WO2018020743A1 - Manufacturing apparatus and manufacturing method for modified cross-section glass fiber - Google Patents

Manufacturing apparatus and manufacturing method for modified cross-section glass fiber Download PDF

Info

Publication number
WO2018020743A1
WO2018020743A1 PCT/JP2017/014024 JP2017014024W WO2018020743A1 WO 2018020743 A1 WO2018020743 A1 WO 2018020743A1 JP 2017014024 W JP2017014024 W JP 2017014024W WO 2018020743 A1 WO2018020743 A1 WO 2018020743A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
glass fiber
molten glass
axis direction
modified cross
Prior art date
Application number
PCT/JP2017/014024
Other languages
French (fr)
Japanese (ja)
Inventor
智基 柳瀬
禅 松浦
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2018020743A1 publication Critical patent/WO2018020743A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/083Nozzles; Bushing nozzle plates

Definitions

  • the present invention relates to a technique for producing a modified cross-section glass fiber.
  • a non-circular cross-section glass fiber with a non-circular cross section such as an oblong or elliptical cross section can be used in various fields because it can achieve a high reinforcing effect when mixed with a resin and compounded. Yes.
  • This type of irregular cross-section glass fiber is generally manufactured by cooling while pulling out molten glass from a nozzle. At this time, since the shape of the nozzle hole at the tip of the nozzle forms the basis of the cross-sectional shape of the glass fiber to be manufactured, the nozzle hole may be made flat at the tip of the nozzle when manufacturing a modified cross-section glass fiber. Many.
  • Patent Document 1 in order to adjust the viscosity of the molten glass, at the tip portion of the nozzle from which the molten glass flows out, at least one of a pair of long wall portions facing in the minor axis direction of the flat nozzle hole It is disclosed that a concave notch portion is provided in the inner wall and a cooling plate as a cooling means is provided at a position facing the notch portion provided in each long wall portion.
  • an object of the present invention is to make it possible to mold a modified cross-section glass fiber at a relatively high temperature, thereby improving the productivity of the modified cross-section glass fiber.
  • the present invention devised to solve the above-mentioned problems is an apparatus for producing a modified cross-section glass fiber having a bushing having a plurality of nozzles provided at the bottom, and the molten glass flows out of each of the plurality of nozzles.
  • the tip portion includes a flat nozzle hole, a pair of first wall portions opposed in the minor diameter direction of the nozzle hole, and a pair of second wall portions opposed in the major axis direction of the nozzle hole, and at least At least a part of one second wall portion has a notch, and a heat retaining means for keeping the molten glass warm through the notch is provided at a position facing the notch, and at least one of the first walls A cooling means for cooling the molten glass across the first wall portion is provided at a position facing the wall portion.
  • a notch in at least a part of the second wall means that a notch is provided only in a part of the second wall in the nozzle tip, and in the nozzle tip This includes both the case where the entire second wall is provided with a notch (the case where there is no second wall).
  • At least one of the pair of surfaces facing the minor axis direction of the nozzle hole in the molten glass is cooled by the cooling means across the second wall portion, and becomes relatively low in temperature.
  • the cooling means cools the molten glass across the first wall portion, the molten glass is not excessively cooled unlike the case where the notch portion is provided in the first wall portion.
  • at least one of a pair of surfaces (both ends in the major axis direction) of the molten glass facing the major axis direction of the nozzle hole is kept warm by a heat retaining means through a notch provided in the first wall part. Relatively high temperature.
  • a temperature difference When a temperature difference is formed in this way, a force that draws the molten glass to the surface side facing the major axis direction of the molten glass having a relatively high temperature acts. For this reason, the molten glass drawn out from the nozzle has a difference in shrinkage between the major axis direction and the minor axis direction, resulting in a modified cross-section glass fiber. That is, by providing a temperature difference by using both heat retention and cooling in this way, it is possible to produce an irregular cross-section glass fiber without excessively cooling the molten glass G. Therefore, a modified cross-section glass fiber can be produced even at a relatively high temperature.
  • the notch portion may be provided in each of the pair of second wall portions. In this way, since the molten glass is pulled on both sides in the major axis direction of the nozzle hole, it is possible to produce a modified cross-section glass fiber having a higher flatness ratio (major axis dimension / minor axis dimension).
  • the heat retaining means of one nozzle among the plurality of nozzles may be another adjacent nozzle. That is, since the nozzle itself is a heat source, if it is used as a heat retaining means, it is not necessary to separately provide a dedicated heat source that functions only as a heat retaining means in the lower space of the bushing.
  • the notch of one nozzle and the notch of another nozzle face each other.
  • the other nozzle becomes the heat retaining means for one nozzle, and at the same time, the one nozzle also becomes the heat retaining means for the other nozzle.
  • a plurality of nozzle rows in which a plurality of nozzles with the major axis direction oriented in the same direction are arranged on the same straight line extending in the major axis direction are arranged in parallel, and the cooling means is adjacent to the nozzle row. In between, it may be arrange
  • the distance between nozzles adjacent in the major axis direction is preferably 0.5 mm to 10 mm. That is, if the said distance is 0.5 mm or more, it will become difficult to join the irregular cross-section glass fibers manufactured by the adjacent nozzle, and an irregular cross-section glass fiber can be manufactured stably. Moreover, if the said distance is 10 mm or less, adjacent nozzles will not be separated too much and the heat retention effect by a nozzle can fully be acquired.
  • the distance between the nozzle adjacent to the minor axis direction and the cooling means is preferably 1 mm to 30 mm. That is, if the distance is 1 mm or more, the second wall portion side of the nozzle is difficult to be cooled by the cooling means, so the surface of the molten glass that faces the minor axis direction of the nozzle hole and the nozzle hole of the molten glass It becomes easy to make a temperature difference between the surfaces opposed to each other in the major axis direction, and it becomes easy to produce a modified cross-section glass fiber.
  • the said distance is 30 mm or less, since the cooling effect of the 1st wall part of the nozzle by a cooling means can be ensured and the number of the nozzles which can be arrange
  • the distance between the nozzle adjacent in the minor axis direction and the cooling means is preferably larger than the distance between the nozzles adjacent in the major axis direction. If it does in this way, the heat retention effect by a nozzle will become relatively stronger than the cooling effect by a cooling means. That is, the heat retaining effect by the nozzle can be sufficiently exhibited. In producing a modified cross-section glass fiber, it is preferable that the heat retaining effect and the cooling effect satisfy such a relationship.
  • the nozzle hole may include a slit portion and an enlarged portion provided at both ends in the major axis direction of the slit portion and having a larger dimension in the minor axis direction than the slit portion. If it does in this way, since the flow volume of a molten glass increases in the both ends of the major axis direction of a nozzle hole, the surface which opposes the major axis direction of a nozzle hole among molten glass becomes difficult to cool.
  • the present invention devised to solve the above problems is a method for producing a modified cross-section glass fiber by drawing a molten glass from a nozzle to produce a modified cross-section glass fiber, wherein the nozzle is at a tip portion where the molten glass flows out.
  • a flat nozzle hole, a pair of first wall portions opposed in the minor axis direction of the nozzle hole, and a pair of second wall portions opposed in the major axis direction of the nozzle hole, and at least one first 2 has a notch in at least a part of the wall, and when the molten glass is drawn out from the nozzle, the molten glass is kept warm through the notch and at least one first wall is separated from the molten glass. It is characterized by cooling. According to such a configuration, it is possible to receive the same effect as the corresponding configuration already described.
  • the molten glass preferably has a viscosity of 10 2.5 to 10 3 ⁇ 5 dPa ⁇ s at the molding temperature. That is, if it is 10 ⁇ 3 > * 5 dPa * s or less, since the viscosity of a molten glass will not become high too much, the moldability of glass fiber can be maintained favorable. Further, if the viscosity is 10 2.5 dPa ⁇ s or more, the viscosity of the molten glass does not become too low, so the force that the molten glass tries to return to the circular cross section by the surface tension is weakened, and the flatness ratio of the glass fiber can be increased. .
  • the productivity of the irregular cross-section glass fiber can be improved.
  • FIG. 4B is a cross-sectional view taken along the line A1-A1 of FIG. 4A. It is B1-B1 sectional drawing of FIG. 4B. It is C1-C1 sectional drawing of FIG. 4B. It is a perspective view which shows the nozzle which concerns on the 2nd Embodiment of this invention. It is A2-A2 sectional drawing of FIG.
  • FIG. 5A It is B2-B2 sectional drawing of FIG. 5B. It is C2-C2 sectional drawing of FIG. 5B. It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 3rd Embodiment of this invention. It is B3-B3 sectional drawing of FIG. 6A. It is C3-C3 sectional drawing of FIG. 6A. It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 4th Embodiment of this invention. It is B4-B4 sectional drawing of FIG. 7A. It is C4-C4 sectional drawing of FIG. 7A. It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 5th Embodiment of this invention.
  • FIG. 9B is a sectional view taken along line B6-B6 of FIG. 9A.
  • FIG. 9B is a sectional view taken along the line C6-C6 of FIG. 9A.
  • FIG. 10B is a B7-B7 cross-sectional view of FIG. 10A.
  • FIG. 10B is a sectional view taken along line C3-C3 of FIG. 10A.
  • FIG. 11B is a sectional view taken along the line B8-B8 of FIG. 11A.
  • FIG. 11B is a cross-sectional view taken along the line C8-C8 of FIG. 11A.
  • the modified cross-section glass fiber manufacturing apparatus includes a glass melting furnace 1, a forehearth 2 connected to the glass melting furnace 1, and a feeder 3 connected to the forehearth 2.
  • a glass melting furnace 1 a glass melting furnace 1
  • a forehearth 2 connected to the glass melting furnace 1
  • a feeder 3 connected to the forehearth 2.
  • the X direction and the Y direction are horizontal directions
  • the Z direction is a vertical direction (hereinafter the same).
  • the molten glass G is supplied to the feeder 3 through the glass melting furnace 1 and the forehearth 2 and is stored in the feeder 3. Although one feeder 3 is illustrated in FIG. 1, a plurality of feeders 3 may be connected to the glass melting furnace.
  • the molten glass G is made of E glass, but may be other glass materials such as D glass, S glass, AR glass, and C glass.
  • the bottom of the feeder 3 is constituted by a bushing 4.
  • the bushing 4 is attached to the feeder 3 via a bushing block or the like.
  • a plurality of nozzles 5 are provided at the bottom of the bushing 4.
  • a cooling pipe 6 as a cooling means is provided in the vicinity of each nozzle 5.
  • Molten glass G stored in the feeder 3 is drawn downward from a plurality of nozzles 5 provided in the bushing 4 to produce glass fibers (monofilaments) Gm.
  • the viscosity of the molten glass G at the molding temperature is set in the range of 10 2.5 to 10 3 ⁇ 5 dPa ⁇ s (preferably 10 2.7 to 10 3 ⁇ 2 dPa ⁇ s).
  • the viscosity of the molten glass G at the molding temperature is the viscosity of the molten glass G at the position flowing into the nozzle 5.
  • a bundling agent is applied to the surface of the glass fiber Gm by an applicator (not shown), and 100 to 10,000 pieces are spun into one strand Gs.
  • the spun strand Gs is wound as a fiber bundle Gr on the bobbin 7 of the winding device.
  • the strand Gs is cut into a predetermined length of about 1 to 20 mm, for example, and used as a chopped strand.
  • At least a part of the glass melting furnace 1, the forehearth 2, the feeder 3, the bushing 4, the nozzle 5 and the cooling pipe 6 is made of platinum or a platinum alloy (for example, platinum rhodium alloy).
  • the feeder 3 and the bushing 4 may be heated by electric heating or the like.
  • the nozzle 5 includes a pair of short walls (first wall portions) 51 that face each other in the Y direction and a pair of short walls that face each other in the Y direction.
  • a wall portion (second wall portion) 52 and a flat nozzle hole 53 defined by a long wall portion 51 and a short wall portion 52 are provided.
  • Each short wall portion 52 is provided with a notch portion 54, and both end portions in the Y direction of the nozzle hole 53 communicate with the external space of the nozzle 5 through the notch portion 54 (see FIG. 3).
  • the major axis direction of the nozzle hole 53 coincides with the Y direction
  • the minor axis direction of the nozzle hole 53 coincides with the X direction.
  • the X direction dimension of the short wall part 52 is shorter than the Y direction dimension of the long wall part 51.
  • the dimensional relationship between the wall portions 51 and 52 is not particularly limited.
  • the cooling pipe 6 is adapted to circulate (for example, circulate) cooling water F as a fluid therein and exert a cooling action.
  • the cooling pipe 6 is a plate-like body and is arranged so that its plate surface is along the vertical direction.
  • the cooling pipe 6 is integrally provided at the bottom of the bushing 4, but may be provided separately from the bottom of the bushing 4.
  • the cooling pipe 6 may be a circular tubular body.
  • the position in the Z direction (height) of the cooling pipe 6 can be appropriately adjusted according to the cooling conditions of the molten glass G.
  • the cooling pipe 6 may be disposed so as to straddle the nozzle 5 so as not to directly face the molten glass G drawn from the nozzle 5.
  • the cooling means is not limited to the cooling pipe 6 and may be a cooling fin or the like.
  • a plurality of nozzle rows L are arranged in parallel at intervals in the X direction at the bottom of the bushing 4.
  • Each nozzle row L is configured by arranging a plurality of nozzles 5 with the major axis direction of the nozzle holes 53 oriented in the Y direction on the same straight line extending in the Y direction.
  • the cooling pipe 6 is arranged in parallel with the nozzle row L between the nozzle rows L adjacent in the X direction. Thereby, the cooling pipe 6 opposes the long wall part 51, and the molten glass G which distribute
  • the cooling pipe 6 also has a function of cooling the bushing 4 and the nozzle 5 and suppressing the thermal deterioration thereof to improve durability.
  • the other nozzle 5 serves as a heat retaining means for one nozzle 5, and at the same time, the one nozzle 5 serves as a heat retaining means for the other nozzle 5.
  • the heat retaining means is not limited to the nozzle 5 and may be a heater composed of a heating wire or the like.
  • the distance Sy between the nozzles 5 adjacent in the Y direction is preferably 0.5 mm to 10 mm.
  • the lower limit value of the distance Sy is more preferably 0.7 mm, 1.0 mm, 2.0 mm, and 3.0 mm.
  • the upper limit value of the distance Sy is more preferably 8 mm, 7 mm, and 5 mm.
  • the distance Sx between the nozzle 5 and the cooling pipe 6 adjacent in the X direction is preferably 1 mm to 30 mm.
  • the lower limit value of the distance Sx is more preferably 2 mm, 3 mm, 4 mm, and 5 mm.
  • the upper limit value of the distance Sx is more preferably 25 mm, 20 mm, 15 mm, and 10 mm.
  • the distance Sx is preferably larger than the distance Sy.
  • each of the pair of surfaces facing each other in the X direction is cooled by the cooling pipe 6 across the long wall portion 51 and is relatively It becomes low temperature.
  • each of a pair of surfaces (both ends in the Y direction) facing each other in the Y direction is provided on the short wall portion 52 by another adjacent nozzle 5. The temperature is maintained through the cut-out portion 54, and the temperature becomes relatively high.
  • the modified cross-section glass fiber Gm can be produced without excessively cooling the molten glass G. Therefore, as described above, the modified cross-section glass fiber Gm can be produced even at a relatively high temperature such that the viscosity of the molten glass G is 10 2.5 to 10 3 ⁇ 5 dPa ⁇ s.
  • the nozzle 5 forms a rectangular parallelepiped as a whole, and communicates in the Z direction by a pair of long wall portions 51 facing each other in the X direction and a pair of short wall portions 52 facing each other in the Y direction.
  • a nozzle hole 53 is partitioned.
  • a concave notch 54 is provided at the center in the X direction of each of the pair of short walls 52.
  • the short wall portions 52 where the notches 54 are not formed are located on both sides in the X direction of the notches 54. Both end portions in the Y direction of the nozzle hole 53 communicate with the external space of the nozzle 5 through the notch portion 54.
  • the nozzle hole 53 is a flat oval (or ellipse) and has a constant shape in the Z direction.
  • the nozzle hole 53 has a ratio (a / b) of the X direction dimension (short diameter dimension) b to the Y direction dimension (major diameter dimension) a of 1.5 to 20. (Preferably 3 to 10).
  • the X-direction dimension of the notch 54 is smaller than the X-direction dimension of the nozzle hole 53, but may be the same or larger.
  • the shape of the base end portion is the same as the shape of the tip portion. May be different or different.
  • the shape of the notch 54 of the nozzle 5 can be variously modified. Hereinafter, the modification is demonstrated.
  • a cutout portion 54 may be provided on the entire short wall portion 52 at the tip portion of the nozzle 5. That is, in this embodiment, there is no short wall 52 at the tip of the nozzle 5. Thereby, there is no boundary between the notch portion 54 and the outer space of the nozzle 5, and the notch portion 54 forms a part of the outer space of the nozzle 5. Therefore, both ends of the nozzle hole 53 in the Y direction communicate directly with the external space of the nozzle 5. Part of the molten glass G flowing through the nozzle hole 53 leaks from the Y direction both ends of the nozzle hole 53 into the external space of the nozzle 5 at the tip of the nozzle 5, and as shown in FIG.
  • the pool part Gt becomes a stopper and the molten glass G becomes difficult to shrink in the Y direction.
  • the nozzle hole 53 is a flat oval (or ellipse) and has a constant shape in the Z direction.
  • the shape of the nozzle hole 53 can be variously modified. The modification is demonstrated below.
  • the shape of the notch 54 will be described by taking the shape shown in FIGS. 4A to 4D as an example, but is not limited to this, and for example, the shape shown in FIGS. 5A to 5D may be used. Good.
  • the nozzle hole 53 includes a slit portion 53a that is elongated in the Y direction, and an enlarged portion 53b that is provided at both ends of the slit portion 53a and has a larger dimension in the X direction than the slit portion 53a. You may have.
  • the nozzle hole 53 has a dumbbell shape in which the enlarged portion 53b has a circular shape, and has a constant shape in the Z direction. Note that the shape of the nozzle hole 53 may be changed to an oval shape or the like so that the area of the flow path in the Y direction is substantially the same at the tip of the nozzle 5 where the notch 54 is formed. In this case, the flow path of the nozzle hole 53 is all included in the flow path of the nozzle hole 53 at the tip.
  • the nozzle hole 53 may have an area changing portion 53c in which the flow path area gradually increases from the center in the Y direction toward both end portions.
  • the nozzle hole 53 has a shape in which the vertices of two isosceles triangles abut each other and the bisector of the apex angle is arranged on the same straight line (Y direction).
  • the shape of the nozzle hole 53 may be changed so that the flow area in the Y direction is substantially the same at the tip of the nozzle 5 where the notch 54 is formed (FIG. 7C).
  • the nozzle hole 53 may have a rectangular shape having a constant shape in the Z direction.
  • the nozzle hole 53 may be divided into a plurality of nozzle holes 53d at the base end portion of the nozzle 5.
  • the nozzle hole 53d has a circular shape, and is provided at an interval between both ends and the center in the Y direction.
  • the shape of the nozzle hole 53 may be changed so that the plurality of divided nozzle holes 53d merge together at the tip of the nozzle 5 where the notch 54 is formed ( In the example shown, an oval).
  • the flow path of the nozzle hole 53 at the proximal end portion shown in FIG. 9B is all included in the flow path of the nozzle hole 53 at the distal end portion shown in FIG. 9C.
  • the nozzle hole 53 may alternately have a large area portion 53e with a large channel area and a small area portion 53f with a small channel area in the Y direction.
  • the circular large area part 53e is provided in the both ends and center part of a Y direction, and it touches the large area part 53e of both sides between the adjacent large area parts 53e.
  • a circular small area portion 53f is provided.
  • the shape of the nozzle hole 53 may be changed so that the flow area in the Y direction is substantially the same at the tip of the nozzle 5 where the notch 54 is formed (FIG. 10C). In the example shown, it is oval). In this case, it is assumed that the flow path of the nozzle hole 53 at the proximal end portion shown in FIG. 10B is entirely included in the flow path of the nozzle hole 53 at the distal end portion shown in FIG. 10C.
  • the nozzle hole 53 may have an area changing portion 53g in which the flow path area gradually decreases from the center in the Y direction toward both ends.
  • the shape of the nozzle hole 53 is a diamond shape.
  • the flow path of the nozzle hole 53 at the proximal end portion shown in FIG. 11B is all included in the flow path of the nozzle hole 53 at the distal end portion shown in FIG. 11C.
  • the glass fiber Gm produced by drawing the molten glass G from the nozzle 5 of the production apparatus as described above has an irregular shape in which a cross section (a cross section perpendicular to the drawing direction) forms a flat shape. It has a cross section.
  • the flatness ratio (A / B) of the sectional shape is in the range of 3 to 10 (preferably 4 to 8). ing.
  • the value obtained by dividing the variation ⁇ of the flat ratio of the glass fiber Gm by the average value of the flat ratio as a percentage is 15% or less. That is, it is possible to obtain glass fibers Gm with little variation.
  • the value obtained by dividing the variation ⁇ of the flat ratio of the glass fiber Gm by the average value of the flat ratio in percentage is more preferably 10% or less.
  • the flatness ratio of the glass fiber Gm is measured as follows. First, in order to observe the cross section of the glass fiber Gm, the glass fiber Gm is vertically embedded in a room temperature curable resin technobit manufactured by Kulzer and polished after the resin is cured. Next, while observing the cross-sectional shape of the glass fiber Gm with a polarizing microscope, the lengths of the major and minor axes of the glass fiber Gm observed using the image processing software WinROOF manufactured by Mitani Corporation are measured, and the flat ratio Calculate (major axis / minor axis). The variation ⁇ of the flat ratio is a standard deviation calculated from the flat ratio obtained by observing the cross section of 50 glass fibers Gm.
  • this invention is not limited to said embodiment, It can implement in a various form.
  • the Y-direction positions of the individual nozzles 5 included in each nozzle row are aligned, but as shown in FIG.
  • the positions of the individual nozzles 5 included in the Y direction may be shifted.
  • the arrangement mode is such that the Y-direction positions of the nozzles 5 included in the other adjacent nozzle rows L are between the nozzles 5 adjacent to each other in the Y direction included in one nozzle row L. It has been adjusted.
  • the cooling pipes 6 are arranged for each nozzle row L.
  • the cooling pipes 6 include a plurality of rows of nozzles. It may be arranged for each row L. 14A and 14B, the cooling pipe 6 is arranged for each of the two nozzle rows L. In this case, the cooling pipe 6 is disposed only on one side of one nozzle row L.
  • the notch portion 54 is provided in each of the pair of short wall portions 52 of the nozzle 5, but the notch portion 54 is provided only in one short wall portion 52. May be.
  • the cutout portion 54 of one nozzle 5 and the short wall portion 52 on the side where the cutout portion 54 of another adjacent nozzle 5 is not formed are opposed to each other.
  • the notch portion 54 of one nozzle 5 and the notch portion 54 of another adjacent nozzle 5 may face each other. In the latter case, in another position, the short wall portion 52 on the side where the notch portion 54 of one nozzle 5 is not formed and the short wall portion on the side where the notch portion 54 of the other nozzle 5 is not formed. 52 may face each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

This manufacturing apparatus for a modified cross-section glass fiber is provided with, at the bottom section thereof, a bushing 4 in which a plurality of nozzles 5 is disposed. Each of the plurality of nozzles 5 is provided with, at a tip section thereof from which molten glass G flows out, a flat-shaped nozzle hole 53, a pair of long wall sections 51 facing each other in the X direction, and a pair of short wall sections 52 facing each other in the Y direction. At least one of the short wall sections 52 has a cutout section 54. In a position facing the short wall section 52 where the cutout section 54 of one nozzle 5 is disposed, another nozzle 5 is arranged as a temperature retention means for retaining the temperature of the molten glass G via the cutout section 54. In a position facing at least one of the long wall sections 51 of one nozzle 5, a cooling pipe 6 for cooling the molten glass G across the long wall section 51 is arranged.

Description

異形断面ガラス繊維の製造装置、及びその製造方法Apparatus for producing modified cross-section glass fiber, and method for producing the same
 本発明は、異形断面ガラス繊維の製造技術に関するものである。 The present invention relates to a technique for producing a modified cross-section glass fiber.
 断面が長円形や楕円形のような扁平形状などの非円形断面を有する異形断面ガラス繊維は、樹脂と混合して複合化した場合に高い補強効果を実現できることから、さまざまな分野で利用されている。 A non-circular cross-section glass fiber with a non-circular cross section such as an oblong or elliptical cross section can be used in various fields because it can achieve a high reinforcing effect when mixed with a resin and compounded. Yes.
 この種の異形断面ガラス繊維は、ノズルから溶融ガラスを引き出しながら冷却することにより製造されるのが一般的である。この際、ノズル先端部のノズル孔の形状が製造されるガラス繊維の断面形状の基礎を形作ることから、異形断面ガラス繊維を製造する場合、ノズル先端部においてノズル孔が扁平状とされることが多い。 This type of irregular cross-section glass fiber is generally manufactured by cooling while pulling out molten glass from a nozzle. At this time, since the shape of the nozzle hole at the tip of the nozzle forms the basis of the cross-sectional shape of the glass fiber to be manufactured, the nozzle hole may be made flat at the tip of the nozzle when manufacturing a modified cross-section glass fiber. Many.
 しかしながら、扁平状のノズル孔を有するノズルを使用したとしても、ノズルから引き出される溶融ガラスの粘度が不適切であれば、ノズル直下で表面張力により溶融ガラスの断面が丸くなるように形成されやすく、所期の異形断面ガラス繊維を製造することができなくなる。 However, even if a nozzle having a flat nozzle hole is used, if the viscosity of the molten glass drawn from the nozzle is inappropriate, it is easy to be formed so that the cross section of the molten glass is rounded by the surface tension directly under the nozzle, The desired modified cross-section glass fiber cannot be produced.
 そこで、例えば、特許文献1には、溶融ガラスの粘度を調整するために、溶融ガラスが流出するノズルの先端部において、扁平状のノズル孔の短径方向で対向する一対の長壁部の少なくとも一方に凹状の切欠き部を設けるとともに、それぞれの長壁部に設けられた切欠き部に対向する位置に冷却手段としての冷却板を設けることが開示されている Therefore, for example, in Patent Document 1, in order to adjust the viscosity of the molten glass, at the tip portion of the nozzle from which the molten glass flows out, at least one of a pair of long wall portions facing in the minor axis direction of the flat nozzle hole It is disclosed that a concave notch portion is provided in the inner wall and a cooling plate as a cooling means is provided at a position facing the notch portion provided in each long wall portion.
特許第5488863号Patent No. 5488863
 ところで、特許文献1では、冷却板とノズルに設けられた切欠き部の作用によって溶融ガラスを積極的に冷却することで溶融ガラスの粘度を上げ、ノズルから引き出された溶融ガラスが表面表力によって丸まろうとする力を抑えている。そのため、特許文献1では、比較的低温でガラス繊維を製造することが余儀なくされる。 By the way, in patent document 1, the viscosity of a molten glass is raised by positively cooling molten glass by the effect | action of the notch part provided in the cooling plate and the nozzle, and the molten glass pulled out from the nozzle is surface surface force. The power to curl is suppressed. Therefore, in patent document 1, it is forced to manufacture glass fiber at comparatively low temperature.
 しかしながら、この場合、溶融ガラスの粘度が低下するので、溶融ガラスの流動性が低下する。その結果、ノズルから溶融ガラスを効率よく引き出すことができず、異形断面ガラス繊維の生産性が低下するという問題がある。 However, in this case, since the viscosity of the molten glass is lowered, the fluidity of the molten glass is lowered. As a result, there is a problem that the molten glass cannot be efficiently drawn out from the nozzle, and the productivity of the modified cross-section glass fiber is lowered.
 以上の実情に鑑み、本発明は、比較的高温での異形断面ガラス繊維の成形を可能とし、もって異形断面ガラス繊維の生産性の向上を図ることを課題とする。 In view of the above circumstances, an object of the present invention is to make it possible to mold a modified cross-section glass fiber at a relatively high temperature, thereby improving the productivity of the modified cross-section glass fiber.
 上記課題を解決するために創案された本発明は、底部に複数のノズルが設けられたブッシングを備えた異形断面ガラス繊維の製造装置であって、複数のノズルのそれぞれは、溶融ガラスが流出する先端部において、扁平状のノズル孔と、ノズル孔の短径方向で対向する一対の第1の壁部と、ノズル孔の長径方向で対向する一対の第2の壁部と、を備え、少なくとも一方の第2の壁部の少なくとも一部に切欠き部を有し、切欠き部に対向する位置に、切欠き部を通じて溶融ガラスを保温する保温手段が設けられるとともに、少なくとも一方の第1の壁部に対向する位置に、第1の壁部を隔てて溶融ガラスを冷却する冷却手段が設けられていることを特徴とする。ここで、「第2の壁部の少なくとも一部に切欠き部を有し」とは、ノズル先端部において第2の壁部の一部のみに切欠き部を設ける場合と、ノズル先端部において第2の壁部全体を全体に切欠き部を設ける場合(第2の壁部がない場合)との双方を含む意味である。 The present invention devised to solve the above-mentioned problems is an apparatus for producing a modified cross-section glass fiber having a bushing having a plurality of nozzles provided at the bottom, and the molten glass flows out of each of the plurality of nozzles. The tip portion includes a flat nozzle hole, a pair of first wall portions opposed in the minor diameter direction of the nozzle hole, and a pair of second wall portions opposed in the major axis direction of the nozzle hole, and at least At least a part of one second wall portion has a notch, and a heat retaining means for keeping the molten glass warm through the notch is provided at a position facing the notch, and at least one of the first walls A cooling means for cooling the molten glass across the first wall portion is provided at a position facing the wall portion. Here, “having a notch in at least a part of the second wall” means that a notch is provided only in a part of the second wall in the nozzle tip, and in the nozzle tip This includes both the case where the entire second wall is provided with a notch (the case where there is no second wall).
 このような構成によれば、溶融ガラスのうちノズル孔の短径方向に対向する一対の面の少なくとも一方が、冷却手段によって第2の壁部を隔てて冷却されて相対的に低温となる。ここで、冷却手段は、第1の壁部を隔てて溶融ガラスを冷却するため、第1の壁部に切欠き部を設けた場合のように溶融ガラスが過度に冷却されることはない。その一方で、溶融ガラスのうちノズル孔の長径方向に対向する一対の面(長径方向の両端部)の少なくとも一方が、保温手段によって第1の壁部に設けられた切欠き部を通じて保温されて相対的に高温となる。このように温度差が形成さると、相対的に高温である溶融ガラスの長径方向に対向する面側に溶融ガラスを引き寄せる力が働く。そのため、ノズルから引き出された溶融ガラスには長径方向と短径方向で収縮量に差が生じ、異形断面ガラス繊維となる。すなわち、このように保温と冷却を併用して温度差を設けることで、溶融ガラスGを過度に冷却しなくても異形断面ガラス繊維を製造することができる。したがって、比較的高温でも異形断面ガラス繊維を製造することができる。 According to such a configuration, at least one of the pair of surfaces facing the minor axis direction of the nozzle hole in the molten glass is cooled by the cooling means across the second wall portion, and becomes relatively low in temperature. Here, since the cooling means cools the molten glass across the first wall portion, the molten glass is not excessively cooled unlike the case where the notch portion is provided in the first wall portion. On the other hand, at least one of a pair of surfaces (both ends in the major axis direction) of the molten glass facing the major axis direction of the nozzle hole is kept warm by a heat retaining means through a notch provided in the first wall part. Relatively high temperature. When a temperature difference is formed in this way, a force that draws the molten glass to the surface side facing the major axis direction of the molten glass having a relatively high temperature acts. For this reason, the molten glass drawn out from the nozzle has a difference in shrinkage between the major axis direction and the minor axis direction, resulting in a modified cross-section glass fiber. That is, by providing a temperature difference by using both heat retention and cooling in this way, it is possible to produce an irregular cross-section glass fiber without excessively cooling the molten glass G. Therefore, a modified cross-section glass fiber can be produced even at a relatively high temperature.
 上記の構成において、切欠き部は、一対の第2の壁部のそれぞれに設けられていてもよい。このようにすれば、溶融ガラスが、ノズル孔の長径方向の両側に引っ張られるので、より扁平比(長径寸法/短径寸法)の高い異形断面ガラス繊維を製造することができる。 In the above configuration, the notch portion may be provided in each of the pair of second wall portions. In this way, since the molten glass is pulled on both sides in the major axis direction of the nozzle hole, it is possible to produce a modified cross-section glass fiber having a higher flatness ratio (major axis dimension / minor axis dimension).
 上記の構成において、複数のノズルのうち、一のノズルの保温手段は、隣接する他のノズルであってもよい。すなわち、ノズル自体が熱源であるため、保温手段として用いれば、ブッシングの下部空間に保温手段としてのみ機能する専用の熱源を別途設ける必要がなくなる。 In the above configuration, the heat retaining means of one nozzle among the plurality of nozzles may be another adjacent nozzle. That is, since the nozzle itself is a heat source, if it is used as a heat retaining means, it is not necessary to separately provide a dedicated heat source that functions only as a heat retaining means in the lower space of the bushing.
 上記の構成において、一のノズルの切欠き部と、他のノズルの切欠き部とが、互いに対向していることが好ましい。このようにすれば、他のノズルが一のノズルの保温手段になると同時に、一のノズルが他のノズルの保温手段にもなる。 In the above configuration, it is preferable that the notch of one nozzle and the notch of another nozzle face each other. In this way, the other nozzle becomes the heat retaining means for one nozzle, and at the same time, the one nozzle also becomes the heat retaining means for the other nozzle.
 上記の構成において、長径方向を同一方向に向けた複数のノズルを長径方向に延びる同一直線上に配置してなるノズル列が、平行に複数列配置されるとともに、冷却手段が、隣接するノズル列の間に、ノズル列と平行に配置されていてもよい。このようにすれば、冷却手段の数を減らしつつ、ブッシングにノズルを密に配置できるため、異形断面ガラス繊維を効率よく製造することができる。 In the above configuration, a plurality of nozzle rows in which a plurality of nozzles with the major axis direction oriented in the same direction are arranged on the same straight line extending in the major axis direction are arranged in parallel, and the cooling means is adjacent to the nozzle row. In between, it may be arrange | positioned in parallel with a nozzle row. In this way, since the nozzles can be densely arranged in the bushing while reducing the number of cooling means, the modified cross-section glass fiber can be produced efficiently.
 上記の構成において、長径方向で隣接するノズル間の距離は、0.5mm~10mmであることが好ましい。すなわち、当該距離が0.5mm以上であれば、隣接するノズルによって製造される異形断面ガラス繊維同士が接合しにくくなり、異形断面ガラス繊維を安定的に製造することができる。また、当該距離が10mm以下であれば、隣接するノズル同士が離れすぎず、ノズルによる保温効果を十分に得ることができる。 In the above configuration, the distance between nozzles adjacent in the major axis direction is preferably 0.5 mm to 10 mm. That is, if the said distance is 0.5 mm or more, it will become difficult to join the irregular cross-section glass fibers manufactured by the adjacent nozzle, and an irregular cross-section glass fiber can be manufactured stably. Moreover, if the said distance is 10 mm or less, adjacent nozzles will not be separated too much and the heat retention effect by a nozzle can fully be acquired.
 上記の構成において、短径方向で隣接するノズルと冷却手段の間の距離は、1mm~30mmであることが好ましい。すなわち、当該距離が1mm以上であれば、冷却手段によってノズルの第2の壁部側が冷却されにくくなるので、溶融ガラスのうちノズル孔の短径方向に対向する面と、溶融ガラスのうちノズル孔の長径方向に対向する面との間で温度差を付けやすく、異形断面ガラス繊維を製造しやすくなる。また、当該距離が30mm以下であれば、冷却手段によるノズルの第1の壁部の冷却効果を確保しつつ、ブッシングに配置できるノズルの数を十分に確保することができるので、異形断面ガラス繊維の生産性が向上する。 In the above configuration, the distance between the nozzle adjacent to the minor axis direction and the cooling means is preferably 1 mm to 30 mm. That is, if the distance is 1 mm or more, the second wall portion side of the nozzle is difficult to be cooled by the cooling means, so the surface of the molten glass that faces the minor axis direction of the nozzle hole and the nozzle hole of the molten glass It becomes easy to make a temperature difference between the surfaces opposed to each other in the major axis direction, and it becomes easy to produce a modified cross-section glass fiber. Moreover, if the said distance is 30 mm or less, since the cooling effect of the 1st wall part of the nozzle by a cooling means can be ensured and the number of the nozzles which can be arrange | positioned to a bushing can fully be ensured, a modified cross-section glass fiber Productivity is improved.
 上記の構成において、短径方向で隣接するノズルと冷却手段の間の距離が、長径方向で隣接するノズル間の距離よりも大きいことが好ましい。このようにすれば、ノズルによる保温効果が、冷却手段による冷却効果よりも相対的に強くなる。すなわち、ノズルによる保温効果を十分に発揮することができる。異形断面ガラス繊維を製造する上では、保温効果と冷却効果がこのような関係性を満たすことが好ましい。 In the above configuration, the distance between the nozzle adjacent in the minor axis direction and the cooling means is preferably larger than the distance between the nozzles adjacent in the major axis direction. If it does in this way, the heat retention effect by a nozzle will become relatively stronger than the cooling effect by a cooling means. That is, the heat retaining effect by the nozzle can be sufficiently exhibited. In producing a modified cross-section glass fiber, it is preferable that the heat retaining effect and the cooling effect satisfy such a relationship.
 上記の構成において、ノズル孔は、スリット部と、スリット部の長径方向の両端部に設けられ、スリット部よりも短径方向の寸法が大きい拡大部とを備えていてもよい。このようにすれば、ノズル孔の長径方向の両端部において溶融ガラスの流量が増えるため、溶融ガラスのうちノズル孔の長径方向に対向する面が冷えにくくなる。そのため、保温手段との相乗効果により、溶融ガラスのうちノズル孔の短径方向に対向する面と、溶融ガラスのうちノズル孔の長径方向に対向する面との間でより大きな温度差を付けやすくなる。したがって、扁平比の高い異形断面ガラス繊維を製造しやすくなる。 In the above configuration, the nozzle hole may include a slit portion and an enlarged portion provided at both ends in the major axis direction of the slit portion and having a larger dimension in the minor axis direction than the slit portion. If it does in this way, since the flow volume of a molten glass increases in the both ends of the major axis direction of a nozzle hole, the surface which opposes the major axis direction of a nozzle hole among molten glass becomes difficult to cool. Therefore, due to the synergistic effect with the heat retaining means, it is easy to make a larger temperature difference between the surface of the molten glass facing the minor axis direction of the nozzle hole and the surface of the molten glass facing the major axis direction of the nozzle hole. Become. Therefore, it becomes easy to manufacture a modified cross-section glass fiber having a high aspect ratio.
 上記課題を解決するために創案された本発明は、ノズルから溶融ガラスを引き出して異形断面ガラス繊維を製造する異形断面ガラス繊維の製造方法であって、ノズルは、溶融ガラスが流出する先端部において、扁平状のノズル孔と、ノズル孔の短径方向で対向する一対の第1の壁部と、ノズル孔の長径方向で対向する一対の第2の壁部と、を備え、少なくとも一方の第2の壁部の少なくとも一部に切欠き部を有し、ノズルから溶融ガラスを引き出す際に、切欠き部を通じて溶融ガラスを保温するとともに、少なくとも一方の第1の壁部を隔てて溶融ガラスを冷却することを特徴とする。このような構成によれば、既に述べた対応する構成と同様の効果を享受することができる。 The present invention devised to solve the above problems is a method for producing a modified cross-section glass fiber by drawing a molten glass from a nozzle to produce a modified cross-section glass fiber, wherein the nozzle is at a tip portion where the molten glass flows out. A flat nozzle hole, a pair of first wall portions opposed in the minor axis direction of the nozzle hole, and a pair of second wall portions opposed in the major axis direction of the nozzle hole, and at least one first 2 has a notch in at least a part of the wall, and when the molten glass is drawn out from the nozzle, the molten glass is kept warm through the notch and at least one first wall is separated from the molten glass. It is characterized by cooling. According to such a configuration, it is possible to receive the same effect as the corresponding configuration already described.
 上記の構成において、成形温度において、溶融ガラスは、102.5~103・5dPa・sの粘度を有することが好ましい。すなわち、103・5dPa・s以下であれば、溶融ガラスの粘度が高くなりすぎないため、ガラス繊維の成形性を良好に維持することができる。また、102.5dPa・s以上であれば、溶融ガラスの粘度が低くなりすぎないため、溶融ガラスが表面張力によって円形断面に戻ろうとする力が弱められ、ガラス繊維の扁平比を高めることができる。 In the above configuration, the molten glass preferably has a viscosity of 10 2.5 to 10 3 · 5 dPa · s at the molding temperature. That is, if it is 10 < 3 > * 5 dPa * s or less, since the viscosity of a molten glass will not become high too much, the moldability of glass fiber can be maintained favorable. Further, if the viscosity is 10 2.5 dPa · s or more, the viscosity of the molten glass does not become too low, so the force that the molten glass tries to return to the circular cross section by the surface tension is weakened, and the flatness ratio of the glass fiber can be increased. .
 以上の本発明によれば、比較的高温での異形断面ガラス繊維の成形が可能になるため、異形断面ガラス繊維の生産性の向上を図ることができる。 According to the present invention as described above, since it becomes possible to mold the irregular cross-section glass fiber at a relatively high temperature, the productivity of the irregular cross-section glass fiber can be improved.
本発明の一実施形態に係る異形断面ガラス繊維製造装置を示す断面図である。It is sectional drawing which shows the irregular cross-section glass fiber manufacturing apparatus which concerns on one Embodiment of this invention. 図1のノズル周辺を拡大して示す断面図である。It is sectional drawing which expands and shows the nozzle periphery of FIG. 図1のノズル周辺を拡大して示す底面図である。It is a bottom view which expands and shows the nozzle periphery of FIG. 本発明の第1の実施形態に係るノズルを示す斜視図である。It is a perspective view which shows the nozzle which concerns on the 1st Embodiment of this invention. 図4AのA1-A1断面図である。FIG. 4B is a cross-sectional view taken along the line A1-A1 of FIG. 4A. 図4BのB1-B1断面図である。It is B1-B1 sectional drawing of FIG. 4B. 図4BのC1-C1断面図である。It is C1-C1 sectional drawing of FIG. 4B. 本発明の第2の実施形態に係るノズルを示す斜視図である。It is a perspective view which shows the nozzle which concerns on the 2nd Embodiment of this invention. 図5AのA2-A2断面図である。It is A2-A2 sectional drawing of FIG. 5A. 図5BのB2-B2断面図である。It is B2-B2 sectional drawing of FIG. 5B. 図5BのC2-C2断面図である。It is C2-C2 sectional drawing of FIG. 5B. 本発明の第3の実施形態に係るノズルを示す縦断面図である。It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 3rd Embodiment of this invention. 図6AのB3-B3断面図である。It is B3-B3 sectional drawing of FIG. 6A. 図6AのC3-C3断面図である。It is C3-C3 sectional drawing of FIG. 6A. 本発明の第4の実施形態に係るノズルを示す縦断面図である。It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 4th Embodiment of this invention. 図7AのB4-B4断面図である。It is B4-B4 sectional drawing of FIG. 7A. 図7AのC4-C4断面図である。It is C4-C4 sectional drawing of FIG. 7A. 本発明の第5の実施形態に係るノズルを示す縦断面図である。It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 5th Embodiment of this invention. 図8AのB5-B5断面図である。It is B5-B5 sectional drawing of FIG. 8A. 図8AのC5-C5断面図である。It is C5-C5 sectional drawing of FIG. 8A. 本発明の第6の実施形態に係るノズルを示す縦断面図である。It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 6th Embodiment of this invention. 図9AのB6-B6断面図である。FIG. 9B is a sectional view taken along line B6-B6 of FIG. 9A. 図9AのC6-C6断面図である。FIG. 9B is a sectional view taken along the line C6-C6 of FIG. 9A. 本発明の第7の実施形態に係るノズルを示す縦断面図である。It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 7th Embodiment of this invention. 図10AのB7-B7断面図である。FIG. 10B is a B7-B7 cross-sectional view of FIG. 10A. 図10AのC3-C3断面図である。FIG. 10B is a sectional view taken along line C3-C3 of FIG. 10A. 本発明の第8の実施形態に係るノズルを示す縦断面図である。It is a longitudinal cross-sectional view which shows the nozzle which concerns on the 8th Embodiment of this invention. 図11AのB8-B8断面図である。FIG. 11B is a sectional view taken along the line B8-B8 of FIG. 11A. 図11AのC8-C8断面図である。FIG. 11B is a cross-sectional view taken along the line C8-C8 of FIG. 11A. 異形断面ガラス繊維の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of an irregular cross-section glass fiber. 異形断面ガラス繊維の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of an irregular cross-section glass fiber. ブッシングに対するノズル配列態様の変形例を説明するための図である。It is a figure for demonstrating the modification of the nozzle arrangement | sequence aspect with respect to bushing. ブッシングに対するノズル配列態様の変形例を説明するための図である。It is a figure for demonstrating the modification of the nozzle arrangement | sequence aspect with respect to bushing. ブッシングに対するノズル配列態様の変形例を説明するための図である。It is a figure for demonstrating the modification of the nozzle arrangement | sequence aspect with respect to bushing. ブッシングに対するノズル配列態様の変形例を説明するための図である。It is a figure for demonstrating the modification of the nozzle arrangement | sequence aspect with respect to bushing. ブッシングに対するノズル配列態様の変形例を説明するための図である。It is a figure for demonstrating the modification of the nozzle arrangement | sequence aspect with respect to bushing.
 以下、本発明の実施形態について、添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(異形断面ガラス繊維の製造装置及び製造方法の一実施形態)
 図1に示すように、本実施形態に係る異形断面ガラス繊維製造装置は、ガラス溶融炉1と、ガラス溶融炉1に接続されたフォアハース2と、フォアハース2に接続されたフィーダー3とを備えている。ここで、図1に示すXYZからなる直交座標系において、X方向及びY方向は水平方向であり、Z方向が鉛直方向である(以下、同様)。
(One Embodiment of Manufacturing Apparatus and Manufacturing Method of Modified Cross Section Glass Fiber)
As shown in FIG. 1, the modified cross-section glass fiber manufacturing apparatus according to the present embodiment includes a glass melting furnace 1, a forehearth 2 connected to the glass melting furnace 1, and a feeder 3 connected to the forehearth 2. Yes. Here, in the orthogonal coordinate system composed of XYZ shown in FIG. 1, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction (hereinafter the same).
 溶融ガラスGは、ガラス溶融炉1及びフォアハース2を通じてフィーダー3に供給されると共に、フィーダー3内に貯留される。図1では1つのフィーダー3を図示しているが、ガラス溶融炉には複数のフィーダー3が接続されていてもよい。 The molten glass G is supplied to the feeder 3 through the glass melting furnace 1 and the forehearth 2 and is stored in the feeder 3. Although one feeder 3 is illustrated in FIG. 1, a plurality of feeders 3 may be connected to the glass melting furnace.
 この実施形態では、溶融ガラスGはEガラスからなるが、Dガラス、Sガラス、ARガラス、Cガラス等の他のガラス材質であってもよい。 In this embodiment, the molten glass G is made of E glass, but may be other glass materials such as D glass, S glass, AR glass, and C glass.
 フィーダー3の底部は、ブッシング4によって構成されている。ブッシング4は、ブッシングブロック等を介してフィーダー3に取り付けつけられている。ブッシング4の底部には、複数のノズル5が設けられている。各ノズル5の近傍には冷却手段としての冷却管6が設けられている。 The bottom of the feeder 3 is constituted by a bushing 4. The bushing 4 is attached to the feeder 3 via a bushing block or the like. A plurality of nozzles 5 are provided at the bottom of the bushing 4. A cooling pipe 6 as a cooling means is provided in the vicinity of each nozzle 5.
 ブッシング4に設けられた複数のノズル5からフィーダー3内に貯留された溶融ガラスGが下方に引き出され、ガラス繊維(モノフィラメント)Gmが製造される。この際、成形温度における溶融ガラスGの粘度は、102.5~103・5dPa・s(好ましくは102.7~103・2dPa・s)の範囲内に設定される。なお、成形温度における溶融ガラスGの粘度は、ノズル5に流入する位置における溶融ガラスGの粘度とする。ガラス繊維Gmの表面には、図示しないアプリケータにより集束剤が塗布されるとともに、100~10000本が1本のストランドGsに紡糸される。紡糸されたストランドGsは、巻き取り装置のボビン7に繊維束Grとして巻き取られる。ストランドGsは、例えば、1~20mm程度の所定長に切断され、チョップドストランドとして利用される。 Molten glass G stored in the feeder 3 is drawn downward from a plurality of nozzles 5 provided in the bushing 4 to produce glass fibers (monofilaments) Gm. At this time, the viscosity of the molten glass G at the molding temperature is set in the range of 10 2.5 to 10 3 · 5 dPa · s (preferably 10 2.7 to 10 3 · 2 dPa · s). The viscosity of the molten glass G at the molding temperature is the viscosity of the molten glass G at the position flowing into the nozzle 5. A bundling agent is applied to the surface of the glass fiber Gm by an applicator (not shown), and 100 to 10,000 pieces are spun into one strand Gs. The spun strand Gs is wound as a fiber bundle Gr on the bobbin 7 of the winding device. The strand Gs is cut into a predetermined length of about 1 to 20 mm, for example, and used as a chopped strand.
 ガラス溶融炉1、フォアハース2、フィーダー3、ブッシング4、ノズル5及び冷却管6は、少なくとも一部が白金又は白金合金(例えば、白金ロジウム合金)により形成されている。 At least a part of the glass melting furnace 1, the forehearth 2, the feeder 3, the bushing 4, the nozzle 5 and the cooling pipe 6 is made of platinum or a platinum alloy (for example, platinum rhodium alloy).
 溶融ガラスGの粘度を調整するために、フォアハース2、フィーダー3およびブッシング4の中から選ばれた一又は複数の要素を通電加熱などで加熱してもよい。 In order to adjust the viscosity of the molten glass G, one or a plurality of elements selected from the forehearth 2, the feeder 3 and the bushing 4 may be heated by electric heating or the like.
 図2及び図3に示すように、ノズル5は、先端部(下側部分)において、X方向で対向する一対の長壁部(第1の壁部)51と、Y方向で対向する一対の短壁部(第2の壁部)52と、長壁部51と短壁部52で区画形成された扁平状のノズル孔53とを備えている。各々の短壁部52には切欠き部54が設けられており、ノズル孔53のY方向の両端部が切欠き部54を通じてノズル5の外部空間に連通している(図3を参照)。この実施形態では、ノズル孔53の長径方向はY方向と一致しており、ノズル孔53の短径方向はX方向と一致している。また、この実施形態では、短壁部52のX方向寸法は長壁部51のY方向寸法よりも短い。もちろん、壁部51,52のこれら寸法関係は特に限定されるものではない。 As shown in FIG. 2 and FIG. 3, the nozzle 5 includes a pair of short walls (first wall portions) 51 that face each other in the Y direction and a pair of short walls that face each other in the Y direction. A wall portion (second wall portion) 52 and a flat nozzle hole 53 defined by a long wall portion 51 and a short wall portion 52 are provided. Each short wall portion 52 is provided with a notch portion 54, and both end portions in the Y direction of the nozzle hole 53 communicate with the external space of the nozzle 5 through the notch portion 54 (see FIG. 3). In this embodiment, the major axis direction of the nozzle hole 53 coincides with the Y direction, and the minor axis direction of the nozzle hole 53 coincides with the X direction. Moreover, in this embodiment, the X direction dimension of the short wall part 52 is shorter than the Y direction dimension of the long wall part 51. Of course, the dimensional relationship between the wall portions 51 and 52 is not particularly limited.
 冷却管6は、その内部に流体としての冷却水Fを流通(例えば循環)させて冷却作用を及ぼすようになっている。冷却管6は、板状体であって、その板面が上下方向に沿うように配置されている。冷却管6は、この実施形態では、ブッシング4の底部に一体的に設けられているが、ブッシング4の底部から離して設けてもよい。また、冷却管6は、円管状体であってもよい。冷却管6のZ方向(高さ)位置は、溶融ガラスGの冷却条件に応じて適宜調整することができる。例えば、冷却管6は、ノズル5から引き出された溶融ガラスGに直接対面しないようにノズル5に跨るように配置されていてもよい。冷却手段は、冷却管6に限らず、冷却フィンなどであってもよい。 The cooling pipe 6 is adapted to circulate (for example, circulate) cooling water F as a fluid therein and exert a cooling action. The cooling pipe 6 is a plate-like body and is arranged so that its plate surface is along the vertical direction. In this embodiment, the cooling pipe 6 is integrally provided at the bottom of the bushing 4, but may be provided separately from the bottom of the bushing 4. The cooling pipe 6 may be a circular tubular body. The position in the Z direction (height) of the cooling pipe 6 can be appropriately adjusted according to the cooling conditions of the molten glass G. For example, the cooling pipe 6 may be disposed so as to straddle the nozzle 5 so as not to directly face the molten glass G drawn from the nozzle 5. The cooling means is not limited to the cooling pipe 6 and may be a cooling fin or the like.
 この実施形態では、図3に示すように、ブッシング4の底部において、複数のノズル列LがX方向に間隔を置いて平行に配置されている。各ノズル列Lは、ノズル孔53の長径方向をY方向に向けた複数のノズル5をY方向に延びる同一直線上に配置することで構成される。冷却管6は、X方向に隣接するノズル列Lの間に、ノズル列Lと平行に配置されている。これにより、冷却管6が長壁部51に対向し、長壁部51を隔ててノズル5内を流通する溶融ガラスGが冷却されるようになっている。詳細には、長壁部51には切欠き部が設けられていないため、ノズル5内を流通する溶融ガラスGは、冷却管6によって冷やされた長壁部51を介して間接的に冷却される。なお、冷却管6は、ブッシング4やノズル5を冷却し、これらの熱劣化を抑えて耐久性を高める機能もある。 In this embodiment, as shown in FIG. 3, a plurality of nozzle rows L are arranged in parallel at intervals in the X direction at the bottom of the bushing 4. Each nozzle row L is configured by arranging a plurality of nozzles 5 with the major axis direction of the nozzle holes 53 oriented in the Y direction on the same straight line extending in the Y direction. The cooling pipe 6 is arranged in parallel with the nozzle row L between the nozzle rows L adjacent in the X direction. Thereby, the cooling pipe 6 opposes the long wall part 51, and the molten glass G which distribute | circulates the inside of the nozzle 5 across the long wall part 51 is cooled. Specifically, since the long wall portion 51 is not provided with a notch, the molten glass G flowing through the nozzle 5 is indirectly cooled through the long wall portion 51 cooled by the cooling pipe 6. The cooling pipe 6 also has a function of cooling the bushing 4 and the nozzle 5 and suppressing the thermal deterioration thereof to improve durability.
 この実施形態では、図3に示すように、ノズル列Lのうち、一のノズル5の切欠き部54が設けられた短壁部52に対向する位置に、Y方向に隣接する他のノズル5が配置されている。各ノズル5は熱源であるため、他のノズル5は一のノズル5の切欠き部54を通じて一のノズル5内を流通する溶融ガラスGを保温する保温手段として機能する。また、この実施形態では、一のノズル5の切欠き部54が設けられた短壁部52と、他のノズル5の切欠き部54が設けられた短壁部52とが、互いに対向している。そのため、他のノズル5が一のノズル5の保温手段になると同時に、一のノズル5が他のノズル5の保温手段にもなる。保温手段は、ノズル5に限られず、電熱線等からなるヒーターであってもよい。 In this embodiment, as shown in FIG. 3, in the nozzle row L, another nozzle 5 adjacent in the Y direction at a position facing the short wall portion 52 provided with the notch portion 54 of one nozzle 5. Is arranged. Since each nozzle 5 is a heat source, the other nozzles 5 function as heat retaining means for retaining the molten glass G flowing through the one nozzle 5 through the notch portion 54 of the one nozzle 5. Moreover, in this embodiment, the short wall part 52 provided with the notch part 54 of one nozzle 5 and the short wall part 52 provided with the notch part 54 of the other nozzle 5 face each other. Yes. Therefore, the other nozzle 5 serves as a heat retaining means for one nozzle 5, and at the same time, the one nozzle 5 serves as a heat retaining means for the other nozzle 5. The heat retaining means is not limited to the nozzle 5 and may be a heater composed of a heating wire or the like.
 ここで、Y方向で隣接するノズル5間の距離Syは、0.5mm~10mmであることが好ましい。距離Syの下限値は、0.7mm、1.0mm、2.0mm、3.0mmであることがより好ましい。距離Syの上限値は、8mm、7mm、5mmであることがより好ましい。また、X方向で隣接するノズル5と冷却管6の間の距離Sxは、1mm~30mmであることが好ましい。距離Sxの下限値は、2mm、3mm、4mm、5mmであることがより好ましい。距離Sxの上限値は、25mm、20mm、15mm、10mmであることがより好ましい。さらに、距離Sxは、距離Syよりも大きいことが好ましい。 Here, the distance Sy between the nozzles 5 adjacent in the Y direction is preferably 0.5 mm to 10 mm. The lower limit value of the distance Sy is more preferably 0.7 mm, 1.0 mm, 2.0 mm, and 3.0 mm. The upper limit value of the distance Sy is more preferably 8 mm, 7 mm, and 5 mm. The distance Sx between the nozzle 5 and the cooling pipe 6 adjacent in the X direction is preferably 1 mm to 30 mm. The lower limit value of the distance Sx is more preferably 2 mm, 3 mm, 4 mm, and 5 mm. The upper limit value of the distance Sx is more preferably 25 mm, 20 mm, 15 mm, and 10 mm. Furthermore, the distance Sx is preferably larger than the distance Sy.
 以上のような構成によれば、一のノズル5内を流通する溶融ガラスGのうち、X方向に対向する一対の面のそれぞれが、冷却管6によって長壁部51を隔てて冷却されて相対的に低温となる。その一方で、一のノズル5内を流通する溶融ガラスGのうち、Y方向に対向する一対の面(Y方向の両端部)のそれぞれが、隣接する他のノズル5によって短壁部52に設けられた切欠き部54を通じて保温されて相対的に高温となる。このように温度差が形成さると、相対的に高温である溶融ガラスGのY方向の両端部に溶融ガラスGを引き寄せる力が働く。そのため、ノズル5から引き出された溶融ガラスGにはX方向とY方向で収縮量に差が生じ、異形断面ガラス繊維Gmとなる。すなわち、このように保温と冷却を併用して温度差を設けることで、溶融ガラスGを過度に冷却しなくても異形断面ガラス繊維Gmを製造することができる。したがって、上述したように、溶融ガラスGの粘度が102.5~103・5dPa・sになるような比較的高温でも異形断面ガラス繊維Gmを製造することができる。 According to the configuration as described above, among the molten glass G flowing through the one nozzle 5, each of the pair of surfaces facing each other in the X direction is cooled by the cooling pipe 6 across the long wall portion 51 and is relatively It becomes low temperature. On the other hand, among the molten glass G flowing through one nozzle 5, each of a pair of surfaces (both ends in the Y direction) facing each other in the Y direction is provided on the short wall portion 52 by another adjacent nozzle 5. The temperature is maintained through the cut-out portion 54, and the temperature becomes relatively high. When a temperature difference is formed in this way, a force that draws the molten glass G to both ends in the Y direction of the molten glass G that is relatively high in temperature works. Therefore, a difference in shrinkage occurs between the X direction and the Y direction in the molten glass G drawn from the nozzle 5, resulting in a modified cross-section glass fiber Gm. That is, by providing a temperature difference using both heat retention and cooling in this manner, the modified cross-section glass fiber Gm can be produced without excessively cooling the molten glass G. Therefore, as described above, the modified cross-section glass fiber Gm can be produced even at a relatively high temperature such that the viscosity of the molten glass G is 10 2.5 to 10 3 · 5 dPa · s.
(ノズルの第1の実施形態)
 図4A~図4Dに示すように、ノズル5は、全体として直方体をなし、X方向で対向する一対の長壁部51と、Y方向で対向する一対の短壁部52によって、Z方向に連通するノズル孔53を区画形成している。ノズル5の先端部において、一対の短壁部52のそれぞれのX方向の中心部には、凹状の切欠き部54が設けられている。換言すれば、切欠き部54のX方向両側には、切欠き部54の形成されていない短壁部52が位置している。ノズル孔53のY方向の両端部が切欠き部54を通じてノズル5の外部空間に連通している。ノズル孔53内を流通する溶融ガラスGの一部は、ノズル5の先端部において、切欠き部54内に進入するとともに、短壁部52によってX方向の両側から挟持された状態となる。その結果、溶融ガラスGがY方向に収縮しにくくなる。この実施形態では、ノズル孔53は、扁平な長円形(又は楕円)であり、Z方向で一定の形状である。図4Dに示すように、ノズル5の先端部において、ノズル孔53は、Y方向寸法(長径寸法)aに対するX方向寸法(短径寸法)bの比率(a/b)が1.5~20(好ましくは3~10)の範囲である。なお、図示例では、切欠き部54のX方向寸法がノズル孔53のX方向寸法よりも小さくなっているが、同じであってもよいし大きくてもよい。
(First embodiment of nozzle)
As shown in FIGS. 4A to 4D, the nozzle 5 forms a rectangular parallelepiped as a whole, and communicates in the Z direction by a pair of long wall portions 51 facing each other in the X direction and a pair of short wall portions 52 facing each other in the Y direction. A nozzle hole 53 is partitioned. At the tip of the nozzle 5, a concave notch 54 is provided at the center in the X direction of each of the pair of short walls 52. In other words, the short wall portions 52 where the notches 54 are not formed are located on both sides in the X direction of the notches 54. Both end portions in the Y direction of the nozzle hole 53 communicate with the external space of the nozzle 5 through the notch portion 54. A part of the molten glass G flowing through the nozzle hole 53 enters the notch 54 at the tip of the nozzle 5 and is sandwiched from both sides in the X direction by the short wall 52. As a result, it becomes difficult for the molten glass G to shrink in the Y direction. In this embodiment, the nozzle hole 53 is a flat oval (or ellipse) and has a constant shape in the Z direction. As shown in FIG. 4D, at the tip of the nozzle 5, the nozzle hole 53 has a ratio (a / b) of the X direction dimension (short diameter dimension) b to the Y direction dimension (major diameter dimension) a of 1.5 to 20. (Preferably 3 to 10). In the illustrated example, the X-direction dimension of the notch 54 is smaller than the X-direction dimension of the nozzle hole 53, but may be the same or larger.
 ノズル5は、先端部において長壁部51と短壁部52によって区画形成された扁平状のノズル孔53を有していれば、基端部(上側部分)の形状は先端部の形状と同じであってもよいし、異なっていてもよい。 If the nozzle 5 has a flat nozzle hole 53 defined by a long wall portion 51 and a short wall portion 52 at the tip portion, the shape of the base end portion (upper portion) is the same as the shape of the tip portion. May be different or different.
 ノズル5の切欠き部54の形状は種々変形可能である。以下、その変形例を説明する。 The shape of the notch 54 of the nozzle 5 can be variously modified. Hereinafter, the modification is demonstrated.
(ノズルの第2の実施形態)
 図5A~図5Dに示すように、ノズル5の先端部において、各々の短壁部52の全体に切欠き部54が設けられていてもよい。すなわち、この実施形態では、ノズル5の先端部において、短壁部52がない状態となっている。これにより、切欠き部54とノズル5の外部空間の境界がなく、切欠き部54がノズル5の外部空間の一部を構成している。そのため、ノズル孔53のY方向両端部がノズル5の外部空間に直接連通している。ノズル孔53内を流通する溶融ガラスGの一部は、ノズル5の先端部において、ノズル孔53のY方向両端部からノズル5の外部空間に漏れ出して、図5Dに示すように、溜り部Gtを形成する。これにより、溜り部Gtがストッパーとなって、溶融ガラスGがY方向に収縮しにくくなる。この実施形態では、ノズル孔53は、扁平な長円形(又は楕円)であり、Z方向で一定の形状である。
(Second Embodiment of Nozzle)
As shown in FIGS. 5A to 5D, a cutout portion 54 may be provided on the entire short wall portion 52 at the tip portion of the nozzle 5. That is, in this embodiment, there is no short wall 52 at the tip of the nozzle 5. Thereby, there is no boundary between the notch portion 54 and the outer space of the nozzle 5, and the notch portion 54 forms a part of the outer space of the nozzle 5. Therefore, both ends of the nozzle hole 53 in the Y direction communicate directly with the external space of the nozzle 5. Part of the molten glass G flowing through the nozzle hole 53 leaks from the Y direction both ends of the nozzle hole 53 into the external space of the nozzle 5 at the tip of the nozzle 5, and as shown in FIG. Gt is formed. Thereby, the pool part Gt becomes a stopper and the molten glass G becomes difficult to shrink in the Y direction. In this embodiment, the nozzle hole 53 is a flat oval (or ellipse) and has a constant shape in the Z direction.
 ノズル孔53の形状は種々変形可能である。以下にその変形例を説明する。なお、切欠き部54の形状は、図4A~図4Dに示した形状を例にとって説明するが、これに限定されるものではなく、例えば、図5A~図5Dに示した形状であってもよい。 The shape of the nozzle hole 53 can be variously modified. The modification is demonstrated below. The shape of the notch 54 will be described by taking the shape shown in FIGS. 4A to 4D as an example, but is not limited to this, and for example, the shape shown in FIGS. 5A to 5D may be used. Good.
(ノズルの第3の実施形態)
 図6A~図6Cに示すように、ノズル孔53は、Y方向に細長いスリット部53aと、スリット部53aの両端部に設けられ、スリット部53aよりもX方向の寸法が大きい拡大部53bとを有していてもよい。具体的には、この実施形態では、ノズル孔53は、拡大部53bが円形状をなすダンベル形状であり、Z方向で一定の形状である。なお、切欠き部54が形成されるノズル5の先端部において、Y方向の流路面積が実質的に同じになるようにノズル孔53の形状を長円形等に変化させてもよい。この場合、ノズル孔53の流路は、先端部のノズル孔53の流路内に全て含まれるものとする。
(Third embodiment of nozzle)
As shown in FIGS. 6A to 6C, the nozzle hole 53 includes a slit portion 53a that is elongated in the Y direction, and an enlarged portion 53b that is provided at both ends of the slit portion 53a and has a larger dimension in the X direction than the slit portion 53a. You may have. Specifically, in this embodiment, the nozzle hole 53 has a dumbbell shape in which the enlarged portion 53b has a circular shape, and has a constant shape in the Z direction. Note that the shape of the nozzle hole 53 may be changed to an oval shape or the like so that the area of the flow path in the Y direction is substantially the same at the tip of the nozzle 5 where the notch 54 is formed. In this case, the flow path of the nozzle hole 53 is all included in the flow path of the nozzle hole 53 at the tip.
(ノズルの第4の実施形態)
 図7A~図7Cに示すように、ノズル5の基端部において、ノズル孔53は、Y方向の中心から両端部に向かって流路面積が漸次拡大する面積変化部53cを有していてもよい。具体的には、この実施形態では、ノズル孔53は2つの二等辺三角形のそれぞれの頂点を突き合わせ、かつ、頂角の二等分線を同一直線上(Y方向)に配置した形状である。図7Cに示すように、切欠き部54が形成されるノズル5の先端部において、Y方向の流路面積が実質的に同じになるようにノズル孔53の形状を変化させてもよい(図示例では矩形状)。この場合、図7Bに示す基端部のノズル孔53の流路は、図7Cに示す先端部のノズル孔53の流路内に全て含まれるものとする。
(Fourth embodiment of nozzle)
As shown in FIGS. 7A to 7C, at the base end portion of the nozzle 5, the nozzle hole 53 may have an area changing portion 53c in which the flow path area gradually increases from the center in the Y direction toward both end portions. Good. Specifically, in this embodiment, the nozzle hole 53 has a shape in which the vertices of two isosceles triangles abut each other and the bisector of the apex angle is arranged on the same straight line (Y direction). As shown in FIG. 7C, the shape of the nozzle hole 53 may be changed so that the flow area in the Y direction is substantially the same at the tip of the nozzle 5 where the notch 54 is formed (FIG. 7C). (In the example shown, it is rectangular). In this case, it is assumed that the flow path of the nozzle hole 53 at the proximal end portion shown in FIG. 7B is all included in the flow path of the nozzle hole 53 at the distal end portion shown in FIG. 7C.
(ノズルの第5の実施形態)
 図8A~図8Cに示すように、ノズル孔53は、Z方向で一定の形状となる矩形状であってもよい。
(Fifth embodiment of nozzle)
As shown in FIGS. 8A to 8C, the nozzle hole 53 may have a rectangular shape having a constant shape in the Z direction.
(ノズルの第6の実施形態)
 図9A~図9Cに示すように、ノズル5の基端部において、ノズル孔53は複数のノズル孔53dに分割されていてもよい。詳細には、ノズル孔53dは円形状であり、Y方向の両端部と中心部に間隔を置いて設けられている。図9Cに示すように、切欠き部54が形成されるノズル5の先端部において、分割された複数のノズル孔53dが一つに合流するようにノズル孔53の形状を変化させてもよい(図示例では長円形)。この場合、図9Bに示す基端部のノズル孔53の流路は、図9Cに示す先端部のノズル孔53の流路内に全て含まれるものとする。
(Sixth embodiment of nozzle)
As shown in FIGS. 9A to 9C, the nozzle hole 53 may be divided into a plurality of nozzle holes 53d at the base end portion of the nozzle 5. Specifically, the nozzle hole 53d has a circular shape, and is provided at an interval between both ends and the center in the Y direction. As shown in FIG. 9C, the shape of the nozzle hole 53 may be changed so that the plurality of divided nozzle holes 53d merge together at the tip of the nozzle 5 where the notch 54 is formed ( In the example shown, an oval). In this case, it is assumed that the flow path of the nozzle hole 53 at the proximal end portion shown in FIG. 9B is all included in the flow path of the nozzle hole 53 at the distal end portion shown in FIG. 9C.
(ノズルの第7の実施形態)
 図10A~図10Cに示すように、ノズル孔53は、流路面積の大きい大面積部53eと、流路面積の小さい小面積部53fとをY方向に交互に有していてもよい。詳細には、この実施形態では、円形状の大面積部53eがY方向の両端部と中心部に設けられおり、隣り合う大面積部53eの間に、両側の大面積部53eと接するように円形状の小面積部53fが設けられている。図10Cに示すように、切欠き部54が形成されるノズル5の先端部において、Y方向の流路面積が実質的に同じになるようにノズル孔53の形状を変化させてもよい(図示例では長円形)。この場合、図10Bに示す基端部のノズル孔53の流路は、図10Cに示す先端部のノズル孔53の流路内に全て含まれるものとする。
(Seventh embodiment of nozzle)
As shown in FIGS. 10A to 10C, the nozzle hole 53 may alternately have a large area portion 53e with a large channel area and a small area portion 53f with a small channel area in the Y direction. In detail, in this embodiment, the circular large area part 53e is provided in the both ends and center part of a Y direction, and it touches the large area part 53e of both sides between the adjacent large area parts 53e. A circular small area portion 53f is provided. As shown in FIG. 10C, the shape of the nozzle hole 53 may be changed so that the flow area in the Y direction is substantially the same at the tip of the nozzle 5 where the notch 54 is formed (FIG. 10C). In the example shown, it is oval). In this case, it is assumed that the flow path of the nozzle hole 53 at the proximal end portion shown in FIG. 10B is entirely included in the flow path of the nozzle hole 53 at the distal end portion shown in FIG. 10C.
(ノズルの第8の実施形態)
 図11A~図11Cに示すように、ノズル孔53は、Y方向の中心から両端部に向かって流路面積が漸次縮小する面積変化部53gを有していてもよい。具体的には、この実施形態では、ノズル孔53の形状はひし形状である。この場合、図11Cに示すように、切欠き部54が形成されるノズル5の先端部において、Y方向の流路面積が実施的に同じになるようにノズル孔53の形状を変化させてもよい(図示例では長円形)。この場合、図11Bに示す基端部のノズル孔53の流路は、図11Cに示す先端部のノズル孔53の流路内に全て含まれるものとする。
(Eighth embodiment of nozzle)
As shown in FIGS. 11A to 11C, the nozzle hole 53 may have an area changing portion 53g in which the flow path area gradually decreases from the center in the Y direction toward both ends. Specifically, in this embodiment, the shape of the nozzle hole 53 is a diamond shape. In this case, as shown in FIG. 11C, even if the shape of the nozzle hole 53 is changed so that the flow path area in the Y direction is practically the same at the tip of the nozzle 5 where the notch 54 is formed. Good (in the illustrated example, oval). In this case, it is assumed that the flow path of the nozzle hole 53 at the proximal end portion shown in FIG. 11B is all included in the flow path of the nozzle hole 53 at the distal end portion shown in FIG. 11C.
 以上のような製造装置のノズル5から溶融ガラスGを引き出して製造されたガラス繊維Gmは、図12A及び図12Bに示すように、断面(引き出し方向に垂直な横断面)が扁平形状をなす異形断面を有する。この実施形態では、ガラス繊維Gmの断面における長径をA、短径をBとした場合に、断面形状の扁平比(A/B)が3~10(好ましくは4~8)の範囲内となっている。そして、このようなガラス繊維GmからなるストランドGsであれば、例えば3mm長に切断してチョップドストランドとすれば、電子制御デバイスの筐体など寸法精度の要求の厳しい部品を得るために必要な複合材の強化材として好適な性質を有する。そのため、射出成形後の筐体の歪みを低減したり、強度を向上したりする効果が得られる。 As shown in FIGS. 12A and 12B, the glass fiber Gm produced by drawing the molten glass G from the nozzle 5 of the production apparatus as described above has an irregular shape in which a cross section (a cross section perpendicular to the drawing direction) forms a flat shape. It has a cross section. In this embodiment, when the major axis in the cross section of the glass fiber Gm is A and the minor axis is B, the flatness ratio (A / B) of the sectional shape is in the range of 3 to 10 (preferably 4 to 8). ing. And if it is strand Gs which consists of such glass fiber Gm, if it cut | disconnects, for example to 3 mm length and it is made into a chopped strand, it is the compound required in order to obtain parts with severe demands of dimensional accuracy, such as a housing of an electronic control device It has suitable properties as a reinforcing material for the material. Therefore, the effect of reducing the distortion of the casing after injection molding or improving the strength can be obtained.
 また、この実施形態では、ガラス繊維Gmの扁平比のばらつきσを扁平比の平均値で割った値を百分率で表した値は15%以下である。すなわち、ばらつきが少ないガラス繊維Gmを得ることができる。なお、ガラス繊維Gmの扁平比のばらつきσを扁平比の平均値で割った値を百分率で表した値は、10%以下であることがより好ましい。 Further, in this embodiment, the value obtained by dividing the variation σ of the flat ratio of the glass fiber Gm by the average value of the flat ratio as a percentage is 15% or less. That is, it is possible to obtain glass fibers Gm with little variation. The value obtained by dividing the variation σ of the flat ratio of the glass fiber Gm by the average value of the flat ratio in percentage is more preferably 10% or less.
 ここで、ガラス繊維Gmの扁平比は次のように測定する。まず、ガラス繊維Gmの断面を観察するため、Kulzer社製の常温硬化樹脂テクノビットにガラス繊維Gmを垂直に埋設し、樹脂硬化後に研磨を行う。次に、偏光顕微鏡でガラス繊維Gmの断面形状を観察するとともに、三谷商事株式会社製画像処理ソフトWinROOFを用いて観察したガラス繊維Gmの長径および短径のそれぞれの長さを測定し、扁平比(長径/短径)を算出する。また、扁平比のばらつきσは50本のガラス繊維Gmの断面を観察して得た扁平比から算出した標準偏差とする。 Here, the flatness ratio of the glass fiber Gm is measured as follows. First, in order to observe the cross section of the glass fiber Gm, the glass fiber Gm is vertically embedded in a room temperature curable resin technobit manufactured by Kulzer and polished after the resin is cured. Next, while observing the cross-sectional shape of the glass fiber Gm with a polarizing microscope, the lengths of the major and minor axes of the glass fiber Gm observed using the image processing software WinROOF manufactured by Mitani Corporation are measured, and the flat ratio Calculate (major axis / minor axis). The variation σ of the flat ratio is a standard deviation calculated from the flat ratio obtained by observing the cross section of 50 glass fibers Gm.
 図4A~図4Dに示したノズル5と、図5A~図5Dに示したノズル5とを用いて実際に異形断面ガラス繊維を製造した。製造に際し、ノズル5の先端部におけるノズル孔53の扁平比a/b(図4Dを参照)、長径方向で隣接するノズル5間の距離Sy(図3を参照)、および短径方向で隣接するノズル5と冷却管6の間の距離Sx(図3を参照)を種々調整し、製造された異形断面ガラス繊維の扁平比A/B(図12A,図12Bを参照)を評価した。その結果を表1に示す。なお、表1では、ノズル形状として、図4A~図4Dに示したノズル5を用いたものを「T1」、図5A~図5Dに示したノズル5を用いたものを「T2」として記載している。 4A to 4D and the nozzle 5 shown in FIGS. 5A to 5D were used to actually produce irregular cross-section glass fibers. During manufacture, the flatness ratio a / b of the nozzle hole 53 at the tip of the nozzle 5 (see FIG. 4D), the distance Sy between the nozzles 5 adjacent in the major axis direction (see FIG. 3), and the nozzle hole 53 are adjacent in the minor axis direction. Various adjustments were made to the distance Sx between the nozzle 5 and the cooling pipe 6 (see FIG. 3), and the flatness ratio A / B (see FIGS. 12A and 12B) of the manufactured irregular cross-section glass fibers was evaluated. The results are shown in Table 1. In Table 1, the nozzle shape is described as “T1” using the nozzle 5 shown in FIGS. 4A to 4D and “T2” using the nozzle 5 shown in FIGS. 5A to 5D. ing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、本発明は、上記の実施形態に限定されるものではなく、種々の形態において実施することができる。 In addition, this invention is not limited to said embodiment, It can implement in a various form.
 上記の実施形態では、図3に示したように、各々のノズル列に含まれる個々のノズル5のY方向位置を揃えて配置されているが、図13に示すように、各々のノズル列に含まれる個々のノズル5のY方向位置はずらして配置してもよい。詳細には、図13では、一のノズル列Lに含まれるY方向に隣接するノズル5の間に、隣接する他のノズル列Lに含まれるノズル5のY方向位置がくるように配置態様が調整されている。 In the above embodiment, as shown in FIG. 3, the Y-direction positions of the individual nozzles 5 included in each nozzle row are aligned, but as shown in FIG. The positions of the individual nozzles 5 included in the Y direction may be shifted. Specifically, in FIG. 13, the arrangement mode is such that the Y-direction positions of the nozzles 5 included in the other adjacent nozzle rows L are between the nozzles 5 adjacent to each other in the Y direction included in one nozzle row L. It has been adjusted.
 上記の実施形態では、図3に示したように、冷却管6が1列のノズル列L毎に配置されているが、図14A及び図14Bに示すように、冷却管6は複数列のノズル列L毎に配置されていてもよい。なお、図14A及び図14Bでは、冷却管6が2列のノズル列L毎に配置されている。この場合、1つのノズル列Lの片側のみに冷却管6が配置される。 In the above embodiment, as shown in FIG. 3, the cooling pipes 6 are arranged for each nozzle row L. However, as shown in FIGS. 14A and 14B, the cooling pipes 6 include a plurality of rows of nozzles. It may be arranged for each row L. 14A and 14B, the cooling pipe 6 is arranged for each of the two nozzle rows L. In this case, the cooling pipe 6 is disposed only on one side of one nozzle row L.
 上記の実施形態では、図3に示したように、ノズル5の一対の短壁部52のそれぞれに切欠き部54を設けているが、一方の短壁部52のみに切欠き部54を設けてもよい。この場合、図15Aに示すように、一のノズル5の切欠き部54と、隣接する他のノズル5の切欠き部54が形成されていない側の短壁部52とが互いに対向していてもよいし、図15Bに示すように、一のノズル5の切欠き部54と、隣接する他のノズル5の切欠き部54とが互いに対向していてもよい。後者の場合、別の位置では、一のノズル5の切欠き部54の形成されていない側の短壁部52と、他のノズル5の切欠き部54の形成されていない側の短壁部52とが互いに対向する場合もある。 In the above embodiment, as shown in FIG. 3, the notch portion 54 is provided in each of the pair of short wall portions 52 of the nozzle 5, but the notch portion 54 is provided only in one short wall portion 52. May be. In this case, as shown in FIG. 15A, the cutout portion 54 of one nozzle 5 and the short wall portion 52 on the side where the cutout portion 54 of another adjacent nozzle 5 is not formed are opposed to each other. Alternatively, as shown in FIG. 15B, the notch portion 54 of one nozzle 5 and the notch portion 54 of another adjacent nozzle 5 may face each other. In the latter case, in another position, the short wall portion 52 on the side where the notch portion 54 of one nozzle 5 is not formed and the short wall portion on the side where the notch portion 54 of the other nozzle 5 is not formed. 52 may face each other.
1   ガラス溶融炉
2   フォアハース
3   フィーダー
4   ブッシング
5   ノズル
51  長壁部(第1の壁部)
52  短壁部(第2の壁部)
53  ノズル孔
54  切欠き部
6   冷却管
7   ボビン
G   溶融ガラス
Gm  ガラス繊維
Gs  ストランド
Gr  繊維束
F   冷却水
DESCRIPTION OF SYMBOLS 1 Glass melting furnace 2 Fore hearth 3 Feeder 4 Bushing 5 Nozzle 51 Long wall part (1st wall part)
52 Short wall (second wall)
53 Nozzle hole 54 Notch 6 Cooling tube 7 Bobbin G Molten glass Gm Glass fiber Gs Strand Gr Fiber bundle F Cooling water

Claims (12)

  1.  底部に複数のノズルが設けられたブッシングを備えた異形断面ガラス繊維の製造装置であって、
     前記複数のノズルのそれぞれは、溶融ガラスが流出する先端部において、扁平状のノズル孔と、前記ノズル孔の短径方向で対向する一対の第1の壁部と、前記ノズル孔の長径方向で対向する一対の第2の壁部と、を備え、少なくとも一方の前記第2の壁部の少なくとも一部に切欠き部を有し、
     前記切欠き部に対向する位置に、前記切欠き部を通じて前記溶融ガラスを保温する保温手段が設けられるとともに、少なくとも一方の前記第1の壁部に対向する位置に、前記第1の壁部を隔てて前記溶融ガラスを冷却する冷却手段が設けられていることを特徴とする異形断面ガラス繊維の製造装置。
    An apparatus for producing a modified cross-section glass fiber having a bushing provided with a plurality of nozzles at the bottom,
    Each of the plurality of nozzles includes a flat nozzle hole, a pair of first wall portions facing each other in the minor axis direction of the nozzle hole, and a major axis direction of the nozzle hole at a tip end portion where the molten glass flows out. A pair of opposing second walls, and having a notch in at least a part of at least one of the second walls,
    Heat retaining means for retaining the molten glass through the notch is provided at a position facing the notch, and at least one of the first wall is disposed at a position facing the first wall. An apparatus for producing a modified cross-section glass fiber, characterized in that a cooling means for cooling the molten glass is provided.
  2.  前記切欠き部が、一対の前記第2の壁部のそれぞれに設けられていることを特徴とする請求項1に記載の異形断面ガラス繊維の製造装置。 The apparatus for producing a modified cross-section glass fiber according to claim 1, wherein the notch portion is provided in each of the pair of second wall portions.
  3.  前記複数のノズルのうち、一のノズルの前記保温手段が、隣接する他のノズルであることを特徴とする請求項1又は2に記載の異形断面ガラス繊維の製造装置。 The apparatus for producing a modified cross-section glass fiber according to claim 1 or 2, wherein the heat retaining means of one nozzle among the plurality of nozzles is another adjacent nozzle.
  4.  前記一のノズルの前記切欠き部と、前記他のノズルの前記切欠き部とが、互いに対向していることを特徴とする請求項3に記載の異形断面ガラス繊維の製造装置。 4. The apparatus for producing a modified cross-section glass fiber according to claim 3, wherein the cutout portion of the one nozzle and the cutout portion of the other nozzle are opposed to each other.
  5.  前記長径方向を同一方向に向けた複数の前記ノズルを前記長径方向に延びる同一直線上に配置してなるノズル列が、平行に複数列配置されるとともに、
     前記冷却手段が、隣接する前記ノズル列の間に、前記ノズル列と平行に配置されていることを特徴とする請求項3又は4に記載の異形断面ガラス繊維製造装置。
    A plurality of nozzle rows in which the plurality of nozzles having the major axis direction in the same direction are arranged on the same straight line extending in the major axis direction are arranged in parallel, and
    5. The modified cross-section glass fiber manufacturing apparatus according to claim 3, wherein the cooling unit is disposed between the adjacent nozzle rows in parallel with the nozzle rows.
  6.  前記長径方向で隣接する前記ノズル間の距離が、0.5mm~10mmであることを特徴とする請求項5に記載の異形断面ガラス繊維の製造装置。 6. The apparatus for producing modified cross-section glass fibers according to claim 5, wherein a distance between the nozzles adjacent in the major axis direction is 0.5 mm to 10 mm.
  7.  前記短径方向で隣接する前記ノズルと前記冷却手段の間の距離が、1mm~30mmであることを特徴とする請求項5又は6に記載の異形断面ガラス繊維の製造装置。 The apparatus for producing a modified cross-section glass fiber according to claim 5 or 6, wherein a distance between the nozzle adjacent in the minor axis direction and the cooling means is 1 mm to 30 mm.
  8.  前記短径方向で隣接する前記ノズルと前記冷却手段の間の距離が、前記長径方向で隣接する前記ノズル間の距離よりも大きいことを特徴とする請求項5~7のいずれか1項に記載の異形断面ガラス繊維の製造装置。 The distance between the nozzle adjacent in the minor axis direction and the cooling means is greater than the distance between the nozzles adjacent in the major axis direction. Manufacturing equipment for irregular shaped glass fiber.
  9.  前記ノズル孔は、スリット部と、前記スリット部の前記長径方向の両端部に設けられ、前記スリット部よりも前記短径方向の寸法が大きい拡大部とを備えていることを特徴とする請求項1~8のいずれか1項に記載の異形断面ガラス繊維の製造装置。 The nozzle hole includes a slit portion, and an enlarged portion that is provided at both ends in the major axis direction of the slit portion and has a larger dimension in the minor axis direction than the slit portion. 9. The apparatus for producing a modified cross-section glass fiber according to any one of 1 to 8.
  10.  ノズルから溶融ガラスを引き出して異形断面ガラス繊維を製造する異形断面ガラス繊維の製造方法であって、
     前記ノズルは、溶融ガラスが流出する先端部において、扁平状のノズル孔と、前記ノズル孔の短径方向で対向する一対の第1の壁部と、前記ノズル孔の長径方向で対向する一対の第2の壁部と、を備え、少なくとも一方の前記第2の壁部の少なくとも一部に切欠き部を有し、
     前記ノズルから前記溶融ガラスを引き出す際に、前記切欠き部を通じて前記溶融ガラスを保温するとともに、少なくとも一方の前記第1の壁部を隔てて前記溶融ガラスを冷却することを特徴とする異形断面ガラス繊維製造方法。
    A method for producing a modified cross-section glass fiber by drawing a molten glass from a nozzle to produce a modified cross-section glass fiber,
    The nozzle includes a flat nozzle hole, a pair of first wall portions facing in the minor axis direction of the nozzle hole, and a pair of opposing nozzles in the major axis direction of the nozzle hole at a tip portion where the molten glass flows out. A second wall, and has a notch in at least a part of at least one of the second walls,
    When drawing the molten glass from the nozzle, the molten glass is kept warm through the notch and the molten glass is cooled across at least one of the first wall portions. Textile manufacturing method.
  11.  前記溶融ガラスがEガラスであることを特徴とする請求項10に記載の異形断面ガラス繊維の製造方法。 The method for producing a modified cross-section glass fiber according to claim 10, wherein the molten glass is E glass.
  12.  成形温度において、前記溶融ガラスの粘度が102.5~103・5dPa・sである
    ことを特徴とする請求項10又は11に記載の異形断面ガラス繊維の製造方法。
    The method for producing a modified cross-section glass fiber according to claim 10 or 11, wherein the molten glass has a viscosity of 10 2.5 to 10 3 · 5 dPa · s at a molding temperature.
PCT/JP2017/014024 2016-07-26 2017-04-04 Manufacturing apparatus and manufacturing method for modified cross-section glass fiber WO2018020743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146531A JP2018016506A (en) 2016-07-26 2016-07-26 Manufacturing apparatus for glass fibers of irregular shape cross section, and production of the glass fibers
JP2016-146531 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018020743A1 true WO2018020743A1 (en) 2018-02-01

Family

ID=61017598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014024 WO2018020743A1 (en) 2016-07-26 2017-04-04 Manufacturing apparatus and manufacturing method for modified cross-section glass fiber

Country Status (3)

Country Link
JP (1) JP2018016506A (en)
TW (1) TW201806892A (en)
WO (1) WO2018020743A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262704B2 (en) * 2019-08-19 2023-04-24 日本電気硝子株式会社 Strand manufacturing method
JP2022033465A (en) * 2020-08-17 2022-03-02 日本電気硝子株式会社 Bushing and method for manufacturing irregular shaped cross section glass fiber
JP2022190523A (en) * 2021-06-14 2022-12-26 日本電気硝子株式会社 Bushing, manufacturing apparatus of glass fiber, and manufacturing method of glass fiber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234540A (en) * 1992-12-14 1994-08-23 Nitto Boseki Co Ltd Orifice plate and noncircular-sectioned glass fiber
JP2000103635A (en) * 1998-09-30 2000-04-11 Nitto Boseki Co Ltd Nozzle tip for producing flat glass fiber and glass fiber
JP2000335932A (en) * 1999-05-28 2000-12-05 Nitto Boseki Co Ltd Nozzle tip for spinning flat glass fiber and apparatus for production
JP2007039320A (en) * 2005-07-05 2007-02-15 Nippon Electric Glass Co Ltd Glass fiber composition, glass fiber and glass fiber-containing composite material
JP2008069049A (en) * 2006-09-15 2008-03-27 Nippon Electric Glass Co Ltd Glass fiber production apparatus and glass fiber production method
JP2010083750A (en) * 2008-09-03 2010-04-15 Nippon Electric Glass Co Ltd Apparatus and method for manufacturing glass fiber
JP2010163342A (en) * 2009-01-19 2010-07-29 Nippon Electric Glass Co Ltd Apparatus for manufacturing glass fiber and method for manufacturing glass fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234540A (en) * 1992-12-14 1994-08-23 Nitto Boseki Co Ltd Orifice plate and noncircular-sectioned glass fiber
JP2000103635A (en) * 1998-09-30 2000-04-11 Nitto Boseki Co Ltd Nozzle tip for producing flat glass fiber and glass fiber
JP2000335932A (en) * 1999-05-28 2000-12-05 Nitto Boseki Co Ltd Nozzle tip for spinning flat glass fiber and apparatus for production
JP2007039320A (en) * 2005-07-05 2007-02-15 Nippon Electric Glass Co Ltd Glass fiber composition, glass fiber and glass fiber-containing composite material
JP2008069049A (en) * 2006-09-15 2008-03-27 Nippon Electric Glass Co Ltd Glass fiber production apparatus and glass fiber production method
JP2010083750A (en) * 2008-09-03 2010-04-15 Nippon Electric Glass Co Ltd Apparatus and method for manufacturing glass fiber
JP2010163342A (en) * 2009-01-19 2010-07-29 Nippon Electric Glass Co Ltd Apparatus for manufacturing glass fiber and method for manufacturing glass fiber

Also Published As

Publication number Publication date
TW201806892A (en) 2018-03-01
JP2018016506A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6768226B2 (en) Deformed cross-section glass fiber manufacturing equipment and its manufacturing method
WO2018020743A1 (en) Manufacturing apparatus and manufacturing method for modified cross-section glass fiber
CN112585098B (en) Bushing for producing glass fibers and method for producing glass fibers
JP7075017B2 (en) Nozzle tip for manufacturing glass fiber, and method for manufacturing glass fiber
JP7075059B2 (en) Nozzle for manufacturing irregular cross-section glass fiber, irregular cross-section glass fiber manufacturing equipment, its manufacturing method, irregular cross-section glass fiber
JP2021001111A (en) Glass fiber aggregate
WO2015199238A1 (en) Strand manufacturing device, pellet manufacturing device, strand manufacturing method, and pellet manufacturing method
JP7225889B2 (en) BUSHING, GLASS STRAND MANUFACTURING APPARATUS, MANUFACTURING METHOD THEREOF, AND GLASS STRAND
WO2022038901A1 (en) Bushing and deformed cross-section glass fiber manufacturing method
JP2019108249A (en) Manufacturing apparatus and manufacturing method for glass fiber
JP5505597B2 (en) Modified cross section glass fiber
WO2021256144A1 (en) Nozzle for deformed cross-section glass fiber, and manufacturing method of deformed cross-section glass fiber
JP2022190523A (en) Bushing, manufacturing apparatus of glass fiber, and manufacturing method of glass fiber
JP2022190302A (en) Bushing, manufacturing apparatus of glass fiber, and manufacturing method of glass fiber
WO2021256143A1 (en) Nozzle for modified cross-section glass fibers and manufacturing method for modified cross-section glass fibers
JP2000335932A (en) Nozzle tip for spinning flat glass fiber and apparatus for production
JP7262704B2 (en) Strand manufacturing method
JP6740746B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP2006119622A (en) Connecting member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833754

Country of ref document: EP

Kind code of ref document: A1