WO2022037657A1 - Ppdu的上行参数指示方法及相关装置 - Google Patents

Ppdu的上行参数指示方法及相关装置 Download PDF

Info

Publication number
WO2022037657A1
WO2022037657A1 PCT/CN2021/113629 CN2021113629W WO2022037657A1 WO 2022037657 A1 WO2022037657 A1 WO 2022037657A1 CN 2021113629 W CN2021113629 W CN 2021113629W WO 2022037657 A1 WO2022037657 A1 WO 2022037657A1
Authority
WO
WIPO (PCT)
Prior art keywords
eht
ppdu
field
trigger frame
uplink
Prior art date
Application number
PCT/CN2021/113629
Other languages
English (en)
French (fr)
Inventor
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3192614A priority Critical patent/CA3192614A1/en
Priority to EP21857746.8A priority patent/EP4195779A4/en
Priority to JP2023512440A priority patent/JP2023538642A/ja
Priority to AU2021329841A priority patent/AU2021329841A1/en
Priority to KR1020237009577A priority patent/KR20230053676A/ko
Priority to MX2023002132A priority patent/MX2023002132A/es
Publication of WO2022037657A1 publication Critical patent/WO2022037657A1/zh
Priority to US18/172,105 priority patent/US11930493B2/en
Priority to US18/430,084 priority patent/US20240172218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and a related device for indicating uplink parameters of a physical layer protocol data unit PPDU.
  • IEEE 802.11ax The Institute of Electrical and Electronics Engineers (IEEE) 802.11ax standard has become difficult to Meet user needs in terms of high throughput, low jitter, and low latency. Therefore, there is an urgent need to develop the next-generation wireless local area networks (WLAN) technology, namely the IEEE 802.11be standard or the extremely high throughput (EHT) standard or the Wi-Fi7 standard. Different from IEEE 802.11ax, IEEE 802.11be will adopt ultra-large bandwidth, such as 320MHz, to achieve ultra-high transmission rate and support scenarios of ultra-dense users.
  • WLAN wireless local area networks
  • EHT extremely high throughput
  • IEEE 802.11ax introduces an uplink scheduling transmission method based on trigger frames, which schedules one or more stations for uplink data transmission through trigger frames (trigger frames) sent by access points (APs).
  • APs access points
  • the IEEE 802.11be standard will continue to use the trigger frame-based uplink scheduling transmission method of IEEE 802.11ax, but in this method, it has not yet proposed how to indicate the uplink parameters of the EHT PPDU.
  • the embodiments of the present application provide a method and a related device for indicating uplink parameters of PPDU, which can multiplex 802.11ax trigger frames to schedule stations to send EHT PPDUs with specified uplink parameters, and do not affect stations supporting 802.11ax protocol to receive the trigger frames , there is no need to redesign a new trigger frame to schedule the station supporting the 802.11be protocol to send the EHT PPDU, which can reduce the complexity and save the signaling overhead.
  • the present application provides a method for indicating an uplink parameter of a PPDU.
  • the method includes: an AP generates and sends a trigger frame, the trigger frame includes an uplink length field, and the uplink length field is used to indicate trigger-based efficient physical layer data.
  • the upstream length field is used to indicate the length indicated by the L-SIG field in the EHT PPDU.
  • the length value indicated by the upstream length field is a positive integer, which is a multiple of 3 minus 2.
  • the AP can receive the EHT PPDU from the STA, and the length indicated by the L-SIG field in the EHT PPDU is equal to the length indicated by the uplink length field plus 2.
  • the AP can reply with an acknowledgment frame.
  • the L-SIG field includes a length subfield and a rate subfield.
  • the length subfield and the rate subfield in the L-SIG field may indirectly indicate the original transmission duration of the PPDU.
  • an implementation manner of the length indicated by the above-mentioned L-SIG field is the length indicated by the length subfield of the L-SIG field.
  • the EHT site and the HE can be scheduled at the same time.
  • the station performs uplink data transmission, thereby saving instruction overhead.
  • the trigger frame of this solution multiplexes the trigger frame of 11ax, which may not affect the HE station receiving the trigger frame and the length setting method indicated by the L-SIG field in the HE TB PPDU.
  • this solution sets the value indicated by the upstream length field of the trigger frame to a multiple of 3 minus 2, and sets the length indicated by the L-SIG field in the EHT TB PPDU to the value indicated by the upstream length field plus 2. It is guaranteed that the length indicated by the L-SIG field in the EHT TB PPDU is a multiple of 3, which can be used for automatic detection and differentiated from the HE PPDU.
  • the present application provides a method for indicating an uplink parameter of a PPDU.
  • the method includes: a STA receives a trigger frame, the trigger frame includes an uplink length field, and the uplink length field is used to indicate the L-length field in the HE TB PPDU and the EHT PPDU.
  • the length indicated by the SIG field, or the uplink length field is used to indicate the length indicated by the L-SIG field in the EHT PPDU; the STA generates and sends an EHT PPDU, and the length indicated by the L-SIG field in the EHT PPDU is equal to the uplink length Add 2 to the length value indicated by the length field.
  • the length value indicated by the upstream length field is a positive integer, which is a multiple of 3 minus 2.
  • the L-SIG field includes a length subfield and a rate subfield.
  • the length subfield and the rate subfield in the L-SIG field may indirectly indicate the original transmission duration of the PPDU.
  • an implementation manner of the length indicated by the above-mentioned L-SIG field is the length indicated by the length subfield of the L-SIG field.
  • the present application provides a communication device, where the communication device may be an AP or a chip in the AP, such as a Wi-Fi chip.
  • the communication device includes: a processing unit configured to generate a trigger frame, where the trigger frame includes an uplink length field, and the uplink length field is used to indicate the length indicated by the L-SIG field in the HE TB PPDU and the EHT PPDU, or, the uplink length field
  • the length field is used to indicate the length indicated by the L-SIG field in the EHT PPDU; the transceiver unit is used to send the trigger frame.
  • the length value indicated by the upstream length field is a positive integer, which is a multiple of 3 minus 2.
  • the transceiver unit 12 is further configured to receive an EHT PPDU from the STA, where the length indicated by the L-SIG field in the EHT PPDU is equal to the length indicated by the uplink length field plus 2.
  • the L-SIG field includes a length subfield and a rate subfield.
  • the length subfield and the rate subfield in the L-SIG field may indirectly indicate the original transmission duration of the PPDU.
  • an implementation manner of the length indicated by the above-mentioned L-SIG field is the length indicated by the length subfield of the L-SIG field.
  • the present application provides a communication device, where the communication device may be a STA or a chip in the STA, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for receiving a trigger frame, where the trigger frame includes an uplink length field, and the uplink length field is used to indicate the length indicated by the L-SIG field in the HE TB PPDU and the EHT PPDU, or, the uplink length field
  • the length field is used to indicate the length indicated by the L-SIG field in the EHT PPDU; the processing unit is used to generate an EHT PPDU, where the length indicated by the L-SIG field in the EHT PPDU is equal to the length indicated by the uplink length field plus 2 ;
  • the transceiver unit is also used to send the generated EHT PPDU.
  • the length value indicated by the upstream length field is a positive integer, which is a multiple of 3 minus 2.
  • the L-SIG field includes a length subfield and a rate subfield.
  • the length subfield and the rate subfield in the L-SIG field may indirectly indicate the original transmission duration of the PPDU.
  • an implementation manner of the length indicated by the above-mentioned L-SIG field is the length indicated by the length subfield of the L-SIG field.
  • the reserved bits of the public information field in the above trigger frame and the HE uplink bandwidth field of the public information field together indicate the uplink bandwidth used for sending the EHT PPDU, or the EHT common information in the trigger frame is used.
  • the information field and the HE upstream bandwidth field of the common information field in the trigger frame together indicate the upstream bandwidth used for sending the EHT PPDU.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • both the uplink length of the EHT PPDU and the uplink bandwidth of the EHT PPDU are indicated in one trigger frame, which can save signaling overhead.
  • the trigger frame further includes indication information, where the indication information is used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols.
  • the sum of the number of EHT-LTF symbols and the number of EHT data symbols in the above-mentioned EHT PPDU is equal to the sum of the number of HE-LTF symbols and the number of HE data symbols in the above-mentioned HE TB PPDU.
  • the indication information is carried in the reserved bits of the common information field of the trigger frame or carried in the EHT common information field of the trigger frame.
  • the trigger frame is further used to indicate the type of the EHT PPDU scheduled in the uplink, and the type of the EHT PPDU includes a trigger-based EHT PPDU and a single-user EHT PPDU.
  • the type of the EHT PPDU is indicated by the trigger frame type field of the trigger frame, or by the reserved bits of the trigger frame.
  • the above trigger frame indicates that the type of the uplink scheduled EHT PPDU is a single-user EHT PPDU, and the trigger frame is also used to indicate whether the uplink scheduled EHT PPDU is an EHT single user (single user, SU) indoor low power consumption (low power consumption). power indoor, LPI) SU LPI PPDU.
  • whether the EHT PPDU scheduled in the uplink is an EHT SU LPI PPDU is indicated by the modulation and coding strategy field of the trigger frame, or by the reserved bits of the EHT user information field in the trigger frame.
  • the uplink transmission of the single-user EHT PPDU is also scheduled through the trigger frame, which can realize the scheduling of different types of EHT PPDU and save signaling overhead.
  • the present application provides another method for indicating an uplink parameter of a PPDU.
  • the method includes: an AP generates and sends a trigger frame, and the reserved bits of the public information field in the trigger frame and the HE uplink bandwidth field of the public information field are common. Indicates the uplink bandwidth used for sending the EHT PPDU, or the EHT common information field in the trigger frame and the HE uplink bandwidth field of the common information field in the trigger frame together indicate the uplink bandwidth used for sending the EHT PPDU.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the present application provides another method for indicating an uplink parameter of a PPDU.
  • the method includes: a STA receives a trigger frame, and the reserved bits of the common information field in the trigger frame and the HE uplink bandwidth field of the common information field jointly indicate to send The uplink bandwidth used by the EHT PPDU, or the EHT common information field in the trigger frame and the HE uplink bandwidth field of the public information field in the trigger frame together indicate the uplink bandwidth used for sending the EHT PPDU; the STA generates the EHT PPDU, and uses the trigger The EHT PPDU is sent with the upstream bandwidth indicated by the frame.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the present application provides a communication device, where the communication device may be an AP or a chip in the AP, such as a Wi-Fi chip.
  • the communication device includes: a processing unit configured to generate a trigger frame, where the reserved bits of the common information field in the trigger frame and the HE uplink bandwidth field of the common information field together indicate the uplink bandwidth used for sending the EHT PPDU, or the trigger frame
  • the EHT common information field and the HE uplink bandwidth field of the common information field in the trigger frame together indicate the uplink bandwidth used for sending the EHT PPDU; the transceiver unit is used to send the trigger frame.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the present application provides a communication device, where the communication device may be a STA or a chip in the STA, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for receiving a trigger frame, where the reserved bits of the common information field in the trigger frame and the HE uplink bandwidth field of the common information field together indicate the uplink bandwidth used for sending the EHT PPDU, or the trigger frame
  • the EHT common information field and the HE uplink bandwidth field of the common information field in the trigger frame together indicate the uplink bandwidth used for sending the EHT PPDU;
  • the processing unit is used to generate the EHT PPDU;
  • the transceiver unit is also used to use the trigger frame to indicate The upstream bandwidth of the EHT PPDU is sent.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the 1-bit or 2-bit reserved bits of the above-mentioned common information field are used to indicate whether the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU. For example, when the value of the 1-bit reserved bit is 0, it indicates that the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU; when the value of the 1-bit reserved bit is 1 , indicating that the uplink bandwidth used for sending the EHT PPDU is 320MHz.
  • the 2-bit reserved bit when the 2-bit reserved bit is 00, it indicates that the upstream bandwidth used for sending the EHT PPDU is the same as the upstream bandwidth used for sending the HE TB PPDU; when the 2-bit reserved bit is 01 , indicates that the uplink bandwidth used for sending the EHT PPDU is 320MHz; the other values, namely 10 and 11, are reserved.
  • the 2-bit reserved bit value when the 2-bit reserved bit value is 00, it indicates that the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU; when the 2-bit reserved bit value is 01 When it is indicated that the uplink bandwidth used for sending the EHT PPDU is 160MHz; when the 2-bit reserved bit value is 10, it indicates that the uplink bandwidth used for sending the EHT PPDU is 320MHz; the remaining values of 11 are reserved.
  • the EHT public information field may include an EHT uplink bandwidth field, and the EHT uplink bandwidth field is used to indicate whether the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU. same.
  • the length of the EHT uplink bandwidth field may be 1 bit or 2 bits.
  • the present application provides another method for indicating an uplink parameter of a PPDU.
  • the method includes: an AP generates and sends a trigger frame, and the trigger frame includes indication information, and the indication information is used to indicate the number of EHT-LTF symbols and the HE - Difference in the number of LTF symbols.
  • the AP can also receive an EHT PPDU from the STA.
  • the number of EHT-LTF symbols in the EHT PPDU is equal to the number of HE-LTFs in the trigger frame and the HE-LTF indicated by the midamble period field. The sum of the number of symbols and the number indicated by the indication information.
  • This solution provides an indication of the number of EHT-LTF symbols suitable for the mixed transmission scenario of EHT PPDU and HE TB PPDU, which can further improve the uplink parameter indication method of PPDU.
  • the present application provides another method for indicating an uplink parameter of a PPDU.
  • the method includes: a STA receives a trigger frame, and the trigger frame includes indication information, where the indication information is used to indicate the number of EHT-LTF symbols and the number of HE-LTF symbols The difference between the number of symbols; the STA generates and sends an EHT PPDU, and the number of EHT-LTF symbols in the EHT PPDU is equal to the number of HE-LTF symbols in the trigger frame and the number of HE-LTF symbols indicated by the midamble period field and the indication The sum of the values indicated by the message.
  • the present application provides a communication device, where the communication device may be an AP or a chip in the AP, such as a Wi-Fi chip.
  • the communication device includes: a processing unit for generating a trigger frame, the trigger frame including indication information, the indication information being used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols; a transceiver unit for sending the trigger frame.
  • the transceiver unit is further configured to receive an EHT PPDU from the STA, where the number of EHT-LTF symbols in the EHT PPDU is equal to the number of HE-LTFs in the trigger frame and the HE-LTF symbols indicated by the midamble period field The sum of the number and the number indicated by the indication information.
  • the present application provides a communication device, where the communication device may be a STA or a chip in the STA, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for receiving a trigger frame, the trigger frame including indication information, the indication information being used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols; a processing unit for generating EHT PPDU, the number of EHT-LTF symbols in the EHT PPDU is equal to the sum of the number of HE-LTF symbols in the trigger frame and the number of HE-LTF symbols indicated by the midamble period field and the number indicated by the indication information; the The transceiver unit is also used to send the EHT PPDU.
  • the sum of the number of EHT-LTF symbols and the number of EHT data symbols is equal to the sum of the number of HE-LTF symbols and the number of HE data symbols.
  • the above-mentioned indication information is carried in the reserved bits of the public information field of the trigger frame or carried in the EHT public information field of the trigger frame.
  • the present application provides a method for transmitting a PPDU, the method comprising: an AP generating and sending a trigger frame, where the trigger frame is used to indicate a type of an uplink scheduled EHT PPDU, where the type of the EHT PPDU includes a trigger-based EHT PPDU and single-user EHT PPDU.
  • This solution provides an uplink transmission method for scheduling EHT SU PPDU or EHT LPI SU PPDU.
  • This scheme mainly schedules the uplink transmission of EHT TB PPDU, or EHT SU PPDU, or EHT LPI SU PPDU by triggering frames, which can realize the scheduling of different types of EHT PPDUs.
  • the present application provides a method for transmitting a PPDU, the method comprising: a STA receives a trigger frame, where the trigger frame is used to indicate a type of an uplink scheduled EHT PPDU, and the type of the EHT PPDU includes a trigger-based EHT PPDU and Single-user EHT PPDU; if the trigger frame indicates that the type of the uplink scheduled EHT PPDU is EHT single-user PPDU, the STA generates and sends the single-user EHT PPDU.
  • the present application provides a communication device, where the communication device may be an AP or a chip in the AP, such as a Wi-Fi chip.
  • the communication device includes: a processing unit for generating a trigger frame, where the trigger frame is used to indicate a type of an uplink scheduled EHT PPDU, where the type of the EHT PPDU includes a trigger-based EHT PPDU and a single-user EHT PPDU; a transceiver unit for Send this trigger frame.
  • the present application provides a communication device, where the communication device may be a STA or a chip in the STA, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for receiving a trigger frame, where the trigger frame is used to indicate a type of an uplink scheduled EHT PPDU, the type of the EHT PPDU includes a trigger-based EHT PPDU and a single-user EHT PPDU; a processing unit for When the trigger frame indicates that the type of the uplink scheduled EHT PPDU is EHT single-user PPDU, a single-user EHT PPDU is generated; the transceiver unit is also used to send the single-user EHT PPDU.
  • the type of the EHT PPDU is indicated by a trigger frame type field of the trigger frame, or by a reserved bit of the trigger frame.
  • the above trigger frame is also used to indicate whether the EHT PPDU scheduled in the uplink is an EHT SU LPI PPDU.
  • whether the EHT PPDU scheduled in the uplink is an EHT SU LPI PPDU is indicated by the modulation and coding strategy field of the trigger frame, or indicated by the reserved bits of the EHT user information field in the trigger frame.
  • the present application provides a communication device, specifically the AP in the first aspect, including a processor and a transceiver.
  • the processor is configured to generate a trigger frame, the trigger frame includes an uplink length field, the uplink length field is used to indicate the length indicated by the L-SIG field in the HE TB PPDU and the EHT PPDU, or the uplink length field is used to indicate the EHT The length indicated by the L-SIG field in the PPDU; the transceiver is used to send the trigger frame.
  • the AP may further include a memory for coupling with the processor, which stores necessary program instructions and data of the AP.
  • the present application provides a communication apparatus, specifically the STA in the second aspect, including a processor and a transceiver.
  • the transceiver is configured to receive a trigger frame, the trigger frame includes an uplink length field, the uplink length field is used to indicate the length indicated by the L-SIG field in the HE TB PPDU and the EHT PPDU, or the uplink length field is used to indicate the EHT The length indicated by the L-SIG field in the PPDU; the processor is used to generate an EHT PPDU, and the length indicated by the L-SIG field in the EHT PPDU is equal to the length indicated by the uplink length field plus 2; the transceiver, also use to send the generated EHT PPDU.
  • the STA may further include a memory, which is coupled to the processor and stores necessary program instructions and data of the STA.
  • the present application provides a communication device, specifically the AP in the fifth aspect, including a processor and a transceiver.
  • the processor is configured to generate a trigger frame, the reserved bits of the common information field in the trigger frame and the HE upstream bandwidth field of the common information field together indicate the upstream bandwidth used for sending the EHT PPDU, or the EHT common information field and
  • the HE upstream bandwidth field of the common information field in the trigger frame collectively indicates the upstream bandwidth used for sending the EHT PPDU; the transceiver is used to send the trigger frame.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the AP may further include a memory for coupling with the processor, which stores necessary program instructions and data of the AP.
  • the present application provides a communication apparatus, specifically the STA in the sixth aspect, including a processor and a transceiver.
  • the transceiver is configured to receive a trigger frame, and the reserved bits of the common information field in the trigger frame and the HE uplink bandwidth field of the common information field together indicate the uplink bandwidth used for sending EHT PPDUs, or the EHT common information field and
  • the HE uplink bandwidth field of the common information field in the trigger frame collectively indicates the uplink bandwidth used for sending the EHT PPDU;
  • the processor is used to generate the EHT PPDU;
  • the transceiver is also used to send the EHT PPDU using the uplink bandwidth indicated by the trigger frame.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the STA may further include a memory, which is coupled to the processor and stores necessary program instructions and data of the STA.
  • the present application provides a communication device, specifically the AP in the ninth aspect, including a processor and a transceiver.
  • the processor is configured to generate a trigger frame, the trigger frame includes indication information, and the indication information is used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols; the transceiver is configured to send the trigger frame.
  • the AP may further include a memory for coupling with the processor, which stores necessary program instructions and data of the AP.
  • the present application provides a communication apparatus, specifically the STA in the tenth aspect, including a processor and a transceiver.
  • the transceiver is used to receive a trigger frame, and the trigger frame includes indication information, and the indication information is used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols;
  • the processor is used to generate an EHT PPDU, in the EHT PPDU
  • the number of EHT-LTF symbols is equal to the sum of the number of HE-LTF symbols in the trigger frame and the number of HE-LTF symbols indicated by the midamble period field and the number indicated by the indication information;
  • the transceiver is also used to send the EHT PPDU.
  • the STA may further include a memory, which is coupled to the processor and stores necessary program instructions and data of the STA.
  • the present application provides a communication device, specifically the AP in the thirteenth aspect, including a processor and a transceiver.
  • the processor is used for generating a trigger frame, and the trigger frame is used to indicate the type of the EHT PPDU scheduled in the uplink, and the type of the EHT PPDU includes a trigger-based EHT PPDU and a single-user EHT PPDU; the transceiver is used for sending the trigger frame.
  • the AP may further include a memory for coupling with the processor, which stores necessary program instructions and data of the AP.
  • the present application provides a communication apparatus, specifically the STA in the fourteenth aspect, including a processor and a transceiver.
  • the transceiver is used to receive a trigger frame, and the trigger frame is used to indicate the type of the uplink scheduling EHT PPDU, and the EHT PPDU types include trigger-based EHT PPDU and single-user EHT PPDU; the processor is used when the trigger frame indicates the uplink scheduling.
  • the type of the EHT PPDU is EHT single-user PPDU, a single-user EHT PPDU is generated; the transceiver is also used to send the single-user EHT PPDU.
  • the STA may further include a memory, which is coupled to the processor and stores necessary program instructions and data of the STA.
  • the present application provides a chip or a chip system, including an input and output interface and a processing circuit.
  • the processing circuit is configured to generate a trigger frame, the trigger frame includes an uplink length field, and the uplink length field is used to indicate the length indicated by the L-SIG field in the HE TB PPDU and the EHT PPDU, or the uplink length field is used to indicate The length indicated by the L-SIG field in the EHT PPDU; the input and output interface is used to send the trigger frame.
  • the input and output interface is used to receive a trigger frame, and the trigger frame includes an upstream length field, and the upstream length field is used to indicate the length indicated by the L-SIG field in the HE TB PPDU and the EHT PPDU, Or, the upstream length field is used to indicate the length indicated by the L-SIG field in the EHT PPDU; the processing circuit is used to generate an EHT PPDU, and the length indicated by the L-SIG field in the EHT PPDU is equal to the length indicated by the upstream length field. The length value is increased by 2; the input and output interface is also used to send the generated EHT PPDU.
  • the present application provides a chip or a chip system, including an input and output interface and a processing circuit.
  • the processing circuit is configured to generate a trigger frame, the reserved bits of the common information field in the trigger frame and the HE upstream bandwidth field of the common information field together indicate the upstream bandwidth used for sending the EHT PPDU, or the EHT common information field in the trigger frame Together with the HE upstream bandwidth field of the common information field in the trigger frame, it indicates the upstream bandwidth used for sending the EHT PPDU; the input and output interface is used to send the trigger frame.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the input and output interface is used to receive a trigger frame, and the reserved bits of the common information field in the trigger frame and the HE upstream bandwidth field of the common information field together indicate the upstream bandwidth used for sending the EHT PPDU, Or the EHT public information field in the trigger frame and the HE upstream bandwidth field of the public information field in the trigger frame together indicate the upstream bandwidth used for sending the EHT PPDU; the processing circuit is used to generate the EHT PPDU; the input and output interface is also used to adopt The EHT PPDU is sent with the upstream bandwidth indicated by the trigger frame.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the present application provides a chip or a chip system, including an input and output interface and a processing circuit.
  • the processing circuit is used to generate a trigger frame, and the trigger frame includes indication information, the indication information is used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols; the input and output interface is used to send the trigger frame.
  • the input and output interface is used to receive a trigger frame, and the trigger frame includes indication information, and the indication information is used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols;
  • the processing The circuit is used to generate an EHT PPDU, and the number of EHT-LTF symbols in the EHT PPDU is equal to the number of HE-LTF symbols in the trigger frame and the number of HE-LTF symbols indicated by the midamble period field and the number indicated by the indication information.
  • the sum; the input and output interface is also used to send the EHT PPDU.
  • the present application provides a chip or a chip system, including an input and output interface and a processing circuit.
  • the processing circuit is used to generate a trigger frame, and the trigger frame is used to indicate the type of the EHT PPDU scheduled in the uplink, and the type of the EHT PPDU includes a trigger-based EHT PPDU and a single-user EHT PPDU; the input and output interface is used to send the trigger frame. .
  • the input and output interface is used to receive a trigger frame, and the trigger frame is used to indicate a type of an uplink scheduled EHT PPDU, and the type of the EHT PPDU includes a trigger-based EHT PPDU and a single-user EHT PPDU;
  • the The processing circuit is configured to generate a single-user EHT PPDU when the trigger frame indicates that the type of the uplink scheduled EHT PPDU is an EHT single-user PPDU;
  • the input and output interface is also configured to send the single-user EHT PPDU.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed on a computer, the computer is made to execute the above-mentioned first aspect or the above-mentioned second aspect , or the fifth aspect, or the sixth aspect, or the ninth aspect, or the method for indicating the uplink parameters of the PPDU described in the tenth aspect.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed on a computer, the computer is made to execute the thirteenth aspect or the fourteenth aspect.
  • the transmission method of the PPDU is not limited to:
  • the present application provides a computer program product comprising instructions, which, when run on a computer, cause the computer to execute the above-mentioned first aspect, or the above-mentioned second aspect, or the above-mentioned fifth aspect, or the above-mentioned sixth aspect aspect, or the above ninth aspect, or the method for indicating an uplink parameter of a PPDU according to the above tenth aspect.
  • the present application provides a computer program product containing instructions, which, when run on a computer, cause the computer to execute the PPDU transmission method described in the thirteenth aspect or the fourteenth aspect.
  • the trigger frame of 802.11ax can be multiplexed to schedule stations to send EHT PPDUs with specified uplink parameters, and the stations that support the 802.11ax protocol can receive the trigger frame, and there is no need to redesign a new trigger frame to schedule support.
  • the station of the 802.11be protocol sends the EHT PPDU, which can reduce the complexity and save the signaling overhead.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2a is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • 2b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • 3a is a schematic diagram of a frame format of a trigger frame provided by an embodiment of the present application.
  • 3b is a schematic diagram of a frame format of a public information field and a user information field in a trigger frame provided by an embodiment of the present application;
  • FIG. 4 is a schematic time sequence diagram of an uplink scheduling transmission method based on a trigger frame
  • FIG. 5 is a schematic diagram of another frame format of a public information field and a user information field in a trigger frame provided by an embodiment of the present application;
  • FIG. 6 is a schematic flowchart of a method for indicating an uplink parameter of a PPDU provided by an embodiment of the present application
  • FIG. 7 is another schematic flowchart of a method for indicating an uplink parameter of a PPDU provided by an embodiment of the present application.
  • 8a is a schematic diagram of a frame format of an EHT uplink bandwidth indication provided by an embodiment of the present application.
  • 8b is a schematic diagram of another frame format of the EHT uplink bandwidth indication provided by an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a method for indicating an uplink parameter of a PPDU provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing that the size of the EHT-LTF provided by the embodiment of the present application is the same as the size of the HE Data;
  • 11a is a schematic diagram of a frame format indicated by the number of EHT-LTF symbols provided by an embodiment of the present application;
  • 11b is a schematic diagram of another frame format indicated by the number of EHT-LTF symbols provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a PPDU transmission method provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a frame format of a trigger frame indicating scheduling EHT SU PPDU provided by an embodiment of the present application;
  • FIG. 14 is a schematic diagram of the frame format of the trigger frame indication scheduling EHT LPI SU PPDU provided by the embodiment of the present application;
  • FIG. 15 is a schematic diagram of a frame format of an A-control subfield provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a communication device 2 provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • system architecture and/or application scenarios of the methods provided by the embodiments of the present application will be described below. It is understandable that the system architecture and/or scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a method for indicating uplink parameters of PPDU, which can multiplex the trigger frame of 802.11ax to schedule stations to send EHT PPDUs with specified uplink parameters, and does not affect the station supporting the 802.11ax protocol to receive the trigger frame, and it is not necessary to re-transmit the trigger frame.
  • a new trigger frame is designed to schedule stations that support the 802.11be protocol to send EHT PPDUs, thereby reducing complexity and signaling overhead.
  • the PPDU uplink parameter indication method can be applied in a wireless communication system, such as a wireless local area network system, and the PPDU uplink parameter indication method can be implemented by a communication device in the wireless communication system or a chip or processor in the communication device.
  • the communication device may be an access point device or a station device; the communication device may also be a wireless communication device that supports parallel transmission of multiple links, for example, the communication device may be referred to as a multi-link device , MLD) or multi-band devices. Compared with communication devices that only support single-link transmission, multi-link devices have higher transmission efficiency and greater throughput.
  • MLD multi-link device
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system may include one or more APs (AP in FIG. 1 ) and one or more STAs (STA1 and STA2 in FIG. 1 ).
  • the AP and the STA support a WLAN communication protocol, which may include IEEE 802.11be (or Wi-Fi 7, EHT protocol), and may also include IEEE 802.11ax, IEEE 802.11ac and other protocols.
  • the communication protocol may also include the next-generation protocol of IEEE 802.11be, and the like.
  • the device implementing the method of the present application may be an AP or STA in the WLAN, or a chip or a processing system installed in the AP or STA.
  • An access point is a device with wireless communication functions that supports communication using the WLAN protocol, and has the function of communicating with other devices (such as stations or other access points) in the WLAN network. Of course, it can also communicate with other devices.
  • the function of device communication In a WLAN system, an access point may be referred to as an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The device installed with these chips or processing system can be controlled by the chip or the processing system.
  • the AP in this embodiment of the present application is a device that provides services for the STA, and can support the 802.11 series of protocols.
  • the AP can be a communication entity such as a communication server, router, switch, and bridge; the AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • the AP can also be the chips and processing devices in these various forms of equipment. system, so as to implement the methods and functions of the embodiments of the present application.
  • a station (eg STA1 or STA2 in FIG. 1 ) is a device with wireless communication function, supports communication using WLAN protocol, and has the ability to communicate with other stations or access points in the WLAN network.
  • a station can be referred to as a non-access point station (non-access point station, non-AP STA).
  • STA is any user communication device that allows the user to communicate with the AP and then communicate with the WLAN.
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The devices on which these chips or processing systems are installed may implement the methods and functions of the embodiments of the present application under the control of the chips or processing systems.
  • the STA may be a tablet computer, a desktop computer, a laptop computer, a notebook computer, an Ultra-mobile Personal Computer (UMPC), a handheld computer, a netbook, a Personal Digital Assistant (PDA), a mobile phone, etc.
  • UMPC Ultra-mobile Personal Computer
  • PDA Personal Digital Assistant
  • the WLAN system can provide high-speed and low-latency transmission.
  • the WLAN system will be applied in more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry, or the Banking industry, used in corporate offices, stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • devices that support WLAN communication can be sensor nodes in smart cities (such as smart water meters, smart electricity meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, etc.) devices, display screens, TV sets, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart office (such as printers, projectors, Amplifiers, stereos, etc.), IoV devices in the Internet of Vehicles, infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.), and large-scale sports And equipment for music venues, etc.
  • the specific forms of the STA and the AP are not limited in the embodiments of the present application, which are only exemplary descriptions herein.
  • FIG. 1 is only a schematic diagram, and the method for indicating the uplink parameters of the PPDU provided in this embodiment of the present application can be applied to the communication scenario between the AP and the AP, in addition to the scenario in which the AP communicates with one or more STAs, and the same is true. It is applicable to the communication scenario between STA and STA.
  • FIG. 2a is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • the AP may be multi-antenna or single-antenna.
  • the AP includes a physical layer (PHY) processing circuit and a medium access control (MAC) processing circuit.
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can be used to Process MAC layer signals.
  • the 802.11 standard focuses on the PHY and MAC parts.
  • FIG. 2b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • FIG. 2b shows a schematic diagram of a STA structure with a single antenna.
  • the STA may also have multiple antennas, and may be a device with more than two antennas.
  • the STA may include a PHY processing circuit and a MAC processing circuit
  • the physical layer processing circuit may be used for processing physical layer signals
  • the MAC layer processing circuit may be used for processing MAC layer signals.
  • the trigger frame-based uplink scheduling transmission method in the IEEE 802.11be standard specifically includes: (1) the AP sends a trigger frame, and the trigger frame is used to schedule one or more STAs to send an uplink trigger-based EHT PPDU ( In layman's terms, PPDUs can also be called data packets, or data packets).
  • Trigger-based EHT PPDU can be abbreviated as EHT TB PPDU (Extremely High Throughput Trigger Based Physical layer Protocol Data Unit).
  • FIG. 3a is a schematic diagram of a frame format of a trigger frame provided by an embodiment of the present application.
  • the trigger frame includes a common information (common information) field and a user information list (user information list) field.
  • the public information field contains public information that all STAs need to read
  • the user information list field includes one or more user information fields
  • a user information field contains information that one STA needs to read.
  • FIG. 3b is a schematic diagram of a frame format of a common information field and a user information field in a trigger frame provided by an embodiment of the present application.
  • association identification 12 (association identification 12, AID12) represents the association identification of a certain STA, and the resource unit (RU) allocation (RU allocation) subfield is used to indicate this The specific resource unit position allocated to the STA (the STA indicated by AID12).
  • FIG. 4 is a schematic time sequence diagram of an uplink scheduling transmission method based on a trigger frame. As shown in Figure 4, the AP sends a trigger frame. After STA1 and STA2 receive the trigger frame, they respectively send EHT PPDUs after a period of time. After receiving the EHT PPDUs, the AP replies to the Multiple STA Block Acknowledge at an interval of time. , M-BA) frame.
  • M-BA Multiple STA Block Acknowledge
  • a site that supports the 802.11be protocol may receive a trigger frame of 11ax or a trigger frame of 11be.
  • the trigger frame of 11ax and the trigger frame of 11be use different trigger frame types to inform the STA of 11be whether to respond to the trigger frame in the format of HE TB PPDU or EHT TB PPDU.
  • this implementation does not support simultaneous scheduling of 11ax sites and 11be sites for mixed transmission scenarios of HE TB PPDU and EHT PPDU.
  • the 11ax trigger frame is used to simultaneously schedule the 11ax STA to send the HE PPDU, and the 11be STA to send the EHT PPDU, so as to achieve the effect of hybrid scheduling transmission.
  • FIG. 5 is a schematic diagram of another frame format of the common information field and the user information field in the trigger frame provided by the embodiment of the present application.
  • the public information field in the trigger frame is the same as the public information field in the trigger frame of 11ax, and includes the public information that all STAs of 11ax need to read.
  • the first five user information fields immediately after the public information field are the user information list fields of 11ax.
  • the user information fields corresponding to STA1 to STA5 in FIG. 5 constitute the user information list field of 11ax.
  • the association identifier AID12 is 4095, which indicates the end of useful information and the beginning of padding bits in the 11ax standard. Therefore, the traditional 11ax STA will not continue to parse the following information. Therefore, using this feature, in the 11be standard, the public information of 11be (such as the EHT public information field) and the user information of 11be (such as the 11be user information list field) can be further indicated.
  • the STA of 11be and the STA of 11ax may also use the same common information field, that is, use the initial common information field at the same time, that is, the EHT common information field shown in FIG. 5 no longer exists.
  • this implementation adopts the trigger frame of 11ax to simultaneously schedule STAs of 11ax to send HE PPDUs and STAs of 11be to send EHT PPDUs, the effect of hybrid scheduling transmission can be achieved and the design complexity can be reduced; however, this implementation does not.
  • Indicate how to indicate the uplink parameters of the EHT PPDU such as how to indicate the uplink length and uplink bandwidth. Therefore, in the trigger frame-based uplink scheduling transmission process of 11be, how to indicate the uplink parameters of the PPDU becomes an urgent problem to be solved.
  • the embodiment of the present application provides a method for indicating uplink parameters of PPDU, which can multiplex the trigger frame of 802.11ax to schedule stations to send EHT PPDUs with specified uplink parameters, and does not affect the station supporting the 802.11ax protocol to receive the trigger frame, and it is not necessary to re-transmit the trigger frame.
  • a new trigger frame is designed to schedule stations that support the 802.11be protocol to send EHT PPDUs, thereby reducing complexity and signaling overhead.
  • Embodiments 1 to 4 The technical solutions provided in the present application are described through Embodiments 1 to 4.
  • the first embodiment describes the uplink length indication of the EHT PPDU, and the length subfield indication of the legacy signaling (Legacy Signal, L-SIG) field in the HE TB PPDU and the EHT PPDU.
  • the second embodiment describes the uplink bandwidth indication of the EHT PPDU.
  • Embodiment 3 describes the indication of the number of EHT-LTF symbols.
  • the fourth embodiment describes a transmission method for triggering a STA to send a single user (single user, SU) indoor low power consumption (low power indoor, LPI) PPDU.
  • Embodiments 1 to 4 are respectively described in detail below. It is understandable that the technical solutions described in Embodiment 1 to Embodiment 4 of the present application can be combined to form a new embodiment.
  • the AP and STA in this application can be either a single-link device or a functional entity or functional unit in a multi-link device.
  • the AP in this application is a certain part of the AP multi-link device.
  • AP, and the STA is a certain STA in the site multi-link device, which is not limited in this application.
  • the first embodiment of this application mainly introduces the uplink length indication of the EHT PPDU, and the length subfield indication of the L-SIG field in the HE TB PPDU and the EHT PPDU.
  • FIG. 6 is a schematic flowchart of a method for indicating an uplink parameter of a PPDU provided by an embodiment of the present application.
  • the method for indicating the uplink parameters of the PPDU is described by taking an example of implementation in a communication system composed of an AP and one or more STAs.
  • the AP supports the IEEE 802.11be protocol (or Wi-Fi 7, EHT protocol), and can also support other WLAN communication protocols, such as IEEE 802.11ax, IEEE 802.11ac and other protocols.
  • At least one of the one or more STAs supports the IEEE 802.11be protocol.
  • the AP and the STA in the embodiments of the present application may also support the next-generation protocol of IEEE 802.11be. That is to say, the method for indicating the uplink parameters of the PPDU provided in the embodiment of the present application is not only applicable to the IEEE 802.11be protocol, but also applicable to the next-generation protocol of the IEEE 802.11be.
  • the uplink parameter indication method of the PPDU includes but is not limited to the following steps:
  • the AP generates a trigger frame, the trigger frame includes an uplink length field, and the uplink length field is used to indicate the traditional information in the high-efficiency trigger-based physical layer data protocol unit HE TB PPDU and the extremely high throughput physical layer data protocol unit EHT PPDU.
  • the length indicated by the L-SIG field, or the upstream length field be used to indicate the length indicated by the L-SIG field in the EHT PPDU.
  • the AP sends the trigger frame. Accordingly, the STA receives the trigger frame.
  • the frame format of the above trigger frame can be referred to as shown in FIG. 3a, and includes a public information field and a user information list field.
  • the frame format of the common information field may refer to the common information field part shown in FIG. 3b or FIG. 5, including the uplink length field.
  • the upstream length field may be used to indicate the length indicated by the L-SIG field in both the HE TB PPDU and the EHT PPDU.
  • the uplink length field may be used to indicate only the length indicated by the L-SIG field in the EHT PPDU.
  • this trigger frame can be used to simultaneously schedule 11ax stations to send HE TB PPDUs and 11be stations to send EHT PPDUs.
  • the trigger frame is only used for the station scheduling 11be to send the EHT PPDU. That is to say, the trigger frame can be applied to a scenario in which HE TB PPDU and EHT PPDU are mixed-scheduled and transmitted, and can also be applied in a scenario in which only EHT PPDU transmission is scheduled.
  • the EHT PPDU in this embodiment of the present application may be a trigger-based EHT PPDU (which may be abbreviated as EHT TB PPDU), a single-user EHT PPDU (which may be abbreviated as EHT SU PPDU), or a single-user indoor low-power EHT PPDU (which may be abbreviated as EHT SU PPDU).
  • EHT SU PPDU may also be referred to as an EHT MU PPDU sent to a single user (multi-user EHT PPDU, multiple user EHT PPDU).
  • the EHT PPDUs sent to a single user and to multiple users may be collectively referred to as EHT MU PPDUs, and the name of the PPDU is not limited in this embodiment of the present application.
  • the length value indicated by the uplink length field in the above trigger frame is a positive integer and is a multiple of 3 minus 2.
  • the trigger frame may be sent in a broadcast manner. Accordingly, one or more stations receive the trigger frame.
  • the STA generates an EHT PPDU, and the length indicated by the L-SIG field in the EHT PPDU is equal to the length value indicated by the uplink length field plus 2.
  • the STA sends the generated EHT PPDU.
  • the length value indicated by the uplink length field in the above trigger frame is a positive integer, and is a multiple of 3 minus 2.
  • the STA can set the length indicated by the L-SIG field in the EHT PPDU to the length indicated by the uplink length field plus 2 according to the length value indicated by the uplink length field in the trigger frame. Therefore, the length indicated by the L-SIG field in the EHT PPDU generated by the STA is equal to the length value indicated by the uplink length field plus 2. In other words, the length indicated by the L-SIG field in the EHT PPDU is a multiple of 3.
  • the STA may send the generated EHT PPDU to the AP.
  • the length indicated by the L-SIG field in the EHT PPDU received by the AP is equal to the length value indicated by the uplink length field plus 2.
  • the STA here is a STA that supports the 802.11be protocol, or an 11be STA.
  • the STA that supports the 802.11be protocol is referred to as an EHT station in the following.
  • a station supporting the 802.11ax protocol (for the convenience of description, the station supporting the 802.11ax protocol is referred to as an HE station hereinafter) can also receive the above trigger frame. After receiving the above trigger frame, the HE station can follow the trigger frame.
  • the length indicated by the upstream length field the length indicated by the L-SIG field in the HE TB PPDU is set to the length value indicated by the upstream length field. Therefore, the length indicated by the L-SIG field in the HE TB PPDU generated by the HE station is equal to the length value indicated by the upstream length field, that is, a multiple of 3 minus 2.
  • the HE station may send the generated HE TB PPDU to the AP.
  • the AP receives the HE TB PPDU, it can reply with an acknowledgment frame to confirm that the AP has received the HE TB PPDU.
  • a site supports both the 802.11be protocol and the 802.11ax protocol
  • when the site works with the 802.11be protocol it is regarded as an EHT site
  • when the site works with the 802.11ax protocol it is regarded as an HE site .
  • the site is considered an EHT site.
  • the station can determine which PPDU it sends in response to the trigger frame according to the AP's instruction in the trigger frame.
  • the indication may be displayed, for example, in the user information field of the trigger frame, carrying PPDU indication information, which is used to instruct the station to respond to the PPDU format of the trigger frame.
  • PPDU indication information which is used to instruct the station to respond to the PPDU format of the trigger frame.
  • the PPDU format that instructs the station to respond to the trigger frame is EHT PPDU
  • the PPDU format that instructs the station to respond to the trigger frame is HE TB PPDU
  • 1 indicates HE TB PPDU and 0 indicates EHT PPDU.
  • the indication may also be implicit.
  • the sender passes the length subfield in the L-SIG field.
  • the field and rate subfield indirectly indicate the original transmission duration of the PPDU.
  • the rate subfield is fixedly set to 6 megabits per second (Megabits per second, Mbps), and since the rate subfield is set to a fixed value, the original transmission duration of the PPDU is indirectly indicated by the length subfield.
  • an implementation manner of the length indicated by the L-SIG field in the embodiment of the present application is the length indicated by the length subfield of the L-SIG field.
  • SignalExtension is a parameter related to the transmission frequency band.
  • the parameter When working at 2.4GHz, the parameter is 6 ⁇ s (microseconds), and when working at 5GHz or 6GHz, the parameter is 0 ⁇ s .
  • TXTIME is the original transmission duration of the entire PPDU.
  • the length of TXTIME is determined by the AP.
  • the value of m is 1 or 2, and the specific value of m depends on the specific HE PPDU type.
  • m 2.
  • the Length value indicated by the length subfield is specified by the trigger frame sent by the AP, and the Length value can be calculated by the above formula (1-1). Because in uplink multi-user (MU) transmission, it is necessary to ensure that the transmission duration of multiple users (or STAs) is the same. Therefore, the same uplink length needs to be indicated for all STAs (or users) in the common information field of the trigger frame.
  • the HE station can directly set the length indicated by the L-SIG field of the HE TB PPDU to the value indicated by the uplink length field in the trigger frame.
  • the HE STA can calculate the length of each field in the HE TB PPDU it sends, and the EHT STA can also calculate the length of each field in the EHT PPDU it sends.
  • the length of each field can be determined by the indication in the trigger frame sent by the AP.
  • the number of data symbols can be calculated using the following formula (1-2):
  • LENGTH is the length information (that is, the length value) indicated by the L-SIG field in the upstream PPDU (here, HE TB PPDU or EHT PPDU), which is indicated by the upstream length field in the above trigger frame.
  • the value of is derived.
  • T HE-PREAMBLE is the length of the preamble from the RL-SIG field to the High Efficient Long Training Field (HE-LTF) in the HE TB PPDU, including the length of the RL-SIG (fixed at 4 microseconds) ), the length of the High Efficient Signal Field A (HE-SIG-A) (fixed at 8 microseconds), the length of the High Efficient Short Training Field (HE-STF) (fixed at 8 microseconds) is 8 microseconds), and the length of HE-LTF (N HE-LTF * THE-LTF-SYM ).
  • HE-LTF High Efficient Long Training Field
  • HE-LTF High Efficient Long Training Field
  • the size of HE-LTF and the length of the guard interval are indicated by the trigger frame, and the HE-LTF size and guard interval length can be used to obtain HE - Length of LTF symbols.
  • THE-PREAMBLE can be replaced with T EHT-PREAMBLE , and N HE-LTF *T HE-LTF-SYM can be replaced with N EHT-LTF *T EHT-LTF-SYM .
  • T EHT-PREAMBLE is the preamble length from RL-SIG to EHT-LTF in the EHT PPDU.
  • T EHT-PREAMBLE includes the length of RL-SIG, the length of U-SIG (fixed at 8 microseconds), the length of EHT-STF (fixed at 8 microseconds), and the length of EHT-LTF (same as 8 microseconds).
  • HE-LTF is similar, N EHT-LTF *T EHT-LTF-SYM ) length.
  • T EHT-PREAMBLE includes the length of RL-SIG, the length of U-SIG, the length of Extremely High Throughput Signal Field (EHT-SIG) (N EHT-SIG *T EHT -SIG , T EHT-SIG is fixed at 4 microseconds, N EHT-SIG is determined by the sender of the EHT SU PPDU), the length of EHT-STF (fixed at 4 microseconds), EHT-LTF (similar to HE-LTF) , the length of N EHT-LTF *T EHT-LTF-SYM ).
  • EHT-SIG Extremely High Throughput Signal Field
  • N MA is the number of intermediate preambles in the Doppler scenario, and its calculation formula is shown in the following formula (1-3), where Doppler represents the Doppler bit indication, obtained from the indication in the trigger frame.
  • Doppler represents the Doppler bit indication, obtained from the indication in the trigger frame.
  • PE-Disambiguity is the packet extension disambiguity (Disambiguity) bit indication, obtained from the indication in the trigger frame.
  • T SYM is the duration of the data symbol, derived from the guard interval indicated in the trigger frame. It is understandable that in the EHT PPDU, THE-PREAMBLE of formula (1-3) can be replaced by T EHT-PREAMBLE .
  • the length of the packet extension in the HE TB PPDU is shown in the following formula (1-4):
  • T MA represents the duration of the middle preamble, which is the same as the duration of HE-LTF or EHT-LTF.
  • Max ⁇ A,B ⁇ means to take the larger value of A and B. Indicates the rounding down of the logarithmic value A. For example, if A is equal to 4.3, then is equal to 4; if A is equal to 5.9, then equals 5.
  • the length of the packet extension in the EHT PPDU can also be calculated with reference to the above formula (1-4), where THE-PREAMBLE is replaced by T EHT-PREAMBLE , and N HE-LTF * THE-LTF-SYM is replaced is EHT-LTF *T EHT-LTF-SYM .
  • the length indicated by the L-SIG field in the EHT PPDU and the HE TB PPDU is indicated by the uplink length field of the trigger frame, or the length indicated by the L-SIG field in the EHT PPDU can be indicated.
  • the EHT site and the HE site are scheduled for uplink data transmission, thereby saving instruction overhead.
  • the trigger frame of the trigger frame multiplexing 11ax in the embodiment of the present application may not affect the HE station receiving the trigger frame and the length setting method indicated by the L-SIG field in the HE TB PPDU.
  • the embodiment of the present application sets the value indicated by the uplink length field of the trigger frame to a multiple of 3 minus 2, and sets the length indicated by the L-SIG field in the EHT TB PPDU to the value indicated by the uplink length field. Adding 2 to the value ensures that the length indicated by the L-SIG field in the EHT TB PPDU is a multiple of 3, which can be used for automatic detection to distinguish it from the HE PPDU.
  • the second embodiment of the present application mainly introduces the uplink bandwidth indication method of the EHT PPDU. It is understandable that, in practical applications, Embodiment 2 of the present application may be implemented together with Embodiment 1 above, or may be implemented independently, which is not limited in this embodiment of the present application.
  • 802.11ax supports the following bandwidth configurations: 20MHz, 40MHz, 80MHz, 160MHz/80+80MHz. Among them, the difference between 160MHz and 80+80MHz is that the former is a continuous frequency band, while the two 80MHz of the latter are discontinuous or discrete in frequency band. In 802.11be, bandwidth configurations such as 320MHz/160+160MHz will be further supported. Therefore, it is necessary to indicate the uplink bandwidth during uplink scheduling for the stations working under the 802.11be protocol.
  • FIG. 7 is another schematic flowchart of a method for indicating an uplink parameter of a PPDU provided by an embodiment of the present application.
  • the method for indicating the uplink parameters of the PPDU is described by taking an example of implementation in a communication system composed of an AP and one or more STAs.
  • the AP supports the IEEE 802.11be protocol (or Wi-Fi 7, EHT protocol), and can also support other WLAN communication protocols, such as IEEE 802.11ax, IEEE 802.11ac and other protocols.
  • At least one of the one or more STAs supports the IEEE 802.11be protocol. It should be understood that the AP and the STA in the embodiments of the present application may also support the next-generation protocol of IEEE 802.11be.
  • the method for indicating the uplink parameters of the PPDU is not only applicable to the IEEE 802.11be protocol, but also applicable to the next-generation protocol of the IEEE 802.11be.
  • the uplink parameter indication method of the PPDU includes but is not limited to the following steps:
  • the AP generates a trigger frame, and the reserved bits of the public information field in the trigger frame and the HE uplink bandwidth field of the public information field together indicate the uplink bandwidth used for sending the EHT PPDU, or the EHT public information field in the trigger frame and the The HE upstream bandwidth field of the common information field in the trigger frame collectively indicates the upstream bandwidth used for sending the EHT PPDU.
  • the AP sends the trigger frame. Accordingly, the STA receives the trigger frame.
  • the frame format of the above trigger frame can be referred to as shown in FIG. 3a, and includes a public information field and a user information list field.
  • the trigger frame can simultaneously indicate the upstream bandwidth used for sending HE TB PPDU and the upstream bandwidth used for sending EHT PPDU.
  • the first common information field in the trigger frame still indicates the upstream bandwidth for the HE STA, that is, the HE upstream bandwidth field of the first common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the meaning of the HE uplink bandwidth field is the same as the meaning of the field in 11ax, that is, the value of this field is 00, 01, 10, 11, indicating that the uplink bandwidth is 20MHz, 40MHz, 80MHz, 160MHz/80+80MHz respectively.
  • the reserved bits of the common information field or the EHT common information field the indication of the uplink bandwidth used for sending the EHT PPDU is included.
  • the reserved bits of the common information field in the trigger frame and the HE upstream bandwidth field of the common information field can be used to jointly indicate the upstream bandwidth used for sending the EHT PPDU; or the EHT common information field in the trigger frame can be used and the HE upstream bandwidth field of the common information field to jointly indicate the upstream bandwidth used for sending the EHT PPDU.
  • the uplink bandwidth used for sending the EHT PPDU will be denoted as the EHT uplink bandwidth. The implementation manner of indicating the upstream bandwidth of the EHT is described in detail below.
  • the HE upstream bandwidth field is combined with the reserved bits of the common information field to jointly indicate the EHT upstream bandwidth.
  • FIG. 8a is a schematic diagram of a frame format of an EHT uplink bandwidth indication provided by an embodiment of the present application. As shown in Fig. 8a, the indication of the upstream bandwidth of the EHT is placed in the reserved bits of the common information field.
  • one reserved bit (ie, one reserved bit) of the common information field is used to indicate. Specifically, if the reserved bit is 0, it indicates that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; if the reserved bit is 1, it indicates that the EHT uplink bandwidth is 320MHz. It is understandable that this embodiment of the present application does not limit the corresponding/mapping relationship between the value and the meaning of the reserved bit. It may also be that when the reserved bit is 1, it indicates that the EHT uplink bandwidth and HE uplink bandwidth fields are The indicated bandwidths are the same; when the reserved bit is 0, it indicates that the EHT uplink bandwidth is 320MHz.
  • the second implementation manner is indicated by using 2 reserved bits (that is, 2 reserved bits) of the common information field. Specifically, if the value of the two reserved bits is 00, it indicates that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; if the value of the two reserved bits is 01, it indicates that the EHT uplink bandwidth is 320MHz .
  • the 2 reserved bits are 10 and 11, indicating reservation.
  • this embodiment of the present application does not limit the corresponding/mapping relationship between the values and meanings of the two reserved bits, and various mapping sequences may also be used.
  • the value when the value is 00, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; when the value is 11, it means that the EHT uplink bandwidth is 320MHz, or vice versa, that is, the value 11 means that the EHT uplink bandwidth and the HE uplink bandwidth field are the same.
  • the indicated bandwidths are the same.
  • a value of 00 indicates that the upstream bandwidth of the EHT is 320MHz, and the other values, namely 10 and 01, indicate reservation.
  • the value when the value is 10, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; when the value is 11, it means that the EHT uplink bandwidth is 320MHz, and the other values are 00 and 01, which are reserved.
  • the present application is not exhaustive of various mapping orders.
  • the third implementation is still indicated by 2 reserved bits (that is, 2 reserved bits) in the common information field. Specifically, if the value of the two reserved bits is 00, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; if the value of the two reserved bits is 01, it means that the EHT uplink bandwidth is 160MHz ; If the value of the 2 reserved bits is 10, it means that the EHT uplink bandwidth is 320MHz. When the value of the two reserved bits is 11, it indicates reservation.
  • this embodiment of the present application does not limit the correspondence/mapping relationship between the values and meanings of the two reserved bits, and other mapping sequences may also be used. For example, when the value is 11, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; when the value is 10, it means that the EHT uplink bandwidth is 160MHz; when the value is 01, it means that the EHT uplink bandwidth is 320MHz, and the remaining values are 00 means reserved.
  • the bandwidth indicated by the HE uplink bandwidth field needs to be set to 160MHz.
  • the bandwidth indicated by the HE uplink bandwidth field needs to be set to 160MHz.
  • the bandwidth indicated by the HE uplink bandwidth field is not necessary to set the bandwidth indicated by the HE uplink bandwidth field to 160MHz, but only to set the bandwidth indicated by the reserved bits to 160MHz.
  • the indicated bandwidth is more flexible, so that the uplink bandwidth used for sending the HE TB PPDU can be flexibly indicated, reducing the sending bandwidth of the HE site and reducing the power consumption of the HE site.
  • the HE upstream bandwidth field and the EHT common information field jointly indicate the EHT upstream bandwidth.
  • FIG. 8b is a schematic diagram of another frame format of the EHT uplink bandwidth indication provided by the embodiment of the present application.
  • the EHT public information field includes an EHT uplink bandwidth field, which may also be referred to as a be uplink bandwidth field. Where the EHT uplink bandwidth field is located in the EHT public information field and the number of bits occupied are not limited in this embodiment of the present application.
  • the EHT uplink bandwidth field is 1 bit. Specifically, if the EHT upstream bandwidth field is 0, it means that the EHT upstream bandwidth is the same as the bandwidth indicated by the HE upstream bandwidth field; if the EHT upstream bandwidth field is 1, it means that the EHT upstream bandwidth is 320MHz. It is understandable that this embodiment of the present application does not limit the corresponding relationship between the value and the meaning of the EHT uplink bandwidth field. It may also be that when the EHT uplink bandwidth field takes a value of 1, it means that the EHT uplink bandwidth and HE uplink bandwidth are not limited. The bandwidth indicated by the bandwidth field is the same; when the EHT uplink bandwidth field is 0, it indicates that the EHT uplink bandwidth is 320MHz.
  • the EHT uplink bandwidth field is 2 bits. Specifically, if the EHT uplink bandwidth field is 00, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; if the EHT uplink bandwidth field is 01, it means that the EHT uplink bandwidth is 320MHz. The value of the EHT uplink bandwidth field is 10 and 11, indicating reservation.
  • this embodiment of the present application does not limit the corresponding relationship between the value and the meaning of the EHT uplink bandwidth field, and various mapping sequences may also be used.
  • the value when the value is 00, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; when the value is 11, it means that the EHT uplink bandwidth is 320MHz, or vice versa, that is, the value 11 means that the EHT uplink bandwidth and the HE uplink bandwidth field are the same.
  • the indicated bandwidths are the same.
  • a value of 00 indicates that the upstream bandwidth of the EHT is 320MHz, and the other values, namely 10 and 01, indicate reservation.
  • the value when the value is 10, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; when the value is 11, it means that the EHT uplink bandwidth is 320MHz, and the other values are 00 and 01, which are reserved.
  • the present application is not exhaustive of various mapping orders.
  • the EHT upstream bandwidth field is still 2 bits. Specifically, if the EHT uplink bandwidth field is 00, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; if the EHT uplink bandwidth field is 01, it means that the EHT uplink bandwidth is 160MHz; if The value of the two reserved bits is 10, which means that the upstream bandwidth of the EHT is 320 MHz. Wherein, when the value of the EHT uplink bandwidth field is 11, it indicates reservation.
  • this embodiment of the present application does not limit the corresponding relationship between the value and the meaning of the EHT uplink bandwidth field, and other mapping sequences may also be used. For example, when the value is 11, it means that the EHT uplink bandwidth is the same as the bandwidth indicated by the HE uplink bandwidth field; when the value is 10, it means that the EHT uplink bandwidth is 160MHz; when the value is 01, it means that the EHT uplink bandwidth is 320MHz, and the remaining values are 00 means reserved.
  • the bandwidth indicated by the HE uplink bandwidth field needs to be Set to 160MHz.
  • the bandwidth indicated by the HE uplink bandwidth field needs to be set to 160MHz.
  • the indicated bandwidth is more flexible, so that the uplink bandwidth used for sending the HE TB PPDU can be flexibly indicated, thereby reducing the sending bandwidth of the HE site and reducing the power consumption of the HE site.
  • the STA generates an EHT PPDU.
  • the STA sends the EHT PPDU using the uplink bandwidth indicated by the trigger frame.
  • the STA may send the generated EHT PPDU by using the uplink bandwidth indicated by the trigger frame.
  • the AP receives the EHT PPDU, it can reply to the STA with an acknowledgement frame. For example, if the uplink bandwidth used for sending the EHT PPDU indicated by the trigger frame is 80MHz, the STA uses the 80MHz bandwidth to send the EHT PPDU. For another example, if the uplink bandwidth used for sending the EHT PPDU indicated by the trigger frame is 320MHz, the STA uses the 320MHz bandwidth to send the EHT PPDU.
  • the STA here is a STA that supports the 802.11be protocol.
  • a station that supports the 802.11ax protocol can also receive the above trigger frame. After receiving the above trigger frame, it can generate a HE TB PPDU, and then use the uplink bandwidth field indicated by the HE uplink bandwidth field of the public information field in the above trigger frame. bandwidth to send this HE TB PPDU. After the AP receives the HE TB PPDU, it can reply to the station with an acknowledgment frame. For example, if the uplink bandwidth indicated by the HE uplink bandwidth field is 20MHz, the HE STA uses the 20MHz bandwidth to send the HE TB PPDU. For another example, if the uplink bandwidth indicated by the HE uplink bandwidth field is 160MHz, the HE STA uses the 160MHz bandwidth to send the HE TB PPDU.
  • the method in this embodiment of the present application may only be used to schedule a station that supports the 802.11be protocol to send an uplink EHT PPDU, and may also be used to schedule a station that supports the 802.11be protocol to send an uplink EHT PPDU and a station that supports the 802.11ax protocol at the same time.
  • Embodiment 3 of the present application mainly introduces a method for indicating the number of EHT-LTF symbols. It is understandable that, in practical applications, Embodiment 3 of the present application may be implemented in combination with the foregoing Embodiment 1, or in combination with the foregoing Embodiment 2, or in combination with the foregoing Embodiment 1 and the foregoing Embodiment 2; 3 may also be implemented independently, which is not limited in this embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a method for indicating an uplink parameter of a PPDU provided by an embodiment of the present application.
  • the method for indicating the uplink parameters of the PPDU is described by taking an example of implementation in a communication system composed of an AP and one or more STAs.
  • the AP supports the IEEE 802.11be protocol (or Wi-Fi 7, EHT protocol), and can also support other WLAN communication protocols, such as IEEE 802.11ax, IEEE 802.11ac and other protocols.
  • At least one of the one or more STAs supports the IEEE 802.11be protocol.
  • the AP and the STA in this embodiment of the present application may also support the next-generation protocol of IEEE802.11be. That is to say, the method for indicating the uplink parameters of the PPDU provided in the embodiment of the present application is not only applicable to the IEEE 802.11be protocol, but also applicable to the next-generation protocol of the IEEE 802.11be.
  • the uplink parameter indication method of the PPDU includes but is not limited to the following steps:
  • the AP generates a trigger frame, where the trigger frame includes indication information, where the indication information is used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols.
  • the AP sends the trigger frame. Accordingly, the STA receives the trigger frame.
  • the frame format of the above trigger frame can be referred to as shown in FIG. 3a, and includes a public information field and a user information list field.
  • the trigger frame includes indication information, and the indication information may be used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols.
  • the indication information can be used to indicate that the number of EHT-LTF symbols is greater than the number of HE-LTF symbols how many more symbols.
  • the 802.11ax standard supports 1 to 8 HE-LTF symbols
  • the 802.11be standard supports 1 to 16 EHT-LTF symbols. Therefore, when there are both HE TB PPDU and EHT PPDU in uplink transmission, in order to prevent non-orthogonality caused by misalignment between symbols, thereby causing adjacent band interference, it is necessary to align HE TB PPDU and EHT PPDU on symbols.
  • the sum of the number of EHT-LTF symbols and the number of EHT data symbols is equal to the sum of the number of HE-LTF symbols and the number of HE data symbols.
  • the size of the EHT-LTF in the embodiment of the present application is the same as the size of the HE Data, that is, a length of 12.8 microseconds is used at the same time except for the guard interval part, that is, the size of the HE Data is fixed, which is 12.8 microseconds.
  • the guard interval part that is, the size of the HE Data is fixed, which is 12.8 microseconds.
  • FIG. 10 is a schematic diagram showing that the size of the EHT-LTF provided by the embodiment of the present application is the same as the size of the HE Data.
  • the time length of EHT-LTF is equal to the time length of HE Data
  • the sum of the time length of EHT-LTF and the time length of the EHT data part is equal to the sum of the time length of HE-LTF and the time length of the HE data part and.
  • the above indication information may be carried in the reserved bits of the public information field of the above trigger frame, or carried in the EHT public information field of the trigger frame.
  • FIG. 11a is a schematic diagram of a frame format indicated by the number of EHT-LTF symbols provided by an embodiment of the present application.
  • the indication information is carried in the reserved bits of the common information field of the trigger frame, and there is an indication of the number of extra EHT-LTF symbols in the reserved bits, indicating the number of 1 to 8 extra EHT-LTF symbols .
  • 3 reserved bits (that is, 3 reserved bits) of the common information field can be used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols, or to indicate 1 to 8 additional Number of EHT-LTF symbols.
  • the value of the three reserved bits when the value of the three reserved bits is 000, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 1.
  • the value of the three reserved bits When the value of the three reserved bits is 001, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 2.
  • the value of the three reserved bits When the value of the three reserved bits is 010, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 3.
  • the value of the three reserved bits is 011, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 4.
  • the value of the three reserved bits When the value of the three reserved bits is 100, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 5. When the value of the three reserved bits is 101, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 6. When the value of the three reserved bits is 110, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 7. When the value of the three reserved bits is 111, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 8. It is understandable that this embodiment of the present application does not limit the corresponding relationship between the values and meanings of the three reserved bits of the public information field, and other mapping relationships may also exist.
  • FIG. 11b is a schematic diagram of another frame format indicated by the number of EHT-LTF symbols provided by the embodiment of the present application.
  • the indication information is carried in the EHT common information field of the trigger frame.
  • the indication information is specifically located in the EHT public information field and how many bits are occupied are not limited in this embodiment of the present application.
  • the EHT common information field includes a field, which can be 3 bits in length, used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols, or used to indicate 1 to 8 additional EHTs - Number of LTF symbols.
  • This field may be called an EHT-LTF symbol number field, or an EHT-LTF extra symbol number indication field, or other names, and the embodiments of this application do not limit the name of this field.
  • taking the EHT-LTF symbol number field as an example, when the EHT-LTF symbol number field takes a value of 000, it means that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 1.
  • EHT-LTF symbol number field When the value of the EHT-LTF symbol number field is 001, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 2. When the value of the EHT-LTF symbol number field is 010, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 3. When the value of the EHT-LTF symbol number field is 011, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 4. When the value of the EHT-LTF symbol number field is 100, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 5.
  • the value of the EHT-LTF symbol number field is 101, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 6.
  • the value of the EHT-LTF symbol number field is 110, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 7.
  • the value of the EHT-LTF symbol number field is 111, it indicates that the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols is 8. It is understandable that the embodiment of the present application does not limit the corresponding relationship between the value of the EHT-LTF symbol number field and the meaning, and there may be other mapping relationships.
  • the above indication information may not be carried in the trigger frame. If the number of EHT-LTF symbols is greater than the number of HE-LTF symbols, the above-mentioned indication information is carried in the trigger frame to indicate how many more symbols the number of EHT-LTF symbols is than the number of HE-LTF symbols.
  • the STA generates an EHT PPDU, and the number of EHT-LTF symbols in the EHT PPDU is equal to the number of HE-LTF symbols in the trigger frame and the number of HE-LTF symbols indicated by the midamble period field and the number indicated by the indication information.
  • the STA sends the EHT PPDU.
  • the indication information in the above trigger frame indicates the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols; the number of HE-LTFs and the midamble period field of the trigger frame indicates the number of HE-LTF symbols . Therefore, after receiving the trigger frame, the STA can set the number of EHT-LTF symbols in the EHT PPDU to the number indicated by the indication information according to the indication information in the trigger frame and the indication of the number of HE-LTFs and the midamble period field. The sum of the number of HE-LTFs and the number indicated by the midamble period field.
  • the number of EHT-LTF symbols in the EHT PPDU generated by the STA is equal to the sum of the number of HE-LTF symbols in the trigger frame and the number of HE-LTF symbols indicated by the midamble period field and the number indicated by the indication information.
  • the STA may send the generated EHT PPDU to the AP.
  • the AP receives the EHT PPDU, it can reply with an acknowledgment frame.
  • the STA here is a STA that supports the 802.11be protocol.
  • a station that supports the 802.11ax protocol can also receive the above trigger frame. After receiving the trigger frame, it can follow the number of HE-LTF symbols in the trigger frame and the number of HE-LTF symbols indicated by the midamble period field. Set the number of HE-LTF symbols in the HE TB PPDU to the number indicated by the number of HE-LTFs and the midamble period field. After the station generates the HE TB PPDU, the station may send the generated HE TB PPDU to the AP. After the AP receives the HE TB PPDU, it can reply with an acknowledgment frame.
  • the method in this embodiment of the present application may only be used to schedule a station that supports the 802.11be protocol to send an uplink EHT PPDU, and may also be used to schedule a station that supports the 802.11be protocol to send an uplink EHT PPDU and a station that supports the 802.11ax protocol at the same time.
  • the embodiment of the present application provides an indication of the number of EHT-LTF symbols that is applicable to the mixed transmission scenario of EHT PPDU and HE TB PPDU, which can further improve the uplink parameter indication method of PPDU.
  • the embodiments of the present application also limit the size of the EHT-LTF to be the same as the size of the HE Data, and use the same guard interval length to ensure that the HE TB PPDU and the EHT PPDU are aligned/orthogonal in symbols, preventing adjacent band interference.
  • the AP since 1 to 8 HE-LTF symbols are supported in the 802.11ax standard, 1 to 16 EHT-LTF symbols are supported in the 802.11be standard. Therefore, when there are both HE TB PPDU and EHT PPDU in uplink transmission, in order to prevent non-orthogonality caused by misalignment between symbols, thereby causing adjacent band interference, it is necessary to align HE TB PPDU and EHT PPDU on symbols.
  • the AP generates and sends a trigger frame, and the HE-LTF number and midamble period fields of the trigger frame are used to indicate the number of HE-LTF symbols and the number of EHT-LTF symbols.
  • the number of HE-LTF symbols is the same as the number of EHT-LTF symbols, so the number of HE-LTF symbols and the midamble period field of the trigger frame may indirectly indicate/implicitly indicate the number of EHT-LTF symbols.
  • the STA supporting the 802.11be protocol After the STA supporting the 802.11be protocol receives the trigger frame, it generates and sends an EHT PPDU.
  • the number of EHT-LTF symbols in the EHT PPDU is equal to the number of HE-LTFs and the number indicated by the midamble period field of the trigger frame.
  • the HE TB PPDU and the EHT PPDU in this embodiment of the present application transmit the same number of LTF symbols (because the 802.11ax standard supports a maximum of 8 HE-LTF symbols, the number of LTF symbols here cannot exceed 8), and The same LTF size (where size refers to time length) and guard interval length can be used. Therefore, in the mixed transmission scenario of HE TB PPDU and EHT PPDU, the HE-LTF symbol number indication field and the guard interval+HE LTF size indication field in the 11ax trigger frame can be multiplexed.
  • a STA that supports the 802.11ax protocol can also receive the trigger frame, generate and send a HE TB PPDU, and the number of HE-LTF symbols in the HE TB PPDU is equal to the number of HE-LTFs and the midamble period of the trigger frame. The number indicated by the field.
  • the number of HE-LTF symbols is indirectly indicated/implicitly indicated by multiplexing the trigger frame of 11ax, and the number of HE-LTF symbols is limited to be the same as the number of EHT-LTF symbols, and can be multiplexed
  • the guard interval + HE LTF size indication field in the trigger frame of 11ax is simple to implement, has low signaling overhead, and can also prevent adjacent band interference.
  • the fourth embodiment of the present application mainly introduces the transmission method of EHT PPDU, and specifically relates to the uplink scheduling transmission method of EHT SU PPDU and EHT LPI SU PPDU, including the method for scheduling the uplink transmission of EHT SU PPDU and EHT LPI SU PPDU using trigger frame and using trigger response
  • the fourth embodiment of the present application may be implemented in combination with any one or any of the foregoing embodiments or all of the foregoing embodiments; the fourth embodiment of the present application may also be implemented independently, and this application is implemented The example does not limit this.
  • the 802.11be standard in addition to triggering the STA to send the EHT TB PPDU, it can also trigger the STA to send the EHT SU PPDU.
  • the EHT SU PPDU can also be called the EHT MU PPDU sent to a single user (multi-user EHT PPDU, multiple user EHT PPDUs).
  • the 802.11be standard also introduces a special EHT SU PPDU, which is suitable for 6GHz LPI scenarios, called EHT LPI SU PPDU.
  • FIG. 12 is a schematic flowchart of a PPDU transmission method provided by an embodiment of the present application.
  • the transmission method of the PPDU is described by taking an example implemented in a communication system composed of an AP and one or more STAs.
  • the AP supports the IEEE 802.11be protocol (or called Wi-Fi 7, EHT protocol), and the one or more STAs support the IEEE 802.11be protocol.
  • the AP and the STA in the embodiments of the present application may also support the next-generation protocol of IEEE 802.11be. That is to say, the PPDU transmission method provided in the embodiment of the present application is not only applicable to the IEEE 802.11be protocol, but also applicable to the next-generation protocol of IEEE 802.11be.
  • the transmission method of the PPDU includes but is not limited to the following steps:
  • the AP generates a trigger frame, where the trigger frame is used to indicate the type of the EHT PPDU scheduled in the uplink, and the type of the EHT PPDU includes the trigger-based EHT PPDU and the single-user EHT PPDU.
  • the AP sends the trigger frame. Accordingly, the STA receives the trigger frame.
  • EHT PPDUs may include trigger-based EHT PPDUs (which can be abbreviated as EHT TB PPDUs), single-user EHT PPDUs (which can be abbreviated as EHT SU PPDUs), and single-user indoor low-power EHT PPDUs (which can be abbreviated as EHT SUs). LPI PPDU).
  • EHT TB PPDUs trigger-based EHT PPDUs
  • EHT SU PPDUs single-user EHT PPDUs
  • EHT SU PPDUs single-user indoor low-power EHT PPDUs
  • the trigger frame may carry indication information for indicating the type of the EHT PPDU scheduled for uplink.
  • the trigger frame type field of the trigger frame a new trigger frame type is introduced to indicate that the type of the EHT PPDU scheduled in the uplink is EHT SU PPDU.
  • a 1-bit reserved bit in the common information field in the trigger frame is used to indicate whether the type of the EHT PPDU scheduled in the uplink is an EHT SU PPDU or an EHT TB PPDU.
  • the type of the EHT PPDU indicating the uplink scheduling is EHT SU PPDU; when the value of the 1-bit reserved bit is 0, the type of the EHT PPDU indicating the uplink scheduling is EHT TB PPDU.
  • the type of the EHT PPDU indicating the uplink scheduling is EHT SU PPDU; when the value of the 1-bit reserved bit is 1, the type of the EHT PPDU indicating the uplink scheduling is EHT TB PPDU.
  • FIG. 13 is a schematic diagram of a frame format of a trigger frame indicating scheduling EHT SU PPDU provided by an embodiment of the present application.
  • opt1 indicates a new trigger frame type: SU trigger frame
  • opt2 indicates a SU trigger frame through a reserved bit of 1 bit.
  • the above trigger frame indicates that the type of the uplink scheduled EHT PPDU is EHT SU PPDU
  • the uplink scheduled EHT SU PPDU is a normal EHT SU PPDU or an EHT LPI SU PPDU.
  • the Modulation and Coding Scheme (MCS) field of the EHT user information field in the trigger frame is used to indicate whether the uplink scheduled EHT PPDU is an EHT LPI SU PPDU.
  • MCS Modulation and Coding Scheme
  • the MCS field is MCS15 (may also be other MCS values)
  • it indicates that the EHT PPDU scheduled in the uplink is an EHT LPI SU PPDU.
  • an extra 1 bit is used to indicate whether the uplink scheduled EHT PPDU is an EHT LPI SU PPDU
  • a 1-bit reserved bit in the user information field (or EHT user information field) of the 11be in the trigger frame is used to indicate. For example, when the value of the reserved bit is 1, it indicates that the EHT PPDU scheduled in the uplink is an EHT LPI SU PPDU.
  • FIG. 14 is a schematic diagram of a frame format of a trigger frame indicating scheduling EHT LPI SU PPDU provided by an embodiment of the present application.
  • opt1 indicates that EHT LPI SU PPDU is indicated by MCS15
  • opt2 indicates that EHT LPI SU PPDU is indicated by 1-bit reserved bit.
  • the above-mentioned implementation of indicating whether the EHT PPDU scheduled in the uplink is an EHT LPI SU PPDU through the MCS field of the trigger frame may also be applicable to a non-triggered scenario.
  • the EHT-SIG in the EHT PPDU can be used to indicate the type of this EHT PPDU.
  • the type of the EHT PPDU indicates the MCS indication field located in the EHT-SIG site-by-site field.
  • the MCS field is MCS15 (it can also be other MCS values)
  • this EHT PPDU is an EHT LPI SU PPDU
  • the MCS field is other values, it means that this EHT PPDU is an ordinary EHT SU PPDU.
  • the MCS field of the trigger frame is used to indicate whether the EHT PPDU scheduled in the uplink is an EHT LPI SU PPDU, then because the EHT LPI SU PPDU can be regarded as a special EHT SU PPDU, when triggering an ordinary EHT SU When PPDU, the AP does not need to indicate the MCS, and the STA can choose its own MCS independently. When triggering the EHT LPI SU PPDU, it is equivalent to the AP indicating the MCS to the STA.
  • the STA if the trigger frame indicates that the type of the uplink scheduled EHT PPDU is a single-user EHT PPDU, the STA generates a single-user EHT PPDU.
  • the STA sends the single-user EHT PPDU.
  • the "STA" mentioned in the embodiments of this application refers to a station that supports the IEEE 802.11be protocol.
  • the STA can generate and send the corresponding EHT PPDU according to the type of the EHT PPDU that is indicated by the trigger frame for uplink scheduling. If the trigger frame indicates that the type of the uplink scheduled EHT PPDU is EHT SU PPDU, the STA generates and sends the EHT SU PPDU. Optionally, if the trigger frame further indicates that the EHT PPDU scheduled in the uplink is an EHT LPI SU PPDU, the STA generates and sends an EHT LPI SU PPDU.
  • the bandwidth of the EHT LPI SU PPDU may be set to at least 80MHz.
  • the Data part of the EHT LPI SU PPDU is replicated and transmitted in the upper and lower half of the entire frequency domain, and dual-carrier modulation technology and binary phase shift keying (Binary Phase Shift Keying) are introduced in the upper and lower half. Shift Keying, BPSK) modulation to achieve the effect that a data bit is replicated 4 times, providing a power gain of 6 dB.
  • BPSK Binary Phase Shift Keying
  • the embodiment of the present application provides an uplink transmission method for scheduling EHT SU PPDU or EHT LPI SU PPDU.
  • the uplink transmission of EHT TB PPDU, or EHT SU PPDU, or EHT LPI SU PPDU is mainly scheduled through trigger frames, which can be implemented in combination with the uplink parameter indication method of the aforementioned PPDU, and both uplink transmission can be completed in one trigger frame.
  • the parameter indication can also complete the scheduling of different types of EHT PPDUs, saving signaling overhead.
  • the trigger frame multiplexing 11ax is used as an example for introduction, but in practical applications, the technical solutions described in the foregoing Embodiments 1 to 4 may also be It is implemented by adopting a new MAC frame type or a new trigger frame type, and the indication manner in the frame may refer to the indication manner in the trigger frame of 11ax.
  • the aggregation ( Aggregated) control (A-control) variant to trigger EHT SU PPDU or EHT SU LPI PPDU.
  • the AP may generate an A-control field, where the A-control field is used to indicate that the EHT PPDU scheduled in the uplink is an EHT SU PPDU or an EHT SU LPI PPDU.
  • the AP sends the A-control field, and accordingly, the STA receives the A-control field.
  • the A-control field is used to indicate that the uplink scheduled EHT PPDU is an EHT SU PPDU
  • the STA generates and transmits the EHT SU PPDU.
  • the A-control field is used to indicate that the uplink scheduled EHT PPDU is an EHT SU LPI PPDU
  • the STA generates and transmits the EHT SU LPI PPDU. That is to say, the A-control field indicates which type of PPDU the uplink scheduled EHT PPDU is, and the STA generates and sends the same type of PPDU.
  • the sender may transmit some control information in the HT control field of the MAC frame header.
  • the A-control subfield in the high-efficiency variant of the HT control field uses one or more control identifiers plus control information
  • the structure can be used to carry 1 to N control information.
  • FIG. 15 is a schematic diagram of a frame format of an A-control subfield provided by an embodiment of the present application. As shown in FIG. 15, the A-control subfield includes 1 to N control subfields and a padding field. Wherein, each control subfield includes a control identifier and control information. The control identifier may be used to indicate the type of control information.
  • Figure 15 also shows the frame format of the Triggered Response Scheduling (TRS) variant.
  • This TRS variant is located in the control information of the control subfield.
  • the control information includes one or more of the following fields: number of uplink data symbols, resource unit allocation indication, AP transmit power, uplink target received signal strength indication, uplink HE-MCS (High Efficient Modulation and Coding Scheme, Efficient Modulation and Coding Strategy, also referred to as MCS) and reserved fields.
  • the resource unit allocation indication field may be used to indicate the resource unit of the HE TB PPDU.
  • a reservation index indication of the resource unit allocation indication field can be used to indicate that the EHT SU PPDU is scheduled.
  • another reserved index indication in the resource unit allocation indication field may also be used, indicating that the scheduled EHT LPI SU PPDU.
  • a reserved uplink HE-MCS field is used to indicate that the scheduled EHT LPI SU PPDU, for example, when the uplink HE-MCS field is 00, it indicates that the scheduled EHT LPI SU PPDU; when the uplink HE-MCS When the field value is other values (01, or 10, or 11, etc.), it indicates that the EHT SU PPDU is scheduled.
  • the Resource Element Allocation Indication field contains an index of a large number of reservations.
  • the uplink HE-MCS field is used to indicate whether the scheduled EHT LPI SU PPDU
  • the EHT LPI SU PPDU can be regarded as a special EHT SU PPDU
  • the STA can choose its own MCS independently.
  • the EHT LPI SU PPDU it is equivalent to the AP indicating the MCS to the STA.
  • the TRS is used to schedule the EHT SU PPDU or the EHT LPI SU PPDU, the meaning is clear and clear, and the uplink scheduling transmission of different types of EHT PPDUs in 802.11be is realized.
  • the AP and the STA may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 16 to FIG. 18 . Wherein, the communication device is an access point or a station, and further, the communication device may be a device in an AP; or, the communication device is a device in a STA.
  • FIG. 16 is a schematic structural diagram of a communication apparatus 1 provided by an embodiment of the present application.
  • the communication device 1 may be an AP or a chip in the AP, such as a Wi-Fi chip.
  • the communication device 1 includes: a processing unit 11 and a transceiver unit 12 .
  • the processing unit 11 is used to generate a trigger frame, the trigger frame includes an upstream length field, and the upstream length field is used to indicate the trigger-based efficient physical layer data protocol unit HE TB PPDU and extremely high throughput rate
  • the length indicated by the traditional signaling L-SIG field in the physical layer data protocol unit EHT PPDU, or the uplink length field is used to indicate the length indicated by the L-SIG field in the EHT PPDU; the transceiver unit 12 is used to send the length. trigger frame.
  • the length value indicated by the upstream length field is a positive integer, which is a multiple of 3 minus 2.
  • the transceiver unit 12 is further configured to receive an EHT PPDU from the STA, where the length indicated by the L-SIG field in the EHT PPDU is equal to the length indicated by the uplink length field plus 2.
  • the trigger frame generated by the processing unit 11 includes an uplink length field, which is used to indicate the length indicated by the L-SIG field in the EHT PPDU and the HE TB PPDU, or to indicate the length indicated by the L-SIG field in the EHT PPDU. length, the EHT site and the HE site can be scheduled for uplink data transmission at the same time, thereby saving instruction overhead.
  • the trigger frame of 11ax it may not affect the HE station receiving the trigger frame and the length setting method indicated by the L-SIG field in the HE TB PPDU.
  • the communication device 1 in this design can correspondingly execute the foregoing first embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the AP in the foregoing first embodiment. This will not be repeated here.
  • the processing unit 11 is used to generate a trigger frame, and the reserved bits of the public information field in the trigger frame and the HE upstream bandwidth field of the public information field together indicate the upstream bandwidth used for sending the EHT PPDU, or
  • the transceiver unit 12 is used for the AP to send the trigger frame.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the 1-bit or 2-bit reserved bits in the above public information field are used to indicate whether the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU. For example, when the value of the 1-bit reserved bit is 0, it indicates that the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU; when the value of the 1-bit reserved bit is 1 , indicating that the uplink bandwidth used for sending the EHT PPDU is 320MHz.
  • the 2-bit reserved bit when the 2-bit reserved bit is 00, it indicates that the upstream bandwidth used for sending the EHT PPDU is the same as the upstream bandwidth used for sending the HE TB PPDU; when the 2-bit reserved bit is 01 , indicates that the uplink bandwidth used for sending the EHT PPDU is 320MHz; the other values, namely 10 and 11, are reserved.
  • the 2-bit reserved bit value when the 2-bit reserved bit value is 00, it indicates that the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU; when the 2-bit reserved bit value is 01 When it is indicated that the uplink bandwidth used for sending the EHT PPDU is 160MHz; when the 2-bit reserved bit value is 10, it indicates that the uplink bandwidth used for sending the EHT PPDU is 320MHz; the remaining values of 11 are reserved.
  • the EHT common information field may include an EHT uplink bandwidth field, and the EHT uplink bandwidth field is used to indicate whether the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU.
  • the length of the EHT uplink bandwidth field may be 1 bit or 2 bits.
  • the communication device 1 on the basis of the indication of the HE upstream bandwidth field in the trigger frame of multiplexing 11ax, fewer bits are used to indicate the upstream bandwidth (ie the EHT upstream bandwidth) used for sending the EHT PPDU, which is different from the upstream bandwidth used for sending the EHT PPDU directly. Compared with 3 bits to indicate the uplink bandwidth used for sending EHT PPDUs, overhead can be saved.
  • the communication device 1 in this design can correspondingly execute the foregoing second embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the AP in the foregoing second embodiment. This will not be repeated here.
  • the processing unit 11 is used to generate a trigger frame, and the trigger frame includes indication information, and the indication information is used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols; the transceiver unit 12, for sending the trigger frame.
  • the sum of the number of EHT-LTF symbols and the number of EHT data symbols is equal to the sum of the number of HE-LTF symbols and the number of HE data symbols.
  • the above indication information is carried in the reserved bits of the public information field of the trigger frame or carried in the EHT public information field of the trigger frame.
  • the transceiver unit 12 is further configured to receive the EHT PPDU from the STA, and the number of EHT-LTF symbols in the EHT PPDU is equal to the number of HE-LTFs in the trigger frame and the HE-LTF indicated by the midamble period field. The sum of the number of symbols and the number indicated by the indication information.
  • the communication device 1 in this design can correspondingly execute the foregoing third embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the AP in the foregoing third embodiment. This will not be repeated here.
  • the processing unit 11 is used to generate a trigger frame, and the trigger frame is used to indicate the type of the EHT PPDU scheduled in the uplink, and the type of the EHT PPDU includes the trigger-based EHT PPDU and the single-user EHT PPDU;
  • the unit 12 is configured to send the trigger frame.
  • the type of the EHT PPDU is indicated by the trigger frame type field of the trigger frame, or by the reserved bits of the trigger frame.
  • the above trigger frame is also used to indicate whether the EHT PPDU scheduled in the uplink is an EHT SU LPI PPDU.
  • whether the EHT PPDU scheduled in the uplink is an EHT SU LPI PPDU is indicated by the modulation and coding strategy field of the trigger frame, or by the reserved bits of the EHT user information field in the trigger frame.
  • the communication device 1 in this design can correspondingly execute the foregoing fourth embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the AP in the foregoing fourth embodiment. This will not be repeated here.
  • FIG. 17 is a schematic structural diagram of a communication apparatus 2 provided by an embodiment of the present application.
  • the communication device 2 may be a STA or a chip in the STA, such as a Wi-Fi chip or the like.
  • the communication device 2 includes: a transceiver unit 21 and a processing unit 22 .
  • the transceiver unit 21 is used to receive a trigger frame, and the trigger frame includes an uplink length field, and the uplink length field is used to indicate the length indicated by the L-SIG field in the HE TB PPDU and the EHT PPDU, or , the uplink length field is used to indicate the length indicated by the L-SIG field in the EHT PPDU; the processing unit 22 is used to generate an EHT PPDU, and the length indicated by the L-SIG field in the EHT PPDU is equal to the length indicated by the uplink length field The length value of 2 is added; the transceiver unit 21 is also used to send the generated EHT PPDU.
  • the above-mentioned processing unit 22 may include a generating subunit 221 and a setting subunit 222 .
  • the generating subunit 221 is used to generate the EHT PPDU;
  • the setting subunit 222 is used to set the length indicated by the L-SIG field in the EHT PPDU to the length value indicated by the uplink length field in the trigger frame plus 2.
  • the processing unit 22 may include different subunits for implementing the functions of the above-mentioned generating subunit 221 and setting subunit 222 .
  • the functions of the above-mentioned generating subunit 221 and setting subunit 222 may also be implemented by one unit, which is not limited in this embodiment of the present application.
  • the length value indicated by the upstream length field is a positive integer, which is a multiple of 3 minus 2.
  • the communication device 2 in this design can correspondingly execute the foregoing first embodiment, and the above operations or functions of each unit in the communication device 2 are to implement the corresponding operations of the STA in the foregoing first embodiment. This will not be repeated here.
  • the transceiver unit 21 is used to receive a trigger frame, and the reserved bits of the public information field in the trigger frame and the HE uplink bandwidth field of the public information field together indicate the uplink bandwidth used for sending the EHT PPDU, or The EHT public information field in the trigger frame and the HE uplink bandwidth field of the public information field in the trigger frame together indicate the uplink bandwidth used for sending the EHT PPDU; the processing unit 22 is used to generate the EHT PPDU; the transceiver unit 22 also uses The EHT PPDU is sent using the uplink bandwidth indicated by the trigger frame.
  • the HE upstream bandwidth field of the common information field in the trigger frame is used to indicate the upstream bandwidth used for sending the HE TB PPDU.
  • the 1-bit or 2-bit reserved bits in the above public information field are used to indicate whether the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU.
  • the EHT common information field may include an EHT uplink bandwidth field, and the EHT uplink bandwidth field is used to indicate whether the uplink bandwidth used for sending the EHT PPDU is the same as the uplink bandwidth used for sending the HE TB PPDU.
  • the length of the EHT uplink bandwidth field may be 1 bit or 2 bits.
  • the communication device 2 in this design can correspondingly execute the foregoing second embodiment, and the above operations or functions of each unit in the communication device 2 are to implement the corresponding operations of the STA in the foregoing second embodiment, respectively.
  • the above operations or functions of each unit in the communication device 2 are to implement the corresponding operations of the STA in the foregoing second embodiment, respectively.
  • the transceiver unit 21 is used to receive a trigger frame, and the trigger frame includes indication information, and the indication information is used to indicate the difference between the number of EHT-LTF symbols and the number of HE-LTF symbols; the processing unit 22, for generating an EHT PPDU, the number of EHT-LTF symbols in the EHT PPDU is equal to the number of HE-LTF symbols in the trigger frame and the number of HE-LTF symbols indicated by the midamble period field and the number indicated by the indication information. The sum of the values; the transceiver unit 21 is also used to send the EHT PPDU.
  • the above-mentioned processing unit 22 may include a generating subunit 221 and a setting subunit 222 .
  • the generating subunit 221 is used to generate the EHT PPDU;
  • the setting subunit 222 is used to set the number of EHT-LTF symbols in the EHT PPDU to the number of HE-LTFs in the trigger frame and the HE indicated by the midamble period field - The sum of the number of LTF symbols and the number indicated by the indication information.
  • the processing unit 22 may include different subunits for implementing the functions of the above-mentioned generating subunit 221 and setting subunit 222 .
  • the functions of the generating subunit 221 and the setting subunit 222 may also be implemented by one unit, which is not limited in this embodiment of the present application.
  • the sum of the number of EHT-LTF symbols and the number of EHT data symbols is equal to the sum of the number of HE-LTF symbols and the number of HE data symbols.
  • the above indication information is carried in the reserved bits of the public information field of the trigger frame or carried in the EHT public information field of the trigger frame.
  • the communication device 2 in this design can correspondingly execute the foregoing third embodiment, and the above operations or functions of each unit in the communication device 2 are respectively in order to realize the corresponding operations of the STA in the foregoing third embodiment. This will not be repeated here.
  • the transceiver unit 21 is used to receive a trigger frame, and the trigger frame is used to indicate the type of the EHT PPDU scheduled in the uplink, and the type of the EHT PPDU includes the trigger-based EHT PPDU and the single-user EHT PPDU; this process
  • the unit 22 is used for generating a single-user EHT PPDU when the trigger frame indicates that the type of the EHT PPDU scheduled for the uplink is EHT single-user PPDU; the transceiver unit 21 is also used for sending the single-user EHT PPDU.
  • the type of the EHT PPDU is indicated by the trigger frame type field of the trigger frame, or by the reserved bits of the trigger frame.
  • the above trigger frame is also used to indicate whether the EHT PPDU scheduled in the uplink is an EHT SU LPI PPDU.
  • whether the EHT PPDU scheduled in the uplink is an EHT SU LPI PPDU is indicated by the modulation and coding strategy field of the trigger frame, or by the reserved bits of the EHT user information field in the trigger frame.
  • the communication device 2 in this design can correspondingly execute the foregoing fourth embodiment, and the above operations or functions of each unit in the communication device 2 are respectively in order to realize the corresponding operations of the STA in the foregoing fourth embodiment. This will not be repeated here.
  • the AP and STA described in the embodiments of this application may be implemented by a general bus architecture.
  • FIG. 18 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • the communication device 1000 may be an AP MLD or STA, or a device therein.
  • the communication device 1000 includes a processor 1001 and a transceiver 1002 that is internally connected and communicated with the processor.
  • the processor 1001 is a general-purpose processor or a special-purpose processor or the like. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data, and the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute computer programs, process computer program data.
  • the transceiver 1002 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1002 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication apparatus 1000 may further include an antenna 1003 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1003 and/or the radio frequency unit may be located inside the communication apparatus 1000, or may be separated from the communication apparatus 1000, that is, the antenna 1003 and/or the radio frequency unit may be deployed remotely or in a distributed manner.
  • the communication apparatus 1000 may include one or more memories 1004 on which instructions may be stored, and the instructions may be a computer program, and the computer program may be executed on the communication apparatus 1000, so that the communication apparatus 1000 executes the above The method described in the method example.
  • the memory 1004 may also store data.
  • the communication device 1000 and the memory 1004 may be provided separately or integrated together.
  • the processor 1001, the transceiver 1002, and the memory 1004 may be connected through a communication bus.
  • the communication apparatus 1000 may be used to perform the functions of the AP in the foregoing first embodiment: the processor 1001 may be used to perform step S101 in FIG. 6 and/or other processes for the techniques described herein; the transceiver 1002 may be used to perform step S102 in FIG. 6 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the STA in the foregoing first embodiment: the processor 1001 may be used to perform step S103 in FIG. 6 and/or other processes used in the techniques described herein; The device 1002 may be used to perform step S104 in FIG. 6 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the AP in the foregoing second embodiment: the processor 1001 may be used to perform step S201 in FIG. 7 and/or other processes for the techniques described herein; the transceiver 1002 may be used to perform step S202 in FIG. 7 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the STA in the foregoing second embodiment: the processor 1001 may be used to perform step S203 in FIG. 7 and/or other processes used in the techniques described herein; The device 1002 may be used to perform step S204 in FIG. 7 and/or other processes for the techniques described herein.
  • the communication device 1000 may be used to perform the functions of the AP in the foregoing third embodiment: the processor 1001 may be used to perform step S301 in FIG. 9 and/or other processes for the techniques described herein; the transceiver 1002 may be used to perform step S302 in FIG. 9 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the STA in the foregoing third embodiment: the processor 1001 may be used to perform step S303 in FIG. 9 and/or other processes used in the techniques described herein; The device 1002 may be used to perform step S304 in FIG. 9 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the AP in the foregoing fourth embodiment: the processor 1001 may be used to perform step S401 in FIG. 12 and/or other processes for the techniques described herein; the transceiver 1002 may be used to perform step S402 in FIG. 12 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the STA in the foregoing fourth embodiment: the processor 1001 may be used to perform step S403 in FIG. 12 and/or other processes used in the techniques described herein; The device 1002 may be used to perform step S404 in FIG. 12 and/or other processes for the techniques described herein.
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for code/data reading and writing, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1001 may store instructions, and the instructions may be computer programs.
  • the computer program runs on the processor 1001 to enable the communication device 1000 to execute the methods described in the above method embodiments.
  • the computer program may be embodied in the processor 1000, in which case the processor 1001 may be implemented by hardware.
  • the communication apparatus 1000 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 18 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • the IC set can also include a storage component for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the AP and STA described in the embodiments of this application may be implemented by a general-purpose processor.
  • a general-purpose processor implementing an AP includes a processing circuit and an input and output interface that communicates with the internal connection of the processing circuit.
  • the general-purpose processor may be used to perform the functions of the AP in the foregoing first embodiment.
  • the processing circuit is used to perform step S101 in FIG. 6 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S102 in FIG. 6 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to perform the functions of the AP in the foregoing second embodiment.
  • the processing circuit is used to perform step S201 in FIG. 7 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S202 in FIG. 7 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to perform the functions of the AP in the foregoing third embodiment.
  • the processing circuit is used to perform step S301 in FIG. 9 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S302 in FIG. 9 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to perform the functions of the AP in the foregoing fourth embodiment.
  • the processing circuit is used to perform step S401 in FIG. 12 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S402 in FIG. 12 and/or used in the techniques described herein. other processes of the technology.
  • a general-purpose processor implementing the STA includes a processing circuit and an input and output interface that communicates with the internal connection of the processing circuit.
  • the general-purpose processor may be used to perform the functions of the STA in the foregoing first embodiment.
  • the processing circuit is used to perform step S103 in FIG. 6 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S104 in FIG. 6 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to perform the functions of the STA in the foregoing second embodiment.
  • the processing circuit is used to perform step S203 in FIG. 7 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S204 in FIG. 7 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to perform the functions of the STA in the foregoing third embodiment.
  • the processing circuit is used to perform step S303 in FIG. 9 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S304 in FIG. 9 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to perform the functions of the STA in the foregoing fourth embodiment.
  • the processing circuit is used to perform step S403 in FIG. 12 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S404 in FIG. 12 and/or used in the techniques described herein. other processes of the technology.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the processor executes the computer program code, the electronic device executes the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method in any of the foregoing embodiments.
  • An embodiment of the present application further provides a communication device, which can exist in the form of a chip, and the structure of the device includes a processor and an interface circuit, and the processor is used to communicate with other devices through a receiving circuit, so that the device performs the above-mentioned The method of any of the embodiments.
  • An embodiment of the present application further provides a wireless communication system, including an AP and a STA, where the AP and the STA can execute the method in any of the foregoing embodiments.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), electrically erasable programmable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • the functions described in this application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions When implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信领域,比如应用于支持802.11be标准的无线局域网中,尤其涉及一种PPDU的上行参数指示方法及相关装置。该方法包括:AP生成并发送触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;上行长度字段所指示的长度值为正整数,且为3的倍数减2。实施本申请实施例,可以复用802.11ax的触发帧、来调度站点发送指定上行参数的EHT PPDU,无需重新设计新的触发帧,从而减少复杂度、节省信令开销。

Description

PPDU的上行参数指示方法及相关装置
本申请要求于2020年8月21日提交中国国家知识产权局、申请号为202010852462.1、申请名称为“PPDU的上行参数指示方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种物理层协议数据单元PPDU的上行参数指示方法及相关装置。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长,用户对通信服务质量的需求也越来越高,电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11ax标准已经难以在大吞吐量、低抖动和低延迟等方面满足用户需求。因此,迫切需要发展下一代无线局域网(wireless local area networks,WLAN)技术,即IEEE 802.11be标准或极高吞吐率(extremely high throughput,EHT)标准或Wi-Fi7标准。与IEEE 802.11ax不同,IEEE 802.11be将采用超大带宽,例如320MHz,以实现超高传输速率和支持超密集用户的场景。
通常,站点(station,STA)需要通过信道竞争获得传输机会(transmission opportunity,TXOP)后再进行上行数据传输,比如基于增强分布式信道接入(enhanced distributed channel access,EDCA)方式进行信道竞争获得传输机会。IEEE 802.11ax引入了基于触发帧的上行调度传输方法,通过接入点(access point,AP)发送的触发帧(trigger frame)来调度一个或多个站点进行上行数据传输,比如,调度站点发送高效率(high efficient,HE)物理层协议数据单元(physical layer protocol data unit,PPDU)。IEEE 802.11be标准会沿用IEEE 802.11ax基于触发帧的上行调度传输方法,但在此方法中,目前尚未提出如何指示EHT PPDU的上行参数。
发明内容
本申请实施例提供一种PPDU的上行参数指示方法及相关装置,可以复用802.11ax的触发帧、来调度站点发送指定上行参数的EHT PPDU,并且不影响支持802.11ax协议的站点接收该触发帧,无需重新设计新的触发帧来调度支持802.11be协议的站点发送EHT PPDU,从而可以减少复杂度、节省信令开销。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请提供一种PPDU的上行参数指示方法,该方法包括:AP生成并发送触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示基于触发的高效物理层数据协议单元(High Efficient Trigger Based Physical layer Protocol Data Unit,HE TB PPDU)和极高吞吐率物理层数据协议单元EHT PPDU中传统信令(Legacy Signal,L-SIG)字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度。
可选的,上行长度字段所指示的长度值为正整数,且为3的倍数减2。
可选的,AP发送该触发帧后,可以接收来自STA的EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2。AP接收到该EHT PPDU之后, 可以回复确认帧。
可理解的,L-SIG字段中包括长度子字段和速率子字段。L-SIG字段中的长度子字段和速率子字段可以间接指示PPDU的原定传输时长。其中,上述L-SIG字段所指示的长度的一种实现方式是L-SIG字段的长度子字段所指示的长度。
本方案一方面,通过触发帧的上行长度字段指示EHT PPDU和HE TB PPDU中L-SIG字段所指示的长度,或者指示EHT PPDU中L-SIG字段所指示的长度,可以同时调度EHT站点和HE站点进行上行数据传输,从而可以节省指令开销。另一方面,本方案的触发帧复用11ax的触发帧,可以不影响HE站点接收该触发帧和HE TB PPDU中L-SIG字段所指示的长度设置方法。又一方面,本方案将触发帧的上行长度字段所指示的值设置为3的倍数减2,并通过将EHT TB PPDU中L-SIG字段所指示的长度设置为上行长度字段所指示的值加2,保证了EHT TB PPDU中L-SIG字段所指示的长度是3的倍数,可以用于自动检测,同HE PPDU进行区分。
第二方面,本申请提供一种PPDU的上行参数指示方法,该方法包括:STA接收触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;STA生成并发送EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2。
可选的,上行长度字段所指示的长度值为正整数,且为3的倍数减2。
可理解的,L-SIG字段中包括长度子字段和速率子字段。L-SIG字段中的长度子字段和速率子字段可以间接指示PPDU的原定传输时长。其中,上述L-SIG字段所指示的长度的一种实现方式是L-SIG字段的长度子字段所指示的长度。
第三方面,本申请提供一种通信装置,该通信装置可以为AP或AP中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于生成触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;收发单元,用于发送该触发帧。
可选的,上行长度字段所指示的长度值为正整数,且为3的倍数减2。
可选的,该收发单元12,还用于接收来自STA的EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2。
可理解的,L-SIG字段中包括长度子字段和速率子字段。L-SIG字段中的长度子字段和速率子字段可以间接指示PPDU的原定传输时长。其中,上述L-SIG字段所指示的长度的一种实现方式是L-SIG字段的长度子字段所指示的长度。
第四方面,本申请提供一种通信装置,该通信装置可以为STA或STA中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于接收触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;处理单元,用于生成EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2;该收发单元,还用于发送生成的该EHT PPDU。
可选的,上行长度字段所指示的长度值为正整数,且为3的倍数减2。
可理解的,L-SIG字段中包括长度子字段和速率子字段。L-SIG字段中的长度子字段和速率子字段可以间接指示PPDU的原定传输时长。其中,上述L-SIG字段所指示的长度的一种实现方式是L-SIG字段的长度子字段所指示的长度。
上述任一方面的一种实现方式中,上述触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
本方案,在一个触发帧中既指示EHT PPDU的上行长度,又指示EHT PPDU的上行带宽,可以节省信令开销。
上述任一方面的一种实现方式中,上述触发帧还包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差。
可选的,上述EHT PPDU的EHT-LTF符号个数与EHT数据符号个数之和等于上述HE TB PPDU的HE-LTF符号个数与HE数据符号个数之和。
可选的,该指示信息携带于该触发帧的公共信息字段的预留比特中或者携带于该触发帧的EHT公共信息字段中。
本方案,在一个触发帧中不仅指示EHT PPDU的上行长度,也指示EHT PPDU的上行带宽,还指示EHT-LTF符号个数,可以进一步节省信令开销。
上述任一方面的一种实现方式中,上述触发帧还用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU。
可选的,EHT PPDU的类型由该触发帧的触发帧类型字段指示,或者由该触发帧的预留比特指示。
可选的,上述触发帧指示上行调度的EHT PPDU的类型为单用户EHT PPDU,该触发帧还用于指示上行调度的EHT PPDU是否为EHT单用户(single user,SU)室内低功耗(low power indoor,LPI)SU LPI PPDU。
可选的,上行调度的EHT PPDU是否为EHT SU LPI PPDU由该触发帧的调制与编码策略字段指示,或者由该触发帧中EHT用户信息字段的预留比特指示。
本方案,还通过触发帧来调度单用户EHT PPDU的上行传输,可以实现不同类型的EHT PPDU的调度,节省信令开销。
第五方面,本申请提供另一种PPDU的上行参数指示方法,该方法包括:AP生成并发送触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
本方案,通过复用11ax的触发帧中HE上行带宽字段指示的基础上,采用更少的比特来指示发送EHT PPDU所使用的上行带宽,与直接用3比特来指示发送EHT PPDU所使用的上行带宽相比,可以节约开销。
第六方面,本申请提供另一种PPDU的上行参数指示方法,该方法包括:STA接收触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;STA生成EHT PPDU,并采用该触发帧指示的上行带宽发送该EHT PPDU。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
第七方面,本申请提供一种通信装置,该通信装置可以为AP或AP中的芯片,比如Wi-Fi 芯片。该通信装置包括:处理单元,用于生成触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;收发单元,用于发送该触发帧。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
第八方面,本申请提供一种通信装置,该通信装置可以为STA或STA中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于接收触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;处理单元,用于生成EHT PPDU;该收发单元,还用于采用该触发帧指示的上行带宽发送该EHT PPDU。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
上述任一方面的一种实现方式中,上述公共信息字段的1比特或2比特预留比特用于指示发送EHT PPDU所使用的上行带宽是否与发送HE TB PPDU所使用的上行带宽相同。例如,当该1比特的预留比特取值为0时,指示发送EHT PPDU所使用的上行带宽与发送HE TB PPDU所使用的上行带宽相同;当该1比特的预留比特取值为1时,指示发送EHT PPDU所使用的上行带宽为320MHz。又如,当该2比特的预留比特取值为00时,指示发送EHT PPDU所使用的上行带宽与发送HE TB PPDU所使用的上行带宽相同;当该2比特的预留比特取值为01时,指示发送EHT PPDU所使用的上行带宽为320MHz;其余取值即10和11均为预留。再如,当该2比特的预留比特取值为00时,指示发送EHT PPDU所使用的上行带宽与发送HE TB PPDU所使用的上行带宽相同;当该2比特的预留比特取值为01时,指示发送EHT PPDU所使用的上行带宽为160MHz;当该2比特的预留比特取值为10时,指示发送EHT PPDU所使用的上行带宽为320MHz;其余取值11为预留。
上述任一方面的一种实现方式中,上述EHT公共信息字段可以包括EHT上行带宽字段,该EHT上行带宽字段用于指示发送EHT PPDU所使用的上行带宽是否与发送HE TB PPDU所使用的上行带宽相同。其中,该EHT上行带宽字段的长度可以是1比特或2比特。
第九方面,本申请提供又一种PPDU的上行参数指示方法,该方法包括:AP生成并发送触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差。
可选的,AP发送触发帧之后,还可以接收来自STA的EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和。
本方案提供一种适用于EHT PPDU和HE TB PPDU混合传输场景下,EHT-LTF符号个数的指示,可以进一步完善PPDU的上行参数指示方法。
第十方面,本申请提供又一种PPDU的上行参数指示方法,该方法包括:STA接收触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;STA生成并发送EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和。
第十一方面,本申请提供一种通信装置,该通信装置可以为AP或AP中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于生成触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;收发单元,用于发送该触发帧。
可选的,该收发单元,还用于接收来自STA的EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和。
第十二方面,本申请提供一种通信装置,该通信装置可以为STA或STA中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于接收触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;处理单元,用于生成EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和;该收发单元,还用于发送该EHT PPDU。
上述任一方面的一种实现方式中,EHT-LTF符号个数与EHT数据符号个数之和等于HE-LTF符号个数与HE数据符号个数之和。
上述任一方面的一种实现方式中,上述指示信息携带于该触发帧的公共信息字段的预留比特中或者携带于该触发帧的EHT公共信息字段中。
第十三方面,本申请提供一种PPDU的传输方法,该方法包括:AP生成并发送触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU。
本方案提供了一种调度EHT SU PPDU或EHT LPI SU PPDU的上行传输方法。本方案主要通过触发帧来调度EHT TB PPDU、或EHT SU PPDU、或EHT LPI SU PPDU的上行传输,可以实现不同类型的EHT PPDU的调度。
第十四方面,本申请提供一种PPDU的传输方法,该方法包括:STA接收触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;若该触发帧指示上行调度的EHT PPDU的类型为EHT单用户PPDU,则STA生成并发送单用户EHT PPDU。
第十五方面,本申请提供一种通信装置,该通信装置可以为AP或AP中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于生成触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;收发单元,用于发送该触发帧。
第十六方面,本申请提供一种通信装置,该通信装置可以为STA或STA中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于接收触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;处理单元,用于当该触发帧指示上行调度的EHT PPDU的类型为EHT单用户PPDU时,生成单用户EHT PPDU;该收发单元,还用于发送该单用户EHT PPDU。
上述任一方面的一种实现方式中,EHT PPDU的类型由该触发帧的触发帧类型字段指示,或者由该触发帧的预留比特指示。
上述任一方面的一种实现方式中,上述触发帧还用于指示上行调度的EHT PPDU是否为EHT SU LPI PPDU。
上述任一方面的一种实现方式中,上行调度的EHT PPDU是否为EHT SU LPI PPDU由该触发帧的调制与编码策略字段指示,或者由该触发帧中EHT用户信息字段的预留比特指示。
第十七方面,本申请提供一种通信装置,具体为第一方面中的AP,包括处理器和收发器。该处理器用于生成触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU 中L-SIG字段所指示的长度;该收发器用于发送该触发帧。可选的,该AP还可以包括存储器,该存储器用于与处理器耦合,其保存AP必要的程序指令和数据。
第十八方面,本申请提供一种通信装置,具体为第二方面中的STA,包括处理器和收发器。该收发器用于接收触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;该处理器用于生成EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2;该收发器,还用于发送生成的该EHT PPDU。可选的,该STA还可以包括存储器,该存储器用于与处理器耦合,其保存STA必要的程序指令和数据。
第十九方面,本申请提供一种通信装置,具体为第五方面中的AP,包括处理器和收发器。该处理器用于生成触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;该收发器用于发送该触发帧。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。可选的,该AP还可以包括存储器,该存储器用于与处理器耦合,其保存AP必要的程序指令和数据。
第二十方面,本申请提供一种通信装置,具体为第六方面中的STA,包括处理器和收发器。该收发器用于接收触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;该处理器用于生成EHT PPDU;该收发器还用于采用该触发帧指示的上行带宽发送该EHT PPDU。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。可选的,该STA还可以包括存储器,该存储器用于与处理器耦合,其保存STA必要的程序指令和数据。
第二十一方面,本申请提供一种通信装置,具体为第九方面中的AP,包括处理器和收发器。该处理器用于生成触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;该收发器用于发送该触发帧。可选的,该AP还可以包括存储器,该存储器用于与处理器耦合,其保存AP必要的程序指令和数据。
第二十二方面,本申请提供一种通信装置,具体为第十方面中的STA,包括处理器和收发器。该收发器用于接收触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;该处理器用于生成EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和;该收发器还用于发送该EHT PPDU。可选的,该STA还可以包括存储器,该存储器用于与处理器耦合,其保存STA必要的程序指令和数据。
第二十三方面,本申请提供一种通信装置,具体为第十三方面中的AP,包括处理器和收发器。该处理器用于生成触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;该收发器用于发送该触发帧。可选的,该AP还可以包括存储器,该存储器用于与处理器耦合,其保存AP必要的程序指令和数据。
第二十四方面,本申请提供一种通信装置,具体为第十四方面中的STA,包括处理器和收发器。该收发器用于接收触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT  PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;该处理器用于当该触发帧指示上行调度的EHT PPDU的类型为EHT单用户PPDU时,生成单用户EHT PPDU;该收发器还用于发送该单用户EHT PPDU。可选的,该STA还可以包括存储器,该存储器用于与处理器耦合,其保存STA必要的程序指令和数据。
第二十五方面,本申请提供一种芯片或芯片系统,包括输入输出接口和处理电路。该处理电路用于生成触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;该输入输出接口用于发送该触发帧。
在一种可能的设计中,该输入输出接口用于接收触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;该处理电路用于生成EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2;该输入输出接口,还用于发送生成的该EHT PPDU。
第二十六方面,本申请提供一种芯片或芯片系统,包括输入输出接口和处理电路。该处理电路用于生成触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;该输入输出接口用于发送该触发帧。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
在一种可能的设计中,该输入输出接口用于接收触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;该处理电路用于生成EHT PPDU;该输入输出接口还用于采用该触发帧指示的上行带宽发送该EHT PPDU。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
第二十七方面,本申请提供一种芯片或芯片系统,包括输入输出接口和处理电路。该处理电路用于生成触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;该输入输出接口用于发送该触发帧。
在一种可能的设计中,该输入输出接口用于接收触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;该处理电路用于生成EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和;该输入输出接口还用于发送该EHT PPDU。
第二十八方面,本申请提供一种芯片或芯片系统,包括输入输出接口和处理电路。该处理电路用于生成触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;该输入输出接口用于发送该触发帧。
在一种可能的设计中,该输入输出接口用于接收触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;该处理电路用于当该触发帧指示上行调度的EHT PPDU的类型为EHT单用户PPDU时,生成单用户EHT PPDU;该输入输出接口还用于发送该单用户EHT PPDU。
第二十九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有 指令,当该指令在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面、或上述第五方面、或上述第六方面、或上述第九方面、或上述第十方面所述的PPDU的上行参数指示方法。
第三十方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述第十三方面或上述第十四方面所述的PPDU的传输方法。
第三十一方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面、或上述第五方面、或上述第六方面、或上述第九方面、或上述第十方面所述的PPDU的上行参数指示方法。
第三十二方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第十三方面或上述第十四方面所述的PPDU的传输方法。
实施本申请实施例,可以复用802.11ax的触发帧、来调度站点发送指定上行参数的EHT PPDU,并且不影响支持802.11ax协议的站点接收该触发帧,无需重新设计新的触发帧来调度支持802.11be协议的站点发送EHT PPDU,从而可以减少复杂度、节省信令开销。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的无线通信系统的架构示意图;
图2a是本申请实施例提供的接入点的结构示意图;
图2b是本申请实施例提供的站点的结构示意图;
图3a是本申请实施例提供的触发帧的帧格式示意图;
图3b是本申请实施例提供的触发帧中公共信息字段和用户信息字段的一种帧格式示意图;
图4是基于触发帧的上行调度传输方法的时序示意图;
图5是本申请实施例提供的触发帧中公共信息字段和用户信息字段的另一种帧格式示意图;
图6是本申请实施例提供的PPDU的上行参数指示方法的一示意流程图;
图7是本申请实施例提供的PPDU的上行参数指示方法的另一示意流程图;
图8a是本申请实施例提供的EHT上行带宽指示的一种帧格式示意图;
图8b是本申请实施例提供的EHT上行带宽指示的另一种帧格式示意图;
图9是本申请实施例提供的PPDU的上行参数指示方法的又一示意流程图;
图10是本申请实施例提供的EHT-LTF的尺寸与HE Data的尺寸相同的示意图;
图11a是本申请实施例提供的EHT-LTF符号个数指示的一种帧格式示意图;
图11b是本申请实施例提供的EHT-LTF符号个数指示的另一种帧格式示意图;
图12是本申请实施例提供的PPDU的传输方法的示意流程图;
图13是本申请实施例提供的触发帧指示调度EHT SU PPDU的帧格式示意图;
图14是本申请实施例提供的触发帧指示调度EHT LPI SU PPDU的帧格式示意图;
图15是本申请实施例提供的A-control子字段的帧格式示意图;
图16是本申请实施例提供的通信装置1的结构示意图;
图17是本申请实施例提供的通信装置2的结构示意图;
图18是本申请实施例提供的通信装置1000的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于理解本申请实施例的提供方法,下面将对本申请实施例提供的方法的系统架构和/或应用场景进行说明。可理解的,本申请实施例描述的系统架构和/或场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例提供一种PPDU的上行参数指示方法,可以复用802.11ax的触发帧、来调度站点发送指定上行参数的EHT PPDU,并且不影响支持802.11ax协议的站点接收该触发帧,无需重新设计新的触发帧来调度支持802.11be协议的站点发送EHT PPDU,从而可以减少复杂度、节省信令开销。该PPDU的上行参数指示方法可以应用于无线通信系统中,比如无线局域网系统中,该PPDU的上行参数指示方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现。该通信设备可以是接入点设备或站点设备;该通信设备还可以是一种支持多条链路并行传输的无线通信设备,例如,该通信设备可以称为多链路设备(multi-link device,MLD)或多频段设备。相比于仅支持单条链路传输的通信设备来说,多链路设备具有更高的传输效率和更大的吞吐率。
参见图1,图1是本申请实施例提供的无线通信系统的架构示意图。如图1所示,该无线通信系统可以包括一个或多个AP(如图1中的AP)和一个或多个STA(如图1中的STA1和STA2)。其中,AP和STA支持WLAN通信协议,该通信协议可以包括IEEE 802.11be(或称为Wi-Fi 7,EHT协议),还可以包括IEEE 802.11ax,IEEE 802.11ac等协议。当然,随着通信技术的不断演进和发展,该通信协议还可以包括IEEE 802.11be的下一代协议等。以WLAN为例,实现本申请方法的装置可以是WLAN中的AP或STA,或者是,安装在AP或STA中的芯片或处理系统。
接入点(AP)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中其他设备(比如站点或其他接入点)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN系统中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
站点(例如图1中的STA1或STA2)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或接入点通信的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可 以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置或,娱乐设备,游戏设备或系统,全球定位系统设备等,STA还可以为上述这些终端中的芯片和处理系统。
WLAN系统可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
可选的,图1仅是示意图,本申请实施例提供的PPDU的上行参数指示方法除了应用于AP与一个或多个STA通信的场景中,还可以应用于AP与AP的通信场景,也同样适用于STA与STA的通信场景。
可选的,参见图2a,图2a是本申请实施例提供的接入点的结构示意图。其中,AP可以是多天线的,也可以是单天线的。图2a中,AP包括物理层(physical layer,PHY)处理电路和介质接入控制(medium access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。802.11标准关注PHY和MAC部分。参见图2b,图2b是本申请实施例提供的站点的结构示意图。图2b示出了单个天线的STA结构示意图,实际场景中,STA也可以是多天线的,并且可以是两个以上天线的设备。图2b中,STA可以包括PHY处理电路和MAC处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
上述内容简要阐述了本申请实施例的系统架构,为更好地理解本申请实施例的技术方案,下面将介绍与本申请实施例相关的内容,具体涉及IEEE 802.11be标准中基于触发帧的上行调度传输方法。
一种实现方式中,在IEEE 802.11be标准中基于触发帧的上行调度传输方法具体包括:(1)AP发送触发帧,该触发帧用于调度一个或多个STA发送上行基于触发的EHT PPDU(通俗来说,PPDU也可以称为数据包,或者数据分组)。基于触发的EHT PPDU可以简写为EHT TB PPDU(Extremely High Throughput Trigger Based Physical layer Protocol Data Unit)。其中,参见图3a,图3a是本申请实施例提供的触发帧的帧格式示意图。如图3a所示,触发帧中包括公共信息(common information)字段和用户信息列表(user information list)字段。公共信息字段包含所有STA都需要读取的公共信息,用户信息列表字段包括一个或多个用户信息字段,一个用户信息字段包含一个STA需要读取的信息。参见图3b,图3b是本申请实施例提供的触发帧中公共信息字段和用户信息字段的一种帧格式示意图。如图3b所示,在用户信息字段中,关联标识12(association identification 12,AID12)表示某一个STA的关联标识,而资源单元(resource unit,RU)分配(RU allocation)子字段用来指示这个STA(AID12所指示的STA)所分配到的具体的资源单元位置。
(2)STA接收到该触发帧后,从该触发帧中解析出与自己的AID相匹配的用户信息字段,然后在该用户信息字段中的资源单元分配子字段所指示的RU上发送EHT PDDU。(3) AP接收到该EHT PDDU后,向STA回复确认帧,以确认AP已收到该EHT PPDU。参见图4,图4是基于触发帧的上行调度传输方法的时序示意图。如图4所示,AP发送触发帧,STA1和STA2接收到该触发帧后,间隔一段时间后分别发送EHT PPDU,AP收到EHT PPDU后,间隔一段时间回复多站点块确认(Multiple STA Block Acknowledge,M-BA)帧。
可选的,EHT PPDU中可能包括的各字段的含义可参考下述表1所示。
表1
Figure PCTCN2021113629-appb-000001
可理解的,对于支持802.11be协议的站点来说,其有可能收到11ax的trigger frame,也有可能收到11be的trigger frame。在本实现方式中,11ax的trigger frame和11be的trigger frame采用不同的触发帧类型,来通知11be的STA应该按照HE TB PPDU的格式,还是按照EHT TB PPDU的格式去响应该触发帧。
但是该实现方式,引入了新的触发帧类型,针对11ax的不同子类型的触发帧均需要设计11be相应的触发帧,设计比较复杂。另外,该实现方式不支持同时调度11ax的站点和11be的站点进行HE TB PPDU和EHT PPDU的混合传输场景。
另一种实现方式,采用11ax的触发帧同时调度11ax的STA发送HE PPDU、和11be的STA发送EHT PPDU,从而实现混合调度传输的效果。具体地,参见图5,图5是本申请实施例提供的触发帧中公共信息字段和用户信息字段的另一种帧格式示意图。如图5所示,该触发帧中的公共信息字段与11ax的触发帧中公共信息字段相同,包含11ax的STA都需要读取的公共信息。紧接着公共信息字段后的前5个用户信息字段为11ax的用户信息列表字段。如图5中STA1到STA5对应的用户信息字段构成11ax的用户信息列表字段。在STA6的用户信息字段中,关联标识AID12为4095,在11ax标准表示有用信息的截止,填充比特的开始。因此传统的11ax的STA就不会继续解析后边的信息。所以,利用此特点,在11be标准中,可以进一步指示11be的公共信息(如EHT公共信息字段)以及11be的用户信息(如11be 用户信息列表字段)。可选的,11be的STA和11ax的STA也可以使用同一个公共信息字段,即同时使用最开始的公共信息字段,即不再存在图5所示的EHT公共信息字段。
可理解的,虽然本实现方式采用11ax的触发帧同时调度11ax的STA发送HE PPDU、和11be的STA发送EHT PPDU,可以实现混合调度传输的效果,减少了设计复杂度;但是该实现方式并未指出如何指示EHT PPDU的上行参数,比如上行长度、上行带宽等如何指示。因此,在11be的基于触发帧的上行调度传输过程中,如何指示PPDU的上行参数成为了亟待解决的问题。
本申请实施例提供一种PPDU的上行参数指示方法,可以复用802.11ax的触发帧、来调度站点发送指定上行参数的EHT PPDU,并且不影响支持802.11ax协议的站点接收该触发帧,无需重新设计新的触发帧来调度支持802.11be协议的站点发送EHT PPDU,从而可以减少复杂度、节省信令开销。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请提供的技术方案通过实施例一至实施例四进行阐述。其中,实施例一阐述EHT PPDU的上行长度指示,以及HE TB PPDU和EHT PPDU中传统信令(Legacy Signal,L-SIG)字段的长度(length)子字段指示。实施例二阐述EHT PPDU的上行带宽指示。实施例三阐述EHT-LTF符号个数的指示。实施例四阐述一种触发STA发送单用户(single user,SU)室内低功耗(low power indoor,LPI)PPDU的传输方法。下面分别对实施例一至实施例四进行详细说明。可理解的,本申请实施例一至实施例四所描述的技术方案可以任一组合形成新的实施例。
可理解的,本申请中的AP和STA既可以是单链路设备,也可以是多链路设备中的一个功能实体或功能单元,比如本申请中的AP是AP多链路设备中的某个AP,STA是站点多链路设备中的某个STA,本申请对此不做限定。
实施例一
本申请实施例一主要介绍EHT PPDU的上行长度指示,以及HE TB PPDU和EHT PPDU中L-SIG字段的长度子字段指示。
参见图6,图6是本申请实施例提供的PPDU的上行参数指示方法的一示意流程图。该PPDU的上行参数指示方法是以一个AP与一个或多个STA组成的通信系统中实施为例进行阐述的。其中,该AP支持IEEE 802.11be协议(或称为Wi-Fi 7,EHT协议),还可以支持其他WLAN通信协议,如IEEE 802.11ax,IEEE 802.11ac等协议。该一个或多个STA中存在至少一个STA支持IEEE 802.11be协议。应理解,本申请实施例中的AP和STA还可以支持IEEE 802.11be的下一代协议。也就是说,本申请实施例提供的PPDU的上行参数指示方法不仅适用于IEEE 802.11be协议,还可以适用于IEEE 802.11be的下一代协议。
如图6所示,该PPDU的上行参数指示方法包括但不限于以下步骤:
S101,AP生成触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示基于高效触发的物理层数据协议单元HE TB PPDU和极高吞吐率物理层数据协议单元EHT PPDU中传统信令L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度。
S102,AP发送该触发帧。相应地,STA接收该触发帧。
其中,上述触发帧的帧格式可以参考图3a所示,包括公共信息字段和用户信息列表字段。该公共信息字段的帧格式可参考图3b或图5所示的公共信息字段部分,包括上行长度字段。 该上行长度字段可以用于同时指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度。或者,该上行长度字段可以用于仅指示EHT PPDU中L-SIG字段所指示的长度。换句话说,该触发帧可以用于同时调度11ax的站点发送HE TB PPDU和11be的站点发送EHT PPDU。或者,该触发帧仅用于调度11be的站点发送EHT PPDU。也就是说,该触发帧可以应用于HE TB PPDU和EHT PPDU混合调度传输的场景,也可以应用于仅调度EHT PPDU传输的场景。
本申请实施例中的EHT PPDU可以是基于触发的EHT PPDU(可简写为EHT TB PPDU)、或者单用户EHT PPDU(可简写为EHT SU PPDU)、或者单用户室内低功耗EHT PPDU(可简写成EHT SU LPI PPDU)。可理解的,EHT SU PPDU也可以称为发送给单用户的EHT MU PPDU(多用户EHT PPDU,multiple user EHT PPDU)。发送给单用户和发送给多用户的EHT PPDU,可以统一称为EHT MU PPDU,本申请实施例对该PPDU的名称不做限定。
可选的,上述触发帧中上行长度字段所指示的长度值是正整数,且是3的倍数减2。
具体地,AP生成触发帧后,可以采用广播的方式,发送该触发帧。相应地,一个或多个站点接收该触发帧。
S103,STA生成EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2。
S104,STA发送生成的该EHT PPDU。
具体地,上述触发帧中上行长度字段所指示的长度值是正整数,且是3的倍数减2。STA接收到该触发帧后,可以按照触发帧中上行长度字段所指示的长度值,将EHT PPDU中L-SIG字段所指示的长度设置为该上行长度字段所指示的长度值加2。因此,STA生成的EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2,换句话说,EHT PPDU中L-SIG字段所指示的长度是3的倍数。在STA生成EHT PPDU之后,STA可以向AP发送生成的该EHT PPDU。相应地,AP接收到的该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2。AP接收到该EHT PPDU之后,可以回复确认帧,用于确认AP已收到该EHT PPDU。这里的STA是支持802.11be协议的STA,或者是11be的STA,为便于描述,下文将支持802.11be协议的STA称为EHT站点。
可选的,支持802.11ax协议的站点(为便于描述,下文将支持802.11ax协议的站点称为HE站点)也可以接收到上述触发帧,在接收到上述触发帧后,HE站点可以按照触发帧中上行长度字段所指示的长度值,将HE TB PPDU中L-SIG字段所指示的长度设置为该上行长度字段所指示的长度值。因此,HE站点生成的HE TB PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值,即为3的倍数减2。在HE站点生成HE TB PPDU之后,HE站点可以向AP发送生成的该HE TB PPDU。AP接收到该HE TB PPDU之后,可以回复确认帧,用于确认AP已收到该HE TB PPDU。
可理解的,如果某个站点既支持802.11be协议,又支持802.11ax协议,则当该站点采用802.11be协议工作时,视为EHT站点;当该站点采用802.11ax协议工作时,视为HE站点。或者,如果某个站点既支持802.11be协议,又支持802.11ax协议,则将该站点视为EHT站点。可选的,在站点既支持802.11be协议、又支持802.11ax协议的情况下,该站点可以根据AP在触发帧中的指示,来确定自己发送哪种PPDU去响应该触发帧。其中,该指示可以是显示的,比如在该触发帧的用户信息字段中,携带PPDU指示信息,用于指示该站点响应该触发帧的PPDU格式。例如,当该PPDU指示信息取值为1时,指示该站点响应该触发帧的PPDU格式是EHT PPDU;当该PPDU指示信息取值为0时,指示该站点响应该触发帧的PPDU格 式是HE TB PPDU;或者相反,1指示HE TB PPDU,0指示EHT PPDU。该指示也可以是隐式的,比如,该站点接收到该触发帧后,如果该站点的AID是在AID12=4095的用户信息字段(如图5中STA6的用户信息字段)之前发现的,则该站点确定自己发送HE TB PPDU去响应该触发帧;如果在A该站点的AID是在AID12=4095的用户信息字段(如图5中STA6的用户信息字段)之后发现的,则该站点确定自己发送EHT PPDU去响应该触发帧。
可理解的,无论是HE TB PPDU,还是EHT PPDU,在前导码的L-SIG字段中,存在长度(length)子字段和速率(rate)子字段,发送端通过L-SIG字段中的长度子字段和速率子字段间接指示PPDU的原定传输时长。其中,速率子字段固定设置为6兆比特每秒(Megabits per second,Mbps),由于速率子字段设置为固定值,所以也就是通过长度子字段间接指示PPDU的原定传输时长。可选的,本申请实施例中L-SIG字段所指示的长度的一种实现方式是L-SIG字段的长度子字段所指示的长度。
长度子字段所指示的长度(Length)值的计算公式如下述公式(1-1)所示:
Figure PCTCN2021113629-appb-000002
公式(1-1)中,SignalExtension(信号扩展)是一个与传输频带有关的参数,当工作在2.4GHz时,该参数为6μs(微秒),当工作在5GHz或者6GHz时,该参数为0μs。TXTIME为整个PPDU的原定传输时长,对于HE TB PPDU来说,TXTIME的长度由AP来决定。对于HE PPDU,m的取值为1或2,m的具体值取决于具体的HE PPDU类型。对于HE TB PPDU,m=2。对于EHT PPDU,通过m=0,用于接收端的自动检测过程中,同HE PPDU做区分。
可理解的,
Figure PCTCN2021113629-appb-000003
表示对数值A的向上取整。例如,A等于3.2,则
Figure PCTCN2021113629-appb-000004
等于4;又如A等于5.8,则
Figure PCTCN2021113629-appb-000005
等于6。
对于HE TB PPDU,长度子字段所指示的Length值由AP发送的触发帧指定,该Length值可以通过上述公式(1-1)计算得出。因为上行多用户(multiple user,MU)传输中,需要保证多个用户(或STA)的发送时长相同。所以在触发帧的公共信息字段中需要为所有STA(或用户)指示相同的上行长度。HE站点可以将HE TB PPDU的L-SIG字段所指示的长度,直接设置为触发帧中上行长度字段所指示的值。针对11be中的触发帧,为了不影响HE站点接收该触发帧和设置HE TB PPDU中L-SIG字段所指示的长度,因此11be中触发帧的上行长度字段的值仍然按照上述公式(1-1)设置,并且m=2。对于EHT站点,EHT PPDU中L-SIG字段所指示的长度值是3的倍数,这是因为对于EHT PPDU,m=0。故,当EHT站点读取触发帧中上行长度字段的指示后,在设置EHT PPDU中L-SIG字段所指示的长度时,在上行长度字段指示的值的基础上,再加上2。
可选的,HE STA可以分别计算其发送的HE TB PPDU中各字段的长度,EHT STA也可以分别计算其发送的EHT PPDU中各字段的长度。对于HE TB PPDU和EHT PPDU中的前导码来说,各字段的长度可以通过AP发送的触发帧中的指示确定。对于HE TB PPDU和EHT PPDU中的数据字段,数据符号的个数可以采用下述公式(1-2)计算得出:
Figure PCTCN2021113629-appb-000006
公式(1-2)中,LENGTH为上行PPDU(这里指HE TB PPDU或EHT PPDU)中L-SIG字段所指示的长度信息(即长度值),是通过上述触发帧中的上行长度字段所指示的值推导得出。对于HE TB PPDU,公式(1-2)中的m=2;对于EHT PPDU,公式(1-2)中的m=0。 T HE-PREAMBLE是HE TB PPDU中从RL-SIG字段到高效长训练序列字段(High Efficient Long Training Field,HE-LTF)之间的前导码长度,包括RL-SIG的长度(固定为4微秒)、高效信令字段A(High Efficient Signal Field A,HE-SIG-A)的长度(固定为8微秒)、高效短训练序列字段(High Efficient Short Training Field,HE-STF)的长度(固定为8微秒)、以及HE-LTF(N HE-LTF*T HE-LTF-SYM)的长度。其中HE-LTF(High Efficient Long Training Field,高效长训练序列字段)的符号个数,HE-LTF的尺寸和保护间隔长度都由触发帧指示,通过HE-LTF的尺寸和保护间隔长度可以得到HE-LTF符号的长度。
对于EHT PPDU来说,可以将T HE-PREAMBLE替换为T EHT-PREAMBLE,N HE-LTF*T HE-LTF-SYM替换为N EHT-LTF*T EHT-LTF-SYM。T EHT-PREAMBLE是EHT PPDU中从RL-SIG到EHT-LTF之间的前导码长度。
其中,对于EHT TB PPDU,T EHT-PREAMBLE包括RL-SIG的长度、U-SIG的长度(固定为8微秒)、EHT-STF的长度(固定为8微秒)、以及EHT-LTF(同HE-LTF类似,N EHT-LTF*T EHT-LTF-SYM)的长度。对于EHT SU PPDU,T EHT-PREAMBLE包括RL-SIG的长度、U-SIG的长度、极高吞吐率信令字段(Extremely High Throughput Signal Field,EHT-SIG)的长度(N EHT-SIG*T EHT-SIG,T EHT-SIG固定为4微秒,N EHT-SIG由EHT SU PPDU的发送端自己决定)、EHT-STF的长度(固定为4微秒)、EHT-LTF(同HE-LTF类似,N EHT-LTF*T EHT-LTF-SYM)的长度。
N MA为多普勒场景下,中间前导码的个数,其计算公式如下述公式(1-3)所示,其中Doppler代表多普勒比特指示,由触发帧中的指示得到。b PE-Disambiguity是数据包扩展消歧(Disambiguity)比特指示,由触发帧中的指示得到。T SYM为数据符号的时长,通过触发帧中指示的保护间隔得出。可理解的,在EHT PPDU中,公式(1-3)的T HE-PREAMBLE可以替换为T EHT-PREAMBLE
Figure PCTCN2021113629-appb-000007
对于HE TB PPDU和EHT PPDU中的包扩展字段,HE TB PPDU中包扩展的长度如下述公式(1-4)所示:
Figure PCTCN2021113629-appb-000008
公式(1-3)中,T MA表示中间前导码的时长,同HE-LTF或者EHT-LTF的时长相同。Max{A,B}表示取A和B中较大的值。
Figure PCTCN2021113629-appb-000009
表示对数值A的向下取整。例如,A等于4.3,则
Figure PCTCN2021113629-appb-000010
等于4;又如A等于5.9,则
Figure PCTCN2021113629-appb-000011
等于5。
可理解的,EHT PPDU中包扩展的长度也可以参照上述公式(1-4)计算得出,其中,T HE-PREAMBLE替换为T EHT-PREAMBLE,N HE-LTF*T HE-LTF-SYM替换为 EHT-LTF*T EHT-LTF-SYM
可见,本申请实施例中,一方面,通过触发帧的上行长度字段指示EHT PPDU和HE TB PPDU中L-SIG字段所指示的长度,或者指示EHT PPDU中L-SIG字段所指示的长度,可以同时调度EHT站点和HE站点进行上行数据传输,从而可以节省指令开销。另一方面,本申 请实施例的触发帧复用11ax的触发帧,可以不影响HE站点接收该触发帧和HE TB PPDU中L-SIG字段所指示的长度设置方法。又一方面,本申请实施例将触发帧的上行长度字段所指示的值设置为3的倍数减2,并通过将EHT TB PPDU中L-SIG字段所指示的长度设置为上行长度字段所指示的值加2,保证了EHT TB PPDU中L-SIG字段所指示的长度是3的倍数,可以用于自动检测,同HE PPDU进行区分。
实施例二
本申请实施例二主要介绍EHT PPDU的上行带宽指示方法。可理解的,在实际应用中,本申请实施例二可以结合前述实施例一一起实施,也可以单独实施,本申请实施例对此不做限定。
可理解的,在带宽配置方面,802.11ax支持如下带宽配置:20MHz、40MHz、80MHz、160MHz/80+80MHz。其中,160MHz与80+80MHz的区别在于前者为连续频带,而后者的两个80MHz在频带上是非连续的,或者说是离散的。在802.11be中,将进一步支持320MHz/160+160MHz等带宽配置。所以,需要为工作在802.11be协议下的站点指示上行调度时的上行带宽。
参见图7,图7是本申请实施例提供的PPDU的上行参数指示方法的另一示意流程图。该PPDU的上行参数指示方法是以一个AP与一个或多个STA组成的通信系统中实施为例进行阐述的。其中,该AP支持IEEE 802.11be协议(或称为Wi-Fi 7,EHT协议),还可以支持其他WLAN通信协议,如IEEE 802.11ax,IEEE 802.11ac等协议。该一个或多个STA中存在至少一个STA支持IEEE 802.11be协议。应理解,本申请实施例中的AP和STA还可以支持IEEE 802.11be的下一代协议。也就是说,本申请实施例提供的PPDU的上行参数指示方法不仅适用于IEEE 802.11be协议,还可以适用于IEEE 802.11be的下一代协议。如图7所示,该PPDU的上行参数指示方法包括但不限于以下步骤:
S201,AP生成触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽。
S202,AP发送该触发帧。相应地,STA接收该触发帧。
其中,上述触发帧的帧格式可以参考图3a所示,包括公共信息字段和用户信息列表字段。该公共信息字段和该用户信息列表字段的帧格式可参考前述图5所示。该触发帧可以同时指示发送HE TB PPDU所使用的上行带宽和发送EHT PPDU所使用的上行带宽。
具体地,该触发帧中最开始的公共信息字段仍然为HE STA指示上行带宽,即该触发帧中最开始的公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。该HE上行带宽字段含义与11ax中的该字段的含义不变,即该字段取值为00、01、10、11,分别指示上行带宽是20MHz、40MHz、80MHz、160MHz/80+80MHz。在该触发帧的其他部分,比如,公共信息字段的预留比特、或者EHT公共信息字段中,包括发送EHT PPDU所使用的上行带宽指示。换种说法,可以使用该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段,来共同指示发送EHT PPDU所使用的上行带宽;或者使用该触发帧中EHT公共信息字段和该公共信息字段的HE上行带宽字段,来共同指示发送EHT PPDU所使用的上行带宽。为便于描述,下文将发送EHT PPDU所使用的上行带宽,记为EHT上行带宽。下面具体介绍指示EHT上行带宽的实现方式。
(1)HE上行带宽字段结合公共信息字段的预留比特来共同指示EHT上行带宽。
参见图8a,图8a是本申请实施例提供的EHT上行带宽指示的一种帧格式示意图。如图8a所示,该EHT上行带宽的指示放在公共信息字段的预留比特中。
第一种实现方式中,利用公共信息字段的1个预留比特(即1比特预留位)来指示。具体地,如果该预留比特为0,则表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;如果该预留比特为1,表示EHT上行带宽为320MHz。可理解的,本申请实施例对该预留比特的取值和含义之间的对应/映射关系不做限定,也可以是,该预留比特为1时,表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;该预留比特为0时,表示EHT上行带宽为320MHz。
第二种实现方式,利用公共信息字段的2个预留比特(即2比特预留位)来指示。具体地,如果该2个预留比特取值为00,则表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;如果该2个预留比特取值为01,则表示EHT上行带宽为320MHz。其中,该2个预留比特取值为10和11,表示预留。
可理解的,本申请实施例对该2个预留比特的取值和含义之间的对应/映射关系不做限定,也可以采用各种不同的映射顺序。例如,取值00时,表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;取值11时,表示EHT上行带宽为320MHz,或者相反,即取值11表示EHT上行带宽与HE上行带宽字段所指示的带宽相同,取值00表示EHT上行带宽为320MHz,其余取值即10和01表示预留。又如,取值10时,表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;取值11时,表示EHT上行带宽为320MHz,其余取值即00和01表示预留。本申请在此不穷举各种不同的映射顺序。
第三种实现方式,仍然用公共信息字段的2个预留比特(即2比特预留位)来指示。具体地,如果该2个预留比特取值为00,则表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;如果该2个预留比特取值为01,则表示EHT上行带宽为160MHz;如果该2个预留比特取值为10,则表示EHT上行带宽为320MHz。其中,该2个预留比特取值为11时,表示预留。
可理解的,本申请实施例对该2个预留比特的取值和含义之间的对应/映射关系不做限定,也可以采用其他映射顺序。例如,取值11时,表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;取值10时,表示EHT上行带宽为160MHz;取值01时,表示EHT上行带宽为320MHz,剩余取值即00表示预留。
可见,在第一种实现方式和第二种实现方式中,如果需要指示EHT上行带宽为160MHz,则需要将HE上行带宽字段所指示的带宽设为160MHz。在第三种实现方式中,如果需要指示EHT上行带宽为160MHz,不必将HE上行带宽字段所指示的带宽设为160MHz,只需将预留比特所指示的带宽设置为160MHz,HE上行带宽字段所指示的带宽更灵活,从而可以灵活指示发送HE TB PPDU所使用的上行带宽,减少HE站点的发送带宽,减少HE站点的功耗。
(2)HE上行带宽字段结合EHT公共信息字段来共同指示EHT上行带宽。
参见图8b,图8b是本申请实施例提供的EHT上行带宽指示的另一种帧格式示意图。如图8b所示,该EHT公共信息字段中包括EHT上行带宽字段,也可以称为be上行带宽字段。该EHT上行带宽字段位于该EHT公共信息字段的哪个位置和占用多少比特数,本申请实施例不做限定。
第四种实现方式,该EHT上行带宽字段为1比特。具体地,如果该EHT上行带宽字段 取值为0,则表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;如果该EHT上行带宽字段取值为1,表示EHT上行带宽为320MHz。可理解的,本申请实施例对该EHT上行带宽字段的取值和含义之间的对应关系不做限定,也可以是,该EHT上行带宽字段取值为1时,表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;该EHT上行带宽字段取值为0时,表示EHT上行带宽为320MHz。
第五种实现方式,该EHT上行带宽字段为2比特。具体地,如果该EHT上行带宽字段取值为00,则表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;如果该EHT上行带宽字段取值为01,则表示EHT上行带宽为320MHz。其中,该EHT上行带宽字段取值为10和11,表示预留。
可理解的,本申请实施例对该EHT上行带宽字段的取值和含义之间的对应关系不做限定,也可以采用各种不同的映射顺序。例如,取值00时,表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;取值11时,表示EHT上行带宽为320MHz,或者相反,即取值11表示EHT上行带宽与HE上行带宽字段所指示的带宽相同,取值00表示EHT上行带宽为320MHz,其余取值即10和01表示预留。又如,取值10时,表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;取值11时,表示EHT上行带宽为320MHz,其余取值即00和01表示预留。本申请在此不穷举各种不同的映射顺序。
第六种实现方式,该EHT上行带宽字段仍然为2比特。具体地,如果该EHT上行带宽字段取值为00,则表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;如果该EHT上行带宽字段取值为01,则表示EHT上行带宽为160MHz;如果该2个预留比特取值为10,则表示EHT上行带宽为320MHz。其中,该EHT上行带宽字段取值为11时,表示预留。
可理解的,本申请实施例对该EHT上行带宽字段的取值和含义之间的对应关系不做限定,也可以采用其他映射顺序。例如,取值11时,表示EHT上行带宽与HE上行带宽字段所指示的带宽相同;取值10时,表示EHT上行带宽为160MHz;取值01时,表示EHT上行带宽为320MHz,剩余取值即00表示预留。
与前述第一种实现方式和前述第二种实现方式同理,第四种实现方式和第五种实现方式中,如果需要指示EHT上行带宽为160MHz,则需要将HE上行带宽字段所指示的带宽设为160MHz。在第六种实现方式中,如果需要指示EHT上行带宽为160MHz,不必将HE上行带宽字段所指示的带宽设为160MHz,只需将EHT上行带宽字段所指示的带宽设置为160MHz,HE上行带宽字段所指示的带宽更灵活,从而可以灵活指示发送HE TB PPDU所使用的上行带宽,减少HE站点的发送带宽,减少HE站点的功耗。
S203,STA生成EHT PPDU。
S204,STA采用该触发帧指示的上行带宽发送该EHT PPDU。
具体地,STA生成EHT PPDU之后,可以采用上述触发帧指示的上行带宽发送生成的该EHT PPDU。AP接收到该EHT PPDU之后,可以向该STA回复确认帧。例如,触发帧指示的发送EHT PPDU所使用的上行带宽为80MHz,则STA采用80MHz带宽发送EHT PPDU。又如,触发帧指示的发送EHT PPDU所使用的上行带宽为320MHz,则STA采用320MHz带宽发送EHT PPDU。这里的STA是支持802.11be协议的STA。
可选的,支持802.11ax协议的站点也可以接收到上述触发帧,在接收到上述触发帧后,可以生成HE TB PPDU,再采用上述触发帧中公共信息字段的HE上行带宽字段所指示的上行带宽发送该HE TB PPDU。AP接收到该HE TB PPDU之后,可以向该站点回复确认帧。例 如,HE上行带宽字段指示的上行带宽为20MHz,则HE STA采用20MHz带宽发送HE TB PPDU。又如,HE上行带宽字段指示的上行带宽为160MHz,则HE STA采用160MHz带宽发送HE TB PPDU。
可理解的,本申请实施例的方法可以仅用于调度支持802.11be协议的站点发送上行EHT PPDU,也可以用于同时调度支持802.11be协议的站点发送上行EHT PPDU、和支持802.11ax协议的站点发送上行HE TB PPDU。
可见,本申请实施例中,通过复用11ax的触发帧中HE上行带宽字段指示的基础上,采用更少的比特来指示发送EHT PPDU所使用的上行带宽(即EHT上行带宽),与直接用3比特来指示发送EHT PPDU所使用的上行带宽相比,可以节约开销。
实施例三
本申请实施例三主要介绍EHT-LTF符号个数的指示方法。可理解的,在实际应用中,本申请实施例三可以结合前述实施例一一起实施,或者结合前述实施例二一起实施,或者结合前述实施例一和前述实施例二一起实施;本申请实施例三也可以单独实施,本申请实施例对此不做限定。
参见图9,图9是本申请实施例提供的PPDU的上行参数指示方法的又一示意流程图。该PPDU的上行参数指示方法是以一个AP与一个或多个STA组成的通信系统中实施为例进行阐述的。其中,该AP支持IEEE 802.11be协议(或称为Wi-Fi 7,EHT协议),也可以支持其他WLAN通信协议,如IEEE 802.11ax,IEEE 802.11ac等协议。该一个或多个STA中存在至少一个STA支持IEEE 802.11be协议。应理解,本申请实施例中的AP和STA还可以支持IEEE802.11be的下一代协议。也就是说,本申请实施例提供的PPDU的上行参数指示方法不仅适用于IEEE 802.11be协议,还可以适用于IEEE 802.11be的下一代协议。
如图9所示,该PPDU的上行参数指示方法包括但不限于以下步骤:
S301,AP生成触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差。
S302,AP发送该触发帧。相应地,STA接收该触发帧。
其中,上述触发帧的帧格式可以参考图3a所示,包括公共信息字段和用户信息列表字段。该公共信息字段和该用户信息列表字段的帧格式可参考前述图5所示。该触发帧中包括指示信息,该指示信息可以用于指示EHT-LTF符号个数与HE-LTF符号个数之差。换句话说,在该触发帧中HE-LTF个数与中间码周期字段指示HE-LTF符号个数的基础上,该指示信息可以用于指示EHT-LTF符号个数比HE-LTF符号个数多了多少个符号。可理解的,802.11ax标准中支持1到8个HE-LTF符号,802.11be标准中支持1到16个EHT-LTF符号。所以,当上行传输中同时存在HE TB PPDU和EHT PPDU时,为了防止符号间未对齐导致的不正交,从而引起邻带干扰,需要将HE TB PPDU和EHT PPDU在符号上进行对齐。
可选的,EHT-LTF符号个数与EHT数据符号个数之和等于HE-LTF符号个数与HE数据符号个数之和。
可选的,本申请实施例中的EHT-LTF的尺寸与HE Data的尺寸相同,即同时使用除保护间隔部分外12.8微秒的长度,即HE Data的尺寸固定,为12.8微秒。这样,如果保护间隔长度仍然相同,则EHT-LTF和HE Data仍然可以保证符号对齐。参见图10,图10是本申请实施例提供的EHT-LTF的尺寸与HE Data的尺寸相同的示意图。如图10所示,EHT-LTF的时间长度等于HE Data的时间长度,且EHT-LTF的时间长度与EHT数据部分的时间长度之和 等于HE-LTF的时间长度与HE数据部分的时间长度之和。
可选的,上述指示信息可以携带于上述触发帧的公共信息字段的预留比特中,或者携带于该触发帧的EHT公共信息字段中。
参见图11a,图11a是本申请实施例提供的EHT-LTF符号个数指示的一种帧格式示意图。如图11a所示,该指示信息携带于该触发帧的公共信息字段的预留比特中,该预留比特中存在额外EHT-LTF符号数指示,指示1到8个额外的EHT-LTF符号数。具体地,可以采用公共信息字段的3个预留比特(即3比特预留位)来指示EHT-LTF符号个数与HE-LTF符号个数之差,或者用于指示1到8个额外的EHT-LTF符号数。例如,当该3个预留比特取值为000时,表示EHT-LTF符号个数与HE-LTF符号个数之差为1。当该3个预留比特取值为001时,表示EHT-LTF符号个数与HE-LTF符号个数之差为2。当该3个预留比特取值为010时,表示EHT-LTF符号个数与HE-LTF符号个数之差为3。当该3个预留比特取值为011时,表示EHT-LTF符号个数与HE-LTF符号个数之差为4。当该3个预留比特取值为100时,表示EHT-LTF符号个数与HE-LTF符号个数之差为5。当该3个预留比特取值为101时,表示EHT-LTF符号个数与HE-LTF符号个数之差为6。当该3个预留比特取值为110时,表示EHT-LTF符号个数与HE-LTF符号个数之差为7。当该3个预留比特取值为111时,表示EHT-LTF符号个数与HE-LTF符号个数之差为8。可理解的,本申请实施例对该公共信息字段的3个预留比特的取值与含义之间的对应关系不做限定,也可以有其他映射关系。
参见图11b,图11b是本申请实施例提供的EHT-LTF符号个数指示的另一种帧格式示意图。如图11b所示,该指示信息携带于该触发帧的EHT公共信息字段中。其中,该指示信息具体位于该EHT公共信息字段的哪个位置和占用多少比特数,本申请实施例不做限定。具体地,该EHT公共信息字段中存在额外EHT-LTF符号数指示,指示1到8个额外的EHT-LTF符号数。例如,该EHT公共信息字段包括一个字段,这个字段的长度可以是3比特,用于指示EHT-LTF符号个数与HE-LTF符号个数之差,或者用于指示1到8个额外的EHT-LTF符号数。这个字段可以称为EHT-LTF符号数字段,或者EHT-LTF额外符号数指示字段,或者其他名称,本申请实施例对该字段的名称不做限定。例如,以EHT-LTF符号数字段为例,当该EHT-LTF符号数字段取值为000时,表示EHT-LTF符号个数与HE-LTF符号个数之差为1。当该EHT-LTF符号数字段取值为001时,表示EHT-LTF符号个数与HE-LTF符号个数之差为2。当该EHT-LTF符号数字段取值为010时,表示EHT-LTF符号个数与HE-LTF符号个数之差为3。当该EHT-LTF符号数字段取值为011时,表示EHT-LTF符号个数与HE-LTF符号个数之差为4。当EHT-LTF符号数字段取值为100时,表示EHT-LTF符号个数与HE-LTF符号个数之差为5。当EHT-LTF符号数字段取值为101时,表示EHT-LTF符号个数与HE-LTF符号个数之差为6。当EHT-LTF符号数字段取值为110时,表示EHT-LTF符号个数与HE-LTF符号个数之差为7。当EHT-LTF符号数字段取值为111时,表示EHT-LTF符号个数与HE-LTF符号个数之差为8。可理解的,本申请实施例对该EHT-LTF符号数字段的取值与含义之间的对应关系不做限定,也可以有其他映射关系。
其中,如果EHT-LTF符号个数与HE-LTF符号个数相同,则触发帧中可以不携带上述指示信息。如果EHT-LTF符号个数大于HE-LTF符号个数,则触发帧中携带上述指示信息,用于指示EHT-LTF符号个数比HE-LTF符号个数多了多少个符号。
S303,STA生成EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和。
S304,STA发送该EHT PPDU。
具体地,上述触发帧中的指示信息,指示EHT-LTF符号个数与HE-LTF符号个数之差;该触发帧的HE-LTF个数与中间码周期字段,指示HE-LTF符号个数。所以,STA接收到该触发帧后,可以根据该触发帧中指示信息和HE-LTF个数与中间码周期字段的指示,将EHT PPDU中的EHT-LTF符号个数设置为该指示信息指示的个数与HE-LTF个数与中间码周期字段指示的个数之和。故,STA生成的EHT PPDU中EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和。在STA生成EHT PPDU之后,STA可以向AP发送生成的该EHT PPDU。AP接收到该EHT PPDU之后,可以回复确认帧。这里的STA是支持802.11be协议的STA。
可选的,支持802.11ax协议的站点也可以接收到上述触发帧,在接收到该触发帧后,可以按照触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数,将HE TB PPDU中HE-LTF符号个数设置为该HE-LTF个数与中间码周期字段指示的个数。在该站点生成HE TB PPDU之后,该站点可以向AP发送生成的该HE TB PPDU。AP接收到该HE TB PPDU之后,可以回复确认帧。
可理解的,本申请实施例的方法可以仅用于调度支持802.11be协议的站点发送上行EHT PPDU,也可以用于同时调度支持802.11be协议的站点发送上行EHT PPDU、和支持802.11ax协议的站点发送上行HE TB PPDU。
可见,本申请实施例提供一种适用于EHT PPDU和HE TB PPDU混合传输场景下,EHT-LTF符号个数的指示,可以进一步完善PPDU的上行参数指示方法。本申请实施例还通过限定EHT-LTF的尺寸与HE Data的尺寸相同,并采用相同的保护间隔长度,可以保证HE TB PPDU和EHT PPDU在符号上对齐/正交,防止邻带干扰。
作为一个可选实施例,由于802.11ax标准中支持1到8个HE-LTF符号,而802.11be标准中支持1到16个EHT-LTF符号。所以,当上行传输中同时存在HE TB PPDU和EHT PPDU时,为了防止符号间未对齐导致的不正交,从而引起邻带干扰,需要将HE TB PPDU和EHT PPDU在符号上进行对齐。一种可能的实现方式,AP生成并发送触发帧,该触发帧的HE-LTF个数与中间码周期字段用于指示HE-LTF符号个数和EHT-LTF符号个数。本申请实施例中HE-LTF符号个数与EHT-LTF符号个数相同,所以该触发帧的HE-LTF个数与中间码周期字段可以间接指示/隐式指示EHT-LTF符号个数。支持802.11be协议的STA接收该触发帧后,生成并发送EHT PPDU,该EHT PPDU中EHT-LTF符号个数等于该触发帧的HE-LTF个数与中间码周期字段所指示的个数。换句话说,本申请实施例的HE TB PPDU和EHT PPDU传输相同的LTF符号个数(由于802.11ax标准最大支持8个HE-LTF符号,所以这里的LTF符号个数不能超过8个),并且可以采用相同的LTF尺寸(这里的尺寸是指时间长度)和保护间隔长度。因此,在HE TB PPDU和EHT PPDU混合传输的场景中,可以复用11ax触发帧中的HE-LTF符号数指示字段和保护间隔+HE LTF尺寸指示字段。
可选的,支持802.11ax协议的STA也可以接收到该触发帧,生成并发送HE TB PPDU,该HE TB PPDU中HE-LTF符号个数等于该触发帧的HE-LTF个数与中间码周期字段所指示的个数。
可见,本申请实施例中,通过复用11ax的触发帧,来间接指示/隐式指示HE-LTF符号个数,限定HE-LTF符号个数与EHT-LTF符号个数相同,并且可以复用11ax的触发帧中的保护间隔+HE LTF尺寸指示字段,实现简单,信令开销小,还可以防止邻带干扰。
实施例四
本申请实施例四主要介绍EHT PPDU的传输方法,具体涉及EHT SU PPDU和EHT LPI SU PPDU的上行调度传输方法,包括利用触发帧调度EHT SU PPDU和EHT LPI SU PPDU上行传输的方法和利用触发响应调度(triggered response scheduling,TRS)EHT SU PPDU和EHT LPI SU PPDU上行传输的方法。
可理解的,在实际应用中,本申请实施例四可以结合前述实施例一至前述实施例三中任一个或任几个或全部一起实施;本申请实施例四也可以单独实施例,本申请实施例对此不做限定。
可理解的,在802.11be标准中,除了可以触发STA发送EHT TB PPDU外,还可以触发STA发送EHT SU PPDU,EHT SU PPDU也可以称为发送给单用户的EHT MU PPDU(多用户EHT PPDU,multiple user EHT PPDU)。802.11be标准还引入了一种特殊的EHT SU PPDU,适用于6GHz的LPI场景,被称作EHT LPI SU PPDU。
参见图12,图12是本申请实施例提供的PPDU的传输方法的示意流程图。该PPDU的传输方法是以一个AP与一个或多个STA组成的通信系统中实施为例进行阐述的。其中,该AP支持IEEE 802.11be协议(或称为Wi-Fi 7,EHT协议),该一个或多个STA支持IEEE 802.11be协议。应理解,本申请实施例中的AP和STA还可以支持IEEE 802.11be的下一代协议。也就是说,本申请实施例提供的PPDU的传输方法不仅适用于IEEE 802.11be协议,还可以适用于IEEE 802.11be的下一代协议。
如图12所示,该PPDU的传输方法包括但不限于以下步骤:
S401,AP生成触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU。
S402,AP发送该触发帧。相应地,STA接收该触发帧。
其中,上述EHT PPDU的类型可以包括基于触发的EHT PPDU(可简写为EHT TB PPDU)、单用户EHT PPDU(可简写为EHT SU PPDU)、单用户室内低功耗EHT PPDU(可简写成EHT SU LPI PPDU)。
具体地,为了区分AP发送的触发帧是用于触发EHT TB PPDU,还是触发EHT SU PPDU,该触发帧中可以携带指示信息,用于指示上行调度的EHT PPDU的类型。一种实现方式中,在该触发帧的触发帧类型字段中,引入新的触发帧类型,来指示上行调度的EHT PPDU的类型是EHT SU PPDU。另一种实现方式,采用该触发帧中公共信息字段的1比特预留比特,来指示上行调度的EHT PPDU的类型是EHT SU PPDU,还是EHT TB PPDU。比如,该1比特预留比特取值为1时,指示上行调度的EHT PPDU的类型是EHT SU PPDU;该1比特预留比特取值为0时,指示上行调度的EHT PPDU的类型是EHT TB PPDU。或者相反,即该1比特预留比特取值为0时,指示上行调度的EHT PPDU的类型是EHT SU PPDU;该1比特预留比特取值为1时,指示上行调度的EHT PPDU的类型是EHT TB PPDU。参见图13,图13是本申请实施例提供的触发帧指示调度EHT SU PPDU的帧格式示意图。如图13所示,opt1表示指示新的触发帧类型:SU触发帧,opt2表示通过1比特预留比特指示SU触发帧。
可选的,在上述触发帧指示上行调度的EHT PPDU的类型是EHT SU PPDU的情况下,还可以进一步在该触发帧中指示上行调度的EHT SU PPDU是否为EHT LPI SU PPDU。换句话说,可以进一步区分上行调度的EHT SU PPDU是普通的EHT SU PPDU,还是EHT LPI SU PPDU。一种实现方式中,采用触发帧中EHT用户信息字段的调制与编码策略(Modulation and  Coding Scheme,MCS)字段指示上行调度的EHT PPDU是否为EHT LPI SU PPDU。比如,当该MCS字段为MCS15时(也可以为其他MCS值),表示上行调度的EHT PPDU是EHT LPI SU PPDU。另一种实现方式,采用额外1比特指示上行调度的EHT PPDU是否为EHT LPI SU PPDU,比如,采用触发帧中11be的用户信息字段(或EHT用户信息字段)的1比特预留比特指示。比如,当该预留比特取值为1时,指示上行调度的EHT PPDU是EHT LPI SU PPDU。或者相反,即该1预留比特取值为0时,指示上行调度的EHT PPDU是EHT LPI SU PPDU。参见图14,图14是本申请实施例提供的触发帧指示调度EHT LPI SU PPDU的帧格式示意图。如图14所示,opt1表示通过MCS15指示EHT LPI SU PPDU,opt2表示通过1比特预留比特指示EHT LPI SU PPDU。
可选的,上述通过触发帧的MCS字段指示上行调度的EHT PPDU是否为EHT LPI SU PPDU的实现方式,还可以适用于非触发场景中。在非触发场景中,可以通过EHT PPDU中的EHT-SIG,来指示这个EHT PPDU的类型。具体地,该EHT PPDU的类型指示位于EHT-SIG逐个站点字段中的MCS指示字段。比如,当该MCS字段为MCS15时(也可以为其他MCS值),表示这个EHT PPDU是EHT LPI SU PPDU;当该MCS字段为其他值时,表示这个EHT PPDU是普通的EHT SU PPDU。
可理解的,如果采用触发帧的MCS字段来指示上行调度的EHT PPDU是否是EHT LPI SU PPDU,则因为EHT LPI SU PPDU可以被认为是一种特殊的EHT SU PPDU,所以在触发普通的EHT SU PPDU时,不需要AP来指示MCS,STA可以自主选择自己的MCS。在触发EHT LPI SU PPDU时,相当于AP给STA指示MCS。
S403,若该触发帧指示上行调度的EHT PPDU的类型为单用户EHT PPDU,则STA生成单用户EHT PPDU。
S404,STA发送该单用户EHT PPDU。
具体地,本申请实施例提及的“STA”是指支持IEEE 802.11be协议的站点。STA接收到该触发帧后,可以按照该触发帧指示上行调度的EHT PPDU的类型,生成并发送相应的EHT PPDU。如果该触发帧指示上行调度的EHT PPDU的类型为EHT SU PPDU,则STA生成并发送EHT SU PPDU。可选的,如果该触发帧还进一步指示了上行调度的EHT PPDU是EHT LPI SU PPDU,则STA生成并发送EHT LPI SU PPDU。
可选的,当该触发帧指示上行调度的EHT PPDU是EHT LPI SU PPDU时,该EHT LPI SU PPDU的带宽可以设置为至少80MHz。EHT LPI SU PPDU的Data部分在整个频域的上半部分和下半部分进行复制传输,且在上半部分和下半部分内部,分别引入双载波调制技术、和二进制相移键控(Binary Phase Shift Keying,BPSK)调制,以达到一个数据比特被复制4倍,提供6分贝的功率增益的效果。
可见,本申请实施例提供了一种调度EHT SU PPDU或EHT LPI SU PPDU的上行传输方法。本申请实施例,主要通过触发帧来调度EHT TB PPDU、或EHT SU PPDU、或EHT LPI SU PPDU的上行传输,可以结合前述PPDU的上行参数指示方法一起实施,在一个触发帧中既可以完成上行参数的指示,也可以完成不同类型的EHT PPDU的调度,节省了信令开销。
应理解的,前述实施例一至实施例四所介绍的技术方案中,均以复用11ax的触发帧为例进行介绍,但在实际应用中,前述实施例一至实施例四描述的技术方案也可采用新的MAC帧类型或者新的触发帧类型来实现,该帧中的指示方式可参考11ax的触发帧中的指示方式。
作为一个可选实施例,除了通过上述触发帧、来调度EHT SU PPDU和EHT SU LPI PPDU外,还可以通过MAC帧头的高吞吐率(High Throughput,HT)控制(HT control)字段的聚合(Aggregated)控制(A-control)变种去触发EHT SU PPDU或EHT SU LPI PPDU。
具体地,AP可以生成A-control字段,该A-control字段用于指示上行调度的EHT PPDU是EHT SU PPDU或EHT SU LPI PPDU。AP发送该A-control字段,相应地,STA接收该A-control字段。如果该A-control字段用于指示上行调度的EHT PPDU是EHT SU PPDU,则STA生成并发送该EHT SU PPDU。如果该A-control字段用于指示上行调度的EHT PPDU是EHT SU LPI PPDU,则STA生成并发送该EHT SU LPI PPDU。也就是说,A-control字段指示上行调度的EHT PPDU是哪种类型的PPDU,则STA就生成并发送相同类型的PPDU。
可选的,发送端可以在MAC帧头的HT control字段中传输一些控制信息。其中,HT control字段的高效变种(HT control字段的变种包括高吞吐率变种,极高吞吐率变种和高效变种3种形态)中的A-control子字段利用一个或多个控制标识符加控制信息的结构,可以用来承载1到N个控制信息。参见图15,图15是本申请实施例提供的A-control子字段的帧格式示意图。如图15所示,A-control子字段包括1到N个控制子字段和填充(padding)字段。其中,每个控制子字段中包括一个控制标识符和控制信息。该控制标识符可以用来指示控制信息的类型。
图15也示出了触发响应调度(triggered response scheduling,TRS)变种的帧格式。该TRS变种位于控制子字段的控制信息中。如图15所示,该控制信息包括以下一个或多个字段:上行数据符号数、资源单元分配指示、AP发送功率、上行目标接收信号强度指示、上行HE-MCS(High Efficient Modulation and Coding Scheme,高效调制与编码策略,也可以简称为MCS)以及预留字段。其中,资源单元分配指示字段可以用于指示HE TB PPDU的资源单元。因为EHT SU PPDU不需要进行资源单元分配,因此可以采用资源单元分配指示字段的一种预留索引指示,指示调度的是EHT SU PPDU。可选的,还可以采用资源单元分配指示字段的另外一种预留的索引指示,指示调度的是EHT LPI SU PPDU。或者,通过一种预留的上行HE-MCS字段来指示调度的是EHT LPI SU PPDU,比如,上行HE-MCS字段取值为00时,表示调度的是EHT LPI SU PPDU;当上行HE-MCS字段取值为其他值(01、或10、或11等)时,表示调度的是EHT SU PPDU。
如下述表2所示,资源单元分配指示字段中包含大量预留的索引。
表2:触发帧的资源单元分配信息(低7比特)
Figure PCTCN2021113629-appb-000012
Figure PCTCN2021113629-appb-000013
其中,在通过上行HE-MCS字段来指示调度的是否是EHT LPI SU PPDU时,因为EHT LPI SU PPDU可以被认为是一种特殊的EHT SU PPDU,所以在触发普通的EHT SU PPDU时,不需要AP来指示MCS,STA可以自主选择自己的MCS。在触发EHT LPI SU PPDU时,相当于AP给STA指示MCS。
可见,本申请实施例通过TRS来调度EHT SU PPDU或EHT LPI SU PPDU,含义清晰明确,实现了802.11be中不同类型的EHT PPDU的上行调度传输。
上述内容详细阐述了本申请提供的方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对AP和STA进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图16至图18详细描述本申请实施例的通信装置。其中,该通信装置是接入点或站点,进一步的,该通信装置可以为AP中的装置;或者,该通信装置为STA中的装置。
在采用集成的单元的情况下,参见图16,图16是本申请实施例提供的通信装置1的结构示意图。该通信装置1可以为AP或AP中的芯片,比如Wi-Fi芯片等。如图16所示,该通信装置1包括:处理单元11和收发单元12。
第一种设计中,该处理单元11,用于生成触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示基于触发的高效物理层数据协议单元HE TB PPDU和极高吞吐率物理层数据协议单元EHT PPDU中传统信令L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;该收发单元12,用于发送该触发帧。
可选的,上行长度字段所指示的长度值为正整数,且为3的倍数减2。
可选的,该收发单元12,还用于接收来自STA的EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2。
可见,该通信装置1中,处理单元11生成的触发帧包括上行长度字段,用于指示EHT PPDU和HE TB PPDU中L-SIG字段所指示的长度,或者指示EHT PPDU中L-SIG字段所指示的长度,可以同时调度EHT站点和HE站点进行上行数据传输,从而可以节省指令开销。另外,通过复用11ax的触发帧,可以不影响HE站点接收该触发帧和HE TB PPDU中L-SIG字段所指示的长度设置方法。
应理解,该种设计中的通信装置1可对应执行前述实施例一,并且该通信装置1中的各 个单元的上述操作或功能分别为了实现前述实施例一中AP的相应操作,为了简洁,在此不再赘述。
第二种设计中,该处理单元11,用于生成触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;该收发单元12,用于AP发送该触发帧。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
可选的,上述公共信息字段的1比特或2比特预留比特用于指示发送EHT PPDU所使用的上行带宽是否与发送HE TB PPDU所使用的上行带宽相同。例如,当该1比特的预留比特取值为0时,指示发送EHT PPDU所使用的上行带宽与发送HE TB PPDU所使用的上行带宽相同;当该1比特的预留比特取值为1时,指示发送EHT PPDU所使用的上行带宽为320MHz。又如,当该2比特的预留比特取值为00时,指示发送EHT PPDU所使用的上行带宽与发送HE TB PPDU所使用的上行带宽相同;当该2比特的预留比特取值为01时,指示发送EHT PPDU所使用的上行带宽为320MHz;其余取值即10和11均为预留。再如,当该2比特的预留比特取值为00时,指示发送EHT PPDU所使用的上行带宽与发送HE TB PPDU所使用的上行带宽相同;当该2比特的预留比特取值为01时,指示发送EHT PPDU所使用的上行带宽为160MHz;当该2比特的预留比特取值为10时,指示发送EHT PPDU所使用的上行带宽为320MHz;其余取值11为预留。
可选的,上述EHT公共信息字段可以包括EHT上行带宽字段,该EHT上行带宽字段用于指示发送EHT PPDU所使用的上行带宽是否与发送HE TB PPDU所使用的上行带宽相同。其中,该EHT上行带宽字段的长度可以是1比特或2比特。
可见,该通信装置1中,通过复用11ax的触发帧中HE上行带宽字段指示的基础上,采用更少的比特来指示发送EHT PPDU所使用的上行带宽(即EHT上行带宽),与直接用3比特来指示发送EHT PPDU所使用的上行带宽相比,可以节约开销。
应理解,该种设计中的通信装置1可对应执行前述实施例二,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例二中AP的相应操作,为了简洁,在此不再赘述。
第三种设计中,该处理单元11,用于生成触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;该收发单元12,用于发送该触发帧。
可选的,EHT-LTF符号个数与EHT数据符号个数之和等于HE-LTF符号个数与HE数据符号个数之和。
可选的,上述指示信息携带于该触发帧的公共信息字段的预留比特中或者携带于该触发帧的EHT公共信息字段中。
可选的,该收发单元12,还用于接收来自STA的EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和。
应理解,该种设计中的通信装置1可对应执行前述实施例三,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例三中AP的相应操作,为了简洁,在此不再赘述。
第四种设计中,该处理单元11,用于生成触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;该收 发单元12,用于发送该触发帧。
可选的,EHT PPDU的类型由该触发帧的触发帧类型字段指示,或者由该触发帧的预留比特指示。
可选的,上述触发帧还用于指示上行调度的EHT PPDU是否为EHT SU LPI PPDU。
可选的,上行调度的EHT PPDU是否为EHT SU LPI PPDU由该触发帧的调制与编码策略字段指示,或者由该触发帧中EHT用户信息字段的预留比特指示。
应理解,该种设计中的通信装置1可对应执行前述实施例四,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例四中AP的相应操作,为了简洁,在此不再赘述。
参见图17,图17是本申请实施例提供的通信装置2的结构示意图。该通信装置2可以为STA或STA中的芯片,比如Wi-Fi芯片等。如图17所示,该通信装置2包括:收发单元21和处理单元22。
第一种设计中,该收发单元21,用于接收触发帧,该触发帧中包括上行长度字段,该上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,该上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;该处理单元22,用于生成EHT PPDU,该EHT PPDU中L-SIG字段所指示的长度等于该上行长度字段所指示的长度值加2;该收发单元21,还用于发送生成的该EHT PPDU。
可选的,上述处理单元22可以包括生成子单元221和设置子单元222。该生成子单元221,用于生成EHT PPDU;该设置子单元222,用于将EHT PPDU中L-SIG字段所指示的长度设置为该触发帧中上行长度字段所指示的长度值加2。可理解的,在实际应用中,处理单元22可以包括不同的子单元,用于实现上述生成子单元221和设置子单元222的功能。还可理解的,上述生成子单元221和设置子单元222的功能也可以由一个单元来实现,本申请实施例不做限定。
可选的,上行长度字段所指示的长度值为正整数,且为3的倍数减2。
应理解,该种设计中的通信装置2可对应执行前述实施例一,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例一中STA的相应操作,为了简洁,在此不再赘述。
第二种设计中,该收发单元21,用于接收触发帧,该触发帧中公共信息字段的预留比特和该公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者该触发帧中EHT公共信息字段和该触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;该处理单元22,用于生成EHT PPDU;该收发单元22,还用于采用该触发帧指示的上行带宽发送该EHT PPDU。其中,该触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
可选的,上述公共信息字段的1比特或2比特预留比特用于指示发送EHT PPDU所使用的上行带宽是否与发送HE TB PPDU所使用的上行带宽相同。
可选的,上述EHT公共信息字段可以包括EHT上行带宽字段,该EHT上行带宽字段用于指示发送EHT PPDU所使用的上行带宽是否与发送HE TB PPDU所使用的上行带宽相同。其中,该EHT上行带宽字段的长度可以是1比特或2比特。
应理解,该种设计中的通信装置2可对应执行前述实施例二,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例二中STA的相应操作,为了简洁,在此不 再赘述。
第三种设计中,该收发单元21,用于接收触发帧,该触发帧中包括指示信息,该指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差;该处理单元22,用于生成EHT PPDU,该EHT PPDU中的EHT-LTF符号个数等于该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和;该收发单元21,还用于发送该EHT PPDU。
可选的,上述处理单元22中可以包括生成子单元221和设置子单元222。该生成子单元221,用于生成EHT PPDU;该设置子单元222,用于将EHT PPDU中的EHT-LTF符号个数设置为该触发帧中HE-LTF个数与中间码周期字段指示的HE-LTF符号个数与该指示信息所指示的个数值之和。可理解的,在实际应用中,处理单元22可以包括不同的子单元,用于实现上述生成子单元221和设置子单元222的功能。还可理解的,上述生成子单元221和设置子单元222的功能也可以由一个单元来实现,本申请实施例不做限定。
可选的,EHT-LTF符号个数与EHT数据符号个数之和等于HE-LTF符号个数与HE数据符号个数之和。
可选的,上述指示信息携带于该触发帧的公共信息字段的预留比特中或者携带于该触发帧的EHT公共信息字段中。
应理解,该种设计中的通信装置2可对应执行前述实施例三,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例三中STA的相应操作,为了简洁,在此不再赘述。
第四种设计中,该收发单元21,用于接收触发帧,该触发帧用于指示上行调度的EHT PPDU的类型,该EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU;该处理单元22,用于当该触发帧指示上行调度的EHT PPDU的类型为EHT单用户PPDU时,生成单用户EHT PPDU;该收发单元21,还用于发送该单用户EHT PPDU。
可选的,EHT PPDU的类型由该触发帧的触发帧类型字段指示,或者由该触发帧的预留比特指示。
可选的,上述触发帧还用于指示上行调度的EHT PPDU是否为EHT SU LPI PPDU。
可选的,上行调度的EHT PPDU是否为EHT SU LPI PPDU由该触发帧的调制与编码策略字段指示,或者由该触发帧中EHT用户信息字段的预留比特指示。
应理解,该种设计中的通信装置2可对应执行前述实施例四,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例四中STA的相应操作,为了简洁,在此不再赘述。
以上介绍了本申请实施例的AP和STA,以下介绍所述AP和STA可能的产品形态。应理解,但凡具备上述图16所述的AP的功能的任何形态的产品,但凡具备上述图17所述的STA的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的AP和STA的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的AP和STA,可以由一般性的总线体系结构来实现。
参见图18,图18是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以是AP MLD或STA,或其中的装置。如图18所示,该通信装置1000包括处理器1001和与所述处理器内部连接通信的收发器1002。其中,处理器1001是通用处理器或者专用处 理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1002可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1002可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1000还可以包括天线1003和/或射频单元(图未示意)。所述天线1003和/或射频单元可以位于所述通信装置1000内部,也可以与所述通信装置1000分离,即所述天线1003和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1000中可以包括一个或多个存储器1004,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1000上被运行,使得通信装置1000执行上述方法实施例中描述的方法。可选的,所述存储器1004中还可以存储有数据。通信装置1000和存储器1004可以单独设置,也可以集成在一起。
其中,处理器1001、收发器1002、以及存储器1004可以通过通信总线连接。
一种设计中,通信装置1000可以用于执行前述实施例一中AP的功能:处理器1001可以用于执行图6中的步骤S101和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图6中的步骤S102和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例一中STA的功能:处理器1001可以用于执行图6中的步骤S103和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图6中的步骤S104和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例二中AP的功能:处理器1001可以用于执行图7中的步骤S201和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图7中的步骤S202和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例二中STA的功能:处理器1001可以用于执行图7中的步骤S203和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图7中的步骤S204和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例三中AP的功能:处理器1001可以用于执行图9中的步骤S301和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图9中的步骤S302和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例三中STA的功能:处理器1001可以用于执行图9中的步骤S303和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图9中的步骤S304和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例四中AP的功能:处理器1001可以用于执行图12中的步骤S401和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图12中的步骤S402和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例四中STA的功能:处理器1001可以用于执行图12中的步骤S403和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图12中的步骤S404和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传 递。
在上述任一种设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序可能固化在处理器1000中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图18的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的AP和STA,可以由通用处理器来实现。
实现AP的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中AP的功能。具体地,该处理电路用于执行图6中的步骤S101和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图6中的步骤S102和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例二中AP的功能。具体地,该处理电路用于执行图7中的步骤S201和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图7中的步骤S202和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例三中AP的功能。具体地,该处理电路用于执行图9中的步骤S301和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图9中的步骤S302和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例四中AP的功能。具体地,该处理电路用于执行图12中的步骤S401和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图12中的步骤S402和/或用于本文所描述的技术的其它过程。
实现STA的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中STA的功能。具体地,该处理电路用于执行图6中的步骤S103和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图6中的步骤S104和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例二中STA的功能。具体地,该处理电路用于执行图7中的步骤S203和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图7中的步骤S204和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例三中STA的功能。具体地,该处理电路用于执行图9中的步骤S303和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图9中的步骤S304和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例四中STA的功能。具体地,该处理电路用于执行图12中的步骤S403和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图12中的步骤S404和/或用于本文所描述的技术的其它过程。
应理解,上述各种产品形态的通信装置,具有上述方法实施例中AP或STA的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种无线通信系统,包括AP和STA,该AP和STA可以执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (27)

  1. 一种物理层协议数据单元PPDU的上行参数指示方法,其特征在于,包括:
    接入点AP生成触发帧,所述触发帧中包括上行长度字段,所述上行长度字段用于指示基于触发的高效物理层数据协议单元HE TB PPDU和极高吞吐率物理层数据协议单元EHT PPDU中传统信令L-SIG字段所指示的长度,或者,所述上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;
    所述AP发送所述触发帧。
  2. 一种物理层协议数据单元PPDU的上行参数指示方法,其特征在于,包括:
    站点STA接收触发帧,所述触发帧中包括上行长度字段,所述上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,所述上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;
    所述STA生成EHT PPDU,所述EHT PPDU中L-SIG字段所指示的长度等于所述上行长度字段所指示的长度值加2;
    所述STA发送生成的所述EHT PPDU。
  3. 根据权利要求1或2所述的方法,其特征在于,所述上行长度字段所指示的长度值为正整数,且为3的倍数减2。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述触发帧中公共信息字段的预留比特和所述公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者所述触发帧中EHT公共信息字段和所述触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;
    其中,所述触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述触发帧还包括指示信息,所述指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差。
  6. 根据权利要求1-5所述的方法,其特征在于,所述EHT PPDU的EHT-LTF符号个数与EHT数据符号个数之和等于所述HE TB PPDU的HE-LTF符号个数与HE数据符号个数之和。
  7. 根据权利要求5或6所述的方法,其特征在于,所述指示信息携带于所述触发帧的公共信息字段的预留比特中或者携带于所述触发帧的EHT公共信息字段中。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述触发帧还用于指示上行调度的EHT PPDU的类型,所述EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU。
  9. 根据权利要求8所述的方法,其特征在于,所述EHT PPDU的类型由所述触发帧的触发帧类型字段指示,或者由所述触发帧的预留比特指示。
  10. 根据权利要求8或9所述的方法,其特征在于,所述触发帧指示上行调度的EHT PPDU的类型为单用户EHT PPDU,所述触发帧还用于指示上行调度的EHT PPDU是否为EHT单用户室内低功耗SU LPI PPDU。
  11. 根据权利要求10所述的方法,其特征在于,所述上行调度的EHT PPDU是否为EHT SU LPI PPDU由所述触发帧的调制与编码策略字段指示,或者由所述触发帧中EHT用户信息字段的预留比特指示。
  12. 一种通信装置,其特征在于,包括:
    处理单元,用于生成触发帧,所述触发帧中包括上行长度字段,所述上行长度字段用于指示基于触发的高效物理层数据协议单元HE TB PPDU和极高吞吐率物理层数据协议单元EHT PPDU中传统信令L-SIG字段所指示的长度,或者,所述上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;
    收发单元,用于发送所述触发帧。
  13. 一种通信装置,其特征在于,包括:
    收发单元,用于接收触发帧,所述触发帧中包括上行长度字段,所述上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,所述上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;
    处理单元,用于生成EHT PPDU,所述EHT PPDU中L-SIG字段所指示的长度等于所述上行长度字段所指示的长度值加2;
    所述收发单元,还用于发送生成的所述EHT PPDU。
  14. 根据权利要求12或13所述的通信装置,其特征在于,所述上行长度字段所指示的长度值为正整数,且为3的倍数减2。
  15. 根据权利要求12-14任一项所述的通信装置,其特征在于,所述触发帧中公共信息字段的预留比特和所述公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽,或者所述触发帧中EHT公共信息字段和所述触发帧中公共信息字段的HE上行带宽字段共同指示发送EHT PPDU所使用的上行带宽;
    其中,所述触发帧中公共信息字段的HE上行带宽字段用于指示发送HE TB PPDU所使用的上行带宽。
  16. 根据权利要求12-15任一项所述的通信装置,其特征在于,所述触发帧还包括指示信息,所述指示信息用于指示EHT-LTF符号个数与HE-LTF符号个数之差。
  17. 根据权利要求12-16任一项所述的通信装置,其特征在于,所述EHT PPDU的EHT-LTF符号个数与EHT数据符号个数之和等于所述HE TB PPDU的HE-LTF符号个数与 HE数据符号个数之和。
  18. 根据权利要求16或17所述的通信装置,其特征在于,所述指示信息携带于所述触发帧的公共信息字段的预留比特中或者携带于所述触发帧的EHT公共信息字段中。
  19. 根据权利要求12-18任一项所述的通信装置,其特征在于,所述触发帧还用于指示上行调度的EHT PPDU的类型,所述EHT PPDU的类型包括基于触发的EHT PPDU和单用户EHT PPDU。
  20. 根据权利要求19所述的通信装置,其特征在于,所述EHT PPDU的类型由所述触发帧的触发帧类型字段指示,或者由所述触发帧的预留比特指示。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述触发帧指示上行调度的EHT PPDU的类型为单用户EHT PPDU,所述触发帧还用于指示上行调度的EHT PPDU是否为EHT单用户室内低功耗SU LPI PPDU。
  22. 根据权利要求21所述的通信装置,其特征在于,所述上行调度的EHT PPDU是否为EHT SU LPI PPDU由所述触发帧的调制与编码策略字段指示,或者由所述触发帧中EHT用户信息字段的预留比特指示。
  23. 一种通信装置,其特征在于,包括处理器和收发器,所述处理器用于生成触发帧,所述触发帧中包括上行长度字段,所述上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,所述上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;所述收发器用于发送所述触发帧。
  24. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于接收触发帧,所述触发帧中包括上行长度字段,所述上行长度字段用于指示HE TB PPDU和EHT PPDU中L-SIG字段所指示的长度,或者,所述上行长度字段用于指示EHT PPDU中L-SIG字段所指示的长度;所述处理器用于生成EHT PPDU,所述EHT PPDU中L-SIG字段所指示的长度等于所述上行长度字段所指示的长度值加2;所述收发器还用于发送生成的所述EHT PPDU。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
  26. 一种包含指令的计算机程序产品,其特征在于,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
  27. 一种芯片或芯片系统,其特征在于,包括输入输出接口和处理电路,所述输入输出接口用于接收代码指令并传输至所述处理电路,所述处理电路用于运行所述代码指令以执行如权利要求1-11任一项所述的方法。
PCT/CN2021/113629 2020-08-21 2021-08-19 Ppdu的上行参数指示方法及相关装置 WO2022037657A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3192614A CA3192614A1 (en) 2020-08-21 2021-08-19 Method for indicating uplink parameter of ppdu and related apparatus
EP21857746.8A EP4195779A4 (en) 2020-08-21 2021-08-19 UPLINK PARAMETER INDICATION METHOD FOR PPDU AND RELATED DEVICE
JP2023512440A JP2023538642A (ja) 2020-08-21 2021-08-19 Ppduの上りリンク・パラメータ指示方法および関連する装置
AU2021329841A AU2021329841A1 (en) 2020-08-21 2021-08-19 Method for indicating uplink parameter of ppdu and related apparatus
KR1020237009577A KR20230053676A (ko) 2020-08-21 2021-08-19 Ppdu의 업링크 파라미터를 지시하는 방법 및 관련 장치
MX2023002132A MX2023002132A (es) 2020-08-21 2021-08-19 Método para indicar el parámetro de enlace ascendente de ppdu y aparato relacionado.
US18/172,105 US11930493B2 (en) 2020-08-21 2023-02-21 Method for indicating uplink parameter of PPDU and related apparatus
US18/430,084 US20240172218A1 (en) 2020-08-21 2024-02-01 Method for indicating uplink parameter of ppdu and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010852462.1A CN114080005A (zh) 2020-08-21 2020-08-21 Ppdu的上行参数指示方法及相关装置
CN202010852462.1 2020-08-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/172,105 Continuation US11930493B2 (en) 2020-08-21 2023-02-21 Method for indicating uplink parameter of PPDU and related apparatus

Publications (1)

Publication Number Publication Date
WO2022037657A1 true WO2022037657A1 (zh) 2022-02-24

Family

ID=80282573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113629 WO2022037657A1 (zh) 2020-08-21 2021-08-19 Ppdu的上行参数指示方法及相关装置

Country Status (9)

Country Link
US (2) US11930493B2 (zh)
EP (1) EP4195779A4 (zh)
JP (1) JP2023538642A (zh)
KR (1) KR20230053676A (zh)
CN (2) CN116347566B (zh)
AU (1) AU2021329841A1 (zh)
CA (1) CA3192614A1 (zh)
MX (1) MX2023002132A (zh)
WO (1) WO2022037657A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043655A1 (ko) * 2022-08-26 2024-02-29 주식회사 윌러스표준기술연구소 트리거 프레임을 지원하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116528371B (zh) * 2020-10-28 2024-02-13 华为技术有限公司 Ppdu的上行带宽指示方法及相关装置
CN117318902A (zh) * 2022-06-16 2023-12-29 华为技术有限公司 基于超宽带传输物理层协议数据单元的方法和装置
CN117595972A (zh) * 2022-08-19 2024-02-23 华为技术有限公司 物理层配置的指示方法及相关装置
CN118118125A (zh) * 2022-11-29 2024-05-31 华为技术有限公司 一种ppdu传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797278A (zh) * 2015-08-06 2017-05-31 Lg电子株式会社 在无线lan系统中利用预定二进制序列生成训练信号的方法和设备
CN110730050A (zh) * 2018-07-17 2020-01-24 华为技术有限公司 一种通信方法及装置
WO2020122530A1 (ko) * 2018-12-12 2020-06-18 엘지전자 주식회사 무선랜 시스템에서 stf 신호를 생성하는 방법 및 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106879070B (zh) * 2015-12-11 2020-07-24 华为技术有限公司 一种无线局域网中触发帧的传输方法及装置
CN107087304B (zh) 2016-02-15 2021-07-09 华为技术有限公司 一种通信方法、接入点以及站点
US10575249B2 (en) * 2016-11-22 2020-02-25 Frontside Transmitting PPDU
CN109803392B (zh) * 2017-11-17 2021-11-19 华为技术有限公司 数据传输方法及装置
US10925065B2 (en) 2018-06-15 2021-02-16 Intel Corporation Extreme high throughput physical layer data rate
CN116318583B (zh) * 2018-07-09 2023-12-08 华为技术有限公司 一种信令字段指示方法及装置
CA3072820C (en) 2018-08-23 2023-02-14 Lg Electronics Inc. Method and device for transmitting and receiving information about size of resource unit in wireless local area network system
US11711183B2 (en) 2018-09-04 2023-07-25 Qualcomm Incorporated Protocols for multi-access point coordinated multi-user transmissions
CN113169948B (zh) * 2018-11-29 2024-04-19 Lg电子株式会社 在无线lan系统中发送eht ppdu的方法和设备
US20190097850A1 (en) * 2018-11-30 2019-03-28 Thomas Kenney Preamble design for extremely high throughput wireless communication with backward compatibility
US11128515B2 (en) * 2019-04-30 2021-09-21 Intel Corporation Extreme high throughput future proof preamble design
US11224058B2 (en) * 2019-12-17 2022-01-11 Mediatek Inc. Device and method for generating a physical layer convergence procedure (PLCP) using aggregation operation
US20210288768A1 (en) * 2020-03-13 2021-09-16 Qualcomm Incorporated Distributed tone mapping for power spectral density (psd) limits
WO2021222374A1 (en) * 2020-04-29 2021-11-04 Interdigital Patent Holdings, Inc. Coordinated multi-access point transmissions for wireless local area network systems
GB2595517B (en) * 2020-05-29 2022-11-02 Canon Kk Methods and apparatuses for synchronization in a multi-AP coordination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797278A (zh) * 2015-08-06 2017-05-31 Lg电子株式会社 在无线lan系统中利用预定二进制序列生成训练信号的方法和设备
CN110730050A (zh) * 2018-07-17 2020-01-24 华为技术有限公司 一种通信方法及装置
WO2020122530A1 (ko) * 2018-12-12 2020-06-18 엘지전자 주식회사 무선랜 시스템에서 stf 신호를 생성하는 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENG CAILIAN; FANG XUMING; HAN XIAO; WANG XIANBIN; YAN LI; HE RONG; LONG YAN; GUO YUCHEN: "IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities", IEEE COMMUNICATIONS SURVEYS & TUTORIALS, IEEE, USA, vol. 22, no. 4, 29 July 2020 (2020-07-29), USA , pages 2136 - 2166, XP011821374, DOI: 10.1109/COMST.2020.3012715 *
See also references of EP4195779A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043655A1 (ko) * 2022-08-26 2024-02-29 주식회사 윌러스표준기술연구소 트리거 프레임을 지원하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말

Also Published As

Publication number Publication date
CN116347566B (zh) 2024-03-01
JP2023538642A (ja) 2023-09-08
CN116347566A (zh) 2023-06-27
US20240172218A1 (en) 2024-05-23
US20230209539A1 (en) 2023-06-29
CN114080005A (zh) 2022-02-22
EP4195779A1 (en) 2023-06-14
US11930493B2 (en) 2024-03-12
EP4195779A4 (en) 2024-01-31
AU2021329841A1 (en) 2023-03-30
MX2023002132A (es) 2023-05-18
KR20230053676A (ko) 2023-04-21
CA3192614A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
WO2022037657A1 (zh) Ppdu的上行参数指示方法及相关装置
WO2022042268A1 (zh) 多链路通信的链路指示方法及相关装置
WO2022100492A1 (zh) Ppdu中空间复用参数字段的确定方法及相关装置
WO2022068689A1 (zh) 物理层协议数据单元ppdu传输方法及相关装置
TWI792824B (zh) 時間資源分配和接收方法及相關裝置
WO2022257836A1 (zh) Ppdu传输方法及相关装置
TWI848797B (zh) Ppdu的上行頻寬指示方法及相關裝置
WO2022127377A1 (zh) 空间复用参数指示和空间复用参数字段的确定方法及装置
RU2804327C1 (ru) Способ указания параметров восходящей линии связи ppdu и соответствующее устройство
TWI854174B (zh) 空間複用參數指示和空間複用參數欄位的確定方法及裝置
TWI853619B (zh) Ppdu中空間複用參數欄位的確定方法及相關裝置
WO2022089549A1 (zh) 前导码打孔传输方法及相关装置
WO2023030481A1 (zh) 物理层协议数据单元传输方法及相关装置
CN114501638A (zh) Ppdu的上行带宽指示方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512440

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3192614

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202317012111

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023003094

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021857746

Country of ref document: EP

Effective date: 20230306

ENP Entry into the national phase

Ref document number: 20237009577

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021329841

Country of ref document: AU

Date of ref document: 20210819

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023003094

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230217