WO2022038901A1 - Bushing and deformed cross-section glass fiber manufacturing method - Google Patents
Bushing and deformed cross-section glass fiber manufacturing method Download PDFInfo
- Publication number
- WO2022038901A1 WO2022038901A1 PCT/JP2021/024145 JP2021024145W WO2022038901A1 WO 2022038901 A1 WO2022038901 A1 WO 2022038901A1 JP 2021024145 W JP2021024145 W JP 2021024145W WO 2022038901 A1 WO2022038901 A1 WO 2022038901A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- nozzles
- nozzle row
- cooling
- bushing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/08—Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- the present invention relates to an improvement in a manufacturing technique for a glass fiber having a modified cross section.
- Irregular cross-section glass fiber having a non-circular cross-section such as an oval or elliptical cross-section is used in various fields because it can realize a high reinforcing effect when mixed with a resin and composited. There is.
- This kind of irregular cross-section glass fiber is generally manufactured by cooling while pulling out molten glass from a bushing nozzle. At this time, since the cross-sectional shape of the manufactured glass fiber depends on the shape of the nozzle hole at the tip of the nozzle, when manufacturing a glass fiber having a modified cross section, the nozzle hole is often flattened at the tip of the nozzle. ..
- a concave notch is provided in each of the pair of long wall portions facing each other in the minor axis direction of the flat nozzle hole, and the concave shape is formed.
- the viscosity of the molten glass is adjusted by cooling with the notch.
- the molten glass may be cooled too much. Therefore, it may not be possible to stably form the irregular cross-section glass fiber.
- the bushing according to the present invention comprises a base plate extending in a predetermined direction and having a plurality of cooling regions in which a cooling member configured to cool the molten glass can be arranged, and the molten glass provided on the base plate.
- the flat nozzle hole faces the nozzle hole in the minor axis direction, and the pair of first wall portions having a concave notch face each other in the major axis direction of the nozzle hole.
- a glass fiber manufacturing apparatus comprising a pair of second wall portions and a plurality of nozzles comprising, wherein the plurality of nozzles are arranged so that the first wall portion faces toward the cooling region.
- a first nozzle row in which a plurality of the nozzles are arranged at predetermined intervals along the extending direction of the cooling region, and the first nozzle row.
- a pair of the nozzles in the first nozzle row is arranged with a second nozzle row in which a plurality of the nozzles are arranged with a predetermined spacing along the extending direction of the cooling region.
- the nozzles of the first nozzle row are arranged so that each of the notches provided in the first wall portion of the above can face the cooling region.
- the productivity of the irregularly shaped cross-section glass fiber can be improved, and a large number of glass fibers can be obtained at one time, so that a strand having a large count can be manufactured.
- one notch directly faces the cooling member, and the other notch faces the cooling member through the region of the gap between the nozzles of the second nozzle row. It is possible to prevent the molten glass from being overcooled.
- the viscosity of the molten glass at the time of molding can be appropriately adjusted, and the irregular cross-section glass fiber can be stably molded. If the other notch faces only the nozzles in the second nozzle row, the molten glass is not cooled.
- the nozzles of the second nozzle row are provided so that each of the notches provided in the pair of first wall portions of the nozzles in the second nozzle row can face the cooling region. Is preferably arranged.
- the viscosity of the molten glass at the time of molding can be appropriately adjusted, and the deformed cross-section glass fiber can be stably molded. can.
- the distance between the plurality of nozzles in the first nozzle row and between the plurality of nozzles in the second nozzle row is preferably narrower than the width of the tip of the notch of the nozzle in the nozzle. ..
- the modified cross-section glass fiber manufacturing method according to the present invention is characterized in that the deformed cross-section glass fiber is manufactured by using the above-mentioned bushing. According to such a configuration, the same effect as the configuration already described can be obtained.
- the molten glass is E glass. Since the E glass is a glass that does not easily devitrify, the productivity of the irregular cross-section glass fiber is improved.
- the molten glass preferably has a viscosity of 10 2.0 to 10 3.5 dPa ⁇ s at the molding temperature. That is, when it is 103.5 dPa ⁇ s or less, the viscosity of the molten glass does not become too high, so that the moldability of the glass fiber can be well maintained. Further, when it is 10 2.0 dPa ⁇ s or more, the viscosity of the molten glass does not become too low, so that the force of the molten glass to return to the circular cross section is weakened by the surface surface force, and the flatness ratio (major axis) of the glass fiber is weakened. Dimension / minor axis dimension) can be increased.
- a desired modified cross-section glass fiber can be stably produced.
- FIG. 1 is a cross-sectional view showing a modified cross-sectional glass fiber manufacturing apparatus according to an embodiment of the present invention.
- FIG. 2 is an enlarged cross-sectional view showing the periphery of the bushing nozzle of FIG.
- FIG. 3 is an enlarged bottom view showing the periphery of the bushing nozzle of FIG. 1.
- 4A and 4B are views showing a bushing nozzle according to an embodiment of the present invention, in which FIG. 4A is a side view thereof, FIG. 4B is a sectional view taken along the line A1-A1 of FIG. It is a cross-sectional view of B1-B1 of.
- FIG. 5 is an enlarged bottom view showing the periphery of the bushing nozzle of FIG.
- FIG. 6 is an enlarged bottom view showing the periphery of the bushing nozzle according to the comparative example.
- the modified cross-section glass fiber manufacturing apparatus 10 includes a glass melting furnace 1, a fore hearth 2 connected to the glass melting furnace 1, and a feeder 3 connected to the fore hearth 2. ing.
- the X direction and the Y direction are the horizontal direction
- the Z direction is the vertical direction (hereinafter, the same applies).
- the molten glass G is supplied from the glass melting furnace 1 to the feeder 3 through the fore hearth 2 and is stored in the feeder 3.
- a plurality of feeders 3 may be connected to the glass melting furnace 1.
- a clarification furnace may be provided between the glass melting furnace 1 and the fore hearth 2.
- the molten glass G is made of E glass, but may be another glass material such as D glass, S glass, AR glass, and C glass.
- a bushing 4 is arranged at the bottom of the feeder 3.
- the bushing 4 is attached to the feeder 3 via a bushing block or the like.
- the bottom of the bushing 4 is composed of a base plate 41 as shown in FIG. 2, and the base plate 41 is provided with a plurality of nozzles 5. Further, the base plate 41 is provided with a plurality of cooling regions S extending in the Y direction, which is a predetermined direction, in which the cooling pipe 6 can be arranged (see FIG. 3).
- a cooling pipe 6 as a cooling member is provided in the cooling region S.
- the molten glass G stored in the feeder 3 is pulled out downward from a plurality of nozzles 5 provided on the base plate 41 of the bushing 4, and a glass fiber (monofilament) Gm is manufactured.
- the viscosity of the molten glass G at the molding temperature is set in the range of 10 2.0 to 10 3.5 dPa ⁇ s (preferably 10 2.5 to 10 3.3 dPa ⁇ s).
- the viscosity of the molten glass G at the molding temperature is the viscosity of the molten glass G at the position where it flows into the nozzle 5.
- a sizing agent is applied to the surface of the glass fiber Gm by an applicator (not shown), and 100 to 10,000 fibers are spun into one strand Gs.
- the count of the strand Gs depends on the glass fiber Gm to be spun, and the larger the number of glass fibers Gm, the larger the count of the strand Gs.
- the spun strands Gs are wound around the collet 7 of the winding device as a fiber bundle Gr.
- the strands Gs are cut into a predetermined length of, for example, about 1 to 20 mm and used as chopped strands.
- the glass melting furnace 1, the fore hearth 2, the feeder 3, the bushing 4, the nozzle 5, and the cooling pipe 6 are at least partially formed of platinum or a platinum alloy (for example, a platinum rhodium alloy).
- the feeder 3 and the bushing 4 may be heated by energization heating or the like.
- the nozzle 5 has a pair of long wall portions (first wall portions) 51 facing each other in the X direction and a pair of short walls facing each other in the Y direction at the tip portion (lower portion). It includes a wall portion (second wall portion) 52, and a flat (oval in the present embodiment) nozzle hole 53 partitioned by a long wall portion 51 and a short wall portion 52.
- a notch 54 is provided in each long wall portion 51, and a part of the nozzle hole 53 communicates with the external space of the nozzle 5 through the notch 54.
- the major axis direction of the nozzle hole 53 coincides with the Y direction
- the minor axis direction of the nozzle hole 53 coincides with the X direction.
- the X-direction dimension of the short wall portion 52 is shorter than the Y-direction dimension of the long wall portion 51.
- these dimensional relationships of the wall portions 51 and 52 are not particularly limited.
- the cross-sectional shape of the nozzle hole 53 may be an elliptical shape or the like as well as an oval shape.
- the notch 54 provided in each long wall portion 51 of the nozzle 5 has a trapezoidal shape having the same dimensions.
- the notch 54 has an isosceles trapezoidal shape (upper base) that has a center point T1 of the upper base on the center line M1 of the long wall portion 51 and is symmetrical with respect to the center line M1. Is shorter than the bottom).
- the internal angle ⁇ 1 is, for example, more than 90 ° to 160 ° (preferably 110 ° to 150 °).
- the nozzle hole 53 has a flat oval shape and a constant shape in the Z direction. As shown in FIG.
- the nozzle hole 53 has a ratio (a / b) of the X-direction dimension (minor-diameter dimension) b to the Y-direction dimension (major-diameter dimension) a. It is in the range of 5 to 20 (preferably 3 to 10).
- the glass fiber Gm having a deformed cross section having a non-circular cross section such as a flat shape can be stably molded. In other words, the variation in the cross-sectional shape of the manufactured glass fiber Gm is reduced.
- the shape of the base end portion is the shape of the tip portion of the nozzle 5. It may be the same as or different from.
- nozzles 5 It is preferable that 200 to 10,000 nozzles 5 are arranged on the base plate 41. By arranging the above number of nozzles 5, strands Gs having a large count can be obtained. It is preferable that 1500 or more nozzles 5 are arranged on the base plate 41.
- the cooling pipe 6 circulates cooling water F as a fluid inside the cooling pipe 6 to exert a cooling action.
- the cooling pipe 6 is a plate-shaped body, and a plurality of cooling pipes 6 are arranged so that the plate surface thereof follows a certain direction (vertical direction).
- the cooling pipe 6 is integrally provided in the cooling region S of the base plate 41, but may be provided separately from the bottom of the bushing 4. Further, the cooling pipe 6 may be a circular tubular body. The height position of the cooling pipe 6 can be appropriately adjusted according to the cooling conditions of the molten glass G.
- the cooling pipe 6 may be arranged above the tip of the nozzle 5 so as not to directly face the molten glass G drawn out from the nozzle 5, or the molten glass G drawn out from the nozzle 5 and the nozzle 5. It may be arranged so as to straddle both of them.
- the cooling member is not limited to the cooling pipe 6, and may be a cooling fin or the like that induces an air flow to exert a cooling action.
- a plurality of nozzle rows L1 and L2 are arranged in parallel at intervals in the X direction between adjacent cooling regions S.
- Each of the nozzle rows L1 and L2 is configured by arranging a plurality of nozzles 5 having the major axis direction of the nozzle holes 53 oriented in the Y direction on the same straight line extending in the Y direction.
- the cooling pipe 6 is arranged between the nozzle rows L1 and L2 adjacent to each other in the X direction in parallel with the nozzle rows L1 and L2.
- the nozzle row L1 and the nozzle row L2 are the same except for the arrangement position of the nozzle 5 in the Y direction.
- the cooling pipe 6 faces the notch 54a of the nozzle 5 adjacent to the cooling pipe 6, and the molten glass G flowing in the nozzle 5 is cooled through the notch 54a. ing. Specifically, at the tip of the nozzle 5, the molten glass G is rapidly cooled from a temperature of 1000 ° C. or higher by the cooling tube 6.
- the cooling pipe 6 also has a function of cooling the bushing 4 and the nozzle 5 to suppress thermal deterioration thereof and improve durability.
- the notch 54b of the nozzle 5 not adjacent to the cooling pipe 6 is also included in the adjacent nozzle row (the nozzle row adjacent to the nozzle row L1 is L2, and the nozzle row adjacent to the nozzle row L2 is L1). Since it faces the cooling member 6 through the region of the gap between the nozzles 5, it is possible to prevent the molten glass G from being overcooled. Therefore, the viscosity of the molten glass G at the time of molding can be appropriately adjusted, and the irregular cross-section glass fiber can be stably molded.
- the molten glass G on the notch 54a side of the nozzle 5 is rapidly cooled because it directly faces the cooling tube 6, and the molten glass G on the notch 54b side of the nozzle 5 is separated from the cooling tube 6 by a predetermined distance. It is cooled more slowly than the molten glass G on the side of the notch 54a in order to face the surface. Therefore, the molten glass G on the notch 54a side is immediately solidified and hardly deformed, while the molten glass G on the notch 54b side is deformable to some extent until it is solidified.
- the molten glass G is not sufficiently cooled unless the notch 54b of the nozzle 5 which is composed of only the nozzle row L1 and is not adjacent to the cooling pipe 6 faces the cooling member 6.
- the intervals D1 and D2 are narrower than the width W at the tips of the notches 54a and 54b. Therefore, it is possible to prevent the molten glass G from being overcooled.
- the distances D1 and D2 between the nozzles 5 are preferably 1 to 10 mm, more preferably 1 to 5 mm. As a result, more nozzles 5 can be arranged on the base plate 41. Further, the width W at the tip of the notch 54 is preferably 2 to 20 mm. The ratio of the width W (W / D (D1, D2)) between the intervals D1 and D2 and the tip of the notch 54 can be, for example, 0.5 to 5, but 1.1 to 2. It is preferably 5.
- the number of nozzles 5 included in one nozzle row L1 and L2 is preferably 10 to 500 or less.
- the productivity of the irregular cross-section glass fiber can be improved.
- the number of glass fibers Gm obtained at one time is increased, and as a result, strands Gs having a large count can be manufactured.
- one notch 54a directly faces the cooling pipe 6, and the other notch 54b passes through the region of the gap between the nozzles 5 of the second nozzle row L2. Since it faces the cooling pipe 6, it is possible to prevent the molten glass G from being overcooled. Therefore, the viscosity of the molten glass G at the time of molding can be appropriately adjusted, and the irregular cross-section glass fiber can be stably molded.
- one notch 54a directly faces the cooling pipe 6, and the other notch 54b passes through the region of the gap between the nozzles 5 of the first nozzle row L1. Since it faces the cooling pipe 6, it is possible to prevent the molten glass G from being overcooled.
- the intervals D1 and D2 between the nozzles 5 are equal, but they may be different.
- the ratio D1 / D2 of D1 and D2 is preferably in the range of 0.5 to 2.0.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
This bushing 4 is provided with: a base plate 41 having multiple cooling regions S for the arrangement of a cooling member configured to cool molten glass; and multiple nozzles 5 provided on the base plate 41 and comprising a nozzle hole 53, which has a flat shape at the tip where the molten glass G flows out, a pair of first walls 51, which are opposite each other in the short-axis direction of the nozzle hole 5 and have a recessed notch 54, and a pair of second walls 52, which are opposite of each other in the long-axis direction of the nozzle hole 5, wherein the multiple nozzles 5 are arranged such that the first walls 51 face in the direction of the cooling region S. Between adjacent cooling regions S, there are arranged a first nozzle row L1, which is in the direction of extension of the cooling region S and in which multiple nozzles 5 are arranged at a prescribed interval, and a second nozzle row L2, which, at an interval from the first nozzle row L1, is in the direction of extension of the cooling region S and which comprises multiple nozzles 5 arranged at a prescribed interval; the nozzles 5 in the first nozzle row L1 are arranged such that the notches 54 in the first nozzle row L1 disposed in the pair of first walls of the nozzles 5 can be opposite the cooling region S.
Description
本発明は、異形断面ガラス繊維の製造技術の改良に関するものである。
The present invention relates to an improvement in a manufacturing technique for a glass fiber having a modified cross section.
断面が長円形や楕円形のような扁平形状などの非円形断面を有する異形断面ガラス繊維は、樹脂と混合して複合化した場合に高い補強効果を実現できることから、さまざまな分野で利用されている。
Irregular cross-section glass fiber having a non-circular cross-section such as an oval or elliptical cross-section is used in various fields because it can realize a high reinforcing effect when mixed with a resin and composited. There is.
この種の異形断面ガラス繊維は、ブッシングのノズルから溶融ガラスを引き出しながら冷却することにより製造されるのが一般的である。この際、製造されるガラス繊維の断面形状は、ノズル先端部のノズル孔の形状に依存するため、異形断面ガラス繊維を製造する場合、ノズル先端部においてノズル孔が扁平状とされることが多い。
This kind of irregular cross-section glass fiber is generally manufactured by cooling while pulling out molten glass from a bushing nozzle. At this time, since the cross-sectional shape of the manufactured glass fiber depends on the shape of the nozzle hole at the tip of the nozzle, when manufacturing a glass fiber having a modified cross section, the nozzle hole is often flattened at the tip of the nozzle. ..
しかしながら、扁平状のノズル孔を有するノズルを使用したとしても、ノズルから引き出される溶融ガラスの粘度が低すぎれば、ノズル先端部の直下で表面張力により溶融ガラスの断面が丸くなるように形成されやすく、所望の異形断面ガラス繊維を製造することができなくなる。
However, even if a nozzle having a flat nozzle hole is used, if the viscosity of the molten glass drawn out from the nozzle is too low, the cross section of the molten glass is likely to be rounded due to surface tension directly under the tip of the nozzle. , It becomes impossible to produce the desired modified cross-section glass fiber.
そこで、例えば、特許文献1のノズルでは、溶融ガラスが流出するノズル先端部において、扁平状のノズル孔の短径方向で対向する一対の長壁部のそれぞれに凹状の切欠き部を設け、この凹状の切欠き部により冷却して溶融ガラスの粘度を調整している。
Therefore, for example, in the nozzle of Patent Document 1, in the nozzle tip portion where the molten glass flows out, a concave notch is provided in each of the pair of long wall portions facing each other in the minor axis direction of the flat nozzle hole, and the concave shape is formed. The viscosity of the molten glass is adjusted by cooling with the notch.
近年、1つのブッシングから引き出される異形断面ガラス繊維を増やすことにより、生産性を向上させることや、大きな番手のストランドを製造することが検討されている。特許文献1に記載の通り、両方の切欠きの近くに冷却部材を配することにより、ブッシングに設けられるノズルの個数が減り、異形断面ガラス繊維の生産性を十分に上げられない場合がある。
In recent years, it has been studied to improve productivity and to manufacture strands with a large count by increasing the number of irregularly shaped cross-section glass fibers drawn from one bushing. As described in Patent Document 1, by arranging the cooling member near both notches, the number of nozzles provided in the bushing may be reduced, and the productivity of the irregular cross-section glass fiber may not be sufficiently increased.
また、両方の切欠き近くに冷却部材を配して溶融ガラスを冷却した場合、溶融ガラスが冷却されすぎる場合がある。そのため、異形断面ガラス繊維を安定的に成形できない場合もあった。
Also, if a cooling member is placed near both notches to cool the molten glass, the molten glass may be cooled too much. Therefore, it may not be possible to stably form the irregular cross-section glass fiber.
以上の実情に鑑み、本発明は、所望の異形断面ガラス繊維を安定して製造することを課題とする。
In view of the above circumstances, it is an object of the present invention to stably produce a desired modified cross-section glass fiber.
本発明に係るブッシングは、所定の一方向に延び、溶融ガラスを冷却可能に構成された冷却部材を配置可能な複数の冷却領域を具備するベースプレートと、前記ベースプレートに設けられてなり、前記溶融ガラスが流出する先端部において、扁平形状をなすノズル孔と、前記ノズル孔の短径方向で対向し、凹状の切欠きを有する一対の第1の壁部と、前記ノズル孔の長径方向で対向する一対の第2の壁部と、を備えた複数のノズルと、を備え、前記第1の壁部が、前記冷却領域の方向に向くように複数の前記ノズルが配置されたガラス繊維製造装置であって、隣接する前記冷却領域の間には、前記冷却領域の延びる方向に沿って、所定の間隔を有して複数の前記ノズルが配置された第1ノズル列と、前記第1ノズル列と間隔を有するとともに、前記冷却領域の延びる方向に沿って、所定の間隔を有して複数の前記ノズルが配置された第2ノズル列とが配置され、前記第1ノズル列における、前記ノズルの一対の第1の壁部に設けられた前記切欠きのそれぞれが、前記冷却領域と対向可能となるように、前記第1ノズル列のノズルが配置される。
The bushing according to the present invention comprises a base plate extending in a predetermined direction and having a plurality of cooling regions in which a cooling member configured to cool the molten glass can be arranged, and the molten glass provided on the base plate. At the tip of the nozzle hole, the flat nozzle hole faces the nozzle hole in the minor axis direction, and the pair of first wall portions having a concave notch face each other in the major axis direction of the nozzle hole. A glass fiber manufacturing apparatus comprising a pair of second wall portions and a plurality of nozzles comprising, wherein the plurality of nozzles are arranged so that the first wall portion faces toward the cooling region. Therefore, between the adjacent cooling regions, a first nozzle row in which a plurality of the nozzles are arranged at predetermined intervals along the extending direction of the cooling region, and the first nozzle row. A pair of the nozzles in the first nozzle row is arranged with a second nozzle row in which a plurality of the nozzles are arranged with a predetermined spacing along the extending direction of the cooling region. The nozzles of the first nozzle row are arranged so that each of the notches provided in the first wall portion of the above can face the cooling region.
このような構成によれば、冷却部材の間に、第1ノズル列と第2ノズル列が配されるため、従来と比較してより多くのノズルを配置することができる。そのため、異形断面ガラス繊維の生産性を向上させることができるとともに、一度に多数のガラス繊維を得ることができるため、大きな番手のストランドを製造することができる。
さらに、第1ノズル列に含まれるノズルについては、一方の切欠きが冷却部材に直接向かい合い、他方の切欠きは、第2ノズル列のノズル間の隙間の領域を介して冷却部材に向かい合うため、溶融ガラスが冷却されすぎることを抑制できる。従って、成形時の溶融ガラスの粘度を適正に調整し、異形断面ガラス繊維を安定的に成形することができる。
なお、他方の切欠きが、第2ノズル列のノズルのみと向かい合う場合、溶融ガラスが冷却されない。 According to such a configuration, since the first nozzle row and the second nozzle row are arranged between the cooling members, more nozzles can be arranged as compared with the conventional case. Therefore, the productivity of the irregularly shaped cross-section glass fiber can be improved, and a large number of glass fibers can be obtained at one time, so that a strand having a large count can be manufactured.
Further, for the nozzles included in the first nozzle row, one notch directly faces the cooling member, and the other notch faces the cooling member through the region of the gap between the nozzles of the second nozzle row. It is possible to prevent the molten glass from being overcooled. Therefore, the viscosity of the molten glass at the time of molding can be appropriately adjusted, and the irregular cross-section glass fiber can be stably molded.
If the other notch faces only the nozzles in the second nozzle row, the molten glass is not cooled.
さらに、第1ノズル列に含まれるノズルについては、一方の切欠きが冷却部材に直接向かい合い、他方の切欠きは、第2ノズル列のノズル間の隙間の領域を介して冷却部材に向かい合うため、溶融ガラスが冷却されすぎることを抑制できる。従って、成形時の溶融ガラスの粘度を適正に調整し、異形断面ガラス繊維を安定的に成形することができる。
なお、他方の切欠きが、第2ノズル列のノズルのみと向かい合う場合、溶融ガラスが冷却されない。 According to such a configuration, since the first nozzle row and the second nozzle row are arranged between the cooling members, more nozzles can be arranged as compared with the conventional case. Therefore, the productivity of the irregularly shaped cross-section glass fiber can be improved, and a large number of glass fibers can be obtained at one time, so that a strand having a large count can be manufactured.
Further, for the nozzles included in the first nozzle row, one notch directly faces the cooling member, and the other notch faces the cooling member through the region of the gap between the nozzles of the second nozzle row. It is possible to prevent the molten glass from being overcooled. Therefore, the viscosity of the molten glass at the time of molding can be appropriately adjusted, and the irregular cross-section glass fiber can be stably molded.
If the other notch faces only the nozzles in the second nozzle row, the molten glass is not cooled.
本発明においては、前記第2ノズル列における、前記ノズルの一対の第1の壁部に設けられた切欠きのそれぞれが、前記冷却領域と対向可能となるように、前記第2ノズル列のノズルが配置されることが好ましい。
In the present invention, the nozzles of the second nozzle row are provided so that each of the notches provided in the pair of first wall portions of the nozzles in the second nozzle row can face the cooling region. Is preferably arranged.
このような構成によれば、第2ノズル列に含まれるノズルから引き出された溶融ガラスにおいても、成形時の溶融ガラスの粘度を適正に調整し、異形断面ガラス繊維を安定的に成形することができる。
According to such a configuration, even in the molten glass drawn from the nozzles included in the second nozzle row, the viscosity of the molten glass at the time of molding can be appropriately adjusted, and the deformed cross-section glass fiber can be stably molded. can.
本発明においては、前記第1ノズル列における前記複数のノズル間及び前記第2ノズル列における前記複数のノズル間の間隔は、前記ノズルにおける前記ノズルの切欠きの先端の幅よりも狭いことが好ましい。
In the present invention, the distance between the plurality of nozzles in the first nozzle row and between the plurality of nozzles in the second nozzle row is preferably narrower than the width of the tip of the notch of the nozzle in the nozzle. ..
このような構成によれば、溶融ガラスが冷却されすぎることを確実に抑制できる。
With such a configuration, it is possible to reliably prevent the molten glass from being overcooled.
本発明に係る異形断面ガラス繊維製造方法は、上述のブッシングを用いて異形断面ガラス繊維を製造することを特徴としている。このような構成によれば、既に述べた構成と同様の効果を得ることができる。
The modified cross-section glass fiber manufacturing method according to the present invention is characterized in that the deformed cross-section glass fiber is manufactured by using the above-mentioned bushing. According to such a configuration, the same effect as the configuration already described can be obtained.
本発明においては、前記溶融ガラスがEガラスであることが好ましい。Eガラスは失透しにくいガラスであるため、異形断面ガラス繊維の生産性が向上する。
In the present invention, it is preferable that the molten glass is E glass. Since the E glass is a glass that does not easily devitrify, the productivity of the irregular cross-section glass fiber is improved.
本発明においては、成形温度において、溶融ガラスは、102.0~103・5dPa・sの粘度を有することが好ましい。すなわち、103・5dPa・s以下であれば、溶融ガラスの粘度が高くなりすぎないため、ガラス繊維の成形性を良好に維持することができる。また、102.0dPa・s以上であれば、溶融ガラスの粘度が低くなりすぎないため、溶融ガラスが表面表力によって円形断面に戻ろうとする力が弱められ、ガラス繊維の扁平比(長径寸法/短径寸法)を高めることができる。
In the present invention, the molten glass preferably has a viscosity of 10 2.0 to 10 3.5 dPa · s at the molding temperature. That is, when it is 103.5 dPa · s or less, the viscosity of the molten glass does not become too high, so that the moldability of the glass fiber can be well maintained. Further, when it is 10 2.0 dPa · s or more, the viscosity of the molten glass does not become too low, so that the force of the molten glass to return to the circular cross section is weakened by the surface surface force, and the flatness ratio (major axis) of the glass fiber is weakened. Dimension / minor axis dimension) can be increased.
本発明によれば、 所望の異形断面ガラス繊維を安定して製造することができる。
According to the present invention, a desired modified cross-section glass fiber can be stably produced.
以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載の数値を最小値及び最大値としてそれぞれ含む範囲を意味する。
Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Further, in each drawing, members having substantially the same function may be referred to by the same reference numeral. The numerical range indicated by using "-" in the present specification means a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
(異形断面ガラス繊維の製造装置及び製造方法の一実施形態)
図1に示すように、本実施形態に係る異形断面ガラス繊維製造装置10は、ガラス溶融炉1と、ガラス溶融炉1に接続されたフォアハース2と、フォアハース2に接続されたフィーダー3とを備えている。ここで、図1に示すXYZからなる直交座標系において、X方向及びY方向は水平方向であり、Z方向が鉛直方向である(以下、同様)。 (One Embodiment of the manufacturing apparatus and manufacturing method of the irregular cross-section glass fiber)
As shown in FIG. 1, the modified cross-section glassfiber manufacturing apparatus 10 according to the present embodiment includes a glass melting furnace 1, a fore hearth 2 connected to the glass melting furnace 1, and a feeder 3 connected to the fore hearth 2. ing. Here, in the Cartesian coordinate system consisting of XYZ shown in FIG. 1, the X direction and the Y direction are the horizontal direction, and the Z direction is the vertical direction (hereinafter, the same applies).
図1に示すように、本実施形態に係る異形断面ガラス繊維製造装置10は、ガラス溶融炉1と、ガラス溶融炉1に接続されたフォアハース2と、フォアハース2に接続されたフィーダー3とを備えている。ここで、図1に示すXYZからなる直交座標系において、X方向及びY方向は水平方向であり、Z方向が鉛直方向である(以下、同様)。 (One Embodiment of the manufacturing apparatus and manufacturing method of the irregular cross-section glass fiber)
As shown in FIG. 1, the modified cross-section glass
溶融ガラスGは、ガラス溶融炉1からフォアハース2を通じてフィーダー3に供給されると共に、フィーダー3内に貯留される。図1では1つのフィーダー3を図示しているが、ガラス溶融炉1には複数のフィーダー3が接続されていてもよい。また、ガラス溶融炉1とフォアハース2との間に清澄炉を設けてもよい。
The molten glass G is supplied from the glass melting furnace 1 to the feeder 3 through the fore hearth 2 and is stored in the feeder 3. Although one feeder 3 is shown in FIG. 1, a plurality of feeders 3 may be connected to the glass melting furnace 1. Further, a clarification furnace may be provided between the glass melting furnace 1 and the fore hearth 2.
この実施形態では、溶融ガラスGはEガラスからなるが、Dガラス、Sガラス、ARガラス、Cガラス等の他のガラス材質であってもよい。
In this embodiment, the molten glass G is made of E glass, but may be another glass material such as D glass, S glass, AR glass, and C glass.
フィーダー3の底部に、ブッシング4が配置されている。ブッシング4は、ブッシングブロック等を介してフィーダー3に取り付けつけられている。ブッシング4の底部は、図2に示すようにベースプレート41により構成されており、ベースプレート41には、複数のノズル5が設けられている。また、ベースプレート41には、所定の一方向であるY方向に延び、冷却管6を配置可能な複数の冷却領域Sが設けられている(図3参照)。そして、冷却領域Sには、冷却部材としての冷却管6が設けられている。
A bushing 4 is arranged at the bottom of the feeder 3. The bushing 4 is attached to the feeder 3 via a bushing block or the like. The bottom of the bushing 4 is composed of a base plate 41 as shown in FIG. 2, and the base plate 41 is provided with a plurality of nozzles 5. Further, the base plate 41 is provided with a plurality of cooling regions S extending in the Y direction, which is a predetermined direction, in which the cooling pipe 6 can be arranged (see FIG. 3). A cooling pipe 6 as a cooling member is provided in the cooling region S.
ブッシング4のベースプレート41に設けられた複数のノズル5からフィーダー3内に貯留された溶融ガラスGが下方に引き出され、ガラス繊維(モノフィラメント)Gmが製造される。この際、成形温度における溶融ガラスGの粘度は、102.0~103・5dPa・s(好ましくは102.5~103・3dPa・s)の範囲内に設定される。なお、成形温度における溶融ガラスGの粘度は、ノズル5に流入する位置における溶融ガラスGの粘度とする。ガラス繊維Gmの表面には、図示しないアプリケータにより集束剤が塗布されるとともに、100~10000本が1本のストランドGsに紡糸される。なお、ストランドGsの番手は、紡糸されるガラス繊維Gmに依存し、ガラス繊維Gmの本数が多いほど、ストランドGsの番手が大きくなる。紡糸されたストランドGsは、巻き取り装置のコレット7に繊維束Grとして巻き取られる。ストランドGsは、例えば、1~20mm程度の所定長に切断され、チョップドストランドとして利用される。
The molten glass G stored in the feeder 3 is pulled out downward from a plurality of nozzles 5 provided on the base plate 41 of the bushing 4, and a glass fiber (monofilament) Gm is manufactured. At this time, the viscosity of the molten glass G at the molding temperature is set in the range of 10 2.0 to 10 3.5 dPa · s (preferably 10 2.5 to 10 3.3 dPa · s). The viscosity of the molten glass G at the molding temperature is the viscosity of the molten glass G at the position where it flows into the nozzle 5. A sizing agent is applied to the surface of the glass fiber Gm by an applicator (not shown), and 100 to 10,000 fibers are spun into one strand Gs. The count of the strand Gs depends on the glass fiber Gm to be spun, and the larger the number of glass fibers Gm, the larger the count of the strand Gs. The spun strands Gs are wound around the collet 7 of the winding device as a fiber bundle Gr. The strands Gs are cut into a predetermined length of, for example, about 1 to 20 mm and used as chopped strands.
ガラス溶融炉1、フォアハース2、フィーダー3、ブッシング4、ノズル5及び冷却管6は、少なくとも一部が白金又は白金合金(例えば、白金ロジウム合金)により形成されている。
The glass melting furnace 1, the fore hearth 2, the feeder 3, the bushing 4, the nozzle 5, and the cooling pipe 6 are at least partially formed of platinum or a platinum alloy (for example, a platinum rhodium alloy).
溶融ガラスGの粘度を調整するために、フォアハース2、フィーダー3およびブッシング4の中から選ばれた一又は複数の要素を通電加熱などで加熱してもよい。
In order to adjust the viscosity of the molten glass G, one or more elements selected from the fore hearth 2, the feeder 3 and the bushing 4 may be heated by energization heating or the like.
図2及び図3に示すように、ノズル5は、先端部(下側部分)において、X方向で対向する一対の長壁部(第1の壁部)51と、Y方向で対向する一対の短壁部(第2の壁部)52と、長壁部51と短壁部52で区画形成された扁平状(本実施形態では長円形)のノズル孔53とを備えている。各々の長壁部51には切欠き54が設けられており、ノズル孔53の一部が切欠き54を通じてノズル5の外部空間に連通している。この実施形態では、ノズル孔53の長径方向はY方向と一致しており、ノズル孔53の短径方向はX方向と一致している。また、この実施形態では、短壁部52のX方向寸法は長壁部51のY方向寸法よりも短い。もちろん、壁部51,52のこれら寸法関係は特に限定されるものではない。また、ノズル孔53の断面形状は、長円形以外にも、楕円形等の形状であってもよい。
As shown in FIGS. 2 and 3, the nozzle 5 has a pair of long wall portions (first wall portions) 51 facing each other in the X direction and a pair of short walls facing each other in the Y direction at the tip portion (lower portion). It includes a wall portion (second wall portion) 52, and a flat (oval in the present embodiment) nozzle hole 53 partitioned by a long wall portion 51 and a short wall portion 52. A notch 54 is provided in each long wall portion 51, and a part of the nozzle hole 53 communicates with the external space of the nozzle 5 through the notch 54. In this embodiment, the major axis direction of the nozzle hole 53 coincides with the Y direction, and the minor axis direction of the nozzle hole 53 coincides with the X direction. Further, in this embodiment, the X-direction dimension of the short wall portion 52 is shorter than the Y-direction dimension of the long wall portion 51. Of course, these dimensional relationships of the wall portions 51 and 52 are not particularly limited. Further, the cross-sectional shape of the nozzle hole 53 may be an elliptical shape or the like as well as an oval shape.
図4(a)~(c)に示すように、ノズル5の各々の長壁部51に設けられた切欠き54は、同一寸法の台形状である。詳細には、この実施形態では、切欠き54は、長壁部51の中心線M1上に上底の中心点T1を有し、かつ、中心線M1に対して対称な等脚台形状(上底が下底よりも短い)である。内角θ1(上底の両側の内角)は、例えば90°超~160°(好ましくは110°~150°)である。なお、この実施形態では、ノズル孔53は扁平な長円形であり、Z方向で一定の形状である。図4(c)に示すように、ノズル5の先端部において、ノズル孔53は、Y方向寸法(長径寸法)aに対するX方向寸法(短径寸法)bの比率(a/b)が1.5~20(好ましくは3~10)の範囲である。
As shown in FIGS. 4A to 4C, the notch 54 provided in each long wall portion 51 of the nozzle 5 has a trapezoidal shape having the same dimensions. Specifically, in this embodiment, the notch 54 has an isosceles trapezoidal shape (upper base) that has a center point T1 of the upper base on the center line M1 of the long wall portion 51 and is symmetrical with respect to the center line M1. Is shorter than the bottom). The internal angle θ1 (internal angles on both sides of the upper base) is, for example, more than 90 ° to 160 ° (preferably 110 ° to 150 °). In this embodiment, the nozzle hole 53 has a flat oval shape and a constant shape in the Z direction. As shown in FIG. 4 (c), at the tip of the nozzle 5, the nozzle hole 53 has a ratio (a / b) of the X-direction dimension (minor-diameter dimension) b to the Y-direction dimension (major-diameter dimension) a. It is in the range of 5 to 20 (preferably 3 to 10).
このような構成によれば、ノズル5の切欠き54に起因する形状変形を抑えつつ、切欠き54の開口面積も十分に確保できる。したがって、扁平形状などの非円形断面を有する異形断面を有するガラス繊維Gmを安定的に成形可能となる。換言すれば、製造されたガラス繊維Gmの断面形状のばらつきが小さくなる。
According to such a configuration, it is possible to sufficiently secure the opening area of the notch 54 while suppressing the shape deformation caused by the notch 54 of the nozzle 5. Therefore, the glass fiber Gm having a deformed cross section having a non-circular cross section such as a flat shape can be stably molded. In other words, the variation in the cross-sectional shape of the manufactured glass fiber Gm is reduced.
ノズル5は、先端部において長壁部51と短壁部52によって区画形成された扁平状のノズル孔53を有していれば、基端部(上側部分)の形状はノズル5の先端部の形状と同じであってもよいし、異なっていてもよい。
If the nozzle 5 has a flat nozzle hole 53 partitioned by a long wall portion 51 and a short wall portion 52 at the tip portion, the shape of the base end portion (upper portion) is the shape of the tip portion of the nozzle 5. It may be the same as or different from.
ノズル5は、ベースプレート41に200~10000個配置されていることが好ましい。ノズル5を上記の個数配置することにより、番手の大きなストランドGsを得ることができる。なお、ノズル5は、ベースプレート41に1500個以上配置されていることが好ましい。
It is preferable that 200 to 10,000 nozzles 5 are arranged on the base plate 41. By arranging the above number of nozzles 5, strands Gs having a large count can be obtained. It is preferable that 1500 or more nozzles 5 are arranged on the base plate 41.
冷却管6は、その内部に流体としての冷却水Fを循環させて冷却作用を及ぼすようになっている。冷却管6は、板状体であって、その板面が一定の方向(上下方向)に沿うように複数配置されている。なお、冷却管6は、この実施形態では、ベースプレート41の冷却領域Sに一体的に設けられているが、ブッシング4の底部から離して設けてもよい。また、冷却管6は、円管状体であってもよい。冷却管6の高さ位置は、溶融ガラスGの冷却条件に応じて適宜調整することができる。例えば、冷却管6は、ノズル5から引き出された溶融ガラスGに直接対面しないようにノズル5の先端よりも上方に配置されていてもよいし、ノズル5とノズル5から引き出された溶融ガラスGの双方に跨るように配置されていてもよい。冷却部材は、冷却管6に限らず、空気流を誘導して冷却作用を及ぼす冷却フィンなどであってもよい。
The cooling pipe 6 circulates cooling water F as a fluid inside the cooling pipe 6 to exert a cooling action. The cooling pipe 6 is a plate-shaped body, and a plurality of cooling pipes 6 are arranged so that the plate surface thereof follows a certain direction (vertical direction). In this embodiment, the cooling pipe 6 is integrally provided in the cooling region S of the base plate 41, but may be provided separately from the bottom of the bushing 4. Further, the cooling pipe 6 may be a circular tubular body. The height position of the cooling pipe 6 can be appropriately adjusted according to the cooling conditions of the molten glass G. For example, the cooling pipe 6 may be arranged above the tip of the nozzle 5 so as not to directly face the molten glass G drawn out from the nozzle 5, or the molten glass G drawn out from the nozzle 5 and the nozzle 5. It may be arranged so as to straddle both of them. The cooling member is not limited to the cooling pipe 6, and may be a cooling fin or the like that induces an air flow to exert a cooling action.
図3及び図5に示すように、ブッシング4のベースプレート41において、隣接する冷却領域Sの間に、複数のノズル列L1,L2がX方向に間隔を置いて平行に配置されている。各ノズル列L1,L2は、ノズル孔53の長径方向をY方向に向けた複数のノズル5をY方向に延びる同一直線上に配置することで構成される。冷却管6は、X方向に隣接するノズル列L1,L2の間に、ノズル列L1,L2と平行に配置されている。なお、本実施形態において、ノズル列L1とノズル列L2は、Y方向におけるノズル5の配置位置が異なるものの、それ以外は同じである。これにより、図5に示すように冷却管6が、冷却管6と隣接するノズル5の切欠き54aに対向し、切欠き54aを通じてノズル5内を流通する溶融ガラスGが冷却されるようになっている。具体的には、ノズル5の先端部において、溶融ガラスGは冷却管6によって1000℃以上の温度から急激に冷却される。なお、冷却管6は、ブッシング4やノズル5を冷却し、これらの熱劣化を抑えて耐久性を高める機能もある。
As shown in FIGS. 3 and 5, in the base plate 41 of the bushing 4, a plurality of nozzle rows L1 and L2 are arranged in parallel at intervals in the X direction between adjacent cooling regions S. Each of the nozzle rows L1 and L2 is configured by arranging a plurality of nozzles 5 having the major axis direction of the nozzle holes 53 oriented in the Y direction on the same straight line extending in the Y direction. The cooling pipe 6 is arranged between the nozzle rows L1 and L2 adjacent to each other in the X direction in parallel with the nozzle rows L1 and L2. In the present embodiment, the nozzle row L1 and the nozzle row L2 are the same except for the arrangement position of the nozzle 5 in the Y direction. As a result, as shown in FIG. 5, the cooling pipe 6 faces the notch 54a of the nozzle 5 adjacent to the cooling pipe 6, and the molten glass G flowing in the nozzle 5 is cooled through the notch 54a. ing. Specifically, at the tip of the nozzle 5, the molten glass G is rapidly cooled from a temperature of 1000 ° C. or higher by the cooling tube 6. The cooling pipe 6 also has a function of cooling the bushing 4 and the nozzle 5 to suppress thermal deterioration thereof and improve durability.
また、冷却管6と隣接しないノズル5の切欠き54bに関しても、隣接するノズル列(ノズル列L1に隣接するノズル列はL2であり、ノズル列L2に隣接するノズル列はL1である)に含まれるノズル5間の隙間の領域を介して冷却部材6に向かい合うため、溶融ガラスGが冷却されすぎることを抑制できる。従って、成形時の溶融ガラスGの粘度を適正に調整し、異形断面ガラス繊維を安定的に成形することができる。すなわち、ノズル5の切欠き54a側の溶融ガラスGは、冷却管6に直接向かい合うために急激に冷やされ、ノズル5の切欠き54b側の溶融ガラスGは、所定の距離を置いて冷却管6に向かい合うために、切欠き54a側の溶融ガラスGと比べてゆっくりと冷やされる。そのために、切欠き54a側の溶融ガラスGはすぐに固まり、変形しにくくなる一方、切欠き54b側の溶融ガラスGは、固まるまでにおいて、ある程度変形可能である。扁平率の高い異形断面ガラス繊維を安定して成形するためには、溶融ガラスGの一部分のみを急激に固めて繊維の断面が円くなるのを抑制する一方、その他の部分は徐々に固める必要がある。例えば、両方の長径側の溶融ガラスGを急激に固めてしまうと、扁平率は高くなるものの、ガラス繊維の切断等が発生しやすくなる。
Further, the notch 54b of the nozzle 5 not adjacent to the cooling pipe 6 is also included in the adjacent nozzle row (the nozzle row adjacent to the nozzle row L1 is L2, and the nozzle row adjacent to the nozzle row L2 is L1). Since it faces the cooling member 6 through the region of the gap between the nozzles 5, it is possible to prevent the molten glass G from being overcooled. Therefore, the viscosity of the molten glass G at the time of molding can be appropriately adjusted, and the irregular cross-section glass fiber can be stably molded. That is, the molten glass G on the notch 54a side of the nozzle 5 is rapidly cooled because it directly faces the cooling tube 6, and the molten glass G on the notch 54b side of the nozzle 5 is separated from the cooling tube 6 by a predetermined distance. It is cooled more slowly than the molten glass G on the side of the notch 54a in order to face the surface. Therefore, the molten glass G on the notch 54a side is immediately solidified and hardly deformed, while the molten glass G on the notch 54b side is deformable to some extent until it is solidified. In order to stably form a deformed cross-section glass fiber with a high flatness, it is necessary to rapidly harden only a part of the molten glass G to prevent the cross section of the fiber from becoming round, while gradually hardening the other parts. There is. For example, if the molten glass G on both major axis sides is rapidly solidified, the flatness becomes high, but the glass fiber is likely to be cut.
なお、図6のように、ノズル列L1のみからなり、冷却管6と隣接しないノズル5の切欠き54bが冷却部材6に向かい合わないと、溶融ガラスGが十分に冷却されない。
As shown in FIG. 6, the molten glass G is not sufficiently cooled unless the notch 54b of the nozzle 5 which is composed of only the nozzle row L1 and is not adjacent to the cooling pipe 6 faces the cooling member 6.
本実施形態において、間隔D1及びD2は、切欠き54a及び54bの先端での幅Wよりも狭い。そのため、溶融ガラスGが冷却されすぎることを抑制できる。
In this embodiment, the intervals D1 and D2 are narrower than the width W at the tips of the notches 54a and 54b. Therefore, it is possible to prevent the molten glass G from being overcooled.
ノズル5間の間隔D1及びD2は、1~10mmであることが好ましく、1~5mmであることがより好ましい。これにより、ベースプレート41により多くのノズル5を配置することができる。また、切欠き54の先端での幅Wは、2~20mmであることが好ましい。なお、間隔D1及びD2と切欠き54の先端での幅Wの比率(W/D(D1,D2))は、例えば、0.5~5とすることができるが、1.1~2.5であることが好ましい。
The distances D1 and D2 between the nozzles 5 are preferably 1 to 10 mm, more preferably 1 to 5 mm. As a result, more nozzles 5 can be arranged on the base plate 41. Further, the width W at the tip of the notch 54 is preferably 2 to 20 mm. The ratio of the width W (W / D (D1, D2)) between the intervals D1 and D2 and the tip of the notch 54 can be, for example, 0.5 to 5, but 1.1 to 2. It is preferably 5.
なお、1個のノズル列L1及びL2に含まれるノズル5の数は、10~500個以下であることが好ましい。
The number of nozzles 5 included in one nozzle row L1 and L2 is preferably 10 to 500 or less.
以上のようにして異形断面ガラス繊維を製造する本実施形態によれば、以下に示すような作用効果が得られる。
According to the present embodiment of manufacturing the irregular cross-section glass fiber as described above, the following action and effect can be obtained.
本実施形態では、冷却領域S(冷却管6)の間に、第1ノズル列L1と第2ノズル列L2が配されるため、従来と比較してより多くのノズル5を配置することができる。そのため、異形断面ガラス繊維の生産性を向上させることができる。また、多くのノズル5が配置されるため、一度に得られるガラス繊維Gmの本数が多くなり、その結果、番手の大きなストランドGsを製造することができる。さらに、第1ノズル列Lに含まれるノズル5については、一方の切欠き54aが冷却管6に直接向かい合い、他方の切欠き54bは、第2ノズル列L2のノズル5間の隙間の領域を介して冷却管6に向かい合うため、溶融ガラスGが冷却されすぎることを抑制できる。従って、成形時の溶融ガラスGの粘度を適正に調整し、異形断面ガラス繊維を安定的に成形することができる。
In the present embodiment, since the first nozzle row L1 and the second nozzle row L2 are arranged between the cooling regions S (cooling pipe 6), more nozzles 5 can be arranged as compared with the conventional case. .. Therefore, the productivity of the irregular cross-section glass fiber can be improved. Further, since many nozzles 5 are arranged, the number of glass fibers Gm obtained at one time is increased, and as a result, strands Gs having a large count can be manufactured. Further, for the nozzle 5 included in the first nozzle row L, one notch 54a directly faces the cooling pipe 6, and the other notch 54b passes through the region of the gap between the nozzles 5 of the second nozzle row L2. Since it faces the cooling pipe 6, it is possible to prevent the molten glass G from being overcooled. Therefore, the viscosity of the molten glass G at the time of molding can be appropriately adjusted, and the irregular cross-section glass fiber can be stably molded.
さらに、第2ノズル列Lに含まれるノズル5についても、一方の切欠き54aが冷却管6に直接向かい合い、他方の切欠き54bは、第1ノズル列L1のノズル5間の隙間の領域を介して冷却管6に向かい合うため、溶融ガラスGが冷却されすぎることを抑制できる。
Further, regarding the nozzle 5 included in the second nozzle row L, one notch 54a directly faces the cooling pipe 6, and the other notch 54b passes through the region of the gap between the nozzles 5 of the first nozzle row L1. Since it faces the cooling pipe 6, it is possible to prevent the molten glass G from being overcooled.
以上、本発明の実施形態に係る異形断面ガラス繊維の製造方法について説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で種々のバリエーションが可能である。
The method for producing a modified cross-section glass fiber according to an embodiment of the present invention has been described above, but the present invention is not limited to this, and various variations are possible without departing from the gist thereof.
上記実施形態では、ノズル5間の間隔D1及びD2が等しいが、これらは異なっていてもよい。その場合、D1とD2の比率D1/D2は、0.5~2.0の範囲内であることが好ましい。
In the above embodiment, the intervals D1 and D2 between the nozzles 5 are equal, but they may be different. In that case, the ratio D1 / D2 of D1 and D2 is preferably in the range of 0.5 to 2.0.
1:ガラス溶融炉、4:ブッシング、41:ベースプレート、5:ノズル、51:長壁部(第1の壁部)、52:短壁部(第2の壁部)、53:ノズル孔、54:切欠き、6:冷却管、10:異形断面ガラス繊維製造装置、G:溶融ガラス、Gm:ガラス繊維(モノフィラメント)、Gs:ストランド、S:冷却領域、L1:第1ノズル列、L2:第2ノズル列、W:切欠きの開口幅
1: Glass melting furnace, 4: Bushing, 41: Base plate, 5: Nozzle, 51: Long wall part (first wall part), 52: Short wall part (second wall part), 53: Nozzle hole, 54: Notch, 6: Cooling tube, 10: Deformed cross-section glass fiber manufacturing equipment, G: Fused glass, Gm: Glass fiber (monofilament), Gs: Strand, S: Cooling region, L1: 1st nozzle row, L2: 2nd Nozzle row, W: Notch opening width
Claims (6)
- 所定の一方向に延び、溶融ガラスを冷却可能に構成された冷却部材を配置可能な複数の冷却領域を具備するベースプレートと、
前記ベースプレートに設けられてなり、前記溶融ガラスが流出する先端部において、扁平形状をなすノズル孔と、前記ノズル孔の短径方向で対向し、凹状の切欠きを有する一対の第1の壁部と、前記ノズル孔の長径方向で対向する一対の第2の壁部と、を備えた複数のノズルと、
を備え、前記第1の壁部が、前記冷却領域の方向に向くように複数の前記ノズルが配置されたブッシングであって、
隣接する前記冷却領域の間には、前記冷却領域の延びる方向に沿って、所定の間隔を有して複数の前記ノズルが配置された第1ノズル列と、
前記第1ノズル列と間隔を有するとともに、前記冷却領域の延びる方向に沿って、所定の間隔を有して複数の前記ノズルが配置された第2ノズル列とが配置され、
前記第1ノズル列における、前記ノズルの一対の第1の壁部に設けられた前記切欠きのそれぞれが、前記冷却領域と対向可能となるように、前記第1ノズル列のノズルが配置される、ブッシング。 A base plate extending in a predetermined direction and having a plurality of cooling regions in which a cooling member configured to cool the molten glass can be arranged.
A pair of first wall portions provided on the base plate and having a concave notch facing the nozzle hole having a flat shape in the minor axis direction at the tip portion where the molten glass flows out. And a plurality of nozzles comprising a pair of second wall portions facing each other in the major axis direction of the nozzle holes.
The first wall portion is a bushing in which a plurality of the nozzles are arranged so as to face the direction of the cooling region.
Between the adjacent cooling regions, a first nozzle row in which a plurality of the nozzles are arranged at predetermined intervals along the extending direction of the cooling region,
A second nozzle row in which a plurality of the nozzles are arranged with a predetermined spacing is arranged along the extending direction of the cooling region while having an interval from the first nozzle row.
The nozzles of the first nozzle row are arranged so that each of the notches provided in the pair of first wall portions of the nozzles in the first nozzle row can face the cooling region. , Bushing. - 前記第2ノズル列における、前記ノズルの一対の第1の壁部に設けられた切欠きのそれぞれが、前記冷却領域と対向可能となるように、前記第2ノズル列のノズルが配置される、請求項1に記載のブッシング。 The nozzles of the second nozzle row are arranged so that each of the notches provided in the pair of first wall portions of the nozzles in the second nozzle row can face the cooling region. The bushing according to claim 1.
- 前記第1ノズル列における前記複数のノズル間及び前記第2ノズル列における前記複数のノズル間の間隔は、前記ノズルにおける前記ノズルの切欠きの先端の幅よりも狭い、請求項1または2に記載のブッシング。 The first or second claim, wherein the distance between the plurality of nozzles in the first nozzle row and between the plurality of nozzles in the second nozzle row is narrower than the width of the tip of the notch of the nozzle in the nozzle. Bushing.
- 請求項1~3のいずれかに記載のブッシングを用いて異形断面ガラス繊維を製造する異形断面ガラス繊維製造方法。 A method for producing a modified cross-section glass fiber using the bushing according to any one of claims 1 to 3.
- 前記溶融ガラスがEガラスであることを特徴とする請求項4に記載の異形断面ガラス繊維製造方法。 The modified cross-section glass fiber manufacturing method according to claim 4, wherein the molten glass is E glass.
- 成形温度において、前記溶融ガラスは、102.0~103.5dPa・sの粘度を有することを特徴とする請求項4または5に記載の異形断面ガラス繊維製造方法。 The method for producing a modified cross-section glass fiber according to claim 4 or 5, wherein the molten glass has a viscosity of 10 2.0 to 10 3.5 dPa · s at a molding temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180050767.3A CN115916714A (en) | 2020-08-17 | 2021-06-25 | Bushing and method for manufacturing glass fiber with special-shaped section |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020137363A JP2022033465A (en) | 2020-08-17 | 2020-08-17 | Bushing and method for manufacturing irregular shaped cross section glass fiber |
JP2020-137363 | 2020-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022038901A1 true WO2022038901A1 (en) | 2022-02-24 |
Family
ID=80350309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024145 WO2022038901A1 (en) | 2020-08-17 | 2021-06-25 | Bushing and deformed cross-section glass fiber manufacturing method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2022033465A (en) |
CN (1) | CN115916714A (en) |
TW (1) | TW202210429A (en) |
WO (1) | WO2022038901A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010083750A (en) * | 2008-09-03 | 2010-04-15 | Nippon Electric Glass Co Ltd | Apparatus and method for manufacturing glass fiber |
JP2010150127A (en) * | 2008-11-20 | 2010-07-08 | Nippon Electric Glass Co Ltd | Apparatus and method for producing glass fiber |
JP2010163342A (en) * | 2009-01-19 | 2010-07-29 | Nippon Electric Glass Co Ltd | Apparatus for manufacturing glass fiber and method for manufacturing glass fiber |
JP2017226579A (en) * | 2016-06-23 | 2017-12-28 | 日本電気硝子株式会社 | Nozzle for irregularly sectioned glass fiber manufacture, and irregularly sectioned glass fiber manufacturing apparatus and manufacturing method therefor |
JP2018016506A (en) * | 2016-07-26 | 2018-02-01 | 日本電気硝子株式会社 | Manufacturing apparatus for glass fibers of irregular shape cross section, and production of the glass fibers |
JP2019108262A (en) * | 2017-12-19 | 2019-07-04 | 日本電気硝子株式会社 | Manufacturing apparatus and manufacturing method for glass fiber |
-
2020
- 2020-08-17 JP JP2020137363A patent/JP2022033465A/en active Pending
-
2021
- 2021-06-25 CN CN202180050767.3A patent/CN115916714A/en active Pending
- 2021-06-25 WO PCT/JP2021/024145 patent/WO2022038901A1/en active Application Filing
- 2021-07-19 TW TW110126380A patent/TW202210429A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010083750A (en) * | 2008-09-03 | 2010-04-15 | Nippon Electric Glass Co Ltd | Apparatus and method for manufacturing glass fiber |
JP2010150127A (en) * | 2008-11-20 | 2010-07-08 | Nippon Electric Glass Co Ltd | Apparatus and method for producing glass fiber |
JP2010163342A (en) * | 2009-01-19 | 2010-07-29 | Nippon Electric Glass Co Ltd | Apparatus for manufacturing glass fiber and method for manufacturing glass fiber |
JP2017226579A (en) * | 2016-06-23 | 2017-12-28 | 日本電気硝子株式会社 | Nozzle for irregularly sectioned glass fiber manufacture, and irregularly sectioned glass fiber manufacturing apparatus and manufacturing method therefor |
JP2018016506A (en) * | 2016-07-26 | 2018-02-01 | 日本電気硝子株式会社 | Manufacturing apparatus for glass fibers of irregular shape cross section, and production of the glass fibers |
JP2019108262A (en) * | 2017-12-19 | 2019-07-04 | 日本電気硝子株式会社 | Manufacturing apparatus and manufacturing method for glass fiber |
Also Published As
Publication number | Publication date |
---|---|
CN115916714A (en) | 2023-04-04 |
TW202210429A (en) | 2022-03-16 |
JP2022033465A (en) | 2022-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6768226B2 (en) | Deformed cross-section glass fiber manufacturing equipment and its manufacturing method | |
WO2018020743A1 (en) | Manufacturing apparatus and manufacturing method for modified cross-section glass fiber | |
JP7075059B2 (en) | Nozzle for manufacturing irregular cross-section glass fiber, irregular cross-section glass fiber manufacturing equipment, its manufacturing method, irregular cross-section glass fiber | |
JP2019108262A (en) | Manufacturing apparatus and manufacturing method for glass fiber | |
WO2022038901A1 (en) | Bushing and deformed cross-section glass fiber manufacturing method | |
JP2021001111A (en) | Glass fiber aggregate | |
WO2022264606A1 (en) | Bushing, glass fiber manufacturing device, and glass fiber manufacturing method | |
WO2022264607A1 (en) | Bushing, glass fiber production device, and glass fiber production method | |
JP7225889B2 (en) | BUSHING, GLASS STRAND MANUFACTURING APPARATUS, MANUFACTURING METHOD THEREOF, AND GLASS STRAND | |
JP2019108249A (en) | Manufacturing apparatus and manufacturing method for glass fiber | |
WO2021157266A1 (en) | Apparatus and method for producing glass fiber | |
JP2000335932A (en) | Nozzle tip for spinning flat glass fiber and apparatus for production | |
WO2021256143A1 (en) | Nozzle for modified cross-section glass fibers and manufacturing method for modified cross-section glass fibers | |
JP2003048742A (en) | Nozzle and pushing | |
WO2021256144A1 (en) | Nozzle for deformed cross-section glass fiber, and manufacturing method of deformed cross-section glass fiber | |
JP2024067815A (en) | Glass fiber manufacturing nozzle, glass fiber manufacturing device, and glass fiber manufacturing method | |
JP7262704B2 (en) | Strand manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21858051 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21858051 Country of ref document: EP Kind code of ref document: A1 |