WO2022038552A1 - Nozzle for 3d bioprinting - Google Patents

Nozzle for 3d bioprinting Download PDF

Info

Publication number
WO2022038552A1
WO2022038552A1 PCT/IB2021/057624 IB2021057624W WO2022038552A1 WO 2022038552 A1 WO2022038552 A1 WO 2022038552A1 IB 2021057624 W IB2021057624 W IB 2021057624W WO 2022038552 A1 WO2022038552 A1 WO 2022038552A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet
peptide
nozzle
cell
bioprinting
Prior art date
Application number
PCT/IB2021/057624
Other languages
French (fr)
Inventor
Charlotte A.E. HAUSER
Zainab Khan
Kowther KAHIN
Dana ALHATTAB
Original Assignee
King Adbullah University Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/401,800 external-priority patent/US11673324B2/en
Application filed by King Adbullah University Of Science And Technology filed Critical King Adbullah University Of Science And Technology
Priority to EP21857888.8A priority Critical patent/EP4200122A1/en
Publication of WO2022038552A1 publication Critical patent/WO2022038552A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0408Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing two or more liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing

Definitions

  • the present disclosure relates to generally to a device comprising a coaxial nozzle for building a 3D tissue model.
  • 3D printing technologies can be applied to build tissue-like structures, e.g. in the field of medicine and tissue engineering. Generally, these methods are referred to as 3D bioprinting.
  • 3D bioprinting usually a pre-polymer viscous solution and living cells are used to print in 3D.
  • the mechanical properties and cell viabilities are important factors in order for the 3D structures to be functional.
  • Existing 3D bioprinting devices have drawbacks, such as low cell viability and resolution, clogging of bioinks during printing, leakage, etc. Therefore, despite recent advances in 3D bioprinting, there is still a need for improved devices for printing of 3D objects.
  • the present disclosure provides a coaxial nozzle for bioprinting 3D tissue model.
  • the present disclosure provides a nozzle for 3D tissue bioprinting comprising: at least one buffer solution inlet; at least one peptide inlet; at least one cell inlet; and a mixing chamber, wherein the at least one buffer solution inlet is attached to the at least one peptide inlet, and wherein the at least one cell inlet is attached to the at least one peptide inlet.
  • the present disclosure provides a nozzle for 3D tissue bioprinting comprising: at least one buffer solution inlet; at least one peptide inlet; at least one cell inlet; and a mixing chamber, wherein the at least one buffer solution inlet is attached from a side of the at least one peptide inlet, and wherein the at least one cells inlet is disposed externally and attached at an angle to the at least one peptide inlet.
  • the nozzle comprises four inlets, one outlet, a mixing chamber that allows for the peptide bioink to form.
  • the four inlets may include two PBS inlets, a peptide inlet and at least one cell inlet.
  • the two PBS (phosphate-buffered saline) inlets may include tubings which may be attached on opposite sides of the peptide inlet for a dual PBS flow. This configuration facilitates continuous gelation of the peptide.
  • Luer locks may be utilized for providing secure tube attachment and management thereof.
  • the cell inlet may be placed externally and attached at an angle in order to delay the mixing of cells with the peptide hydrogel until the bioink is completely and homogeneously formed.
  • the nozzle comprises two peptide inlets, a PBS inlet and at least one cell inlet, with the peptide inlets attached on opposite sides of the PBS inlet.
  • this design promotes cell viability and allows for consistent extrusion of cells into the construct.
  • the PBS inlet and peptide inlet may be arranged in different ratios or configurations according to the viscosity of the bioink and the parameters needed.
  • FIG. 1 illustrates an exemplary structure of a nozzle according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a nozzle prototype with multiple inlets and an outlet according to an embodiment of the present disclosure.
  • FIG. 3 illustrates a nozzle prototype having a plurality of inlets and an outlet according to an embodiment of the present disclosure.
  • directional terms such as “top,” “bottom,” “upper,” “lower,” “above,” “below,” “left,” “right,” “horizontal,” “vertical,” “up,” “down,” etc., are used merely for convenience in describing the various embodiments of the present disclosure.
  • the embodiments of the present disclosure may be oriented in various ways.
  • the diagrams, apparatuses, etc., shown in the drawing figures may be flipped over, rotated by 90° in any direction, reversed, etc.
  • a value or property is “based” on a particular value, property, the satisfaction of a condition, or other factor, if that value is derived by performing a mathematical calculation or logical decision using that value, property or other factor.
  • bioink refers to materials used to produce engineered/artificial tissue using 3D printing. These inks may be composed of the cells that are being used, but may also be utilized in tandem with additional materials that envelope the cells.
  • the combination of cells and usually biopolymer gels may be defined as a bioink.
  • Bioink may include certain characteristics such as those including: rheoligical properties, physico-mechanical properties, biofunctionality, and biocompatibility.
  • the disclosed bioink may include a hydrogel biomaterial that may be extruded through a printing nozzle or needle into filaments that may maintain shape fidelity after deposition.
  • Disclosed bioinks may maintain the viability of cells blended within the bioinks during and after the printing process.
  • the cells may be from a biological specimen.
  • biological sample and the term “biological specimen” refers to either a part or the whole of a human, vertebrate animal, invertebrate animal, microbe or plant in vitro or in vivo.
  • the term includes but is not limited to material of human, vertebrate animal, invertebrate animal, microbe or plant origin such as human, animal, microbial or plant tissue sections, cell or tissue cultures, suspension of human, vertebrate animal, invertebrate animal, microbial or plant cells or isolated parts thereof, human or animal biopsies, blood samples, cell-containing fluids and secretion.
  • biocompatible materials refers to natural or synthetic materials that are suitable for introduction into living tissue. Such materials may be used, for example, as part of or in devices interacting with biological systems such as for a medical purpose including medical devices.
  • biological sample and the term “biological specimen” refers to either a part or the whole of a human, vertebrate animal, invertebrate animal, microbe or plant in vitro or in vivo.
  • the term includes but is not limited to material of human, vertebrate animal, invertebrate animal, microbe or plant origin such as human, animal, microbial or plant tissue sections, cell or tissue cultures, suspension of human, vertebrate animal, invertebrate animal, microbial or plant cells or isolated parts thereof, human or animal biopsies, blood samples, cell-containing fluids and secretion.
  • construct and “3D construct” are used interchangeably. These terms refer to the structure formed after the bioinks flows out of the nozzle.
  • Luv locks refers to connectors that are joined by means of a tabbed hub on the female fitting that screws into threads in a sleeve on the male fitting and attaches securely. They may be screw connections on a syringe that creates a leak-free seal.
  • nozzle refers to a device designed to control the direction or characteristics of bioinks as it exits an enclosed chamber or pipe connected to a bioprinter.
  • the disclosed nozzle may be configured to receive, for example, on or more materials (such as a buffer solution, ultra-short peptide and cells) which are mixed and then spouted out of an outlet of the nozzle in order to build a 3D tissue model.
  • materials such as a buffer solution, ultra-short peptide and cells
  • the term “needle” refers to a non-flexible tubing structure with an outer diameter.
  • the outer diameter may be 0.8-1.2 mm.
  • PBS refers to a buffer solution commonly used in biological research, which is an abbreviation of phosphate-buffered saline. It is a water-based salt solution, helping to maintain a constant pH, as well as osmolarity and ion concentrations to match those of most cells.
  • PBS may include a water-based salt solution containing disodium hydrogen phosphate, sodium chloride and, in some formulations, potassium chloride and potassium dihydrogen phosphate.
  • peptide refers to and is used interchangeably with “ultra-short peptide” and “self-assembling peptide”. These terms may refer to a sequence containing 3-7 amino acids.
  • the peptides according an aspect of the present disclosure are also particularly useful for formulating aqueous or other solvent compositions, herein also sometimes referred to as “inks” or “bioinks,” which may be used for printing structures, in particular 3D structures. Such printed structures make use of the gelation properties of the peptides according to features of the present disclosure.
  • the present disclosure provides a coaxial nozzle for bioprinting 3D tissue model.
  • a nozzle 100 is shown in accordance with an embodiment of the present disclosure.
  • nozzle 100 may comprise multiple inlets (102, 108 and 110) and one outlet 104, as shown in FIG. 1.
  • nozzle 100 may comprise multiple inlets (102, 108 and 110) and an outlet 104.
  • the multiple inlets (102, 108 and 110) may comprise a peptide inlet 102, a cell inlet 108 and two PBS inlets 110.
  • Cell inlet 108 may receive one or more cells therein.
  • nozzle 100 also comprises a mixing chamber 122 that allows for the peptide bioink to form.
  • PBS inlets 110 buffer solution inlets
  • cells inlet 108 may be disposed externally and attached at an angle to peptide inlet 102. While the drawings illustrate at least one peptide inlet 102, cell inlet 108 and PBS inlet 110, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 100.
  • the self-assemble ultrashort peptides that is compatible with the peptide inlet 102 have composition of amino acids A, B, X, such as
  • A are comprised of aliphatic, i.e., non-aromatic, hydrophobic amino acids, selected from the group of aliphatic amino acids, such as isoleucine and leucine, with n being an integer being selected from 0-5;
  • B are comprised of one aromatic amino acid, such as tyrosine, tryptophan, or phenylalanine, preferably the hydrophobic amino acid phenylalanine, or comprised of a peptidomimetic amino acid that is the aliphatic counterpart of the aromatic amino acid, such as cyclohexylalanine, which is the counterpart of amino acid phenylalanine with m being an integer being selected from 0-3;
  • X is comprised of a polar amino acid, selected from the group of aspartic acid, glutamic acid, lysine, arginine, histidine, cysteine
  • Such peptides have gelation properties.
  • the peptides gelatinize after a certain amount of time when mixed in buffer solutions, such as PBS.
  • buffer solutions such as PBS.
  • the mixing of peptides and the buffer solution occurs within the nozzle close to the outlet.
  • the mixing of peptides and the buffer solution occurs within the nozzle at some distance away from the outlet. Therefore, the nozzle is designed to have a mixing chamber, in which the peptides and the buffer solution can be sufficiently mixed, but gelation is not folly formed until the peptide mixture reaches the outlet.
  • the suitable distance between the mixing chamber and the outlet depends on the gelation time of the peptide mixture, which is determined by the type and the concentration of the peptide, the temperature, and the type of buffer solution. In one embodiment the mixing of peptides and the buffer solution occurs in the mixing chamber, which is 3-6 mm away from the outlet.
  • the two PBS inlets 110 may comprise tubings attached on opposite ends from either side of the nozzle for a dual PBS flow, which facilitates continuous gelation of the peptide.
  • lock fasteners such as Luer locks may be utilized to for securing the tube attachment and management thereof.
  • the cells inlet 108 is placed externally and attached to the PBS needle 124 at an angle such that the tip of the cell inlet is approximately 5mm above the tip of the nozzle, in order to delay the mixing of cells with the peptide hydrogel until the bioink is completely and homogeneously formed. Furthermore, the angle also ensures that the luer lock attachment does not collide with the other inlets. This design promotes cell viability and allows for consistent extrusion of cells into the construct.
  • the distance between the peptide inlet 102 and PBS inlets 110 is approximately 7.32 mm (112), between the peptide inlet 102 and the outlet 104 is approximately 40-45 mm (114), the length of the cell chamber 128 is approximately 18-20 mm (116), the distance between the cells inlet 108 and the bottom of cells needle 126 is approximately 45-50 mm (118) and the overall length of the nozzle is approximately 50-60 mm (120).
  • the PBS inlet and peptide inlet can be arranged in different ratios or configurations according to the viscosity of the bioink and the parameters needed.
  • FIG. 2 illustrates another nozzle prototype with multiple inlets and an outlet according to an embodiment of the present disclosure.
  • nozzle 200 may comprise multiple inlets (202, 204 and 208) and an outlet 206.
  • the multiple inlets (202, 204 and 208) may comprise a peptide inlet 208, two PBS inlets 204, and a cell inlet 202.
  • Cell inlet 202 may receive one or more cells therein. While the drawings illustrate at least one peptide inlet 208, PBS inlet 204 and cell inlet 202, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 200.
  • nozzle 200 also comprises a mixing chamber 210 that allows for the peptide bioink to form therein.
  • nozzle 200 may comprise multiple inlets (202, 204 and 208) and an outlet 206.
  • the multiple inlets (202, 204 and 208) may comprise a peptide inlet 204, two PBS inlets 208, and a cell inlet 202.
  • Cell inlet 202 may receive one or more cells therein. While the drawings illustrate at least one peptide inlet 204, PBS inlet 208 and cell inlet 202, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 200.
  • nozzle 200 also comprises a mixing chamber 210 that allows for the peptide bioink to form therein.
  • FIG. 3 illustrates another exemplary nozzle prototype having a plurality of inlets and an outlet according to an embodiment of the present disclosure.
  • nozzle 300 may comprise multiple inlets (302, 306 and 308) and an outlet 304.
  • the multiple inlets (302, 306 and 308) may include a cell inlet (302), a peptide inlet (306) and a PBS inlet (308).
  • Cell inlet 302 may receive one or more cells therein. While the drawings illustrate at least one cell inlet 302, peptide inlet 306 and PBS inlet 308, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 300.
  • nozzle 300 also comprises a mixing chamber (310) that allows for the peptide bioink to form therein.
  • the bottom of the cell inlet 302 may terminate at a cell needle 312.
  • the bottom of the cell needle 312 may terminate at the PBS needle 314.
  • the bottom of the peptide inlet 306 and PBS inlet 308 may terminate at a peptide and PBS needle 314.
  • the bottom of the cell needle (312) may be disposed approximately 5 mm above the bottom of the peptide and PBS needle (314); the outer diameter (OD) of the needles may be approximately 0.8-1.2 mm; the length of the needles may be approximately 28-32 mm; and the mixing chamber (310) may be approximately 25-30.2 mm, as shown in FIG. 3.
  • nozzle 300 may comprise multiple inlets (302, 306 and 308) and an outlet 304.
  • the multiple inlets (302, 306 and 308) may include a cell inlet (302), a peptide inlet (308) and a PBS inlet (306).
  • Cell inlet 302 may receive one or more cells therein. While the drawings illustrate at least one cell inlet 302, peptide inlet 308 and PBS inlet 306, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 300.
  • nozzle 300 also comprises a mixing chamber (310) that allows for the peptide bioink to form therein.
  • the bottom of the cell inlet 302 may terminate at a cell needle 312.
  • the bottom of the cell needle 312 may terminate at the PBS needle 314.
  • the botom of the peptide inlet 308 and PBS inlet 306 may terminate at a peptide and PBS needle 314.
  • the botom of the cell needle (312) may be disposed approximately 5 mm above the botom of the peptide and PBS needle (314); the outer diameter (OD) of the needles may be approximately 0.8-1.2 mm; the length of the needles may be approximately 28-32 mm; and the mixing chamber (310) may be approximately 25-30.2 mm, as shown in FIG. 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present disclosure relates to a coaxial nozzle for building a 3D tissue model. Accordingly, a nozzle for 3D tissue bioprinting may include at least one buffer solution inlet, at least one peptide inlet, at least one cell inlet, and a mixing chamber. The least one buffer solution inlet is attached to the at least one peptide inlet. The at least one cell inlet is attached to the at least one peptide inlet. The at least one buffer solution inlet may be attached from a side of the at least one peptide inlet, and the at least one cell inlet may be disposed externally and attached at an angle to the at least one peptide inlet.

Description

NOZZLE FOR 3D BIOPRINTING
BACKGROUND
Field of the Invention
[0001] The present disclosure relates to generally to a device comprising a coaxial nozzle for building a 3D tissue model.
Background of the Invention
[0002] 3D printing technologies can be applied to build tissue-like structures, e.g. in the field of medicine and tissue engineering. Generally, these methods are referred to as 3D bioprinting. In 3D bioprinting, usually a pre-polymer viscous solution and living cells are used to print in 3D. The mechanical properties and cell viabilities are important factors in order for the 3D structures to be functional. Existing 3D bioprinting devices have drawbacks, such as low cell viability and resolution, clogging of bioinks during printing, leakage, etc. Therefore, despite recent advances in 3D bioprinting, there is still a need for improved devices for printing of 3D objects.
SUMMARY
[0003] According to first broad aspect, the present disclosure provides a coaxial nozzle for bioprinting 3D tissue model.
[0004] According to another broad aspect, the present disclosure provides a nozzle for 3D tissue bioprinting comprising: at least one buffer solution inlet; at least one peptide inlet; at least one cell inlet; and a mixing chamber, wherein the at least one buffer solution inlet is attached to the at least one peptide inlet, and wherein the at least one cell inlet is attached to the at least one peptide inlet.
[0005] According to yet another broad aspect, the present disclosure provides a nozzle for 3D tissue bioprinting comprising: at least one buffer solution inlet; at least one peptide inlet; at least one cell inlet; and a mixing chamber, wherein the at least one buffer solution inlet is attached from a side of the at least one peptide inlet, and wherein the at least one cells inlet is disposed externally and attached at an angle to the at least one peptide inlet.
[0006] In one described embodiment, the nozzle comprises four inlets, one outlet, a mixing chamber that allows for the peptide bioink to form. The four inlets may include two PBS inlets, a peptide inlet and at least one cell inlet. The two PBS (phosphate-buffered saline) inlets may include tubings which may be attached on opposite sides of the peptide inlet for a dual PBS flow. This configuration facilitates continuous gelation of the peptide. Moreover, Luer locks may be utilized for providing secure tube attachment and management thereof. The cell inlet may be placed externally and attached at an angle in order to delay the mixing of cells with the peptide hydrogel until the bioink is completely and homogeneously formed.
[0007] In another embodiment, the nozzle comprises two peptide inlets, a PBS inlet and at least one cell inlet, with the peptide inlets attached on opposite sides of the PBS inlet.
[0008] In accordance with disclosed embodiments, this design promotes cell viability and allows for consistent extrusion of cells into the construct. The PBS inlet and peptide inlet may be arranged in different ratios or configurations according to the viscosity of the bioink and the parameters needed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the office upon request and payment of the necessary fee.
[0010] The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.
[0011] FIG. 1 illustrates an exemplary structure of a nozzle according to an embodiment of the present disclosure.
[0012] FIG. 2 illustrates a nozzle prototype with multiple inlets and an outlet according to an embodiment of the present disclosure.
[0013] FIG. 3 illustrates a nozzle prototype having a plurality of inlets and an outlet according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF THE INVENTION
Definitions
[0014] Where the definition of terms departs from the commonly used meaning of the term, applicant intends to utilize the definitions provided below, unless specifically indicated. [0015] It is to be understood that the foregoing general description and the following detailed description are exemplaiy and explanatory only and are not restrictive of any subject matter claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise. It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. In this application, the use of “or” means “and/or” unless stated otherwise. Furthermore, use of the term “including” as well as other forms, such as “include”, “includes,” and “included,” is not limiting.
[0016] For purposes of the present disclosure, the term “comprising”, the term “having”, the term “including,” and variations of these words are intended to be open-ended and mean that there may be additional elements other than the listed elements.
[0017] For purposes of the present disclosure, directional terms such as “top,” “bottom,” “upper,” “lower,” “above,” “below,” “left,” “right,” “horizontal,” “vertical,” “up,” “down,” etc., are used merely for convenience in describing the various embodiments of the present disclosure. The embodiments of the present disclosure may be oriented in various ways. For example, the diagrams, apparatuses, etc., shown in the drawing figures may be flipped over, rotated by 90° in any direction, reversed, etc.
[0018] For purposes of the present disclosure, a value or property is “based” on a particular value, property, the satisfaction of a condition, or other factor, if that value is derived by performing a mathematical calculation or logical decision using that value, property or other factor.
[0019] For purposes of the present disclosure, it should be noted that to provide a more concise description, some of the quantitative expressions given herein are not qualified with the term “about.” It is understood that whether the term “about” is used explicitly or not, every quantity given herein is meant to refer to the actual given value, and it is also meant to refer to the approximation to such given value that would reasonably be inferred based on the ordinary skill in the art, including approximations due to the experimental and/or measurement conditions for such given value.
[0020] For purposes of the present disclosure, the term “bioink” refers to materials used to produce engineered/artificial tissue using 3D printing. These inks may be composed of the cells that are being used, but may also be utilized in tandem with additional materials that envelope the cells. The combination of cells and usually biopolymer gels may be defined as a bioink. Bioink may include certain characteristics such as those including: rheoligical properties, physico-mechanical properties, biofunctionality, and biocompatibility. The disclosed bioink may include a hydrogel biomaterial that may be extruded through a printing nozzle or needle into filaments that may maintain shape fidelity after deposition. Disclosed bioinks may maintain the viability of cells blended within the bioinks during and after the printing process. The cells may be from a biological specimen.
[0021] For purposes of the present disclosure, the term “biological sample” and the term “biological specimen” refers to either a part or the whole of a human, vertebrate animal, invertebrate animal, microbe or plant in vitro or in vivo. The term includes but is not limited to material of human, vertebrate animal, invertebrate animal, microbe or plant origin such as human, animal, microbial or plant tissue sections, cell or tissue cultures, suspension of human, vertebrate animal, invertebrate animal, microbial or plant cells or isolated parts thereof, human or animal biopsies, blood samples, cell-containing fluids and secretion.
[0022] For purposes of the present disclosure, the term “biocompatible materials” refers to natural or synthetic materials that are suitable for introduction into living tissue. Such materials may be used, for example, as part of or in devices interacting with biological systems such as for a medical purpose including medical devices.
[0023] For purposes of the present disclosure, the term “biological sample” and the term “biological specimen” refers to either a part or the whole of a human, vertebrate animal, invertebrate animal, microbe or plant in vitro or in vivo. The term includes but is not limited to material of human, vertebrate animal, invertebrate animal, microbe or plant origin such as human, animal, microbial or plant tissue sections, cell or tissue cultures, suspension of human, vertebrate animal, invertebrate animal, microbial or plant cells or isolated parts thereof, human or animal biopsies, blood samples, cell-containing fluids and secretion.
[0024] For purposes of the present disclosure, the term “construct” and “3D construct” are used interchangeably. These terms refer to the structure formed after the bioinks flows out of the nozzle.
[0025] For the purpose of present disclosure, the term “Luer locks” refers to connectors that are joined by means of a tabbed hub on the female fitting that screws into threads in a sleeve on the male fitting and attaches securely. They may be screw connections on a syringe that creates a leak-free seal. [0026] For purposes of the present disclosure, the term “nozzle” refers to a device designed to control the direction or characteristics of bioinks as it exits an enclosed chamber or pipe connected to a bioprinter. In some embodiments, the disclosed nozzle may be configured to receive, for example, on or more materials (such as a buffer solution, ultra-short peptide and cells) which are mixed and then spouted out of an outlet of the nozzle in order to build a 3D tissue model.
[0027] For purposes of the present disclosure, the term “needle” refers to a non-flexible tubing structure with an outer diameter. In an exemplary embodiment, the outer diameter may be 0.8-1.2 mm.
[0028] For purposes of the present disclosure, the term “PBS” refers to a buffer solution commonly used in biological research, which is an abbreviation of phosphate-buffered saline. It is a water-based salt solution, helping to maintain a constant pH, as well as osmolarity and ion concentrations to match those of most cells. In some embodiments, PBS may include a water-based salt solution containing disodium hydrogen phosphate, sodium chloride and, in some formulations, potassium chloride and potassium dihydrogen phosphate.
[0029] For purposes of the present disclosure, the term “peptide” refers to and is used interchangeably with “ultra-short peptide” and “self-assembling peptide”. These terms may refer to a sequence containing 3-7 amino acids. The peptides according an aspect of the present disclosure are also particularly useful for formulating aqueous or other solvent compositions, herein also sometimes referred to as “inks” or “bioinks,” which may be used for printing structures, in particular 3D structures. Such printed structures make use of the gelation properties of the peptides according to features of the present disclosure.
Description
[0030] While the invention is susceptible to various modifications and alternative forms, specific embodiment thereof has been shown by way of example in the drawings and will be described in detail below. It should be understood, however that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and the scope of the invention.
[0031] According to first broad aspect, the present disclosure provides a coaxial nozzle for bioprinting 3D tissue model. [0032] Turning to FIG. 1, a nozzle 100 is shown in accordance with an embodiment of the present disclosure. In one embodiment, nozzle 100 may comprise multiple inlets (102, 108 and 110) and one outlet 104, as shown in FIG. 1.
[0033] In one disclosed embodiment nozzle 100 may comprise multiple inlets (102, 108 and 110) and an outlet 104. In one disclosed embodiment, the multiple inlets (102, 108 and 110) may comprise a peptide inlet 102, a cell inlet 108 and two PBS inlets 110. Cell inlet 108 may receive one or more cells therein. In one preferred embodiment, nozzle 100 also comprises a mixing chamber 122 that allows for the peptide bioink to form. In one disclose configuration, PBS inlets 110 (buffer solution inlets) may be attached from a side of peptide inlet 102. In addition, cells inlet 108 may be disposed externally and attached at an angle to peptide inlet 102. While the drawings illustrate at least one peptide inlet 102, cell inlet 108 and PBS inlet 110, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 100.
[0034] In one embodiment, the self-assemble ultrashort peptides that is compatible with the peptide inlet 102 have composition of amino acids A, B, X, such as
AtiBmX Or BmAnX Or XAnBm Or XBmAn
[0035] wherein the total number of amino acids of the ultrashort peptide does not exceed 7 amino acids; wherein A are comprised of aliphatic, i.e., non-aromatic, hydrophobic amino acids, selected from the group of aliphatic amino acids, such as isoleucine and leucine, with n being an integer being selected from 0-5; wherein B are comprised of one aromatic amino acid, such as tyrosine, tryptophan, or phenylalanine, preferably the hydrophobic amino acid phenylalanine, or comprised of a peptidomimetic amino acid that is the aliphatic counterpart of the aromatic amino acid, such as cyclohexylalanine, which is the counterpart of amino acid phenylalanine with m being an integer being selected from 0-3; wherein X is comprised of a polar amino acid, selected from the group of aspartic acid, glutamic acid, lysine, arginine, histidine, cysteine, serine, threonine, asparagine, and glutamine.
[0036] Such peptides have gelation properties. In other words, the peptides gelatinize after a certain amount of time when mixed in buffer solutions, such as PBS. To avoid early gelation in the tubings and/or clogging of the tubings, it is preferred the mixing of peptides and the buffer solution occurs within the nozzle close to the outlet. On the other hand, to avoid insufficient mixing, it is preferred that the mixing of peptides and the buffer solution occurs within the nozzle at some distance away from the outlet. Therefore, the nozzle is designed to have a mixing chamber, in which the peptides and the buffer solution can be sufficiently mixed, but gelation is not folly formed until the peptide mixture reaches the outlet. The suitable distance between the mixing chamber and the outlet depends on the gelation time of the peptide mixture, which is determined by the type and the concentration of the peptide, the temperature, and the type of buffer solution. In one embodiment the mixing of peptides and the buffer solution occurs in the mixing chamber, which is 3-6 mm away from the outlet.
[0037] In one embodiment, the two PBS inlets 110 may comprise tubings attached on opposite ends from either side of the nozzle for a dual PBS flow, which facilitates continuous gelation of the peptide. Moreover, lock fasteners such as Luer locks may be utilized to for securing the tube attachment and management thereof. The cells inlet 108 is placed externally and attached to the PBS needle 124 at an angle such that the tip of the cell inlet is approximately 5mm above the tip of the nozzle, in order to delay the mixing of cells with the peptide hydrogel until the bioink is completely and homogeneously formed. Furthermore, the angle also ensures that the luer lock attachment does not collide with the other inlets. This design promotes cell viability and allows for consistent extrusion of cells into the construct.
[0038] In one disclosed embodiment, the distance between the peptide inlet 102 and PBS inlets 110 is approximately 7.32 mm (112), between the peptide inlet 102 and the outlet 104 is approximately 40-45 mm (114), the length of the cell chamber 128 is approximately 18-20 mm (116), the distance between the cells inlet 108 and the bottom of cells needle 126 is approximately 45-50 mm (118) and the overall length of the nozzle is approximately 50-60 mm (120).
[0039] In another embodiment, the PBS inlet and peptide inlet can be arranged in different ratios or configurations according to the viscosity of the bioink and the parameters needed.
[0040] FIG. 2 illustrates another nozzle prototype with multiple inlets and an outlet according to an embodiment of the present disclosure. Thus, in one embodiment nozzle 200 may comprise multiple inlets (202, 204 and 208) and an outlet 206. The multiple inlets (202, 204 and 208) may comprise a peptide inlet 208, two PBS inlets 204, and a cell inlet 202. Cell inlet 202 may receive one or more cells therein. While the drawings illustrate at least one peptide inlet 208, PBS inlet 204 and cell inlet 202, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 200. In one preferred embodiment, nozzle 200 also comprises a mixing chamber 210 that allows for the peptide bioink to form therein. [0041] In another embodiment nozzle 200 may comprise multiple inlets (202, 204 and 208) and an outlet 206. The multiple inlets (202, 204 and 208) may comprise a peptide inlet 204, two PBS inlets 208, and a cell inlet 202. Cell inlet 202 may receive one or more cells therein. While the drawings illustrate at least one peptide inlet 204, PBS inlet 208 and cell inlet 202, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 200. In one preferred embodiment, nozzle 200 also comprises a mixing chamber 210 that allows for the peptide bioink to form therein.
[0042] FIG. 3 illustrates another exemplary nozzle prototype having a plurality of inlets and an outlet according to an embodiment of the present disclosure. Thus, nozzle 300 may comprise multiple inlets (302, 306 and 308) and an outlet 304. The multiple inlets (302, 306 and 308) may include a cell inlet (302), a peptide inlet (306) and a PBS inlet (308). Cell inlet 302 may receive one or more cells therein. While the drawings illustrate at least one cell inlet 302, peptide inlet 306 and PBS inlet 308, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 300.
[0043] In one embodiment, nozzle 300 also comprises a mixing chamber (310) that allows for the peptide bioink to form therein. The bottom of the cell inlet 302 may terminate at a cell needle 312. The bottom of the cell needle 312 may terminate at the PBS needle 314. The bottom of the peptide inlet 306 and PBS inlet 308 may terminate at a peptide and PBS needle 314. In one preferred embodiment, the bottom of the cell needle (312) may be disposed approximately 5 mm above the bottom of the peptide and PBS needle (314); the outer diameter (OD) of the needles may be approximately 0.8-1.2 mm; the length of the needles may be approximately 28-32 mm; and the mixing chamber (310) may be approximately 25-30.2 mm, as shown in FIG. 3.
[0044] In another embodiment, nozzle 300 may comprise multiple inlets (302, 306 and 308) and an outlet 304. The multiple inlets (302, 306 and 308) may include a cell inlet (302), a peptide inlet (308) and a PBS inlet (306). Cell inlet 302 may receive one or more cells therein. While the drawings illustrate at least one cell inlet 302, peptide inlet 308 and PBS inlet 306, it is readily appreciated that more than one of the same and combinations thereof may be provided within disclosed embodiments of nozzle 300.
[0045] In another embodiment, nozzle 300 also comprises a mixing chamber (310) that allows for the peptide bioink to form therein. The bottom of the cell inlet 302 may terminate at a cell needle 312. The bottom of the cell needle 312 may terminate at the PBS needle 314. The botom of the peptide inlet 308 and PBS inlet 306 may terminate at a peptide and PBS needle 314. In one preferred embodiment, the botom of the cell needle (312) may be disposed approximately 5 mm above the botom of the peptide and PBS needle (314); the outer diameter (OD) of the needles may be approximately 0.8-1.2 mm; the length of the needles may be approximately 28-32 mm; and the mixing chamber (310) may be approximately 25-30.2 mm, as shown in FIG. 3.
[0046] Having described the many embodiments of the present disclosure in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. Furthermore, it should be appreciated that all examples in the present disclosure, while illustrating many embodiments of the invention, are provided as non-limiting examples and are, therefore, not to be taken as limiting the various aspects so illustrated.

Claims

WHAT IS CLAIMED IS:
1. A nozzle for 3D tissue bioprinting comprising: at least one buffer solution inlet; at least one peptide inlet; at least one cell inlet; at least one buffer needle; at least one cell needle; and a mixing chamber, wherein the at least one buffer solution inlet is attached to the at least one peptide inlet, wherein the cell inlet attaches to the cell needle from the top, wherein the buffer solution inlet and peptide inlet attached to the buffer needle from the top through the mixing chamber, and wherein the at least one cell needle is attached to the at least one peptide needle.
2. The nozzle for 3D tissue bioprinting of claim 1 or 23, wherein the at least one buffer solution inlet is attached from a side of the at least one peptide inlet.
3. The nozzle for 3D tissue bioprinting of claims 1, 2 or 23, wherein the cell inlet is disposed externally and attached at an angle to the at least one peptide inlet.
4. The nozzle for 3D tissue bioprinting of any one of the preceding claims, wherein a locking mechanism attaches tubes to the at least one buffer solution inlet, at least one peptide inlet and at least one cell inlet.
5. The nozzle for 3D tissue bioprinting of any one of the preceding claims, wherein the locking mechanism is a Luer lock.
6. The nozzle for 3D tissue bioprinting of any one of the preceding claims, wherein the buffer solution compatible with the at least one buffer solution inlet is phosphate- buffered saline (PBS). The nozzle for 3D tissue bioprinting of any one of the preceding claims comprises two buffer solution inlets, wherein the two buffer solution inlets are attached on opposite ends from either side of the at least one peptide inlet. The nozzle for 3D tissue bioprinting of one of claims 3-7, wherein the angle at which the at least one cell needle is attached to the at least one peptide needle is approximately 40-80 degree. The nozzle for 3D tissue bioprinting of one of claims 3-8, wherein the angle at which the at least one cell inlet is attached to the at least one peptide inlet is approximately 80 degree. The nozzle for 3D tissue bioprinting of any one of the preceding claims, wherein the length of the nozzle is approximately 50-60 mm. The nozzle for 3D tissue bioprinting of any one of the preceding claims, wherein the length of the nozzle is approximately 55 mm. The nozzle for 3D tissue bioprinting of any one of the preceding claims, wherein a bottom of the at least one cell inlet terminates at a cell needle and a bottom of the at least one peptide inlet and the at least one PBS inlet terminate at a peptide and PBS needle, wherein a bottom of the cell needle is disposed approximately 3-7 mm above a bottom of peptide and PBS needle. The nozzle for 3D tissue bioprinting of any one of the preceding claims, wherein an outer diameter (OD) of the cell needle is approximately 0.9-1.8 mm, and OD of the peptide needle is 0.8-1.2 mm. A nozzle for 3D tissue bioprinting comprising: at least one buffer solution inlet; at least one peptide inlet; at least one cell inlet; at least one buffer needle; at least one cell needle; and a mixing chamber, wherein the at least one buffer solution inlet is attached from a side of the at least one peptide inlet, wherein the cell inlet attaches to the cell needle from the top, wherein the buffer solution inlet and peptide inlet attached to the buffer needle from the top through the mixing chamber, and wherein the at least one cell inlet is disposed externally and attached at an angle to the at least one peptide inlet. The nozzle for 3D tissue bioprinting of claim 14, wherein a locking mechanism attaches tubes to the at least one buffer solution inlet, at least one peptide inlet and at least one cell inlet. The nozzle for 3D tissue bioprinting of claims 14 or 15, wherein the locking mechanism is a Luer lock. The nozzle for 3D tissue bioprinting of one of claims 14-16, wherein the buffer solution compatible with the at least one buffer solution inlet is phosphate-buffered saline (PBS). The nozzle for 3D tissue bioprinting of one of claims 14-17 comprises two buffer solution inlets, wherein the two buffer solution inlets are attached on opposite ends from either side of the at least one peptide inlet. The nozzle for 3D tissue bioprinting of one of claims 14-18, wherein the angle at which the at least one cell needle is attached to the peptide needle is approximately 40-80 degree. The nozzle for 3D tissue bioprinting of one of claims 14-19, wherein the length of the nozzle is approximately 50-60 mm. The nozzle for 3D tissue bioprinting of one of claims 14-20, wherein a bottom of the at least one cell inlet terminates at a cell needle and a bottom of the at least one peptide inlet and the at least one PBS inlet terminate at a peptide and PBS needle, wherein a bottom of the cell needle is disposed approximately 3-7 mm above a bottom of peptide and PBS needle. The nozzle for 3D tissue bioprinting of one of claims 14-21, wherein an outer diameter (OD) of the cell needle is approximately 0.9-1.8 mm, and OD of the peptide needle is 0.8-1.2 mm. A nozzle for 3D tissue bioprinting comprising: at least one buffer solution inlet; at least one peptide inlet; at least one cell inlet; and a mixing chamber in communication with the at least one buffer solution inlet and at least one peptide inlet, and wherein the mixing chamber is disposed proximal to an outlet of the nozzle at a distance to allow for sufficient mixing of at least one buffer solution with at least one peptide to avoid early gelation in at least one buffer solution inlet or at least one peptide inlet. The nozzle for 3D tissue bioprinting of claim 23, wherein the mixing chamber is disposed from the outlet of the nozzle to allow the at least one peptide and at least one buffer solution can be sufficiently mixed and where gelation is not fully formed until the peptide mixture reaches the outlet of the nozzle. The nozzle for 3D tissue bioprinting of claims 23 or 24, wherein the distance between the mixing chamber and the outlet is 3-6 mm.
PCT/IB2021/057624 2020-08-20 2021-08-19 Nozzle for 3d bioprinting WO2022038552A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21857888.8A EP4200122A1 (en) 2020-08-20 2021-08-19 Nozzle for 3d bioprinting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063067958P 2020-08-20 2020-08-20
US63/067,958 2020-08-20
US17/401,800 2021-08-13
US17/401,800 US11673324B2 (en) 2020-08-20 2021-08-13 Nozzle for 3D bioprinting

Publications (1)

Publication Number Publication Date
WO2022038552A1 true WO2022038552A1 (en) 2022-02-24

Family

ID=80323389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/057624 WO2022038552A1 (en) 2020-08-20 2021-08-19 Nozzle for 3d bioprinting

Country Status (2)

Country Link
EP (1) EP4200122A1 (en)
WO (1) WO2022038552A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014197999A1 (en) * 2013-06-13 2014-12-18 Aspect Biosystems Ltd. System for additive manufacturing of three-dimensional structures and method for same
US20190321291A1 (en) * 2016-12-09 2019-10-24 Biogelx Limited 3D Printing and Drug Delivery
CN111172100A (en) * 2019-12-31 2020-05-19 浙江大学 Biological 3D printing method for controlling cell orientation arrangement
US20200199514A1 (en) * 2017-05-11 2020-06-25 King Abdullah University Of Science And Technology Device and method for microfluidics-based 3d bioprinting
US20200247046A1 (en) * 2017-08-03 2020-08-06 Centre National De La Recherche Scientifique Print head of a printer, printer and printing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014197999A1 (en) * 2013-06-13 2014-12-18 Aspect Biosystems Ltd. System for additive manufacturing of three-dimensional structures and method for same
US20190321291A1 (en) * 2016-12-09 2019-10-24 Biogelx Limited 3D Printing and Drug Delivery
US20200199514A1 (en) * 2017-05-11 2020-06-25 King Abdullah University Of Science And Technology Device and method for microfluidics-based 3d bioprinting
US20200247046A1 (en) * 2017-08-03 2020-08-06 Centre National De La Recherche Scientifique Print head of a printer, printer and printing method
CN111172100A (en) * 2019-12-31 2020-05-19 浙江大学 Biological 3D printing method for controlling cell orientation arrangement

Also Published As

Publication number Publication date
EP4200122A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN101370433B (en) Device, system and method for mixing
JP7383484B2 (en) Devices and methods for microfluidics-based 3D bioprinting
CN104941002B (en) A kind of bacterium response titanium-based antibacterial for hyaluronidase secreting type bacterium is implanted into material preparation method
CN105228660A (en) Bone graft composition and preparation method thereof
JP2020515537A (en) 3D printing and drug delivery
CN106048744A (en) Method for preparing extracellular matrix-simulated nanometer fiber dressing through electrostatic spinning
US10760056B2 (en) Three-dimensional co-culture method for adipocytes and macrophages
DK2696882T3 (en) Pharmaceutical composition
CN111303868B (en) Near-infrared luminescent polypeptide self-assembled gold nano material and preparation method and application thereof
Peak et al. Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues
US11673324B2 (en) Nozzle for 3D bioprinting
CN110432263A (en) Botanical pesticide molecule-nano-carrier complex and its preparation method and application
CN103623410B (en) A kind of bacteria inhibiting composition, embedded material and preparation method thereof
CN112587501A (en) Preparation method and application of composite drug-loaded core-shell microcarrier
WO2022038552A1 (en) Nozzle for 3d bioprinting
Van Genderen et al. Co-axial printing of convoluted proximal tubule for kidney disease modeling
CN103611189B (en) A kind of bacteria inhibiting composition, embedded material and preparation method thereof
ES2455441B1 (en) USEFUL HYDROGEL AS INJECTABLE SUPPORT FOR APPLICATION IN CELLULAR THERAPY AND AS A CONTROLLED DRUG DELIVERY SYSTEM
Firipis et al. Biodesigned bioinks for 3D printing via divalent crosslinking of self-assembled peptide-polysaccharide hybrids
CN110279902A (en) A kind of neurosurgery post-operation anti-adhesion film and preparation method thereof
WO2020211504A1 (en) Polypeptide hydrogel and preparation method therefor
WO2017059230A1 (en) Delivery of biomolecules into cells through carbon nanotube arrays
Peng et al. Dendrimer-grafted bioreducible polycation/DNA multilayered films with low cytotoxicity and high transfection ability
Ou et al. D-amino acid doping peptide hydrogel for the production of a cell colony
EP3389734B1 (en) Self-assembling peptides comprising non-ionic polar amino acids for anti-adhesion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857888

Country of ref document: EP

Effective date: 20230320

WWE Wipo information: entry into national phase

Ref document number: 523442624

Country of ref document: SA