WO2022038894A1 - Electric dust collector - Google Patents

Electric dust collector Download PDF

Info

Publication number
WO2022038894A1
WO2022038894A1 PCT/JP2021/024036 JP2021024036W WO2022038894A1 WO 2022038894 A1 WO2022038894 A1 WO 2022038894A1 JP 2021024036 W JP2021024036 W JP 2021024036W WO 2022038894 A1 WO2022038894 A1 WO 2022038894A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged
electrodes
collection
electrostatic precipitator
electrode
Prior art date
Application number
PCT/JP2021/024036
Other languages
French (fr)
Japanese (ja)
Inventor
啓輔 山城
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to EP21858044.7A priority Critical patent/EP4082668A4/en
Priority to CN202180011441.XA priority patent/CN115003416A/en
Priority to KR1020227026075A priority patent/KR20220114086A/en
Publication of WO2022038894A1 publication Critical patent/WO2022038894A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/51Catch- space electrodes, e.g. slotted-box form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/004Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 specially adapted for marine propulsion, i.e. for receiving simultaneously engine exhaust gases and engine cooling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating parameters, efficiency, etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications

Definitions

  • This disclosure relates to an electrostatic precipitator.
  • a charged part that charges particulate matter (PM: Particulate Matter) contained in gas and a dust collecting part that is arranged adjacent to the downstream side of the charged part and collects charged particulate matter by Coulomb force.
  • An electric dust collector having a (collecting portion) is known (see Patent Document 1).
  • the electrode of the collecting portion for applying an electric field to the charged particulate matter is in the shape of a flat plate. Therefore, depending on the speed of the gas flow or the like, the particulate matter collected on the surface may re-scatter.
  • a charged part that includes two opposing charged electrodes, a voltage is applied between the two charged electrodes, and a corona discharge is generated to charge the particulate matter in the passing gas. It includes two collecting electrodes facing each other, and includes a collecting portion in which a voltage is applied between the two collecting electrodes and the particulate matter charged by the charged portion is collected by Coulomb force.
  • One of the two collection electrodes is configured to surround the hollow space, and an opening for opening the hollow space is provided in a portion facing the other collection electrode.
  • An electrostatic precipitator is provided.
  • particulate matter can be collected more efficiently.
  • FIG. 1 is a diagram showing an example of an exhaust gas purification system 1 including an electrostatic precipitator 200 according to the present embodiment.
  • the exhaust gas purification system 1 is mounted on a ship.
  • ship means a ship on which the electrostatic precipitator 200 is mounted, unless otherwise specified.
  • the exhaust gas purification system 1 includes a main engine 100, an electrostatic precipitator 200, a scrubber 300, and a pump 400.
  • the exhaust gas purification system 1 purifies the exhaust gas discharged from the main engine 100 and discharges it to the outside from the chimney of the ship.
  • the main engine 100 (an example of an engine) drives the propeller to rotate and propels the ship.
  • the main engine is, for example, a diesel engine that can use heavy fuel oil C as fuel.
  • the electrostatic precipitator 200 collects particulate matter (PM) contained in the exhaust gas (an example of gas) of the main engine 100.
  • the exhaust gas collected by the electrostatic precipitator 200 (from which particulate matter has been removed) is sent to the scrubber 300.
  • the scrubber 300 sprays seawater supplied through the pump 400 into the exhaust gas of the main engine 100 passing through the inside thereof, and causes the seawater to absorb sulfur oxides (SOx) contained in the main engine 100.
  • the seawater supplied to the scrubber 300 may be seawater that is constantly pumped from the sea by the open loop method, or seawater that is circulated (reused) while being neutralized in the neutralization tank by the closed loop method. May be.
  • the exhaust gas from the scrubber 300 from which the SOx component has been removed is released to the atmosphere outside the ship through the chimney of the ship.
  • the seawater discharged from the scrubber 300 that has absorbed the SOx component of the exhaust gas is discharged into the sea outside the ship, and in the case of the closed loop method, it is returned to the neutralization tank for reuse. Therefore, a neutralization treatment is applied.
  • the pump 400 pumps seawater to the scrubber 300 in the sea or from a neutralization tank.
  • the exhaust gas purification system 1 can purify the exhaust gas of the main engine 100 by using the electrostatic precipitator 200 and the scrubber 300.
  • FIG. 2 is a diagram showing an example of the electrostatic precipitator 200 according to the present embodiment.
  • FIG. 3 is a diagram showing an example of the structure of the charged unit 210 (charged electrodes 212, 214). Specifically, FIG. 3 is a front view of the charged electrodes 212 and 214 as viewed along the direction of flow.
  • 4 and 5 are views showing an example of the structure of the collection unit 220 (collection electrode 222,224).
  • FIG. 4 is a vertical cross-sectional view of the collection electrodes 222 and 224 with respect to the direction of the flow of exhaust gas, and FIG. 4 is a view from the collection electrode 222 facing the collection electrode 224. It is a figure.
  • the electrostatic precipitator 200 includes a charging unit 210, a collecting unit 220, and a control unit 230.
  • the charged unit 210 includes charged electrodes 212 and 214 and a DC power supply 216.
  • the charged electrodes 212 and 214 are arranged so as to face each other, and a corona discharge is generated between them by the voltage applied by the DC power supply 216. As a result, the particulate matter that passes through the charged portion 210 can be charged (charged).
  • the charged electrodes 212 and 214 may be configured by appropriately using a conductive material such as stainless steel, tungsten, titanium, or a carbon material. Hereinafter, the same may apply to the collection electrodes 222 and 224 described later.
  • the DC power supply 216 applies a voltage for generating a corona discharge between the charged electrodes 212 and 214.
  • the positive electrode of the DC power supply 216 is connected to the charged electrode 214 and grounded, and the negative electrode of the DC power supply 216 is connected to the charged electrode 212.
  • a negative voltage is applied between the charged electrodes 212 and 214 so that the charged electrode 214 has a reference potential (ground potential) and the charged electrode 212 has a negative high potential. Therefore, a corona discharge is generated from the charged electrode 212, and the particulate matter of the exhaust gas passing between the charged electrodes 212 and 214 can be negatively charged.
  • the DC power supply 216 may have a negative electrode connected to the charged electrode 214 and grounded, and the positive electrode thereof may be connected to the charged electrode 212.
  • a positive voltage is applied between the charged electrodes 212 and 214 so that the charged electrode 214 becomes a reference potential and the charged electrode 212 has a positive high potential. Therefore, the corona discharge from the charged electrode 212 can positively charge the particulate matter of the exhaust gas passing between the charged electrodes 212 and 214.
  • the charged electrodes 212 and 214 may be configured as a pair of cylindrical coaxial electrode discharge electrodes and counter electrodes (hereinafter, “cylindrical coaxial electrode pair”).
  • the charged electrode 214 as the counter electrode has a substantially cylindrical inner peripheral surface extending in the direction along the direction of the exhaust gas flow, and the charged electrode 212 as the discharge electrode is inside the charged electrode 214. It may have an elongated shape extending on the central axis of the peripheral surface.
  • the term "abbreviation" is intended to tolerate manufacturing errors, for example, and is used hereinafter with the same meaning.
  • the distance (gap length) from the charged electrode 214 on the reference potential side can be made substantially uniform at any position of the charged electrode 212 on the high voltage side. Therefore, it is possible to avoid the transition to spark discharge and form a stable corona discharge. Further, since the charged electrode 212 and the charged electrode 214 (inner peripheral surface) are provided so as to extend in the direction of the flow of the exhaust gas, the pressure loss in the charged portion 210 can be reduced.
  • the charged electrode 214 has a plurality of substantially cylindrical inner peripheral surfaces arranged in parallel with respect to the direction of the exhaust gas flow, and each of them has a corresponding charged electrode 212.
  • a plurality of cylindrical coaxial electrode pairs are configured by being inserted.
  • the collecting unit 220 is arranged adjacent to the downstream side of the exhaust gas flow of the charged unit 210.
  • the collection unit 220 includes a collection electrode 222,224 and a DC power supply 226.
  • the collection electrodes 222 and 224 are arranged so as to face each other, and a voltage is applied between them by the DC power supply 226 to apply a Coulomb force to the particulate matter in the exhaust gas charged by the charged unit 210 to collect the particles. Collect on the collecting electrode 224.
  • the DC power supply 226 applies a voltage for generating an electric field between the collection electrodes 222 and 224.
  • the DC power supply 226 is provided separately from the DC power supply 216 that applies a voltage to the charging unit 210 (charged electrodes 212, 214).
  • the DC power supply 226 can change the voltage applied to the collection unit 220 (collection electrode 222, 224) independently of the voltage applied to the charge unit 210.
  • the positive electrode of the DC power supply 226 is connected to the collection electrode 224 and is grounded, and the negative electrode of the DC power supply 226 is connected to the collection electrode 222.
  • a negative voltage is applied between the collection electrodes 222 and 224 so that the collection electrode 224 becomes a reference potential (ground potential) and the collection electrode 222 has a negative high potential. Therefore, when the particulate matter negatively charged by the charged portion 210 flows between the collection electrodes 222 and 224, the Coulomb force attracted to the collection electrode 224 at the reference potential acts on the particulate matter to collect the particles. Particulate matter is collected on the electrode 224.
  • the DC power supply 226 may be grounded while its positive electrode is connected to the collection electrode 224 and its negative electrode is connected to the collection electrode 222. As a result, a positive voltage is applied between the collection electrodes 222 and 224 so that the collection electrode 222 becomes a reference potential (ground potential) and the collection electrode 224 has a positive high potential. Therefore, when the particulate matter negatively charged by the charged portion 210 flows between the collection electrodes 222 and 224, the Coulomb force attracted to the positive high potential collection electrode 224 acts on the particulate matter. Particulate matter is collected on the collection electrode 224.
  • the DC power supply 226 applies a voltage to the collection electrodes 222 and 224 so that an electric field directed from the collection electrode 224 to the collection electrode 222 is applied. It may be applied. Further, as described above, when the particulate matter is positively charged by the charging unit 210, the DC power supply 226 has a collection electrode 222 so that an electric field directed from the collection electrode 222 to the collection electrode 224 is applied. A voltage may be applied to the 224.
  • the particulate matter positively charged by the charged portion 210 flows between the collection electrodes 222 and 224, a Coulomb force acts on the particulate matter in the direction of the electric field, and the particulate matter acts on the collection electrode 224. Is collected.
  • the positive electrode of the DC power supply 226 is connected to the collection electrode 222, and the negative electrode of the DC power supply 226 is connected to the collection electrode 224. Either one should be grounded.
  • the collection electrode 222 may have a flat plate shape extending in a direction along the direction of the exhaust gas flow, as shown in FIGS. 2 and 4, for example.
  • the collection electrode 224 is configured to surround the hollow space (in other words, to have a hollow box shape), as shown in FIGS. 2, 4, and 5, for example, and the collection electrode 222 and the collection electrode 222.
  • a through hole 224B that opens a hollow space is provided in the facing portion.
  • the collection electrode 224 includes a main body portion 224A, a through hole 224B, and a partition plate 224C. Further, both ends of the collection electrode 224 in the depth direction of FIG. 4 are closed by, for example, a flat plate or the like.
  • the main body portion 224A includes two flat plate portions 224A1 facing each of the collection electrodes 222 on both sides, and curved surface portions 224A2 at both ends connecting the two flat plate portions 224A1 to each other. As a result, a hollow space surrounded by two flat plate portions 224A1 and curved surface portions 224A2 at both ends thereof is formed.
  • the through hole 224B (an example of an opening) is provided in the flat plate portion 224A1 so as to penetrate the flat plate portion 224A1. Specifically, as shown in FIGS. 4 and 5, a large number of through holes 224B are provided so as to occupy a very small area with respect to the area of the flat plate portion 224A1. As a result, the through hole 224B opens the hollow space inside the main body portion 224A, and allows the space between the collection electrodes 222 and 224 to communicate with the space inside the collection electrode 224 (main body portion 224A). Can be done. Therefore, the particulate matter in the exhaust gas sucked by the Coulomb force can be accommodated in the hollow space inside the collection electrode 224 (main body portion 224A).
  • the collection electrode 224 can suppress the re-scattering of the collected particulate matter even when the flow velocity is relatively high as in the case of the exhaust gas from the main engine 100 of the ship. ..
  • the partition plate 224C is configured to partition the hollow space inside the main body portion 224A into a space on one flat plate portion 224A1 side and a space on the other flat plate portion 224A1 side.
  • particulate matter flowing into the hollow space inside the main body portion 224A from the through holes 224B of both flat plate portions 224A1 can be collected in a form of adhering to both sides of the partition plate 224C. Therefore, by fixing the particulate matter in the hollow space where the flow velocity is relatively low as compared with the mainstream of the exhaust gas, the particulate matter can be stably collected.
  • the functional part (charged part 210) for charging the particulate matter of the exhaust gas and the functional part for collecting the particulate matter are separated in the direction of the flow of the exhaust gas, and electrodes are provided for each. Pairs (charged electrodes 212, 214, and collection electrodes 222,224) are provided.
  • a discharge electrode that generates a corona discharge and a collection electrode that collects particulate matter charged by the corona discharge are opposed to each other, and a voltage is applied between the discharge electrode and the collection electrode.
  • the particulate matter charged by the discharge moves in the flow of the exhaust gas, so that the actual collection may be concentrated on the downstream side of the flow of the exhaust gas in the collection electrode. high. Therefore, the upstream portion of the exhaust gas flow in the collection electrode does not perform the function of collecting particulate matter, and the discharge electrode needs to be adjusted to the length of the collection electrode, so that the exhaust gas flow.
  • the size of the electrostatic precipitator 200 may increase.
  • the function of charging the particulate matter of the exhaust gas and the function of collecting the charged particulate matter are separated in the direction of the flow of the exhaust gas, and the respective sizes are set. It can be optimized according to the function. Therefore, the size of the electrostatic precipitator 200 can be reduced. In particular, it is suitable when there is not enough space for arranging the electrostatic precipitator 200, such as a ship.
  • the control unit 230 controls the DC power supply 226.
  • the function of the control unit 230 is realized by arbitrary hardware, an arbitrary combination of hardware and software, and the like.
  • the control unit 230 includes a memory device such as a CPU (Central Processing Unit) and a RAM (Random Access Memory), a non-volatile auxiliary storage device such as a ROM (Read Only Memory), and an interface device for external and input / output. It is mainly composed of computers including.
  • various signals used for controlling the DC power supply 226 are input to the control unit 230.
  • a signal corresponding to a measured value of the temperature of the exhaust gas flowing into the electrostatic collector 200 (exhaust gas temperature) is input to the control unit 230 from a temperature sensor installed near the inlet of the exhaust gas of the electric dust collector 200. It's okay.
  • a signal regarding the load factor (engine load factor) of the main engine 100 may be input to the control unit 230 from another control unit that controls the main engine 100.
  • control unit 230 receives a signal corresponding to the measured value of the temperature (engine temperature) of the predetermined portion of the main engine 100 from the temperature sensor installed in the predetermined portion of the main engine 100 (for example, the exhaust manifold). May be entered. Further, for example, in the control unit 230, a temperature sensor installed at a predetermined portion of the electrostatic precipitator 200 (for example, a housing of the electrostatic precipitator 200A) can be used to measure the temperature (dust collector temperature) of the predetermined portion of the electrostatic precipitator 200. The corresponding signal may be input.
  • a signal corresponding to a measured value of the temperature of the exhaust pipe is input to the control unit 230 from a temperature sensor installed in the exhaust pipe between the main engine 100 and the electrostatic precipitator 200. It's okay.
  • FIG. 6 is a diagram illustrating a method of controlling the applied voltage of the collection unit 220 (collection electrode 222,224). Specifically, FIG. 6 shows a graph 610 showing the relationship between the temperature of the gas to be dust-collected (exhaust gas in this embodiment) and the resistance of the particulate matter (PM), and the gas to be dust-collected. A graph 620 showing the relationship between the temperature of (exhaust gas) and the applied voltage of the collection unit 220 is included.
  • the resistivity (that is, conductivity) of the particulate matter changes depending on the temperature state of the exhaust gas.
  • the particulate matter acts as a dielectric, and the particulate matter collected and deposited on the collection electrode 224 may undergo dielectric polarization. Therefore, the particulate matter having a relatively high resistivity may have a potential difference opposite to the potential difference of the collecting portion 220 due to the dielectric polarization. In particular, when the deposited layer of the particulate matter becomes relatively thick, the potential difference also becomes relatively large, and as a result, back discharge occurs, and the particulate matter may be scattered most.
  • the resistivity of the particulate matter rises to about 10 11 [ ⁇ cm]
  • the resistivity of the particulate matter is 10 11 [ ⁇ cm] or more in the range of the temperature of the particulate matter, that is, the temperature of the exhaust gas in the range of about 100 ° C. to about 200 ° C., and the back discharge is performed. Is more likely to occur.
  • the control unit 230 controls the DC power supply 226, the resistivity of the particulate matter is relatively low (that is, the conductivity is relatively high), and back discharge may occur.
  • the applied voltage of the collecting unit 220 is relatively large (high).
  • the control unit 230 applies the collection unit 220. Make the voltage relatively small (low). As a result, the control unit 230 can suppress the re-scattering of the particulate matter due to back discharge under the premise that a relatively high electric field for collecting the particulate matter is applied.
  • the control unit 230 may switch the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 according to the temperature state of the exhaust gas flowing into the electrostatic precipitator 200. .. Specifically, when the temperature of the exhaust gas flowing into the electrostatic precipitator 200 is lower than 100 ° C. or higher than 200 ° C., the control unit 230 relatives the applied voltage between the collection electrodes 222 and 224.
  • the DC power supply 226 may be controlled by setting the predetermined value Va_H to a high value.
  • the temperature of the exhaust gas flowing into the electrostatic precipitator 200 is in the range of 100 ° C. or higher and 200 ° C.
  • control unit 230 sets the applied voltage between the collection electrodes 222 and 224 to a relatively low predetermined value Va_L.
  • the DC power supply 226 may be controlled by setting to.
  • the control unit 230 relatively lowers the applied voltage between the collection electrodes 222 and 224 in the temperature region of the exhaust gas where back discharge is likely to occur, and collects particulate matter. It is possible to suppress the re-scattering of the gas.
  • the temperature state of the exhaust gas flowing into the electrostatic precipitator 200 is measured by a temperature sensor arranged near the inlet of the electrostatic precipitator 200, and a signal corresponding to the measured value is taken into the control unit 230. It's okay. Further, the control unit 230 determines the temperature of the exhaust gas flowing into the electrostatic precipitator 200, for example, based on the temperature (measured value) of the exhaust gas measured by the temperature sensor installed further upstream from the inlet of the electrostatic precipitator 200. You may estimate. Further, the control unit 230 may estimate the temperature of the exhaust gas flowing into the electrostatic precipitator 200 from other information as described later.
  • control unit 230 applies a voltage between the collection electrodes 222 and 224 of the collection unit 220 according to the state of the main engine 100 (an example of a gas supply source) related to the temperature of the exhaust gas. May be switched.
  • the control unit 230 may switch the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 according to, for example, the load state of the main engine 100 (for example, the engine load factor). As shown in FIG. 6, when the load of the main engine 100 is relatively small, the temperature of the exhaust gas is low, and when the load of the main engine 100 is relatively high, the temperature of the exhaust gas is relatively high. Is.
  • the load state of the main engine 100 for example, the engine load factor
  • the control unit 230 applies the voltage between the collection electrodes 222 and 224. May be set to a predetermined value Va_H.
  • the control unit 230 may set the applied voltage between the collection electrodes 222 and 224 to the predetermined value Va_L.
  • the predetermined values LF1 and LF2 correspond to the load factors of the main engine 100 when the temperatures of the exhaust gas flowing into the electrostatic precipitator 200 are 100 ° C. and 200 ° C., respectively.
  • Information on the load factor of the main engine 100 may be acquired from another control unit that controls the main engine 100, as described above. Further, data regarding the operating status of the main engine 100 may be fetched from another control unit into the control unit 230, and the control unit 230 may calculate the load factor of the main engine 100 from the data regarding the captured operating status.
  • control unit 230 may switch the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 according to, for example, the temperature state of a predetermined portion of the main engine engine 100.
  • the temperature of the exhaust gas of the main engine 100 becomes relatively low, the temperature of the main engine 100 itself also becomes relatively low, and when the temperature of the exhaust gas of the main engine 100 becomes relatively high, the temperature of the main engine 100 itself also becomes relatively low. This is because it is relatively high.
  • the control unit 230 applies the voltage between the collection electrodes 222 and 224.
  • the voltage may be set to a predetermined value Va_H.
  • the control unit 230 sets the applied voltage between the collection electrodes 222 and 224 to the predetermined value Va_L. good.
  • the predetermined values ET1 and ET2 correspond to the temperatures of the predetermined parts of the main engine 100 when the temperature of the exhaust gas flowing into the electrostatic precipitator 200 is 100 ° C. and 200 ° C., respectively.
  • the temperature of the predetermined portion of the main engine 100 is measured by the temperature sensor installed in the main engine 100, and the signal corresponding to the measured value may be taken into the control unit 230.
  • control unit 230 may estimate the temperature of the exhaust gas flowing into the electrostatic precipitator 200 from the load factor of the main engine 100, the temperature state of a predetermined portion, and the like. Then, the control unit 230 switches the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 by the same method as described above according to the estimated value of the temperature of the exhaust gas flowing into the electrostatic precipitator 200. You may.
  • the control unit 230 captures the collection unit 220 according to the temperature (exhaust pipe temperature) of a predetermined portion of the exhaust pipe (an example of the gas supply path) between the main engine 100 and the electrostatic precipitator 200.
  • the voltage applied between the collector electrodes 222 and 224 may be switched.
  • the control unit 230 may switch the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 according to the temperature of a predetermined portion of the electrostatic precipitator 200 (dust collector temperature).
  • dust collector temperature the temperature of the exhaust gas of the main engine 100 becomes relatively low
  • the temperature of the exhaust pipe and the electric dust collector 200 also becomes relatively low
  • the temperature of the exhaust gas of the main engine 100 becomes relatively high the exhaust pipe and the electric dust collector 200 also become relatively low. This is because the temperature of 200 is also relatively high.
  • the control unit 230 sets the applied voltage between the collection electrodes 222 and 224 to the predetermined value Va_H. May be set to.
  • the control unit 230 may set the applied voltage between the collection electrodes 222 and 224 to the predetermined value Va_L.
  • the predetermined values XT1 and XT2 correspond to the exhaust pipe temperature when the temperature of the exhaust gas flowing into the electrostatic precipitator 200 is 100 ° C. and 200 ° C., respectively. Further, the same method may be adopted in the case of being controlled according to the dust collector temperature.
  • control unit 230 may estimate the temperature of the exhaust gas flowing into the electric dust collector 200 based on the exhaust pipe temperature, the dust collector temperature, and the like. Then, the control unit 230 switches the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 by the same method as described above according to the estimated value of the temperature of the exhaust gas flowing into the electrostatic precipitator 200. You may.
  • the electrostatic precipitator 200 of the above-mentioned example may be appropriately modified or modified.
  • only one through hole 224B of the collection electrode 224 may be provided in the flat plate portion 224A1 facing the collection electrode 222.
  • the lower limit of the temperature range of the exhaust gas that relatively lowers the applied voltage between the collection electrodes 222 and 224 is around 100 ° C instead of 100 ° C. It may be set within the predetermined range of.
  • This predetermined range may be, for example, a range of 10 ° C. around 100 ° C., that is, a range of 90 ° C. to 110 ° C.
  • the upper limit of the temperature range of the exhaust gas that relatively lowers the applied voltage between the collection electrodes 222 and 224 is around 200 ° C instead of 200 ° C. It may be set within a predetermined range.
  • This predetermined range may be, for example, a range of 10 ° C. before and after, that is, a range of 190 ° C. to 210 ° C.
  • the applied voltage between the collection electrodes 222 and 224 is switched between a case of switching from a relatively high state to a low state and a case of switching from a low state to a high state.
  • the boundary value of the temperature of the exhaust gas may be different. For example, when the temperature of the exhaust gas changes from less than 100 ° C to 100 ° C or higher, the control unit 230 may switch the applied voltage between the collection electrodes 222 and 224 from a relatively high state to a low state. ..
  • the control unit 230 applies a voltage between the collection electrodes 222 and 224 when the temperature of the exhaust gas is lower than the predetermined temperature (for example, 95 ° C.) lower than 100 ° C. and becomes lower than the predetermined temperature. You may switch from a relatively low state to a high state. Similarly, when the temperature of the exhaust gas changes from more than 200 ° C to 200 ° C or lower, the control unit 230 switches the applied voltage between the collection electrodes 222 and 224 from a relatively high state to a low state. good.
  • the predetermined temperature for example, 95 ° C.
  • control unit 230 relatively applies a voltage between the collection electrodes 222 and 224 when the temperature of the exhaust gas exceeds a predetermined temperature (for example, 205 ° C.) higher than 200 ° C. and exceeds the predetermined temperature. You may switch from a low state to a relatively high state. As a result, it is possible to suppress a situation in which the applied voltage between the collection electrodes 222 and 224 is switched at a relatively high frequency.
  • a predetermined temperature for example, 205 ° C.
  • the electrostatic precipitator 200 of the above-mentioned example may collect particulate matter of exhaust gas emitted by an engine arranged at a place different from that of a ship.
  • the electrostatic precipitator 200 of the above-mentioned example may collect particulate matter contained in a gas different from the exhaust gas of the engine.
  • the electrostatic precipitator 200 includes a charging unit 210 and a collecting unit 220.
  • the charged unit 210 includes opposite charged electrodes 212 and 214, and a gas (for example, exhaust gas) that is passed by a voltage applied between the charged electrodes 212 and 214 to generate a corona discharge. Charges the particulate matter inside.
  • the collecting unit 220 includes the opposing collecting electrodes 222 and 224, and a voltage is applied between the collecting electrodes 222 and 224 to collect particulate matter charged by the charged unit 210 by Coulomb force. ..
  • the collection electrode 224 of one of the collection electrodes 222 and 224 is configured to surround the hollow space, and a through hole 224B for opening the hollow space is provided in a portion facing the other collection electrode 222. Be done.
  • the electrostatic precipitator 200 can separate the function of charging the particulate matter in the passing gas and the function of collecting the charged particulate matter in the direction of the gas flow. Therefore, the size can be optimized according to each function, and as a result, the size of the electrostatic precipitator 200 can be reduced.
  • the particulate matter is collected in the hollow space inside from the through hole 224B of the collection electrode 224. Therefore, even when the flow velocity of the gas is relatively high, it is not easily affected by the flow velocity and re-scattering can be suppressed. Therefore, particulate matter in the gas can be collected more efficiently.
  • one collection electrode 224 is used as a reference potential, and the other collection electrode 222 has the same polarity as the high-potential charged electrode 212 of the charged electrodes 212 and 214.
  • a voltage may be applied between 222 and 224. Further, even if a voltage is applied between the collection electrodes 222 and 224 so that the other collection electrode 222 has a reference potential and one collection electrode 224 has the opposite polarity to the high potential charged electrode 212. good.
  • the electrostatic precipitator 200 can apply an electric field between the collection electrodes 222 and 224 so that the particulate matter charged by the charging unit 210 is collected by the collection electrode 224.
  • the other collection electrode 222 has a flat plate shape
  • one collection electrode 224 has a flat plate portion 224A1 facing the other collection electrode 222
  • the flat plate portion 224A1 has a flat plate portion 224A1.
  • a plurality of through holes 224B may be provided to open the hollow space.
  • the electrostatic precipitator 200 can collect the particulate matter charged by the charged portion 210 into the hollow space inside the collecting electrode 224 through the plurality of through holes 224B.
  • the charging unit 210 may include a DC power supply 216 that applies a voltage to the charged electrodes 212 and 214.
  • the collection unit 220 may include a DC power supply 226 different from the DC power supply 216 that applies a voltage to the collection electrodes 222 and 224.
  • the electrostatic precipitator 200 can change the voltage applied to the collecting unit 220 independently of the voltage applied to the charging unit 210.
  • the electrostatic precipitator 200 (control unit 230) may change the magnitude of the voltage applied between the collection electrodes 222 and 224 according to the temperature state of the passing gas.
  • the conductivity (resistivity) of particulate matter changes depending on the temperature state of the passing gas. Then, when the conductivity decreases (that is, the resistivity increases), the collected particulate matter has a high reverse potential with respect to the potential of the collection electrode 224 due to the dielectric polarization. As a result, back discharge may occur and the particulate matter may re-scatter.
  • the electrostatic precipitator 200 can change the magnitude of the applied voltage of the collecting unit 220 according to the temperature state of the gas, which affects the conductivity of the particulate matter.
  • the electrostatic precipitator 200 reduces the applied voltage relatively and suppresses the electric field required for charge-up, for example, in a situation where the conductivity of the particulate matter decreases and back discharge is likely to occur. be able to. Therefore, the electrostatic precipitator 200 can suppress the maximum scattering of particulate matter due to back discharge.
  • the electrostatic precipitator 200 (control unit 230) has a large voltage applied between the collection electrodes 222 and 224 according to the state of the gas supply source related to the temperature state of the passing gas. You may change the gas. For example, the electrostatic precipitator 200 (control unit 230) determines the magnitude of the voltage applied between the collection electrodes 222 and 224 according to the load state of the main engine 100 or the temperature state of a predetermined portion of the main engine 100. You may change it.
  • the electrostatic precipitator 200 can adjust the applied voltage in consideration of the conductivity of the particulate matter based on the relationship between the state of the gas supply source and the temperature state of the passing gas. Therefore, the electrostatic precipitator 200 can specifically suppress the maximum scattering of particulate matter due to back discharge.
  • the electrostatic precipitator 200 (control unit 230) has a collection electrode depending on the temperature state of at least one of the gas supply path (for example, the exhaust pipe) to pass through and the predetermined portion of the electrostatic precipitator 200.
  • the magnitude of the voltage applied between 222 and 224 may be changed.
  • the electrostatic precipitator 200 adjusts the applied voltage in consideration of the conductivity of the particulate matter based on the relationship between the temperature state of the gas supply path and the predetermined portion of the electrostatic precipitator 200 and the temperature state of the passing gas. can do. Therefore, the electrostatic precipitator 200 can specifically suppress the maximum scattering of particulate matter due to back discharge.
  • the electrostatic precipitator 200 (control unit 230) is located between the two collection electrodes when the temperature of the passing gas is within the predetermined temperature range, as compared with the case where the temperature is outside the predetermined temperature range. Reduce the magnitude of the applied voltage.
  • the predetermined temperature range is, for example, a range between a lower limit value defined within a predetermined range around 100 ° C. and an upper limit value defined within a predetermined range around 200 ° C.
  • the electrostatic precipitator 200 can specifically suppress the electric field applied between the collection electrodes 222 and 224 to be small (low) in the region where back discharge is likely to occur.
  • the charged electrode 214 having the reference potential among the charged electrodes 212 and 214 may have a substantially cylindrical inner peripheral surface extending in the direction in which the gas flows.
  • the high-potential charged electrode 212 of the charged electrodes 212 and 214 may be provided so as to extend in the direction of gas flow on substantially coaxial with the inner peripheral surface of the charged electrode 214.
  • Exhaust gas purification system 100
  • Main engine engine, gas supply source
  • Dust collector 210
  • Charge part 212
  • 214 Charge electrode
  • DC power supply first power supply
  • Collection part 222
  • 224 Collection electrode 224A
  • Main body part 224A1
  • Flat plate part 224A2
  • Curved surface part 224B
  • 224C partition plate 226
  • Control unit 300 Scrubber 400 Pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electrostatic Separation (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Provided is a technology capable of collecting particulate matter more efficiently. An electric dust collector 200 according to an embodiment of the present disclosure comprises: a charging part 210 which includes charging electrodes 212, 214 facing each other and in which a voltage is applied between the charging electrodes 212, 214 and a corona discharge is generated so that particulate matter contained in exhaust gas of main engine 100 passing through the charging part 210 is charged; and a collecting part 220 which includes collecting electrodes 222, 224 and in which a voltage is applied between the collecting electrodes 222, 224 and the particulate matter charged by the charging part 210 is collected by Coulomb force. The collecting electrode 224 that is one of the collecting electrodes 222, 224 and attracts particulate matter by Coulomb force includes a main body 224A configured to surround a hollow space, and has through hole 224B which opens to the hollow space in a flat plate part 224A1 facing the other collecting electrode.

Description

電気集塵機Electrostatic precipitator
 本開示は、電気集塵機に関する。 This disclosure relates to an electrostatic precipitator.
 例えば、気体に含まれる粒子状物質(PM:Particulate Matter)を荷電させる荷電部と、荷電部の下流側に隣接して配置され、荷電された粒子状物質をクーロン力により捕集する集塵部(捕集部)とを有する電気集塵機が知られている(特許文献1参照)。 For example, a charged part that charges particulate matter (PM: Particulate Matter) contained in gas, and a dust collecting part that is arranged adjacent to the downstream side of the charged part and collects charged particulate matter by Coulomb force. An electric dust collector having a (collecting portion) is known (see Patent Document 1).
特開2018-126714号公報Japanese Unexamined Patent Publication No. 2018-126714
 しかしながら、特許文献1では、荷電された粒子状物質に電界を印加するための捕集部の電極は平板状である。そのため、気体の流れの速度等によっては、その表面に集塵された粒子状物質が再飛散してしまう可能性がある。 However, in Patent Document 1, the electrode of the collecting portion for applying an electric field to the charged particulate matter is in the shape of a flat plate. Therefore, depending on the speed of the gas flow or the like, the particulate matter collected on the surface may re-scatter.
 そこで、上記課題に鑑み、より効率的に粒子状物質を捕集することが可能な技術を提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a technique capable of collecting particulate matter more efficiently.
 上記目的を達成するため、本開示の一実施形態では、
 対向する2つの荷電電極を含み、前記2つの荷電電極の間に電圧が印加され、コロナ放電を発生させることにより通過する気体の中の粒子状物質を荷電させる荷電部と、
 対向する2つの捕集電極を含み、前記2つの捕集電極の間に電圧が印加され、前記荷電部により荷電される前記粒子状物質をクーロン力により捕集する捕集部と、を備え、
 前記2つの捕集電極のうちの一方の捕集電極は、中空空間を包囲するように構成され、他方の捕集電極と対向する部分に前記中空空間を開放する開口が設けられる、
 電気集塵機が提供される。
In order to achieve the above object, in one embodiment of the present disclosure,
A charged part that includes two opposing charged electrodes, a voltage is applied between the two charged electrodes, and a corona discharge is generated to charge the particulate matter in the passing gas.
It includes two collecting electrodes facing each other, and includes a collecting portion in which a voltage is applied between the two collecting electrodes and the particulate matter charged by the charged portion is collected by Coulomb force.
One of the two collection electrodes is configured to surround the hollow space, and an opening for opening the hollow space is provided in a portion facing the other collection electrode.
An electrostatic precipitator is provided.
 上述の実施形態によれば、より効率的に粒子状物質を捕集することができる。 According to the above-described embodiment, particulate matter can be collected more efficiently.
電気集塵機を含む排気ガス浄化システムの一例を示す図である。It is a figure which shows an example of the exhaust gas purification system including the electrostatic precipitator. 電気集塵機の一例を示す図である。It is a figure which shows an example of an electric dust collector. 荷電電極の構造の一例を示す図である。It is a figure which shows an example of the structure of a charged electrode. 捕集電極の構造の一例を示す図である。It is a figure which shows an example of the structure of a collection electrode. 捕集電極の構造の一例を示す図である。It is a figure which shows an example of the structure of a collection electrode. 捕集部の印加電圧の制御方法を説明する図である。It is a figure explaining the control method of the applied voltage of a collecting part.
 以下、図面を参照して実施形態について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 [排気ガス浄化システムの概要]
 まず、図1を参照して、本実施形態に係る電気集塵機200を含む排気ガス浄化システム1について説明する。
[Overview of exhaust gas purification system]
First, the exhaust gas purification system 1 including the electrostatic precipitator 200 according to the present embodiment will be described with reference to FIG.
 図1は、本実施形態に係る電気集塵機200を含む排気ガス浄化システム1の一例を示す図である。 FIG. 1 is a diagram showing an example of an exhaust gas purification system 1 including an electrostatic precipitator 200 according to the present embodiment.
 排気ガス浄化システム1は、船舶に搭載される。以下、「船舶」とは、特に断らない限り、電気集塵機200が搭載される船舶を意味する。 The exhaust gas purification system 1 is mounted on a ship. Hereinafter, the term "ship" means a ship on which the electrostatic precipitator 200 is mounted, unless otherwise specified.
 図1に示すように、排気ガス浄化システム1は、主機エンジン100と、電気集塵機200と、スクラバ300と、ポンプ400とを含む。排気ガス浄化システム1は、主機エンジン100から排出される排気ガスを浄化し、船舶の煙突から外部に排出する。 As shown in FIG. 1, the exhaust gas purification system 1 includes a main engine 100, an electrostatic precipitator 200, a scrubber 300, and a pump 400. The exhaust gas purification system 1 purifies the exhaust gas discharged from the main engine 100 and discharges it to the outside from the chimney of the ship.
 主機エンジン100(エンジンの一例)は、プロペラを回転駆動し、船舶を推進させる。主機エンジンは、例えば、C重油を燃料として利用可能なディーゼルエンジンである。 The main engine 100 (an example of an engine) drives the propeller to rotate and propels the ship. The main engine is, for example, a diesel engine that can use heavy fuel oil C as fuel.
 電気集塵機200は、主機エンジン100の排気ガス(気体の一例)に含まれる粒子状物質(PM)を捕集する。電気集塵機200により集塵された(粒子状物質が除去された)排気ガスは、スクラバ300に送られる。 The electrostatic precipitator 200 collects particulate matter (PM) contained in the exhaust gas (an example of gas) of the main engine 100. The exhaust gas collected by the electrostatic precipitator 200 (from which particulate matter has been removed) is sent to the scrubber 300.
 スクラバ300は、ポンプ400を通じて供給される海水を、その内部を通過する主機エンジン100の排気ガスにスプレで噴射し、海水に主機エンジン100に含まれる硫黄酸化物(SOx)を吸収させる。スクラバ300に供給される海水は、オープンループ方式により、海中から常時汲み上げられる海水であってもよいし、クローズドループ方式により、中和槽で中和されながら循環(再利用)される海水であってもよい。スクラバ300から排出される、SOx成分が除去された排気ガスは、船舶の煙突を通じて、船舶の外部の大気に放出される。スクラバ300から排出される、排気ガスのSOx成分を吸収した海水は、オープンループ方式の場合、船舶の外部の海中に排出され、クローズドループ方式の場合、中和槽に戻されて、再利用のために中和処理が施される。 The scrubber 300 sprays seawater supplied through the pump 400 into the exhaust gas of the main engine 100 passing through the inside thereof, and causes the seawater to absorb sulfur oxides (SOx) contained in the main engine 100. The seawater supplied to the scrubber 300 may be seawater that is constantly pumped from the sea by the open loop method, or seawater that is circulated (reused) while being neutralized in the neutralization tank by the closed loop method. May be. The exhaust gas from the scrubber 300 from which the SOx component has been removed is released to the atmosphere outside the ship through the chimney of the ship. In the case of the open loop method, the seawater discharged from the scrubber 300 that has absorbed the SOx component of the exhaust gas is discharged into the sea outside the ship, and in the case of the closed loop method, it is returned to the neutralization tank for reuse. Therefore, a neutralization treatment is applied.
 ポンプ400は、海中或いは中和槽から海水をスクラバ300に圧送する。 The pump 400 pumps seawater to the scrubber 300 in the sea or from a neutralization tank.
 このように、排気ガス浄化システム1は、電気集塵機200及びスクラバ300を用いて、主機エンジン100の排気ガスを浄化することができる。 As described above, the exhaust gas purification system 1 can purify the exhaust gas of the main engine 100 by using the electrostatic precipitator 200 and the scrubber 300.
 [電気集塵機の一例]
 次に、図2~図6を参照して、電気集塵機200の一例について説明する。
[Example of electrostatic precipitator]
Next, an example of the electrostatic precipitator 200 will be described with reference to FIGS. 2 to 6.
  <電気集塵機の構成>
 図2は、本実施形態に係る電気集塵機200の一例を示す図である。図3は、荷電部210(荷電電極212,214)の構造の一例を示す図である。具体的には、図3は、荷電電極212,214を流れの向きに沿って見た正面図である。図4、図5は、捕集部220(捕集電極222,224)の構造の一例を示す図である。具体的には、図4は、排気ガスの流れの向きを基準とする捕集電極222,224の縦断面図であり、図4は、捕集電極224を対向する捕集電極222から見た図である。
<Structure of electrostatic precipitator>
FIG. 2 is a diagram showing an example of the electrostatic precipitator 200 according to the present embodiment. FIG. 3 is a diagram showing an example of the structure of the charged unit 210 (charged electrodes 212, 214). Specifically, FIG. 3 is a front view of the charged electrodes 212 and 214 as viewed along the direction of flow. 4 and 5 are views showing an example of the structure of the collection unit 220 (collection electrode 222,224). Specifically, FIG. 4 is a vertical cross-sectional view of the collection electrodes 222 and 224 with respect to the direction of the flow of exhaust gas, and FIG. 4 is a view from the collection electrode 222 facing the collection electrode 224. It is a figure.
 図2に示すように、電気集塵機200は、荷電部210と、捕集部220と、制御部230とを含む。 As shown in FIG. 2, the electrostatic precipitator 200 includes a charging unit 210, a collecting unit 220, and a control unit 230.
 荷電部210は、荷電電極212,214と、直流電源216とを含む。 The charged unit 210 includes charged electrodes 212 and 214 and a DC power supply 216.
 荷電電極212,214は、対向して配置され、直流電源216により印加される電圧により、その間にコロナ放電を発生させる。これにより、荷電部210を通過する粒子状物質を荷電(帯電)させることができる。荷電電極212,214は、例えば、ステンレス、タングステン、チタン、炭素素材等の導電性の材料を適宜用いて構成されてよい。以下、後述の捕集電極222,224についても同様であってよい。 The charged electrodes 212 and 214 are arranged so as to face each other, and a corona discharge is generated between them by the voltage applied by the DC power supply 216. As a result, the particulate matter that passes through the charged portion 210 can be charged (charged). The charged electrodes 212 and 214 may be configured by appropriately using a conductive material such as stainless steel, tungsten, titanium, or a carbon material. Hereinafter, the same may apply to the collection electrodes 222 and 224 described later.
 直流電源216(第1の電源の一例)は、荷電電極212,214の間にコロナ放電を発生させるための電圧を印加する。具体的には、直流電源216の正極は、荷電電極214に接続されると共に、接地され、直流電源216の負極は、荷電電極212に接続される。これにより、荷電電極212,214の間には、荷電電極214が基準電位(グランド電位)となり、荷電電極212が負の高電位となるように、負の電圧が印加される。そのため、荷電電極212からコロナ放電が発生し、荷電電極212,214の間を通過する排気ガスの粒子状物質を負に荷電させることができる。 The DC power supply 216 (an example of the first power supply) applies a voltage for generating a corona discharge between the charged electrodes 212 and 214. Specifically, the positive electrode of the DC power supply 216 is connected to the charged electrode 214 and grounded, and the negative electrode of the DC power supply 216 is connected to the charged electrode 212. As a result, a negative voltage is applied between the charged electrodes 212 and 214 so that the charged electrode 214 has a reference potential (ground potential) and the charged electrode 212 has a negative high potential. Therefore, a corona discharge is generated from the charged electrode 212, and the particulate matter of the exhaust gas passing between the charged electrodes 212 and 214 can be negatively charged.
 尚、直流電源216は、逆に、その負極が荷電電極214に接続されると共に、接地され、その正極が荷電電極212に接続される態様であってもよい。この場合、荷電電極212,214の間には、荷電電極214が基準電位となり、荷電電極212が正の高電位となるように、正の電圧が印加される。そのため、荷電電極212からのコロナ放電によって、荷電電極212,214の間を通過する排気ガスの粒子状物質を正に荷電させることができる。 On the contrary, the DC power supply 216 may have a negative electrode connected to the charged electrode 214 and grounded, and the positive electrode thereof may be connected to the charged electrode 212. In this case, a positive voltage is applied between the charged electrodes 212 and 214 so that the charged electrode 214 becomes a reference potential and the charged electrode 212 has a positive high potential. Therefore, the corona discharge from the charged electrode 212 can positively charge the particulate matter of the exhaust gas passing between the charged electrodes 212 and 214.
 荷電電極212,214は、例えば、図2,図3に示すように、円筒同軸方式の一対の放電電極及び対向電極(以下、「円筒同軸電極対」)として構成されてよい。具体的には、対向電極としての荷電電極214は、排気ガスの流れの向きに沿う方向に延びる略円筒状の内周面を有し、放電電極としての荷電電極212は、荷電電極214の内周面の中心軸上に延びるように細長い形状を有してよい。"略"は、例えば、製造上の誤差を許容する意図であり、以下、同様の意味で用いる。これにより、基準電位側の荷電電極214との間の距離(ギャップ長)が高電圧側の荷電電極212のどの位置でも略均一にすることができる。そのため、スパーク放電への移行を回避し、安定したコロナ放電を形成させることができる。また、荷電電極212、及び荷電電極214(内周面)は、排気ガスの流れの方向に延びるように設けられているため、荷電部210における圧力損失を低減させることができる。 As shown in FIGS. 2 and 3, the charged electrodes 212 and 214 may be configured as a pair of cylindrical coaxial electrode discharge electrodes and counter electrodes (hereinafter, “cylindrical coaxial electrode pair”). Specifically, the charged electrode 214 as the counter electrode has a substantially cylindrical inner peripheral surface extending in the direction along the direction of the exhaust gas flow, and the charged electrode 212 as the discharge electrode is inside the charged electrode 214. It may have an elongated shape extending on the central axis of the peripheral surface. The term "abbreviation" is intended to tolerate manufacturing errors, for example, and is used hereinafter with the same meaning. As a result, the distance (gap length) from the charged electrode 214 on the reference potential side can be made substantially uniform at any position of the charged electrode 212 on the high voltage side. Therefore, it is possible to avoid the transition to spark discharge and form a stable corona discharge. Further, since the charged electrode 212 and the charged electrode 214 (inner peripheral surface) are provided so as to extend in the direction of the flow of the exhaust gas, the pressure loss in the charged portion 210 can be reduced.
 また、図3に示すように、荷電電極214は、排気ガスの流れの向きに対して並列に配置される複数の略円筒状の内周面を有し、それぞれに、対応する荷電電極212が内挿される形で、複数の円筒同軸電極対が構成される。これにより、安定したコロナ放電を実現させ、且つ、荷電部210の排気ガスの流れの方向の寸法を維持しつつ、排気ガスの通流面積を確保することで、圧力損失を更に低減し、排気ガスの流量を相対的に大きくすることができる。 Further, as shown in FIG. 3, the charged electrode 214 has a plurality of substantially cylindrical inner peripheral surfaces arranged in parallel with respect to the direction of the exhaust gas flow, and each of them has a corresponding charged electrode 212. A plurality of cylindrical coaxial electrode pairs are configured by being inserted. As a result, stable corona discharge is realized, and while maintaining the dimensions of the exhaust gas flow direction of the charged portion 210, the exhaust gas flow area is secured, so that the pressure loss is further reduced and the exhaust gas is exhausted. The flow rate of gas can be relatively increased.
 捕集部220は、荷電部210の排気ガスの流れの下流側に隣接して配置される。捕集部220は、捕集電極222,224と、直流電源226とを含む。 The collecting unit 220 is arranged adjacent to the downstream side of the exhaust gas flow of the charged unit 210. The collection unit 220 includes a collection electrode 222,224 and a DC power supply 226.
 捕集電極222,224は、対向して配置され、直流電源226によりその間に電圧が印加されることにより、荷電部210で荷電された排気ガス中の粒子状物質にクーロン力を作用させ、捕集電極224に捕集する。 The collection electrodes 222 and 224 are arranged so as to face each other, and a voltage is applied between them by the DC power supply 226 to apply a Coulomb force to the particulate matter in the exhaust gas charged by the charged unit 210 to collect the particles. Collect on the collecting electrode 224.
 直流電源226(第2の電源の一例)は、捕集電極222,224の間に電界を発生させるための電圧を印加する。直流電源226は、荷電部210(荷電電極212,214)に電圧を印加する直流電源216とは別に設けられる。これにより、直流電源226は、荷電部210に印加される電圧と独立して、捕集部220(捕集電極222,224)に印加する電圧を可変させることができる。具体的には、直流電源226の正極は、捕集電極224と接続されると共に、接地され、直流電源226の負極は、捕集電極222に接続される。これにより、捕集電極222,224の間には、捕集電極224が基準電位(グランド電位)となり、捕集電極222が負の高電位となるように、負の電圧が印加される。そのため、荷電部210で負に荷電された粒子状物質が捕集電極222,224の間に流入すると、基準電位の捕集電極224に吸引されるクーロン力が粒子状物質に作用し、捕集電極224に粒子状物質が捕集される。 The DC power supply 226 (an example of the second power supply) applies a voltage for generating an electric field between the collection electrodes 222 and 224. The DC power supply 226 is provided separately from the DC power supply 216 that applies a voltage to the charging unit 210 (charged electrodes 212, 214). As a result, the DC power supply 226 can change the voltage applied to the collection unit 220 (collection electrode 222, 224) independently of the voltage applied to the charge unit 210. Specifically, the positive electrode of the DC power supply 226 is connected to the collection electrode 224 and is grounded, and the negative electrode of the DC power supply 226 is connected to the collection electrode 222. As a result, a negative voltage is applied between the collection electrodes 222 and 224 so that the collection electrode 224 becomes a reference potential (ground potential) and the collection electrode 222 has a negative high potential. Therefore, when the particulate matter negatively charged by the charged portion 210 flows between the collection electrodes 222 and 224, the Coulomb force attracted to the collection electrode 224 at the reference potential acts on the particulate matter to collect the particles. Particulate matter is collected on the electrode 224.
 尚、直流電源226は、その正極が捕集電極224に接続され、その負極が捕集電極222に接続されると共に、接地されてもよい。これにより、捕集電極222,224の間には、捕集電極222が基準電位(グランド電位)となり、捕集電極224が正の高電位となるように、正の電圧が印加される。そのため、荷電部210で負に荷電された粒子状物質が捕集電極222,224の間に流入すると、正の高電位の捕集電極224に吸引されるクーロン力が粒子状物質に作用し、捕集電極224に粒子状物質が捕集される。つまり、荷電部210により粒子状物質が負に荷電される場合、直流電源226は、捕集電極224から捕集電極222に向かう電界が印加されるように、捕集電極222,224に電圧を印加すればよい。また、上述の如く、荷電部210により粒子状物質が正に荷電される場合、直流電源226は、捕集電極222から捕集電極224に向かう電界が印加されるように、捕集電極222,224に電圧を印加してよい。これにより、荷電部210で正に荷電された粒子状物質が捕集電極222,224の間に流入すると、電界の向きに粒子状物質に対するクーロン力が作用し、捕集電極224に粒子状物質が捕集される。具体的には、荷電部210により粒子状物質が正に荷電される場合、直流電源226の正極が捕集電極222と接続されると共に、直流電源226の負極が捕集電極224と接続され、どちらかが接地されればよい。 The DC power supply 226 may be grounded while its positive electrode is connected to the collection electrode 224 and its negative electrode is connected to the collection electrode 222. As a result, a positive voltage is applied between the collection electrodes 222 and 224 so that the collection electrode 222 becomes a reference potential (ground potential) and the collection electrode 224 has a positive high potential. Therefore, when the particulate matter negatively charged by the charged portion 210 flows between the collection electrodes 222 and 224, the Coulomb force attracted to the positive high potential collection electrode 224 acts on the particulate matter. Particulate matter is collected on the collection electrode 224. That is, when the particulate matter is negatively charged by the charged portion 210, the DC power supply 226 applies a voltage to the collection electrodes 222 and 224 so that an electric field directed from the collection electrode 224 to the collection electrode 222 is applied. It may be applied. Further, as described above, when the particulate matter is positively charged by the charging unit 210, the DC power supply 226 has a collection electrode 222 so that an electric field directed from the collection electrode 222 to the collection electrode 224 is applied. A voltage may be applied to the 224. As a result, when the particulate matter positively charged by the charged portion 210 flows between the collection electrodes 222 and 224, a Coulomb force acts on the particulate matter in the direction of the electric field, and the particulate matter acts on the collection electrode 224. Is collected. Specifically, when the particulate matter is positively charged by the charging unit 210, the positive electrode of the DC power supply 226 is connected to the collection electrode 222, and the negative electrode of the DC power supply 226 is connected to the collection electrode 224. Either one should be grounded.
 捕集電極222は、例えば、図2、図4に示すように、排気ガスの流れの向きに沿う方向に延びる平板形状を有してよい。 The collection electrode 222 may have a flat plate shape extending in a direction along the direction of the exhaust gas flow, as shown in FIGS. 2 and 4, for example.
 捕集電極224は、例えば、図2、図4、図5に示すように、中空空間を包囲するように(換言すれば、中空の箱形状を有するように)構成され、捕集電極222と対向する部分に、中空空間を開放する貫通孔224Bが設けられる。具体的には、捕集電極224は、本体部224Aと、貫通孔224Bと、仕切り板224Cとを含む。また、図4の奥行方向における捕集電極224の両端部は、例えば、平板等により閉じられている。 The collection electrode 224 is configured to surround the hollow space (in other words, to have a hollow box shape), as shown in FIGS. 2, 4, and 5, for example, and the collection electrode 222 and the collection electrode 222. A through hole 224B that opens a hollow space is provided in the facing portion. Specifically, the collection electrode 224 includes a main body portion 224A, a through hole 224B, and a partition plate 224C. Further, both ends of the collection electrode 224 in the depth direction of FIG. 4 are closed by, for example, a flat plate or the like.
 本体部224Aは、両側の捕集電極222のそれぞれに対向する2つの平板部224A1と、2つの平板部224A1同士を接続する両端部の曲面部224A2とを含む。これにより、2つの平板部224A1、及びその両端部の曲面部224A2に包囲された中空空間が構成される。 The main body portion 224A includes two flat plate portions 224A1 facing each of the collection electrodes 222 on both sides, and curved surface portions 224A2 at both ends connecting the two flat plate portions 224A1 to each other. As a result, a hollow space surrounded by two flat plate portions 224A1 and curved surface portions 224A2 at both ends thereof is formed.
 貫通孔224B(開口の一例)は、平板部224A1を貫通する形で、平板部224A1に設けられる。具体的には、貫通孔224Bは、図4、図5に示すように、平板部224A1の面積に対して、非常に小さい面積を占める形で多数設けられる。これにより、貫通孔224Bは、本体部224Aの内部の中空空間を開放し、捕集電極222,224の間の空間と、捕集電極224(本体部224A)の内部の空間とを連通させることができる。そのため、クーロン力により捕集電極224に吸引される、排気ガス中の粒子状物質を捕集電極224(本体部224A)の内部の中空空間に収容することができる。よって、捕集電極224に捕集された粒子状物質の再飛散を抑制することができる。特に、船舶の主機エンジン100から排出される排気ガスは、流速が相対的に大きいため、例えば、平板形状の捕集電極では、再飛散の可能性が相対的に高くなる。これに対して、捕集電極224は、船舶の主機エンジン100からの排気ガスのように流速が相対的に高い場合であっても、捕集した粒子状物質の再飛散を抑制することができる。 The through hole 224B (an example of an opening) is provided in the flat plate portion 224A1 so as to penetrate the flat plate portion 224A1. Specifically, as shown in FIGS. 4 and 5, a large number of through holes 224B are provided so as to occupy a very small area with respect to the area of the flat plate portion 224A1. As a result, the through hole 224B opens the hollow space inside the main body portion 224A, and allows the space between the collection electrodes 222 and 224 to communicate with the space inside the collection electrode 224 (main body portion 224A). Can be done. Therefore, the particulate matter in the exhaust gas sucked by the Coulomb force can be accommodated in the hollow space inside the collection electrode 224 (main body portion 224A). Therefore, it is possible to suppress the re-scattering of the particulate matter collected on the collection electrode 224. In particular, since the exhaust gas discharged from the main engine 100 of a ship has a relatively high flow velocity, for example, in a flat plate-shaped collection electrode, the possibility of re-scattering is relatively high. On the other hand, the collection electrode 224 can suppress the re-scattering of the collected particulate matter even when the flow velocity is relatively high as in the case of the exhaust gas from the main engine 100 of the ship. ..
 仕切り板224Cは、本体部224Aの内部の中空空間を、一方の平板部224A1側の空間と他方の平板部224A1側の空間とに仕切るように構成される。これにより、双方の平板部224A1の貫通孔224Bから本体部224Aの内部の中空空間に流入する粒子状物質を仕切り板224Cの両面に付着する形で捕集することができる。そのため、排気ガスの主流に比して流速が相対的に低くなっている中空空間の内部において、粒子状物質を定着させることで、粒子状物質を安定して捕集することができる。 The partition plate 224C is configured to partition the hollow space inside the main body portion 224A into a space on one flat plate portion 224A1 side and a space on the other flat plate portion 224A1 side. As a result, particulate matter flowing into the hollow space inside the main body portion 224A from the through holes 224B of both flat plate portions 224A1 can be collected in a form of adhering to both sides of the partition plate 224C. Therefore, by fixing the particulate matter in the hollow space where the flow velocity is relatively low as compared with the mainstream of the exhaust gas, the particulate matter can be stably collected.
 このように、本例では、排気ガスの粒子状物質を荷電させる機能部(荷電部210)と、粒子状物質を捕集する機能部とが排気ガスの流れの方向に分離され、それぞれに電極対(荷電電極212,214,及び捕集電極222,224)が設けられる。 As described above, in this example, the functional part (charged part 210) for charging the particulate matter of the exhaust gas and the functional part for collecting the particulate matter are separated in the direction of the flow of the exhaust gas, and electrodes are provided for each. Pairs (charged electrodes 212, 214, and collection electrodes 222,224) are provided.
 例えば、コロナ放電を発生させる放電電極と、コロナ放電で荷電された粒子状物質を捕集する捕集電極とを対向させて、放電電極と捕集電極との間に電圧を印加させることで、荷電部210の機能と捕集部220の機能とを統合させることも可能である。しかし、この場合、放電によって荷電された粒子状物質は、排気ガスの流れで移動するため、実際に捕集されるのは、捕集電極における排気ガスの流れの下流側に集中する可能性が高い。そのため、捕集電極における排気ガスの流れの上流側の部分は、粒子状物質の捕集機能を果たさず、且つ、放電電極は、捕集電極の長さに合わせる必要性から、排気ガスの流れの下流側まで不要に長くなってしまう可能性がある。特に、船舶の主機エンジン100の排気ガスの流速は、相対的に高い(大きい)ため、捕集電極及び放電電極の長さ(大きさ)が不要に大きくなってしまう可能性がある。よって、電気集塵機200のサイズが大型化する可能性がある。 For example, a discharge electrode that generates a corona discharge and a collection electrode that collects particulate matter charged by the corona discharge are opposed to each other, and a voltage is applied between the discharge electrode and the collection electrode. It is also possible to integrate the function of the charging unit 210 and the function of the collecting unit 220. However, in this case, the particulate matter charged by the discharge moves in the flow of the exhaust gas, so that the actual collection may be concentrated on the downstream side of the flow of the exhaust gas in the collection electrode. high. Therefore, the upstream portion of the exhaust gas flow in the collection electrode does not perform the function of collecting particulate matter, and the discharge electrode needs to be adjusted to the length of the collection electrode, so that the exhaust gas flow. There is a possibility that it will be unnecessarily long to the downstream side of. In particular, since the flow velocity of the exhaust gas of the main engine 100 of the ship is relatively high (large), the length (size) of the collection electrode and the discharge electrode may become unnecessarily large. Therefore, the size of the electrostatic precipitator 200 may increase.
 これに対して、本例では、排気ガスの粒子状物質を荷電させる機能と、荷電された粒子状物質を捕集する機能とを、排気ガスの流れの方向で分離し、それぞれのサイズをその機能に合わせて最適化することができる。そのため、電気集塵機200の小型化を図ることができる。特に、船舶のように、電気集塵機200の配置スペースに余裕が無いような場合に好適である。 On the other hand, in this example, the function of charging the particulate matter of the exhaust gas and the function of collecting the charged particulate matter are separated in the direction of the flow of the exhaust gas, and the respective sizes are set. It can be optimized according to the function. Therefore, the size of the electrostatic precipitator 200 can be reduced. In particular, it is suitable when there is not enough space for arranging the electrostatic precipitator 200, such as a ship.
 制御部230は、直流電源226に関する制御を行う。制御部230は、その機能が任意のハードウェア、或いは、任意のハードウェア及びソフトウェアの組み合わせ等により実現される。例えば、制御部230は、CPU(Central Processing Unit)、RAM(Random Access Memory)等のメモリ装置、ROM(Read Only Memory)等の不揮発性の補助記憶装置、及び外部と入出力用のインタフェース装置等を含むコンピュータを中心に構成される。 The control unit 230 controls the DC power supply 226. The function of the control unit 230 is realized by arbitrary hardware, an arbitrary combination of hardware and software, and the like. For example, the control unit 230 includes a memory device such as a CPU (Central Processing Unit) and a RAM (Random Access Memory), a non-volatile auxiliary storage device such as a ROM (Read Only Memory), and an interface device for external and input / output. It is mainly composed of computers including.
 また、制御部230には、直流電源226の制御に用いられる各種信号が入力される。例えば、制御部230には、電気集塵機200の排気ガスの入口付近に設置される温度センサから、電気集塵機200に流入する排気ガスの温度(排気ガス温度)の測定値に対応する信号が入力されてよい。また、例えば、制御部230には、主機エンジン100に関する制御を行う他の制御部から、主機エンジン100の負荷率(エンジン負荷率)に関する信号が入力されてよい。また、例えば,制御部230には、主機エンジン100の所定部位(例えば、排気マニホールド)に設置される温度センサから、主機エンジン100の所定部位の温度(エンジン温度)の測定値に対応する信号が入力されてよい。また、例えば、制御部230には、電気集塵機200の所定部位(例えば、電気集塵機200Aの筐体)に設置される温度センサから、電気集塵機200の所定部位の温度(集塵機温度)の測定値に対応する信号が入力されてよい。また、例えば、制御部230には、主機エンジン100と電気集塵機200との間の排気管に設置される温度センサから、排気管の温度(排気管温度)の測定値に対応する信号が入力されてよい。 Further, various signals used for controlling the DC power supply 226 are input to the control unit 230. For example, a signal corresponding to a measured value of the temperature of the exhaust gas flowing into the electrostatic collector 200 (exhaust gas temperature) is input to the control unit 230 from a temperature sensor installed near the inlet of the exhaust gas of the electric dust collector 200. It's okay. Further, for example, a signal regarding the load factor (engine load factor) of the main engine 100 may be input to the control unit 230 from another control unit that controls the main engine 100. Further, for example, the control unit 230 receives a signal corresponding to the measured value of the temperature (engine temperature) of the predetermined portion of the main engine 100 from the temperature sensor installed in the predetermined portion of the main engine 100 (for example, the exhaust manifold). May be entered. Further, for example, in the control unit 230, a temperature sensor installed at a predetermined portion of the electrostatic precipitator 200 (for example, a housing of the electrostatic precipitator 200A) can be used to measure the temperature (dust collector temperature) of the predetermined portion of the electrostatic precipitator 200. The corresponding signal may be input. Further, for example, a signal corresponding to a measured value of the temperature of the exhaust pipe (exhaust pipe temperature) is input to the control unit 230 from a temperature sensor installed in the exhaust pipe between the main engine 100 and the electrostatic precipitator 200. It's okay.
  <電気集塵機の制御方法>
 図6は、捕集部220(捕集電極222,224)の印加電圧の制御方法を説明する図である。具体的には、図6は、集塵対象の気体(本実施形態では、排気ガス)の温度と、粒子状物質(PM)の抵抗率との関係を表すグラフ610と、集塵対象の気体(排気ガス)の温度と捕集部220の印加電圧との関係を表すグラフ620とを含む。
<Control method of electrostatic precipitator>
FIG. 6 is a diagram illustrating a method of controlling the applied voltage of the collection unit 220 (collection electrode 222,224). Specifically, FIG. 6 shows a graph 610 showing the relationship between the temperature of the gas to be dust-collected (exhaust gas in this embodiment) and the resistance of the particulate matter (PM), and the gas to be dust-collected. A graph 620 showing the relationship between the temperature of (exhaust gas) and the applied voltage of the collection unit 220 is included.
 グラフ610に示すように、粒子状物質は、排気ガスの温度状態によって、その抵抗率(即ち、導電率)が変化する。 As shown in Graph 610, the resistivity (that is, conductivity) of the particulate matter changes depending on the temperature state of the exhaust gas.
 粒子状物質は、抵抗率が上昇し絶縁性が相対的に高くなると、誘電体として作用し、捕集電極224に捕集され堆積している粒子状物質には、誘電分極が生じうる。そのため、抵抗率が相対的に高い状態にある粒子状物質は、誘電分極によって、捕集部220の電位差と逆極性の電位差を保有する可能性がある。特に、粒子状物質の堆積層が相対的に厚くなると電位差も相対的に大きくなり、その結果、バックディスチャージが発生し、粒子状物質が最飛散する可能性がある。 When the resistivity of the particulate matter increases and the insulating property becomes relatively high, the particulate matter acts as a dielectric, and the particulate matter collected and deposited on the collection electrode 224 may undergo dielectric polarization. Therefore, the particulate matter having a relatively high resistivity may have a potential difference opposite to the potential difference of the collecting portion 220 due to the dielectric polarization. In particular, when the deposited layer of the particulate matter becomes relatively thick, the potential difference also becomes relatively large, and as a result, back discharge occurs, and the particulate matter may be scattered most.
 具体的には、粒子状物質の抵抗率が1011[Ωcm]程度まで上昇すると、バックディスチャージが発生する可能性が高いことが分かっている。そのため、グラフ610に示すように、粒子状物質の温度、即ち、排気ガスの温度が約100℃~約200℃の範囲で、粒子状物質の抵抗率が1011[Ωcm]以上となり、バックディスチャージが発生する可能性が高くなる。 Specifically, it is known that when the resistivity of the particulate matter rises to about 10 11 [Ωcm], there is a high possibility that back discharge will occur. Therefore, as shown in Graph 610, the resistivity of the particulate matter is 10 11 [Ωcm] or more in the range of the temperature of the particulate matter, that is, the temperature of the exhaust gas in the range of about 100 ° C. to about 200 ° C., and the back discharge is performed. Is more likely to occur.
 これに対して、本例では、制御部230は、直流電源226を制御し、粒子状物質の抵抗率が相対的に低く(即ち、導電率が相対的に高く)、バックディスチャージが発生する可能性が相対的に低い場合、捕集部220の印加電圧を相対的に大きく(高く)する。一方、制御部230は、粒子状物質の抵抗率が相対的に高く(即ち、導電率が相対的に低く)、バックディスチャージが発生する可能性が相対的に高い場合、捕集部220の印加電圧を相対的に小さく(低く)する。これにより、制御部230は、粒子状物質を捕集するための相対的に高い電界を印加する前提の下で、バックディスチャージによる粒子状物質の再飛散を抑制することができる。 On the other hand, in this example, the control unit 230 controls the DC power supply 226, the resistivity of the particulate matter is relatively low (that is, the conductivity is relatively high), and back discharge may occur. When the property is relatively low, the applied voltage of the collecting unit 220 is relatively large (high). On the other hand, when the resistivity of the particulate matter is relatively high (that is, the conductivity is relatively low) and the possibility of back discharge is relatively high, the control unit 230 applies the collection unit 220. Make the voltage relatively small (low). As a result, the control unit 230 can suppress the re-scattering of the particulate matter due to back discharge under the premise that a relatively high electric field for collecting the particulate matter is applied.
 例えば、グラフ620に示すように、制御部230は、電気集塵機200に流入する排気ガスの温度状態に応じて、捕集部220の捕集電極222,224の間に印加する電圧を切り換えてよい。具体的には、制御部230は、電気集塵機200に流入する排気ガスの温度が100℃より低い、或いは、200℃より高い範囲にある場合、捕集電極222,224の間の印加電圧を相対的に高い所定値Va_Hに設定して、直流電源226を制御してよい。一方、制御部230は、電気集塵機200に流入する排気ガスの温度が100℃以上且つ200℃以下の範囲にある場合、捕集電極222,224の間の印加電圧を相対的に低い所定値Va_Lに設定して、直流電源226を制御してよい。これにより、制御部230は、バックディスチャージが発生する可能性が高い排気ガスの温度領域において、捕集電極222,224の間の印加電圧を相対的に低くして、捕集済みの粒子状物質の再飛散を抑制することができる。 For example, as shown in Graph 620, the control unit 230 may switch the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 according to the temperature state of the exhaust gas flowing into the electrostatic precipitator 200. .. Specifically, when the temperature of the exhaust gas flowing into the electrostatic precipitator 200 is lower than 100 ° C. or higher than 200 ° C., the control unit 230 relatives the applied voltage between the collection electrodes 222 and 224. The DC power supply 226 may be controlled by setting the predetermined value Va_H to a high value. On the other hand, when the temperature of the exhaust gas flowing into the electrostatic precipitator 200 is in the range of 100 ° C. or higher and 200 ° C. or lower, the control unit 230 sets the applied voltage between the collection electrodes 222 and 224 to a relatively low predetermined value Va_L. The DC power supply 226 may be controlled by setting to. As a result, the control unit 230 relatively lowers the applied voltage between the collection electrodes 222 and 224 in the temperature region of the exhaust gas where back discharge is likely to occur, and collects particulate matter. It is possible to suppress the re-scattering of the gas.
 電気集塵機200に流入する排気ガスの温度状態は、例えば、上述の如く、電気集塵機200の入口付近に配置される温度センサにより測定され、その測定値に対応する信号は、制御部230に取り込まれてよい。また、制御部230は、例えば、電気集塵機200の入口よりも更に上流に設置される温度センサで測定される排気ガスの温度(測定値)に基づき、電気集塵機200に流入する排気ガスの温度を推定してもよい。また、制御部230は、後述の如く、他の情報から電気集塵機200に流入する排気ガスの温度を推定してもよい。 As described above, the temperature state of the exhaust gas flowing into the electrostatic precipitator 200 is measured by a temperature sensor arranged near the inlet of the electrostatic precipitator 200, and a signal corresponding to the measured value is taken into the control unit 230. It's okay. Further, the control unit 230 determines the temperature of the exhaust gas flowing into the electrostatic precipitator 200, for example, based on the temperature (measured value) of the exhaust gas measured by the temperature sensor installed further upstream from the inlet of the electrostatic precipitator 200. You may estimate. Further, the control unit 230 may estimate the temperature of the exhaust gas flowing into the electrostatic precipitator 200 from other information as described later.
 また、例えば、制御部230は、排気ガスの温度に関連する主機エンジン100(気体の供給元の一例)の状態に応じて、捕集部220の捕集電極222,224の間に印加する電圧を切り換えてもよい。 Further, for example, the control unit 230 applies a voltage between the collection electrodes 222 and 224 of the collection unit 220 according to the state of the main engine 100 (an example of a gas supply source) related to the temperature of the exhaust gas. May be switched.
 制御部230は、例えば、主機エンジン100の負荷状態(例えば、エンジン負荷率)に応じて、捕集部220の捕集電極222,224の間に印加する電圧を切り換えてよい。図6に示すように、主機エンジン100の負荷が相対的に小さくなると、排気ガスの温度が低くなり、主機エンジン100の負荷が相対的に高くなると、排気ガスの温度が相対的に高くなるからである。 The control unit 230 may switch the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 according to, for example, the load state of the main engine 100 (for example, the engine load factor). As shown in FIG. 6, when the load of the main engine 100 is relatively small, the temperature of the exhaust gas is low, and when the load of the main engine 100 is relatively high, the temperature of the exhaust gas is relatively high. Is.
 具体的には、制御部230は、主機エンジン100の負荷率が、所定値LF1より低い、或いは所定値LF2(>LF1)より高い範囲にある場合、捕集電極222,224の間の印加電圧を所定値Va_Hに設定してよい。一方、制御部230は、主機エンジン100の負荷率が所定値LF1以上且つ所定値LF2以下の範囲にある場合、捕集電極222,224の間の印加電圧を所定値Va_Lに設定してよい。所定値LF1,LF2は、それぞれ、電気集塵機200に流入する排気ガスの温度が100℃及び200℃の場合の主機エンジン100の負荷率に相当する。 Specifically, when the load factor of the main engine 100 is lower than the predetermined value LF1 or higher than the predetermined value LF2 (> LF1), the control unit 230 applies the voltage between the collection electrodes 222 and 224. May be set to a predetermined value Va_H. On the other hand, when the load factor of the main engine 100 is in the range of the predetermined value LF1 or more and the predetermined value LF2 or less, the control unit 230 may set the applied voltage between the collection electrodes 222 and 224 to the predetermined value Va_L. The predetermined values LF1 and LF2 correspond to the load factors of the main engine 100 when the temperatures of the exhaust gas flowing into the electrostatic precipitator 200 are 100 ° C. and 200 ° C., respectively.
 主機エンジン100の負荷率の情報は、上述の如く、主機エンジン100を制御する他の制御部から取得されてよい。また、他の制御部から制御部230に主機エンジン100の運転状況に関するデータが取り込まれ、制御部230は、取り込まれる運転状況に関するデータから主機エンジン100の負荷率を算出してもよい。 Information on the load factor of the main engine 100 may be acquired from another control unit that controls the main engine 100, as described above. Further, data regarding the operating status of the main engine 100 may be fetched from another control unit into the control unit 230, and the control unit 230 may calculate the load factor of the main engine 100 from the data regarding the captured operating status.
 また、制御部230は、例えば、主機エンジン100の所定部位の温度状態に応じて、捕集部220の捕集電極222,224の間に印加する電圧を切り換えてもよい。主機エンジン100の排気ガスの温度が相対的に低くなると、主機エンジン100自体の温度も相対的に低くなり、主機エンジン100の排気ガスの温度が相対的に高くなると、主機エンジン100自体の温度も相対的に高くなるからである。 Further, the control unit 230 may switch the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 according to, for example, the temperature state of a predetermined portion of the main engine engine 100. When the temperature of the exhaust gas of the main engine 100 becomes relatively low, the temperature of the main engine 100 itself also becomes relatively low, and when the temperature of the exhaust gas of the main engine 100 becomes relatively high, the temperature of the main engine 100 itself also becomes relatively low. This is because it is relatively high.
 具体的には、制御部230は、主機エンジン100の所定部位の温度が所定値ET1より低い、或いは所定値ET2(>ET1)より高い範囲にある場合、捕集電極222,224の間の印加電圧を所定値Va_Hに設定してよい。一方、制御部230は、主機エンジン100の所定部位の温度が所定値ET1以上且つ所定値ET2以下の範囲にある場合、捕集電極222,224の間の印加電圧を所定値Va_Lに設定してよい。所定値ET1,ET2は、それぞれ、電気集塵機200に流入する排気ガスの温度が100℃及び200℃の場合の主機エンジン100の所定部位の温度に相当する。 Specifically, when the temperature of the predetermined portion of the main engine 100 is lower than the predetermined value ET1 or higher than the predetermined value ET2 (> ET1), the control unit 230 applies the voltage between the collection electrodes 222 and 224. The voltage may be set to a predetermined value Va_H. On the other hand, when the temperature of the predetermined portion of the main engine 100 is in the range of the predetermined value ET1 or more and the predetermined value ET2 or less, the control unit 230 sets the applied voltage between the collection electrodes 222 and 224 to the predetermined value Va_L. good. The predetermined values ET1 and ET2 correspond to the temperatures of the predetermined parts of the main engine 100 when the temperature of the exhaust gas flowing into the electrostatic precipitator 200 is 100 ° C. and 200 ° C., respectively.
 主機エンジン100の所定部位の温度は、上述の如く、主機エンジン100に設置される温度センサにより測定され、その測定値に対応する信号は、制御部230に取り込まれてよい。 As described above, the temperature of the predetermined portion of the main engine 100 is measured by the temperature sensor installed in the main engine 100, and the signal corresponding to the measured value may be taken into the control unit 230.
 また、制御部230は、主機エンジン100の負荷率や所定部位の温度状態等から電気集塵機200に流入する排気ガスの温度を推定してもよい。そして、制御部230は、電気集塵機200に流入する排気ガスの温度の推定値に応じて、上述と同様の方法で、捕集部220の捕集電極222,224の間に印加する電圧を切り換えてもよい。 Further, the control unit 230 may estimate the temperature of the exhaust gas flowing into the electrostatic precipitator 200 from the load factor of the main engine 100, the temperature state of a predetermined portion, and the like. Then, the control unit 230 switches the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 by the same method as described above according to the estimated value of the temperature of the exhaust gas flowing into the electrostatic precipitator 200. You may.
 また、例えば、制御部230は、主機エンジン100と電気集塵機200との間の排気管(気体の供給経路の一例)の所定部位の温度(排気管温度)に応じて、捕集部220の捕集電極222,224の間に印加する電圧を切り換えてもよい。また、制御部230は、電気集塵機200の所定部位の温度(集塵機温度)に応じて、捕集部220の捕集電極222,224の間に印加する電圧を切り換えてもよい。主機エンジン100の排気ガスの温度が相対的に低くなると、排気管や電気集塵機200の温度も相対的に低くなり、主機エンジン100の排気ガスの温度が相対的に高くなると、排気管や電気集塵機200の温度も相対的に高くなるからである。 Further, for example, the control unit 230 captures the collection unit 220 according to the temperature (exhaust pipe temperature) of a predetermined portion of the exhaust pipe (an example of the gas supply path) between the main engine 100 and the electrostatic precipitator 200. The voltage applied between the collector electrodes 222 and 224 may be switched. Further, the control unit 230 may switch the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 according to the temperature of a predetermined portion of the electrostatic precipitator 200 (dust collector temperature). When the temperature of the exhaust gas of the main engine 100 becomes relatively low, the temperature of the exhaust pipe and the electric dust collector 200 also becomes relatively low, and when the temperature of the exhaust gas of the main engine 100 becomes relatively high, the exhaust pipe and the electric dust collector 200 also become relatively low. This is because the temperature of 200 is also relatively high.
 具体的には、制御部230は、排気管温度が所定値XT1より低い、或いは所定値XT2(>XT1)より高い範囲にある場合、捕集電極222,224の間の印加電圧を所定値Va_Hに設定してよい。一方、制御部230は、排気管温度が所定値XT1以上且つ所定値XT2以下の範囲にある場合、捕集電極222,224の間の印加電圧を所定値Va_Lに設定してよい。所定値XT1,XT2は、それぞれ、電気集塵機200に流入する排気ガスの温度が100℃及び200℃の場合の排気管温度に相当する。また、集塵機温度に応じて制御される場合についても同様の方法が採用されてよい。 Specifically, when the exhaust pipe temperature is lower than the predetermined value XT1 or higher than the predetermined value XT2 (> XT1), the control unit 230 sets the applied voltage between the collection electrodes 222 and 224 to the predetermined value Va_H. May be set to. On the other hand, when the exhaust pipe temperature is in the range of the predetermined value XT1 or more and the predetermined value XT2 or less, the control unit 230 may set the applied voltage between the collection electrodes 222 and 224 to the predetermined value Va_L. The predetermined values XT1 and XT2 correspond to the exhaust pipe temperature when the temperature of the exhaust gas flowing into the electrostatic precipitator 200 is 100 ° C. and 200 ° C., respectively. Further, the same method may be adopted in the case of being controlled according to the dust collector temperature.
 また、制御部230は、排気管温度や集塵機温度等に基づき、電気集塵機200に流入する排気ガスの温度を推定してもよい。そして、制御部230は、電気集塵機200に流入する排気ガスの温度の推定値に応じて、上述と同様の方法で、捕集部220の捕集電極222,224の間に印加する電圧を切り換えてもよい。 Further, the control unit 230 may estimate the temperature of the exhaust gas flowing into the electric dust collector 200 based on the exhaust pipe temperature, the dust collector temperature, and the like. Then, the control unit 230 switches the voltage applied between the collection electrodes 222 and 224 of the collection unit 220 by the same method as described above according to the estimated value of the temperature of the exhaust gas flowing into the electrostatic precipitator 200. You may.
 [電気集塵機の他の例]
 次に、電気集塵機の他の例について説明する。
[Other examples of electrostatic precipitators]
Next, another example of the electrostatic precipitator will be described.
 上述した一例の電気集塵機200には、適宜変形や変更が加えられてもよい。 The electrostatic precipitator 200 of the above-mentioned example may be appropriately modified or modified.
 例えば、上述の一例の電気集塵機200では、捕集電極224の貫通孔224Bは、捕集電極222に対向する平板部224A1に一つだけ設けられる態様であってもよい。 For example, in the electrostatic precipitator 200 of the above-mentioned example, only one through hole 224B of the collection electrode 224 may be provided in the flat plate portion 224A1 facing the collection electrode 222.
 また、例えば、上述の一例の電気集塵機200では、捕集電極222,224の間の印加電圧を相対的に低くする排気ガスの温度範囲の下限値は、100℃に代えて、100℃の前後の所定範囲内で設定されてもよい。この所定範囲は、例えば、100℃の前後10℃の範囲、即ち、90℃~110℃の範囲であってよい。同様に、上述の一例の電気集塵機200では、捕集電極222,224の間の印加電圧を相対的に低くする排気ガスの温度範囲の上限値は、200℃に代えて、200℃の前後の所定範囲内で設定されてもよい。この所定範囲は、例えば、前後10℃の範囲、即ち、190℃~210℃の範囲であってよい。 Further, for example, in the electrostatic precipitator 200 of the above example, the lower limit of the temperature range of the exhaust gas that relatively lowers the applied voltage between the collection electrodes 222 and 224 is around 100 ° C instead of 100 ° C. It may be set within the predetermined range of. This predetermined range may be, for example, a range of 10 ° C. around 100 ° C., that is, a range of 90 ° C. to 110 ° C. Similarly, in the electrostatic precipitator 200 of the above example, the upper limit of the temperature range of the exhaust gas that relatively lowers the applied voltage between the collection electrodes 222 and 224 is around 200 ° C instead of 200 ° C. It may be set within a predetermined range. This predetermined range may be, for example, a range of 10 ° C. before and after, that is, a range of 190 ° C. to 210 ° C.
 また、例えば、上述の一例の電気集塵機200では、捕集電極222,224の間の印加電圧を相対的に高い状態から低い状態に切り換える場合と、低い状態から高い状態に切り換える場合とで、切り換えるための排気ガスの温度の境界値を異ならせてもよい。例えば、制御部230は、排気ガスの温度が100℃未満の状態から100℃以上になった場合、捕集電極222,224の間の印加電圧を相対的に高い状態から低い状態に切り換えてよい。一方、制御部230は、排気ガスの温度が100℃より低い所定温度(例えば、95℃)以上の状態からこの所定温度未満になった場合に、捕集電極222,224の間の印加電圧を相対的に低い状態から高い状態に切り換えてよい。同様に、制御部230は、排気ガスの温度が200℃を超える状態から200℃以下になった場合、捕集電極222,224の間の印加電圧を相対的に高い状態から低い状態に切り換えてよい。一方、制御部230は、排気ガスの温度が200℃より高い所定温度(例えば、205℃)以下の状態からこの所定温度を超えた場合に捕集電極222,224の間の印加電圧を相対的に低い状態から相対的に高い状態に切り換えてよい。これにより、捕集電極222,224の間の印加電圧が相対的に高い頻度で切り換わるような事態を抑制することができる。 Further, for example, in the electrostatic precipitator 200 of the above-mentioned example, the applied voltage between the collection electrodes 222 and 224 is switched between a case of switching from a relatively high state to a low state and a case of switching from a low state to a high state. The boundary value of the temperature of the exhaust gas may be different. For example, when the temperature of the exhaust gas changes from less than 100 ° C to 100 ° C or higher, the control unit 230 may switch the applied voltage between the collection electrodes 222 and 224 from a relatively high state to a low state. .. On the other hand, the control unit 230 applies a voltage between the collection electrodes 222 and 224 when the temperature of the exhaust gas is lower than the predetermined temperature (for example, 95 ° C.) lower than 100 ° C. and becomes lower than the predetermined temperature. You may switch from a relatively low state to a high state. Similarly, when the temperature of the exhaust gas changes from more than 200 ° C to 200 ° C or lower, the control unit 230 switches the applied voltage between the collection electrodes 222 and 224 from a relatively high state to a low state. good. On the other hand, the control unit 230 relatively applies a voltage between the collection electrodes 222 and 224 when the temperature of the exhaust gas exceeds a predetermined temperature (for example, 205 ° C.) higher than 200 ° C. and exceeds the predetermined temperature. You may switch from a low state to a relatively high state. As a result, it is possible to suppress a situation in which the applied voltage between the collection electrodes 222 and 224 is switched at a relatively high frequency.
 また、例えば、上述の一例の電気集塵機200は、船舶とは異なる場所に配置されるエンジンが排出する排気ガスの粒子状物質を捕集してもよい。 Further, for example, the electrostatic precipitator 200 of the above-mentioned example may collect particulate matter of exhaust gas emitted by an engine arranged at a place different from that of a ship.
 また、例えば、上述の一例の電気集塵機200は、エンジンの排気ガスとは異なる気体に含まれる粒子状物質を捕集してもよい。 Further, for example, the electrostatic precipitator 200 of the above-mentioned example may collect particulate matter contained in a gas different from the exhaust gas of the engine.
 [作用]
 次に、本実施形態に係る電気集塵機200の作用について総括する。
[Action]
Next, the operation of the electrostatic precipitator 200 according to the present embodiment will be summarized.
 本実施形態では、電気集塵機200は、荷電部210と、捕集部220とを含む。具体的には、荷電部210は、対向する荷電電極212,214を含み、荷電電極212,214の間に電圧が印加され、コロナ放電を発生させることにより通過する気体(例えば、排気ガス)の中の粒子状物質を荷電させる。また、捕集部220は、対向する捕集電極222,224を含み、捕集電極222,224の間に電圧が印加され、荷電部210により荷電される粒子状物質をクーロン力により捕集する。そして、捕集電極222,224のうちの一方の捕集電極224は、中空空間を包囲するように構成され、他方の捕集電極222と対向する部分に中空空間を開放する貫通孔224Bが設けられる。 In the present embodiment, the electrostatic precipitator 200 includes a charging unit 210 and a collecting unit 220. Specifically, the charged unit 210 includes opposite charged electrodes 212 and 214, and a gas (for example, exhaust gas) that is passed by a voltage applied between the charged electrodes 212 and 214 to generate a corona discharge. Charges the particulate matter inside. Further, the collecting unit 220 includes the opposing collecting electrodes 222 and 224, and a voltage is applied between the collecting electrodes 222 and 224 to collect particulate matter charged by the charged unit 210 by Coulomb force. .. The collection electrode 224 of one of the collection electrodes 222 and 224 is configured to surround the hollow space, and a through hole 224B for opening the hollow space is provided in a portion facing the other collection electrode 222. Be done.
 これにより、電気集塵機200は、通過する気体の中の粒子状物質を荷電させる機能と、荷電された粒子状物質を捕集する機能とを、気体の流れの方向で分離することができる。そのため、各機能に合わせて、そのサイズを最適化し、その結果、電気集塵機200のサイズを小型化することができる。 Thereby, the electrostatic precipitator 200 can separate the function of charging the particulate matter in the passing gas and the function of collecting the charged particulate matter in the direction of the gas flow. Therefore, the size can be optimized according to each function, and as a result, the size of the electrostatic precipitator 200 can be reduced.
 また、捕集電極224にクーロン力により荷電された粒子状物質を吸引させることで、粒子状物質は、捕集電極224の貫通孔224Bから内部の中空空間に捕集される。そのため、気体の流速が相対的に高い場合であっても、その流速の影響を受けにくく、再飛散を抑制することができる。よって、より効率的に気体の中の粒子状物質を捕集することができる。 Further, by attracting the particulate matter charged by the Coulomb force to the collection electrode 224, the particulate matter is collected in the hollow space inside from the through hole 224B of the collection electrode 224. Therefore, even when the flow velocity of the gas is relatively high, it is not easily affected by the flow velocity and re-scattering can be suppressed. Therefore, particulate matter in the gas can be collected more efficiently.
 また、本実施形態では、一方の捕集電極224を基準電位として、他方の捕集電極222が荷電電極212,214のうちの高電位の荷電電極212と同じ極性になるように、捕集電極222,224の間に電圧が印加されてよい。また、他方の捕集電極222を基準電位として、一方の捕集電極224が高電位の荷電電極212と逆の極性になるように、捕集電極222,224の間に電圧が印加されてもよい。 Further, in the present embodiment, one collection electrode 224 is used as a reference potential, and the other collection electrode 222 has the same polarity as the high-potential charged electrode 212 of the charged electrodes 212 and 214. A voltage may be applied between 222 and 224. Further, even if a voltage is applied between the collection electrodes 222 and 224 so that the other collection electrode 222 has a reference potential and one collection electrode 224 has the opposite polarity to the high potential charged electrode 212. good.
 これにより、電気集塵機200は、荷電部210で荷電された粒子状物質が捕集電極224に捕集されるように、捕集電極222,224の間に電界を印加することができる。 Thereby, the electrostatic precipitator 200 can apply an electric field between the collection electrodes 222 and 224 so that the particulate matter charged by the charging unit 210 is collected by the collection electrode 224.
 また、本実施形態では、他方の捕集電極222は、平板形状を有し、一方の捕集電極224は、他方の捕集電極222と対向する平板部224A1を有し、平板部224A1には、中空空間を開放する複数の貫通孔224Bが設けられてよい。 Further, in the present embodiment, the other collection electrode 222 has a flat plate shape, one collection electrode 224 has a flat plate portion 224A1 facing the other collection electrode 222, and the flat plate portion 224A1 has a flat plate portion 224A1. , A plurality of through holes 224B may be provided to open the hollow space.
 これにより、電気集塵機200は、複数の貫通孔224Bを通じて、荷電部210で荷電された粒子状物質を捕集電極224の内部の中空空間に捕集することができる。 Thereby, the electrostatic precipitator 200 can collect the particulate matter charged by the charged portion 210 into the hollow space inside the collecting electrode 224 through the plurality of through holes 224B.
 また、本実施形態では、荷電部210は、荷電電極212,214に電圧を印加する直流電源216を含んでよい。そして、捕集部220は、捕集電極222,224に電圧を印加する、直流電源216と異なる直流電源226を含んでよい。 Further, in the present embodiment, the charging unit 210 may include a DC power supply 216 that applies a voltage to the charged electrodes 212 and 214. The collection unit 220 may include a DC power supply 226 different from the DC power supply 216 that applies a voltage to the collection electrodes 222 and 224.
 これにより、電気集塵機200は、荷電部210に印加される電圧と独立して、捕集部220に印加される電圧を可変させることができる。 Thereby, the electrostatic precipitator 200 can change the voltage applied to the collecting unit 220 independently of the voltage applied to the charging unit 210.
 また、本実施形態では、電気集塵機200(制御部230)は、通過する気体の温度状態に応じて、捕集電極222,224の間に印加する電圧の大きさを変化させてよい。 Further, in the present embodiment, the electrostatic precipitator 200 (control unit 230) may change the magnitude of the voltage applied between the collection electrodes 222 and 224 according to the temperature state of the passing gas.
 例えば、粒子状物質の導電率(抵抗率)は、通過する気体の温度状態によって変化する。そして、その導電率が低下する(即ち、抵抗率が上昇する)と、捕集済みの堆積した粒子状物質が誘電分極により、捕集電極224の電位に対して高い逆電位を保有し、その結果,バックディスチャージが生じて粒子状物質が再飛散する可能性がある。 For example, the conductivity (resistivity) of particulate matter changes depending on the temperature state of the passing gas. Then, when the conductivity decreases (that is, the resistivity increases), the collected particulate matter has a high reverse potential with respect to the potential of the collection electrode 224 due to the dielectric polarization. As a result, back discharge may occur and the particulate matter may re-scatter.
 これに対して、電気集塵機200は、粒子状物質の導電率に影響を与える、気体の温度状態に応じて、捕集部220の印加電圧の大きさを変化させることができる。これにより、電気集塵機200は、例えば、粒子状物質の導電率が低下し、バックディスチャージが発生する可能性が高い状況で、印加電圧を相対的に小さくし、チャージアップに必要な電界を抑制することができる。そのため、電気集塵機200は、バックディスチャージによる粒子状物質の最飛散を抑制することができる。 On the other hand, the electrostatic precipitator 200 can change the magnitude of the applied voltage of the collecting unit 220 according to the temperature state of the gas, which affects the conductivity of the particulate matter. As a result, the electrostatic precipitator 200 reduces the applied voltage relatively and suppresses the electric field required for charge-up, for example, in a situation where the conductivity of the particulate matter decreases and back discharge is likely to occur. be able to. Therefore, the electrostatic precipitator 200 can suppress the maximum scattering of particulate matter due to back discharge.
 また、本実施形態では、電気集塵機200(制御部230)は、通過する気体の温度状態に関連する気体の供給元の状態に応じて、捕集電極222,224の間に印加する電圧の大きさを変化させてよい。例えば、電気集塵機200(制御部230)は、主機エンジン100の負荷状態、或いは、主機エンジン100の所定部位の温度状態に応じて、捕集電極222,224の間に印加する電圧の大きさを変化させてよい。 Further, in the present embodiment, the electrostatic precipitator 200 (control unit 230) has a large voltage applied between the collection electrodes 222 and 224 according to the state of the gas supply source related to the temperature state of the passing gas. You may change the gas. For example, the electrostatic precipitator 200 (control unit 230) determines the magnitude of the voltage applied between the collection electrodes 222 and 224 according to the load state of the main engine 100 or the temperature state of a predetermined portion of the main engine 100. You may change it.
 これにより、電気集塵機200は、気体の供給元の状態と通過する気体の温度状態との関係性に基づき、粒子状物質の導電率を考慮して印加電圧を調整することができる。そのため、電気集塵機200は、具体的に、バックディスチャージによる粒子状物質の最飛散を抑制することができる。 Thereby, the electrostatic precipitator 200 can adjust the applied voltage in consideration of the conductivity of the particulate matter based on the relationship between the state of the gas supply source and the temperature state of the passing gas. Therefore, the electrostatic precipitator 200 can specifically suppress the maximum scattering of particulate matter due to back discharge.
 また、本実施形態では、電気集塵機200(制御部230)は、通過する気体の供給経路(例えば、排気管)、及び電気集塵機200の所定部位の少なくとも一方の温度状態に応じて、捕集電極222,224の間に印加する電圧の大きさを変化させてよい。 Further, in the present embodiment, the electrostatic precipitator 200 (control unit 230) has a collection electrode depending on the temperature state of at least one of the gas supply path (for example, the exhaust pipe) to pass through and the predetermined portion of the electrostatic precipitator 200. The magnitude of the voltage applied between 222 and 224 may be changed.
 これにより、電気集塵機200は、気体の供給経路や電気集塵機200の所定部位の温度状態と通過する気体の温度状態との関係性に基づき、粒子状物質の導電率を考慮して印加電圧を調整することができる。そのため、電気集塵機200は、具体的に、バックディスチャージによる粒子状物質の最飛散を抑制することができる。 As a result, the electrostatic precipitator 200 adjusts the applied voltage in consideration of the conductivity of the particulate matter based on the relationship between the temperature state of the gas supply path and the predetermined portion of the electrostatic precipitator 200 and the temperature state of the passing gas. can do. Therefore, the electrostatic precipitator 200 can specifically suppress the maximum scattering of particulate matter due to back discharge.
 また、本実施形態では、電気集塵機200(制御部230)は、通過する気体の温度が所定の温度範囲内である場合、所定の温度範囲外である場合よりも2つの捕集電極の間に印加する電圧の大きさを小さくする。所定の温度範囲は、例えば、100℃の前後の所定の範囲内に規定される下限値と、200℃の前後の所定の範囲内に規定される上限値との間の範囲である。 Further, in the present embodiment, the electrostatic precipitator 200 (control unit 230) is located between the two collection electrodes when the temperature of the passing gas is within the predetermined temperature range, as compared with the case where the temperature is outside the predetermined temperature range. Reduce the magnitude of the applied voltage. The predetermined temperature range is, for example, a range between a lower limit value defined within a predetermined range around 100 ° C. and an upper limit value defined within a predetermined range around 200 ° C.
 これにより、電気集塵機200は、具体的に、バックディスチャージが発生し易い領域で、捕集電極222,224の間に印加される電界を小さく(低く)抑制することができる。 Thereby, the electrostatic precipitator 200 can specifically suppress the electric field applied between the collection electrodes 222 and 224 to be small (low) in the region where back discharge is likely to occur.
 また、本実施形態では、荷電電極212,214のうちの基準電位の荷電電極214は、気体の流れる方向に延びる略円筒形状の内周面を有してよい。そして、荷電電極212,214のうちの高電位の荷電電極212は、荷電電極214の内周面の略同軸上で気体の流れる方向に延びるように設けられてよい。 Further, in the present embodiment, the charged electrode 214 having the reference potential among the charged electrodes 212 and 214 may have a substantially cylindrical inner peripheral surface extending in the direction in which the gas flows. The high-potential charged electrode 212 of the charged electrodes 212 and 214 may be provided so as to extend in the direction of gas flow on substantially coaxial with the inner peripheral surface of the charged electrode 214.
 これにより、荷電部210における通過する気体の圧力損失を抑制することができる。また、基準電位側の荷電電極214との間の距離(ギャップ長)が高電圧側の荷電電極212のどの位置でも略均一になるため、スパーク放電への移行を回避し、安定したコロナ放電を形成させることができる。 This makes it possible to suppress the pressure loss of the passing gas in the charged portion 210. In addition, since the distance (gap length) from the charged electrode 214 on the reference potential side is substantially uniform at any position of the charged electrode 212 on the high voltage side, the transition to spark discharge is avoided and stable corona discharge is achieved. Can be formed.
 以上、実施形態について詳述したが、本開示はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments have been described in detail above, the present disclosure is not limited to such a specific embodiment, and various modifications and changes can be made within the scope of the gist described in the claims.
 最後に、本願は、2020年8月20日に出願した日本国特許出願2020-139592号に基づく優先権を主張するものであり、日本国特許出願の全内容を本願に参照により援用する。 Finally, the present application claims priority based on Japanese Patent Application No. 2020-139592 filed on August 20, 2020, and the entire contents of the Japanese patent application are incorporated herein by reference.
 1 排気ガス浄化システム
 100 主機エンジン(エンジン、気体の供給元)
 200 電気集塵機
 210 荷電部
 212,214 荷電電極
 216 直流電源(第1の電源)
 220 捕集部
 222,224 捕集電極
 224A 本体部
 224A1 平板部
 224A2 曲面部
 224B 貫通孔(開口)
 224C 仕切り板
 226 直流電源(第2の電源)
 230 制御部
 300 スクラバ
 400 ポンプ
1 Exhaust gas purification system 100 Main engine (engine, gas supply source)
200 Dust collector 210 Charge part 212,214 Charge electrode 216 DC power supply (first power supply)
220 Collection part 222,224 Collection electrode 224A Main body part 224A1 Flat plate part 224A2 Curved surface part 224B Through hole (opening)
224C partition plate 226 DC power supply (second power supply)
230 Control unit 300 Scrubber 400 Pump

Claims (11)

  1.  対向する2つの荷電電極を含み、前記2つの荷電電極の間に電圧が印加され、コロナ放電を発生させることにより通過する気体の中の粒子状物質を荷電させる荷電部と、
     対向する2つの捕集電極を含み、前記2つの捕集電極の間に電圧が印加され、前記荷電部により荷電される前記粒子状物質をクーロン力により捕集する捕集部と、を備え、
     前記2つの捕集電極のうちの一方の捕集電極は、中空空間を包囲するように構成され、他方の捕集電極と対向する部分に前記中空空間を開放する開口が設けられる、
     電気集塵機。
    A charged part that includes two opposing charged electrodes, a voltage is applied between the two charged electrodes, and a corona discharge is generated to charge the particulate matter in the passing gas.
    It includes two collecting electrodes facing each other, and includes a collecting portion in which a voltage is applied between the two collecting electrodes and the particulate matter charged by the charged portion is collected by Coulomb force.
    One of the two collection electrodes is configured to surround the hollow space, and an opening for opening the hollow space is provided in a portion facing the other collection electrode.
    Electrostatic precipitator.
  2.  前記一方の捕集電極を基準電位として、前記他方の捕集電極が前記2つの荷電電極のうちの高電位の荷電電極と同じ極性になるように、又は、前記他方の捕集電極を基準電位として、前記一方の捕集電極が前記高電位の荷電電極と逆の極性になるように、前記2つの捕集電極の間に電圧が印加される、
     請求項1に記載の電気集塵機。
    With the one collecting electrode as the reference potential, the other collecting electrode has the same polarity as the high potential charged electrode of the two charged electrodes, or the other collecting electrode has the reference potential. As a result, a voltage is applied between the two collection electrodes so that one of the collection electrodes has a polarity opposite to that of the high potential charged electrode.
    The electrostatic precipitator according to claim 1.
  3.  前記他方の捕集電極は、平板形状を有し、
     前記一方の捕集電極は、前記他方の捕集電極と対向する平板部を有し、
     前記平板部には、前記中空空間を開放する複数の前記開口が設けられる、
     請求項1又は2に記載の電気集塵機。
    The other collection electrode has a flat plate shape and has a flat plate shape.
    The one collecting electrode has a flat plate portion facing the other collecting electrode and has a flat plate portion.
    The flat plate portion is provided with a plurality of the openings that open the hollow space.
    The electrostatic precipitator according to claim 1 or 2.
  4.  前記荷電部は、前記2つの荷電電極に電圧を印加する第1の電源を含み、
     前記捕集部は、前記2つの捕集電極に電圧を印加する、前記第1の電源と異なる第2の電源を含む、
     請求項1乃至3の何れか一項に記載の電気集塵機。
    The charged portion includes a first power source that applies a voltage to the two charged electrodes.
    The collection unit includes a second power source different from the first power source, which applies a voltage to the two collection electrodes.
    The electrostatic precipitator according to any one of claims 1 to 3.
  5.  前記気体の温度状態に応じて、前記2つの捕集電極の間に印加する電圧の大きさを変化させる、
     請求項1乃至4の何れか一項に記載の電気集塵機。
    The magnitude of the voltage applied between the two collection electrodes is changed according to the temperature state of the gas.
    The electrostatic precipitator according to any one of claims 1 to 4.
  6.  前記気体の温度状態に関連する前記気体の供給元の状態に応じて、前記2つの捕集電極の間に印加する電圧の大きさを変化させる、
     請求項5に記載の電気集塵機。
    The magnitude of the voltage applied between the two collection electrodes is changed according to the state of the source of the gas related to the temperature state of the gas.
    The electrostatic precipitator according to claim 5.
  7.  前記供給元は、エンジンであり、
     前記気体は、前記エンジンの排気ガスであり、
     前記エンジンの負荷状態、又は、前記エンジンの所定部位の温度状態に応じて、前記2つの捕集電極の間に印加する電圧の大きさを変化させる、
     請求項6に記載の電気集塵機。
    The supplier is an engine.
    The gas is the exhaust gas of the engine.
    The magnitude of the voltage applied between the two collection electrodes is changed according to the load state of the engine or the temperature state of a predetermined portion of the engine.
    The electrostatic precipitator according to claim 6.
  8.  前記気体の供給経路、及び電気集塵機の所定部位の少なくとも一方の温度状態に応じて、前記2つの捕集電極の間に印加する電圧の大きさを変化させる、
     請求項5に記載の電気集塵機。
    The magnitude of the voltage applied between the two collection electrodes is changed according to the temperature state of at least one of the gas supply path and the predetermined portion of the electrostatic precipitator.
    The electrostatic precipitator according to claim 5.
  9.  通過する前記気体の温度が所定の温度範囲内である場合、前記温度範囲外である場合よりも前記2つの捕集電極の間に印加する電圧の大きさを小さくする、
     請求項5乃至8の何れか一項に記載の電気集塵機。
    When the temperature of the passing gas is within a predetermined temperature range, the magnitude of the voltage applied between the two collection electrodes is smaller than when the temperature is outside the temperature range.
    The electrostatic precipitator according to any one of claims 5 to 8.
  10.  前記温度範囲は、100℃の前後の所定の範囲内に規定される下限値と、200℃の前後の所定の範囲内に規定される上限値との間の範囲である、
     請求項9に記載の電気集塵機。
    The temperature range is a range between a lower limit value defined within a predetermined range around 100 ° C. and an upper limit value defined within a predetermined range around 200 ° C.
    The electrostatic precipitator according to claim 9.
  11.  前記2つの荷電電極のうちの基準電位の荷電電極は、前記気体の流れる方向に延びる略円筒形状の内周面を有し、
     前記2つの荷電電極のうちの高電位の荷電電極は、前記内周面の略同軸上で前記気体の流れる方向に延びるように設けられる、
     請求項1乃至10の何れか一項に記載の電気集塵機。
    Of the two charged electrodes, the charged electrode having the reference potential has a substantially cylindrical inner peripheral surface extending in the direction in which the gas flows.
    The high-potential charged electrode of the two charged electrodes is provided so as to extend in the direction of flow of the gas on substantially coaxial with the inner peripheral surface.
    The electrostatic precipitator according to any one of claims 1 to 10.
PCT/JP2021/024036 2020-08-20 2021-06-24 Electric dust collector WO2022038894A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21858044.7A EP4082668A4 (en) 2020-08-20 2021-06-24 Electric dust collector
CN202180011441.XA CN115003416A (en) 2020-08-20 2021-06-24 Electric dust collector
KR1020227026075A KR20220114086A (en) 2020-08-20 2021-06-24 electric dust collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020139592A JP2022035345A (en) 2020-08-20 2020-08-20 Electrostatic precipitator
JP2020-139592 2020-08-20

Publications (1)

Publication Number Publication Date
WO2022038894A1 true WO2022038894A1 (en) 2022-02-24

Family

ID=80323627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024036 WO2022038894A1 (en) 2020-08-20 2021-06-24 Electric dust collector

Country Status (5)

Country Link
EP (1) EP4082668A4 (en)
JP (1) JP2022035345A (en)
KR (1) KR20220114086A (en)
CN (1) CN115003416A (en)
WO (1) WO2022038894A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174952A (en) * 1988-12-27 1990-07-06 Daikin Ind Ltd Electrostatic precipitator
JPH11249382A (en) * 1998-02-27 1999-09-17 Sharp Corp Corona electrifying device
JP2011245429A (en) * 2010-05-27 2011-12-08 Fuji Electric Co Ltd Electrostatic precipitator
JP2013188708A (en) * 2012-03-14 2013-09-26 Fuji Electric Co Ltd Electrostatic precipitator
JP2018109375A (en) * 2016-12-28 2018-07-12 富士電機株式会社 Particulate substance combustor
JP2018126714A (en) 2017-02-10 2018-08-16 三菱電機株式会社 Electrostatic precipitator and blower
JP2020139592A (en) 2019-02-28 2020-09-03 ダイハツ工業株式会社 transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054056A (en) * 1990-11-30 1993-01-14 Toshiba Corp Electrostatic precipitator
EP2085582A1 (en) * 2006-11-20 2009-08-05 Kabushiki Kaisha Toshiba Gas purifying device, gas purifying system and gas purifying method
JP4873564B2 (en) * 2007-03-29 2012-02-08 トヨタ自動車株式会社 Exhaust gas purification device
CN102284361B (en) * 2011-06-15 2013-12-04 福建龙净环保股份有限公司 Flue gas dust removal system and electric dust remover thereof
JP5761461B2 (en) * 2012-07-31 2015-08-12 富士電機株式会社 Electric dust collector
CN102872976A (en) * 2012-09-26 2013-01-16 东北大学 Double-zone multistage electrostatic dust collector with charged cold anode and application method thereof
US9682384B2 (en) * 2014-09-11 2017-06-20 University Of Washington Electrostatic precipitator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174952A (en) * 1988-12-27 1990-07-06 Daikin Ind Ltd Electrostatic precipitator
JPH11249382A (en) * 1998-02-27 1999-09-17 Sharp Corp Corona electrifying device
JP2011245429A (en) * 2010-05-27 2011-12-08 Fuji Electric Co Ltd Electrostatic precipitator
JP2013188708A (en) * 2012-03-14 2013-09-26 Fuji Electric Co Ltd Electrostatic precipitator
JP2018109375A (en) * 2016-12-28 2018-07-12 富士電機株式会社 Particulate substance combustor
JP2018126714A (en) 2017-02-10 2018-08-16 三菱電機株式会社 Electrostatic precipitator and blower
JP2020139592A (en) 2019-02-28 2020-09-03 ダイハツ工業株式会社 transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082668A4

Also Published As

Publication number Publication date
CN115003416A (en) 2022-09-02
JP2022035345A (en) 2022-03-04
EP4082668A1 (en) 2022-11-02
KR20220114086A (en) 2022-08-17
EP4082668A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
US7150780B2 (en) Electrostatic air cleaning device
JP4856139B2 (en) Electric dust collector
JPH09112246A (en) Exhaust fine particles collecting device for diesel engine by electrical control
AU2005333037A1 (en) Electrostatic air cleaning device
JP2011245429A (en) Electrostatic precipitator
US20210063962A1 (en) Image forming apparatus with particle collector
WO2022038894A1 (en) Electric dust collector
KR20070050620A (en) Concentration plasma type apparatus for removing engine exhaust particulate matter
JP3254134B2 (en) Electric dust collector
JP4094223B2 (en) Electric dust collector
WO2022038957A1 (en) Electrostatic precipitator
JP2965952B2 (en) Electric dust collector for tunnel
JP3943461B2 (en) Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator
JP7494644B2 (en) Electrostatic Precipitator
JP2872554B2 (en) Electric dust collector
JP5531978B2 (en) Exhaust treatment device for internal combustion engine
JP4345568B2 (en) Aggregator for exhaust treatment equipment
JP3033579U (en) Exhaust black smoke removal device for diesel engine
Nosyrev et al. Using Bipolar Corona Discharge for Electrostatic Purification of Gases
JPH11216391A (en) Electric precipitator
JP2004121987A (en) Ac electric field precipitator and method for driving the electric precipitator
JP2001025682A (en) Electric precipitator
JP2000042445A (en) Electric precipitator
EP4215279A1 (en) Separation arrangement for an electrostratic precipitator and an electrostatic precipitator
JP2000279849A (en) Electric precipitator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227026075

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021858044

Country of ref document: EP

Effective date: 20220727

NENP Non-entry into the national phase

Ref country code: DE