WO2022038796A1 - Precious metal sputtering target material - Google Patents

Precious metal sputtering target material Download PDF

Info

Publication number
WO2022038796A1
WO2022038796A1 PCT/JP2020/034660 JP2020034660W WO2022038796A1 WO 2022038796 A1 WO2022038796 A1 WO 2022038796A1 JP 2020034660 W JP2020034660 W JP 2020034660W WO 2022038796 A1 WO2022038796 A1 WO 2022038796A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
target material
wtppm
less
content
Prior art date
Application number
PCT/JP2020/034660
Other languages
French (fr)
Japanese (ja)
Inventor
英士 高田
孝博 小林
幸健 仲野
Original Assignee
松田産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73992975&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022038796(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 松田産業株式会社 filed Critical 松田産業株式会社
Publication of WO2022038796A1 publication Critical patent/WO2022038796A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to a noble metal sputtering target material that is most suitable for forming a thin film in the semiconductor field.
  • Sputtering is used to form thin films in fine wiring, MEMS, optical devices, LEDs, organic EL, high frequency devices, quartz, etc. in the semiconductor field.
  • an inert gas mainly argon gas
  • a target plate-shaped thin film material
  • Gas ions collide with the surface of the target at high speed and hit violently, and the particles (atoms / molecules) of the film-forming material constituting the target are violently ejected and vigorously adhered to and deposited on the surface of the base material or substrate to form a thin film. It is a technology to do.
  • Sputtering can form a film even on materials that are difficult to vacuum-deposit, such as refractory metals and alloys, and has the advantage of being able to handle a wide range of film-forming materials.
  • the sputtering target is manufactured by forming an ingot by a melting casting method, processing it into a sputtering target shape by forging and rolling, then heat-treating it, and further cutting the surface.
  • the precious metal sputtering target is manufactured by forging and rolling a cast ingot, but there is a problem that fine cracks (microcracks) occur when the cast ingot is forged or rolled. Since microcracks cause abnormal discharge during sputtering, it is required to reduce them as much as possible.
  • microcracks cause abnormal discharge during sputtering, it is required to reduce them as much as possible.
  • the following are known as prior arts related to precious metal sputtering targets.
  • An object of the present invention is to provide a precious metal sputtering target material having improved processing characteristics at the time of manufacturing a sputtering target.
  • the sputtering target material means the state of the cast ingot before the shape of the sputtering target is formed by plastic working such as casting or rolling.
  • One aspect of the present invention that can solve the above-mentioned problems is a noble metal sputtering target material having a hydrogen content of 5 wtppm or less.
  • the present invention has an excellent effect that the processing characteristics at the time of manufacturing the sputtering target can be improved.
  • An embodiment of the present invention is characterized in that a sputtering target material made of a precious metal cast ingot has a hydrogen content of 5 wtppm or less. Hydrogen impurities increase the hardness of precious metals and worsen their processing properties. By setting the hydrogen content to 5 wtppm or less, the processing characteristics can be improved and the generation of microcracks during the production of the sputtering target can be prevented. It is preferably 1 wtppm or less. Further, by reducing the hydrogen content of the sputtering target material, it is possible to suppress a decrease in the degree of vacuum during sputtering, and further to obtain a secondary effect that hydrogen impurities in the sputtering film can be reduced. Be done.
  • the sputtering target material made of the noble metal casting ingot of the present embodiment is preferably in the following Vickers hardness range depending on the type of noble metal.
  • Gold target material Vickers hardness 25Hv or more and 45Hv or less
  • Platinum target material Vickers hardness 37Hv or more and 55Hv or less
  • Palladium target material Vickers hardness 45Hv or more and 140Hv or less
  • Silver target material Vickers hardness 25Hv or more and 55Hv or less If the Vickers hardness is low, the precious metal is too soft. As a result, the levelness during machining cannot be maintained, and the machining characteristics deteriorate.
  • the hardness of the noble metal sputtering target material also changes depending on the content of impurities such as hydrogen, phosphorus, and sulfur in the sputtering target material.
  • the noble metal sputtering target material means a sputtering target material composed of any single metal of gold, platinum, palladium, and silver, and an alloy sputtering target material containing a noble metal such as a silver alloy as a part thereof. Does not mean.
  • a single metal unlike the case where the material of the sputtering target is an alloy, the optimum hardness changes for the processing characteristics, so it is difficult to apply the optimum surface condition as it is in the case of an alloy.
  • a single metal does not mean to exclude those containing a small amount of other metal components as impurities, and specifically, a total of 1000 wtppm or less of metal impurities may be contained.
  • Metal impurities can be analyzed using glow discharge mass spectrometry (GD-MS). If the content of each metal impurity is less than the lower limit of analysis, the lower limit of analysis is calculated as the content.
  • the noble metal sputtering target material according to the embodiment of the present invention preferably has a phosphorus content of 1 wtppm or less and a sulfur content of 1 wtppm or less. These impurities may precipitate at the grain boundaries and work harden, resulting in deterioration of work characteristics. By setting the content of both phosphorus and sulfur to 1 wtppm or less, such precipitation can be inhibited and the processing characteristics can be improved.
  • each physical property evaluation of the noble metal sputtering target material described in the specification of the present application was carried out by using the following methods.
  • scraps are cut out from two places of the sputtering target material.
  • the cut-out sample was washed only with acetone and then dried. After washing, measurements were taken on the two samples and the average value was calculated. It should be noted that cutting out of the scrap material from an extreme place (for example, the outer peripheral edge) of the sputtering target material was avoided.
  • Measurement of Vickers hardness The device used to measure Vickers hardness is shown below. Measuring device: Micro hardness tester (Mitutoyo Co., Ltd.) Model: HM-221 Pressing load: 200kgf
  • Measuring device Hydrogen analyzer manufactured by HORIBA, Ltd. (non-dispersed infrared absorption method) (Measurement of phosphorus content, measurement of sulfur content) Measuring device: Glow discharge mass spectrometry (GD-MS)
  • Au spatter target An Au raw material having a purity of 4N was melted in the atmosphere in a high-purity carbon crucible, then the molten Au was poured into a mold, and then rapidly cooled in water to prepare an Au cast ingot (sputtering target material). At the time of atmospheric dissolution, the hydrogen content in the ingot was adjusted by blowing a trace amount of steam or hydrogen gas into the molten metal in an appropriate amount. In addition, the sulfur content and phosphorus content were adjusted by adding a small amount of sulfur and phosphorus to the molten metal. Table 1 shows the impurity (hydrogen, phosphorus, sulfur) content and Vickers hardness of the sputtering target material thus obtained.
  • the surface roughness Ra was adjusted to an average of 0.4 to 1.6 ⁇ m by lathe processing (cutting).
  • the surface of the sputtering target material thus obtained was observed with an optical microscope, and the presence or absence of microcracks (size: 10 micrometries or more in a diameter equivalent to a circle) was examined. As a result, it was confirmed that microcracks were generated in the sputtering target material having a hydrogen content of 5 wtppm or more.
  • Platinum sputtering target material A Pt raw material having a purity of 3N5 was melted in the atmosphere in a high-purity zirconia crucible, then the molten Pt was poured into a mold, and then rapidly cooled in water to prepare a Pt cast ingot (sputtering target material). At the time of atmospheric dissolution, the hydrogen content in the ingot was adjusted by blowing a trace amount of steam or hydrogen gas into the molten metal in an appropriate amount. In addition, the sulfur content and phosphorus content were adjusted by adding a small amount of sulfur and phosphorus to the molten metal. Table 2 shows the impurity (hydrogen, phosphorus, sulfur) content and Vickers hardness of the sputtering target material thus obtained.
  • the surface roughness Ra was adjusted to an average of 0.4 to 1.6 ⁇ m by lathe processing (cutting).
  • the surface of the sputtering target material thus obtained was observed with an optical microscope to check for the presence or absence of microcracks (size: several micrometers). As a result, it was confirmed that microcracks were generated in the sputtering target material having a hydrogen content of 5 wtppm or more.
  • Pd raw material having a purity of 3N5 was vacuum-melted in a high-purity zirconia crucible, then the Pd molten metal was poured into a mold, and then rapidly cooled in water to prepare a Pd cast ingot (sputtering target material).
  • the hydrogen content in the ingot was adjusted by mixing a small amount of steam or hydrogen gas.
  • the sulfur content and phosphorus content were adjusted by adding a small amount of sulfur and phosphorus to the molten metal.
  • Table 3 shows the impurity (hydrogen, phosphorus, sulfur) content and Vickers hardness of the sputtering target material thus obtained.
  • the surface roughness Ra was adjusted to an average of 0.4 to 1.6 ⁇ m by lathe processing (cutting).
  • the surface of the sputtering target material thus obtained was observed with an optical microscope to check for the presence or absence of microcracks (size: several micrometers). As a result, it was confirmed that microcracks were generated in the sputtering target material having a hydrogen content of 5 wtppm or more.
  • the surface roughness Ra was adjusted to an average of 0.4 to 1.6 ⁇ m by lathe processing (cutting).
  • the surface of the sputtering target material thus obtained was observed with an optical microscope to check for the presence or absence of microcracks (size: several micrometers). As a result, it was confirmed that microcracks were generated in the sputtering target material having a hydrogen content of 5 wtppm or more.
  • the noble metal sputtering target material according to the embodiment of the present invention is useful for forming a thin film in a high frequency device, a crystal, a MEMS, an optical device, an LED, an organic EL, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This sputtering target material is formed from a casting ingot and is characterized by having a hydrogen content of less than 5 wtppm. The present invention addresses the problem of providing a precious metal sputtering target material that has improved processing characteristics during manufacturing of a sputtering target. Here, a sputtering target material refers to a state of a casting ingot before being molded into a sputtering target formed through plastic processing such as casting and rolling.

Description

貴金属スパッタリングターゲット材Precious metal sputtering target material
 本発明は、半導体分野における薄膜の形成に最適な貴金属スパッタリングターゲット材に関する。 The present invention relates to a noble metal sputtering target material that is most suitable for forming a thin film in the semiconductor field.
 スパッタリングは、半導体分野における微細配線、MEMS、光デバイス、LED、有機EL、高周波デバイス、水晶などにおける薄膜を形成するのに用いられている。スパッタリングとは、真空中で不活性ガス(主にアルゴンガス)を導入し、ターゲット(プレート状の成膜材料)にマイナスの電圧を印加してグロー放電を発生させ、不活性ガス原子をイオン化し、高速でターゲット表面にガスイオンを衝突させて激しく叩き、ターゲットを構成する成膜材料の粒子(原子・分子)を激しく弾き出し、勢いよく、基材や基板の表面に付着、堆積させ薄膜を形成する技術である。 Sputtering is used to form thin films in fine wiring, MEMS, optical devices, LEDs, organic EL, high frequency devices, quartz, etc. in the semiconductor field. In sputtering, an inert gas (mainly argon gas) is introduced in a vacuum, and a negative voltage is applied to a target (plate-shaped thin film material) to generate a glow discharge to ionize the inert gas atom. , Gas ions collide with the surface of the target at high speed and hit violently, and the particles (atoms / molecules) of the film-forming material constituting the target are violently ejected and vigorously adhered to and deposited on the surface of the base material or substrate to form a thin film. It is a technology to do.
 スパッタリングでは、高融点金属や合金など真空蒸着が困難な材料でも成膜が可能であり、広範囲な成膜材料に対応することができるという特長を有する。通常、スパッタリングターゲットは、溶解鋳造法を用いてインゴットを形成した後、鍛造、圧延により、スパッタリングターゲット形状に加工し、その後、熱処理し、さらに表面を切削して、作製される。 Sputtering can form a film even on materials that are difficult to vacuum-deposit, such as refractory metals and alloys, and has the advantage of being able to handle a wide range of film-forming materials. Usually, the sputtering target is manufactured by forming an ingot by a melting casting method, processing it into a sputtering target shape by forging and rolling, then heat-treating it, and further cutting the surface.
 貴金属スパッタリングターゲットも同様に、鋳造インゴットを鍛造、圧延等を行って製造されるが、鋳造インゴットを鍛造や圧延を行った際に、微細な亀裂(マイクロクラック)が生じる問題がある。マイクロクラックはスパッタリングの際に異常放電の原因となることから、これを極力低減することが求められる。なお、貴金属スパッタリングターゲットに関する先行技術として以下のものが知られている。 Similarly, the precious metal sputtering target is manufactured by forging and rolling a cast ingot, but there is a problem that fine cracks (microcracks) occur when the cast ingot is forged or rolled. Since microcracks cause abnormal discharge during sputtering, it is required to reduce them as much as possible. The following are known as prior arts related to precious metal sputtering targets.
国際公開第2017/209281International Publication No. 2017/202981
 本発明は、スパッタリングターゲットの製造時において、加工特性が改善された貴金属スパッタリングターゲット材を提供することを課題とする。本願の明細書において、スパッタリングターゲット材とは、鋳造や圧延等の塑性加工によって、スパッタリングターゲット形状にする前の鋳造インゴットの状態を意味する。 An object of the present invention is to provide a precious metal sputtering target material having improved processing characteristics at the time of manufacturing a sputtering target. In the specification of the present application, the sputtering target material means the state of the cast ingot before the shape of the sputtering target is formed by plastic working such as casting or rolling.
 上記の課題を解決することができる本発明の一態様は、水素含有量が5wtppm以下であることを特徴とする貴金属スパッタリングターゲット材である。 One aspect of the present invention that can solve the above-mentioned problems is a noble metal sputtering target material having a hydrogen content of 5 wtppm or less.
 本発明によれば、スパッタリングターゲットの製造時における加工特性を改善することができるという優れた効果を有する。 According to the present invention, it has an excellent effect that the processing characteristics at the time of manufacturing the sputtering target can be improved.
 本発明の実施形態は、貴金属鋳造インゴットからなるスパッタリングターゲット材において、水素含有量が5wtppm以下であることを特徴とする。水素不純物は貴金属の硬度を増加させ、加工特性を悪化させる。水素含有量を5wtppm以下とすることで、加工特性が向上し、スパッタリングターゲットの製造時におけるマイクロクラックの発生を防止できる。好ましくは1wtppm以下とする。また、スパッタリングターゲット材の水素含有量を低減することで、スパッタリングの際の真空度の低下を抑制し、さらには、スパッタ膜中の水素不純物を低減することができるという副次的な効果も得られる。 An embodiment of the present invention is characterized in that a sputtering target material made of a precious metal cast ingot has a hydrogen content of 5 wtppm or less. Hydrogen impurities increase the hardness of precious metals and worsen their processing properties. By setting the hydrogen content to 5 wtppm or less, the processing characteristics can be improved and the generation of microcracks during the production of the sputtering target can be prevented. It is preferably 1 wtppm or less. Further, by reducing the hydrogen content of the sputtering target material, it is possible to suppress a decrease in the degree of vacuum during sputtering, and further to obtain a secondary effect that hydrogen impurities in the sputtering film can be reduced. Be done.
 本実施形態の貴金属鋳造インゴットからなるスパッタリングターゲット材は、貴金属の種類によって、以下のビッカース硬度の範囲とすることが好ましい。
  金ターゲット材:ビッカース硬度25Hv以上45Hv以下
  白金ターゲット材:ビッカース硬度37Hv以上55Hv以下
  パラジウムターゲット材:ビッカース硬度45Hv以上140Hv以下
  銀ターゲット材:ビッカース硬度25Hv以上55Hv以下
 ビッカース硬度が低いと、貴金属が軟らか過ぎて、加工時の水平性を保てず、加工特性が悪化する。一方、ビッカース硬度が高いと、貴金属スパッタリングターゲット中に割れ(クラック)の発生やボンデイング面からの剥がれが生じる。貴金属スパッタリングターゲット材の硬度は、スパッタリングターゲット材中の水素、燐、硫黄等の不純物含有量によっても変化する。
The sputtering target material made of the noble metal casting ingot of the present embodiment is preferably in the following Vickers hardness range depending on the type of noble metal.
Gold target material: Vickers hardness 25Hv or more and 45Hv or less Platinum target material: Vickers hardness 37Hv or more and 55Hv or less Palladium target material: Vickers hardness 45Hv or more and 140Hv or less Silver target material: Vickers hardness 25Hv or more and 55Hv or less If the Vickers hardness is low, the precious metal is too soft. As a result, the levelness during machining cannot be maintained, and the machining characteristics deteriorate. On the other hand, if the Vickers hardness is high, cracks occur in the precious metal sputtering target and peeling from the bonding surface occurs. The hardness of the noble metal sputtering target material also changes depending on the content of impurities such as hydrogen, phosphorus, and sulfur in the sputtering target material.
 本願明細書において、貴金属スパッタリングターゲット材は、金、白金、パラジウム、銀のいずれか単一の金属からなるスパッタリングターゲット材を意味し、銀合金などの貴金属を一部に含むような合金スパッタリングターゲット材を意味しない。単一の金属からなる場合、スパッタリングターゲットの材質が合金の場合と異なり、加工特性に最適な硬度が変化するため、合金の場合に最適な表面状態をそのまま適用することが難しい。なお、本願明細書において、単一の金属とは、不純物として他の金属成分を微量に含むものまで除くことを意味せず、具体的には金属不純物を合計で1000wtppm以下含有してもよい。金属不純物は、グロー放電質量分析(GD-MS)を用いて分析することができる。また、各金属不純物の含有量が、分析下限値未満の場合には、分析下限値をその含有量として算出する。 In the present specification, the noble metal sputtering target material means a sputtering target material composed of any single metal of gold, platinum, palladium, and silver, and an alloy sputtering target material containing a noble metal such as a silver alloy as a part thereof. Does not mean. In the case of a single metal, unlike the case where the material of the sputtering target is an alloy, the optimum hardness changes for the processing characteristics, so it is difficult to apply the optimum surface condition as it is in the case of an alloy. In addition, in the present specification, a single metal does not mean to exclude those containing a small amount of other metal components as impurities, and specifically, a total of 1000 wtppm or less of metal impurities may be contained. Metal impurities can be analyzed using glow discharge mass spectrometry (GD-MS). If the content of each metal impurity is less than the lower limit of analysis, the lower limit of analysis is calculated as the content.
 本発明の実施形態に係る貴金属スパッタリングターゲット材は、さらに、燐含有量が1wtppm以下、硫黄含有量が1wtppm以下であることが好ましい。これらの不純物は結晶粒界に析出して、加工硬化し、加工特性が悪化することがある。燐、硫黄のいずれの含有量も1wtppm以下とすることで、そのような析出を阻害し、加工特性を向上させることができる。 The noble metal sputtering target material according to the embodiment of the present invention preferably has a phosphorus content of 1 wtppm or less and a sulfur content of 1 wtppm or less. These impurities may precipitate at the grain boundaries and work harden, resulting in deterioration of work characteristics. By setting the content of both phosphorus and sulfur to 1 wtppm or less, such precipitation can be inhibited and the processing characteristics can be improved.
 以下、本願の明細書に記載される貴金属スパッタリングターゲット材の各物性評価は、以下の方法を用いて行った。測定に供するサンプルは、スパッタリングターゲット材の2箇所から端材を切り出す。切り出したサンプルについてアセトン洗浄のみ行った後、乾燥させた。洗浄後、2つのサンプルについて測定を行い、その平均値を求めた。なお、スパッタリングターゲット材の極端な場所(例えば、外周端など)からの端材の切り出しは避けた。
(ビッカース硬度の測定)
 ビッカース硬度の測定に使用した装置を以下に示す。
  測定装置:微小硬さ試験機(株式会社 ミツトヨ)
  型式:HM-221
  押付荷重:200kgf
Hereinafter, each physical property evaluation of the noble metal sputtering target material described in the specification of the present application was carried out by using the following methods. For the sample to be used for measurement, scraps are cut out from two places of the sputtering target material. The cut-out sample was washed only with acetone and then dried. After washing, measurements were taken on the two samples and the average value was calculated. It should be noted that cutting out of the scrap material from an extreme place (for example, the outer peripheral edge) of the sputtering target material was avoided.
(Measurement of Vickers hardness)
The device used to measure Vickers hardness is shown below.
Measuring device: Micro hardness tester (Mitutoyo Co., Ltd.)
Model: HM-221
Pressing load: 200kgf
(水素含有量の測定)
  測定装置:堀場製作所製水素分析装置(非分散赤外線吸収法)
(燐含有量の測定、硫黄含有量の測定)
  測定装置:グロー放電質量分析(GD-MS)
(Measurement of hydrogen content)
Measuring device: Hydrogen analyzer manufactured by HORIBA, Ltd. (non-dispersed infrared absorption method)
(Measurement of phosphorus content, measurement of sulfur content)
Measuring device: Glow discharge mass spectrometry (GD-MS)
 次に、本発明の実施例等について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本発明はこれらの実施例に制限される必要はなく、特許請求の範囲に記載される技術思想の範囲で解釈されるべきものである。 Next, examples and the like of the present invention will be described. It should be noted that the following examples are merely representative examples, and the present invention does not have to be limited to these examples, and is interpreted within the scope of the technical idea described in the claims. It should be.
(Auスパッタターゲット)
 純度4NのAu原料を高純度カーボン坩堝にて大気溶解した後、Au溶湯を鋳型に注湯し、その後、水中で急速冷却してAu鋳造インゴット(スパッタリングターゲット材)を作製した。大気溶解の際、微量の水蒸気又は水素ガスを適当量溶湯中に吹き込むことで、インゴット中の水素含有量を調整した。また、硫黄、燐についても、溶湯中に微量添加することで硫黄含有量、燐含有量を調整した。このようにして得られたスパッタリングターゲット材の不純物(水素、燐、硫黄)含有量及びビッカース硬度を表1に示す。
(Au spatter target)
An Au raw material having a purity of 4N was melted in the atmosphere in a high-purity carbon crucible, then the molten Au was poured into a mold, and then rapidly cooled in water to prepare an Au cast ingot (sputtering target material). At the time of atmospheric dissolution, the hydrogen content in the ingot was adjusted by blowing a trace amount of steam or hydrogen gas into the molten metal in an appropriate amount. In addition, the sulfur content and phosphorus content were adjusted by adding a small amount of sulfur and phosphorus to the molten metal. Table 1 shows the impurity (hydrogen, phosphorus, sulfur) content and Vickers hardness of the sputtering target material thus obtained.
 次に、Au鋳造インゴット(スパッタリングターゲット材)に熱間鍛造を実施した後、旋盤加工(切削)により、表面粗さRaを平均0.4~1.6μmになるように調整した。このようにして得られたスパッタリングターゲット材の表面を光学顕微鏡によって観察し、マイクロクラック(サイズ:円相当径で10マイクロメートリ以上)の有無について調べた。その結果、水素含有量が5wtppm以上のスパッタリングターゲット材については、マイクロクラックの発生を確認した。 Next, after hot forging the Au cast ingot (sputtering target material), the surface roughness Ra was adjusted to an average of 0.4 to 1.6 μm by lathe processing (cutting). The surface of the sputtering target material thus obtained was observed with an optical microscope, and the presence or absence of microcracks (size: 10 micrometries or more in a diameter equivalent to a circle) was examined. As a result, it was confirmed that microcracks were generated in the sputtering target material having a hydrogen content of 5 wtppm or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(白金スパッタリングターゲット材)
 純度3N5のPt原料を高純度ジルコニア坩堝にて大気溶解した後、Pt溶湯を鋳型に注湯し、その後、水中で急速冷却してPt鋳造インゴット(スパッタリングターゲット材)を作製した。大気溶解の際、微量の水蒸気又は水素ガスを適当量溶湯中に吹き込むことで、インゴット中の水素含有量を調整した。また、硫黄、燐についても、溶湯中に微量添加することで硫黄含有量、燐含有量を調整した。このようにして得られたスパッタリングターゲット材の不純物(水素、燐、硫黄)含有量及びビッカース硬度を表2に示す。
(Platinum sputtering target material)
A Pt raw material having a purity of 3N5 was melted in the atmosphere in a high-purity zirconia crucible, then the molten Pt was poured into a mold, and then rapidly cooled in water to prepare a Pt cast ingot (sputtering target material). At the time of atmospheric dissolution, the hydrogen content in the ingot was adjusted by blowing a trace amount of steam or hydrogen gas into the molten metal in an appropriate amount. In addition, the sulfur content and phosphorus content were adjusted by adding a small amount of sulfur and phosphorus to the molten metal. Table 2 shows the impurity (hydrogen, phosphorus, sulfur) content and Vickers hardness of the sputtering target material thus obtained.
 次に、Pt鋳造インゴット(スパッタリングターゲット材)に熱間鍛造を実施した後、旋盤加工(切削)により、表面粗さRaを平均0.4~1.6μmになるように調整した。このようにして得られたスパッタリングターゲット材の表面を光学顕微鏡によって観察し、マイクロクラック(サイズ:数マイクロメートル)の有無について調べた。その結果、水素含有量が5wtppm以上のスパッタリングターゲット材については、マイクロクラックの発生を確認した。 Next, after hot forging the Pt cast ingot (sputtering target material), the surface roughness Ra was adjusted to an average of 0.4 to 1.6 μm by lathe processing (cutting). The surface of the sputtering target material thus obtained was observed with an optical microscope to check for the presence or absence of microcracks (size: several micrometers). As a result, it was confirmed that microcracks were generated in the sputtering target material having a hydrogen content of 5 wtppm or more.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(パラジウムスパッタリングターゲット材)
 純度3N5のPd原料を高純度ジルコニア坩堝にて真空溶解した後、Pd溶湯を鋳型に注湯し、その後、水中で急速冷却してPd鋳造インゴット(スパッタリングターゲット材)を作製した。真空溶解の際、微量の水蒸気又は水素ガスを混入させることで、インゴット中の水素含有量を調整した。また、硫黄、燐についても、溶湯中に微量添加することで硫黄含有量、燐含有量を調整した。このようにして得られたスパッタリングターゲット材の不純物(水素、燐、硫黄)含有量及びビッカース硬度を表3に示す。
(Palladium sputtering target material)
A Pd raw material having a purity of 3N5 was vacuum-melted in a high-purity zirconia crucible, then the Pd molten metal was poured into a mold, and then rapidly cooled in water to prepare a Pd cast ingot (sputtering target material). At the time of vacuum melting, the hydrogen content in the ingot was adjusted by mixing a small amount of steam or hydrogen gas. In addition, the sulfur content and phosphorus content were adjusted by adding a small amount of sulfur and phosphorus to the molten metal. Table 3 shows the impurity (hydrogen, phosphorus, sulfur) content and Vickers hardness of the sputtering target material thus obtained.
 次に、Pd鋳造インゴット(スパッタリングターゲット材)に熱間鍛造を実施した後、旋盤加工(切削)により、表面粗さRaを平均0.4~1.6μmになるように調整した。このようにして得られたスパッタリングターゲット材の表面を光学顕微鏡によって観察し、マイクロクラック(サイズ:数マイクロメートル)の有無について調べた。その結果、水素含有量が5wtppm以上のスパッタリングターゲット材については、マイクロクラックの発生を確認した。 Next, after hot forging the Pd cast ingot (sputtering target material), the surface roughness Ra was adjusted to an average of 0.4 to 1.6 μm by lathe processing (cutting). The surface of the sputtering target material thus obtained was observed with an optical microscope to check for the presence or absence of microcracks (size: several micrometers). As a result, it was confirmed that microcracks were generated in the sputtering target material having a hydrogen content of 5 wtppm or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(銀スパッタリングターゲット材)
 純度4N5のAg原料を高純度ジルコニア坩堝にて大気溶解した後、Ag溶湯を鋳型に注湯し、その後、水中で急速冷却してAg鋳造インゴット(スパッタリングターゲット材)を作製した。大気溶解の際、微量の水蒸気又は水素ガスを適当量溶湯中に吹き込むことで、インゴット中の水素含有量を調整した。また、硫黄、燐についても、溶湯中に微量添加することで硫黄含有量、燐含有量を調整した。このようにして得られたスパッタリングターゲット材の不純物(水素、燐、硫黄)含有量及びビッカース硬度を表4に示す。
(Silver sputtering target material)
An Ag raw material having a purity of 4N5 was melted in the air in a high-purity zirconia crucible, then the molten Ag was poured into a mold, and then rapidly cooled in water to prepare an Ag cast ingot (sputtering target material). At the time of atmospheric dissolution, the hydrogen content in the ingot was adjusted by blowing a trace amount of steam or hydrogen gas into the molten metal in an appropriate amount. In addition, the sulfur content and phosphorus content were adjusted by adding a small amount of sulfur and phosphorus to the molten metal. Table 4 shows the impurity (hydrogen, phosphorus, sulfur) content and Vickers hardness of the sputtering target material thus obtained.
 次に、Au鋳造インゴット(スパッタリングターゲット材)に熱間鍛造を実施した後、旋盤加工(切削)により、表面粗さRaを平均0.4~1.6μmになるように調整した。このようにして得られたスパッタリングターゲット材の表面を光学顕微鏡によって観察し、マイクロクラック(サイズ:数マイクロメートル)の有無について調べた。その結果、水素含有量が5wtppm以上のスパッタリングターゲット材については、マイクロクラックの発生を確認した。 Next, after hot forging the Au cast ingot (sputtering target material), the surface roughness Ra was adjusted to an average of 0.4 to 1.6 μm by lathe processing (cutting). The surface of the sputtering target material thus obtained was observed with an optical microscope to check for the presence or absence of microcracks (size: several micrometers). As a result, it was confirmed that microcracks were generated in the sputtering target material having a hydrogen content of 5 wtppm or more.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、スパッタリングターゲットの製造時における加工特性を改善することができるという優れた効果を有する。本発明の実施形態に係る貴金属スパッタリングターゲット材は、高周波デバイス、水晶、MEMS、光デバイス、LED、有機EL、などにおける薄膜を形成するのに有用である。
 
According to the present invention, it has an excellent effect that the processing characteristics at the time of manufacturing the sputtering target can be improved. The noble metal sputtering target material according to the embodiment of the present invention is useful for forming a thin film in a high frequency device, a crystal, a MEMS, an optical device, an LED, an organic EL, and the like.

Claims (7)

  1.  鋳造インゴットからなるスパッタリングターゲット材であって、水素含有量が5wtppm未満であることを特徴とする貴金属スパッタリングターゲット材。 A sputtering target material made of cast ingot, which is a precious metal sputtering target material having a hydrogen content of less than 5 wtppm.
  2.  金の鋳造インゴットからなり、水素含有量が5wtppm未満であり、ビッカース硬度が25~45Hvであることを特徴とする請求項1に記載の貴金属スパッタリングターゲット材。 The precious metal sputtering target material according to claim 1, which comprises a cast gold ingot, has a hydrogen content of less than 5 wtppm, and has a Vickers hardness of 25 to 45 Hv.
  3.  白金の鋳造インゴットからなり、水素含有量が5wtppm未満であり、ビッカース硬度が37~55Hvであることを特徴とする請求項1に記載の貴金属スパッタリングターゲット材。 The precious metal sputtering target material according to claim 1, which comprises a cast platinum ingot, has a hydrogen content of less than 5 wtppm, and has a Vickers hardness of 37 to 55 Hv.
  4.  パラジウムの鋳造インゴットからなり、水素含有量が5wtppm未満であり、ビッカース硬度が45~140Hvであることを特徴とする請求項1に記載の貴金属スパッタリングターゲット材。 The precious metal sputtering target material according to claim 1, which comprises a cast palladium ingot, has a hydrogen content of less than 5 wtppm, and has a Vickers hardness of 45 to 140 Hv.
  5.  銀の鋳造インゴットからなり、水素含有量が5wtppm未満であり、ビッカース硬度が25~55Hvであることを特徴とする請求項1に記載の貴金属スパッタリングターゲット材。 The precious metal sputtering target material according to claim 1, which comprises a cast silver ingot, has a hydrogen content of less than 5 wtppm, and has a Vickers hardness of 25 to 55 Hv.
  6.  水素含有量が1wtppm以下であることを特徴とする請求項1~5のいずれか一項に記載の貴金属スパッタリングターゲット材。 The noble metal sputtering target material according to any one of claims 1 to 5, wherein the hydrogen content is 1 wtppm or less.
  7.  燐含有量が1wtppm以下、硫黄含有量が1wtppm以下であることを特徴とする請求項1~6のいずれか一項に記載の貴金属スパッタリングターゲット材。 The noble metal sputtering target material according to any one of claims 1 to 6, wherein the phosphorus content is 1 wtppm or less and the sulfur content is 1 wtppm or less.
PCT/JP2020/034660 2020-08-17 2020-09-14 Precious metal sputtering target material WO2022038796A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-137356 2020-08-17
JP2020137356 2020-08-17
JP2020153473A JP6810824B1 (en) 2020-08-17 2020-09-14 Precious metal sputtering target material
JP2020-153473 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022038796A1 true WO2022038796A1 (en) 2022-02-24

Family

ID=73992975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034660 WO2022038796A1 (en) 2020-08-17 2020-09-14 Precious metal sputtering target material

Country Status (3)

Country Link
JP (1) JP6810824B1 (en)
TW (1) TWI827911B (en)
WO (1) WO2022038796A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084878A1 (en) * 2022-10-17 2024-04-25 松田産業株式会社 Au sputtering target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277924A (en) * 2002-01-21 2003-10-02 Sumitomo Metal Mining Co Ltd Method of producing ruthenium sputtering target and target obtained thereby
JP2004137580A (en) * 2002-10-21 2004-05-13 Sumitomo Metal Mining Co Ltd Method for producing iridium sputtering target, and target obtained by the method
JP2016191103A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Manufacturing method of sputtering target
JP6586540B1 (en) * 2019-03-28 2019-10-02 Jx金属株式会社 Bonded body of target material and backing plate, and manufacturing method of bonded body of target material and backing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277924A (en) * 2002-01-21 2003-10-02 Sumitomo Metal Mining Co Ltd Method of producing ruthenium sputtering target and target obtained thereby
JP2004137580A (en) * 2002-10-21 2004-05-13 Sumitomo Metal Mining Co Ltd Method for producing iridium sputtering target, and target obtained by the method
JP2016191103A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Manufacturing method of sputtering target
JP6586540B1 (en) * 2019-03-28 2019-10-02 Jx金属株式会社 Bonded body of target material and backing plate, and manufacturing method of bonded body of target material and backing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084878A1 (en) * 2022-10-17 2024-04-25 松田産業株式会社 Au sputtering target

Also Published As

Publication number Publication date
JP6810824B1 (en) 2021-01-06
TWI827911B (en) 2024-01-01
TW202208654A (en) 2022-03-01
JP2022033676A (en) 2022-03-02

Similar Documents

Publication Publication Date Title
KR100568392B1 (en) Silver alloy sputtering target and process for producing the same
US6849139B2 (en) Methods of forming copper-containing sputtering targets
KR101854009B1 (en) Silver-alloy sputtering target for conductive-film formation, and method for producing same
JP2020514551A (en) Aluminum-scandium alloys having high homogeneity and elemental content and articles thereof
KR20190077118A (en) Titanium target for sputtering
JP6810824B1 (en) Precious metal sputtering target material
WO2017164301A1 (en) Ti-Ta ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
MXPA05011491A (en) Fine grain niobium sheet via ingot metallurgy.
TWI608108B (en) Sputtering target based on a silver alloy
KR102614205B1 (en) Gold sputtering target
KR102236414B1 (en) Ti-Nb alloy sputtering target and its manufacturing method
TWI798304B (en) Gold sputtering target material and manufacturing method thereof
JP2004084065A (en) Silver alloy sputtering target and its producing method
TWI830035B (en) Precious metal sputtering target
JP7140164B2 (en) precious metal sputtering target
WO2019203258A1 (en) Cu-ni alloy sputtering target
WO2015099119A1 (en) High-purity copper or copper alloy sputtering target, and method for producing same
KR102486945B1 (en) Manufacturing method of high-purity silver sputtering target and silver sputtering target manufactured thereby
JP2002069626A (en) Sputtering target and its production method
CN117987777A (en) Copper alloy sputtering film, method for producing same, copper alloy sputtering target, and method for producing same
JP2022059295A (en) Gold vapor deposition material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950361

Country of ref document: EP

Kind code of ref document: A1