WO2021256143A1 - Nozzle for modified cross-section glass fibers and manufacturing method for modified cross-section glass fibers - Google Patents
Nozzle for modified cross-section glass fibers and manufacturing method for modified cross-section glass fibers Download PDFInfo
- Publication number
- WO2021256143A1 WO2021256143A1 PCT/JP2021/018706 JP2021018706W WO2021256143A1 WO 2021256143 A1 WO2021256143 A1 WO 2021256143A1 JP 2021018706 W JP2021018706 W JP 2021018706W WO 2021256143 A1 WO2021256143 A1 WO 2021256143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- glass fiber
- cross
- nozzle hole
- section
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/08—Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
- C03B37/083—Nozzles; Bushing nozzle plates
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/253—Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
Definitions
- the present invention relates to a nozzle for producing a deformed cross-sectional glass fiber having a flat cross-sectional shape from molten glass, and a method for manufacturing a deformed cross-sectional glass fiber using the nozzle.
- a modified cross-sectional glass fiber having a flat cross-sectional shape As a type of glass fiber, a modified cross-sectional glass fiber having a flat cross-sectional shape is known (see Patent Document 1). Since the irregular cross-section glass fiber can realize a high reinforcing effect when kneaded with a resin and composited, it is used in various fields such as being used as a fiber for fiber reinforced plastic (FRP).
- FRP fiber reinforced plastic
- the molten glass is supplied to the bushing from a feeder for distributing the molten glass, and the molten glass is cooled while being pulled out from each of a large number of nozzles provided in the bushing.
- the shape of the nozzle hole provided in this nozzle is generally a flat hole shape (oval, oval, etc.).
- the present invention made in view of the above circumstances has a technical problem of enabling the production of a modified cross-sectional glass fiber having a high flatness when producing a modified cross-sectional glass fiber.
- a flat nozzle hole having an inlet and an outlet of molten glass is provided, and a pair of short walls in which the wall portion surrounding the nozzle hole faces each other in the major axis direction of the nozzle hole.
- a nozzle for deformed cross-sectional glass fiber which has a portion and a pair of long-walled portions facing each other in the minor axis direction, for producing a deformed cross-sectional glass fiber from molten glass flowing out from a nozzle hole, and is a pair of short walls.
- Each of the portions is characterized by having an inclined portion inclined with respect to the axis of the nozzle hole in the end portion region located at the end portion on the outlet side of the short wall portion.
- the end region and the molten glass are compared with the case where there is no inclined portion in the end region as in the conventional case.
- the contact area with is expanded.
- the ability of the end region of the short wall to pull the molten glass (the ability to pull along the major axis direction of the nozzle hole) is improved, and along with this, the molten glass is deformed so that the surface area becomes smaller due to surface tension. Can be suppressed. As a result, it becomes possible to form the manufactured irregular cross-section glass fiber into a high flatness.
- the inclined portion has an inclined surface that is inclined so as to be separated from the center side of the nozzle hole from the inlet side to the outlet side.
- the short wall portion has a bottom wall surface connected to the inclined portion in the end region, and the long wall portion has a bottom wall surface at the end portion on the outlet side, and the long wall portion has a long wall on a cross section orthogonal to the major axis direction. It is preferable that the sum of the length of the inclined portion on the cross section orthogonal to the minor axis direction and the length of the bottom wall surface of the short wall portion is longer than the length of the bottom wall surface of the portion.
- the inclined portion of the short wall portion, as well as the bottom wall surface of the short wall portion and the long wall portion are in a wet state with the molten glass. At this time, the inclined portion and the bottom wall surface pull the molten glass. Further, in order to increase the flatness of the manufactured irregular cross-section glass fiber, it is advantageous to pull the molten glass along the major axis direction rather than the minor axis direction of the nozzle hole. Then, according to this configuration, the molten glass can be effectively pulled along the major axis direction of the nozzle hole, which is further advantageous in forming the irregular cross-section glass fiber into a high flatness.
- the inclined portion is composed of a single inclined surface.
- the molten glass is less likely to stay and devitrification can be suppressed.
- a pair of flat nozzle holes having inlets and outlets of molten glass are provided, and wall portions surrounding the nozzle holes face each other in the major axis direction of the nozzle holes. It is a method for producing a deformed cross-section glass fiber from molten glass flowing out from a nozzle hole by using a nozzle for a deformed cross-section glass fiber having a short wall portion and a pair of long wall portions facing each other in the minor axis direction.
- Each of the pair of short wall portions is characterized by having an inclined portion inclined with respect to the axis of the nozzle hole in the end portion region located at the end portion on the outlet side of the short wall portion.
- FIG. 1 is a cross-sectional view schematically showing a method for manufacturing a modified cross-sectional glass fiber and a manufacturing apparatus.
- FIG. 2 is a cross-sectional view schematically showing the periphery of a nozzle for a glass fiber having a modified cross section.
- FIG. 3 is a bottom view schematically showing the periphery of a nozzle for glass fiber having a modified cross section.
- 4 (a) is a side view of the nozzle for irregular cross-sectional glass fiber seen from the long wall side, (b) is a 4b-4b cross-sectional view of the nozzle of FIG. 3, and (c) is a 4c-4c cross-section of (a). It is a figure.
- FIG. 1 is a cross-sectional view schematically showing a method for manufacturing a modified cross-sectional glass fiber and a manufacturing apparatus.
- FIG. 2 is a cross-sectional view schematically showing the periphery of a nozzle for a glass fiber having a modified cross
- FIG. 5 is an enlarged cross-sectional view showing a portion A in FIG. 4 (b).
- FIG. 6 is a cross-sectional view showing the periphery of the bottom wall surface of the long wall portion of the nozzle for irregular cross-sectional glass fiber.
- FIG. 7 is a cross-sectional view showing a modified cross-sectional glass fiber.
- 8A and 8B are views showing a modified example of a nozzle for irregular cross-section glass fiber, FIG. 8A is a side view of the nozzle for irregular cross-sectional glass fiber as viewed from the short wall side, and FIG. 8B is 4b of the nozzle of FIG. -4b sectional view, (c) is a 4d-4d sectional view of (a).
- FIG. 9 is a bottom view of the irregular cross-sectional glass fiber nozzle according to the modified example.
- the modified cross-section glass fiber is manufactured by the manufacturing apparatus 1.
- the manufacturing apparatus 1 includes a feeder 3 for distributing molten glass 2 produced in a melting furnace (not shown), a bushing 4 arranged below the feeder 3, and a pipe 5 connecting the feeder 3 and the bushing 4. ing.
- the molten glass 2 is supplied from the feeder 3 to the bushing 4 via the pipe 5.
- the molten glass 2 flows out from the nozzle hole 6 of the bushing 4.
- the molten glass 2 is cooled to become a deformed cross-section glass fiber 2f (hereinafter referred to as glass fiber 2f).
- the molten glass 2 is made of E glass.
- the present invention is not limited to this, and the molten glass 2 may be made of other glass such as D glass, S glass, AR glass, and C glass.
- the feeder 3 is connected to a glass melting furnace (not shown).
- the feeder 3 can distribute the molten glass 2 continuously produced in the glass melting furnace.
- a liquid surface 2a of the molten glass 2 is formed inside the feeder 3.
- the bushing 4 is provided with a base plate 7 at the bottom.
- the base plate 7 is provided with a plurality of nozzles 8 for glass fiber having a modified cross section (hereinafter referred to as nozzles 8) and cooling pipes 9 arranged in the vicinity of these nozzles 8.
- the plurality of nozzles 8 have the same configuration as each other. Although the details will be described later, the nozzle holes 6 provided in each nozzle 8 are formed flat.
- the pipe 5 is formed in a cylindrical shape in which the pipe axis extends in the vertical direction.
- the upper end of the pipe 5 is connected to the bottom of the feeder 3, and the lower end of the pipe 5 is connected to the upper end of the bushing 4.
- the shape and the direction in which the pipe axis extends may be different from those in the present embodiment.
- the pipe 5, the nozzle 8, and the cooling pipe 9, a part or the whole thereof is made of platinum or a platinum alloy (for example, platinum rhodium alloy or the like).
- the pipe 5 is entirely made of platinum or a platinum alloy.
- the pressure (head pressure) for flowing out the molten glass 2 from the nozzle hole 6 is determined by the height difference H between the nozzle hole 6 and the liquid level 2a of the molten glass 2 in the feeder 3.
- the height difference H can be adjusted, for example, by changing the length of the pipe 5.
- the temperature and viscosity of the molten glass 2 when forming the glass fiber 2f are 1100 ° C. to 1250 ° C. (preferably 1150 ° C. to 1200 ° C.), 102.6 dPa ⁇ s to 103.8 dPa ⁇ s (preferably). Is set to 10 2.9 dPa ⁇ s to 10 3.3 dPa ⁇ s).
- the "temperature / viscosity of the molten glass 2" referred to here is the temperature / viscosity of the molten glass 2 at the position where it flows into the nozzle 8.
- the temperature and viscosity of the molten glass 2 may be adjusted, for example, by individually heating the bushing 4 and the pipe 5 by arbitrary heating means (for example, an energization heating device).
- the temperature and viscosity of the molten glass 2 may be adjusted by heating the molten glass 2 or the feeder 3 in the glass melting furnace by energization heating or the like.
- a sizing agent is applied to the surface of the glass fiber 2f by an applicator (not shown).
- an applicator not shown
- hundreds to thousands of glass fibers 2f are spun as one strand 2s.
- the spun strand 2s is wound around the bobbin 10 which is a winding device as a fiber bundle 2r.
- the strand 2s is cut to a length of, for example, about 1 mm to 20 mm and used as a chopped strand.
- the nozzle 8 has a pair of long wall portions 11 and 11 and a pair of short wall portions 12 and 12.
- a flat nozzle hole 6 is formed by being surrounded by these walls.
- the nozzle hole 6 has an inflow port 6a through which the molten glass 2 flows in and an outflow port 6b through which the molten glass 2 flows out.
- Each of the pair of long wall portions 11 and 11 is provided with a notch portion 13 having an opening toward the outlet 6b side. As a result, the nozzle hole 6 is connected to the external space of the nozzle 8 through the notch 13.
- Cooling water 14 circulates inside the cooling pipe 9 to cool the molten glass 2.
- the outer shape of the cooling pipe 9 is formed in a plate shape, and the plate surface is parallel to the long wall portion 11.
- the cooling pipe 9 is provided integrally with the base plate 7, it may be provided at a position away from the base plate 7. Further, the cooling pipe 9 may be formed in a circular tube shape.
- the height position of the cooling pipe 9 can be adjusted according to the cooling conditions of the molten glass 2.
- the cooling pipe 9 may be arranged above the lower end portion of the nozzle 8 so that the molten glass 2 drawn from the nozzle 8 and the plate surface do not face each other.
- the cooling pipe 9 is arranged so as to face both the nozzle 8 and the molten glass 2 drawn from the nozzle 8 and the plate surface so as to face the upper and lower parts with the lower end of the nozzle 8 as a reference. good.
- cooling fins or the like that are cooled by an air flow may be used for cooling the molten glass 2.
- the cooling pipe 9 is not an essential configuration and may be omitted.
- a plurality of nozzle rows P are arranged in parallel on the base plate 7 at intervals.
- a plurality of nozzles 8 belong to each nozzle row P.
- the plurality of nozzles 8 belonging to the same nozzle row P are arranged so that the nozzle holes 6 formed therein are located on the same straight line.
- the cooling pipe 9 is arranged so as to extend in parallel with the nozzle row P between the adjacent nozzle rows P and P. As a result, the molten glass 2 in the nozzle hole 6 is cooled through the notch 13 facing the cooling pipe 9. Specifically, the molten glass 2 is rapidly cooled from a temperature of 1000 ° C. or higher by the cooling pipe 9.
- the cooling pipe 9 also has a function of suppressing deterioration of these members due to heat and increasing durability by cooling the bushing 4 (base plate 7) and the nozzle 8.
- the notch portion 13 provided in the long wall portion 11 of each nozzle 8 has an isosceles trapezoidal shape in which the upper bottom is shorter than the lower bottom.
- the opening width of the notch portion 13 gradually increases from the inlet 6a side of the nozzle hole 6 toward the outlet 6b side.
- the depth of the notch 13 (the length of the nozzle hole 6 in the direction along the axis 6x) is 0.1 mm to 2 mm. This is because when the depth of the notch portion 13 exceeds 2 mm, both ends in the longitudinal direction become too thin in the cross section of the manufactured glass fiber 2f, and the glass fiber 2f is easily damaged.
- the shape of the notch portion 13 is not limited to the trapezoidal shape, and may be another shape. For example, it may have a triangular shape, a semicircular shape, or a rectangular shape. However, even when these other shapes are adopted, it is preferable that the opening width of the notch portion 13 gradually increases from the inlet 6a side to the outlet 6b side of the nozzle hole 6.
- one nozzle 8 is provided with a single nozzle hole 6.
- the nozzle hole 6 is formed in an elongated hole shape.
- the pair of long wall portions 11 and 11 face each other in the minor axis direction of the nozzle hole 6 having a long hole shape, and the pair of short wall portions 12 and 12 face each other in the major axis direction.
- the thickness of the short wall portion 12 is larger than the thickness of the long wall portion 11 (thickness along the minor axis direction of the nozzle hole 6).
- the flatness ratio (ratio of the major axis to the minor axis) of the nozzle hole 6 is set to 2 to 5.
- the inner peripheral surface of the nozzle hole 6 including the inner wall surface 11a of the long wall portion 11 and the inner wall surface 12a of the short wall portion 12 is made of platinum or a platinum alloy. Further, the inner wall surface 11a of the long wall portion 11 is linear as shown in FIG. 4C, and the facing inner wall surfaces 11a are parallel to each other.
- the boundary 15 between the long wall portion 11 and the short wall portion 12 is a point where the inclination of the inner wall surface with respect to the horizontal direction of the paper surface in FIG. 4C changes from 0, and the portion where the inclination with respect to the horizontal direction of the paper surface is 0 is.
- the long wall portion 11 and the portion whose inclination is other than 0 is the short wall portion 12.
- the axis line 6x of the nozzle hole 6 An inclined portion 12aa that is inclined with respect to the relative portion is formed. Specifically, the inclined portion 12aa is inclined from the center side of the nozzle hole 6 toward the outside (from the inside to the outside in the major axis direction) from the inflow port 6a side toward the outflow port 6b side. As a result, the inclined portion 12aa existing on one of the pair of short wall portions 12 and 12 and the inclined portion 12aa existing on the other are inclined in opposite directions to each other.
- Both inclined portions 12aa and 12aa are each composed of a single inclined surface (inclined plane).
- the inclined portion 12aa is formed over the entire length of the short wall portion 12 along the minor axis direction (direction perpendicular to the paper surface in FIGS. 4B and 5).
- the angle ⁇ 1 at which the inclined portion 12aa is inclined with respect to the line orthogonal to the axis 6x is not particularly limited, but is 55 ° in the present embodiment.
- the inclined portion 12aa may be a curved surface as long as it is inclined with respect to the axis 6x of the nozzle hole 6. Further, the surface roughness of the inclined portion 12aa may be rougher than the surface roughness of the inner wall surface 12a.
- the angle ⁇ 1 at which the inclined portion 12aa is inclined with respect to the line orthogonal to the axis 6x is preferably 10 ° or more and 80 ° or less.
- the short wall portion 12 has a bottom wall surface 12b connected to the inclined portion 12aa. More specifically, the bottom wall surface 12b is connected to the outside of the nozzle hole 6 in the major axis direction with respect to the inclined portion 12aa.
- the bottom wall surface 12b is a flat surface orthogonal to the axis 6x.
- the length of the inclined portion 12aa is L1
- the length of the bottom wall surface 12b is L2.
- the "length L1 of the inclined portion 12aa and the length L2 of the bottom wall surface 12b" are the lengths of the nozzle holes 6 on the cross section orthogonal to the minor axis direction, respectively.
- the end region T in the present embodiment becomes larger than that in the case where the inclined portion 12aa is not provided.
- the approximate area of the end region T is the sum of the length L1 of the inclined portion 12aa and the length L2 of the bottom wall surface 12b multiplied by the peripheral length of the short wall portion 12. It becomes a value, and the approximate area of the end region when there is no inclined portion 12aa as in the conventional case is the sum of the length L2 of the bottom wall surface 12b and the length L3 of the virtual bottom wall surface, and the peripheral length of the short wall portion 12. Is the value multiplied by.
- the long wall portion 11 has a bottom wall surface 11b.
- the bottom wall surface 11b at the portion of the long wall portion 11 where the notch portion 13 is provided corresponds to the upper bottom of the isosceles trapezoid or the side connecting the upper bottom and the lower bottom.
- the bottom wall surface 11b is a flat surface (a flat surface orthogonal to the axis 6x at a location corresponding to the upper bottom of an isosceles trapezoid).
- the length of the bottom wall surface 11b is L4.
- the "length of the bottom wall surface 11b" is a length on a cross section orthogonal to the major axis direction. The sum of the length L1 and the length L2 is longer than that of the length L4.
- the area of the end region T of the short wall portion 12 becomes larger than the area of the bottom wall surface 11b of the long wall portion 11, and the molten glass 2 is more likely to be pulled along the major axis direction than the minor axis direction of the nozzle hole 6. ..
- the end region T has an inclined portion 12aa that is inclined with respect to the axis 6x of the nozzle hole 6, so that the end region T and the molten glass 2 come into contact with each other as compared with the case where the end region T is not inclined.
- the area expands.
- the ability of the short wall portion 12 to pull the molten glass 2 is improved, and along with this, deformation of the molten glass 2 such that the surface area becomes smaller due to surface tension can be suppressed.
- the glass fiber 2f having a high flatness as shown in FIG. 7 can be manufactured.
- the cross-sectional shape of the glass fiber 2f is formed to be close to an oval shape.
- the nozzle for the deformed cross-section glass fiber and the method for manufacturing the deformed cross-section glass fiber according to the present invention are not limited to the configurations and embodiments described in the above embodiments.
- the long wall portion 11 may have an inclined portion 11aa.
- the angle ⁇ 2 at which the inclined portion 11aa is inclined with respect to the line orthogonal to the axis 6x is preferably 10 ° or more and 80 ° or less. Further, by setting ⁇ 1> ⁇ 2, it is possible to prevent the inner wall surface 11a of the long wall portion 11 from having an excessively large ability to pull the molten glass 2 and reducing the flatness of the glass fiber.
- the inclined portion 11aa is provided on the long wall portion 11, the inclined portion 11aa is not provided on the center side of the long wall portion 11, but the inclined portions 11aa are provided only on both end sides of the long wall portion 11, so that the long wall portion 11 is made of molten glass. It is possible to prevent the ability to pull 2 from becoming too large and the flatness of the glass fiber from becoming small.
- the inclined portion 11aa is provided on the long wall portion 11 other than the upper bottom of the isosceles trapezoidal notch portion 13, and the inclined portion 11aa is not provided on the upper bottom of the notch portion 13. It is possible to prevent the flatness of the glass fiber from becoming small.
- the notch portion 13 is provided in each of the pair of long wall portions 11, 11, but it is not essential to provide the notch portion 13, and the notch portion 13 may be removed.
- the nozzle hole 6 may have an elliptical shape, a dumbbell shape, a diamond shape, a rectangular shape, a triple perfect circle shape, or the like, in addition to the elongated hole shape.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Provided is a nozzle 8 for modified cross-section glass fibers, the nozzle 8 being provided with a nozzle hole 6 and being for manufacturing modified cross-section glass fibers 2f from molten glass 2 discharged from the nozzle hole 6, which is flat and has an inflow port 6a and an outflow port 6b for the molten glass 2, and a wall part enclosing the nozzle hole 6 having a pair of short wall parts 12 that face each other across the long diameter direction of the nozzle hole 6 and a pair of long wall parts 11 that face each other across the short diameter direction thereof, wherein: provided to each of the pair of short wall parts 12 is a slanted part 12aa, which is slanted relative to the axis 6x of the nozzle hole 6, at an end region T located at the end of the short wall part 12 that is toward the outflow port 6b.
Description
本発明は、溶融ガラスから断面形状が扁平な異形断面ガラス繊維を製造するためのノズル、及び、当該ノズルを用いた異形断面ガラス繊維の製造方法に関する。
The present invention relates to a nozzle for producing a deformed cross-sectional glass fiber having a flat cross-sectional shape from molten glass, and a method for manufacturing a deformed cross-sectional glass fiber using the nozzle.
ガラス繊維の一種として、断面形状が扁平な異形断面ガラス繊維が知られている(特許文献1を参照)。異形断面ガラス繊維は、樹脂と混練して複合化した場合に高い補強効果を実現できることから、繊維強化プラスチック(FRP)用の繊維として採用される等、様々な分野で利用される。
As a type of glass fiber, a modified cross-sectional glass fiber having a flat cross-sectional shape is known (see Patent Document 1). Since the irregular cross-section glass fiber can realize a high reinforcing effect when kneaded with a resin and composited, it is used in various fields such as being used as a fiber for fiber reinforced plastic (FRP).
異形断面ガラス繊維を製造する際には、例えば、溶融ガラスを流通させるためのフィーダーからブッシングに溶融ガラスを供給し、ブッシングに備わった多数のノズルの各々から溶融ガラスを引き出しつつ冷却する。このノズルに設けられたノズル孔の形状は、一般的に扁平な孔形状(楕円形や長円形等)となる。
When manufacturing a deformed cross-section glass fiber, for example, the molten glass is supplied to the bushing from a feeder for distributing the molten glass, and the molten glass is cooled while being pulled out from each of a large number of nozzles provided in the bushing. The shape of the nozzle hole provided in this nozzle is generally a flat hole shape (oval, oval, etc.).
異形断面ガラス繊維を製造するにあたっては、下記のような解決すべき問題があった。すなわち、ノズル孔から流出する溶融ガラスが、表面張力で表面積が小さくなるように変形するため、高扁平率の異形断面ガラス繊維を成形することが難しい。
In manufacturing irregular cross-section glass fiber, there were the following problems to be solved. That is, since the molten glass flowing out of the nozzle hole is deformed by surface tension so that the surface area becomes small, it is difficult to form a deformed cross-section glass fiber having a high flatness.
上記の事情に鑑みなされた本発明は、異形断面ガラス繊維を製造するに際し、高扁平率の異形断面ガラス繊維の製造を可能にすることを技術的な課題とする。
The present invention made in view of the above circumstances has a technical problem of enabling the production of a modified cross-sectional glass fiber having a high flatness when producing a modified cross-sectional glass fiber.
上記の課題を解決するための本発明は、溶融ガラスの流入口および流出口を有する扁平なノズル孔が設けられ、ノズル孔を囲う壁部が、ノズル孔の長径方向で対向する一対の短壁部と、短径方向で対向する一対の長壁部とを有し、ノズル孔より流出させた溶融ガラスから異形断面ガラス繊維を製造するための異形断面ガラス繊維用ノズルであって、一対の短壁部の各々について、短壁部における流出口側の端部に位置する端部領域に、ノズル孔の軸線に対して傾いている傾斜部を有することを特徴とする。
In the present invention for solving the above problems, a flat nozzle hole having an inlet and an outlet of molten glass is provided, and a pair of short walls in which the wall portion surrounding the nozzle hole faces each other in the major axis direction of the nozzle hole. A nozzle for deformed cross-sectional glass fiber, which has a portion and a pair of long-walled portions facing each other in the minor axis direction, for producing a deformed cross-sectional glass fiber from molten glass flowing out from a nozzle hole, and is a pair of short walls. Each of the portions is characterized by having an inclined portion inclined with respect to the axis of the nozzle hole in the end portion region located at the end portion on the outlet side of the short wall portion.
本ノズルでは、端部領域に、ノズル孔の軸線に対して傾いている傾斜部を有することで、従来のように端部領域に傾斜部が無い場合に比して、端部領域と溶融ガラスとの接触面積が拡大する。これにより、短壁部の端部領域が溶融ガラスを引っ張る能力(ノズル孔の長径方向に沿って引っ張る能力)が向上し、これに伴って、表面張力で表面積が小さくなるような溶融ガラスの変形を抑制できる。その結果、製造される異形断面ガラス繊維を高扁平率に成形することが可能となる。
In this nozzle, by having an inclined portion inclined with respect to the axis of the nozzle hole in the end region, the end region and the molten glass are compared with the case where there is no inclined portion in the end region as in the conventional case. The contact area with is expanded. As a result, the ability of the end region of the short wall to pull the molten glass (the ability to pull along the major axis direction of the nozzle hole) is improved, and along with this, the molten glass is deformed so that the surface area becomes smaller due to surface tension. Can be suppressed. As a result, it becomes possible to form the manufactured irregular cross-section glass fiber into a high flatness.
上記の構成では、傾斜部は、流入口側から流出口側に向かうに連れてノズル孔の中心側から離れるように傾く傾斜面を有することが好ましい。
In the above configuration, it is preferable that the inclined portion has an inclined surface that is inclined so as to be separated from the center side of the nozzle hole from the inlet side to the outlet side.
このようにすれば、短壁部の端部領域が溶融ガラスを引っ張る能力が更に向上し、異形断面ガラス繊維を高扁平率に成形する上で更に有利となる。
By doing so, the ability of the end region of the short wall portion to pull the molten glass is further improved, which is further advantageous in forming the irregular cross-section glass fiber into a high flatness.
上記の構成では、短壁部が端部領域に、傾斜部に連なる底壁面を有し、長壁部が流出口側の端部に底壁面を有し、長径方向に直交する断面上での長壁部の底壁面の長さと比較して、短径方向に直交する断面上での傾斜部の長さと短壁部の底壁面の長さとの和の方が長いことが好ましい。
In the above configuration, the short wall portion has a bottom wall surface connected to the inclined portion in the end region, and the long wall portion has a bottom wall surface at the end portion on the outlet side, and the long wall portion has a long wall on a cross section orthogonal to the major axis direction. It is preferable that the sum of the length of the inclined portion on the cross section orthogonal to the minor axis direction and the length of the bottom wall surface of the short wall portion is longer than the length of the bottom wall surface of the portion.
異形断面ガラス繊維を製造する際には、短壁部の傾斜部の他、短壁部および長壁部の底壁面も溶融ガラスで濡れた状態となる。このとき、傾斜部および底壁面は溶融ガラスを引っ張る。さらに、製造される異形断面ガラス繊維の扁平率を高めるためには、溶融ガラスをノズル孔の短径方向よりも長径方向に沿って引っ張ることが有利となる。そして、本構成のようにすれば、溶融ガラスをノズル孔の長径方向に沿って効果的に引っ張ることができ、異形断面ガラス繊維を高扁平率に成形する上で一層有利となる。
When manufacturing a modified cross-section glass fiber, the inclined portion of the short wall portion, as well as the bottom wall surface of the short wall portion and the long wall portion are in a wet state with the molten glass. At this time, the inclined portion and the bottom wall surface pull the molten glass. Further, in order to increase the flatness of the manufactured irregular cross-section glass fiber, it is advantageous to pull the molten glass along the major axis direction rather than the minor axis direction of the nozzle hole. Then, according to this configuration, the molten glass can be effectively pulled along the major axis direction of the nozzle hole, which is further advantageous in forming the irregular cross-section glass fiber into a high flatness.
上記の構成では、傾斜部が単一の傾斜面からなることが好ましい。
In the above configuration, it is preferable that the inclined portion is composed of a single inclined surface.
このようにすれば、溶融ガラスが滞留し難くなり、失透することを抑制できる。
By doing so, the molten glass is less likely to stay and devitrification can be suppressed.
さらに、上記の課題を解決するための本発明は、溶融ガラスの流入口および流出口を有する扁平なノズル孔が設けられ、ノズル孔を囲う壁部が、ノズル孔の長径方向で対向する一対の短壁部と、短径方向で対向する一対の長壁部とを有する、異形断面ガラス繊維用ノズルを用いて、ノズル孔より流出させた溶融ガラスから異形断面ガラス繊維を製造するための方法であって、一対の短壁部の各々について、短壁部の流出口側の端部に位置する端部領域に、ノズル孔の軸線に対して傾いている傾斜部を有することを特徴とする。
Further, in the present invention for solving the above-mentioned problems, a pair of flat nozzle holes having inlets and outlets of molten glass are provided, and wall portions surrounding the nozzle holes face each other in the major axis direction of the nozzle holes. It is a method for producing a deformed cross-section glass fiber from molten glass flowing out from a nozzle hole by using a nozzle for a deformed cross-section glass fiber having a short wall portion and a pair of long wall portions facing each other in the minor axis direction. Each of the pair of short wall portions is characterized by having an inclined portion inclined with respect to the axis of the nozzle hole in the end portion region located at the end portion on the outlet side of the short wall portion.
本方法によれば、上記の異形断面ガラス繊維用ノズルについて既述の作用・効果と同一の作用・効果を得ることが可能である。
According to this method, it is possible to obtain the same action / effect as the above-mentioned action / effect for the above-mentioned nozzle for irregular cross-section glass fiber.
本発明によれば、異形断面ガラス繊維を製造するに際し、高扁平率の繊維の製造が可能となる。
According to the present invention, it is possible to produce a fiber having a high flatness when producing a glass fiber having a modified cross section.
以下、本発明の実施形態に係る異形断面ガラス繊維用ノズル、及び、異形断面ガラス繊維の製造方法について、添付の図面を参照しながら説明する。
Hereinafter, the nozzle for the deformed cross-section glass fiber and the method for manufacturing the deformed cross-section glass fiber according to the embodiment of the present invention will be described with reference to the attached drawings.
図1に示すように、異形断面ガラス繊維は、製造装置1により製造される。製造装置1は、図示省略の溶融炉で生成した溶融ガラス2を流通させるフィーダー3と、フィーダー3よりも下方に配置されたブッシング4と、フィーダー3とブッシング4とを接続するパイプ5とを備えている。溶融ガラス2は、フィーダー3からパイプ5を介してブッシング4に供給される。そして、溶融ガラス2は、ブッシング4のノズル孔6から流出する。溶融ガラス2は冷却されて異形断面ガラス繊維2f(以下、ガラス繊維2fと表記)となる。
As shown in FIG. 1, the modified cross-section glass fiber is manufactured by the manufacturing apparatus 1. The manufacturing apparatus 1 includes a feeder 3 for distributing molten glass 2 produced in a melting furnace (not shown), a bushing 4 arranged below the feeder 3, and a pipe 5 connecting the feeder 3 and the bushing 4. ing. The molten glass 2 is supplied from the feeder 3 to the bushing 4 via the pipe 5. Then, the molten glass 2 flows out from the nozzle hole 6 of the bushing 4. The molten glass 2 is cooled to become a deformed cross-section glass fiber 2f (hereinafter referred to as glass fiber 2f).
本実施形態においては、溶融ガラス2がEガラスからなる。しかしながら、この限りではなく、溶融ガラス2がDガラス、Sガラス、ARガラス、Cガラス等の他のガラスからなってもよい。
In this embodiment, the molten glass 2 is made of E glass. However, the present invention is not limited to this, and the molten glass 2 may be made of other glass such as D glass, S glass, AR glass, and C glass.
フィーダー3は、図示省略のガラス溶解炉と接続されている。フィーダー3は、ガラス溶解炉で連続的に生成した溶融ガラス2を流通させることが可能である。フィーダー3の内部には、溶融ガラス2の液面2aが形成されている。
The feeder 3 is connected to a glass melting furnace (not shown). The feeder 3 can distribute the molten glass 2 continuously produced in the glass melting furnace. A liquid surface 2a of the molten glass 2 is formed inside the feeder 3.
ブッシング4は、底部にベースプレート7を備えている。ベースプレート7には、複数の異形断面ガラス繊維用ノズル8(以下、ノズル8と表記)と、これらノズル8の近傍に配置された冷却管9とが備わっている。複数のノズル8は相互に同一の構成を有する。詳細は後述するが、各ノズル8に設けられたノズル孔6は扁平に形成されている。
The bushing 4 is provided with a base plate 7 at the bottom. The base plate 7 is provided with a plurality of nozzles 8 for glass fiber having a modified cross section (hereinafter referred to as nozzles 8) and cooling pipes 9 arranged in the vicinity of these nozzles 8. The plurality of nozzles 8 have the same configuration as each other. Although the details will be described later, the nozzle holes 6 provided in each nozzle 8 are formed flat.
パイプ5は管軸が上下方向に延びた円筒状に形成されている。パイプ5の上端部はフィーダー3の底部と連結され、パイプ5の下端部はブッシング4の上端部と連結されている。なお、パイプ5は、フィーダー3とブッシング4とを接続できるものであれば、形状や管軸が延びる方向は本実施形態と異なっていてもよい。
The pipe 5 is formed in a cylindrical shape in which the pipe axis extends in the vertical direction. The upper end of the pipe 5 is connected to the bottom of the feeder 3, and the lower end of the pipe 5 is connected to the upper end of the bushing 4. As long as the pipe 5 can connect the feeder 3 and the bushing 4, the shape and the direction in which the pipe axis extends may be different from those in the present embodiment.
ブッシング4、パイプ5、ノズル8、及び冷却管9の各部材に関し、その一部又は全体は、白金又は白金合金(例えば、白金ロジウム合金等)により構成されている。なお、本実施形態においては、これらの部材のうち、パイプ5は全体が白金又は白金合金で構成されている。
With respect to each member of the bushing 4, the pipe 5, the nozzle 8, and the cooling pipe 9, a part or the whole thereof is made of platinum or a platinum alloy (for example, platinum rhodium alloy or the like). In the present embodiment, of these members, the pipe 5 is entirely made of platinum or a platinum alloy.
フィーダー3とパイプ5との接続部から、ブッシング4のノズル孔6に至るまでの流路全体は、溶融ガラス2で満たされている。これにより、ノズル孔6から溶融ガラス2を流出させるための圧力(ヘッド圧)が、ノズル孔6とフィーダー3内の溶融ガラス2の液面2aとの高低差Hで決定される。ここで、高低差Hは、例えばパイプ5の長さを変更することで調節が可能である。
The entire flow path from the connection portion between the feeder 3 and the pipe 5 to the nozzle hole 6 of the bushing 4 is filled with the molten glass 2. As a result, the pressure (head pressure) for flowing out the molten glass 2 from the nozzle hole 6 is determined by the height difference H between the nozzle hole 6 and the liquid level 2a of the molten glass 2 in the feeder 3. Here, the height difference H can be adjusted, for example, by changing the length of the pipe 5.
ガラス繊維2fを成形する際における溶融ガラス2の温度・粘度は、それぞれ1100℃~1250℃(好ましくは1150℃~1200℃)、102.6dPa・s~103.8dPa・s(好ましくは102.9dPa・s~103.3dPa・s)に設定される。なお、ここでいう「溶融ガラス2の温度・粘度」とは、ノズル8に流入する位置での溶融ガラス2の温度・粘度である。溶融ガラス2の温度・粘度の調整は、例えば、ブッシング4とパイプ5とをそれぞれ任意の加熱手段(例えば、通電加熱装置)により個別に加熱する等して行えばよい。この他、ガラス溶解炉内の溶融ガラス2や、フィーダー3を通電加熱等で加熱して溶融ガラス2の温度・粘度を調節してもよい。
The temperature and viscosity of the molten glass 2 when forming the glass fiber 2f are 1100 ° C. to 1250 ° C. (preferably 1150 ° C. to 1200 ° C.), 102.6 dPa · s to 103.8 dPa · s (preferably). Is set to 10 2.9 dPa · s to 10 3.3 dPa · s). The "temperature / viscosity of the molten glass 2" referred to here is the temperature / viscosity of the molten glass 2 at the position where it flows into the nozzle 8. The temperature and viscosity of the molten glass 2 may be adjusted, for example, by individually heating the bushing 4 and the pipe 5 by arbitrary heating means (for example, an energization heating device). In addition, the temperature and viscosity of the molten glass 2 may be adjusted by heating the molten glass 2 or the feeder 3 in the glass melting furnace by energization heating or the like.
ガラス繊維2fの表面には、図示省略のアプリケーターにより集束剤が塗布される。これにより、数百本~数千本程度のガラス繊維2fが、一本のストランド2sとして紡糸される。紡糸されたストランド2sは、巻き取り装置であるボビン10の周りに繊維束2rとして巻き取られる。ストランド2sは、例えば、1mm~20mm程度の長さに切断され、チョップドストランドとして利用される。
A sizing agent is applied to the surface of the glass fiber 2f by an applicator (not shown). As a result, hundreds to thousands of glass fibers 2f are spun as one strand 2s. The spun strand 2s is wound around the bobbin 10 which is a winding device as a fiber bundle 2r. The strand 2s is cut to a length of, for example, about 1 mm to 20 mm and used as a chopped strand.
図2及び図3に示すように、ノズル8は、一対の長壁部11,11と一対の短壁部12,12とを有する。これら壁部に囲われて扁平なノズル孔6が形作られている。ノズル孔6は、溶融ガラス2を流入させる流入口6aと、流出させる流出口6bとを有する。一対の長壁部11,11の各々には、流出口6b側に向けて口を開けた切欠き部13が設けられている。これにより、ノズル孔6が切欠き部13を通じてノズル8の外部空間と連なっている。
As shown in FIGS. 2 and 3, the nozzle 8 has a pair of long wall portions 11 and 11 and a pair of short wall portions 12 and 12. A flat nozzle hole 6 is formed by being surrounded by these walls. The nozzle hole 6 has an inflow port 6a through which the molten glass 2 flows in and an outflow port 6b through which the molten glass 2 flows out. Each of the pair of long wall portions 11 and 11 is provided with a notch portion 13 having an opening toward the outlet 6b side. As a result, the nozzle hole 6 is connected to the external space of the nozzle 8 through the notch 13.
冷却管9は、その内部を冷却水14が循環し、溶融ガラス2を冷却する。冷却管9は外形が板状に形成され、板面が長壁部11と平行になっている。ここで、冷却管9はベースプレート7と一体に設けられているが、ベースプレート7から離れた位置に設けられていてもよい。また、冷却管9は円管状に形成されていてもよい。
Cooling water 14 circulates inside the cooling pipe 9 to cool the molten glass 2. The outer shape of the cooling pipe 9 is formed in a plate shape, and the plate surface is parallel to the long wall portion 11. Here, although the cooling pipe 9 is provided integrally with the base plate 7, it may be provided at a position away from the base plate 7. Further, the cooling pipe 9 may be formed in a circular tube shape.
冷却管9の高さ位置は、溶融ガラス2の冷却条件に応じて調整が可能である。一例として、冷却管9は、ノズル8から引き出された溶融ガラス2と板面とが面しないように、ノズル8の下端部よりも上方に配置されていてもよい。一方、ノズル8及びノズル8から引き出された溶融ガラス2の双方と板面とが面するように、ノズル8の下端部を基準として上方と下方とに跨って冷却管9が配置されていてもよい。なお、溶融ガラス2の冷却には、冷却管9の他、空気流で冷却する冷却フィン等を用いてもよい。また、冷却管9は必須の構成ではなく省略してもよい。
The height position of the cooling pipe 9 can be adjusted according to the cooling conditions of the molten glass 2. As an example, the cooling pipe 9 may be arranged above the lower end portion of the nozzle 8 so that the molten glass 2 drawn from the nozzle 8 and the plate surface do not face each other. On the other hand, even if the cooling pipe 9 is arranged so as to face both the nozzle 8 and the molten glass 2 drawn from the nozzle 8 and the plate surface so as to face the upper and lower parts with the lower end of the nozzle 8 as a reference. good. In addition to the cooling pipe 9, cooling fins or the like that are cooled by an air flow may be used for cooling the molten glass 2. Further, the cooling pipe 9 is not an essential configuration and may be omitted.
ベースプレート7には、複数のノズル列Pが間隔を空けて平行に配置されている。各ノズル列Pには複数のノズル8が属する。同じノズル列Pに属する複数のノズル8は、これらに形成されたノズル孔6が同一直線上に位置するように配置されている。
A plurality of nozzle rows P are arranged in parallel on the base plate 7 at intervals. A plurality of nozzles 8 belong to each nozzle row P. The plurality of nozzles 8 belonging to the same nozzle row P are arranged so that the nozzle holes 6 formed therein are located on the same straight line.
上記の冷却管9は、隣り合う両ノズル列P,Pの相互間において、ノズル列Pと平行に延びるように配置されている。これにより、冷却管9に面した切欠き部13を通じてノズル孔6内の溶融ガラス2が冷却される。具体的には、溶融ガラス2が、冷却管9により1000℃以上の温度から急激に冷却される。ここで、冷却管9は、ブッシング4(ベースプレート7)やノズル8を冷却することで、これらの部材の熱による劣化を抑制して耐久性を高める機能もある。
The cooling pipe 9 is arranged so as to extend in parallel with the nozzle row P between the adjacent nozzle rows P and P. As a result, the molten glass 2 in the nozzle hole 6 is cooled through the notch 13 facing the cooling pipe 9. Specifically, the molten glass 2 is rapidly cooled from a temperature of 1000 ° C. or higher by the cooling pipe 9. Here, the cooling pipe 9 also has a function of suppressing deterioration of these members due to heat and increasing durability by cooling the bushing 4 (base plate 7) and the nozzle 8.
図4(a),(b)に示すように、各ノズル8の長壁部11に設けられた切欠き部13は、上底が下底よりも短い等脚台形状をなす。これにより、切欠き部13は、ノズル孔6の流入口6a側から流出口6b側に向かうに連れて開口幅が漸次に拡大している。切欠き部13の深さ(ノズル孔6の軸線6xに沿う方向の長さ)は0.1mm~2mmとされている。これは、切欠き部13の深さが2mmを超える場合は、製造されたガラス繊維2fの断面において、長手方向の両端部が細くなりすぎ、ガラス繊維2fが破損しやすくなるためである。
As shown in FIGS. 4A and 4B, the notch portion 13 provided in the long wall portion 11 of each nozzle 8 has an isosceles trapezoidal shape in which the upper bottom is shorter than the lower bottom. As a result, the opening width of the notch portion 13 gradually increases from the inlet 6a side of the nozzle hole 6 toward the outlet 6b side. The depth of the notch 13 (the length of the nozzle hole 6 in the direction along the axis 6x) is 0.1 mm to 2 mm. This is because when the depth of the notch portion 13 exceeds 2 mm, both ends in the longitudinal direction become too thin in the cross section of the manufactured glass fiber 2f, and the glass fiber 2f is easily damaged.
切欠き部13の形状は台形状に限られるものではなく、他の形状であってもよい。例えば三角形状や半円形状や矩形形状であってもよい。ただし、これら他の形状を採用する場合でも、切欠き部13は、ノズル孔6の流入口6a側から流出口6b側に向かうに連れて開口幅が漸次に拡大していることが好ましい。
The shape of the notch portion 13 is not limited to the trapezoidal shape, and may be another shape. For example, it may have a triangular shape, a semicircular shape, or a rectangular shape. However, even when these other shapes are adopted, it is preferable that the opening width of the notch portion 13 gradually increases from the inlet 6a side to the outlet 6b side of the nozzle hole 6.
図4に示すように、本実施形態では、一つのノズル8に単一のノズル孔6が設けられている。ノズル孔6は長穴形状に形成されている。一対の長壁部11,11は長穴形状のノズル孔6の短径方向で対向し、一対の短壁部12,12は長径方向で対向している。なお、本実施形態では、短壁部12の厚み(ノズル孔6の長径方向に沿った厚み)が長壁部11の厚み(ノズル孔6の短径方向に沿った厚み)よりも大きくなっている。ここで、ノズル孔6の扁平比(長径と短径との比)は2~5とされている。長壁部11の内壁面11aおよび短壁部12の内壁面12aを含むノズル孔6の内周面は、白金又は白金合金で構成されている。また、長壁部11の内壁面11aは図4(c)に示すように直線状であり、対向する内壁面11aは平行である。
As shown in FIG. 4, in the present embodiment, one nozzle 8 is provided with a single nozzle hole 6. The nozzle hole 6 is formed in an elongated hole shape. The pair of long wall portions 11 and 11 face each other in the minor axis direction of the nozzle hole 6 having a long hole shape, and the pair of short wall portions 12 and 12 face each other in the major axis direction. In the present embodiment, the thickness of the short wall portion 12 (thickness along the major axis direction of the nozzle hole 6) is larger than the thickness of the long wall portion 11 (thickness along the minor axis direction of the nozzle hole 6). .. Here, the flatness ratio (ratio of the major axis to the minor axis) of the nozzle hole 6 is set to 2 to 5. The inner peripheral surface of the nozzle hole 6 including the inner wall surface 11a of the long wall portion 11 and the inner wall surface 12a of the short wall portion 12 is made of platinum or a platinum alloy. Further, the inner wall surface 11a of the long wall portion 11 is linear as shown in FIG. 4C, and the facing inner wall surfaces 11a are parallel to each other.
なお、長壁部11と短壁部12との境目15は、図4(c)の紙面水平方向に対する内壁面の傾きが0から変化する点であり、紙面水平方向に対する傾きが0である部分が長壁部11であり、傾きが0以外の部分が短壁部12である。
The boundary 15 between the long wall portion 11 and the short wall portion 12 is a point where the inclination of the inner wall surface with respect to the horizontal direction of the paper surface in FIG. 4C changes from 0, and the portion where the inclination with respect to the horizontal direction of the paper surface is 0 is. The long wall portion 11 and the portion whose inclination is other than 0 is the short wall portion 12.
図4(b)及び図5に示すように、一対の短壁部12,12の各々について、これらの流出口6b側の端部に位置した端部領域Tには、ノズル孔6の軸線6xに対して傾いている傾斜部12aaが形成されている。具体的には、傾斜部12aaは、流入口6a側から流出口6b側に向かうに連れて、ノズル孔6の中心側から外側(長径方向の内側から外側)に向かうように傾いている。これにより、一対の短壁部12,12の一方に存する傾斜部12aaと他方に存する傾斜部12aaとは、相互に逆向きに傾いている。両傾斜部12aa,12aaはそれぞれ単一の傾斜面(傾斜平面)からなる。傾斜部12aaは、短径方向(図4(b)及び図5にて紙面に鉛直な方向)に沿った短壁部12の全長に亘って形成されている。傾斜部12aaが軸線6xに直交する線に対して傾いた角度θ1は、特に限定されるものではないが、本実施形態では55°である。なお、ノズル孔6の軸線6xに対して傾いていれば、傾斜部12aaは湾曲面であってもよい。また、傾斜部12aaの表面粗さは、内壁面12aの表面粗さよりも粗くしてもよい。なお、傾斜部12aaが軸線6xに直交する線に対して傾いた角度θ1は、10°以上、80°以下であることが好ましい。
As shown in FIGS. 4 (b) and 5, for each of the pair of short wall portions 12, 12 in the end region T located at the end on the outlet 6b side, the axis line 6x of the nozzle hole 6 An inclined portion 12aa that is inclined with respect to the relative portion is formed. Specifically, the inclined portion 12aa is inclined from the center side of the nozzle hole 6 toward the outside (from the inside to the outside in the major axis direction) from the inflow port 6a side toward the outflow port 6b side. As a result, the inclined portion 12aa existing on one of the pair of short wall portions 12 and 12 and the inclined portion 12aa existing on the other are inclined in opposite directions to each other. Both inclined portions 12aa and 12aa are each composed of a single inclined surface (inclined plane). The inclined portion 12aa is formed over the entire length of the short wall portion 12 along the minor axis direction (direction perpendicular to the paper surface in FIGS. 4B and 5). The angle θ1 at which the inclined portion 12aa is inclined with respect to the line orthogonal to the axis 6x is not particularly limited, but is 55 ° in the present embodiment. The inclined portion 12aa may be a curved surface as long as it is inclined with respect to the axis 6x of the nozzle hole 6. Further, the surface roughness of the inclined portion 12aa may be rougher than the surface roughness of the inner wall surface 12a. The angle θ1 at which the inclined portion 12aa is inclined with respect to the line orthogonal to the axis 6x is preferably 10 ° or more and 80 ° or less.
短壁部12は、傾斜部12aaに連なる底壁面12bを有する。詳述すると、底壁面12bは、傾斜部12aaに対してノズル孔6の長径方向の外側に連なっている。本実施形態においては、底壁面12bは軸線6xに直交する平坦面である。ここで、傾斜部12aaの長さをL1とすると共に、底壁面12bの長さをL2とする。なお、「傾斜部12aaの長さL1、及び、底壁面12bの長さL2」とは、それぞれノズル孔6の短径方向に直交する断面上での長さである。
The short wall portion 12 has a bottom wall surface 12b connected to the inclined portion 12aa. More specifically, the bottom wall surface 12b is connected to the outside of the nozzle hole 6 in the major axis direction with respect to the inclined portion 12aa. In the present embodiment, the bottom wall surface 12b is a flat surface orthogonal to the axis 6x. Here, the length of the inclined portion 12aa is L1, and the length of the bottom wall surface 12b is L2. The "length L1 of the inclined portion 12aa and the length L2 of the bottom wall surface 12b" are the lengths of the nozzle holes 6 on the cross section orthogonal to the minor axis direction, respectively.
これにより、本実施形態における端部領域Tは、傾斜部12aaが無い場合と比較して大きくなる。詳述すると、本実施形態において、端部領域Tの概略の面積は、傾斜部12aaの長さL1と底壁面12bの長さL2の和に、短壁部12の周長さを掛け合わせた値となり、従来のように傾斜部12aaが無い場合の端部領域の概略の面積は、底壁面12bの長さL2と仮想底壁面の長さL3の和に、短壁部12の周長さを掛け合わせた値となる。L1とL3との関係は、L1=L3/cos55°=1.74×L3となる。すなわち、本実施形態における端部領域Tの概略の面積は、従来のように傾斜部12aaが無い場合の端部領域の概略の面積と比較して大きくなる。
As a result, the end region T in the present embodiment becomes larger than that in the case where the inclined portion 12aa is not provided. More specifically, in the present embodiment, the approximate area of the end region T is the sum of the length L1 of the inclined portion 12aa and the length L2 of the bottom wall surface 12b multiplied by the peripheral length of the short wall portion 12. It becomes a value, and the approximate area of the end region when there is no inclined portion 12aa as in the conventional case is the sum of the length L2 of the bottom wall surface 12b and the length L3 of the virtual bottom wall surface, and the peripheral length of the short wall portion 12. Is the value multiplied by. The relationship between L1 and L3 is L1 = L3 / cos55 ° = 1.74 × L3. That is, the approximate area of the end region T in the present embodiment is larger than the approximate area of the end region when there is no inclined portion 12aa as in the conventional case.
図6に示すように、長壁部11は底壁面11bを有する。なお、長壁部11のうち、切欠き部13が設けられた箇所での底壁面11bとは、等脚台形の上底、或いは、上底と下底とを結ぶ辺に相当する箇所である。本実施形態では、底壁面11bは平坦面(等脚台形の上底に相当する箇所では軸線6xに直交する平坦面)である。ここで、底壁面11bの長さをL4とする。なお、「底壁面11bの長さ」とは、長径方向に直交する断面上での長さである。そして、長さL4と比較して、上記の長さL1と長さL2との和の方が長くなっている。これにより、長壁部11の底壁面11bの面積に対する短壁部12の端部領域Tの面積が大きくなり、ノズル孔6の短径方向よりも長径方向に沿って溶融ガラス2が引っ張られやすくなる。
As shown in FIG. 6, the long wall portion 11 has a bottom wall surface 11b. The bottom wall surface 11b at the portion of the long wall portion 11 where the notch portion 13 is provided corresponds to the upper bottom of the isosceles trapezoid or the side connecting the upper bottom and the lower bottom. In the present embodiment, the bottom wall surface 11b is a flat surface (a flat surface orthogonal to the axis 6x at a location corresponding to the upper bottom of an isosceles trapezoid). Here, the length of the bottom wall surface 11b is L4. The "length of the bottom wall surface 11b" is a length on a cross section orthogonal to the major axis direction. The sum of the length L1 and the length L2 is longer than that of the length L4. As a result, the area of the end region T of the short wall portion 12 becomes larger than the area of the bottom wall surface 11b of the long wall portion 11, and the molten glass 2 is more likely to be pulled along the major axis direction than the minor axis direction of the nozzle hole 6. ..
以下、上記のノズル8を用いた異形断面ガラス繊維の製造方法による主たる作用・効果について説明する。
Hereinafter, the main actions and effects of the method for manufacturing a modified cross-section glass fiber using the nozzle 8 will be described.
上記のノズル8では、端部領域Tがノズル孔6の軸線6xに対して傾いている傾斜部12aaを有することで、傾いていない場合に比して端部領域Tと溶融ガラス2との接触面積が拡大する。これにより、短壁部12が溶融ガラス2を引っ張る能力が向上し、これに伴って、表面張力で表面積が小さくなるような溶融ガラス2の変形を抑制できる。その結果、図7に示すような高扁平率のガラス繊維2fの製造が可能となる。ここでは、ガラス繊維2fの断面形状が長円形に近い形状に形成される。
In the nozzle 8 described above, the end region T has an inclined portion 12aa that is inclined with respect to the axis 6x of the nozzle hole 6, so that the end region T and the molten glass 2 come into contact with each other as compared with the case where the end region T is not inclined. The area expands. As a result, the ability of the short wall portion 12 to pull the molten glass 2 is improved, and along with this, deformation of the molten glass 2 such that the surface area becomes smaller due to surface tension can be suppressed. As a result, the glass fiber 2f having a high flatness as shown in FIG. 7 can be manufactured. Here, the cross-sectional shape of the glass fiber 2f is formed to be close to an oval shape.
ここで、本発明に係る異形断面ガラス繊維用ノズル、及び、異形断面ガラス繊維の製造方法は、上記の実施形態で説明した構成や態様に限定されるものではない。例えば、図8に示すように、長壁部11は、傾斜部11aaを有しても良い。なお、傾斜部11aaが軸線6xに直交する線に対して傾いた角度θ2は、10°以上、80°以下であることが好ましい。また、θ1>θ2とすることにより、長壁部11の内壁面11aが溶融ガラス2を引っ張る能力が大きくなりすぎ、ガラス繊維の扁平率が小さくなるのを抑制できる。
Here, the nozzle for the deformed cross-section glass fiber and the method for manufacturing the deformed cross-section glass fiber according to the present invention are not limited to the configurations and embodiments described in the above embodiments. For example, as shown in FIG. 8, the long wall portion 11 may have an inclined portion 11aa. The angle θ2 at which the inclined portion 11aa is inclined with respect to the line orthogonal to the axis 6x is preferably 10 ° or more and 80 ° or less. Further, by setting θ1> θ2, it is possible to prevent the inner wall surface 11a of the long wall portion 11 from having an excessively large ability to pull the molten glass 2 and reducing the flatness of the glass fiber.
さらに、長壁部11に傾斜部11aaを設ける場合、長壁部11の中央側には傾斜部11aaを設けず、長壁部11の両端側のみに傾斜部11aaを設けることにより、長壁部11が溶融ガラス2を引っ張る能力が大きくなりすぎ、ガラス繊維の扁平率が小さくなるのを抑制できる。例えば、図9に示すように、等脚台形状の切欠き部13の上底以外の長壁部11に傾斜部11aaを設け、切欠き部13の上底に傾斜部11aaを設けないことで、ガラス繊維の扁平率が小さくなるのを抑制できる。
Further, when the inclined portion 11aa is provided on the long wall portion 11, the inclined portion 11aa is not provided on the center side of the long wall portion 11, but the inclined portions 11aa are provided only on both end sides of the long wall portion 11, so that the long wall portion 11 is made of molten glass. It is possible to prevent the ability to pull 2 from becoming too large and the flatness of the glass fiber from becoming small. For example, as shown in FIG. 9, the inclined portion 11aa is provided on the long wall portion 11 other than the upper bottom of the isosceles trapezoidal notch portion 13, and the inclined portion 11aa is not provided on the upper bottom of the notch portion 13. It is possible to prevent the flatness of the glass fiber from becoming small.
また、上記の実施形態では、一対の長壁部11,11の各々に切欠き部13が設けられているが、切欠き部13を設けることは必須ではなく、取り除いても構わない。また、ノズル孔6は、長穴形状以外にも、楕円形状、ダンベル形状、ひし形形状、矩形形状、3連真円形状等でもよい。
Further, in the above embodiment, the notch portion 13 is provided in each of the pair of long wall portions 11, 11, but it is not essential to provide the notch portion 13, and the notch portion 13 may be removed. Further, the nozzle hole 6 may have an elliptical shape, a dumbbell shape, a diamond shape, a rectangular shape, a triple perfect circle shape, or the like, in addition to the elongated hole shape.
2 溶融ガラス
2f 異形断面ガラス繊維
6 ノズル孔
6a 流入口
6b 流出口
6x 軸線
8 異形断面ガラス繊維用ノズル
11 長壁部
11b 底壁面
12 短壁部
12a 内壁面
12aa 傾斜部
12b 底壁面
L1 長さ
L2 長さ
L3 長さ
T 端部領域
2 Fusedglass 2f Deformed cross-section glass fiber 6 Nozzle hole 6a Inlet 6b Outlet 6x Axial line 8 Deformed cross-section glass fiber nozzle 11 Long wall part 11b Bottom wall surface 12 Short wall part 12a Inner wall surface 12aa Inclined part 12b Bottom wall surface L1 Length L2 Length L3 length T end area
2f 異形断面ガラス繊維
6 ノズル孔
6a 流入口
6b 流出口
6x 軸線
8 異形断面ガラス繊維用ノズル
11 長壁部
11b 底壁面
12 短壁部
12a 内壁面
12aa 傾斜部
12b 底壁面
L1 長さ
L2 長さ
L3 長さ
T 端部領域
2 Fused
Claims (5)
- 溶融ガラスの流入口および流出口を有する扁平なノズル孔が設けられ、
前記ノズル孔を囲う壁部が、前記ノズル孔の長径方向で対向する一対の短壁部と、短径方向で対向する一対の長壁部とを有し、
前記ノズル孔より流出させた溶融ガラスから異形断面ガラス繊維を製造するための異形断面ガラス繊維用ノズルであって、
前記一対の短壁部の各々について、該短壁部における前記流出口側の端部に位置する端部領域に、前記ノズル孔の軸線に対して傾いている傾斜部を有する異形断面ガラス繊維用ノズル。 Flat nozzle holes with inlets and outlets for molten glass are provided,
The wall portion surrounding the nozzle hole has a pair of short wall portions facing each other in the major axis direction and a pair of long wall portions facing each other in the minor axis direction.
A nozzle for deformed cross-section glass fiber for producing deformed cross-section glass fiber from molten glass flowing out from the nozzle hole.
For each of the pair of short wall portions, for a glass fiber having a modified cross section having an inclined portion inclined with respect to the axis of the nozzle hole in the end region located at the end portion on the outlet side of the short wall portion. nozzle. - 前記傾斜部は、前記流入口側から前記流出口側に向かうに連れて前記ノズル孔の中心側から離れるように傾く傾斜面を有する請求項1に記載の異形断面ガラス繊維用ノズル。 The nozzle for a glass fiber having a modified cross section according to claim 1, wherein the inclined portion has an inclined surface that is inclined so as to be separated from the center side of the nozzle hole from the inlet side to the outlet side.
- 前記短壁部が、前記端部領域に、前記傾斜部に連なる底壁面を有し、
前記長壁部が前記流出口側の端部に底壁面を有し、
前記長径方向に直交する断面上での前記長壁部の前記底壁面の長さと比較して、前記短径方向に直交する断面上での前記傾斜部の長さと前記短壁部の前記底壁面の長さとの和の方が長い請求項1又は2に記載の異形断面ガラス繊維用ノズル。 The short wall portion has a bottom wall surface connected to the inclined portion in the end region.
The long wall portion has a bottom wall surface at the end on the outlet side.
The length of the inclined portion and the bottom wall surface of the short wall portion on the cross section orthogonal to the minor axis direction as compared with the length of the bottom wall surface of the long wall portion on the cross section orthogonal to the major axis direction. The nozzle for a glass fiber having a modified cross section according to claim 1 or 2, wherein the sum of the length and the sum is longer. - 前記傾斜部が単一の傾斜面からなる請求項1~3のいずれかに記載の異形断面ガラス繊維用ノズル。 The nozzle for glass fiber having a modified cross section according to any one of claims 1 to 3, wherein the inclined portion is composed of a single inclined surface.
- 溶融ガラスの流入口および流出口を有する扁平なノズル孔が設けられ、前記ノズル孔を囲う壁部が、前記ノズル孔の長径方向で対向する一対の短壁部と、短径方向で対向する一対の長壁部とを有する、異形断面ガラス繊維用ノズルを用いて、
前記ノズル孔より流出させた溶融ガラスから異形断面ガラス繊維を製造するための方法であって、
前記一対の短壁部の各々について、該短壁部の前記流出口側の端部に位置する端部領域に、前記ノズル孔の軸線に対して傾いている傾斜部を有する異形断面ガラス繊維の製造方法。 A flat nozzle hole having an inlet and an outlet of molten glass is provided, and a pair of wall portions surrounding the nozzle hole face each other in the major axis direction and a pair of short wall portions facing each other in the minor axis direction. With a nozzle for irregular cross-section glass fiber, which has a long wall of
It is a method for producing an irregular cross-section glass fiber from the molten glass flowing out from the nozzle hole.
For each of the pair of short wall portions, a modified cross-section glass fiber having an inclined portion inclined with respect to the axis of the nozzle hole in the end portion region located at the outlet side end portion of the short wall portion. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180042666.1A CN115803293A (en) | 2020-06-16 | 2021-05-18 | Nozzle for profiled cross-section glass fiber and method for manufacturing profiled cross-section glass fiber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-103646 | 2020-06-16 | ||
JP2020103646A JP7549288B2 (en) | 2020-06-16 | 2020-06-16 | Nozzle for irregular cross-section glass fiber and manufacturing method for irregular cross-section glass fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021256143A1 true WO2021256143A1 (en) | 2021-12-23 |
Family
ID=79197155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/018706 WO2021256143A1 (en) | 2020-06-16 | 2021-05-18 | Nozzle for modified cross-section glass fibers and manufacturing method for modified cross-section glass fibers |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7549288B2 (en) |
CN (1) | CN115803293A (en) |
WO (1) | WO2021256143A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6212629A (en) * | 1985-07-08 | 1987-01-21 | Nitto Boseki Co Ltd | Device for producing glass fiber |
JPH0797710A (en) * | 1993-09-25 | 1995-04-11 | Tanaka Kikinzoku Kogyo Kk | Spinneret for compact fiber |
JPH07330368A (en) * | 1994-06-06 | 1995-12-19 | Tanaka Kikinzoku Kogyo Kk | Apparatus for spinning glass fiber |
JP2017226579A (en) * | 2016-06-23 | 2017-12-28 | 日本電気硝子株式会社 | Nozzle for irregularly sectioned glass fiber manufacture, and irregularly sectioned glass fiber manufacturing apparatus and manufacturing method therefor |
WO2020040033A1 (en) * | 2018-08-20 | 2020-02-27 | セントラル硝子株式会社 | Bushing for manufacturing glass fiber, and method for manufacturing glass fiber |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3294503A (en) * | 1963-04-01 | 1966-12-27 | Owens Corning Fiberglass Corp | Apparatus for producing fine continuous filaments |
GB1509855A (en) * | 1976-02-10 | 1978-05-04 | Nitto Boseki Co Ltd | Process for spinning glass fibres |
FR2470098A1 (en) * | 1979-11-20 | 1981-05-29 | Saint Gobain Vetrotex | METHOD AND APPARATUS FOR THE MANUFACTURE OF GLASS FIBERS |
JP3369674B2 (en) * | 1992-12-07 | 2003-01-20 | 日東紡績株式会社 | Nozzle tip for spinning glass fiber with irregular cross section and method for producing glass fiber with irregular cross section |
US6543258B1 (en) * | 1997-12-02 | 2003-04-08 | Nitto Boseki Co., Ltd. | Glass fiber nonwoven fabric and printed wiring board |
JP4186202B2 (en) * | 1999-06-02 | 2008-11-26 | 日東紡績株式会社 | Nozzle tip for glass fiber spinning |
KR100792118B1 (en) * | 2006-11-30 | 2008-01-04 | 주식회사 효성 | Manufacturing method for multi-functional polyester fiber and polyester fiber thereof |
WO2018123888A1 (en) * | 2016-12-27 | 2018-07-05 | 日本電気硝子株式会社 | Nozzle for modified-section glass fiber, device for manufacturing modified-section glass fiber, method for manufacturing same, and modified-section glass fiber |
US11518705B2 (en) * | 2017-02-28 | 2022-12-06 | Central Glass Company, Limited | Nozzle tip for producing glass fibers and method for producing glass fibers |
CN107627605B (en) * | 2017-08-08 | 2019-12-27 | 上海惠浦机电科技有限公司 | Double-face isomer micro-nozzle and manufacturing method thereof |
JP2019108262A (en) * | 2017-12-19 | 2019-07-04 | 日本電気硝子株式会社 | Manufacturing apparatus and manufacturing method for glass fiber |
-
2020
- 2020-06-16 JP JP2020103646A patent/JP7549288B2/en active Active
-
2021
- 2021-05-18 CN CN202180042666.1A patent/CN115803293A/en active Pending
- 2021-05-18 WO PCT/JP2021/018706 patent/WO2021256143A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6212629A (en) * | 1985-07-08 | 1987-01-21 | Nitto Boseki Co Ltd | Device for producing glass fiber |
JPH0797710A (en) * | 1993-09-25 | 1995-04-11 | Tanaka Kikinzoku Kogyo Kk | Spinneret for compact fiber |
JPH07330368A (en) * | 1994-06-06 | 1995-12-19 | Tanaka Kikinzoku Kogyo Kk | Apparatus for spinning glass fiber |
JP2017226579A (en) * | 2016-06-23 | 2017-12-28 | 日本電気硝子株式会社 | Nozzle for irregularly sectioned glass fiber manufacture, and irregularly sectioned glass fiber manufacturing apparatus and manufacturing method therefor |
WO2020040033A1 (en) * | 2018-08-20 | 2020-02-27 | セントラル硝子株式会社 | Bushing for manufacturing glass fiber, and method for manufacturing glass fiber |
Also Published As
Publication number | Publication date |
---|---|
CN115803293A (en) | 2023-03-14 |
TW202206386A (en) | 2022-02-16 |
JP7549288B2 (en) | 2024-09-11 |
JP2021195285A (en) | 2021-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6768226B2 (en) | Deformed cross-section glass fiber manufacturing equipment and its manufacturing method | |
JP7075017B2 (en) | Nozzle tip for manufacturing glass fiber, and method for manufacturing glass fiber | |
JP5622164B2 (en) | Glass fiber manufacturing apparatus and glass fiber manufacturing method | |
JP7075059B2 (en) | Nozzle for manufacturing irregular cross-section glass fiber, irregular cross-section glass fiber manufacturing equipment, its manufacturing method, irregular cross-section glass fiber | |
JP2019108262A (en) | Manufacturing apparatus and manufacturing method for glass fiber | |
WO2021256143A1 (en) | Nozzle for modified cross-section glass fibers and manufacturing method for modified cross-section glass fibers | |
JP7522387B2 (en) | Nozzle for irregular cross-section glass fiber and manufacturing method for irregular cross-section glass fiber | |
JP4370633B2 (en) | Nozzle tip for flat glass fiber spinning and manufacturing apparatus | |
JP4186202B2 (en) | Nozzle tip for glass fiber spinning | |
JP2019108249A (en) | Manufacturing apparatus and manufacturing method for glass fiber | |
WO2021157266A1 (en) | Apparatus and method for producing glass fiber | |
JP2021001111A (en) | Glass fiber aggregate | |
US5979192A (en) | Fin blade assembly | |
JP2003048742A (en) | Nozzle and pushing | |
WO2022264607A1 (en) | Bushing, glass fiber production device, and glass fiber production method | |
JP2022033465A (en) | Bushing and method for manufacturing irregular shaped cross section glass fiber | |
WO2022264606A1 (en) | Bushing, glass fiber manufacturing device, and glass fiber manufacturing method | |
JP7262704B2 (en) | Strand manufacturing method | |
JP7333020B2 (en) | Glass fiber manufacturing apparatus and manufacturing method | |
WO2023092699A1 (en) | Leakage nozzle structure, bushing and production apparatus for glass fibers | |
JP2013507314A (en) | High-efficiency fin assembly for manufacturing glass fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21826571 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21826571 Country of ref document: EP Kind code of ref document: A1 |