてなされたものであり、がん細胞内に存在するRasの機能を阻害し、がん細胞の増殖を抑制することが可能な人工タンパク質、並びに、それを用いたRas阻害剤及び抗がん剤を提供することを解決すべき課題としている。
 本発明者らは、上記従来の課題を解決するため、Rasの機能を阻害するペプチド鎖であるRas結合配列(RBS: Ras-binding sequence)に、細胞膜透過ペプチド(CPP: Cell permeable peptide)を結合させることにより、Ras阻害性と細胞膜透過性の両立を図った。そして、鋭意研究を行った結果、Rasの機能を阻害し、がん細胞の増殖を抑制することができる人工タンパク質を見出し、本発明を完成するに至った。
 すなわち、本発明の人工タンパク質は、がん細胞の増殖を抑制する人工タンパク質であって、分子構造中に細胞膜透過性を付与するための細胞膜透過性ペプチド部分と、Rasを阻害するためのRas結合配列部分とを含み、総アミノ酸残基数が300以下であることを特徴とする。
 本明細書においてRas結合配列とは、Rasに結合することによりRasの機能を阻害することが可能なペプチド鎖のことをいう。このような機能を有するRas結合配列として、好ましい条件としては、以下の1)~3)の要件が挙げられる。
1) Ras結合配列のアミノ酸残基数が200以下であること。アミノ酸残基数が200を超えると細胞膜を通り難くなり、細胞膜内に存在するRasへの結合が困難となるからである。さらに好ましいのは、Ras結合配列のアミノ酸残基数が180以下であることであり、最も好ましいのは160以下である。
2) Ras結合配列のアミノ酸残基数が30以上であること。アミノ酸残基数が30未満では、細胞膜を通り易くなるものの、大きさが小さくて、やはりRasへの結合が困難となるからである。さらに好ましいのは、Ras結合配列のアミノ酸残基数が50以上であることであり、最も好ましいのは80以上である。
3) Rasへの結合に関する解離定数が2μM以下であること。解離定数が2μM以下であれば、Rasへの結合による阻害作用が発揮しやすくなると考えられる。
 Ras結合配列としては、生体内でRasと相互作用するタンパク質に由来したRas結合ドメイン(RBD: Ras-binding domain)であることが好ましい。ここでRas結合ドメインとは、上記3つの条件に加えて、以下の2つの条件を満たすペプチド鎖をいう。
1) ユビキチンに類似した3次元立体構造を有すること。すなわち、5本のβシート構造と2本のαヘリックス構造または310 helix構造を有すること。ユビキチンに細胞膜透過性ペプチドを付加することにより、がんの細胞膜を透過することが知られている(Inomata, K., et al. (2009). "High-resolution multi-dimensional NMR spectroscopy of proteins in human cells." Nature 458(7234): 106.)。この事実から推定して、ユビキチンと類似する構造をもつペプチド鎖であれば、細胞膜透過性ペプチドの付加によって細胞膜を透過する可能性が高いと考えられる。なお、ユビキチン自体はRasとの結合性を有していない。
2) Rasのβ2周辺領域に結合する機能を有していること。この領域はRasがMEK/ERKやAKT/mTORなどの下流シグナルを活性化するのに必須の領域である。従って、このような領域に結合するペプチド鎖は、Rasへの結合による競合阻害作用が発揮しやすくなると考えられる。
 本発明の人工タンパク質を構成する細胞膜透過性ペプチド部分は、Ras結合配列部分をがんの細胞膜内に移動させるためのドラッグデリバリー機能を発揮する。さらに、本発明の人工タンパク質の総アミノ酸残基数は300以下に制限されているため、細胞膜透過性ペプチド部分のドラッグデリバリー機能によって、がんの細胞膜を容易に透過することができる。がん細胞膜内に移動した本発明の人工タンパク質は、Ras結合配列部分によってRasの活性を阻害する。従って、本発明の人工タンパク質によれば、がん細胞の増殖を抑制することができる。
 本発明の人工タンパク質において、細胞膜透過性ペプチド部分は配列番号1~12の少なくとも一つのアミノ酸配列を有し、Ras結合配列部分は配列番号13~23の少なくとも一つのアミノ酸配列を有することが好ましい。本発明者らは、細胞膜透過性ペプチド部分とRas結合配列部分とが、このようなアミノ酸配列を有する場合において、Rasの機能を阻害し、がん細胞の増殖を抑制することを見出している。なお、Ras結合配列部分のアミノ酸配列は、1個、2個又は3個のアミノ酸残基が欠失、置換若しくは付加された改変アミノ酸配列とされていてもよい。このような改変アミノ酸配列であっても、Rasの機能を阻害することは可能だからである。
 Ras結合配列部分が配列番号19のアミノ酸配列を有する場合は、特に優れたRasの機能を阻害し、がん細胞の増殖を抑制することができる。
 また、細胞膜透過性ペプチド部分は配列番号2,4及び5のいずれかのアミノ酸配列を有する場合は、特に優れたRasの機能を阻害し、がん細胞の増殖を抑制することができる。
 特に好ましい組み合わせは、細胞膜透過性ペプチド部分が配列番号2で示されるアミノ酸配列を有し、Ras結合配列部分が配列番号19のアミノ酸配列を有する場合である。本発明者らの試験結果によれば、このような組み合わせの人工タンパク質であれば、がん細胞に特異的にRas阻害性を発揮するのに対し、正常細胞におけるRas阻害性はほとんど発揮されない。このため、抗がん剤として用いた場合、副作用が少なくなるという利点がある。
 本発明の人工タンパク質における細胞膜透過性ペプチド部分とRas結合配列部分とは、リンカーを用いることなくペプチド結合によって直接連結されていてもよいし、リンカーとなる分子を介して結合されていてもよい。リンカーとしては特に限定はされないが、例えば、他のペプチドをリンカーとして利用し、ペプチド結合やジスルフィド結合によって連結させることができる。ペプチドをリンカーとする場合のアミノ酸残基の数は特に限定されないが、4~16個程度のものが好適である。また、リンカーとなる他のペプチドとしては、アミノ酸残基数が11程度のHAタグ配列を用いることもできる。HAタグ配列をリンカーとして用いれば、HAタグ配列に対する抗原抗体反応を利用して、本発明の人工タンパク質を細胞内や生体内で迅速に検出することができる。このため、例えば研究用のツールとして用いたりする場合に、極めて便利となる。また、HAタグ配列の代わりにGSSSGやEAAAKなど他のリンカーを使用してもよい。これらのリンカーであっても細胞膜透過性ペプチド部分による細胞透過性や、Ras結合配列部分によるRas阻害性に大きな影響を与えることはないからである。
 本発明の人工タンパク質のN末端アミノ酸側にHisタグ配列を結合させることも好ましい。Hisタグ配列を結合させればアフィニティークロマトグラフィーを用いて人工タンパク質を容易に精製できるという利点が得られる。ただし、Hisタグ配列を結合させなくても、イオン交換樹脂や逆相クロマトグラフィーを用いて本発明の人工タンパク質を精製することは可能である。
 本発明の人工タンパク質はRas関連シグナル経路を阻害するため、Ras阻害剤として用いることができる。また、本発明の人工タンパク質はRas関連シグナル経路を阻害するため、抗がん剤として用いることができる。
 さらに、本発明の発現ベクターは、本発明の人工タンパク質をコードする核酸配列を含んでなることを特徴とする。このような発現ベクターであれば、宿主細胞へ導入し、培養し、精製することにより、本発明の人工タンパク質を容易に合成することができる。
発現ベクターを組み込んだ大腸菌の培養による人工タンパク質合成のフローチャートである。 細胞膜透過ペプチド部分とRas結合配列(RBS)部分とを有する人工タンパク質の模式構造図である。 AKTとERKのリン酸化の抑制をウェスタンブロッティング法で調べた結果を示すグラフである。 配列番号54、56及び57の人工タンパク質のウェスタンブロッティング法における電気泳動写真である。 配列番号54、56及び57の人工タンパク質及びそれらのアラニン変異体(AA)のすい臓がん細胞株に対する抗がん作用を示すグラフである。 配列番号54の人工タンパク質の活性型Ras及び不活性型Rasとの結合親和性を等温滴定カロリメトリで測定した結果を示すグラフである。 配列番号54の人工タンパク質の活性型Rasについてのプルダウンアッセイ法を示す模式図、及び結果を示す電気泳動写真である。 配列番号54の人工タンパク質のウェスタンブロッティング法によるリン酸化の抑制試験の結果を示すグラフである。 配列番号54の人工タンパク質についてのスプリット・ルシフェラーゼアッセイの結果を示すグラフである。 配列番号54の人工タンパク質のマイクロアレイを用いた遺伝子発現の解析結果を示すグラフである。 配列番号54の人工タンパク質について、Ras遺伝子変異をもつ膵臓がん細胞株(Mia PACA-2)に対する抗がん作用の評価結果を示すグラフである。 膵臓がん及び大腸がん細胞株の計11種類のがん細胞に対する配列番号54の人工タンパク質投与後の生存曲線を示すグラフである。 NanoBiTアッセイとウェスタンブロッティング法による配列番号54の人工タンパク質と市販の低分子Ras阻害剤との性能比較を示すグラフである。
 以下、本発明の実施形態について説明する。本発明の実施に必要な事柄(例えばペプチドの化学合成法、細胞培養技法、ペプチドを成分とする薬学的組成物の調製に関するような一般的事項など)は、細胞工学、生理学、医学、薬学、有機化学、生化学、遺伝子工学等の分野において、従来技術に基づく当業者の設計事項の範囲として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の説明では、アミノ酸を1文字表記(但し配列表では3文字表記)で表す。
 本明細書において「がん細胞」とは「腫瘍細胞」と同義であり、がんを形成する細胞であって、典型的には周辺の正常組織とは無関係に異常に増殖を行うに至った細胞(所謂がん化した細胞)をいう。従って、特に限定しない限り、正常細胞ではなくがん細胞(腫瘍細胞)に区分される細胞であれば、細胞の起源や性状に関わりなくがん細胞と呼称される。上皮性腫瘍(扁平上皮がん、腺がん等)、非上皮性腫瘍(各種の肉腫、骨肉腫等)、各種の細胞腫( 神経芽細胞腫、網膜芽細胞腫等)、リンパ腫、メラノーマ等を構成する細胞は、ここでいうがん細胞に包含される典型例である。
 また、本明細書において「アミノ酸残基」とは、特に言及する場合を除いて、ペプチド鎖のN末端アミノ酸及びC末端アミノ酸を包含する用語である。なお、本明細書中に記載されるアミノ酸配列は、常に左側がN末端側であり右側がC末端側である。
 本明細書において所定のアミノ酸配列に対して「改変アミノ酸配列」とは、当該所定のアミノ酸配列が有する機能(例えば抗がん活性や細胞膜透過性能)を損なうことなく、1個から数個(典型的には9個以下、好ましくは5個以下)のアミノ酸残基、例えば、1個、2個又は3個のアミノ酸残基が置換、欠失又は付加(挿入)されて形成されたアミノ酸配列をいう。例えば、1個、2個又は3個のアミノ酸残基が保守的に置換したいわゆる同類置換(conservative amino acid replacement)によって生じた配列(例えば塩基性アミノ酸残基が別の塩基性アミノ酸残基に置換した配列:例えばリジン残基とアルギニン残基との相互置換)、或いは、所定のアミノ酸配列について1個、2個又は3個のアミノ酸残基が付加(挿入)した若しくは欠失した配列等は、本明細書において改変アミノ酸配列に包含される典型例である。従って、本発明の人工タンパク質には、各配列番号のアミノ酸配列と同一のアミノ酸配列で構成される人工タンパク質に加え、各配列番号のアミノ酸配列において1個、2個又は3個のアミノ酸残基が置換(例えば、上記の同類置換)、欠失又は付加された改変アミノ酸配列であって、同様に抗がん活性を示すアミノ酸配列からなる人工タンパク質を包含する。
 本発明の人工タンパク質を構成する細胞膜透過性ペプチド部分のアミノ酸配列としては、従来発見されている細胞膜透過性ペプチド(CPP: Cell permeable peptide)のアミノ酸配列を採用することができる。例えば、配列番号1~12のアミノ酸配列が挙げられる(表1参照)。
 また、本発明の人工タンパク質を構成するRas結合配列部分のアミノ酸配列としては、従来発見されているRas結合配列のアミノ酸配列を採用することができる。例えば、配列番号13~23のアミノ酸配列が挙げられる(表2参照)。
 本発明の人工タンパク質は、これをコードする核酸配列を含んでなる発現ベクターを用いて合成することができる。発現ベクターの構築方法及び構築した発現ベクターの宿主細胞への導入方法等は、当該分野で従来から行われている方法をそのまま採用すればよく、かかる方法自体は特に本発明を特徴付けるものではないため、詳細な説明は省略する。
 また、本発明の人工タンパク質は、発現ベクターを用いることなく、無細胞タンパク質合成システム用の鋳型DNA(即ち抗腫瘍ペプチドのアミノ酸配列をコードするヌクレオチド配列を含む合成遺伝子断片)を構築し、ペプチド合成に必要な種々の化合物(ATP、RNA ポリメラーゼ、アミノ酸類等)を使用し、いわゆる無細胞タンパク質合成システムを採用して目的の人工タンパク質をin vitroで合成することができる。
 本発明の人工タンパク質をコードするヌクレオチド配列及び/又は該配列と相補的なヌクレオチド配列を含む一本鎖又は二本鎖のポリヌクレオチドは、従来公知の方法によって容易に合成することができる。すなわち、設計したアミノ酸配列を構成する各アミノ酸残基に対応するコドンを選択することによって、人工タンパク質のアミノ酸配列に対応するヌクレオチド配列が容易に決定され、提供される。そして、ひとたびヌクレオチド配列が決定されれば、DNAシンセサイザー等を利用して、所望するヌクレオチド配列に対応するポリヌクレオチド(一本鎖)を容易に得ることができる。さらに得られた一本鎖DNAを鋳型として用い、PCR法などの酵素的合成手段を採用して目的の二本鎖DNAを得ることができる。また、ポリヌクレオチドは、DNAの形態であってもよく、RNA(mRNA等)の形態であってもよい。DNAは、二本鎖又は一本鎖で提供され得る。一本鎖で提供される場合は、コード鎖(センス鎖)であってもよく、それと相補的な配列の非コード鎖(アンチセンス鎖)であってもよい。
 こうして得られるポリヌクレオチドは、種々の宿主細胞中で、あるいは無細胞タンパク質合成システムにて、抗がん剤としての人工タンパク質の生産のための組換え遺伝子(発現カセット)を構築するための材料として使用することができる。
 本発明の人工タンパク質は、がん細胞の増殖を抑制(或いは阻害)する用途の組成物(即ち、抗がん剤等の薬学的な抗がん組成物)の有効成分として好適に利用できる。なお、本発明の人工タンパク質は、抗がん剤としての活性を失わない限りにおいて塩の形態であってもよい。例えば、常法に従って通常使用されている無機酸又は有機酸を付加反応させることにより得られ得る人工タンパク質の酸付加塩を使用することができる。従って、本明細書及び特許請求の範囲に記載の「人工タンパク質」は、かかる塩形態のものも含む概念である。
<実施例>
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
(人工タンパク質の合成)
 Ras阻害剤として機能する人工タンパク質の候補として、細胞膜透過ペプチド(CPP)からなる部分と、Ras結合配列(RBS)からなる部分の両方を分子内に有する49種類の人工タンパク質を、図1に示すフローチャートに従って合成した。
 まず、目的のCPPとRBSを有する人工タンパク質をコードする発現ベクターを合成する。次に、この発現ベクターを形質転換技術によりBL21大腸菌に組み込む。そして、LB培地で37℃で4時間の培養を行い、タンパク質の発現誘導を行った後、遠心分離を行い、大腸菌ペーストを得た。こうして得られた大腸菌ペーストをTBSで再懸濁し、超音波処理を行った後、再び遠心分離を行った。こうして得られた沈殿物を6M GdHCl/50mM Tris緩衝液(pH 8)中で再懸濁した後、遠心分離を行った。そして得られた上清液について7.5Mの濃度の尿素溶液中でIMAC(固定化金属アフィニティークロマトグラフイー)を行った後、RPC(逆相クロマトグラフィー)又は透析法で目的の人工タンパク質を精製した。
 図2に、細胞膜透過ペプチド部分とRas結合配列部分とを有する人工タンパク質の模式構造図を示す。図中のCPPは細胞膜透過ペプチド部分を示し、細胞膜透過性の機能付与を目的とする部分である。また、RBSはRas結合配列部分を示し、Rasへ結合する機能を付与することを目的とした部分である。さらにHAはHAタグ配列を示し、ヒトインフルエンザウイルスのヘマグルチニン(hemagglutinin)に由来するものを用いた。また、His6は6個の連続するヒスチジン残基からなるタグペプチドである。
 目的とする人工タンパク質をコードする核酸配列を大腸菌のベクターに組み込み、培地で培養し、精製して49種類の人工タンパク質を合成した。選択したCPPは表1に示す配列番号1~12のペプチドである。表1中のconstructの欄のA及びBは、HAタグ配列及びHisタグ配列部分も含めた人工タンパク質の模式構造図を示す。また、選択したRBSは表2に示す配列番号13~23のペプチドである。合成した49種類の人工タンパク質のアミノ酸配列を表3に、総アミノ酸残基数及びRas結合配列部分のアミノ酸残基数を表4に示す。また、それら49種類の人工タンパク質におけるCPPとRBSの組み合わせを表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例において調製した人工タンパク質におけるRas結合配列は、配列番号13~23(表2参照)が用いられており、それらのアミノ酸残基数は33~156の範囲に入っている(表4参照)。また、これらのRas結合配列の解離定数は表6に示すように2μM以下である。
 これらのRas結合配列のうち配列番号13~20のRas結合配列はRas結合ドメイン(RBD)であり、次の特性を有している。
・ユビキチンに類似した5本のβシート構造と2本のαヘリックス構造または310 helix構造を有している。
・Rasのβ2周辺領域に結合する機能を有している。
Figure JPOXMLDOC01-appb-T000006
(スクリーニング)
 上記の方法によって合成した49種類の細胞膜透過性ペプチドをRas変異がん細胞株(MIA PaCa-2)に10μMの濃度で投与し、3時間処理後にRasシグナル下流分子であるAKTとERKのリン酸化の抑制をウェスタンブロッティング法によって調べた。結果を図3に示す。ここで、縦軸はコントロールと比較したERKとAKTのリン酸化程度を示しており、リン酸化が完全に抑制される場合0、抑制されない場合が2となるように相対化している。図3から、合成した49種類の細胞膜透過性ペプチドは、阻害効果が不明瞭であった72の人工タンパク質を除き、ERKとAKTのリン酸化を抑制することが分かった。ERKとAKTのリン酸化を特に強く抑制したのは、cRaf-v1(配列番号19)をRBDとして含む3種の人工タンパク質(Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質、GET(配列番号4)とcRaf-v1(配列番号19)を含む配列番号56の人工タンパク質及びMAP(配列番号5)とcRaf-v1(配列番号19)を含む配列番号57の人工タンパク質)であった。
 つぎに、ERKとAKTのリン酸化を特に強く抑制した上記3種の人工タンパク質のcRaf-v1(配列番号19)のRas結合表面に2カ所のアラニン変異(R88A/H89A、以下“AA”と略記)を導入した人工タンパク質を合成した。こうして得られたアラニン変異体(AA)の人工タンパク質と、アラニン変異がない野生型(WT)の人工タンパク質のRas阻害活性を比較した。その結果、図4に示すよう、アラニン変異させた3種の人工タンパク質では、リン酸化の抑制がキャンセルされることが分かった。以上の結果から、cRaf-v1(配列番号19)をRBDとして含む3種の人工タンパク質(Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質、GET(配列番号4)とcRaf-v1(配列番号19)を含む配列番号56の人工タンパク質、及びMAP(配列番号5)とcRaf-v1(配列番号19)を含む配列番号57の人工タンパク質)がRasに結合することで、ERKとAKTのリン酸化を抑制することが分かった。
 また、アラニン変異させた上記3種の人工タンパク質のRas変異がん細胞株(MIA PaCa-2)に対する抗がん作用について調べた。0から20μMの濃度で投与し、6時間処理後にCell Counting Kit-8を用いて生存細胞数をカウントした。その結果、GET(配列番号4)とcRaf-v1(配列番号19)を含む配列番号56の人工タンパク質、及びMAP(配列番号5)とcRaf-v1(配列番号19)を含む配列番号57の人工タンパク質のAA体では非特異的な抗がん作用を示した(図5グラフ中及び右)。これに対して、Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質のAA体では、ほとんど抗がん作用を示さなかった(図5グラフ左)。
 以上の結果から、CPPとしてPen(配列番号2)を含み、RBDとしてcRaf-v1(配列番号19)を含む配列番号57の人工タンパク質は、非特異的な細胞毒性をもたないRas阻害剤であり、Ras阻害に起因する特異的な抗がん作用を有することが分かった。
(試験管内でのRas阻害性試験)
 Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質と、活性型Ras及び不活性型Rasとの結合親和性を等温滴定カロリメトリで測定した。その結果、図6に示すように、活性型Rasでは解離定数は22 nMであったのに対して、不活性型Rasの解離定数は1.8μMとなった。以上の結果から、Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質は活性型Rasに特異的に結合することが分かった。
 さらに、活性型Rasについてのプルダウンアッセイを行った。すなわち、まず大腸がん細胞株(HCT116)から抽出した活性型RasをcRaf-RBD-GSTでプルダウンしてから、抗Ras抗体を用いたウェスタンブロッティング法により検出した。その結果、図7に示すように、Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質は活性型Rasのプルダウンを10 nM程度の低濃度域でも競合阻害することが分かった。以上の結果から、配列番号54の人工タンパク質は試験管内において活性型Rasに数nMレベルの高親和性で結合することが分かった。
(細胞内でのRas阻害性試験)
 Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質について、細胞内でのRas阻害性を調べるために、以下に示す試験1~3を行った。
試験1(ウェスタンブロッティング法によるリン酸化の抑制試験)
ERKとAKTのリン酸化をウェスタンブロッティング法で調べた。その結果、10%血清存在下ではIC50=11.2μMでRasシグナル経路を抑制した(図8上)。さらに血清非存在下でEGFによって活性化されるRasシグナルをIC50=5.5μMで抑制した(図8下)。一方、Rasの上流にあるEGFRのリン酸化は抑制しなかった(図8下)。
試験2(スプリット・ルシフェラーゼアッセイ)
NanoBiTシステムを使ったスプリット・ルシフェラーゼアッセイを行った。このアッセイにおいては、まずLgBiTタグ付KRasとSmBiTタグ付cRaf-RBDを細胞内で発現させた(図9参照)。Ras 阻害剤がない場合には、KRasとcRaf-RBDは結合し、LgBiTとSmBiTから成る発光酵素も再構成され細胞が発光する。KRasとcRaf-RBD の結合が阻害された場合には、LgBiTとSmBiTも再構成されず、細胞は発光しない。このアッセイを用いて配列番号56の人工タンパク質のRas 競合阻害能を測定したところ、IC50=6.4μM であった。以上一連の実験によって、配列番号54の人工タンパク質は、細胞内において5~11μMの濃度域でRasを阻害することが示された。
試験3(マイクロアレイ解析)
 マイクロアレイを用いた遺伝子発現の網羅的解析を行った。配列番号54の人工タンパク質を10 μM の濃度で3時間投与することによって871個の遺伝子発現が優位に変動し、うち768個がWT特異的に変動した遺伝子であった(図10参照)。これらの遺伝子をKyoto Encyclopedia of Genes and Genomes(KEGG)データーベースを用いて帰属した結果、そのほとんどがMAPK経路 (注:MEK/ERK 経路と同義)、がん関連シグナル経路、アポトーシス経路、ErbB 経路(注:EGFR 経路と同義)に帰属された。同様に、Gene Set Enrichment Analysis(GSEA)を用いて遺伝子発現を解析したところ、KRas関連シグナル経路が発現変動遺伝子セットとして上位に抽出された。以上のことから、配列番号54の人工タンパク質はRas関連シグナル経路を特異的に阻害することが示された。
(抗がん作用の評価試験)
 Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質について、Ras遺伝子変異をもつ膵臓がん細胞株(MIA PaCa-2)に対する抗がん作用の評価試験を行った。その結果、培養条件(培地組成や培養次元)によって異なるものの、IC50=4~12μM程度の抗がん作用が認められた(図11上のグラフ)。すなわち、RPMI1640培地と2次元培養条件において強い抗がん作用が認められた。EMEM培地と3次元培養条件では抗がん作用はやや減弱したものの認められた。
 また、Annexin VとPI(propidium iodide)の2重染色によって3時間の低濃度処理(5μM)で初期アポトーシス像、高濃度処理(15μM)で後期アポトーシス像をとらえることができた(図11下のグラフ)。すなわち、低濃度処理(5μM)ではAnnexin V 陽性細胞が増加しており、初期アポトーシスが示された。また、高濃度処理(15μM)ではPI陽性細胞が増加しており、後期アポトーシスが示された。以上のことから、配列番号56の人工タンパク質は、がん細胞にアポトーシスを誘導することで抗がん作用を発揮することがわかった。
・膵臓がん細胞株及び大腸がん細胞株に対する抗がん作用
次に、Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質について、他11種類の膵臓がん細胞株(PANC-1、BxPC-3)と大腸がん細胞株(SW48、SW480、LoVo、DLD1、OUMS-23、SW620、WiDr、Colon-26、HCT116)に対する抗がん作用を調べた。0から20μMのタンパク質濃度で6時間処理した後、Cell Counting Kit-8を用いて生存細胞数をカウントした。その結果、図12に示すように、Ras遺伝子変異があるがんに対して強い抗がん作用が認められたが、Ras遺伝子正常型がんには比較的弱い抗がん作用しか認められなかった。以上のことから、配列番号54の人工タンパク質はRas遺伝子変異型がんに特異的な抗がん作用を奏することが分かった。
・市販の低分子Ras阻害剤と本発明の人工タンパク質(Pen-cRaf-v1)との比較
市場で入手可能な3種類の低分子Ras阻害剤(BI-2852、Kobe-0065、Rigosertib)と配列番号56の人工タンパク質の性能を比較した。はじめにNanoBiT アッセイで性能比較したところ、BI2852ではIC50=2.1μMとなり、Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質よりも強い競合阻害能を示した(図13左のグラフ)
しかし、Rasシグナル経路の抑制(ERKとAKTのリン酸化の抑制)と抗がん作用に関しては、Pen-cRaf-v1はBI2852よりも10倍ほど強い活性を示した(図13中及び右)。以上の結果から、Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質は、従来品よりも強くRasの機能を阻害することが示された。さらに、BI2852などの低分子Ras阻害剤に関してはマイクロアレイ等の網羅的解析はなされておらず、標的特異性は証明されていない。これに対して、Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質は、図10に示すように、マイクロアレイ解析によってRasシグナル経路のみを特異的に阻害することが証明された。以上のごとく、Pen(配列番号2)とcRaf-v1(配列番号19)を含む配列番号54の人工タンパク質は、上記従来品と比較して、1)強い標的阻害性と抗がん活性を有し、2)分子標的に対して特異的に阻害作用を奏することが分かった。
 この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。また、人工タンパク質の総アミノ酸残機数の上限や下限は、前述した実施例で列挙された人工タンパク質の総アミノ酸残機数の範囲内で以下に制限され任意に設定しうる。
 本発明の人工タンパク質は、がん遺伝子産物であるRasの機能を阻害し、がん細胞の増殖を抑制するため、この特性を利用したがん細胞の研究用ツールとして利用できる。また、Ras阻害剤や抗がん剤として利用することができる。

Claims (9)

  1.  がん細胞の増殖を抑制する人工タンパク質であって、分子構造中に細胞膜透過性を付与するための細胞膜透過性ペプチド部分と、Rasを阻害するためのRas結合配列部分とを含み、総アミノ酸残基数が300以下であることを特徴とする人工タンパク質。
  2.  前記Ras結合配列部分のアミノ酸残基数が30以上200以下であることを特徴とする請求項1に記載の人工タンパク質。
  3.  前記細胞膜透過性ペプチド部分は配列番号1~12の少なくとも一つのアミノ酸配列を有し、前記Ras結合配列部分は配列番号13~23の少なくとも一つのアミノ酸配列又は該アミノ酸配列について1個、2個又は3個のアミノ酸残基が欠失、置換若しくは付加された改変アミノ酸配列を有することを特徴とする請求項1又は2に記載の人工タンパク質。
  4.  前記Ras結合配列部分は配列番号19のアミノ酸配列を有することを特徴とする請求項1乃至3のいずれか1項に記載の人工タンパク質。
  5.  前記細胞膜透過性ペプチド部分は配列番号2,4及び5のいずれかのアミノ酸配列を有することを特徴とする請求項1乃至4のいずれか1項に記載の人工タンパク質。
  6.  請求項1乃至5のいずれか1項に記載の人工タンパク質を有効成分として含有するRas阻害剤。
  7.  請求項1乃至5のいずれか1項に記載の人工タンパク質を有効成分として含有する抗がん剤。
  8.  請求項1乃至5のいずれか1項に記載の人工タンパク質をコードする核酸配列。
  9.  請求項1乃至5のいずれか1項に記載の人工タンパク質をコードする核酸配列を含んでなる発現ベクター。
PCT/JP2021/028880 2020-08-17 2021-08-04 人工タンパク質、Ras阻害剤及び抗がん剤 WO2022039026A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-137653 2020-08-17
JP2020137653A JP2023145812A (ja) 2020-08-17 2020-08-17 人工タンパク質、Ras阻害剤及び抗がん剤

Publications (1)

Publication Number Publication Date
WO2022039026A1 true WO2022039026A1 (ja) 2022-02-24

Family

ID=80322675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028880 WO2022039026A1 (ja) 2020-08-17 2021-08-04 人工タンパク質、Ras阻害剤及び抗がん剤

Country Status (2)

Country Link
JP (1) JP2023145812A (ja)
WO (1) WO2022039026A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001045A2 (en) * 2013-07-03 2015-01-08 Universite Pierre Et Marie Curie (Paris 6) Pro-apoptotic ras and raf peptides
JP2019527066A (ja) * 2016-05-27 2019-09-26 シンセックス, インコーポレイテッド タンパク質界面

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001045A2 (en) * 2013-07-03 2015-01-08 Universite Pierre Et Marie Curie (Paris 6) Pro-apoptotic ras and raf peptides
JP2019527066A (ja) * 2016-05-27 2019-09-26 シンセックス, インコーポレイテッド タンパク質界面

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PAN TING, ZHANG YIWEN, ZHOU NAN, HE XIN, CHEN CANCAN, LIANG LITING, DUAN XIAOBING, LIN YINGTONG, WU KANG, ZHANG HUI: "A recombinant chimeric protein specifically induces mutant KRAS degradation and potently inhibits pancreatic tumor growth", ONCOTARGET, vol. 7, no. 28, 14 June 2016 (2016-06-14), pages 44299 - 44309, XP055822481, DOI: 10.18632/oncotarget.9996 *
SVENJA WIECHMANN, PIERRE MAISONNEUVE, BRITTA M GREBBIN, MEIKE HOFFMEISTER, MANUEL KAULICH, HANS CLEVERS, KRISHNARAJ RAJALINGAM, IG: "Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids", J. BIOL. CHEM., vol. 295, no. 14, 3 April 2020 (2020-04-03), pages 4526 - 4540, XP055909105 *
WOLFE LESLIE S., STANLEY BRADFORD J., LIU CHANG, ELIASON WILLIAM K., XIONG YONG: "Dissection of the HIV Vif Interaction with Human E3 Ubiquitin Ligase", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 84, no. 14, 15 July 2010 (2010-07-15), US , pages 7135 - 7139, XP055909099, ISSN: 0022-538X, DOI: 10.1128/JVI.00031-10 *

Also Published As

Publication number Publication date
JP2023145812A (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
Wang et al. Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer
Plescia et al. Rational design of shepherdin, a novel anticancer agent
Tanaka et al. Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis
CN107849113A (zh) 用于治疗具有rtk突变细胞的患者的组合物和方法
Pero et al. Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells
KR101689408B1 (ko) 암의 저해제로서 muc-1 세포질 도메인 펩티드
Tang et al. Targeting mutant TP53 as a potential therapeutic strategy for the treatment of osteosarcoma
JP2009527498A (ja) 癌におけるcaPCNA相互作用のペプチドによる抑制
Chen et al. Structural basis of how stress-induced MDMX phosphorylation activates p53
Jiang et al. Crystallographic analysis of NHERF1–PLCβ3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer
Yu et al. Inhibitory short peptides targeting EPS8/ABI1/SOS1 tri-complex suppress invasion and metastasis of ovarian cancer cells
Klein et al. The role of the PZP domain of AF10 in acute leukemia driven by AF10 translocations
Li et al. Faciogenital Dysplasia 5 supports cancer stem cell traits in basal-like breast cancer by enhancing EGFR stability
Xie et al. Antitumor and modeling studies of a penetratin-peptide that targets E2F-1 in small cell lung cancer
WO2022039026A1 (ja) 人工タンパク質、Ras阻害剤及び抗がん剤
US11407788B2 (en) Prostate-specific membrane antigen (PSMA) targeting peptides
Rui et al. Design and evaluation of α-helix-based peptide inhibitors for blocking PD-1/PD-L1 interaction
CN110538179B (zh) Yg1702在制备aldh18a1特异性抑制剂中的应用
KR20180129585A (ko) Mage-1에 특이적으로 결합하는 압타머 및 이의 용도
US11965011B2 (en) Antitumor peptide and use thereof
Li et al. A novel camptothecin derivative, ZBH-01, exhibits superior antitumor efficacy than irinotecan by regulating the cell cycle
JP7194928B2 (ja) 抗腫瘍ペプチドおよびその利用
EP1932852B1 (en) Novel taxane related peptides and uses thereof
AU2011260745B2 (en) Cancer therapy method
Michel Discovery and characterization of a non-canonical mSWI/SNF complex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP