JP2018126714A - Electrostatic precipitator and blower - Google Patents

Electrostatic precipitator and blower Download PDF

Info

Publication number
JP2018126714A
JP2018126714A JP2017023165A JP2017023165A JP2018126714A JP 2018126714 A JP2018126714 A JP 2018126714A JP 2017023165 A JP2017023165 A JP 2017023165A JP 2017023165 A JP2017023165 A JP 2017023165A JP 2018126714 A JP2018126714 A JP 2018126714A
Authority
JP
Japan
Prior art keywords
discharge electrode
voltage
electrode
charged
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017023165A
Other languages
Japanese (ja)
Other versions
JP6783161B2 (en
Inventor
隆弘 酒井
Takahiro Sakai
隆弘 酒井
文彦 曽根
Fumihiko Sone
文彦 曽根
浩之 袴田
Hiroyuki Hakamada
浩之 袴田
晋也 大石
Shinya Oishi
晋也 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017023165A priority Critical patent/JP6783161B2/en
Publication of JP2018126714A publication Critical patent/JP2018126714A/en
Application granted granted Critical
Publication of JP6783161B2 publication Critical patent/JP6783161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ventilation (AREA)
  • Electrostatic Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic precipitator capable of suppressing the reduction of a dust collection function caused by the adhesion of a deposit to an electrode due to a discharge operation.SOLUTION: In the control section of an electrostatic precipitator, control for stopping the application of a voltage to a discharge electrode is performed when the quantity of particulate materials in air to be a treatment object becomes a predetermined lower limit reference value or less in a state of being applied with a voltage having a predetermined voltage value to the discharge electrode on the basis of the detection result of a particle sensor detecting the quantity of the particulate materials in the air to be treatment object; control for applying a voltage having a predetermined voltage value to the discharge electrode is performed when the quantity of particulate materials in the air to be the treatment object becomes a predetermined higher limit reference value or more in a state of being stopped with the application of a voltage to the discharge electrode; and control for applying a predetermined voltage value to the discharge electrode is performed after a voltage higher than a predetermined voltage value is applied to the discharge electrode when starting the operation of a charging section.SELECTED DRAWING: Figure 6

Description

本発明は、電気集塵装置、およびこの電気集塵装置を備えた送風機に関する。   The present invention relates to an electrostatic precipitator and a blower provided with the electrostatic precipitator.

近年、スギまたはヒノキに代表される花粉、および粒子状物質(Particulate Matter:PM)といった空気中の微粒子状物質の人体への影響を緩和するため、室内の微粒子状物質を除去する空気清浄機が使用されている。以下、微粒子状物質を単に微粒子と呼ぶ場合がある。空気清浄機における微粒子の除去方法として、フィルターを用いて微粒子を機械的に除去する方法、およびイオン等を放出して微粒子を電気的に除去する方法が利用されている。   In recent years, air cleaners that remove particulate matter indoors have been used to mitigate the effects of pollen such as cedar or cypress and particulate matter in the air, such as particulate matter (PM), on the human body. It is used. Hereinafter, the particulate material may be simply referred to as a fine particle. As a method of removing fine particles in an air cleaner, a method of mechanically removing fine particles using a filter and a method of electrically removing fine particles by releasing ions or the like are used.

また、微粒子を電気的に除去する方法として、コロナ放電を利用した電気集塵技術が利用されている。電気集塵技術を用いた空気清浄機は、微粒子に電荷を与える荷電部と、荷電された微粒子を捕捉する集塵部とを備える。そして、荷電部によって荷電された微粒子がクーロン力によって集塵部で捕捉されることで、微粒子を含んだ空気が微粒子を含まない清浄空気とされて空間に排出される。   Further, as a method for electrically removing fine particles, an electrostatic dust collection technique using corona discharge is used. An air cleaner using an electric dust collection technology includes a charging unit that gives electric charge to fine particles, and a dust collecting unit that traps charged fine particles. Then, the fine particles charged by the charging unit are captured by the dust collecting unit by the Coulomb force, so that the air containing the fine particles becomes clean air that does not contain the fine particles and is discharged into the space.

このような空気清浄機として、特許文献1には、コロナ放電を利用して空気を浄化する空気浄化装置が開示されている。特許文献1に開示された空気浄化装置は、放電電極と対向電極との間に電圧を印加することで生じる電子、イオン、オゾン、およびラジカルといった活性種によって、空間中の集塵および脱臭を行うことができる。   As such an air purifier, Patent Document 1 discloses an air purifying device that purifies air using corona discharge. The air purification device disclosed in Patent Literature 1 collects dust and deodorizes in space by active species such as electrons, ions, ozone, and radicals generated by applying a voltage between a discharge electrode and a counter electrode. be able to.

また、特許文献2には、空気中の微粒子数を測定する粒子測定装置を備え、微粒子の粒子数の検出結果に対応して、塵埃に電荷を付与して移動捕集する電界をつくる高電圧電源を制御する空気清浄器が開示されている。   Further, Patent Document 2 includes a particle measuring device that measures the number of fine particles in the air, and in accordance with the detection result of the number of fine particles, a high voltage that creates an electric field that moves and collects dust by applying electric charges to the dust. An air purifier for controlling a power supply is disclosed.

特許第3775417号公報Japanese Patent No. 3775417 特許第3107277号公報Japanese Patent No. 3107277

しかしながら、上記特許文献1の技術によれば、屋内でコロナ放電を行うと、空気中に存在する揮発性のシリコン化合物が酸化されて絶縁物であるシリカ(SiO)が生成されて放電電極の先端に付着する。そして、空気清浄機の使用時間が増えるにしたがって、放電電極の先端にシリカが堆積していく。放電電極の先端に付着物であるシリカが付着すると、シリカが抵抗となって放電電極での放電が阻害され、電荷の放出量および活性種の生成量の低下を招き、微粒子を荷電させる効率が低下する。そして、このような効率の低下は、放電電極の先端にシリカが堆積していくにしたがって顕著となる。このため、空気清浄機を長期間にわたって運転させることによって、空気清浄機の空気清浄機能が徐々に低下する、という問題があった。 However, according to the technique disclosed in Patent Document 1, when corona discharge is performed indoors, a volatile silicon compound present in the air is oxidized to produce silica (SiO 2 ), which is an insulator, and the discharge electrode. Adhere to the tip. And silica accumulates on the front-end | tip of a discharge electrode as the usage time of an air cleaner increases. When silica, which is a deposit, adheres to the tip of the discharge electrode, the silica becomes a resistance and the discharge at the discharge electrode is hindered, leading to a decrease in the amount of charge released and the amount of active species generated, and the efficiency of charging fine particles is improved. descend. Such a decrease in efficiency becomes more prominent as silica is deposited on the tip of the discharge electrode. For this reason, there existed a problem that the air purifying function of an air purifier fell gradually by operating an air purifier for a long period of time.

また、特許文献2では、微粒子の粒子数の検出結果に対応して高電圧電源の出力制御を行っているが、放電電極へのシリカの付着は一切考慮されておらず、空気清浄器を長期間にわたって運転させることによって、空気清浄器の空気清浄機能が徐々に低下する、という問題があった。   Further, in Patent Document 2, output control of a high voltage power source is performed in accordance with the detection result of the number of particles of fine particles, but silica adhesion to the discharge electrode is not taken into consideration at all, and an air cleaner is lengthened. There was a problem that the air purifying function of the air purifier gradually deteriorated by operating for a period of time.

本発明は、上記に鑑みてなされたものであって、放電動作による電極への付着物の付着に起因した集塵機能の低下を抑制可能な電気集塵装置および送風機を得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the electric dust collector and air blower which can suppress the fall of the dust collection function resulting from adhesion of the deposit | attachment to the electrode by discharge operation.

上述した課題を解決し、目的を達成するために、本発明にかかる電気集塵装置は、処理対象となる空気中の粒子状物質の数量を検出する粒子センサと、グランド電位とされた対向電極と、対向電極と対向する放電電極とを備え、放電電極に電圧を印加することによって放電電極と対向電極との間にコロナ放電を発生させて空気中の粒子状物質を荷電させる荷電部と、を備える。また、電気集塵装置は、荷電部で荷電された粒子状物質をクーロン力によって捕集する集塵部と、放電電極に電圧を印加する電源と、電源から放電電極への電圧の印加を制御する制御部と、を備える。制御部は、粒子センサの検出結果に基づいて、放電電極に既定の電圧値の電圧が印加されている状態において処理対象となる空気中の粒子状物質の数量が既定の下限基準値以下となった場合に、放電電極への電圧の印加を停止させる制御を行い、放電電極への電圧の印加が停止されている状態において、処理対象となる空気中の粒子状物質の数量が既定の上限基準値以上となった場合に、放電電極に既定の電圧値の電圧を印加する制御を行う。また、制御部は、荷電部の稼働開始時に、既定の電圧値よりも高い電圧を放電電極に印加した後に、既定の電圧値を放電電極に印加する制御を行う。   In order to solve the above-described problems and achieve the object, an electrostatic precipitator according to the present invention includes a particle sensor for detecting the quantity of particulate matter in the air to be processed, and a counter electrode having a ground potential. And a discharge portion that is opposed to the counter electrode, and a charging unit that charges the particulate matter in the air by generating a corona discharge between the discharge electrode and the counter electrode by applying a voltage to the discharge electrode; Is provided. In addition, the electrostatic precipitator controls the dust collection unit that collects the particulate matter charged in the charging unit by Coulomb force, the power source that applies voltage to the discharge electrode, and the application of voltage from the power source to the discharge electrode. A control unit. Based on the detection result of the particle sensor, the control unit determines that the number of particulate matter in the air to be processed is equal to or less than the predetermined lower reference value when the voltage of the predetermined voltage value is applied to the discharge electrode. When the voltage applied to the discharge electrode is stopped and the voltage application to the discharge electrode is stopped, the quantity of particulate matter in the air to be treated is the predetermined upper limit standard. When the value exceeds the value, control is performed to apply a voltage having a predetermined voltage value to the discharge electrode. In addition, the control unit performs control to apply a predetermined voltage value to the discharge electrode after applying a voltage higher than the predetermined voltage value to the discharge electrode at the start of operation of the charging unit.

本発明によれば、放電動作による電極への付着物の付着に起因した集塵機能の低下を抑制可能な電気集塵装置が得られる、という効果を奏する。   Advantageous Effects of Invention According to the present invention, there is an effect that an electric dust collector capable of suppressing a decrease in dust collection function due to adhesion of deposits to electrodes due to a discharge operation can be obtained.

本発明の実施の形態1にかかる電気集塵装置の概略構成を示す模式図The schematic diagram which shows schematic structure of the electric dust collector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電気集塵装置の制御に関わる主要部分の機能構成図Functional block diagram of the principal part in connection with control of the electric dust collector concerning Embodiment 1 of this invention 本発明の実施の形態1にかかる処理回路のハードウェア構成の一例を示す図The figure which shows an example of the hardware constitutions of the processing circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電気集塵装置における集塵部高圧電極と集塵部対向電極との配置構成を示す模式図The schematic diagram which shows arrangement | positioning structure of the dust collection part high voltage electrode and dust collection part counter electrode in the electric dust collector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電気集塵装置における集塵部高圧電極と集塵部対向電極との他の配置構成を示す模式図The schematic diagram which shows the other arrangement structure of the dust collection part high voltage electrode and dust collection part counter electrode in the electric dust collector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電気集塵装置における集塵動作の手順を示すフローチャートThe flowchart which shows the procedure of the dust collection operation | movement in the electric dust collector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電気集塵装置における集塵動作の他の手順を示すフローチャートThe flowchart which shows the other procedure of the dust collection operation | movement in the electric dust collector concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電気集塵装置の集塵動作が図7に示されるフローチャートの手順で実行される場合の、荷電部放電電極に印加される電圧の波形を示す特性図The characteristic view which shows the waveform of the voltage applied to the charged part discharge electrode when the dust collection operation | movement of the electrostatic precipitator concerning Embodiment 1 of this invention is performed in the procedure of the flowchart shown in FIG. 本発明の実施の形態2にかかる送風機の概略構成を示す模式図The schematic diagram which shows schematic structure of the air blower concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる送風機の他の概略構成を示す要部模式図The principal part schematic diagram which shows the other schematic structure of the air blower concerning Embodiment 2 of this invention.

以下に、本発明の実施の形態にかかる電気集塵装置および送風機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, an electric dust collector and a blower according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明の実施の形態1にかかる電気集塵装置1の概略構成を示す模式図である。図1に示されるように、荷電部2と、集塵部3と、微粒子センサ11と、制御部12と、を備える。荷電部2は、高電圧電源6、荷電部放電電極7および荷電部対向電極8により構成され、荷電部2に流入する汚染空気4中に含まれる微粒子を荷電する。集塵部3は、高電圧電源6、集塵部高圧電極9および集塵部対向電極10により構成され、集塵部高圧電極9と集塵部対向電極10から形成される電界からのクーロン力により、荷電部2で荷電された微粒子を捕捉する。そして、集塵部3において微粒子が捕捉された汚染空気4は清浄空気5として集塵部の外部に排出される。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating a schematic configuration of an electrostatic precipitator 1 according to a first embodiment of the present invention. As shown in FIG. 1, a charging unit 2, a dust collection unit 3, a particulate sensor 11, and a control unit 12 are provided. The charging unit 2 includes a high voltage power source 6, a charging unit discharge electrode 7 and a charging unit counter electrode 8, and charges fine particles contained in the contaminated air 4 flowing into the charging unit 2. The dust collection unit 3 includes a high voltage power source 6, a dust collection unit high-voltage electrode 9, and a dust collection unit counter electrode 10, and a Coulomb force from an electric field formed by the dust collection unit high-voltage electrode 9 and the dust collection unit counter electrode 10. Thus, the charged fine particles are captured by the charging unit 2. Then, the contaminated air 4 in which the fine particles are captured in the dust collecting unit 3 is discharged as clean air 5 to the outside of the dust collecting unit.

高電圧電源6は、荷電部2および集塵部3に直流電圧、交流電圧またはパルス状電圧のいずれかの電圧を印加して、荷電部放電電極7と荷電部対向電極8との間、および集塵部高圧電極9と集塵部対向電極10との間に電位差を付与する電源である。高電圧電源6は、荷電部2の荷電部放電電極7に電圧を印加して荷電部放電電極7と荷電部対向電極8との間に電位差を発生させる。また、高電圧電源6は、集塵部3の集塵部高圧電極9に電圧を印加して集塵部高圧電極9と集塵部対向電極10との間に電位差を発生させて、集塵部高圧電極9と集塵部対向電極10との間に静電界を形成する。   The high voltage power source 6 applies a DC voltage, an AC voltage, or a pulsed voltage to the charging unit 2 and the dust collecting unit 3, and between the charging unit discharge electrode 7 and the charging unit counter electrode 8, and This is a power source for applying a potential difference between the dust collector high voltage electrode 9 and the dust collector counter electrode 10. The high voltage power supply 6 applies a voltage to the charged part discharge electrode 7 of the charging part 2 to generate a potential difference between the charged part discharge electrode 7 and the charged part counter electrode 8. The high voltage power source 6 applies a voltage to the dust collector high voltage electrode 9 of the dust collector 3 to generate a potential difference between the dust collector high voltage electrode 9 and the dust collector counter electrode 10, thereby collecting the dust. An electrostatic field is formed between the part high voltage electrode 9 and the dust collecting part counter electrode 10.

高電圧電源6が荷電部放電電極7または集塵部高圧電極9に印加する電圧の極性は、電気集塵装置1の用途に合わせて適宜選択されればよい。なお、荷電部放電電極7に正極性の電圧を印加することで、荷電部放電電極7で発生する放電によって生成されるオゾンの濃度を低くすることができる。このため、荷電部放電電極7に印加する電圧は、正極性の電圧であることが好ましい。また、ここでは、高電圧電源6が荷電部2と集塵部3との両方に共通して接続された構成としているが、荷電部2と集塵部3とに別々の高電圧電源6が接続された構成としてもよい。   The polarity of the voltage applied by the high voltage power supply 6 to the charged portion discharge electrode 7 or the dust collector high voltage electrode 9 may be appropriately selected according to the application of the electric dust collector 1. In addition, by applying a positive voltage to the charged portion discharge electrode 7, the concentration of ozone generated by the discharge generated at the charged portion discharge electrode 7 can be lowered. For this reason, it is preferable that the voltage applied to the charged part discharge electrode 7 is a positive voltage. Here, the high voltage power source 6 is configured to be connected in common to both the charging unit 2 and the dust collecting unit 3, but separate high voltage power sources 6 are connected to the charging unit 2 and the dust collecting unit 3. It is good also as a connected structure.

荷電部放電電極7は、面内において一定間隔で突起を備える金属板、ワイヤ線またはリボン線で構成される。荷電部放電電極7は、荷電部対向電極8との間に既定の間隔をおいて対向し、かつ汚染空気4の通風方向、すなわち荷電部2に流入する汚染空気4の流れの方向に平行とされた状態で配置される。荷電部放電電極7が金属板によって構成される場合には、荷電部2に流入する汚染空気4の流れの方向に金属板の面内方向が平行とされた状態で配置される。荷電部放電電極7がワイヤ線またはリボン線で構成される場合には、荷電部2に流入する汚染空気4の流れの方向にワイヤ線またはリボン線の長手方向が平行とされた状態で配置される。   The charged part discharge electrode 7 is composed of a metal plate, a wire line or a ribbon line having protrusions at regular intervals in the plane. The charged part discharge electrode 7 is opposed to the charged part counter electrode 8 with a predetermined interval, and is parallel to the ventilation direction of the contaminated air 4, that is, parallel to the direction of the contaminated air 4 flowing into the charged part 2. It is arranged in the state that was done. When the charged part discharge electrode 7 is formed of a metal plate, the charged part discharge electrode 7 is arranged in a state where the in-plane direction of the metal plate is parallel to the direction of the flow of the contaminated air 4 flowing into the charged part 2. When the charged part discharge electrode 7 is composed of a wire line or a ribbon line, the charged part discharge electrode 7 is arranged in a state where the longitudinal direction of the wire line or the ribbon line is parallel to the flow direction of the contaminated air 4 flowing into the charged part 2. The

荷電部放電電極7は、金属板または伸縮可能な金属製ばねといった接続部材を介して図示しない電気集塵装置1の筐体に固定される。荷電部放電電極7の基材は、ステンレス、タングステン、チタン、炭素素材といった導電材料から適宜選択されればよい。また、荷電部放電電極7には、導電性樹脂といった絶縁性からなる基材に対して金、銀、白金といった金属材料のメッキを施したもの、金属からなる基材に対して金、銀、白金といった金属材料のメッキまたはクラッド材による表面処理を施したもの、カーボンなどの導電材料により導電性が付与された導電性樹脂を使用してもよい。   The charged part discharge electrode 7 is fixed to the housing of the electric dust collector 1 (not shown) via a connecting member such as a metal plate or an elastic metal spring. The base material of the charged portion discharge electrode 7 may be appropriately selected from conductive materials such as stainless steel, tungsten, titanium, and carbon materials. In addition, the charged portion discharge electrode 7 includes a base material made of an insulating material such as a conductive resin plated with a metal material such as gold, silver, platinum, and a base material made of metal with gold, silver, A metal resin such as platinum plated or a surface treatment with a clad material, or a conductive resin imparted with conductivity by a conductive material such as carbon may be used.

荷電部対向電極8は、平板状の形状を有し、荷電部放電電極7との間に既定の間隔をおいて配置され、荷電部放電電極7との間で電位差を形成する電極であり、高電圧電源6のグランドに接続され、電位がグランド電位、すなわち0Vとされている。荷電部対向電極8は、荷電部放電電極7との間に既定の間隔をおいて対向し、かつ汚染空気4の通風方向、すなわち荷電部2に流入する汚染空気4の流れの方向に面内方向が平行とされた状態で配置される。荷電部対向電極8は、金属板または伸縮可能な金属製ばねといった接続部材を介して図示しない電気集塵装置1の筐体に固定される。荷電部対向電極8の基材は、荷電部放電電極7と同様の材料を用いることができる。   The charged portion counter electrode 8 has a flat shape, is arranged at a predetermined interval from the charged portion discharge electrode 7, and forms an electric potential difference with the charged portion discharge electrode 7. It is connected to the ground of the high-voltage power supply 6 and has a ground potential, that is, 0V. The charged portion counter electrode 8 is opposed to the charged portion discharge electrode 7 with a predetermined interval, and is in-plane in the ventilation direction of the contaminated air 4, that is, in the direction of the flow of the contaminated air 4 flowing into the charged portion 2. Arranged in a state where the directions are parallel. The charging portion counter electrode 8 is fixed to the housing of the electric dust collector 1 (not shown) via a connecting member such as a metal plate or an extendable metal spring. The base material of the charged portion counter electrode 8 can be made of the same material as that of the charged portion discharge electrode 7.

図1に示すように、荷電部放電電極7と荷電部対向電極8とは、汚染空気4の通風方向に対して平行方向に、一定間隔で複数個が交互に、互いに平行に配置される。荷電部放電電極7と荷電部対向電極8との間の距離がは、5mmから10mm程度にすればよい。荷電部放電電極7と荷電部対向電極8との間の距離が5mmより短い場合には、荷電部放電電極7と荷電部対向電極8との間で放電が生じた際に火花放電になる可能性がある。また、荷電部放電電極7と荷電部対向電極8との間の距離が10mmより長い場合には、荷電部放電電極7に一定の電流を通電させるために必要な印加電圧が大きくなり、高電圧電源6の容量およびサイズの大きいものが必要となり、装置の大型化に繋がる。   As shown in FIG. 1, a plurality of charged part discharge electrodes 7 and charged part counter electrodes 8 are alternately arranged in parallel with each other at regular intervals in a direction parallel to the ventilation direction of the contaminated air 4. The distance between the charged part discharge electrode 7 and the charged part counter electrode 8 may be about 5 mm to 10 mm. When the distance between the charged portion discharge electrode 7 and the charged portion counter electrode 8 is shorter than 5 mm, a spark discharge may occur when a discharge occurs between the charged portion discharge electrode 7 and the charged portion counter electrode 8. There is sex. In addition, when the distance between the charged part discharge electrode 7 and the charged part counter electrode 8 is longer than 10 mm, the applied voltage required to cause a constant current to flow through the charged part discharge electrode 7 increases, and the high voltage The power supply 6 having a large capacity and size is required, leading to an increase in the size of the apparatus.

なお、ここでは、荷電部放電電極7の数量を2つ、荷電部対向電極8の数量を3つとした場合を示しているが、荷電部放電電極7および荷電部対向電極8の数量はこれらの数量に限定されない。   In addition, although the case where the number of the charged part discharge electrodes 7 is two and the number of the charged part counter electrodes 8 is three is shown here, the numbers of the charged part discharge electrodes 7 and the charged part counter electrodes 8 are these. It is not limited to quantity.

集塵部高圧電極9は、平板状の形状を有し、高電圧電源6によって電圧が印加されて、集塵部対向電極10との間に平等電界を形成する電極である。集塵部高圧電極9は、集塵部対向電極10との間に既定の間隔をおいて対向し、かつ汚染空気4の通風方向、すなわち集塵部3に流入する汚染空気4の流れの方向に面内方向が平行とされた状態で配置される。集塵部高圧電極9の基材は、荷電部放電電極7と同様の材料を用いることができる。なお、集塵部高圧電極9の形状は、集塵部対向電極10との間に平等電界を形成して微粒子を集塵できれば、平板状に限定されない。   The dust collector high-voltage electrode 9 has a flat plate shape and is an electrode that is applied with a voltage by the high-voltage power supply 6 to form an equal electric field with the dust collector counter electrode 10. The dust collector high-voltage electrode 9 is opposed to the dust collector counter electrode 10 at a predetermined interval, and the direction of air flow of the contaminated air 4, that is, the direction of the flow of the contaminated air 4 flowing into the dust collector 3. Are arranged in a state in which the in-plane direction is parallel. The base material of the dust collector high voltage electrode 9 can be made of the same material as the charged part discharge electrode 7. Note that the shape of the dust collector high-voltage electrode 9 is not limited to a flat plate shape as long as a uniform electric field can be formed between the dust collector and the counter electrode 10 to collect the fine particles.

集塵部対向電極10は、平板状の形状を有し、集塵部高圧電極9との間に既定の間隔をおいて配置され、集塵部高圧電極9との間に平等電界を形成する電極であり、高電圧電源6のグランドに接続され、電位がグランド電位、すなわち0Vとされている。集塵部対向電極10の基材は、荷電部放電電極7と同様の材料を用いることができる。なお、集塵部対向電極10の基材は、荷電部放電電極7と同様の材料でもよいが、導電性が高すぎると集塵部高圧電極9との間に異常放電が発生するため、表面抵抗が10Ωから1013Ωの範囲の半導電性樹脂を使用することが好ましい。 The dust collector counter electrode 10 has a flat shape, is disposed at a predetermined interval from the dust collector high voltage electrode 9, and forms an equal electric field with the dust collector high voltage electrode 9. It is an electrode and is connected to the ground of the high-voltage power supply 6, and the potential is set to the ground potential, that is, 0V. The base material of the dust collection portion counter electrode 10 can be made of the same material as that of the charged portion discharge electrode 7. The base material of the dust collection portion counter electrode 10 may be the same material as the charged portion discharge electrode 7, but if the conductivity is too high, abnormal discharge occurs between the dust collection portion high voltage electrode 9 and the surface. It is preferable to use a semiconductive resin having a resistance in the range of 10 5 Ω to 10 13 Ω.

図1に示すように、集塵部高圧電極9と集塵部対向電極10とは、汚染空気4の通風方向に対して平行方向に、一定間隔で複数個が交互に、互いに平行に配置される。集塵部高圧電極9と集塵部対向電極10との間の距離は2mmから5mm程度とすればよい。集塵部高圧電極9と集塵部対向電極10との間の距離が2mmより短い場合には、汚染空気4の通風時の圧力損失が大きくなり、汚染空気4を送風するための送風機の負荷が増加することで目的の風量が得られない場合がある。また、集塵部高圧電極9と集塵部対向電極10との間の距離が5mmより長い場合には、電気集塵装置1のサイズが大きくなり、送風機といった機器に組み込めない可能性がある。また、集塵部高圧電極9と集塵部対向電極10との間の電界強度が低下し、集塵部3の集塵効率が低下する。さらに、集塵部高圧電極9と集塵部対向電極10との間に既定の電界強度を形成するために必要な印加電圧が大きくなり、絶縁性および安全性において課題が発生する可能性がある。   As shown in FIG. 1, the dust collector high voltage electrode 9 and the dust collector counter electrode 10 are alternately arranged in parallel with each other at regular intervals in a direction parallel to the ventilation direction of the contaminated air 4. The The distance between the dust collector high voltage electrode 9 and the dust collector counter electrode 10 may be about 2 mm to 5 mm. When the distance between the dust collector high voltage electrode 9 and the dust collector counter electrode 10 is shorter than 2 mm, the pressure loss during ventilation of the contaminated air 4 becomes large, and the load of the blower for blowing the contaminated air 4 is increased. The target air volume may not be obtained due to the increase of. Moreover, when the distance between the dust collector high voltage electrode 9 and the dust collector counter electrode 10 is longer than 5 mm, the size of the electrostatic dust collector 1 becomes large, and there is a possibility that it cannot be incorporated into a device such as a blower. Moreover, the electric field strength between the dust collection part high voltage electrode 9 and the dust collection part counter electrode 10 falls, and the dust collection efficiency of the dust collection part 3 falls. Furthermore, the applied voltage required to form a predetermined electric field strength between the dust collector high voltage electrode 9 and the dust collector counter electrode 10 increases, which may cause problems in insulation and safety. .

微粒子センサ11は、処理対象となる空気中の微粒子の数量を検出する粒子センサであり、汚染空気4の粒子状の数量を検出する。微粒子センサ11は、荷電部放電電極7と荷電部対向電極8との間の荷電空間に流入する汚染空気4中の微粒子の数量を検出する。微粒子センサ11は、制御部12と通信可能とされており、汚染空気4の微粒子の数量の検出結果を制御部12に送信する。微粒子センサ11には、空気中にレーザビームを照射し、微粒子に当たって散乱されたレーザ光の受光レベルを測定することによって空気中の粒子状の数量を検出する半導体レーザ式の粒子センサを用いることができる。なお、微粒子センサ11は、これに限定されない。また、微粒子センサ11で測定する微粒子の粒子径は、特に限定されず電気集塵装置1の仕様によって適宜選択されればよく、たとえば0.3μmから10μmの範囲で必要な粒子径が選択されればよい。   The particulate sensor 11 is a particle sensor that detects the number of particulates in the air to be processed, and detects the particulate quantity of the contaminated air 4. The fine particle sensor 11 detects the number of fine particles in the contaminated air 4 flowing into the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8. The particulate sensor 11 can communicate with the control unit 12 and transmits the detection result of the number of particulates in the contaminated air 4 to the control unit 12. The fine particle sensor 11 may be a semiconductor laser type particle sensor that detects the number of particles in the air by irradiating a laser beam in the air and measuring the light receiving level of the laser light scattered by the fine particles. it can. The fine particle sensor 11 is not limited to this. The particle diameter of the fine particles measured by the fine particle sensor 11 is not particularly limited and may be appropriately selected depending on the specifications of the electrostatic precipitator 1. For example, a necessary particle diameter is selected in the range of 0.3 μm to 10 μm. That's fine.

図2は、本発明の実施の形態1にかかる電気集塵装置1の制御に関わる主要部分の機能構成図である。制御部12は、高電圧電源6および微粒子センサ11と通信可能とされ、高電圧電源6から荷電部放電電極7および集塵部高圧電極9への電圧の印加を制御する。そして、制御部12は、微粒子センサ11での微粒子数の検出結果に基づいて、高電圧電源6から荷電部放電電極7への電圧の印加を制御する。   FIG. 2 is a functional configuration diagram of main parts related to the control of the electrostatic precipitator 1 according to the first embodiment of the present invention. The control unit 12 can communicate with the high voltage power supply 6 and the particle sensor 11 and controls application of voltage from the high voltage power supply 6 to the charged part discharge electrode 7 and the dust collecting part high voltage electrode 9. Then, the control unit 12 controls the application of a voltage from the high voltage power supply 6 to the charged part discharge electrode 7 based on the detection result of the number of particles by the particle sensor 11.

制御部12は、例えば、図3に示したハードウェア構成の処理回路として実現される。図3は、本発明の実施の形態1にかかる処理回路のハードウェア構成の一例を示す図である。制御部12が図3に示したハードウェア構成の処理回路として実現される場合には、制御部12は、例えば、図3に示すプロセッサ101がメモリ102に記憶されたプログラムを実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、制御部12の機能のうちの一部を電子回路として実装し、他の部分をプロセッサ101およびメモリ102を用いて実現するようにしてもよい。   The control unit 12 is realized, for example, as a processing circuit having a hardware configuration illustrated in FIG. FIG. 3 is a diagram illustrating an example of a hardware configuration of the processing circuit according to the first embodiment of the present invention. When the control unit 12 is realized as a processing circuit having the hardware configuration illustrated in FIG. 3, the control unit 12, for example, executes a program stored in the memory 102 by the processor 101 illustrated in FIG. 3. Realized. A plurality of processors and a plurality of memories may cooperate to realize the above function. Further, a part of the function of the control unit 12 may be mounted as an electronic circuit, and the other part may be realized using the processor 101 and the memory 102.

図4は、本発明の実施の形態1にかかる電気集塵装置1における集塵部高圧電極9と集塵部対向電極10との配置構成を示す模式図である。上述した集塵部高圧電極9と集塵部対向電極10との配置構成は、図4に示すように、汚染空気4の通風方向に対して平行方向に、且つ荷電部放電電極7と荷電部対向電極8との面内方向と平行な面に対して平行方向に、一定間隔で配置された構成とされている。   FIG. 4 is a schematic diagram showing an arrangement configuration of the dust collector high voltage electrode 9 and the dust collector counter electrode 10 in the electric dust collector 1 according to the first embodiment of the present invention. As shown in FIG. 4, the arrangement configuration of the dust collector high voltage electrode 9 and the dust collector counter electrode 10 described above is parallel to the ventilation direction of the contaminated air 4, and the charged portion discharge electrode 7 and the charged portion. It is configured to be arranged at a constant interval in a parallel direction to a plane parallel to the in-plane direction with the counter electrode 8.

図5は、本発明の実施の形態1にかかる電気集塵装置1における集塵部高圧電極9と集塵部対向電極10との他の配置構成を示す模式図である。また、集塵部高圧電極9と集塵部対向電極10との配置構成は、図5に示すように、汚染空気4の通風方向に対して平行方向に、且つ荷電部放電電極7と荷電部対向電極8との面内方向と平行な面に対して垂直方向に、一定間隔で配置された構成とされてもよい。図4および図5においては、荷電部放電電極7として、面内において一定間隔で突起を備える金属板からなる荷電部放電電極7を示している。なお、突起の図示は省略している。   FIG. 5 is a schematic diagram showing another arrangement configuration of the dust collector high voltage electrode 9 and the dust collector counter electrode 10 in the electric dust collector 1 according to the first embodiment of the present invention. Further, as shown in FIG. 5, the arrangement configuration of the dust collector high voltage electrode 9 and the dust collector counter electrode 10 is parallel to the ventilation direction of the contaminated air 4, and the charged part discharge electrode 7 and the charged part. It may be configured to be arranged at a constant interval in a direction perpendicular to a plane parallel to the in-plane direction with the counter electrode 8. 4 and 5, as the charged portion discharge electrode 7, the charged portion discharge electrode 7 made of a metal plate having protrusions at regular intervals in the plane is shown. In addition, illustration of protrusion is abbreviate | omitted.

実際の使用形態において、上述した高電圧電源6、荷電部放電電極7、荷電部対向電極8、集塵部高圧電極9、集塵部対向電極10、微粒子センサ11および制御部12は、合成樹脂または金属といった任意の部材で構成された図示しない風洞部品または支持部品によって、筐体に固定される。この風洞部品または支持部品は特に限定されるものではなく、電気集塵装置1の用途に合わせて適宜選択すればよい。   In the actual usage mode, the above-described high voltage power supply 6, charged part discharge electrode 7, charged part counter electrode 8, dust collection part high voltage electrode 9, dust collection part counter electrode 10, particulate sensor 11 and control unit 12 are made of synthetic resin. Alternatively, it is fixed to the casing by a wind tunnel part or a support part (not shown) made of an arbitrary member such as metal. The wind tunnel component or the support component is not particularly limited, and may be appropriately selected according to the use of the electrostatic precipitator 1.

つぎに、上述した本実施の形態1にかかる電気集塵装置1の集塵動作について説明する。なお、以下では、荷電部放電電極7および集塵部高圧電極9に対して正極性の電圧を印加する場合について説明する。図6は、本発明の実施の形態1にかかる電気集塵装置1における集塵動作の手順を示すフローチャートである。   Next, the dust collection operation of the electric dust collector 1 according to the first embodiment will be described. In the following, a case where a positive voltage is applied to the charged portion discharge electrode 7 and the dust collecting portion high voltage electrode 9 will be described. FIG. 6 is a flowchart showing the procedure of the dust collection operation in the electric dust collector 1 according to the first embodiment of the present invention.

まず、汚染空気4が荷電部放電電極7と荷電部対向電極8との間の荷電空間に流入する状態で、高電圧電源6から荷電部放電電極7と荷電部対向電極8との各々に制御部12の制御によって既定の電圧が印加されると、荷電空間においてコロナ放電が発生して荷電部放電電極7から電荷が放出され、汚染空気4に含まれる微粒子がこの電荷によって荷電され、帯電する。なお、制御部12は、荷電部放電電極7へ印加する電圧値を、通常の集塵動作を実行する際の既定の電圧値V1とする。   First, in a state in which the contaminated air 4 flows into the charging space between the charged portion discharge electrode 7 and the charged portion counter electrode 8, control is performed from the high voltage power supply 6 to each of the charged portion discharge electrode 7 and the charged portion counter electrode 8. When a predetermined voltage is applied by the control of the unit 12, a corona discharge is generated in the charge space and the charge is discharged from the charged unit discharge electrode 7, and the fine particles contained in the contaminated air 4 are charged by this charge and charged. . In addition, the control part 12 makes the voltage value applied to the charge part discharge electrode 7 the predetermined voltage value V1 at the time of performing normal dust collection operation | movement.

荷電された微粒子は汚染空気4の流れに乗って集塵部3に流されて集塵部高圧電極9と集塵部対向電極10との間の集塵空間に移動する。この集塵空間には集塵部高圧電極9に電圧が印加されることによって静電界が形成されている。このため、荷電された微粒子はクーロン力によって集塵部高圧電極9の面の方向に、または集塵部対向電極10の面の方向に移動して集塵部高圧電極9または集塵部対向電極10に吸着される。これにより、汚染空気4中から微粒子が除去され、集塵部3に流れ込んだ汚染空気4は清浄空気5に変えられて集塵部の外部に排出される。これにより、電気集塵装置1の周囲の空気が循環して電気集塵装置1に吸い込まれて、空気中の微粒子の集塵が行われる。   The charged fine particles ride on the flow of the contaminated air 4 and flow to the dust collection unit 3 and move to the dust collection space between the dust collection unit high-voltage electrode 9 and the dust collection unit counter electrode 10. An electrostatic field is formed in the dust collection space by applying a voltage to the dust collector high voltage electrode 9. For this reason, the charged fine particles are moved in the direction of the surface of the dust collection unit high-voltage electrode 9 by the Coulomb force or in the direction of the surface of the dust collection unit counter-electrode 10 to move to the dust collection unit high-voltage electrode 9 or the dust collection unit counter-electrode. 10 is adsorbed. Thereby, the particulates are removed from the contaminated air 4, and the contaminated air 4 flowing into the dust collecting unit 3 is changed to clean air 5 and discharged to the outside of the dust collecting unit. As a result, the air around the electrostatic precipitator 1 circulates and is sucked into the electrostatic precipitator 1 to collect fine particles in the air.

上述した電気集塵装置1の集塵動作が開始されると、ステップS10において、微粒子センサ11が、既定の一定時間毎に荷電部放電電極7と荷電部対向電極8との荷電空間に流入する汚染空気4中の微粒子数を検出し、検出結果を制御部12に送信する。既定の一定時間は、あらかじめ微粒子センサ11に記憶されており、電気集塵装置1の仕様によって適宜変更可能である。   When the dust collecting operation of the electrostatic precipitator 1 described above is started, in step S10, the particulate sensor 11 flows into the charging space between the charged portion discharge electrode 7 and the charged portion counter electrode 8 every predetermined fixed time. The number of fine particles in the contaminated air 4 is detected, and the detection result is transmitted to the control unit 12. The predetermined fixed time is stored in advance in the particle sensor 11 and can be appropriately changed according to the specifications of the electrostatic precipitator 1.

制御部12は、汚染空気4中の微粒子数の検出結果を受信すると、ステップS20において、検出結果と既定の第1下限基準値P1とに基づいて、汚染空気4中の微粒子数が第1下限基準値P1以下になったか否かを判定する。第1下限基準値P1は、電気集塵装置1での集塵動作によって、集塵の必要性がない状態まで周囲の空気中の微粒子数が減少したときの汚染空気4中の微粒子数の値である。また、第1下限基準値P1は、制御部12が高電圧電源6からの荷電部放電電極7への電圧の印加の停止制御を行う際の基準となる周囲の空気中の微粒子の数量である。第1下限基準値P1は、あらかじめ制御部12に記憶されており、電気集塵装置1の仕様によって適宜変更可能である。   When the control unit 12 receives the detection result of the number of particulates in the contaminated air 4, the number of particulates in the contaminated air 4 is set to the first lower limit based on the detection result and the predetermined first lower limit reference value P1 in step S20. It is determined whether or not the reference value P1 has been reached. The first lower limit reference value P1 is the value of the number of fine particles in the contaminated air 4 when the number of fine particles in the surrounding air is reduced to a state where dust collection is not necessary by the dust collecting operation in the electric dust collector 1. It is. The first lower limit reference value P1 is the number of fine particles in the surrounding air serving as a reference when the control unit 12 performs control to stop the application of voltage from the high voltage power supply 6 to the charged portion discharge electrode 7. . The first lower limit reference value P1 is stored in the control unit 12 in advance, and can be changed as appropriate according to the specifications of the electrostatic precipitator 1.

汚染空気4中の微粒子数が第1下限基準値P1より大きい場合、すなわちステップS20においてNoの場合は、制御部12はステップS20に戻って処理を繰り返す。   If the number of fine particles in the contaminated air 4 is larger than the first lower limit reference value P1, that is, if No in step S20, the control unit 12 returns to step S20 and repeats the process.

汚染空気4中の微粒子数が第1下限基準値P1以下になった場合、すなわちステップS20においてYesの場合は、制御部12は、荷電部2における荷電動作を停止させるために、荷電部放電電極7への電圧の印加を制御する制御信号を高電圧電源6に送信して、高電圧電源6から荷電部放電電極7への電圧の印加を制御する。ここで、制御部12は、荷電部放電電極7へ印加する電圧値を0Vとする旨の制御信号、すなわち高電圧電源6から荷電部放電電極7への電圧の印加を停止させる旨の停止指示信号を、高電圧電源6に送信する。   When the number of fine particles in the contaminated air 4 is equal to or less than the first lower limit reference value P1, that is, when the result is Yes in step S20, the controller 12 causes the charged part discharge electrode to stop the charging operation in the charging part 2. 7 is transmitted to the high voltage power supply 6 to control the voltage application from the high voltage power supply 6 to the charged portion discharge electrode 7. Here, the control unit 12 is a control signal indicating that the voltage value applied to the charged part discharge electrode 7 is 0 V, that is, a stop instruction for stopping the application of voltage from the high voltage power supply 6 to the charged part discharge electrode 7. The signal is transmitted to the high voltage power supply 6.

なお、制御部12は、荷電部2における荷電動作を停止させるために、荷電部放電電極7へ印加する電圧を、コロナ放電が発生しない範囲の低い電圧に制御することも可能である。ただし、消費電力の観点からは、制御部12は、荷電部放電電極7へ印加する電圧値を0Vとする制御を行うことが好ましい。   Note that the control unit 12 can also control the voltage applied to the charged part discharge electrode 7 to a low voltage in a range where no corona discharge occurs in order to stop the charging operation in the charging unit 2. However, from the viewpoint of power consumption, the control unit 12 preferably performs control to set the voltage value applied to the charged portion discharge electrode 7 to 0V.

高電圧電源6は、停止指示信号を受信すると、ステップS30において、停止指示信号に基づいて荷電部放電電極7へ印加する電圧値を0Vとし、荷電部放電電極7への電圧の印加を停止させる。なお、制御部12は、高電圧電源6から荷電部放電電極7への電圧の印加を停止させる制御を行う際に、高電圧電源6から集塵部高圧電極9への電圧の印加を停止させる制御を同時に行ってもよい。これにより、荷電部放電電極7への電圧の印加を停止させている間の集塵部高圧電極9への電圧の印加を停止して、電力の削減が可能である。   When receiving the stop instruction signal, the high voltage power supply 6 sets the voltage value applied to the charged part discharge electrode 7 to 0 V based on the stop instruction signal, and stops the application of the voltage to the charged part discharge electrode 7 in step S30. . The control unit 12 stops application of voltage from the high voltage power source 6 to the dust collection unit high voltage electrode 9 when performing control to stop application of voltage from the high voltage power source 6 to the charging unit discharge electrode 7. Control may be performed simultaneously. Thereby, the application of the voltage to the dust collection part high voltage electrode 9 is stopped while the application of the voltage to the charged part discharge electrode 7 is stopped, and the power can be reduced.

荷電部放電電極7への電圧の印加が停止されて電気集塵装置1の集塵動作が実施されないと、外気の侵入によって電気集塵装置1の周囲の空気中の微粒子数は増加する。そこで、ステップS40において、微粒子センサ11が、既定の一定時間毎に荷電部放電電極7と荷電部対向電極8との荷電空間に流入する汚染空気4中の微粒子数を検出し、検出結果を制御部12に送信する。   If the application of voltage to the charged part discharge electrode 7 is stopped and the dust collection operation of the electrostatic precipitator 1 is not performed, the number of fine particles in the air around the electrostatic precipitator 1 increases due to the intrusion of outside air. Therefore, in step S40, the fine particle sensor 11 detects the number of fine particles in the contaminated air 4 flowing into the charging space between the charged portion discharge electrode 7 and the charged portion counter electrode 8 at predetermined intervals, and controls the detection result. To the unit 12.

制御部12は、汚染空気4中の微粒子数の検出結果を受信すると、ステップS50において、検出結果と既定の上限基準値とに基づいて、汚染空気4中の微粒子数が上限基準値以上になったか否かを判定する。上限基準値は、集塵の必要性がある状態まで周囲の空気中の微粒子数が増加したときの汚染空気4中の微粒子数の値であり、制御部12が高電圧電源6からの荷電部放電電極7への電圧の印加の開始制御を行う際の基準となる周囲の空気中の微粒子の数量である。上限基準値は、あらかじめ制御部12に記憶されており、電気集塵装置1の仕様によって適宜変更可能である。   When the control unit 12 receives the detection result of the number of particles in the contaminated air 4, the number of particles in the contaminated air 4 becomes equal to or greater than the upper limit reference value based on the detection result and the predetermined upper limit reference value in step S50. It is determined whether or not. The upper reference value is the value of the number of fine particles in the contaminated air 4 when the number of fine particles in the surrounding air has increased to a state where dust collection is necessary, and the control unit 12 is a charged portion from the high voltage power source 6. This is the number of fine particles in the surrounding air that serves as a reference when starting control of voltage application to the discharge electrode 7. The upper limit reference value is stored in advance in the control unit 12 and can be changed as appropriate according to the specifications of the electrostatic precipitator 1.

汚染空気4中の微粒子数が上限基準値未満である場合、すなわちステップS50においてNoの場合は、制御部12はステップS50に戻って処理を繰り返す。   If the number of fine particles in the contaminated air 4 is less than the upper limit reference value, that is, if No in step S50, the control unit 12 returns to step S50 and repeats the process.

汚染空気4中の微粒子数が上限基準値以上になった場合、すなわちステップS50においてYesの場合は、制御部12は、荷電部放電電極7への電圧の印加を制御する制御信号を高電圧電源6に送信して、高電圧電源6から荷電部放電電極7への電圧の印加を制御する。ここで、制御部12は、荷電部放電電極7へ印加する電圧値を通常の集塵動作を実行する際の既定の電圧値V1とする旨の制御信号、すなわち高電圧電源6から荷電部放電電極7に電圧を印加して荷電部2の動作を開始させる旨の動作開始指示信号を、高電圧電源6に送信する。   When the number of fine particles in the contaminated air 4 is equal to or greater than the upper limit reference value, that is, when the result is Yes in step S50, the control unit 12 sends a control signal for controlling the application of voltage to the charged part discharge electrode 7 to the high voltage power supply. 6 to control the application of voltage from the high voltage power supply 6 to the charged portion discharge electrode 7. Here, the control unit 12 is a control signal indicating that the voltage value applied to the charged part discharge electrode 7 is a predetermined voltage value V1 when the normal dust collection operation is performed, that is, the charged part discharge from the high voltage power supply 6. An operation start instruction signal for starting the operation of the charging unit 2 by applying a voltage to the electrode 7 is transmitted to the high voltage power supply 6.

高電圧電源6は、動作開始指示信号を受信すると、ステップS60において、動作開始指示信号に基づいて荷電部放電電極7へ印加する電圧値を電圧値V1とし、荷電部放電電極7に電圧を印加して荷電部2の動作を開始させる。これにより電気集塵装置1において微粒子の除去が開始されるため、電気集塵装置1の周囲の空気中の微粒子数を減少させることができる。なお、制御部12は、高電圧電源6から荷電部放電電極7に電圧を印加して荷電部2の動作を開始させる制御を行う際には、高電圧電源6から集塵部高圧電極9への電圧の印加を開始させる制御も同時に行う。   When the high voltage power supply 6 receives the operation start instruction signal, in step S60, the voltage value applied to the charged part discharge electrode 7 is set to the voltage value V1 based on the operation start instruction signal, and the voltage is applied to the charged part discharge electrode 7. Then, the operation of the charging unit 2 is started. Thereby, since removal of fine particles is started in the electrostatic precipitator 1, the number of fine particles in the air around the electrostatic precipitator 1 can be reduced. The control unit 12 applies the voltage from the high voltage power source 6 to the charged part discharge electrode 7 to start the operation of the charging unit 2, from the high voltage power source 6 to the dust collecting unit high voltage electrode 9. The control for starting the application of the voltage is simultaneously performed.

その後は、ステップS10に戻って上述した処理が繰り返される。   Thereafter, the process returns to step S10 and the above-described processing is repeated.

上記のように荷電空間においてコロナ放電が行われると、空気中に存在する揮発性のシリコン化合物が酸化されて絶縁物であるシリカが生成され、荷電部放電電極7の先端に付着する。ここで、荷電部放電電極7の先端とは、荷電部放電電極7が面内において一定間隔で突起を備える金属板によって構成される場合には、突起の先端である。荷電部放電電極7がワイヤ線またはリボン線で構成される場合には、ワイヤ線またはリボン線において高電圧電源6に接続されていない側の先端部であってコロナ放電が発生する先端部である。   When the corona discharge is performed in the charged space as described above, the volatile silicon compound present in the air is oxidized to produce silica as an insulator, and adheres to the tip of the charged portion discharge electrode 7. Here, the tip of the charged portion discharge electrode 7 is the tip of the protrusion when the charged portion discharge electrode 7 is formed of a metal plate having protrusions at regular intervals in the plane. When the charged portion discharge electrode 7 is composed of a wire line or a ribbon line, it is a leading end portion of the wire line or ribbon line that is not connected to the high voltage power source 6 and that generates a corona discharge. .

荷電部放電電極7の先端に付着するシリカの量は、コロナ放電の行われる時間、すなわち、高電圧電源6から荷電部放電電極7に電圧が印加されている時間に比例して増加する。このため、常時、高電圧電源6から荷電部放電電極7に電圧を印加して荷電空間においてコロナ放電を発生させている場合には、荷電部放電電極7への電圧の印加時間に比例して荷電部放電電極7の先端に付着するシリカの量が増えていく。   The amount of silica adhering to the tip of the charged portion discharge electrode 7 increases in proportion to the time during which corona discharge is performed, that is, the time during which voltage is applied from the high voltage power supply 6 to the charged portion discharge electrode 7. For this reason, when a voltage is constantly applied from the high voltage power source 6 to the charged portion discharge electrode 7 to generate a corona discharge in the charging space, the voltage is applied to the charged portion discharge electrode 7 in proportion to the application time. The amount of silica adhering to the tip of the charged portion discharge electrode 7 increases.

一方、電気集塵装置1では、上述したように、電気集塵装置1での集塵動作により空気中の微粒子数が減少し、集塵の必要性がない状態にある場合は、制御部12によって荷電部放電電極7への電圧の印加が停止されるため、不要なコロナ放電の発生を防止して荷電部放電電極7へのシリカの付着量の低減を図ることができる。すなわち、電気集塵装置1では、一定の集塵性能を確保した上で、コロナ放電の発生時間の積算時間を短くすることができるため、一定期間における荷電部放電電極7へのシリカの付着速度を低減することができる。   On the other hand, in the electrostatic precipitator 1, as described above, when the number of fine particles in the air is reduced by the dust collecting operation in the electrostatic precipitator 1, and there is no need for dust collection, the control unit 12 Therefore, the application of voltage to the charged portion discharge electrode 7 is stopped, so that unnecessary corona discharge can be prevented and the amount of silica adhering to the charged portion discharge electrode 7 can be reduced. That is, in the electrostatic precipitator 1, since the accumulated time of the generation time of the corona discharge can be shortened while ensuring a certain dust collection performance, the deposition rate of silica on the charged portion discharge electrode 7 in a certain period. Can be reduced.

そして、電気集塵装置1では、荷電部放電電極7への電圧の印加が停止されて電気集塵装置1の集塵動作を停止させた後に、電気集塵装置1の周囲の空気中の微粒子数が上限基準値以上に増加した場合には、制御部12によって荷電部放電電極7に電圧が印加されて電気集塵装置1の集塵動作が再開される。すなわち、電気集塵装置1では、制御部12は、汚染空気4中の微粒子数の検出結果と、第1下限基準値と、上限基準値とに基づいて、電気集塵装置1の集塵動作の実行と、電気集塵装置1の集塵動作の停止とを交互に不定期なサイクル的に繰り返す制御を行う。   In the electrostatic precipitator 1, after the application of voltage to the charged part discharge electrode 7 is stopped and the dust collecting operation of the electrostatic precipitator 1 is stopped, fine particles in the air around the electrostatic precipitator 1. When the number increases to the upper limit reference value or more, a voltage is applied to the charged portion discharge electrode 7 by the control unit 12 and the dust collecting operation of the electrostatic precipitator 1 is resumed. That is, in the electrostatic precipitator 1, the control unit 12 performs the dust collecting operation of the electrostatic precipitator 1 based on the detection result of the number of fine particles in the contaminated air 4, the first lower limit reference value, and the upper limit reference value. And the stop of the dust collection operation of the electrostatic precipitator 1 are alternately and periodically repeated.

これにより、電気集塵装置1では、電気集塵装置1の周囲の空気に対する集塵動作を必要に応じて実行し、必要以上の無駄な集塵動作を削除することができる。したがって、常時、集塵動作を実施する場合と比べて、荷電部放電電極7へ電圧を印加する時間を短縮して、荷電部放電電極7へのシリカの付着速度を低減できるので、荷電部放電電極7へのシリカの付着に起因した電気集塵装置1の集塵機能の低下を抑制し、集塵機能の長寿命化を実現することができる。   Thereby, in the electric dust collector 1, the dust collection operation | movement with respect to the air around the electric dust collector 1 can be performed as needed, and the unnecessary dust collection operation | movement unnecessary can be deleted. Therefore, since the time for applying a voltage to the charged part discharge electrode 7 can be shortened and the deposition rate of silica on the charged part discharge electrode 7 can be reduced compared with the case where the dust collecting operation is always performed, the charged part discharge A decrease in the dust collection function of the electrostatic precipitator 1 due to the adhesion of silica to the electrode 7 can be suppressed, and a long life of the dust collection function can be realized.

また、荷電部放電電極7へ印加する印加電圧値を高くするほど、単位時間あたりに電気集塵装置1で除去される微粒子数が多くなり、空気中の微粒子数の減少量が多くなる。一方、コロナ放電が発生する範囲で荷電部放電電極7へ印加する印加電圧値を低くするほど、単位時間あたりに電気集塵装置1で除去される微粒子数が少なくなり、空気中の微粒子数の減少量が少なくなる。ここで、単位時間あたりの荷電部放電電極7へのシリカの付着量は、荷電部放電電極7へ印加する電圧値が高いほど、多くなる。   Further, as the applied voltage value applied to the charged portion discharge electrode 7 is increased, the number of fine particles removed by the electrostatic precipitator 1 per unit time increases, and the amount of reduction in the number of fine particles in the air increases. On the other hand, the lower the applied voltage value applied to the charged portion discharge electrode 7 in the range where corona discharge occurs, the smaller the number of particles removed by the electrostatic precipitator 1 per unit time, and the smaller the number of particles in the air. Decrease amount decreases. Here, the amount of silica attached to the charged portion discharge electrode 7 per unit time increases as the voltage value applied to the charged portion discharge electrode 7 increases.

そこで、電気集塵装置1では、空気中の微粒子数に応じて荷電部放電電極7へ印加する電圧値を階段状に変化させてもよい。すなわち、電気集塵装置1の周りの空気中の微粒子数が多い環境では、荷電部放電電極7へ印加する印加電圧値を高くして、単位時間あたりに電気集塵装置1で除去される微粒子数を多くし、空気中の微粒子数の減少量を増加させる。また、電気集塵装置1の周りの空気中の微粒子数が少ない環境では、コロナ放電が発生する範囲で荷電部放電電極7へ印加する印加電圧値を低くして、単位時間あたりに電気集塵装置1で除去される微粒子数が少なくし、空気中の微粒子数の減少量を少なくする。そして、荷電部放電電極7へ印加する印加電圧値を低くすることによって、単位時間あたりの荷電部放電電極7へのシリカの付着量を低減することができる。   Therefore, in the electrostatic precipitator 1, the voltage value applied to the charged portion discharge electrode 7 may be changed stepwise according to the number of fine particles in the air. That is, in an environment where the number of fine particles in the air around the electrostatic precipitator 1 is large, the applied voltage value applied to the charged portion discharge electrode 7 is increased, and the fine particles removed by the electrostatic precipitator 1 per unit time. Increase the number to increase the decrease in the number of particles in the air. Further, in an environment where the number of fine particles in the air around the electrostatic precipitator 1 is small, the applied voltage value applied to the charged portion discharge electrode 7 is lowered within a range where corona discharge occurs, and the electrostatic precipitator is collected per unit time. The number of fine particles removed by the apparatus 1 is reduced, and the amount of decrease in the number of fine particles in the air is reduced. And the adhesion amount of the silica to the charged part discharge electrode 7 per unit time can be reduced by making the applied voltage value applied to the charged part discharge electrode 7 low.

以下、空気中の微粒子数に応じて荷電部放電電極7へ印加する電圧値を階段状の電圧波形に変化させる場合の制御について説明する。図7は、本発明の実施の形態1にかかる電気集塵装置1における集塵動作の他の手順を示すフローチャートである。   Hereinafter, control in the case where the voltage value applied to the charged portion discharge electrode 7 is changed to a stepped voltage waveform according to the number of fine particles in the air will be described. FIG. 7 is a flowchart showing another procedure of the dust collecting operation in the electric dust collector 1 according to the first embodiment of the present invention.

まず、上記と同様にして制御部12の制御によって高電圧電源6から荷電部放電電極7と荷電部対向電極8との各々に既定の電圧が印加されて、電気集塵装置1における集塵動作が開始される。なお、制御部12は、荷電部放電電極7へ印加する電圧値を、通常の集塵動作を実行する際の既定の電圧値V1とする。   First, in the same manner as described above, a predetermined voltage is applied from the high voltage power source 6 to each of the charged part discharge electrode 7 and the charged part counter electrode 8 by the control of the control unit 12, and the dust collecting operation in the electrostatic precipitator 1 is performed. Is started. In addition, the control part 12 makes the voltage value applied to the charge part discharge electrode 7 the predetermined voltage value V1 at the time of performing normal dust collection operation | movement.

電気集塵装置1の集塵動作が開始されると、ステップS110において、微粒子センサ11が、既定の一定時間毎に荷電部放電電極7と荷電部対向電極8との荷電空間に流入する汚染空気4中の微粒子数を検出し、検出結果を制御部12に送信する。   When the dust collection operation of the electrostatic precipitator 1 is started, in step S110, the particulate sensor 11 is contaminated air that flows into the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8 every predetermined fixed time. 4 is detected, and the detection result is transmitted to the control unit 12.

制御部12は、汚染空気4中の微粒子数の検出結果を受信すると、ステップS120において、検出結果と既定の第2下限基準値P2とに基づいて、汚染空気4中の微粒子数が第2下限基準値P2以下になったか否かを判定する。第2下限基準値P2は、電気集塵装置1での集塵動作によって、集塵の必要性があるが極端には空気中の微粒子数が多くない状態まで周囲の空気中の微粒子数が減少したときの汚染空気4中の微粒子数の値である。また、第2下限基準値P2は、制御部12が高電圧電源6からの荷電部放電電極7への電圧の印加の低減制御を行う際の基準となる周囲の空気中の微粒子の数量である。第2下限基準値P2は、あらかじめ制御部12に記憶されており、電気集塵装置1の仕様によって適宜変更可能である。   When the control unit 12 receives the detection result of the number of particles in the contaminated air 4, the number of particles in the contaminated air 4 is set to the second lower limit based on the detection result and the predetermined second lower limit reference value P <b> 2 in step S <b> 120. It is determined whether or not the reference value P2 or less. The second lower limit reference value P2 is a dust collection operation by the electrostatic precipitator 1, and there is a need for dust collection, but the number of particulates in the surrounding air is reduced to an extremely small number of particulates in the air. It is the value of the number of fine particles in the contaminated air 4 at the time. The second lower limit reference value P2 is the number of fine particles in the surrounding air that serves as a reference when the control unit 12 performs control to reduce the application of voltage from the high voltage power supply 6 to the charged portion discharge electrode 7. . The second lower limit reference value P2 is stored in the control unit 12 in advance, and can be changed as appropriate according to the specifications of the electrostatic precipitator 1.

汚染空気4中の微粒子数が第2下限基準値P2より大きい場合、すなわちステップS120においてNoの場合は、制御部12はステップS120に戻って処理を繰り返す。   If the number of fine particles in the contaminated air 4 is larger than the second lower limit reference value P2, that is, if No in step S120, the control unit 12 returns to step S120 and repeats the process.

汚染空気4中の微粒子数が第2下限基準値P2以下になった場合、すなわちステップS120においてYesの場合は、制御部12は、荷電部放電電極7への電圧の印加を制御する制御信号を高電圧電源6に送信して、高電圧電源6から荷電部放電電極7への電圧の印加を制御する。ここで、制御部12は、荷電部放電電極7へ印加する電圧値を、コロナ放電が発生する範囲で通常の集塵動作を実行する際の電圧値V1よりも低減した電圧値V2とする旨の制御信号、すなわち高電圧電源6から荷電部放電電極7に印加する電圧を低減させる旨の印加電圧低減指示信号を、高電圧電源6に送信する。   When the number of fine particles in the contaminated air 4 becomes equal to or smaller than the second lower limit reference value P2, that is, in the case of Yes in step S120, the control unit 12 outputs a control signal for controlling the application of voltage to the charged portion discharge electrode 7. It transmits to the high voltage power supply 6, and controls the application of the voltage from the high voltage power supply 6 to the charged part discharge electrode 7. FIG. Here, the control unit 12 sets the voltage value applied to the charged part discharge electrode 7 to a voltage value V2 that is lower than the voltage value V1 when performing a normal dust collection operation within a range where corona discharge occurs. Control signal, that is, an applied voltage reduction instruction signal for reducing the voltage applied from the high voltage power supply 6 to the charged portion discharge electrode 7 is transmitted to the high voltage power supply 6.

高電圧電源6は、印加電圧低減指示信号を受信すると、ステップS130において、印加電圧低減指示信号に基づいて荷電部放電電極7へ印加する電圧値を電圧値V2とし、荷電部放電電極7への印加電圧値を電圧値V2に低減させる。これにより、電気集塵装置1では、荷電部放電電極7へ印加する電圧が電圧値V1の場合よりも、単位時間あたりに除去される微粒子数が少ない状態で、かつ単位時間あたりに荷電部放電電極7に付着するシリカの付着量が少ない状態で、集塵動作が行われる。そして、荷電部放電電極7へ印加する印加電圧値を低くすることによって、単位時間あたりの荷電部放電電極7へのシリカの付着量を低減しつつ、集塵動作が行われる。   When the high voltage power supply 6 receives the applied voltage reduction instruction signal, the voltage value applied to the charged part discharge electrode 7 based on the applied voltage reduction instruction signal is set to the voltage value V2 based on the applied voltage reduction instruction signal in step S130. The applied voltage value is reduced to the voltage value V2. Thereby, in the electrostatic precipitator 1, the charged part discharge per unit time and in a state where the number of fine particles removed per unit time is smaller than in the case where the voltage applied to the charged part discharge electrode 7 is the voltage value V1. The dust collection operation is performed with a small amount of silica adhering to the electrode 7. And the dust collection operation | movement is performed reducing the adhesion amount of the silica to the charged part discharge electrode 7 per unit time by making the applied voltage value applied to the charged part discharge electrode 7 low.

これ以降は、図6のフローチャートに示したステップS10からステップS60が実施される。なお、ステップS60の実施後は、ステップS110に戻って上述した処理が繰り返される。   Thereafter, steps S10 to S60 shown in the flowchart of FIG. 6 are performed. In addition, after implementation of step S60, it returns to step S110 and the process mentioned above is repeated.

図8は、本発明の実施の形態1にかかる電気集塵装置1の集塵動作が図7に示されるフローチャートの手順で実行される場合の、荷電部放電電極7に印加される電圧の波形を示す特性図である。この場合、高電圧電源6から荷電部放電電極7に印加される電圧の波形は、図8に示すように階段状の電圧波形となる。   FIG. 8 shows the waveform of the voltage applied to the charged part discharge electrode 7 when the dust collection operation of the electrostatic precipitator 1 according to the first embodiment of the present invention is executed according to the procedure of the flowchart shown in FIG. FIG. In this case, the waveform of the voltage applied from the high voltage power source 6 to the charged portion discharge electrode 7 is a stepped voltage waveform as shown in FIG.

上述したように、電気集塵装置1では、荷電部放電電極7へ印加する電圧値を階段状の電圧波形に変化させた電気集塵装置1の集塵動作の実行と、電気集塵装置1の集塵動作の停止とを空気中の微粒子数に応じて交互に不定期なサイクル的に繰り返す制御を行ってもよい。すなわち、制御部12は、荷電部放電電極7に印加する電圧を複数段階で段階的に降圧させて荷電部放電電極7への電圧の印加を停止させる制御を行ってもよい。この場合も、電気集塵装置1では、電気集塵装置1の周囲の空気に対する集塵動作を必要に応じて実行し、必要以上の無駄な集塵動作を削除することができる。したがって、常時、集塵動作を実施する場合と比べて、荷電部放電電極7へ電圧を印加する時間を短縮して、荷電部放電電極7へのシリカの付着速度を低減できるので、荷電部放電電極7へのシリカの付着に起因した電気集塵装置1の集塵機能の低下を抑制し、集塵機能の長寿命化を実現することができる。   As described above, in the electrostatic precipitator 1, execution of the dust collecting operation of the electrostatic precipitator 1 in which the voltage value applied to the charged portion discharge electrode 7 is changed to a stepped voltage waveform, and the electrostatic precipitator 1. Control of repeatedly stopping the dust collection operation alternately and irregularly according to the number of fine particles in the air may be performed. That is, the control unit 12 may perform control to stop the application of the voltage to the charged part discharge electrode 7 by stepping down the voltage applied to the charged part discharge electrode 7 in a plurality of stages. Also in this case, in the electrostatic precipitator 1, the dust collection operation | movement with respect to the air around the electrostatic precipitator 1 can be performed as needed, and unnecessary unnecessary dust collection operation | movement can be deleted. Therefore, since the time for applying a voltage to the charged part discharge electrode 7 can be shortened and the deposition rate of silica on the charged part discharge electrode 7 can be reduced compared with the case where the dust collecting operation is always performed, the charged part discharge A decrease in the dust collection function of the electrostatic precipitator 1 due to the adhesion of silica to the electrode 7 can be suppressed, and a long life of the dust collection function can be realized.

ここでは、荷電部放電電極7へ印加する電圧値を2段階で降圧する場合について示しているが、荷電部放電電極7へ印加する電圧値を3段階以上の段階を経て降圧させてもよい。   Here, a case where the voltage value applied to the charged portion discharge electrode 7 is stepped down in two steps is shown, but the voltage value applied to the charged portion discharge electrode 7 may be stepped down through three or more steps.

また、上述した制御部12における、集塵動作のために荷電部放電電極7の電圧を昇圧させる制御においては、常時、既定の電圧を印加する方式、または荷電部2に既定の電流を通電させるために必要な電圧を適宜選択して印加する方式を選択することができるが、電気集塵装置1に要求される仕様に合わせて適宜選択されればよい。また、荷電部放電電極7へ印加した電圧を降圧させるための制御部12における制御では、集塵動作を停止させる場合には0V、すなわち高電圧電源6のグランド電位が、また、単位時間あたりに除去される微粒子数を低減させた集塵動作を行う場合にはコロナ放電が発生する範囲で既定の電圧値が、適宜選択されればよい。   Moreover, in the control which raises the voltage of the charged part discharge electrode 7 for dust collection operation | movement in the control part 12 mentioned above, the system which applies a predetermined voltage always, or makes a predetermined electric current flow through the charging part 2 Therefore, a method of selecting and applying a voltage necessary for the purpose can be selected, but it may be appropriately selected according to the specifications required for the electrostatic precipitator 1. Further, in the control in the control unit 12 for stepping down the voltage applied to the charged part discharge electrode 7, when stopping the dust collection operation, 0 V, that is, the ground potential of the high voltage power source 6 is set per unit time. When performing a dust collection operation with a reduced number of fine particles to be removed, a predetermined voltage value may be appropriately selected within a range where corona discharge occurs.

また、荷電部放電電極7と荷電部対向電極8との間の荷電空間でコロナ放電を発生させると、コロナ放電によって荷電空間内の分子がイオン化し、イオン化した分子は荷電部対向電極8に向かって流れる。この分子の流れにより、イオン風が形成される。したがって、荷電部放電電極7と荷電部対向電極8との間の荷電空間でコロナ放電を発生させると、荷電部放電電極7の先端から荷電部対向電極8における荷電部放電電極7に対向する面に向かって強いイオン風が発生する。   When corona discharge is generated in the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8, molecules in the charged space are ionized by the corona discharge, and the ionized molecules are directed toward the charged portion counter electrode 8. Flowing. This molecular flow forms an ionic wind. Therefore, when corona discharge is generated in the charging space between the charged portion discharge electrode 7 and the charged portion counter electrode 8, the surface of the charged portion counter electrode 8 facing the charged portion discharge electrode 7 from the tip of the charged portion discharge electrode 7 A strong ionic wind is generated toward

そこで、制御部12は、荷電部放電電極7の先端に付着したシリカをイオン風によって除去するために、荷電部放電電極7に対する電圧の印加と、荷電部放電電極7に対する電圧の印加の停止または荷電部放電電極7に対する印加電圧の低減と、を繰り返す制御を行う。これにより、電気集塵装置1では、これまでの集塵動作、すなわちコロナ放電の発生によって荷電部放電電極7の先端に付着したシリカを、イオン風によって吹き飛ばして除去することができる。そして、上記の制御を繰り返し行って、荷電部放電電極7の先端に付着したシリカをイオン風によって吹き飛ばすことで、荷電部放電電極7の先端に堆積したシリカを削減することが可能である。   Therefore, the control unit 12 applies the voltage to the charged part discharge electrode 7 and stops the application of the voltage to the charged part discharge electrode 7 in order to remove the silica adhering to the tip of the charged part discharge electrode 7 by the ion wind. Control to repeatedly reduce the voltage applied to the charged portion discharge electrode 7 is performed. Thereby, in the electric dust collector 1, the silica adhering to the front-end | tip of the charged part discharge electrode 7 by generation | occurrence | production of the dust collection operation | movement until now, ie, generation | occurrence | production of a corona discharge, can be blown away and removed by an ion wind. The silica deposited on the tip of the charged portion discharge electrode 7 can be reduced by repeating the above control and blowing off the silica adhering to the tip of the charged portion discharge electrode 7 with an ion wind.

この場合、荷電部放電電極7の昇圧幅が大きいほど、強いイオン風が起こる。このため、荷電部放電電極7の先端に付着したシリカをイオン風によって吹き飛ばす観点からは、荷電部放電電極7の昇圧幅が大きいことが好ましい。   In this case, a stronger ion wind is generated as the boosted width of the charged portion discharge electrode 7 is larger. For this reason, from the viewpoint of blowing silica adhering to the tip of the charged portion discharge electrode 7 with ion wind, it is preferable that the boosted width of the charged portion discharge electrode 7 is large.

したがって、図6のフローチャートに示した制御においては、通常の集塵動作を実行する際の電圧値V1が高いことが好ましい。そして、荷電部2における荷電動作を停止させるために、ステップS30において荷電部放電電極7へ印加する電圧が0V、すなわちグランド電位に制御されることによって、その効果は高くなる。ステップS30において降圧させる荷電部放電電極7の電圧が0V、すなわちグランド電位に制御されることで、昇圧された荷電部放電電極7の電位から、電圧値V1までの昇圧幅を大きくすることができる。   Therefore, in the control shown in the flowchart of FIG. 6, it is preferable that the voltage value V1 when performing a normal dust collection operation is high. Then, in order to stop the charging operation in the charging unit 2, the effect is enhanced by controlling the voltage applied to the charging unit discharge electrode 7 to 0 V, that is, the ground potential in step S30. By controlling the voltage of the charged portion discharge electrode 7 to be stepped down in step S30 to 0 V, that is, the ground potential, the step-up width from the boosted potential of the charged portion discharge electrode 7 to the voltage value V1 can be increased. .

また、図7のフローチャートに示した制御においても、通常の集塵動作を実行する際の電圧値V1が高いことが好ましい。そして、ステップS30において降圧させる荷電部放電電極7の電圧は0V、すなわちグランド電位に制御されることが好ましい。   Also in the control shown in the flowchart of FIG. 7, it is preferable that the voltage value V <b> 1 when performing a normal dust collecting operation is high. The voltage of the charged portion discharge electrode 7 to be stepped down in step S30 is preferably controlled to 0 V, that is, the ground potential.

荷電部放電電極7の先端に付着したシリカをイオン風によって吹き飛ばす制御の例として、電気集塵装置1の稼動開始時に、すなわち荷電部2の稼働開始時に、既定の時間だけ、荷電部放電電極7へ印加する電圧値を通常の集塵動作を実行する際の電圧値V1よりも高い電圧値V0とする制御を行い、その後、上記の制御を実施してもよい。この場合は、空気中の微粒子を減少しながら荷電部放電電極7へ生成付着するシリカ量を減らすことができる。さらに、電気集塵装置1の稼動初期において荷電部放電電極7に高い電圧値V0を印加することによって、より強いイオン風を発生させることができる。これにより、荷電部放電電極7の先端に付着したシリカを、より強いイオン風によって吹き飛ばして除去することができる。   As an example of control for blowing silica adhering to the tip of the charged portion discharge electrode 7 by ion wind, the charged portion discharge electrode 7 is set for a predetermined time at the start of operation of the electrostatic precipitator 1, that is, at the start of operation of the charged portion 2. The control may be performed such that the voltage value to be applied to the voltage value V0 is higher than the voltage value V1 when the normal dust collection operation is performed, and then the above-described control may be performed. In this case, the amount of silica produced and attached to the charged portion discharge electrode 7 can be reduced while reducing the fine particles in the air. Furthermore, a stronger ion wind can be generated by applying a high voltage value V 0 to the charged portion discharge electrode 7 in the initial operation of the electrostatic precipitator 1. Thereby, the silica adhering to the front-end | tip of the charging part discharge electrode 7 can be blown away by a stronger ion wind, and can be removed.

なお、上記においては、荷電部放電電極7および集塵部高圧電極9に対して正極性の電圧を印加する場合について説明したが、荷電部放電電極7および集塵部高圧電極9に対して負極性の電圧を印加する場合には、電圧値の絶対値が上記の説明に付合するように設定されればよい。   In the above description, a case where a positive voltage is applied to the charged portion discharge electrode 7 and the dust collector high voltage electrode 9 has been described. However, a negative electrode is applied to the charged portion discharge electrode 7 and dust collector high voltage electrode 9. In the case of applying a positive voltage, the absolute value of the voltage value may be set so as to match the above description.

上述したように、本実施の形態1にかかる電気集塵装置1では、電気集塵装置1での集塵動作により空気中の微粒子数が減少し、集塵の必要性がない状態にある場合は、荷電部放電電極7への電圧の印加が停止または低減されて、荷電部放電電極7と荷電部対向電極8との間の荷電空間におけるコロナ放電の発生が停止される。そして、電気集塵装置1の周囲の空気中の微粒子数が集塵の必要性がある状態に増加した場合には、荷電部放電電極7に電圧が印加されて電気集塵装置1の集塵動作が再開される。   As described above, in the electrostatic precipitator 1 according to the first embodiment, the number of fine particles in the air is reduced by the dust collecting operation in the electrostatic precipitator 1, and there is no need for dust collection. The application of the voltage to the charged part discharge electrode 7 is stopped or reduced, and the generation of corona discharge in the charged space between the charged part discharge electrode 7 and the charged part counter electrode 8 is stopped. When the number of fine particles in the air around the electrostatic precipitator 1 increases to a state where dust collection is necessary, a voltage is applied to the charged portion discharge electrode 7 to collect the dust in the electrostatic precipitator 1. Operation resumes.

すなわち、電気集塵装置1では、電気集塵装置1の集塵動作の実行と、電気集塵装置1の集塵動作の停止とが交互にサイクル的に繰り返される。このため、電気集塵装置1では、荷電部放電電極7と荷電部対向電極8との間の荷電空間における不要なコロナ放電の発生を防止して荷電部放電電極7へのシリカの付着量を低減し、荷電部放電電極7へのシリカの付着速度を低減することができる。   That is, in the electrostatic precipitator 1, the execution of the dust collecting operation of the electrostatic precipitator 1 and the stop of the dust collecting operation of the electrostatic precipitator 1 are alternately repeated in a cycle. For this reason, in the electrostatic precipitator 1, the occurrence of unnecessary corona discharge in the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8 is prevented, and the amount of silica adhering to the charged portion discharge electrode 7 is reduced. It is possible to reduce the adhesion rate of silica to the charged portion discharge electrode 7.

また、電気集塵装置1では、荷電部放電電極7に対する電圧の印加と、荷電部放電電極7に対する電圧の印加の停止または荷電部放電電極7に対する印加電圧の低減と、を繰り返すことで、荷電部放電電極7の先端に付着したシリカを、イオン風によって吹き飛ばして除去することができる。   Further, in the electrostatic precipitator 1, charging is performed by repeatedly applying a voltage to the charged portion discharge electrode 7 and stopping applying a voltage to the charged portion discharge electrode 7 or reducing the applied voltage to the charged portion discharge electrode 7. Silica adhering to the tip of the partial discharge electrode 7 can be removed by blowing away with ion wind.

したがって、本実施の形態1にかかる電気集塵装置1によれば、荷電部放電電極7へのシリカの付着に起因した電気集塵装置1の集塵機能の低下を抑制し、集塵機能の長寿命化を実現することができ、放電動作による電極への付着物の付着に起因した集塵機能の低下を抑制可能な電気集塵装置が得られる。   Therefore, according to the electric dust collector 1 concerning this Embodiment 1, the fall of the dust collection function of the electric dust collector 1 resulting from the adhesion of the silica to the charged part discharge electrode 7 is suppressed, and long-life of a dust collection function Therefore, it is possible to obtain an electrostatic precipitator that can suppress a decrease in the dust collecting function due to adhesion of deposits to the electrode due to discharge operation.

実施の形態2.
図9は、本発明の実施の形態2にかかる送風機21の概略構成を示す模式図である。本実施の形態2にかかる送風機21は、上述した実施の形態1にかかる電気集塵装置1を備えた送風機である。
Embodiment 2. FIG.
FIG. 9 is a schematic diagram illustrating a schematic configuration of the blower 21 according to the second embodiment of the present invention. A blower 21 according to the second embodiment is a blower including the electric dust collector 1 according to the first embodiment.

送風機21は、筐体26の内部に、送風機本体22と電気集塵装置1とを備える。送風機本体22は、送風機本体22における空気の流入口に設けられたフィルター23と、送風機本体22の内部に設けられた通風路24と、汚染空気4を電気集塵装置1に送風する送風部であるファン25と、を備える。送風部としてのファン25が動作すると、送風機本体22の外部の汚染空気4がフィルター23を通過してファン25に吸引され、ファン25から送出される。ファン25から送出された汚染空気4は、電気集塵装置1において清浄化され、流出口27から清浄空気5として送出される。   The blower 21 includes a blower body 22 and the electrostatic precipitator 1 inside a housing 26. The blower body 22 is a blower unit that blows the filter 23 provided at the air inlet of the blower body 22, the ventilation path 24 provided inside the blower body 22, and the contaminated air 4 to the electric dust collector 1. And a certain fan 25. When the fan 25 as a blower unit operates, the contaminated air 4 outside the blower body 22 passes through the filter 23 and is sucked into the fan 25 and sent out from the fan 25. The contaminated air 4 sent out from the fan 25 is cleaned in the electrostatic precipitator 1 and sent out as clean air 5 from the outlet 27.

なお、図9に示す送風機21では、ファン25の動作によって生じる風の通風方向の上流側から順にファン25と電気集塵装置1とが配置されているが、ファン25と電気集塵装置1との配置は図9に示す構成に限定されない。   In the blower 21 shown in FIG. 9, the fan 25 and the electrostatic precipitator 1 are arranged in order from the upstream side in the direction of ventilation of the wind generated by the operation of the fan 25. Is not limited to the configuration shown in FIG.

電気集塵装置1では、ファン25から汚染空気4が送出されて汚染空気4内の微粒子の除去が行われるが、長期間動作を継続すると荷電部放電電極7の端部にシリカが付着する。荷電部放電電極7の端部に付着したシリカを除去するためには、実施の形態1で説明したように、制御部12の制御によって荷電部放電電極7を昇圧させてイオン風を発生させればよい。   In the electrostatic precipitator 1, the contaminated air 4 is sent from the fan 25 and the particulates in the contaminated air 4 are removed. However, when the operation is continued for a long period of time, silica adheres to the end of the charged portion discharge electrode 7. In order to remove the silica adhering to the end of the charged portion discharge electrode 7, as explained in the first embodiment, the charged portion discharge electrode 7 can be boosted under the control of the control portion 12 to generate an ion wind. That's fine.

イオン風は、荷電部放電電極7から荷電部対向電極8における荷電部放電電極7に対向する面に向かって発生するが、ファン25からの汚染空気4の送出方向はイオン風に対して垂直方向である。このため、ファン25からの汚染空気4が、荷電部放電電極7から荷電部対向電極8へ向かうイオン風を阻害する要因となる。したがって、荷電部放電電極7の端部に付着したシリカを効率的に除去するためには、イオン風を発生させるときに、ファン25から送出された汚染空気4の通風を停止することが好ましい。   The ion wind is generated from the charged portion discharge electrode 7 toward the surface of the charged portion counter electrode 8 facing the charged portion discharge electrode 7, but the direction in which the contaminated air 4 is sent from the fan 25 is perpendicular to the ion wind. It is. For this reason, the contaminated air 4 from the fan 25 becomes a factor which inhibits the ion wind which goes to the charged part counter electrode 8 from the charged part discharge electrode 7. FIG. Therefore, in order to efficiently remove the silica adhering to the end of the charged portion discharge electrode 7, it is preferable to stop the ventilation of the contaminated air 4 sent from the fan 25 when the ion wind is generated.

たとえば、送風機21の稼動初期に、既定の時間だけ、ファン25を停止させた状態で荷電部放電電極7を昇圧させてイオン風を発生させて、荷電部放電電極7の端部に付着したシリカをイオン風によって除去する。ファン25の停止は、制御部12によって制御される。すなわち、制御部12は、荷電部放電電極7に既定の電圧値の電圧が印加されている状態においてファン25を既定の時間だけ停止させる制御を行う。制御部12は、ファン25の停止を指示する旨のファン停止指示信号を、ファン25に送信する。ファン25は、ファン停止指示信号を受信すると、ファン停止指示信号に基づいて停止する。これにより、荷電部放電電極7と荷電部対向電極8との間の荷電空間への汚染空気4の流入が遮断される。   For example, in the initial operation of the blower 21, the charged part discharge electrode 7 is boosted for a predetermined time and the ionized wind is generated by raising the charged part discharge electrode 7, and the silica adhered to the end of the charged part discharge electrode 7. Are removed by ion wind. The stop of the fan 25 is controlled by the control unit 12. That is, the control unit 12 performs control to stop the fan 25 for a predetermined time in a state where a voltage having a predetermined voltage value is applied to the charged portion discharge electrode 7. The control unit 12 transmits a fan stop instruction signal for instructing to stop the fan 25 to the fan 25. When the fan 25 receives the fan stop instruction signal, the fan 25 stops based on the fan stop instruction signal. Thereby, the inflow of the contaminated air 4 to the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8 is blocked.

このようにファン25の動作を停止することにより、ファン25からの送風によってイオン風の風速が阻害されることなく、荷電部放電電極7の端部に付着したシリカをイオン風によって吹き飛ばすことができる。   By stopping the operation of the fan 25 in this way, the silica adhering to the end of the charged portion discharge electrode 7 can be blown off by the ionic wind without impeding the wind speed of the ionic wind by the air blown from the fan 25. .

そして、一定時間の経過後、ファン25を運転させて、電気集塵装置1による通常の集塵動作が行われる。ファン25の運転は、制御部12によって制御される。制御部12は、ファン25の運転を指示する旨のファン運転指示信号を、ファン25に送信する。ファン25は、ファン運転指示信号を受信すると、ファン運転指示信号に基づいて運転を開始する。これにより、荷電部放電電極7と荷電部対向電極8との間の荷電空間への汚染空気4の流入が可能となる。   Then, after a certain period of time has elapsed, the fan 25 is operated, and the normal dust collection operation by the electric dust collector 1 is performed. The operation of the fan 25 is controlled by the control unit 12. The control unit 12 transmits a fan operation instruction signal for instructing the operation of the fan 25 to the fan 25. When the fan 25 receives the fan operation instruction signal, the fan 25 starts operation based on the fan operation instruction signal. Thereby, the contaminated air 4 can flow into the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8.

なお、ここでは、制御部12がファン25の制御を行う送風部制御部としての機能も有しているが、上述したファン25の制御を行う送風部制御部を制御部12とは別に設けてもよい。   In addition, although the control part 12 also has a function as a ventilation part control part which controls the fan 25 here, the ventilation part control part which controls the fan 25 mentioned above is provided separately from the control part 12. Also good.

また、ファン25を一定時間停止するタイミングは、汚染空気4中の微粒子数が下限規定値まで低下した後であって荷電部放電電極7への電圧の印加を停止させる前とされてもよく、任意のタイミングでファン25を停止させて荷電部放電電極7の端部に付着したシリカの除去を行うことが可能である。   Further, the timing of stopping the fan 25 for a certain time may be after the number of fine particles in the contaminated air 4 has decreased to the lower limit specified value and before the application of the voltage to the charged portion discharge electrode 7 is stopped, It is possible to remove the silica adhering to the end of the charged portion discharge electrode 7 by stopping the fan 25 at an arbitrary timing.

図10は、本発明の実施の形態2にかかる送風機21の他の概略構成を示す要部模式図である。ファン25の動作を停止させる代わりに、図10に示すように荷電部放電電極7と荷電部対向電極8との間の荷電空間への汚染空気4の流入を遮断可能なシャッター13を設けてもよい。   FIG. 10 is a main part schematic diagram showing another schematic configuration of the blower 21 according to the second embodiment of the present invention. Instead of stopping the operation of the fan 25, as shown in FIG. 10, a shutter 13 capable of blocking the inflow of the contaminated air 4 into the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8 may be provided. Good.

シャッター13は、ファン25の動作によって生じる風の通風方向において、汚染空気4の流れの上流側であって、荷電部放電電極7と荷電部対向電極8との間の荷電空間への汚染空気4の流入を遮断可能な位置に設置される。すなわち、シャッター13は、ファン25と電気集塵装置1の荷電部2との間に配置されてシャッター13から送風される汚染空気4の荷電部2への流入を遮断する。シャッター13は、荷電部放電電極7の端部に付着したシリカをイオン風によって除去する際に閉じられて、ファン25からの送風によってイオン風の風速が阻害されることを防止する。また、荷電部放電電極7の端部に付着したシリカをイオン風によって除去することを目的としない動作の場合、すなわち電気集塵装置1が通常の集電動作を行う場合には、シャッター13が開かれて、ファン25の動作によって生じる風の通風方向においてファン25からの送風による汚染空気4の荷電空間への流入が可能とされる。   The shutter 13 is upstream of the flow of the contaminated air 4 in the direction of the wind generated by the operation of the fan 25, and is the contaminated air 4 to the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8. It is installed at a position that can block the inflow. That is, the shutter 13 is disposed between the fan 25 and the charging unit 2 of the electrostatic precipitator 1 and blocks the inflow of the contaminated air 4 blown from the shutter 13 into the charging unit 2. The shutter 13 is closed when the silica adhering to the end of the charged portion discharge electrode 7 is removed by the ion wind, and prevents the wind speed of the ion wind from being hindered by the air blown from the fan 25. Further, in the case of an operation not intended to remove silica adhering to the end of the charged portion discharge electrode 7 by an ion wind, that is, when the electric dust collector 1 performs a normal current collecting operation, the shutter 13 is It is opened, and inflow direction of the wind generated by the operation of the fan 25 allows the contaminated air 4 to flow into the charged space by the air blown from the fan 25.

シャッター13は、荷電部放電電極7と荷電部対向電極8との間の荷電空間の風上側、すなわちファン25の動作によって生じる風の通風方向における荷電空間の上流側に設けられる。シャッター13は、ファン25の動作によって生じる風の通風方向において荷電空間への汚染空気4の流入を遮断できればよく、形状および材質は適宜選択されればよい。また、荷電部放電電極7と荷電部対向電極8とが複数組積層されている場合は、全ての荷電空間を遮断することが好ましいが、一部の荷電空間のみを遮断するように構成することも可能である。   The shutter 13 is provided on the upstream side of the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8, that is, on the upstream side of the charged space in the direction of wind flow generated by the operation of the fan 25. The shutter 13 only needs to be able to block the inflow of the contaminated air 4 into the charging space in the direction of the air flow caused by the operation of the fan 25, and the shape and material may be appropriately selected. Further, when a plurality of sets of the charged portion discharge electrode 7 and the charged portion counter electrode 8 are stacked, it is preferable to block all the charged spaces, but it is configured to block only a part of the charged spaces. Is also possible.

たとえば、送風機21の稼動初期に、一定時間だけ、シャッター13を閉じた状態で荷電部放電電極7を昇圧させてイオン風を発生させて、荷電部放電電極7の端部に付着したシリカをイオン風によって除去する。シャッター13の閉鎖は、制御部12によって制御される。制御部12は、シャッター13の閉鎖を指示する旨の閉鎖指示信号を、シャッター13を駆動する図示しないシャッター駆動部に送信する。シャッター駆動部は、閉鎖指示信号を受信すると、閉鎖指示信号に基づいてシャッター13を閉じる。これにより、荷電部放電電極7と荷電部対向電極8との間の荷電空間への汚染空気4の流入が遮断される。   For example, in the initial operation of the blower 21, the charged portion discharge electrode 7 is boosted for a certain period of time with the shutter 13 closed to generate ion wind, and the silica adhering to the end of the charged portion discharge electrode 7 is ionized. Remove by wind. Closing of the shutter 13 is controlled by the control unit 12. The control unit 12 transmits a closing instruction signal for instructing closing of the shutter 13 to a shutter driving unit (not shown) that drives the shutter 13. When receiving the close instruction signal, the shutter driving unit closes the shutter 13 based on the close instruction signal. Thereby, the inflow of the contaminated air 4 to the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8 is blocked.

このようにシャッター13を閉じることにより、ファン25からの送風によってイオン風の風速が阻害されることなく、荷電部放電電極7の端部に付着したシリカをイオン風によって吹き飛ばすことができる。   By closing the shutter 13 in this manner, silica adhering to the end of the charged portion discharge electrode 7 can be blown off by the ionic wind without impeding the wind speed of the ionic wind by the air blown from the fan 25.

そして、一定時間の経過後、シャッター13を開放して、電気集塵装置1による通常の集塵動作が行われる。シャッター13の開放は、制御部12によって制御される。制御部12は、シャッター13の開放を指示する旨の開放指示信号を、シャッター駆動部に送信する。シャッター駆動部は、開放指示信号を受信すると、開放指示信号に基づいてシャッター13を開放する。これにより、荷電部放電電極7と荷電部対向電極8との間の荷電空間への汚染空気4の流入が可能となる。   Then, after a certain period of time has elapsed, the shutter 13 is opened, and the normal dust collection operation by the electrostatic dust collector 1 is performed. The opening of the shutter 13 is controlled by the control unit 12. The control unit 12 transmits an opening instruction signal for instructing opening of the shutter 13 to the shutter driving unit. Upon receiving the opening instruction signal, the shutter driving unit opens the shutter 13 based on the opening instruction signal. Thereby, the contaminated air 4 can flow into the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8.

なお、シャッター13を閉じている時間は、電気集塵装置1の仕様によって適宜選択されればよく、一定時間後にシャッター13を開放して通常の集塵動作が行われる。また、シャッター13を閉じるタイミングは、汚染空気4中の微粒子数が下限規定値まで低下した後であって荷電部放電電極7への電圧の印加を停止させる前とされてもよく、任意のタイミングでシャッター13を閉じて荷電部放電電極7の端部に付着したシリカの除去を行うことが可能である。   Note that the time during which the shutter 13 is closed may be appropriately selected according to the specifications of the electric dust collector 1, and the shutter 13 is opened after a certain time to perform a normal dust collecting operation. The timing of closing the shutter 13 may be after the number of fine particles in the contaminated air 4 has decreased to the lower limit specified value and before the application of the voltage to the charged portion discharge electrode 7 is stopped. Thus, it is possible to remove the silica adhering to the end of the charged portion discharge electrode 7 by closing the shutter 13.

ここでは、制御部12がシャッター13の制御を行うシャッター制御部としての機能も有しているが、上述したファン25の制御を行うシャッター制御部を制御部12とは別に設けてもよい。   Here, the control unit 12 also has a function as a shutter control unit that controls the shutter 13, but a shutter control unit that controls the fan 25 described above may be provided separately from the control unit 12.

上述したように、本実施の形態2にかかる送風機21は、実施の形態1にかかる電気集塵装置1を備えるため、実施の形態1の場合と同様の効果を有する。また、本実施の形態2にかかる送風機21は、荷電部放電電極7と荷電部対向電極8との間の荷電空間への汚染空気4の流入を遮断することによって、ファン25からの送風によってイオン風の風速が阻害されることなく、荷電部放電電極7の端部に付着したシリカをイオン風によって吹き飛ばすことができる。これにより、本実施の形態2にかかる送風機21は、荷電部放電電極7へのシリカの付着に起因した電気集塵装置1の集塵機能の低下を抑制し、集塵機能の長寿命化を実現することができる。   As described above, since the blower 21 according to the second embodiment includes the electric dust collector 1 according to the first embodiment, the blower 21 has the same effects as those in the first embodiment. In addition, the blower 21 according to the second embodiment blocks ions from being blown from the fan 25 by blocking the inflow of the contaminated air 4 into the charged space between the charged portion discharge electrode 7 and the charged portion counter electrode 8. Silica adhering to the end of the charged portion discharge electrode 7 can be blown off by the ion wind without hindering the wind speed. Thereby, the air blower 21 concerning this Embodiment 2 suppresses the fall of the dust collection function of the electric dust collector 1 resulting from the adhesion of the silica to the charged part discharge electrode 7, and implement | achieves the lifetime improvement of a dust collection function. be able to.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。   The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

1 電気集塵装置、2 荷電部、3 集塵部、4 汚染空気、5 清浄空気、6 高電圧電源、7 荷電部放電電極、8 荷電部対向電極、9 集塵部高圧電極、10 集塵部対向電極、11 微粒子センサ、12 制御部、13 シャッター、21 送風機、22 送風機本体、23 フィルター、24 通風路、25 ファン、26 筐体、27 流出口、101 プロセッサ、102 メモリ。   DESCRIPTION OF SYMBOLS 1 Electric dust collector, 2 Charging part, 3 Dust collection part, 4 Contaminated air, 5 Clean air, 6 High voltage power supply, 7 Charging part discharge electrode, 8 Charging part counter electrode, 9 Dust collection part high voltage electrode, 10 Dust collection Counter electrode, 11 particulate sensor, 12 control unit, 13 shutter, 21 blower, 22 blower body, 23 filter, 24 ventilation path, 25 fan, 26 housing, 27 outlet, 101 processor, 102 memory.

Claims (5)

処理対象となる空気中の粒子状物質の数量を検出する粒子センサと、
グランド電位とされた対向電極と、前記対向電極と対向する放電電極とを備え、前記放電電極に電圧を印加することによって前記放電電極と前記対向電極との間にコロナ放電を発生させて前記空気中の粒子状物質を荷電させる荷電部と、
前記荷電部で荷電された前記粒子状物質をクーロン力によって捕集する集塵部と、
前記放電電極に電圧を印加する電源と、
前記電源から前記放電電極への電圧の印加を制御する制御部と、
を備え、
前記制御部は、前記粒子センサの検出結果に基づいて、
前記放電電極に既定の電圧値の電圧が印加されている状態において前記処理対象となる空気中の粒子状物質の数量が既定の下限基準値以下となった場合に、前記放電電極への電圧の印加を停止させる制御を行い、
前記放電電極への電圧の印加が停止されている状態において、前記処理対象となる空気中の粒子状物質の数量が既定の上限基準値以上となった場合に、前記放電電極に既定の電圧値の電圧を印加する制御を行い、
前記荷電部の稼働開始時に、前記既定の電圧値よりも高い電圧を前記放電電極に印加した後に、前記既定の電圧値を前記放電電極に印加する制御を行うこと、
を特徴とする電気集塵装置。
A particle sensor for detecting the quantity of particulate matter in the air to be treated;
A counter electrode having a ground potential; and a discharge electrode facing the counter electrode, and applying a voltage to the discharge electrode to generate a corona discharge between the discharge electrode and the counter electrode to generate the air. A charged portion for charging the particulate matter in the inside,
A dust collection unit that collects the particulate matter charged in the charging unit by Coulomb force;
A power source for applying a voltage to the discharge electrode;
A control unit that controls application of a voltage from the power source to the discharge electrode;
With
The control unit is based on the detection result of the particle sensor.
When the number of particulate matter in the air to be treated is equal to or lower than a predetermined lower reference value in a state where a predetermined voltage value is applied to the discharge electrode, the voltage to the discharge electrode is reduced. Control to stop the application,
In a state where the application of voltage to the discharge electrode is stopped, when the quantity of particulate matter in the air to be processed is equal to or higher than a predetermined upper limit reference value, a predetermined voltage value is applied to the discharge electrode. Control to apply the voltage of
At the start of operation of the charging unit, after applying a voltage higher than the predetermined voltage value to the discharge electrode, performing control to apply the predetermined voltage value to the discharge electrode;
Electric dust collector characterized by.
前記制御部は、前記粒子センサの検出結果に基づいて、
前記放電電極に既定の電圧値の電圧が印加されている状態において前記処理対象となる空気中の粒子状物質の数量が既定の下限基準値以下となった場合に、前記放電電極に印加する電圧を複数段階で段階的に降圧させて前記放電電極への電圧の印加を停止させる制御を行うこと、
を特徴とする請求項1に記載の電気集塵装置。
The control unit is based on the detection result of the particle sensor.
The voltage to be applied to the discharge electrode when the number of particulate matter in the air to be treated is equal to or lower than the predetermined lower limit reference value in a state where a predetermined voltage value is applied to the discharge electrode. Performing step-by-step step-down in a plurality of stages to stop application of voltage to the discharge electrode,
The electrostatic precipitator according to claim 1.
請求項1または2に記載の電気集塵装置と、
空気を前記電気集塵装置に送風する送風部と、
を備えることを特徴とする送風機。
The electric dust collector according to claim 1 or 2,
A blower for blowing air to the electric dust collector;
A blower characterized by comprising:
前記放電電極に既定の電圧値の電圧が印加されている状態において前記送風部を既定の時間だけ停止させる制御を行う送風部制御部を備えること、
を特徴とする請求項3に記載の送風機。
A blower control unit that performs control to stop the blower for a predetermined time in a state where a voltage of a predetermined voltage value is applied to the discharge electrode;
The blower according to claim 3.
前記送風部と前記電気集塵装置の前記荷電部との間に配置されて前記送風部から送風される空気の前記荷電部への流入を遮断するシャッターと、
前記放電電極に既定の電圧値の電圧が印加されている状態において前記シャッターを既定の時間閉じる制御を行うシャッター制御部と、
を備えることを特徴とする請求項3に記載の送風機。
A shutter that is disposed between the air blowing unit and the charging unit of the electrostatic precipitator to block inflow of air blown from the air blowing unit into the charging unit;
A shutter control unit that performs control to close the shutter for a predetermined time in a state where a voltage of a predetermined voltage value is applied to the discharge electrode;
The blower according to claim 3, comprising:
JP2017023165A 2017-02-10 2017-02-10 Electrostatic precipitator and blower Active JP6783161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023165A JP6783161B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator and blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023165A JP6783161B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator and blower

Publications (2)

Publication Number Publication Date
JP2018126714A true JP2018126714A (en) 2018-08-16
JP6783161B2 JP6783161B2 (en) 2020-11-11

Family

ID=63172613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023165A Active JP6783161B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator and blower

Country Status (1)

Country Link
JP (1) JP6783161B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028430A (en) * 2018-09-06 2018-12-18 庞凯戈 A kind of automatic ventilation system of intelligent recognition air pollution degree
KR20200084488A (en) * 2019-01-02 2020-07-13 한국기계연구원 Self-cleaning electrostatic precipitator and air cleaner using thereof
WO2021005795A1 (en) * 2019-07-11 2021-01-14 三菱電機株式会社 Ventilation system
WO2022038894A1 (en) 2020-08-20 2022-02-24 富士電機株式会社 Electric dust collector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235947A (en) * 1988-04-07 1990-02-06 Mitsubishi Electric Corp Electrostatic precipitator
JPH08206540A (en) * 1995-02-06 1996-08-13 Rion Co Ltd Air cleaner
JP2010069450A (en) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp Charging apparatus, dust collector and deodorizing apparatus equipped with charging apparatus
WO2014041737A1 (en) * 2012-09-14 2014-03-20 ダイキン工業株式会社 Air-cleaning machine
JP2016087598A (en) * 2014-11-11 2016-05-23 三菱電機株式会社 Ventilator and ventilation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235947A (en) * 1988-04-07 1990-02-06 Mitsubishi Electric Corp Electrostatic precipitator
JPH08206540A (en) * 1995-02-06 1996-08-13 Rion Co Ltd Air cleaner
JP2010069450A (en) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp Charging apparatus, dust collector and deodorizing apparatus equipped with charging apparatus
WO2014041737A1 (en) * 2012-09-14 2014-03-20 ダイキン工業株式会社 Air-cleaning machine
JP2016087598A (en) * 2014-11-11 2016-05-23 三菱電機株式会社 Ventilator and ventilation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028430A (en) * 2018-09-06 2018-12-18 庞凯戈 A kind of automatic ventilation system of intelligent recognition air pollution degree
KR20200084488A (en) * 2019-01-02 2020-07-13 한국기계연구원 Self-cleaning electrostatic precipitator and air cleaner using thereof
KR102219778B1 (en) * 2019-01-02 2021-02-25 한국기계연구원 Self-cleaning electrostatic precipitator and air cleaner using thereof
WO2021005795A1 (en) * 2019-07-11 2021-01-14 三菱電機株式会社 Ventilation system
JPWO2021005795A1 (en) * 2019-07-11 2021-12-09 三菱電機株式会社 Ventilation system
JP7134356B2 (en) 2019-07-11 2022-09-09 三菱電機株式会社 ventilation system
WO2022038894A1 (en) 2020-08-20 2022-02-24 富士電機株式会社 Electric dust collector
KR20220114086A (en) 2020-08-20 2022-08-17 후지 덴키 가부시키가이샤 electric dust collector

Also Published As

Publication number Publication date
JP6783161B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
JP5855122B2 (en) Microbe / virus capture / inactivation apparatus and method thereof
JP2018126714A (en) Electrostatic precipitator and blower
US9468937B2 (en) Air purification device
JP7199353B2 (en) electrostatic particle filtering
US7651548B2 (en) Discharge device and air purification device
WO2020007549A1 (en) Air purifier
JP6500056B2 (en) Plasma purification module
KR101569629B1 (en) Apparatus for purifying air
JP7363058B2 (en) Charging devices and electrostatic precipitators
JP2007196199A (en) Discharge device, air cleaning apparatus and air-flow generating device equipped with the discharge device
JP7142357B2 (en) ion generator
JP5687369B1 (en) Air cleaner
JP2012115798A (en) Air cleaning device
JP5146353B2 (en) Dust collector
JP2009090205A (en) Electrostatic filtration apparatus
JP3798192B2 (en) Electric dust collector and method for adjusting silent discharge current
JP2010110692A (en) Charging apparatus and air treatment apparatus
JP2008023364A (en) Discharge apparatus and air purifying apparatus
JP2008023445A (en) Dust collector
JP7134356B2 (en) ventilation system
JP7187797B2 (en) Charging device
JP2022153185A (en) Ion generator and electric dust collector
RU2482395C1 (en) Method of air purification
JPH05337397A (en) Air purifier
JP2002239412A (en) Gas cleaning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250