WO2022127377A1 - 空间复用参数指示和空间复用参数字段的确定方法及装置 - Google Patents

空间复用参数指示和空间复用参数字段的确定方法及装置 Download PDF

Info

Publication number
WO2022127377A1
WO2022127377A1 PCT/CN2021/125779 CN2021125779W WO2022127377A1 WO 2022127377 A1 WO2022127377 A1 WO 2022127377A1 CN 2021125779 W CN2021125779 W CN 2021125779W WO 2022127377 A1 WO2022127377 A1 WO 2022127377A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
eht
ppdu
sig
srp
Prior art date
Application number
PCT/CN2021/125779
Other languages
English (en)
French (fr)
Inventor
于健
淦明
狐梦实
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2023007002A priority Critical patent/MX2023007002A/es
Priority to CN202180037320.2A priority patent/CN115669147A/zh
Priority to EP21905306.3A priority patent/EP4255075A4/en
Priority to AU2021400179A priority patent/AU2021400179A1/en
Priority to CA3202490A priority patent/CA3202490A1/en
Priority to KR1020237023771A priority patent/KR20230121109A/ko
Priority to JP2023536181A priority patent/JP2023553662A/ja
Publication of WO2022127377A1 publication Critical patent/WO2022127377A1/zh
Priority to US18/335,042 priority patent/US20230328718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method for indicating spatial multiplexing parameters, a method for determining a spatial multiplexing parameter field in a corresponding physical layer protocol data unit PPDU, a trigger frame transmission method, a PPDU transmission method and related devices .
  • Wireless local area networks have been developed for many generations, including 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, and 802.11be, which is currently under discussion.
  • the 802.11ax standard may be called a high efficient (HE) standard
  • the 802.11be standard may be called an extremely high throughput (extremely high throughput, EHT) standard or a Wi-Fi7 standard.
  • EHT extremely high throughput
  • Wi-Fi7 Wi-Fi7
  • 802.11be will use ultra-large bandwidth, such as 320MHz, to achieve ultra-high transmission rates and support scenarios for ultra-dense users.
  • HE site a site that supports the 802.11ax standard but does not support the 802.11be standard
  • an EHT site a site that supports the 802.11be standard
  • 802.11ax WLAN devices can only support half-duplex transmission, that is, on the same spectrum width or channel, only one device can send information. Other devices can only receive signals and cannot transmit to avoid interference with the current transmitting device.
  • BSS basic service set
  • OBSS overlapping basic service sets
  • 802.11ax proposes a spatial reuse method.
  • 802.11ax introduces spatial multiplexing in the trigger frame-based uplink scheduling transmission method.
  • a station sends a high efficient trigger based physical layer protocol data unit (HE TB PPDU)
  • HE TB PPDU high efficient trigger based physical layer protocol data unit
  • UL SRP uplink spatial reuse parameters
  • UL PSR uplink parameterized spatial reuse
  • the 802.11be standard will continue to use the trigger frame-based uplink scheduling transmission method in the 802.11ax standard, but how to design a trigger frame to schedule EHT sites, or to schedule HE sites and EHT sites at the same time, has become an urgent problem to be solved.
  • Embodiments of the present application provide a method and a related device for indicating spatial multiplexing parameters in a trigger frame, and a method and related device for determining a spatial multiplexing parameter field in a PPDU.
  • the technical solutions provided by the embodiments of the present application can not change the frame structure of the EHT TB PPDU, and set the space of the EHT TB PPDU according to the trigger frame in the scenario of scheduling the EHT site or scheduling the HE site and the EHT site simultaneously.
  • One or both of the multiplexing parameter field and the U-SIG reserved field are examples of the trigger frame.
  • the present application provides a method for indicating spatial multiplexing parameters in a trigger frame, including:
  • the access point AP sends a trigger frame, and the trigger frame is used to trigger the station to send a trigger-based extremely high throughput physical layer protocol data unit EHT TB PPDU;
  • the AP receives the EHT TB PPDU sent by the station, and the value indicated by the spatial multiplexing parameter SRP in the universal signaling field U-SIG of the EHT TB PPDU is based on one or more of the common information fields of the trigger frame One or both of the values indicated by the uplink spatial multiplexing parameter UL SRP field and the values indicated by the uplink EHT spatial multiplexing parameter UL EHT SRP are determined.
  • the trigger frame is also used to trigger the station to send the HE TB PPDU.
  • the values of the 4 SRP fields included in the HE-SIG-A of the HE TB PPDU are respectively copied to the values of the above 4 UL SRP fields.
  • the length of each UL SRP field is 4 bits
  • the length of each SRP field in HE-SIG-A is also 4 bits.
  • Implementing the method provided by the first aspect of the present application does not change the content of the trigger frame (that is, does not change the UL SRP value in the trigger frame), so that the HE site can set the spatial multiplexing parameters in the original way, and will not increase the trigger frame. Signaling overhead of the frame, and there is no loss in granularity for HE stations.
  • the EHT The spatial multiplexing parameters in the U-SIG of the TB PPDU are set so that the trigger frame can schedule the EHT site to send the uplink EHT TB PPDU, and also enable the HE site and the EHT site to be scheduled under the same trigger frame; in addition, the EHT TB
  • the U-SIG reserved field in the U-SIG of the PPDU may be set to a default value.
  • the present application provides a method for determining a spatial multiplexing parameter field in a PPDU.
  • the method includes: a station STA receives a trigger frame, where the trigger frame is used to trigger the station to send a very high throughput physical layer protocol data unit EHT TB PPDU;
  • the STA sends an EHT TB PPDU, the value indicated by the SRP in the U-SIG of the EHT TB PPDU is based on the value indicated by one or more UL SRP fields in the common information field of the trigger frame, and the uplink EHT spatial multiplexing parameter Either or both of the values indicated by the UL EHT SRP are determined.
  • the trigger frame is also used to trigger the station to send the HE TB PPDU.
  • the values of the 4 SRP fields included in the HE-SIG-A of the HE TB PPDU are respectively copied to the values of the above 4 UL SRP fields.
  • the length of each UL SRP field is 4 bits
  • the length of each SRP field in HE-SIG-A is also 4 bits.
  • the EHT The spatial multiplexing parameters in the U-SIG of the TB PPDU are set so that the trigger frame can schedule the EHT site to send the uplink EHT TB PPDU, and also enable the HE site and the EHT site to be scheduled under the same trigger frame; in addition, the EHT TB
  • the U-SIG reserved field in the U-SIG of the PPDU may be set to a default value.
  • the present application provides a communication device applied to a wireless local area network (WLAN), where the communication device may be an access point AP or a chip in the access point AP, including:
  • WLAN wireless local area network
  • a transceiver for sending the trigger frame, where the trigger frame is used to trigger a station to send a trigger-based extremely high throughput physical layer protocol data unit EHT TB PPDU;
  • the transceiver is configured to receive the EHT TB PPDU sent by the station, and the value indicated by the spatial multiplexing parameter SRP in the universal signaling field U-SIG of the EHT TB PPDU is based on the value in the common information field of the trigger frame.
  • One or two of the values indicated by one or more uplink spatial multiplexing parameters UL SRP fields and the values indicated by the uplink EHT spatial multiplexing parameters UL EHT SRP are determined.
  • the communication device provided in the third aspect can implement the method provided in the above-mentioned first aspect and obtain corresponding technical effects, which are not repeated here.
  • the present application provides a communication device applied to a wireless local area network (WLAN), including:
  • a transceiver configured to receive a trigger frame, where the trigger frame is used to trigger the communication device to send an extremely high throughput physical layer protocol data unit EHT TB PPDU;
  • a processor configured to generate the EHT TB PPDU; the value indicated by the SRP in the U-SIG of the EHT TB PPDU is based on the value indicated by one or more UL SRP fields in the common information field of the trigger frame, and the uplink EHT One or both of the values indicated by the spatial multiplexing parameter UL EHT SRP are determined;
  • the transceiver for sending the EHT TB PPDU.
  • the communication device provided in the fourth aspect can implement the method provided in the above-mentioned second aspect and obtain corresponding technical effects, which will not be repeated here.
  • the common information field of the trigger frame includes 4 uplink space multiplexing parameters UL SRP field, the four UL SRP fields are respectively the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field;
  • the U-SIG of the EHT TB PPDU includes an SRP field, and the one SRP field
  • the value is equal to the minimum value among the values indicated by the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field; or, the value of the one SRP field is equal to the UL SRP1 field, the UL SRP2 field, the UL SRP2 field Any of the values indicated by the SRP3 field and the UL SRP4 field.
  • the UL EHT SRP field is located in the reserved field of the public information field;
  • the U-SIG of the EHT TB PPDU includes an SRP field, and the value of the one SRP field is equal to the value indicated by the UL EHT SRP field.
  • the common information field of the trigger frame includes 4 uplink space multiplexing parameters UL SRP field, the four UL SRP fields are respectively the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field; the UL EHT SRP field is located in the reserved field of the public information field; the EHT TB
  • the PPDU is a non-aggregated PPDU, and its U-SIG includes two SRP fields, namely the SRP1 field and the SRP2 field; the value of the SRP1 field is equal to the minimum value or any value indicated by the UL SRP1 field and the UL SRP2 field.
  • a value; the value of the SRP2 field is equal to the minimum value or any value among the values indicated by the UL SRP3 field and the UL SRP4 field.
  • the common information field of the trigger frame includes 4 uplink space multiplexing parameters UL SRP field, the four UL SRP fields are respectively the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field; the UL EHT SRP field is located in the reserved field of the public information field; the EHT TB
  • the bandwidth of the PPDU is 320MHz or the EHT TB PPDU is a partial PPDU of the aggregated PPDU, and its U-SIG includes two SRP fields, namely the SRP1 field and the SRP2 field, the value of the SRP1 field is equal to the value of the SRP2 field , all equal to the minimum value or any value among the values indicated by the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field.
  • the common information field of the trigger frame includes 4 uplink space multiplexing parameters UL SRP field, the four UL SRP fields are respectively the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field; the UL EHT SRP field is located in the reserved field of the public information field; the EHT TB The bandwidth of the PPDU is 320MHz or the EHT TB PPDU is a partial PPDU of the aggregated PPDU, and its U-SIG includes two SRP fields, namely the SRP1 field and the SRP2 field, the value of the SRP1 field is equal to the UL SRP1 field, The minimum value or any value among the values indicated by the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field; the value of the SRP2 field is equal to the value of the
  • the general signaling field U-SIG of the EHT TB PPDU further includes U- SIG reserved field; the value of the U-SIG reserved field is a default value.
  • the present application provides a method for transmitting a trigger frame, the method comprising: an access point AP sending a trigger frame, the trigger frame being used to trigger a station to send a trigger-based extremely high throughput physical layer protocol data unit EHT TB PPDU; the trigger frame further includes a U-SIG reservation indication field for indicating the value of the U-SIG reservation field in the EHT TB PPDU;
  • the AP receives the EHT TB PPDU sent by the station, and the value of the U-SIG reservation field in the general signaling field U-SIG of the EHT TB PPDU is based on the U-SIG reservation of the trigger frame. Indicates that the value of the field is determined.
  • the trigger frame is also used to trigger the station to send the HE TB PPDU.
  • the values of the 4 SRP fields included in the HE-SIG-A of the HE TB PPDU are respectively copied to the values of the above 4 UL SRP fields.
  • the length of each UL SRP field is 4 bits
  • the length of each SRP field in HE-SIG-A is also 4 bits.
  • the trigger frame is used to indicate the value of the U-SIG reservation field in the EHT TB PPDU, so that the trigger frame can schedule the EHT station to send the uplink EHT TB PPDU and set the U-SIG reservation field according to the indication of the trigger frame.
  • the value of also enables the HE station and the EHT station to be scheduled under the same trigger frame.
  • the present application provides a method for determining a spatial multiplexing parameter field in a physical layer protocol data unit PPDU, the method comprising: a station STA receiving a trigger frame, where the trigger frame is used to trigger the station to send an EHT TB PPDU;
  • the trigger frame further includes a U-SIG reservation indication field for indicating the value of the U-SIG reservation field in the EHT TB PPDU;
  • the STA sends an EHT TB PPDU, and the value of the U-SIG reservation field in the general signaling field U-SIG of the EHT TB PPDU is determined based on the value of the U-SIG reservation indication field of the trigger frame .
  • the trigger frame is also used to trigger the station to send the HE TB PPDU.
  • the values of the 4 SRP fields included in the HE-SIG-A of the HE TB PPDU are respectively copied to the values of the above 4 UL SRP fields.
  • the length of each UL SRP field is 4 bits
  • the length of each SRP field in HE-SIG-A is also 4 bits.
  • the present application provides a WLAN communication device applied to a wireless local area network, where the communication device may be an AP or a chip in the AP, such as a Wi-Fi chip.
  • the communication device includes:
  • the processor is used to generate a trigger frame, and the trigger frame is used to trigger a station to send a trigger-based very high throughput physical layer protocol data unit EHT TB PPDU; - U-SIG reservation indication field for the value of the SIG reservation field;
  • the transceiver is further configured to receive the EHT TB PPDU sent by the station, and the value of the U-SIG reserved field in the general signaling field U-SIG of the EHT TB PPDU is based on the The value of the U-SIG reservation indication field is determined.
  • the trigger frame is also used to trigger the station to send the HE TB PPDU.
  • the values of the 4 SRP fields included in the HE-SIG-A of the HE TB PPDU are respectively copied to the values of the above 4 UL SRP fields.
  • the length of each UL SRP field is 4 bits
  • the length of each SRP field in HE-SIG-A is also 4 bits.
  • the present application provides a communication device applied to a wireless local area network WLAN, where the communication device may be a STA or a chip in the STA, such as a Wi-Fi chip.
  • the communication device includes: a transceiver for receiving a trigger frame, where the trigger frame is used to trigger the station to send an EHT TB PPDU; the trigger frame further includes a U-SIG reserved field for indicating the EHT TB PPDU The value of the U-SIG reservation indication field;
  • a processor configured to generate the EHT TB PPDU, the value of the U-SIG reservation field in the general signaling field U-SIG of the EHT TB PPDU, based on the U-SIG reservation indication of the trigger frame The value of the field is determined;
  • the transceiver is further configured to send an EHT TB PPDU, where the value of the U-SIG reservation field in the general signaling field U-SIG of the EHT TB PPDU is based on the U-SIG reservation of the trigger frame Indicates that the value of the field is determined.
  • the trigger frame is also used to trigger the station to send the HE TB PPDU.
  • the values of the 4 SRP fields included in the HE-SIG-A of the HE TB PPDU are respectively copied to the values of the above 4 UL SRP fields.
  • the length of each UL SRP field is 4 bits
  • the length of each SRP field in HE-SIG-A is also 4 bits.
  • the U-SIG reservation indication field is located in the user information of the trigger frame In the special user information field of the list field.
  • the associated identifier AID12 of the special user information field is a preset value or is not. Full AID12 value.
  • the special user information field further includes: an UL for U-SIG SRP field; or two UL SRP fields for U-SIG.
  • the common information field of the trigger frame includes 4 uplink space multiplexing parameters UL The SRP field; or the common information field of the trigger frame further includes the uplink EHT spatial multiplexing parameter UL EHT SRP field located in the reserved field of the common information field.
  • the present application provides a method for a trigger frame indicating spatial multiplexing parameters, the method comprising: an AP sending a trigger frame, the trigger frame being used to trigger a station to send an EHT TB PPDU; and the AP receiving the EHT TB PPDU sent by the station.
  • the trigger frame carries first indication information, and the first indication information is used to indicate the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU.
  • the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU is determined based on the first indication information.
  • the present application provides a method for determining a spatial multiplexing parameter field in a PPDU, the method comprising: a STA receiving a trigger frame, the trigger frame being used to trigger a station to send an EHT TB PPDU; and the STA sending an EHT TB PPDU.
  • the trigger frame carries first indication information, and the first indication information is used to indicate the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU.
  • the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU is determined based on the first indication information.
  • the present application provides a communication device applied to a WLAN, where the communication device is an access point AP or a chip in the AP, and includes:
  • the processor is used to generate a trigger frame; the trigger frame is used to trigger the station to send the EHT TB PPDU; the AP receives the EHT TB PPDU sent by the station.
  • the trigger frame carries first indication information, and the first indication information is used to indicate the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU.
  • the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU is determined based on the first indication information.
  • Transceiver for sending trigger frames.
  • the present application provides a communication device applied to a WLAN, where the communication device is a station STA or a chip in the STA, and includes:
  • the transceiver is used to receive a trigger frame, and the trigger frame is used to trigger the station to send the EHT TB PPDU; the trigger frame carries first indication information, and the first indication information is used to indicate the SRP1 field in the U-SIG of the EHT TB PPDU and / or the value of the SRP2 field.
  • a processor configured to generate an EHT TB PPDU, where the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU is determined based on the first indication information;
  • the transceiver is also used for sending EHT TB PPDU.
  • the first indication information is located in the public information field of the trigger frame, and the public information
  • the field includes 4 UL SRP fields, and the 4 UL SRP fields are respectively used to indicate the values of the 4 SRP fields in the HE TB PPDU.
  • the first indication information is located in the public information field of the trigger frame, and the public information
  • the fields include the UL EHT SRP field, which alone or together with the 4 UL SRP fields indicates the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU.
  • the first indication information is located in the UL SRP field of the user information field of the above-mentioned trigger frame .
  • a part of the first indication information is located in the 4 ULs of the common information field of the above trigger frame SRP field, part of which is located in the UL SRP field of the special user information field of the trigger frame; wherein 4 UL SRP fields and the UL SRP field located in the special user information field together indicate the SRP1 field in the U-SIG of the EHT TB PPDU and/ or the value of the SRP2 field.
  • a part of the first indication information is located in the public information field of the trigger frame, and the public The information field includes the UL EHT SRP field, a part of which is located in the UL SRP field of the special user information field of the trigger frame; wherein the UL EHT SRP field and the UL SRP field located in the special user information field together indicate in the U-SIG of the EHT TB PPDU The value of the SRP1 field and/or the SRP2 field.
  • the first indication information is located in the special user information field of the trigger frame.
  • the value of the AID12 field of the special user information field is a preset value or incomplete The AID12 value.
  • the trigger frame is further used to trigger the station to send the HE TB PPDU.
  • the values of the 4 SRP fields included in the HE-SIG-A of the HE TB PPDU are respectively copied to the values of the above 4 UL SRP fields.
  • the length of each UL SRP field is 4 bits, and the length of each SRP field in HE-SIG-A is also 4 bits.
  • This scheme uses a special user information field in the trigger frame to indicate a separate spatial multiplexing parameter for the EHT TB PPDU. Its meaning is clear and does not affect the scheduling of HE sites. HE sites can be scheduled under the same trigger frame. and EHT site.
  • the total bandwidth of the EHT TB PPDU is 320MHz.
  • the present application provides a spatial multiplexing method, the method comprising: a communication device according to the values respectively indicated by the SRP1 field and the SRP2 field included in the U-SIG of the EHT TB PPDU, and the common information field of the trigger frame includes The values indicated by the four UL SRP fields respectively, trigger one or more of the values indicated by the UL EHT SRP in the public information field of the frame to determine the transmit power of the PPDU; the communication device sends the PPDU according to the transmit power of the PPDU .
  • the communication device may be either an AP or a STA.
  • the above PPDU is a parameterized spatial reuse reception (PSRR) PPDU.
  • PSRR spatial reuse reception
  • the above PPDU is a response frame in response to the PSRR PPDU.
  • the present application provides a communication device.
  • the communication device may be an AP or a STA. Further, the communication device may be a chip in the AP or STA, such as a Wi-Fi chip.
  • the communication device includes: a determining unit configured to indicate the values respectively indicated by the SRP1 field and the SRP2 field included in the U-SIG of the EHT TB PPDU, and/or the 4 UL SRP fields included in the public information field of the trigger frame, respectively. The value of , determines the transmit power of the PPDU; the transceiver unit is used to send the PPDU according to the transmit power of the PPDU.
  • the communication device may be either an AP or a STA.
  • the above-mentioned PPDU is a PSRR PPDU.
  • the above PPDU is a response frame in response to the PSRR PPDU.
  • the method further includes: the communication device receives a trigger frame, where the trigger frame includes four UL SRP field, the value indicated by a UL SRP field is the sum of the transmit power of the first AP on a subchannel and the maximum interference power that the first AP can accept, and the communication device and the first AP are located in the same overlapping basic service set Inside OBSS.
  • the "first AP" here is the AP that sends the trigger frame, and is also the AP in the method for determining the spatial multiplexing parameter field in the above-mentioned PPDU.
  • the communication device and the first AP are not the same device.
  • This solution provides a spatial multiplexing method for EHT TB PPDU, which is compatible with the case of one or two SRP fields in U-SIG, and implements spatial multiplexing in the EHT standard, so that devices in overlapping basic service sets can transmit at the same time , improve the transmission efficiency.
  • the present application provides a device, which is implemented in the form of a functional unit, and includes a processing unit and a transceiver unit, wherein the processing unit is used to implement the functions of the processor mentioned in any of the above aspects,
  • the transceiver unit is used to implement the functions of the transceiver mentioned in any of the above aspects.
  • the present application provides a device, which is implemented in the form of a chip, and includes an input and output interface and a processing circuit.
  • the device is the chip in the communication device of the third aspect or the seventh aspect or the eleventh aspect, or the fourteenth aspect.
  • the communication device is an AP; the processing circuit in the chip is used to implement the processing function performed by the AP side of the third aspect or the seventh aspect or the eleventh aspect, or the fourteenth aspect.
  • the chip may further include the radio frequency circuit.
  • the device is a chip in the communication device of the fourth aspect or the eighth aspect or the twelfth aspect, or the fourteenth aspect.
  • the communication device is a STA; the processing circuit in the chip is used to implement the processing function performed by the AP side of the fourth aspect or the eighth aspect or the eleventh aspect, or the fourteenth aspect.
  • the chip may further include the radio frequency circuit.
  • the chip may further include the radio frequency circuit.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed on a computer, the computer is made to execute the above-mentioned first aspect, or the above-mentioned second aspect, Or the above-mentioned fifth aspect, or the above-mentioned sixth aspect, or the above-mentioned ninth aspect, or the above-mentioned tenth aspect, or the above-mentioned method of the thirteenth aspect.
  • the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to execute the above-mentioned first aspect, or the above-mentioned second aspect, or the above-mentioned fifth aspect, or the above-mentioned sixth aspect , or the method described in the above ninth aspect, or the above tenth aspect, or the above thirteenth aspect.
  • This embodiment of the present application does not change or increase the length of the U-SIG field of the EHT TB PPDU (the U-SIG field occupies 2 OFDM symbols, totaling 8 microseconds (us)), according to the indications of the 4 UL SRP fields in the trigger frame , one or more of the indication of the UL EHT SRP field in the trigger frame and the indication of the special user information field of the trigger frame to set the spatial multiplexing parameter field of the EHT TB PPDU, so that the HE site and the EHT site can Scheduling is accepted under the same trigger frame, and spatial multiplexing can be implemented in the EHT standard, so that WLAN devices in overlapping basic service sets can transmit at the same time, improving transmission efficiency.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2a is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • 2b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • Figure 3a is a schematic diagram of an OBSS formed by partially overlapping a BSS with another BSS;
  • Figure 3b is a schematic diagram of an OBSS formed by one BSS including another BSS;
  • FIG. 4 is a schematic diagram of an uplink scheduling transmission method based on a trigger frame in the 802.11ax standard
  • Fig. 5a is the frame format schematic diagram of trigger frame
  • Figure 5b is a schematic diagram of the frame format of the public information field and the user information field in the trigger frame of 802.11ax;
  • Fig. 6a is a kind of schematic diagram of the frame format of public information field and user information field in the trigger frame of 802.11be;
  • Figure 6b is a schematic diagram of the frame structure of the EHT TB PPDU
  • FIG. 7a is a first schematic flowchart of a method for indicating spatial multiplexing parameters in a trigger frame provided by an embodiment of the present application, and a method for determining a spatial multiplexing parameter field in a corresponding PPDU;
  • Figure 7b is a schematic diagram of the relationship between the U-SIG SRP field and the UL SRP field in the method shown in Figure 7a;
  • 8a is a second schematic flowchart of a method for indicating spatial multiplexing parameters in a trigger frame provided by an embodiment of the present application, and a method for determining a spatial multiplexing parameter field in a corresponding PPDU;
  • Figure 8b is a schematic diagram of the relationship between the U-SIG SRP1 field and the U-SIG SRP2 field and the UL SRP field in the method shown in Figure 8a;
  • FIG. 9 is a schematic time sequence diagram of simultaneously scheduling HE sites and EHT sites for uplink data transmission in a trigger frame provided by an embodiment of the present application.
  • Figure 10 is another schematic diagram of the frame format of the public information field and the user information field in the trigger frame of 802.11be;
  • FIG. 11 is a third schematic flowchart of a method for indicating spatial multiplexing parameters in a trigger frame provided by an embodiment of the present application, and a method for determining a spatial multiplexing parameter field in a PPDU;
  • Figure 12a is a schematic diagram of the relationship between the U-SIG SRP field and the ULEHT SRP field in the method shown in Figure 11;
  • Figure 12b is a schematic diagram of the relationship between the U-SIG SRP1 field and the U-SIG SRP2 field and the UL SRP field in the method shown in Figure 11;
  • Figure 12c is a schematic diagram of the relationship between the U-SIG SRP1 field and the U-SIG SRP2 field and the UL SRP field in the method shown in Figure 11;
  • Figure 13 is another schematic diagram of the frame format of the public information field and the user information field in the trigger frame of 802.11be;
  • FIG. 14 is a schematic flowchart of a trigger frame transmission method and a PPDU transmission method provided by an embodiment of the present application;
  • 15a is a schematic diagram of performing SRP indication of U-SIG in a trigger frame provided by an embodiment of the present application
  • FIG. 15b is another schematic diagram of performing SRP indication of U-SIG in a trigger frame provided by an embodiment of the present application.
  • 16 is a schematic flowchart of a spatial multiplexing method provided by an embodiment of the present application.
  • FIG. 17 is a schematic time sequence diagram of a spatial multiplexing method provided by an embodiment of the present application.
  • FIG. 18 is another schematic flowchart of the spatial multiplexing method provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication device 2 provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a communication device 3 provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • system architecture and/or application scenarios of the methods provided by the embodiments of the present application will be described below. It is understandable that the system architecture and/or application scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a method for indicating a spatial multiplexing parameter in a trigger frame, which can schedule an EHT site, or schedule an HE site and an EHT site at the same time.
  • an implementation method is: without changing its public information field, but in the user information list field part, use a certain special user information field to separately indicate the spatial multiplexing parameters in the EHT TB PPDU; another An implementation manner is: using some fields in the common information field to indicate the spatial multiplexing parameters in the EHT TB PPDU, so that there is no need to add a special user information field to the user information list field part. In another implementation manner, a special user information field is added to the user information list field part of the trigger frame to indicate the spatial multiplexing parameters and U-SIG reservation information in the EHT TB PPDU.
  • the embodiments of the present application do not change or increase the length of the U-SIG field of the EHT TB PPDU (the U-SIG field occupies 2 OFDM symbols, a total of 8 microseconds (us)), according to the trigger frame
  • the method for indicating the spatial multiplexing parameter in the trigger frame and the method for determining the spatial multiplexing parameter field in the PPDU provided in this embodiment can be applied to a wireless communication system, such as a wireless local area network system.
  • the method for determining the spatial multiplexing parameter field in the PPDU may be implemented by a communication device in a wireless communication system or a chip or processor in the communication device.
  • the communication device may be an access point device or a station device; the communication device may also be a wireless communication device that supports parallel transmission of multiple links, for example, the communication device may be referred to as a multi-link device , MLD) or multi-band devices.
  • MLD multi-link device
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system may include one or more APs (such as AP1 and AP2 in FIG. 2 ) and one or more STAs (such as STA1 , STA2 and STA3 in FIG.
  • the AP and the STA both support the WLAN communication protocol, and the communication protocol may include 802.11be (or Wi-Fi 7, EHT protocol), and may also include 802.11ax, 802.11ac and other protocols.
  • the communication protocol may also include a next-generation protocol of 802.11be, and the like.
  • the device implementing the method of the present application may be an AP or STA in the WLAN, or a chip or a processing system installed in the AP or STA.
  • An access point (such as AP1 or AP2 in FIG. 1 ) is a device with wireless communication function, supports communication using the WLAN protocol, and has the function of communicating with other devices (such as stations or other access points) in the WLAN network, Of course, it can also have the function of communicating with other devices.
  • an access point may be referred to as an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The device with these chips or processing system installed can be controlled by the chip or the processing system.
  • the AP in this embodiment of the present application is a device that provides services for the STA, and can support the 802.11 series of protocols.
  • the AP can be a communication entity such as a communication server, router, switch, and bridge; the AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • the AP can also be the chips and processing devices in these various forms of equipment. system, so as to implement the methods and functions of the embodiments of the present application.
  • a station (such as STA1, STA2 or STA3 in FIG. 1 ) is a device with wireless communication function, supports communication using WLAN protocol, and has the ability to communicate with other stations or access points in the WLAN network.
  • a station can be referred to as a non-access point station (non-access point station, non-AP STA).
  • STA is any user communication device that allows the user to communicate with the AP and then communicate with the WLAN.
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The devices on which these chips or processing systems are installed may implement the methods and functions of the embodiments of the present application under the control of the chips or processing systems.
  • the STA may be a tablet computer, a desktop computer, a laptop computer, a notebook computer, an Ultra-mobile Personal Computer (UMPC), a handheld computer, a netbook, a Personal Digital Assistant (PDA), a mobile phone, etc.
  • UMPC Ultra-mobile Personal Computer
  • PDA Personal Digital Assistant
  • the WLAN system can provide high-speed and low-latency transmission.
  • the WLAN system will be applied in more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry, or the Banking industry, used in corporate offices, stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • devices that support WLAN communication can be sensor nodes in smart cities (such as smart water meters, smart electricity meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, etc.) devices, display screens, TV sets, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart office (such as printers, projectors, Amplifiers, stereos, etc.), IoV devices in the Internet of Vehicles, infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.), and large-scale sports And equipment for music venues, etc.
  • the specific forms of the STA and the AP are not limited in the embodiments of the present application, which are only exemplary descriptions herein.
  • FIG. 2a is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • the AP may be multi-antenna/multi-radio, or may be single-antenna/single-radio, and the antenna/radio is used to send/receive data packets.
  • the antenna or radio frequency part of the AP can be separated from the main body part of the AP in a structure of a remote layout.
  • the AP may include a physical layer processing circuit and a medium access control processing circuit, the physical layer processing circuit may be used for processing physical layer signals, and the MAC layer processing circuit may be used for processing MAC layer signals.
  • FIG. 2b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • Figure 2b shows a schematic diagram of the STA structure with a single antenna/radio.
  • a STA may also be multi-antenna/multi-radio, and may be a device with more than two antennas, and the antenna/radio is used to send/receive data packets .
  • the antenna or radio frequency part of the STA may be separated from the main body part of the STA, in a structure of a remote layout.
  • the STA may include a PHY processing circuit and a MAC processing circuit
  • the physical layer processing circuit may be used for processing physical layer signals
  • the MAC layer processing circuit may be used for processing MAC layer signals.
  • OBSS Overlapping BSS
  • Overlapping basic service set A basic service set and the basic service set of the site work on the same channel, and the basic service set (part or all) is within the basic service area of the basic service set of the site, this part of the overlapping basic service set
  • the area is called overlapping basic service set(OBSS): A basic service set(BSS) operating on the same channel as the station's(STA's)BSS and within(either partly or wholly)its basic service area(BSA )).
  • the basic service area refers to the area containing the members of the basic service set, which may contain members of other BSSs (basic service area(BSA): The area containing the members of a basic service set(BSS).It might contain members of other BSSs).
  • Fig. 3a is a schematic diagram of an OBSS formed by partially overlapping one BSS with another BSS.
  • AP1, STA1 and STA3 belong to BSS1
  • AP2 and STA2 belong to BSS2
  • BSS1 and BSS2 have an overlapping area
  • AP1 and AP2 are located in the overlapping area of BSS1 and BSS2, that is, in the OBSS formed by BSS1 and BSS2.
  • Fig. 3b is a schematic diagram of an OBSS formed by one BSS containing another BSS.
  • AP1, STA1, and STA3 belong to BSS1
  • AP2 and STA2 belong to BSS2
  • BSS1 includes BSS2
  • AP1 and AP2 are located in the overlapping area of BSS1 and BSS2 (that is, the basic service area of BSS2 in Figure 3b), that is, located in BSS1 and BSS2 within the OBSS formed.
  • WLAN devices located in the same OBSS can receive information from two BSSs.
  • AP2 in another BSS can receive the information sent by AP1 and STA1, or AP2 can also receive the information sent by STA3;
  • AP2 can adaptively adjust the power of AP2 to send PPDUs to STA2 according to the spatial multiplexing parameters transmitted by AP1, so as to realize simultaneous transmission in the OBSS.
  • AP1 in another BSS can receive the information sent by AP2; AP1 can also adaptively adjust AP1 to STA1 according to the spatial multiplexing parameters passed by AP2 And/or the power of the STA3 to send the PPDU to achieve simultaneous transmission within the OBSS.
  • FIG. 4 is a schematic diagram of an uplink scheduling transmission method based on a trigger frame in the 802.11ax standard.
  • the trigger frame-based uplink scheduling and transmission method in the 802.11ax standard specifically includes: (1) The AP sends a trigger frame, and the trigger frame is used to schedule one or more STAs to send an uplink trigger-based HE PPDU. Trigger-based HE PPDU can be abbreviated as HE TB PPDU.
  • FIG. 5a is a schematic diagram of the frame format of the trigger frame. As shown in Figure 5a, the trigger frame includes a common information (common information) field and a user information list (user information list) field.
  • the public information field contains public information that all STAs need to read, including the AP transmit power (AP TX Power) field and the uplink spatial multiplexing (UL Spatial Reuse) field.
  • the user information list field includes one or more user information fields, and a user information field contains information that a STA needs to read.
  • Fig. 5b is a schematic diagram of the frame format of the common information field and the user information field in the trigger frame of 802.11ax.
  • association identification 12 (association identification 12, AID12) represents the association identification of a certain STA, and the resource unit (RU) allocation (RU allocation) subfield is used to indicate this The specific resource unit position allocated to the STA (the STA indicated by AID12).
  • one or more STAs After receiving the trigger frame, one or more STAs parse out the user information field matching their own AIDs from the trigger frame, and then allocate the RU indicated by the subfield to the resource unit in the user information field Send HE TB PPDUs on the
  • the AP After the AP receives the HE TB PPDU, it replies an acknowledgement frame to one or more STAs to confirm that the AP has received the HE TB PPDU.
  • each field that may be included in the HE TB PPDU can be referred to as shown in Table 1 below.
  • 802.11be will continue to use the trigger-based uplink scheduling transmission method of 802.11ax, and the frame format and method process of the trigger frame are similar to 802.11ax.
  • FIG. 6a is a schematic diagram of the frame format of the common information field and the user information field in the trigger frame of 802.11be.
  • the trigger frame shown in FIG. 6a can be used to schedule the EHT station to perform uplink data transmission, for example, to schedule the EHT station to send the EHT TB PPDU.
  • FIG. 6a is only a schematic diagram, the embodiment of the present application focuses on the UL SRP field in the uplink space multiplexing field of the common information field, and other fields in the trigger frame may be different from those in FIG. 6a, that is, there are other forms of expression. The embodiment does not limit this.
  • the uplink HE-SIG A2 reserved (UL HE-SIG A2 reserved) field included in the public information field part may also be referred to as the UL U-SIG reserved field.
  • Fig. 6b is a schematic diagram of the frame structure of the EHT TB PPDU.
  • EHT TB PPDU includes traditional short training sequence, traditional long training sequence, traditional signaling field, repeated traditional signaling field, general signaling field, extremely high throughput short training sequence, and extremely high throughput long training Sequence, data fields, and data packet extension fields.
  • Table 2 The meanings of the fields included in the EHT TB PPDU can be referred to as shown in Table 2 below.
  • the content of the U-SIG field in the EHT TB PPDU is shown in Table 3:
  • the U-SIG in the EHT TB PPDU contains at most 2 SRP fields due to the length limitation, such as Spatial Reuse 1 and Spatial Reuse 2 , the length of each SRP field is 4 bits; the public information field of the trigger frame carries 4 UL SRP fields, and the HE-SIG-A field of the HE TB PPDU also contains 4 SRP fields, which are the same as the 4 SRP fields in the trigger frame.
  • the UL SRP fields are in one-to-one correspondence.
  • the SRP field in the EHT TB PPDU cannot be set according to the setting method of the SRP field in the HE TB PPDU, so how to set the trigger frame to indicate the EHT TB PPDU setting
  • the embodiments of the present application provide a spatial multiplexing parameter indicated in a trigger frame and a method for determining a spatial multiplexing parameter field in a PPDU.
  • a spatial multiplexing parameter indicated in a trigger frame For different bandwidths, without changing the frame structure of the EHT TB PPDU, the Frame design, and the setting of spatial multiplexing parameters in EHT TB PPDU, so that HE site and EHT site can be scheduled under the same trigger frame, and can realize spatial multiplexing in EHT standard, so that they are in the overlapping basic service set
  • the WLAN devices can transmit at the same time, which improves the transmission efficiency.
  • Embodiments 1 to 5 The technical solutions provided in the present application are described through Embodiments 1 to 5.
  • the first embodiment describes how to set the spatial multiplexing parameters in EHT TB PPDUs of different bandwidths (20/40/80/160/320MHz) without changing 802.11ax.
  • the second embodiment describes the use of the reserved field in its common information field as the function of realizing the uplink EHT spatial multiplexing field in the trigger frame (HE-SIG-A2 reserved field and reserved field are collectively referred to as reserved field), how to indicate the EHT Spatial multiplexing parameters in TB PPDU.
  • the third embodiment describes how to indicate the spatial multiplexing parameter in the EHT TB PPDU by using the reserved field and the user information list field in the common information field of the trigger frame.
  • the fourth embodiment describes a spatial multiplexing method based on spatial multiplexing parameters in 802.11be. It is understandable that the technical solutions described in Embodiment 1 to Embodiment 4 of the present application can be combined to form
  • the AP and STA in this application can be either a single-link device or a functional entity or functional unit in a multi-link device.
  • the AP in this application is a certain part of the AP multi-link device.
  • AP, and the STA is a certain STA in the site multi-link device, which is not limited in this application.
  • the AP supports 802.11be protocol (or called Wi-Fi 7, EHT protocol), and can also support other WLAN communication protocols, such as 802.11ax, 802.11ac and other protocols.
  • 802.11be protocol or called Wi-Fi 7, EHT protocol
  • At least one STA in the one or more STAs supports the 802.11be protocol, that is, there is at least one EHT station.
  • the AP and STA in this application may also support the next generation protocol of 802.11be. That is to say, the method provided in this application is not only applicable to the 802.11be protocol, but also applicable to the next generation protocol of 802.11be.
  • the first embodiment of the present application mainly introduces the setting of the spatial multiplexing parameters in the EHT TB PPDU of the 20/40/80/160/320MHz bandwidth without changing the trigger frame (or without changing the content of the trigger frame).
  • the trigger frame is shown in Figure 5b, wherein,
  • FIG. 7a is a first schematic flowchart of a method for determining a spatial multiplexing parameter indicated in a trigger frame and a corresponding spatial multiplexing parameter field in a PPDU provided by an embodiment of the present application. As shown in Figure 7a, the method includes but is not limited to the following steps:
  • the AP sends a trigger frame, where the trigger frame is used to trigger the station to send a trigger-based extremely high throughput physical layer protocol data unit EHT TB PPDU.
  • the STA receives the trigger frame.
  • the STA sends an EHT TB PPDU.
  • the general signaling field U-SIG of the EHT TB PPDU there is only one spatial multiplexing parameter SRP field, and the SRP field indicates the spatial multiplexing parameter of the entire bandwidth.
  • the value indicated by the SRP field is determined based on the value indicated by the one or more uplink space multiplexing parameters UL SRP fields in the common information field of the trigger frame.
  • the value indicated by the SRP1 field is equal to any value of the four spatial multiplexing fields indicated by the four uplink spatial multiplexing parameters UL SRP field, which can be expressed as SRP1 equal to UL SRP1 or UL SRP2 or UL SRP3 or UL SRP4 ⁇ .
  • the AP receives the EHT TB PPDU sent by the station.
  • FIG. 8a is a second schematic flowchart of a method for determining a spatial multiplexing parameter indicated in a trigger frame and a corresponding spatial multiplexing parameter field in a PPDU provided by an embodiment of the present application. As shown in Figure 8a, the method includes but is not limited to the following steps:
  • the AP sends a trigger frame, where the trigger frame is used to trigger the station to send a trigger-based extremely high throughput physical layer protocol data unit EHT TB PPDU. See Figure 6a for the structure and composition of the trigger frame.
  • the STA receives the trigger frame.
  • the STA sends an EHT TB PPDU
  • the general signaling field U-SIG of the EHT TB PPDU includes two spatial multiplexing parameters SRP1 field and SRP2 field, which are respectively used to indicate the spatial multiplexing corresponding to half of the low frequency in the entire bandwidth parameter, and the spatial multiplexing parameter corresponding to half of the high frequency.
  • the values indicated by the spatial multiplexing parameter SRP1 field and the SRP2 field are respectively determined based on the values indicated by one or more uplink spatial multiplexing parameters UL SRP fields in the common information field of the trigger frame.
  • the SRP1 field and the SRP2 field are respectively used to indicate SRP values on different subchannels, where the SRP value is equal to the sum of the AP's transmit power on the corresponding subchannel and the maximum interference power that the AP can accept.
  • the SRP1 field and the SRP2 field in the U-SIG of the EHT TB PPDU may also have other names, such as the PSR1 field and the PSR2 field, which are not limited in this embodiment of the present application.
  • the value of the SRP1 field in the U-SIG is equal to the uplink space multiplexing of the trigger frame.
  • the value of the SRP1 field in the U-SIG is equal to the value of the SRP2 field, both of which are equal to the upstream space in the trigger frame.
  • the AP receives the EHT TB PPDU sent by the station.
  • the trigger frame involved in the method flow of indicating spatial multiplexing parameters in the trigger frames shown in the above 7a and 8a can not only be used to trigger the EHT site to send the EHT TB PPDU, but also can be used to trigger the HE site to send the HE TB PPDU.
  • the above trigger frame is only used for triggering the EHT station to send the EHT TB PPDU; or only for triggering the HE station to send the HE TB PPDU.
  • This embodiment of the present application focuses on the case where the trigger frame is used to trigger the EHT site to send the EHT TB PPDU, but it is not limited to the case where the trigger frame is only used to trigger the EHT site to send the EHT TB PPDU, or it can be used to trigger the EHT site to send the EHT TB PPDU and the EHT TB PPDU at the same time.
  • the situation of HE station/EHT station sending HE TB PPDU Understandably, HE stations can only send HE TB PPDUs, while EHT stations are compatible with the 802.11ax protocol, so EHT stations can send both HE TB PPDUs and EHT TB PPDUs.
  • FIG. 9 is a schematic time sequence diagram of a trigger frame that simultaneously schedules an HE site and an EHT site for uplink data transmission provided by an embodiment of the present application.
  • the AP sends a trigger frame, and the trigger frame is used to simultaneously schedule the HE station (STA1 in FIG. 9 ) and the EHT station (STA2 in FIG. 9 ) for uplink data transmission.
  • STA1 and STA2 receive the trigger frame, after a period of time (for example, a short inter-frame interval), STA1 sends HE TB PPDU, and STA2 sends EHT TB PPDU.
  • the AP After the AP receives the uplink multi-user PPDU, it replies with a Multiple STA Block Acknowledge (M-BA) frame at an interval (for example, a short inter-frame interval) to confirm that the AP has received the transmission from one or more stations. the PPDU.
  • M-BA Multiple STA Block Acknowledge
  • the trigger frame shown in FIG. 9 may also be used only for scheduling EHT stations, that is, both STA1 and STA2 in FIG. 9 are EHT stations. It should also be understood that the trigger frame shown in FIG. 9 can also only schedule the station to send the EHT TB PPDU, that is, both STA1 and STA2 in FIG. 9 send the EHT TB PPDU.
  • the above trigger frame may be sent in the form of broadcast, and after the AP sends the trigger frame, one or more stations may receive the trigger frame. If the trigger frame is simultaneously used to schedule the EHT station to send the EHT TB PPDU and the HE station to send the HE TB PPDU, the EHT station may, based on the value indicated by one or more UL SRP fields in the received common information field of the trigger frame, Set the value indicated by the SRP1 field and the SRP2 field in the U-SIG of the EHT TB PPDU, and send the EHT TB PPDU.
  • the EHT station may also set the values of the SRP1 field and the SRP2 field in the U-SIG of the EHT TB PPDU based on the received value of one or more UL SRP fields in the common information field of the trigger frame.
  • the HE station can copy the values of the 4 UL SRP fields in the received trigger frame into the 4 SRP fields of the HE TB PPDU one by one, and send the HT TB PPDU.
  • the UL SRP field or the corresponding relationship between the value and the meaning of the SRP field involved in this application may be as shown in Table 4 below.
  • the uplink spatial multiplexing parameter (UL SRP) field may also be referred to as the uplink parameter spatial multiplexing (UL PSR) field.
  • the UL SRP and the UL PSR can be used interchangeably, that is, the SRP and the PSR can be used interchangeably.
  • the value of the uplink spatial multiplexing parameter is determined by the AP, which is equal to the sum of the transmit power of the AP and the maximum interference power that the AP can accept.
  • the value indicated by the UL SRP field may be any value in the second column of Table 4 above, and the value of the UL SRP field may be any value in the first column of Table 4 above.
  • the second embodiment of this application mainly introduces how to set the trigger frame (that is, change the content of the trigger frame) to adapt to the SRP field of U-SIG, and after the content of the trigger frame is changed, in the trigger-based PPDU (HE TB PPDU and EHT TB PPDU) How to set spatial multiplexing parameters.
  • the trigger frame that is, change the content of the trigger frame
  • the trigger-based PPDU HE TB PPDU and EHT TB PPDU
  • the second embodiment of the present application may be implemented together with some implementation manners in the foregoing first embodiment, or may be implemented independently, which is not limited in the embodiments of the present application.
  • the HE-SIG-A2 reserved field of the trigger frame as shown in Figure 5b or 6a will be used, or the reserved field will be further used to realize the indication of the spatial multiplexing parameters of the EHT TB PPDU.
  • the reserved field in the public information field of the trigger frame (the reserved field includes the HE-SIG-A2 reserved field and the reserved field) to set the uplink EHT PPDU bandwidth subfield, and use The HE/EHT subfield to indicate whether the EHT STA sends the HE TB PPDU or the EHT TB PPDU, the uplink EHT spatial multiplexing field, optionally, may also include the special user presence indication subfield.
  • the Upstream EHT Spatial Multiplexing Field indicates the spatial multiplexing parameter in the EHT TB PPDU alone, or cooperates with the Upstream Spatial Multiplexing field to indicate the spatial multiplexing parameter in the EHT TB PPDU, in other words, the U-
  • the value of the SRP field in the SIG depends on at least one of the uplink EHT spatial multiplexing field and the uplink spatial multiplexing field.
  • each subfield included in the reservation field may include part or all of them.
  • the names of the subfields in Table 5 can also be taken as other names, and the examples in this application are not intended to be limitations.
  • the number of bits occupied by each subfield is an example, which is not limited in this embodiment of the present application.
  • the upstream EHT PPDU bandwidth field indicates the upstream EHT PPDU bandwidth alone
  • Upstream EHT PPDU bandwidth field meaning 000 20MHz 001 40MHz 010 80MHz 011 160MHz 100 320MHz 101 reserved 110 reserved 111 reserved
  • 100 can indicate 320MHz-1; 101 can indicate 320MHz-2; 320MHz-1 and 320MHz-2 respectively represent the channel division of two 320MHz channels: 320MHz-1 with a channel center frequency of 31/95/159 and a center frequency of 320MHz-2 on 63/127/191.
  • the following describes the method for determining the spatial multiplexing parameter indicated in the trigger frame and the spatial multiplexing parameter field in the corresponding PPDU with reference to the trigger frame shown in FIG. 10 .
  • FIG. 11 is a third schematic flowchart of a method for determining a spatial multiplexing parameter indicated in a trigger frame and a corresponding spatial multiplexing parameter field in a PPDU provided by an embodiment of the present application.
  • the method for determining the spatial multiplexing parameter indicated in the trigger frame and the spatial multiplexing parameter field in the corresponding PPDU includes but is not limited to the following steps:
  • the AP sends a trigger frame
  • the trigger frame is used to trigger the station to send the EHT TB PPDU
  • the uplink space multiplexing field of the common information field of the trigger frame includes 4 UL SRP fields;
  • the UL HE-SIG of the trigger frame -A2 reserved field and/or reserved field is utilized as an indication EHT spatial multiplexing parameter.
  • the UL HE-SIG-A2 reserved field and/or reserved field includes: an uplink EHT PPDU bandwidth subfield, a HE/EHT subfield, an uplink EHT spatial multiplexing field, and a special User presence indication field.
  • the STA receives the trigger frame.
  • the STA sends an EHT TB PPDU
  • the U-SIG of the EHT TB PPDU may include one SRP field or two SRP fields.
  • U-SIG SRP1 there are two SRP fields in U-SIG, denoted as U-SIG SRP1 and U-SIG SRP2, respectively indicating the spatial multiplexing parameters of half the low frequency and half of the high frequency of the entire bandwidth
  • the value of the SRP1 field is indicated by the uplink spatial multiplexing field in the trigger frame.
  • the U-SIG SRP1 field may be equal to the minimum value or any value of the four spatial multiplexing fields indicated in the spatial multiplexing field;
  • the value of the U-SIG SRP2 field is indicated by the Uplink EHT Spatial Multiplexing field in this trigger frame.
  • the uplink spatial multiplexing field When the bandwidth is 20/40/80/160MHz and the TB PPDU is a non-aggregated PPDU, only two SRP fields are indicated by the uplink spatial multiplexing field; the value of the U-SIG SRP1 field can be equal to the value indicated in the spatial multiplexing field The minimum value or any value of the UL SRP1 field and the UL SR2 field in the 4 spatial multiplexing fields; the value of the U-SIGSRP2 field may be equal to the UL SR3 field and the UL SR4 field in the 4 spatial multiplexing fields indicated in the spatial multiplexing field. The field's minimum value or either value. At this time, the uplink EHT spatial multiplexing field is reserved or does not exist.
  • the uplink spatial multiplexing field is used to indicate the SRP1 field in the two SRPs, and the value of the U-SIG SRP1 field can be equal to the 4 spatial multiplexing fields indicated in the spatial multiplexing field.
  • the AP receives the EHT TB PPDU sent by the station.
  • the above trigger frame can not only be used to trigger the EHT station to send the EHT TB PPDU, but also can be used to trigger the HE station to send the HE TB PPDU.
  • the above trigger frame is only used for triggering the EHT station to send the EHT TB PPDU; or only for triggering the HE station to send the HE TB PPDU.
  • This embodiment of the present application focuses on the case where the trigger frame is used to trigger the EHT site to send the EHT TB PPDU, but it is not limited to the case where the trigger frame is only used to trigger the EHT site to send the EHT TB PPDU, or it can be used to trigger the EHT site to send the EHT TB PPDU and the EHT TB PPDU at the same time.
  • the situation of HE station/EHT station sending HE TB PPDU is not limited to the case where the trigger frame is only used to trigger the EHT site to send the EHT TB PPDU, or it can be used to trigger the EHT site to send the EHT TB PPDU and the EHT TB PPDU at the same time.
  • the situation of HE station/EHT station sending HE TB PPDU is not limited to the case where the trigger frame is only used to trigger the EHT site to send the EHT TB PPDU, or it can be used to trigger the EHT site to send the EHT TB
  • the U-SIG of the EHT TB PPDU includes only one spatial multiplexing parameter (SRP) field, such as the SRP1 field; or may include two spatial multiplexing parameter (SRP) fields, respectively the SRP1 field and the SRP1 field.
  • SRP2 field The SRP1 field and the SRP2 field are respectively used to indicate the SRP value on different subchannels, and the SRP value is equal to the sum of the transmit power of the AP on the corresponding subchannel and the maximum interference power that the AP can accept.
  • the SRP1 field and the SRP2 field in the U-SIG of the EHT TB PPDU may also have other names, such as the PSR1 field and the PSR2 field, which are not limited in this embodiment of the present application.
  • the uplink space multiplexing field in the public information field of the above trigger frame still includes 4 UL SRP fields, which are the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field respectively.
  • the uplink EHT spatial multiplexing field in the common information field of the trigger frame is indicated as UL EHT SRP.
  • the spatial multiplexing field in the U-SIG in the EHT TB PPDU is indicated as SRP1, SRP2.
  • Embodiment 2 of the present application under the bandwidth of 20/40/80/160/320 MHz, the setting of the UL SRP1 field to the UL SRP4 field in the trigger frame, the EHT TB
  • Table 7 The settings of the SRP1 field and the SRP2 field in the PPDU U-SIG can be summarized as shown in Table 7 below. Among them, "/" in Table 7 represents an "or" relationship.
  • the bandwidths of the HE TB PPDU and the EHT TB PPDU are 160 MHz respectively, or the bandwidth of the HE TB PPDU is 80 MHz, and the bandwidth of the EHT TB PPDU is 160 MHz, or the 320 MHz of the 80 MHz is punched out.
  • the EHT TB is indicated by the UL SRP value of the uplink spatial multiplexing field in the trigger frame or by further using the HE-SIG-A2 reserved field and/or the reserved field in the trigger frame as the UL EHT spatial multiplexing field.
  • the PPDU sets the SRP field of the U-SIG, and by setting the spatial multiplexing field in the U-SIG, the trigger frame can schedule the EHT site to send the uplink EHT TB PPDU, and also enable the HE site and the EHT site to use the same trigger frame. to accept scheduling.
  • the third embodiment of the present application mainly introduces the use of the special user information field carried in the trigger frame to make a separate indication of spatial multiplexing parameters and U-SIG reserved fields for the EHT TB PPDU, and the fact that the special user information field is not carried in the trigger frame , the technical solution of how to set the spatial multiplexing parameters of the EHT TB PPDU and the U-SIG reserved field.
  • the third embodiment of the present application can be combined with the aforementioned first embodiment or the aforementioned second embodiment, regarding the setting methods of the SRP1 field and the SRP2 field in the U-SIG under the bandwidths of 20MHz, 40MHz, 80MHz and 160MHz.
  • Implementation; the third embodiment of the present application can also be implemented independently, which is not limited in the embodiment of the present application.
  • the common information field of the trigger frame may include 4 UL SRP fields, namely the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field.
  • the 4 UL SRP fields may be used to respectively indicate the values of the 4 SRP fields in the HE TB PPDU.
  • the user information list field of the trigger frame includes multiple user information fields, one of which is a special user information field, which is indicated as user info (STA1).
  • the special user information field may include a UL SRP field and a U-SIG reservation indication field, and the UL SRP field is used to indicate the value of the SRP1 field and the SRP2 field in the U-SIG of the EHT TB PPDU, or, The UL SRP field of this special user information field is used to indicate the value of the SRP2 field in the U-SIG of the EHT TB PPDU.
  • the U-SIG reservation indication field is used to indicate the value of the U-SIG reservation field in the U-SIG of the EHT TB PPDU.
  • the special user information field does not include the UL SRP field but may include the U-SIG reservation indication field
  • the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU is determined by the trigger frame
  • the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field in the common information field are indicated by the UL SRP1 field, or the UL EHT SRP field of the HE-SIG-A2 in the common information field.
  • the U-SIG reservation indication field is used to indicate the value of the U-SIG reservation field in the U-SIG of the EHT TB PPDU.
  • the value of the association identifier (association identifier, AID) 12 field of the special user information field is a preset value, and the preset value can be any one of 2008 to 2044, or 2046 to 4095, such as The default value is 2044.
  • the preset value may also be within 1-2007, and there is no AID assigned to any associated STA (for example, 2007).
  • the special user information field does not need to carry the complete value of AID12, only the highest bit needs to be set to 1, and any 1 bit in the subsequent 11 bits is fixed to 0, which can be used with any existing AID12.
  • the value of AID12 is distinguished.
  • the other 10 bits can be used to transmit information.
  • the trigger frame carries a 9-bit UL HE-SIG-A2 reserved field, but until the 802.11ax standard is formulated, the HE-SIG-A2 reserved bits have not been redefined, resulting in a waste of 9 bits.
  • the U-SIG part of the EHT TB PPDU in addition to SRP1 and SRP4, also includes the U-SIG reserved field, that is, 12 bits are reserved, and the 12 reserved bits The value of , needs to be indicated by the trigger frame, which is why the trigger frame needs to use a special user information field to carry the uplink U-SIG field reservation indication.
  • the bit corresponding to the U-SIG reserved field in the U-SIG of the EHT TB PPDU adopts the default value, and does not need to be indicated in the trigger frame. Instead, when necessary, the specific value is indicated by the uplink U-SIG reservation indication field of the special user information field in the trigger frame, which saves the bit overhead of opening the trigger frame. If the version after 802.11be does not need it, then 802.11be does not need to carry the special user information field in the trigger frame.
  • the above-mentioned special user information fields may not exist in the version 1 (release1, R1) released by 802.11be; however, devices supporting R1 need to be able to read the special user information fields. If the special user information fields exist, they cannot be used. The default value is required instead of the value indicated in the special user field. This is to prevent that when the R1 device and the R2 device jointly transmit the U-SIG, the content is different, causing mutual interference and causing the AP or a third-party site to fail to receive it correctly.
  • the reserved field is 16 bits. If there are two SRP fields in the U-SIG, the reserved field is 12 bits.
  • the value of the U-SIG reservation field of the EHT TB PPDU is partly derived from the indication of the special user field in the trigger frame, and partly from the indication of the uplink HE-SIG-A2 reservation and/or reservation field. If subsequent standards want to modify the meaning of some reserved fields, the HE-SIG-A2 reservation and/or the reserved value corresponding to the reserved field may be modified preferentially. In this way, there is no need to carry a special user field, which saves the bit overhead of the trigger frame.
  • uplink general signaling field reservation indication field and the physical layer version field included in the special user information field shown in Table 8 may exist in part or in whole. It should also be understood that the names of the subfields in Table 8 also Other names may be used, and the examples exemplified in this application are not intended to be limiting. The corresponding number of bits occupied by each subfield is only an example, and other numbers of bits may also be set for this embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a trigger frame transmission method and a corresponding PPDU transmission method provided by an embodiment of the present application.
  • the trigger frame transmission method and the corresponding PPDU transmission method include but are not limited to the following steps:
  • the AP sends a trigger frame
  • the trigger frame is used to trigger the station to send the EHT TB PPDU
  • the trigger frame also carries second indication information
  • the second indication information is used to indicate the U-SIG in the U-SIG of the EHT TB PPDU
  • the trigger frame also carries first indication information, where the first indication information is used to indicate the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU;
  • the STA receives the trigger frame.
  • the STA sends an EHT TB PPDU, where the value of the U-SIG reservation field in the U-SIG of the EHT TB PPDU is a default value, or is determined based on the second indication information.
  • the value of the SRP1 field and/or the SRP2 field in the U-SIG of the EHT TB PPDU is determined based on the first indication information.
  • the AP receives the EHT TB PPDU sent by the station.
  • the above trigger frame can not only be used to trigger the EHT station to send the EHT TB PPDU, but also can be used to trigger the HE station to send the HE TB PPDU.
  • the above trigger frame is only used for triggering the EHT station to send the EHT TB PPDU; or only for triggering the HE station to send the HE TB PPDU.
  • This embodiment of the present application focuses on the case where the trigger frame is used to trigger the EHT site to send the EHT TB PPDU, but it is not limited to the case where the trigger frame is only used to trigger the EHT site to send the EHT TB PPDU, or it can be used to trigger the EHT site to send the EHT TB PPDU and the EHT TB PPDU at the same time.
  • the situation of HE station/EHT station sending HE TB PPDU is not limited to the case where the trigger frame is only used to trigger the EHT site to send the EHT TB PPDU, or it can be used to trigger the EHT site to send the EHT TB PPDU and the EHT TB PPDU at the same time.
  • the situation of HE station/EHT station sending HE TB PPDU is not limited to the case where the trigger frame is only used to trigger the EHT site to send the EHT TB PPDU, or it can be used to trigger the EHT site to send the EHT TB
  • the U-SIG of the EHT TB PPDU only includes two spatial multiplexing parameter (SRP) fields, namely the SRP1 field and the SRP2 field.
  • the SRP1 field and the SRP2 field are respectively used to indicate the SRP value on different subchannels, and the SRP value is equal to the sum of the transmit power of the AP on the corresponding subchannel and the maximum interference power that the AP can accept.
  • the SRP1 field and the SRP2 field in the U-SIG of the EHT TB PPDU may also have other names, such as the PSR1 field and the PSR2 field, which are not limited in this embodiment of the present application.
  • the above trigger frame may carry first indication information, and the first indication information may be used to indicate the values of the SRP1 field and the SRP2 field in the U-SIG of the EHT TB PPDU, or the first indication information may be used to indicate the EHT TB The value of the SRP2 field in the U-SIG of the PPDU.
  • the first indication information may be located in the uplink space multiplexing field of the common information field of the trigger frame, and when the STA sends the EHT TB PPDU, the setting mode of the value of the SRP field in the U-SIG is determined by the setting method. Please refer to the description of Embodiment 1 for details, which will not be repeated here.
  • the trigger frame does not include the second indication information, therefore, the U-SIG reserved field of the U-SIG part of the EHT TB PPDU is set to a default value.
  • the trigger frame includes second indication information, and the second indication information is located in a special user information field, therefore, the U-SIG reserved field of the U-SIG part of the EHT TB PPDU is set to the value indicated by the second indication information.
  • a part of the first indication information is located in the uplink spatial multiplexing field of the common information field of the trigger frame, and a part is located in the uplink EHT spatial multiplexing field of the common information field of the trigger frame; or the first indication The information is all located in the uplink EHT space multiplexing field of the public information field of the trigger frame.
  • the STA sends the EHT TB PPDU
  • the setting method of the value of the SRP field in the U-SIG is detailed in the description of the second embodiment. This is not repeated here.
  • the trigger frame does not include the second indication information. Therefore, the U-SIG reserved field of the U-SIG part of the EHT TB PPDU is set to a default value.
  • the trigger frame includes second indication information, and the second indication information is located in a special user information field, therefore, the U-SIG reserved field of the U-SIG part of the EHT TB PPDU is set to the value indicated by the second indication information.
  • both the first indication information and the second indication information may be located in a user information field of the trigger frame, and the user information field is a special user information field.
  • the above-mentioned special user information field does not need to carry the complete value of AID12, only needs to set the highest bit to 1, and any 1 bit in the subsequent 11 bits is fixed to 0, which can be the same as the existing one. of any already used AID12 values.
  • the other 10 bits can be used to transmit information.
  • the value of the association identifier (association identifier, AID) 12 field of the special user information field is a preset value, and the preset value may be any one of 2007, 2008 to 2044, or 2046 to 4095 , for example, the default value is 2044.
  • the second indication information is also located in the special user information field.
  • the special user information field carries the above-mentioned first indication information, which is used to indicate the value of the SRP1 field and/or the SRP2 field in the U-SIG, and the special user information field also carries the above-mentioned second indication information, which is used for Indicates the value of the U-SIG reserved field in the U-SIG.
  • the HE station does not parse the user information field whose AID12 field is a special value in the trigger frame, or the HE station receives the user information field whose AID12 field is a special value, indicating that it has nothing to do with the HE station, that is, in the trigger frame
  • the newly added first indication information does not affect the behavior of the HE site.
  • the first indication information is used to indicate the values of the SRP1 field and the SRP2 field in the U-SIG
  • certain 8 bits after the AID12 field of the user information field are used to carry the first indication information, wherein the 8 bits
  • the first 4 bits of the 8 bits indicate the value of the SRP1 field in the U-SIG
  • the last 4 bits of the 8 bits are used to indicate the value of the SRP2 field.
  • the 8 bits can be represented by a first field and a second field, where the first field is the first 4 bits of the 8 bits, and the second field is the last 4 bits of the 8 bits.
  • the first field after the AID12 field is used to indicate the value of the SRP1 field in the U-SIG
  • the second field after the AID12 field is used to indicate the value of the SRP2 field in the U-SIG.
  • the first field may be referred to as the UL SRP1 field for U-SIG
  • the second field may be referred to as the UL SRP2 field for U-SIG
  • the first field and the second field may also have Other names are not limited in this embodiment of the present application.
  • the EHT station After receiving the trigger frame, the EHT station sets the value of the SRP1 field in the U-SIG of the EHT TB PPDU to be sent to the value of the first field in the user information field of the trigger frame, and sets the value of the SRP2 field in the U-SIG is the value of the second field in the user information field of the trigger frame.
  • the first field and the second field in the user information field of the trigger frame respectively correspond to a bandwidth of 160 MHz.
  • the first field corresponds to the first 160MHz bandwidth from low to high frequency
  • the second field corresponds to the second 160MHz bandwidth from low to high frequency.
  • the SRP1 field in U-SIG corresponds to the first 160MHz bandwidth from low to high frequency
  • the SRP2 field in U-SIG corresponds to the second 160MHz bandwidth from low to high frequency.
  • FIG. 15a is a schematic diagram of performing the SRP indication of the U-SIG in the trigger frame provided by the embodiment of the present application.
  • the user information field of the trigger frame includes the AID12 field, the UL SRP1 field for U-SIG, the UL SRP2 field for U-SIG, the UL U-SIG reservation indication field, and the like.
  • the value of this AID12 field is a special value.
  • the UL SRP1 field for U-SIG and the UL SRP2 field for U-SIG are located after the AID12 field, and may or may not be immediately adjacent to the AID12 field.
  • the UL SRP1 field for U-SIG indicates the value of the SRP1 field in U-SIG
  • the UL SRP2 field for U-SIG indicates the value of the SRP2 field in U-SIG.
  • the value indicated by the UL SRP1 field for U-SIG is equal to the sum of the transmit power of the AP on the primary 160MHz channel and the maximum interference power that the AP can accept
  • the value indicated by the UL SRP2 field for U-SIG is equal to the secondary 160MHz channel.
  • the UL U-SIG reservation indication field is used to indicate the value of the U-SIG reservation field of the U-SIG in the STA when sending the EHT TB PPDU.
  • the 4 bits after the AID12 field of the user information field are used to carry the first indication information, that is, the 4 bits are used for Indicates the value of the SRP2 field in the U-SIG.
  • the 4 bits may be referred to as the UL SRP2 field for the U-SIG, and the 4 bits may also have other names, which are not limited in this embodiment of the present application.
  • the 4 reserved bits in the public information field of the trigger frame such as the HE-SIG-A2 reserved field or
  • the 4 reserved bits in the reserved field are used to carry the first indication information, that is, the 4 reserved bits are used to indicate the value of the SRP2 field in the U-SIG.
  • the public information field of the above trigger frame includes 4 UL SRP fields.
  • the SRP1 field in the U-SIG corresponds to the first 160MHz bandwidth from low to high frequency
  • the SRP2 field in the U-SIG corresponds to the second 160MHz bandwidth from low to high frequency.
  • the EHT station also sets the value of the U-SIG reservation field in the U-SIG of the sent EHT TB PPDU to the value of the UL U-SIG reservation indication field in the special user information field in the trigger frame.
  • FIG. 15b is another schematic diagram of performing the SRP indication of the U-SIG in the trigger frame provided by the embodiment of the present application.
  • the common information field of the trigger frame includes 4 UL SRP fields, which are respectively used to indicate the SRP values of 4 40MHz sub-channels with frequencies from low to high on the main 160MHz channel;
  • the HE-SIG-A2 reserved field and/or the reserved field of the common information field of the trigger frame is used as the UL EHT SRP field, indicating the SRP value of the primary 160MHz channel.
  • the special user information field of the trigger frame includes the AID12 field, the UL SRP2 field for U-SIG, and the like.
  • the value of the AID12 field is a special value or an incomplete AID12 value.
  • the UL SRP2 field for U-SIG located after the AID12 field, may or may not be immediately adjacent to the AID12 field.
  • the UL SRP2 field for U-SIG indicates the value of the SRP2 field in the U-SIG.
  • the value indicated by the UL SRP2 field for the U-SIG is equal to the sum of the transmit power of the AP on the secondary 160MHz channel and the maximum interference power that the AP can accept, or equal to the SRP value on the secondary 160MHz channel.
  • the SRP1 field in the U-SIG corresponds to the first 160MHz bandwidth from low to high frequency
  • the SRP2 field in the U-SIG corresponds to the second 160MHz bandwidth from low to high frequency.
  • the EHT station also sets the value of the U-SIG reservation field in the U-SIG of the sent EHT TB PPDU to the value of the UL U-SIG reservation indication field in the special user information field in the trigger frame.
  • the embodiment of the present application uses a special user information field in the trigger frame to make a separate indication of spatial multiplexing parameters and U-SIG reserved fields for the EHT TB PPDU, and its meaning is clear, Without affecting the scheduling of the HE site, the HE site and the EHT site can be scheduled under the same trigger frame.
  • the spatial multiplexing parameters of the U-SIG of the EHT TB PPDU can be performed according to the indication of the uplink spatial multiplexing field and/or the uplink EHT spatial multiplexing field in the trigger frame. set, and the U-SIG reserved field can be set to the default value.
  • each subfield included in the U-SIG in Table 9 is only an example, and parts thereof may also be included. It should also be understood that the names of the subfields in Table 9 may also be taken as other names, and the examples in this application are not intended to be limitations. The number of bits occupied by each subfield can be adjusted according to the actual situation, which is not limited in this application.
  • Embodiments 1 to 3 describe the methods for how to set the SRP field and U-SIG reservation field of the U-SIG when one or more stations send the EHT TB PPDU in different scenarios.
  • the fourth embodiment of this application mainly introduces a spatial multiplexing method based on spatial multiplexing parameters in 802.11be.
  • Embodiment 4 of the present application may be implemented in combination with any one of the foregoing Embodiments 1 to 3, or may be implemented independently, which is not limited in this embodiment of the present application.
  • the first AP and the first STA belong to the same BSS, which is denoted as BSS1; the second AP and the second STA belong to another BSS, which is denoted as BSS2.
  • the first AP and the second AP are located within the OBSS formed by BSS1 and BSS2. Therefore, in order to reduce the energy generated when the second AP sends the parameterized spatial reuse transmission (PSRT) PPDU and the interference to the first AP receiving the EHT TB PPDU, it is necessary to restrict the transmit power of the second AP when sending the PSRT PPDU.
  • PSRT parameterized spatial reuse transmission
  • the second AP in this embodiment of the present application may receive information sent by the first AP and the first STA.
  • FIG. 16 is a schematic flowchart of a spatial multiplexing method provided by an embodiment of the present application. As shown in Figure 16, the spatial multiplexing method includes but is not limited to the following steps:
  • the first AP sends a parameterized spatial reuse reception (PSRR) PPDU including a trigger frame (trigger frame), and the trigger frame is used to schedule the first STA to send the EHT TB PPDU. Accordingly, the first STA receives the trigger frame.
  • PSRR parameterized spatial reuse reception
  • the PSRR PPDU may contain other information besides the trigger frame, but the embodiment of the present application pays attention to the trigger frame part in the PSRR PPDU, so the embodiment of the present application does not explain other information contained in the PSRR PPDU.
  • the above-mentioned PSRR PPDU containing the trigger frame is used for scheduling the station to perform uplink data transmission, such as sending the uplink EHT TB PPDU.
  • the common information field of the trigger frame includes an uplink spatial reuse (UL Spatial Reuse) field.
  • the uplink space multiplexing field may include four uplink space multiplexing parameter (UL SRP) fields with a length of 4 bits, which are used to indicate the sum of the transmit power of the AP and the maximum interference power that the AP can accept.
  • UL SRP uplink space multiplexing parameter
  • the four UL SRP fields included in the uplink space multiplexing field are the UL SRP1 field, the UL SRP2 field, the UL SRP3 field, and the UL SRP4 field, respectively.
  • UL SRP1 field the UL SRP1 field
  • UL SRP2 field the UL SRP2 field
  • UL SRP3 field the UL SRP4 field
  • UL SRP4 field the UL SRP4 field
  • the first STA sends an EHT TB PPDU.
  • the first AP receives the EHT TB PPDU sent by the station.
  • first AP in the embodiments of the present application is the “AP” described in the foregoing Embodiments 1 to 3
  • the “first STA” in the embodiments of the present application is the “AP” described in the foregoing Embodiments 1 to 3 "STA”.
  • step S502 in this embodiment of the present application reference may be made to the implementation manner of step S103 in the foregoing embodiment 1, and details are not described herein again.
  • step S502 in this embodiment of the present application reference may be made to the implementation manner of step S203 in the foregoing second embodiment, and details are not described herein again.
  • step S303 in the foregoing third embodiment reference may be made to the implementation manner of step S303 in the foregoing third embodiment, and details are not described herein again.
  • the second AP determines the parameter according to the values respectively indicated by the SRP1 field and the SRP2 field included in the U-SIG of the EHT TB PPDU, and/or the values respectively indicated by the 4 UL SRP fields included in the public information field of the trigger frame Spatially multiplex transmit power of PSRT PPDUs.
  • the second AP sends the PSRT PPDU according to the transmit power of the PSRT PPDU. Accordingly, the second STA receives the PSRT PPDU.
  • the trigger frame sent by the first AP can also be received by the second AP. Therefore, after the first AP sends the PSRR PPDU including the trigger frame, the second AP receives the PSRR PPDU including the trigger frame, and the trigger frame includes 4 UL SRP fields, and the value indicated by one UL SRP field is equal to the value of the first AP.
  • the second AP may also receive the EHT TB PPDU sent by the first STA, and the U-SIG of the EHT TB PPDU includes the SRP1 field and the SRP2 field.
  • the value indicated by the SRP1 field is equal to the sum of the transmit power of the first AP on the first subchannel and the maximum interference power that the first AP can accept
  • the value indicated by the SRP2 field is the sum of the transmit power of the first AP on the second subchannel and the maximum interference power that the first AP can accept.
  • the bandwidth size of the first subchannel and the second subchannel is equal to half of the bandwidth of the EHT TB PPDU, and the frequency of the first subchannel is less than the frequency of the second subchannel.
  • the second AP After the second AP receives the PSRR PPDU and the EHT TB PPDU (that is, it is determined that the first STA has sent the EHT TB PPDU), the second AP according to the power of the received PSRR PPDU (that is, the received power level, received power level, RPL), and the values respectively indicated by the SRP1 field and the SRP2 field included in the U-SIG and/or the values respectively indicated by the four UL SRP fields, to calculate the transmit power used for sending the PSRT PPDU.
  • the second AP sends the PSRT PPDU according to the calculated transmit power. Accordingly, the second STA receives the PSRT PPDU, and returns a response frame in response to the PSRT PPDU to the second AP.
  • FIG. 17 is a schematic time sequence diagram of a spatial multiplexing method provided by an embodiment of the present application. It is assumed that AP1 and AP2 are located in the same OBSS, AP1 and STA1 belong to BSS1, and AP2 and STA2 belong to BSS2. As shown in FIG. 14 , AP1 (that is, the above-mentioned first AP) sends a PSRR PPDU containing a trigger frame. After STA1 (that is, the above-mentioned first STA) receives the PSRR PPDU, there is a period of time (for example, a short inter-frame interval), according to the Trigger frame indication to send upstream EHT TB PPDU.
  • a period of time for example, a short inter-frame interval
  • AP2 can receive the PSRR PPDU sent by AP1 and the EHT TB PPDU sent by the STA.
  • AP2 that is, the above-mentioned second AP
  • the AP2 uses the power of the received PSRR PPDU (that is, the RPL), and the 2 SRP values and/or 4 UL SRPs in the EHT TB PPDU. value to calculate the power it uses to send PSRT PPDUs.
  • AP2 sends the PSRT PPDU according to the calculated power.
  • STA2 (that is, the above-mentioned second STA) receives the PSRT PPDU, it sends a block acknowledgment frame (block acknowledgment) at intervals (for example, a short inter-frame interval) to confirm that STA2 has received the PSRT PPDU.
  • block acknowledgment a block acknowledgment frame at intervals (for example, a short inter-frame interval)
  • the transmit power of the PSRT PPDU calculated by the second AP satisfies the following formula:
  • log 10 (PSRT PPDU bandwidth/20MHz) in formula (1-1) represents the bandwidth normalization factor.
  • the SRP in the formula (1-1) is the SRP value on one subchannel.
  • RPL is the combined transmit power on all receive antenna connectors (RPL is the Combined transmit power at the receive antenna connector, over the PSRR PPDU bandwidth, during the non-HE portion of the HE PPDU preamble of the triggering PPDU, averaged over all antennas used to receive the PPDU).
  • the values of SRP and PRL in formula (1-1) have been normalized by bandwidth.
  • the AP (here the first AP) can accept.
  • the maximum interference power accepted is determined by the Spatial Reuse Parameter (SRP) value.
  • the second AP may obtain the RPL through the PSRR PPDU, instead of obtaining the UL SRP in the PSRR PPDU, but obtain the SRP through the U-SIG of the EHT TB PPDU. That is to say, the second AP calculates the transmit power used for sending the PSRT PPDU according to the power (that is, the RPL) of the received PSRR PPDU and the values respectively indicated by the SRP1 field and the SRP2 field included in the U-SIG.
  • the second AP can obtain both the RPL and the UL SRP through the PSRR PPDU, and does not obtain the SRP in the U-SIG after determining that it has received the EHT TB PPDU. That is to say, the second AP calculates the transmit power used for sending the PSRT PPDU according to the power (that is, the RPL) of the received PSRR PPDU and the values indicated by the four UL SRP fields respectively.
  • the normalized transmit power of the second AP ⁇ the transmit power of the first AP+the maximum interference power acceptable to the first AP-the power at which the second AP receives the PSRR PPDU sent by the first AP.................. ........................(1-2)
  • the right side of formula (1-2), that is: the transmit power of the first AP - the power of the second AP to receive the PSRR PPDU sent by the first AP, is equal to the path loss between the first AP and the second AP .
  • formula (1-3) can also be equivalent to the following formula (1-4):
  • formula (1-4) can be equivalent to the following formula (1-5):
  • the embodiment of the present application provides a spatial multiplexing method for EHT TB PPDU, which is compatible with the situation of two SRP fields in U-SIG, and implements spatial multiplexing in the EHT standard, so that devices in overlapping basic service sets can simultaneously transmission to improve transmission efficiency.
  • the spatial multiplexing method provided in this application may also be applied to the second STA.
  • FIG. 18 it is another schematic flowchart of the spatial multiplexing method provided by the embodiment of the present application. It is understandable that in this embodiment of the present application, the first AP and the first STA belong to the same BSS, which is denoted as BSS1; the second AP and the second STA belong to another BSS, which is denoted as BSS2. The first AP and the second STA are located in the OBSS formed by BSS1 and BSS2.
  • the transmit power when the second STA sends the response frame needs to be restricted.
  • the second STA in this embodiment of the present application may receive information sent by the first AP and the first STA.
  • the spatial multiplexing method includes but is not limited to the following steps:
  • the first AP sends a parameter space multiplexing and receives a PSRR PPDU including a trigger frame, and the trigger frame is used to schedule the first STA to send the EHT TB PPDU. Accordingly, the first STA receives the trigger frame.
  • the first STA sends an EHT TB PPDU.
  • the first AP receives the EHT TB PPDU sent by the station.
  • step S601 and step S602 in this embodiment of the present application reference may be made to the implementation manner of step S501 and step S502 in the foregoing embodiment shown in FIG. 16 , and details are not repeated here.
  • the second AP sends a PSRT PPDU. Accordingly, the second STA receives the PSRT PPDU.
  • the second STA triggers the values respectively indicated by the four UL SRP fields included in the common information field of the frame according to the values respectively indicated by the SRP1 field and the SRP2 field included in the U-SIG of the EHT TB PPDU, and the UL EHT SRP field indicates One or more of the values that determine the transmit power of the response frame in response to the PSRT PPDU.
  • the second STA sends the response frame according to the transmit power of the response frame.
  • step S604 and step S605 in this embodiment of the present application, reference may be made to the implementation of step S503 and step S504 in the embodiment shown in FIG. 16 , which will not be repeated here.
  • the transmission power of the response frame in response to PSRT PPDU in step S604 corresponds to the transmission power of PSRT PPDU in step S503
  • the transmission power determination method of this response frame in step S604 refers to the transmission power determination method of PSRT PPDU in step S503, This will not be repeated here.
  • the second AP may also be located in the OBSS formed by BSS1 and BSS2. Therefore, in order to reduce the energy generated when the second STA sends the response frame of the PSRT PPDU, and the energy generated when the second AP sends the PSRT PPDU, the interference to the first AP receiving the EHT TB PPDU needs to be restricted when the second STA sends the response frame. , and the transmit power when the second AP sends PSRT PPDUs.
  • the second AP can The values indicated by the SRP1 field and the SRP2 field included in the U-SIG, the values indicated by the four UL SRP fields included in the common information field of the trigger frame, and one or more of the values indicated by the UL EHT SRP fields are determined.
  • the transmit power of the PSRT PPDU is specifically to send the PSRT PPDU according to the transmit power of the PSRT PPDU.
  • the embodiment of the present application provides a spatial multiplexing method for EHT TB PPDU, which is compatible with the situation of 1 SRP field or 2 SRP fields in U-SIG, and realizes spatial multiplexing in the EHT standard, so that it is in overlapping basic services.
  • Centralized equipment can transmit at the same time, improving transmission efficiency.
  • the AP and the STA may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 19 to FIG. 22 . Wherein, the communication device is an access point or a station, and further, the communication device may be a device in an AP; or, the communication device is a device in a STA.
  • FIG. 19 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • the communication device 1 may be an AP or a chip in the AP, such as a Wi-Fi chip.
  • the communication device 1 includes a transceiver unit 11 and a processing unit 12 .
  • the processing unit 12 is used to generate a trigger frame, and the trigger frame is used to trigger the station to send the EHT TB PPDU; the transceiver unit 11 is also used to receive the EHT TB PPDU sent by the station.
  • the general purpose of the EHT TB PPDU is The values indicated by the spatial multiplexing parameter SRP1 field and the SRP2 field in the signaling field U-SIG are respectively determined based on the values indicated by one or more uplink spatial multiplexing parameters UL SRP fields in the common information field of the trigger frame. Specifically, reference may be made to the description about the EHT TB PPDU in step S103 in the foregoing embodiment 1, and details are not repeated here.
  • the processing unit 12 is used to generate the trigger frame; the transceiver unit 11 is used to send the trigger frame.
  • the trigger frame is used to trigger the station to send EHT TB PPDU, the common information field of the trigger frame includes 4 UL SRP fields, and the HE-SIG A2 reserved field and reserved field of the common information field are used for UL EHT space multiplexing Indication of parameters, including the UL EHT SRP field;
  • the transceiver unit 11 is further configured to receive the EHT TB PPDU sent by the station, and the U-SIG of the EHT TB PPDU includes two SRP fields, the SRP1 field and the SRP2 field.
  • the value of the SRP1 field in the U-SIG is equal to the UL in the 4 spatial multiplexing fields indicated in the uplink spatial multiplexing field of the trigger frame
  • the value of the SRP1 field in the U-SIG is equal to the value of the SRP2 field, both of which are equal to the upstream space in the trigger frame.
  • the communication device 1 of the first design and the second design can correspondingly execute the foregoing first embodiment, and the above-mentioned operations or functions of each unit in the communication device 1 are respectively to implement the corresponding operations of the AP in the foregoing first embodiment. , and are not repeated here for brevity.
  • the processing unit 12 generates a trigger frame, and the transceiver unit 11 is used to send the trigger frame.
  • the HE-SIG-A2 reserved field and reserved field in the public information field of the trigger frame are set as the upstream EHT PPDU bandwidth subfield, the HE/EHT subfield, and the upstream EHT spatial multiplexing field.
  • the upstream EHT spatial multiplexing field independently indicates the spatial multiplexing parameters in the EHT TB PPDU, or cooperates with the upstream spatial multiplexing field to indicate the spatial multiplexing parameters in the EHT TB PPDU.
  • the transceiver unit 11 is also configured to receive an EHT TB PPDU or an aggregated PPDU sent by a station, and the U-SIG of the EHT TB PPDU may include one SRP field or two SRP fields. Specifically, reference may be made to the description about the EHT TB PPDU or the aggregated PPDU in step S303 in the foregoing embodiment 2, and details are not repeated here.
  • the communication device 1 of the third design can correspondingly execute the foregoing second embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the AP in the foregoing second embodiment. This will not be repeated here.
  • the processing unit 12 is used to generate a trigger frame.
  • the transceiver unit 11 is used to send a trigger frame
  • the trigger frame is used to trigger the station to send the EHT TB PPDU
  • the trigger frame carries first indication information
  • the first indication information is used to indicate the SRP1 in the U-SIG of the EHT TB PPDU field and/or the value of the SRP2 field
  • the trigger frame also carries second indication information, where the second indication information is used to indicate the value of the U-SIG reserved field in the U-SIG of the EHT TB PPDU ;
  • step S401 in the third embodiment and the description about the trigger frame summarized in this embodiment, which will not be repeated here.
  • the transceiver unit 11 is further configured to receive the EHT TB PPDU sent by the site.
  • the settings of the SRP field and the U-SIG reserved field in the U-SIG of the EHT TB PPDU refer to the description of the third embodiment, and will not be repeated here. .
  • the communication device 1 of the fourth design can correspondingly execute the foregoing fourth embodiment, and the above-mentioned operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the AP in the foregoing fourth embodiment. This will not be repeated here.
  • FIG. 20 is a schematic structural diagram of a communication apparatus 2 provided by an embodiment of the present application.
  • the communication device 2 may be a STA or a chip in the STA, such as a Wi-Fi chip or the like.
  • the communication device 2 includes a transceiver unit 21 and a processing unit 22 .
  • the transceiver unit 21 is used to receive a trigger frame, and the trigger frame is used to trigger the communication device 2 to send an EHT TB PPDU; the transceiver unit 21 is also used to send an EHT TB PPDU.
  • the U-SIG includes the U-SIG reserved field, the SRP1 field, or the SRP1 field and the SRP2 field.
  • the processing unit 22 includes a U-SIG reserved field setting subunit 221 and an SRP field setting subunit 222 .
  • the U-SIG reserved field setting subunit 221 is used to set the value of the U-SIG reserved field.
  • the value of the U-SIG reserved field is determined based on whether the trigger frame carries the special user field, and the trigger frame does not carry special user information. field, the value of the U-SIG reservation field is set to the default value; when the trigger frame carries the special user information field, the value of the U-SIG reservation field is based on the U-SIG reservation indication field in the special user information field value is determined.
  • the SRP field setting subunit 222 is used to set the values of the SRP1 field and the SRP2 field in the U-SIG of the EHT TB PPDU.
  • the values of the SRP1 field and the SRP2 field are based on the value indicated by one or more UL SRP fields in the common information field of the trigger frame, the value indicated by the UL EHT SRP field, and the UL SRP field in the special user information field of the trigger frame. One or more of the indicated values are determined.
  • the communication device 2 of the first design can correspondingly execute the foregoing Embodiments 1 to 3, and the above operations or functions of each unit in the communication device 2 are to implement the corresponding STAs in the foregoing Embodiments 1 to 3 respectively.
  • the operation, for the sake of brevity, is not repeated here.
  • FIG. 21 is a schematic structural diagram of a communication apparatus 3 provided by an embodiment of the present application.
  • the communication device 3 may be an AP or a STA, and further, the communication device 3 may be a chip in the AP or STA, such as a Wi-Fi chip.
  • the communication device 3 includes a determination unit 31 and a transceiver unit 32 .
  • the communication device 3 is an AP or a chip in the AP.
  • the determining unit 31 is configured to trigger the values indicated by the four UL SRP fields included in the public information field of the frame according to the values respectively indicated by the SRP1 field and the SRP2 field included in the U-SIG of the EHT TB PPDU.
  • One or more of the values indicated by the UL EHT SRP field in the HE-SIG-A2 of the public information field determine the transmit power of the PSRT PPDU; the transceiver unit 32 is configured to transmit the PSRT PPDU according to the transmit power of the PSRT PPDU. PSRT PPDU.
  • the transceiver unit 32 is further configured to receive a trigger frame, the trigger frame includes 4 UL SRP fields, and the value indicated by one UL SRP field is the transmission power of the first AP on a subchannel and the value of the first AP.
  • the sum of the maximum acceptable interference power, the communication device 3 and the first AP are located in the same OBSS.
  • the first AP refers to the AP that sends the trigger frame.
  • the transceiver unit 32 is further configured to receive the EHT TB PPDU, the U-SIG of the EHT TB PPDU includes the SRP1 field and the SRP2 field, and the value indicated by the SRP1 field is the value of the first AP on the first subchannel.
  • the sum of the transmit power and the maximum interference power that the first AP can accept, and the value indicated by the SRP2 field is the sum of the transmit power of the first AP on the second subchannel and the maximum interference power that the first AP can accept.
  • the bandwidth of the first sub-channel and the second sub-channel is equal to half of the bandwidth of the EHT TB PPDU, and the frequency of the first sub-channel is less than the frequency of the second sub-channel, and the communication device 3 and the first AP are located in within the same OBSS.
  • the communication device 3 of this design can correspondingly execute the method shown in FIG. 13 , and the above operations or functions of each unit in the communication device 3 are to implement the corresponding operations of the second AP in FIG. 13 , and for the sake of brevity , and will not be repeated here.
  • the communication device 3 is a STA or a chip in the STA.
  • the determining unit 31 is configured to trigger the values indicated by the four UL SRP fields included in the public information field of the frame according to the values respectively indicated by the SRP1 field and the SRP2 field included in the U-SIG of the EHT TB PPDU.
  • One or more of the values indicated by the UL EHT SRP field in the HE-SIG-A2 of the public information field determines the transmit power of the response frame in response to the PSRT PPDU; transmit power to send the response frame.
  • the transceiver unit 32 is further configured to receive a trigger frame, the trigger frame includes 4 UL SRP fields, and the value indicated by one UL SRP field is the transmission power of the first AP on a subchannel and the value of the first AP.
  • the sum of the maximum acceptable interference power, the communication device 3 and the first AP are located in the same OBSS.
  • the first AP refers to the AP that sends the trigger frame.
  • the transceiver unit 32 is further configured to receive the EHT TB PPDU, the U-SIG of the EHT TB PPDU includes the SRP1 field and the SRP2 field, and the value indicated by the SRP1 field is the value of the first AP on the first subchannel.
  • the sum of the transmit power and the maximum interference power that the first AP can accept, and the value indicated by the SRP2 field is the sum of the transmit power of the first AP on the second subchannel and the maximum interference power that the first AP can accept.
  • the bandwidth of the first sub-channel and the second sub-channel is equal to half of the bandwidth of the EHT TB PPDU, and the frequency of the first sub-channel is less than the frequency of the second sub-channel, and the communication device 3 and the first AP are located in within the same OBSS.
  • the transceiver unit 32 is further configured to receive the PSRT PPDU sent by the second AP.
  • the above determination unit 31 may be a processing unit.
  • the communication device 3 of this design can correspondingly execute the method shown in FIG. 18 , and the above operations or functions of each unit in the communication device 3 are to implement the corresponding operations of the second STA in FIG. 18 , and for the sake of brevity , and will not be repeated here.
  • the AP and the STA in the embodiments of the present application are described above, and the possible product forms of the AP and the STA are described below. It should be understood that any product with the functions of the AP described in FIG. 19 and any product with the functions of the STA described in FIG. 20 may have the functions of the AP or STA described in FIG. 21 above. Any form of product falls within the protection scope of the embodiments of the present application. It should also be understood that the following description is only an example, and the product forms of the AP and the STA in the embodiments of the present application are not limited thereto.
  • the AP and STA described in the embodiments of this application may be implemented by a general bus architecture.
  • FIG. 22 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • the communication apparatus 1000 may be an AP or a STA, or a chip therein.
  • FIG. 22 shows only the main components of the communication device 1000 .
  • the communication device may further include a memory 1003, and an input and output device (not shown).
  • the processor 1001 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • the memory 1003 is mainly used to store software programs and data.
  • the transceiver 1002 may include a control circuit and an antenna, and the control circuit is mainly used for converting baseband signals to radio frequency signals and processing radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1001 performs baseband processing on the data to be sent, and outputs a baseband signal to a radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through an antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1001.
  • the processor 1001 converts the baseband signal into data and processes the data. deal with.
  • the radio frequency circuit and antenna can be provided independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the processor 1001, the transceiver 1002, and the memory 1004 may be connected through a communication bus.
  • the communication apparatus 1000 may be used to perform the functions of the AP in the foregoing first embodiment: the processor 1001 may be used to generate the trigger frame sent in step S101 in FIG. Other Processes; the transceiver 1002 may be used to perform steps S101 and S104 in Figure 7a, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the STA in the foregoing first embodiment: the processor 1001 may be used to generate the EHT TB PPDU sent in step S103 in FIG. Other processes of the techniques; transceiver 1002 may be used to perform steps S102 and S103 in Figure 7a, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the function of the AP in the foregoing first embodiment: the processor 1001 may be used to generate the trigger frame sent in step S201 in FIG. Other Processes; the transceiver 1002 may be used to perform steps S201 and S204 in Figure 8a, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be configured to perform the functions of the STA in the foregoing first embodiment: the processor 1001 may be configured to generate the EHT TB PPDU sent in step S203 in FIG. Other processes of the techniques; transceiver 1002 may be used to perform steps S202 and S203 in Figure 8a, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the function of the AP in the foregoing second embodiment: the processor 1001 may be used to generate the trigger frame sent in step S301 in FIG. Other processes; transceiver 1002 may be used to perform steps S301 and S304 in FIG. 11, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the STA in the foregoing second embodiment: the processor 1001 may be used to generate the EHT TB PPDU sent in step S303 in FIG. Other processes of the techniques; transceiver 1002 may be used to perform steps S302 and S303 in FIG. 11, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the AP in the foregoing third embodiment: the processor 1001 may be used to generate the trigger frame sent in step S401 in FIG. Other processes; transceiver 1002 may be used to perform steps S401 and S404 in FIG. 14, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the functions of the STA in the foregoing third embodiment: the processor 1001 may be used to generate the EHT TB PPDU sent in step S403 in FIG. 14 , and/or be used to perform the functions described herein Other processes of the techniques; transceiver 1002 may be used to perform steps S402 and S403 in FIG. 14, and/or other processes for the techniques described herein.
  • the communication device 1000 may be used to perform the function of the second AP in the foregoing fourth embodiment: the processor 1001 may be used to perform step S503 in FIG. 16 , and/or to perform other techniques described herein. Process; transceiver 1002 may be used to perform step S504 in Figure 16, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the function of the second STA in the foregoing fourth embodiment: the processor 1001 may be used to perform step S604 in FIG. 18 , and/or to perform other techniques described herein. Process; transceiver 1002 may be used to perform step S605 in Figure 18, and/or other processes for the techniques described herein.
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1001 may store instructions, which may be a computer program, and the computer program runs on the processor 1001 to enable the communication device 1000 to execute the method described in any of the above method embodiments.
  • the computer program may be embodied in the processor 1000, in which case the processor 1001 may be implemented by hardware.
  • the communication apparatus 1000 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 19 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • the IC set can also include a storage component for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the AP and STA described in the embodiments of this application may be implemented by a general-purpose processor.
  • a general-purpose processor implementing an AP includes a processing circuit and an input and output interface that communicates with the internal connection of the processing circuit.
  • the general-purpose processor may be used to perform the functions of the AP in the foregoing first embodiment.
  • the processing circuit can be used to generate the trigger frame sent in step S101 in FIG. 7a, and/or be used to perform other processes of the techniques described herein;
  • the input and output interface is used to perform step S101 and step S101 in FIG. 7a S104, and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to perform the functions of the AP in the foregoing first embodiment.
  • the processing circuit is used to generate the trigger frame sent by step S201 in Fig. 8a, and/or used to execute other processes of the technology described herein;
  • the input and output interface is used to execute steps S201 and S204 in Fig. 8a , and/or other procedures for the techniques described herein.
  • the general-purpose processor may be used to perform the functions of the AP in the foregoing second embodiment.
  • the processing circuit is used to generate the trigger frame sent by step S301 in FIG. 11 , and/or used to perform other processes of the techniques described herein;
  • the input and output interface is used to perform steps S301 and S304 in FIG. 11 . , and/or other procedures for the techniques described herein.
  • the general-purpose processor may be used to perform the functions of the AP in the foregoing third embodiment.
  • the processing circuit is used to generate the trigger frame sent by step S401 in FIG. 14 , and/or used to perform other processes of the techniques described herein;
  • the input and output interface is used to perform steps S401 and S404 in FIG. 14 . , and/or other procedures for the techniques described herein.
  • the general-purpose processor may be used to perform the function of the second AP in the foregoing fourth embodiment.
  • the processing circuit is used to perform step S503 in FIG. 16 , and/or used to perform other processes of the techniques described herein;
  • the input and output interface is used to perform step S504 in FIG. 16 , and/or used to perform Other procedures for the techniques described herein.
  • a general-purpose processor implementing the STA includes a processing circuit and an input and output interface that communicates with the internal connection of the processing circuit.
  • the general-purpose processor may be used to perform the functions of the STA in the foregoing first embodiment.
  • the processing circuit is used to generate the EHT TB PPDU sent in step S103 in FIG. 7a, and/or used to perform other processes of the technology described herein;
  • the input and output interface is used to perform step S102 and step S102 in FIG. 7a. S103, and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to perform the functions of the STA in the foregoing first embodiment.
  • the processing circuit is used to generate the EHT TB PPDU sent by step S203 in FIG. 8a, and/or used to perform other processes of the technology described herein;
  • the input and output interface is used to perform step S202 and step S202 in FIG. 8a. S203, and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to perform the functions of the STA in the foregoing second embodiment.
  • the processing circuit is used to generate the EHT TB PPDU sent by step S303 in FIG. 11 , and/or used to perform other processes of the technology described herein; the input and output interface is used to perform step S302 and step S302 in FIG. 11 .
  • the general-purpose processor may be used to perform the functions of the STA in the foregoing third embodiment.
  • the processing circuit is used to generate the EHT TB PPDU sent by step S403 in FIG. 14, and/or used to perform other processes of the technology described herein;
  • the input and output interface is used to perform step S402 and step S402 in FIG. 14. S403, and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to perform the function of the second STA in the foregoing fourth embodiment.
  • the processing circuit is used to perform step S604 in FIG. 18, and/or other processes for performing the techniques described herein;
  • the input and output interface may be used to perform step S605 in FIG. 18, and/or use Other procedures for the techniques described herein.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the processor executes the computer program code, the electronic device executes the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a communication device, which can exist in the form of a chip, and the structure of the device includes a processor and an interface circuit, and the processor is used to communicate with other devices through a receiving circuit, so that the device performs the aforementioned The method of any of the embodiments.
  • An embodiment of the present application further provides a wireless communication system, including an AP and a STA, where the AP and the STA can execute the method in any of the foregoing embodiments.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), electrically erasable programmable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • the functions described in this application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions When implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本申请涉及无线通信领域,应用于支持802.11be标准的无线局域网中,尤其涉及一种触发帧中指示空间参数以及对应的PPDU中空间复用参数字段的确定方法及相关装置。该方法包括:接入点AP发送触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU;所述站点基于所述触发帧的公共信息字段中的一个或多个上行空间复用参数UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种,确定基于所述EHT TB PPDU的通用信令字段U-SIG中空间复用参数SRP指示的值。所述STA向AP发送EHT TB PPDU。实施本申请实施例,可以在不改变U-SIG的帧结构的情况下,设置EHT TB PPDU的空间复用参数字段。

Description

空间复用参数指示和空间复用参数字段的确定方法及装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种空间复用参数的指示方法,以及对应的物理层协议数据单元PPDU中空间复用参数字段的确定方法,触发帧传输方法,PPDU传输方法及相关装置。
背景技术
无线局域网(wireless local area networks,WLAN)发展至今已历经多代,包括802.11a/b/g、802.11n、802.11ac、802.11ax以及现在正在讨论中的802.11be等。其中,802.11ax标准可以称为高效(high efficient,HE)标准,802.11be标准可以称为极高吞吐率(extremely high throughput,EHT)标准或Wi-Fi7标准。与802.11ax不同,802.11be将采用超大带宽,例如320MHz,以实现超高传输速率和支持超密集用户的场景。下文中将支持802.11ax标准而不支持802.11be标准的站点简称为HE站点,将支持802.11be标准的站点简称为EHT站点。
802.11ax的WLAN设备(如接入点(access point,AP)和站点(station,STA))只能支持半双工传输,即在同一个频谱宽度或者信道上,只能有一个设备发送信息,其他设备只能接收信号而无法发送,以避免对当前发送设备的干扰。但随着WLAN设备的密度越来越高,一个基本服务集(basic service set,BSS)与另一个BSS重叠的情况越来越普遍,即重叠基本服务集(Overlapping BSS,OBSS)的情况越来越普遍。因为位于OBSS内的WLAN设备可以接收到来自两个BSS的物理层协议数据单元(physical protocol data unit,PPDU,也称为数据包或数据分组),所以如果采用传统方法,将导致传输效率低。故,802.11ax提出了空间复用(spatial reuse)方法,通过自适应调整发射功率,使得处于重叠基本服务集中的WLAN设备能够同时传输,大大提升了传输效率。具体地,802.11ax在基于触发帧的上行调度传输方法中引入空间复用。站点在发送基于触发的高效物理层数据协议单元(high efficient trigger based physical layer protocol data unit,HE TB PPDU)时,将接收到的触发帧的公共信息字段中上行空间复用(UL spatial reuse)字段的4个上行空间复用参数(uplink spatial reuse parameter,UL SRP)字段(也可称为上行参数空间复用(uplink parameterized spatial reuse,UL PSR)字段)的值,一一复制到HE TB PPDU的高效信令字段A(high efficient signal field A,HE-SIG-A)包括的4个空间复用参数(spatial reuse parameter,SRP)字段中。
然而,802.11be标准会沿用802.11ax标准中基于触发帧的上行调度传输方法,但如何设计触发帧以调度EHT站点、或同时调度HE站点和EHT站点,成为了亟待解决的问题。
发明内容
本申请实施例提供一种触发帧中指示空间复用参数的方法及相关装置,一种PPDU中空间复用参数字段的确定方法及相关装置。本申请实施例提供的技术方案,可以在触发帧调度EHT站点、或同时调度HE站点和EHT站点的场景下,不改变EHT TB PPDU的帧结构,并根据触发帧,来设置EHT TB PPDU的空间复用参数字段、U-SIG预留字段中的一种或两种。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请提供一种触发帧中指示空间复用参数的方法,包括:
接入点AP发送触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU;
所述AP接收所述站点发送的EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中空间复用参数SRP指示的值基于所述触发帧的公共信息字段中的一个或多个上行空间复用参数UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种确定。
可选的,该触发帧还用于触发站点发送HE TB PPDU。该HE TB PPDU的HE-SIG-A中包括的4个SRP字段的值,分别复制上述4个UL SRP字段的值。其中,每个UL SRP字段的长度为4比特,HE-SIG-A中每个SRP字段的长度也为4比特。
实施本申请第一方面提供的方法,一方面,不改变触发帧的内容(即不改变触发帧中UL SRP值),使HE站点可以按照原有的方式设置空间复用参数,不会增加触发帧的信令开销,且对HE站点而言,其在颗粒度上没有损失。另一方面,不改变EHT TB PPDU的U-SIG的帧结构的情况下,基于触发帧中的4个UL SRP字段,UL EHT SRP字段中的一个字段或两个字段所指示的值,对EHT TB PPDU的U-SIG中空间复用参数进行设置,使得该触发帧能够调度EHT站点发送上行EHT TB PPDU,也可以使HE站点和EHT站点能够在同一个触发帧下接受调度;另外,EHT TB PPDU的U-SIG中U-SIG预留字段可以设置为缺省值。
第二方面,本申请提供一种PPDU中空间复用参数字段的确定方法,该方法包括:站点STA接收触发帧,所述触发帧用于触发所述站点发送极高吞吐量物理层协议数据单元EHT TB PPDU;
所述STA发送EHT TB PPDU,所述EHT TB PPDU的U-SIG中SRP指示的值基于所述触发帧的公共信息字段中的一个或多个UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种确定。
可选的,该触发帧还用于触发站点发送HE TB PPDU。该HE TB PPDU的HE-SIG-A中包括的4个SRP字段的值,分别复制上述4个UL SRP字段的值。其中,每个UL SRP字段的长度为4比特,HE-SIG-A中每个SRP字段的长度也为4比特。
实施本申请第二方面提供的方法,一方面,不改变触发帧的内容(即不改变触发帧中UL SRP值),使HE站点可以按照原有的方式设置空间复用参数,不会增加触发帧的信令开销,且对HE站点而言,其在颗粒度上没有损失。另一方面,不改变EHT TB PPDU的U-SIG的帧结构的情况下,基于触发帧中的4个UL SRP字段,UL EHT SRP字段中的一个字段或两个字段所指示的值,对EHT TB PPDU的U-SIG中空间复用参数进行设置,使得该触发帧能够调度EHT站点发送上行EHT TB PPDU,也可以使HE站点和EHT站点能够在同一个触发帧下接受调度;另外,EHT TB PPDU的U-SIG中U-SIG预留字段可以设置为缺省值。
第三方面,本申请提供一种应用于无线局域网WLAN的通信装置,该通信装置可以为接入点AP或接入点AP中的芯片,其包括:
处理器,用于生成触发帧;
收发器,用于发送所述触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU;
所述收发器,用于接收所述站点发送的EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中空间复用参数SRP指示的值基于所述触发帧的公共信息字段中的一个或多个上 行空间复用参数UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种确定。
第三方面提供的通信装置可实现上述第一方面提供的方法并取得相应的技术效果,在此不赘述。
第四方面,本申请提供一种应用于无线局域网WLAN的通信装置,包括:
收发器,用于接收触发帧,所述触发帧用于触发所述通信装置发送极高吞吐量物理层协议数据单元EHT TB PPDU;
处理器,用于生成所述EHT TB PPDU;所述EHT TB PPDU的U-SIG中SRP指示的值基于所述触发帧的公共信息字段中的一个或多个UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种确定;
所述收发器,用于发送所述EHT TB PPDU。
第四方面提供的通信装置可实现上述第二方面提供的方法并取得相应的技术效果,在此不赘述。
上述第一方面或第二方面提供的方法,上述第三方面或第四方面提供的通信装置中,第一种实现方式中,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述EHT TB PPDU的U-SIG中包括一个SRP字段,所述一个SRP字段的值等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的最小值;或者,所述一个SRP字段的值等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的任一值。
上述第一方面或第二方面提供的方法,上述第三方面或第四方面提供的通信装置中,第二种实现方式中,所述UL EHT SRP字段位于公共信息字段的预留字段中;所述EHT TB PPDU的U-SIG中包括一个SRP字段,所述一个SRP字段的值等于所述UL EHT SRP字段指示的值。
上述第一方面或第二方面提供的方法,上述第三方面或第四方面提供的通信装置中,第三种实现方式中,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;所述EHT TB PPDU为非聚合PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段;所述SRP1字段的值等于所述UL SRP1字段、UL SRP2字段指示的值中的最小值或任一值;所述SRP2字段的值等于所述UL SRP3字段、UL SRP4字段指示的值中的最小值或任一值。
上述第一方面或第二方面提供的方法,上述第三方面或第四方面提供的通信装置中,第四种实现方式中,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;所述EHT TB PPDU的带宽为320MHz或所述EHT TB PPDU为聚合PPDU的部分PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段,所述SRP1字段的值等于所述SRP2字段的值,均等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的最小值或任一值。
上述第一方面或第二方面提供的方法,上述第三方面或第四方面提供的通信装置中,第五种实现方式中,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段, 所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;所述EHT TB PPDU的带宽为320MHz或所述EHT TB PPDU为聚合PPDU的部分PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段,所述SRP1字段的值等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的最小值或任一值;所述SRP2字段的值等于所述UL EHT SRP字段的值。
上述第一方面或第二方面提供的方法,上述第三方面或第四方面提供的通信装置中,第六种实现方式中,所述EHT TB PPDU的通用信令字段U-SIG还包括U-SIG预留字段;所述U-SIG预留字段的值为缺省值。
第五方面,本申请提供一种触发帧的传输方法,该方法包括:接入点AP发送触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU;所述触发帧还包括用于指示所述EHT TB PPDU中U-SIG预留字段的值的U-SIG预留指示字段;
所述AP接收所述站点发送的EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定。
可选的,该触发帧还用于触发站点发送HE TB PPDU。该HE TB PPDU的HE-SIG-A中包括的4个SRP字段的值,分别复制上述4个UL SRP字段的值。其中,每个UL SRP字段的长度为4比特,HE-SIG-A中每个SRP字段的长度也为4比特。
本方案通过利用触发帧指示所述EHT TB PPDU中U-SIG预留字段的值,使得该触发帧能够调度EHT站点发送上行EHT TB PPDU并根据触发帧的指示设置其中的U-SIG预留字段的值,也可以使HE站点和EHT站点能够在同一个触发帧下接受调度。
第六方面,本申请提供一种物理层协议数据单元PPDU中空间复用参数字段的确定方法,该方法包括:站点STA接收触发帧,所述触发帧用于触发所述站点发送EHT TB PPDU;所述触发帧还包括用于指示所述EHT TB PPDU中U-SIG预留字段的值的U-SIG预留指示字段;
所述STA发送EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定。
可选的,该触发帧还用于触发站点发送HE TB PPDU。该HE TB PPDU的HE-SIG-A中包括的4个SRP字段的值,分别复制上述4个UL SRP字段的值。其中,每个UL SRP字段的长度为4比特,HE-SIG-A中每个SRP字段的长度也为4比特。
第七方面,本申请提供一种应用于无线局域网WLAN通信装置,该通信装置可以为AP或AP中的芯片,比如Wi-Fi芯片。该通信装置包括:
处理器,用于生成触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU;所述触发帧还包括用于指示所述EHT TB PPDU中U-SIG预留字段的值的U-SIG预留指示字段;
收发器,用于发送所述触发帧;
所述收发器,还用于接收所述站点发送的EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定。
可选的,该触发帧还用于触发站点发送HE TB PPDU。该HE TB PPDU的HE-SIG-A中包括的4个SRP字段的值,分别复制上述4个UL SRP字段的值。其中,每个UL SRP字段的长度为4比特,HE-SIG-A中每个SRP字段的长度也为4比特。
第八方面,本申请提供一种应用于无线局域网WLAN的通信装置,该通信装置可以为 STA或STA中的芯片,比如Wi-Fi芯片。该通信装置包括:收发器,用于接收触发帧,所述触发帧用于触发所述站点发送EHT TB PPDU;所述触发帧还包括用于指示所述EHT TB PPDU中U-SIG预留字段的值的U-SIG预留指示字段;
处理器,用于生成所述EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定;
所述收发器,还用于发送EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定。
可选的,该触发帧还用于触发站点发送HE TB PPDU。该HE TB PPDU的HE-SIG-A中包括的4个SRP字段的值,分别复制上述4个UL SRP字段的值。其中,每个UL SRP字段的长度为4比特,HE-SIG-A中每个SRP字段的长度也为4比特。
上述第五方面或第六方面提供的方法,上述第七方面或第八方面提供的通信装置中,第一种实现方式中,所述U-SIG预留指示字段位于所述触发帧的用户信息列表字段的特殊用户信息字段中。
上述第五方面或第六方面提供的方法,上述第七方面或第八方面提供的通信装置中,第二种实现方式中,所述特殊用户信息字段的关联标识AID12为预设值或为不完整的AID12值。
上述第五方面或第六方面提供的方法,上述第七方面或第八方面提供的通信装置中,第三种实现方式中,所述特殊用户信息字段还包括:一个用于U-SIG的UL SRP字段;或两个用于U-SIG的UL SRP字段。
上述第五方面或第六方面提供的方法,上述第七方面或第八方面提供的通信装置中,第四种实现方式中,所述触发帧的公共信息字段包括4个上行空间复用参数UL SRP字段;或触发帧的公共信息字段进一步包括位于所述公共信息字段的预留字段中的上行EHT空间复用参数UL EHT SRP字段。
第九方面,本申请提供一种触发帧指示空间复用参数的方法,该方法包括:AP发送触发帧,该触发帧用于触发站点发送EHT TB PPDU;AP接收站点发送的EHT TB PPDU。其中,该触发帧中携带第一指示信息,该第一指示信息用于指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值。EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值基于该第一指示信息确定。
第十方面,本申请提供一种PPDU中空间复用参数字段的确定方法,该方法包括:STA接收触发帧,该触发帧用于触发站点发送EHT TB PPDU;STA发送EHT TB PPDU。其中,该触发帧中携带第一指示信息,该第一指示信息用于指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值。EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值基于该第一指示信息确定。
第十一方面,本申请提供一种应用于WLAN的通信装置,该通信装置为接入点AP或AP中的芯片,其包括:
处理器,用于生成触发帧;该触发帧用于触发站点发送EHT TB PPDU;AP接收站点发送的EHT TB PPDU。其中,该触发帧中携带第一指示信息,该第一指示信息用于指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值。EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值基于该第一指示信息确定。
收发器,用于发送触发帧。
第十二方面,本申请提供一种应用于WLAN的通信装置,该通信装置为站点STA或STA 中的芯片,其包括:
收发器,用于接收触发帧,该触发帧用于触发站点发送EHT TB PPDU;该触发帧中携带第一指示信息,该第一指示信息用于指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值。
处理器,用于生成EHT TB PPDU,该EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值基于该第一指示信息确定;
所述收发器,还用于发送EHT TB PPDU。
第九方面或第十方面提供的方法,第十一方面或第十二方面提供的通信装置,第一种实现方式中,该第一指示信息位于上述触发帧的公共信息字段中,该公共信息字段包括4个UL SRP字段,该4个UL SRP字段分别用于指示HE TB PPDU中4个SRP字段的值。
第九方面或第十方面提供的方法,第十一方面或第十二方面提供的通信装置,第二种实现方式中,该第一指示信息位于上述触发帧的公共信息字段中,该公共信息字段包括UL EHT SRP字段,该UL EHT SRP字段单独指示或与所述4个UL SRP字段一起指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值。
第九方面或第十方面提供的方法,第十一方面或第十二方面提供的通信装置,第三种实现方式中,该第一指示信息位于上述触发帧的用户信息字段的UL SRP字段中。
第九方面或第十方面提供的方法,第十一方面或第十二方面提供的通信装置,第四种实现方式中,该第一指示信息一部分位于上述触发帧的公共信息字段的4个UL SRP字段,一部分位于触发帧的特殊用户信息字段的UL SRP字段中;其中4个UL SRP字段与所述位于特殊用户信息字段的UL SRP字段一起指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值。
第九方面或第十方面提供的方法,第十一方面或第十二方面提供的通信装置,第五种实现方式中,该第一指示信息一部分位于上述触发帧的公共信息字段中,该公共信息字段包括UL EHT SRP字段,一部分位于触发帧的特殊用户信息字段的UL SRP字段中;其中UL EHT SRP字段与所述位于特殊用户信息字段的UL SRP字段一起指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值。
第九方面或第十方面提供的方法,第十一方面或第十二方面提供的通信装置,第六种实现方式中,该第一指示信息位于上述触发帧的特殊用户信息字段中。
第九方面或第十方面提供的方法,第十一方面或第十二方面提供的通信装置,第七种实现方式中,该特殊用户信息字段的AID12字段的值为预设值或为不完整的AID12值。
第九方面或第十方面提供的方法,第十一方面或第十二方面提供的通信装置,第八种实现方式中,该触发帧还用于触发站点发送HE TB PPDU。该HE TB PPDU的HE-SIG-A中包括的4个SRP字段的值,分别复制上述4个UL SRP字段的值。其中,每个UL SRP字段的长度为4比特,HE-SIG-A中每个SRP字段的长度也为4比特。
本方案利用触发帧中某个特殊的用户信息字段,为EHT TB PPDU做单独的空间复用参数的指示,其含义清晰,且不影响HE站点的调度,可以在同一个触发帧下调度HE站点和EHT站点。
上述任一方面的一种实现方式中,EHT TB PPDU的总带宽为320MHz。
第十三方面,本申请提供一种空间复用方法,该方法包括:通信设备根据EHT TB PPDU的U-SIG中包括的SRP1字段和SRP2字段分别指示的值、触发帧的公共信息字段中包括的4个UL SRP字段分别指示的值,触发帧的公共信息字段中UL EHT SRP指示的值中的一种或 多种,确定PPDU的发射功率;通信设备按照该PPDU的发射功率,发送该PPDU。
其中,该通信设备既可以是AP,也可以是STA。当通信设备为AP时,上述PPDU为参数空间复用接收(parameterized spatial reuse reception,PSRR)PPDU。当通信设备为STA时,上述PPDU为响应于PSRR PPDU的响应帧。
第十四方面,本申请提供一种通信装置,该通信装置可以为AP或STA,进一步的,该通信装置可以是AP或STA中的芯片,比如Wi-Fi芯片。该通信装置包括:确定单元,用于根据EHT TB PPDU的U-SIG中包括的SRP1字段和SRP2字段分别指示的值、和/或触发帧的公共信息字段中包括的4个UL SRP字段分别指示的值,确定PPDU的发射功率;收发单元,用于按照该PPDU的发射功率,发送该PPDU。
其中,该通信设备既可以是AP,也可以是STA。当通信设备为AP时,上述PPDU为PSRR PPDU。当通信设备为STA时,上述PPDU为响应于PSRR PPDU的响应帧。
第十三方面的方法或第十四方面的通信设备,第一种实现方式中,通信设备确定PPDU的发射功率之前,该方法还包括:通信设备接收触发帧,该触发帧中包括4个UL SRP字段,一个UL SRP字段指示的值为一个子信道上第一AP的发射功率与该第一AP能够接受的最大干扰功率之和,该通信设备和该第一AP位于同一个重叠基本服务集OBSS内。这里的“第一AP”是发送触发帧的AP,也是上述PPDU中空间复用参数字段的确定方法中的AP。该通信设备与该第一AP不是同一设备。
本方案针对EHT TB PPDU提供一种空间复用方法,可以兼容U-SIG中1个或2个SRP字段的情况,在EHT标准中实现空间复用,使得处于重叠基本服务集中的设备能够同时传输,提高传输效率。
第十五方面,本申请提供一种装置,该装置以功能单元的产品形态实现,包括处理单元和收发单元,其中,所述处理单元用于实现上述任一方面提及的处理器的功能,所述收发单元用于实现上述任一方面提及的收发器的功能。
第十六方面,本申请提供一种装置,该装置以芯片的产品形态实现,包括输入输出接口和处理电路。
在一种可能的设计中,该装置为上述第三方面或第七方面或第十一方面,或第十四方面的通信装置中的芯片。该通信装置为AP;该芯片中的处理电路,用于实现上述第三方面或第七方面或第十一方面,或第十四方面的AP侧所做的处理功能。另一种实现中,该芯片还可以包括该射频电路。
在一种可能的设计中,该装置为上述第四方面或第八方面或第十二方面,或第十四方面的通信装置中的芯片。该通信装置为STA;该芯片中的处理电路,用于实现上述第四方面或第八方面或第十一方面,或第十四方面的AP侧所做的处理功能。另一种实现中,该芯片还可以包括该射频电路。另一种实现中,该芯片还可以包括该射频电路。
第十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面、或上述第五方面、或上述第六方面、或上述第九方面、或上述第十方面、或上述第十三方面所述的方法。
第十八方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面、或上述第五方面、或上述第六方面、或上述第九方面、或上述第十方面、或上述第十三方面所述的方法。
本申请实施例不改变或者增加EHT TB PPDU的U-SIG字段的长度(U-SIG字段占用2 个OFDM符号,共8微秒(us)),根据触发帧中的4个UL SRP字段的指示,触发帧中的UL EHT SRP字段的指示,触发帧的特殊用户信息字段的指示中的一种或多种,来设置EHT TB PPDU的空间复用参数字段,从而可以使得HE站点和EHT站点能够在同一个触发帧下接受调度,并可以在EHT标准中实现空间复用,使得处于重叠基本服务集中的WLAN设备能够同时传输,提高传输效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的无线通信系统的架构示意图;
图2a是本申请实施例提供的接入点的结构示意图;
图2b是本申请实施例提供的站点的结构示意图;
图3a是一个BSS与另一个BSS部分重叠形成的OBSS的示意图;
图3b是一个BSS包含另一个BSS形成的OBSS的示意图;
图4是802.11ax标准中基于触发帧的上行调度传输方法的示意图;
图5a是触发帧的帧格式示意图;
图5b是802.11ax的触发帧中公共信息字段和用户信息字段的帧格式示意图;
图6a是802.11be的触发帧中公共信息字段和用户信息字段的帧格式一种示意图;
图6b是EHT TB PPDU的帧结构示意图;
图7a是本申请实施例提供的触发帧中指示空间复用参数的方法,以及对应的PPDU中空间复用参数字段的确定方法的第一种示意流程图;
图7b是如图7a所示的方法中,U-SIG SRP字段与UL SRP字段之间的关系示意图;
图8a是本申请实施例提供的触发帧中指示空间复用参数的方法,以及对应的PPDU中空间复用参数字段的确定方法的第二种示意流程图;
图8b是如图8a所示的方法中,U-SIG SRP1字段和U-SIG SRP2字段与UL SRP字段之间的关系示意图;
图9是本申请实施例提供的触发帧同时调度HE站点和EHT站点进行上行数据传输的时序示意图;
图10是802.11be的触发帧中公共信息字段和用户信息字段的帧格式又一种示意图;
图11是本申请实施例提供的触发帧中指示空间复用参数的方法,以及PPDU中空间复用参数字段的确定方法的第三种示意流程图;
图12a是图11所示的方法中,U-SIG SRP字段和ULEHT SRP字段之间的关系示意图;
图12b是图11所示的方法中,U-SIG SRP1字段和U-SIG SRP2字段与UL SRP字段之间的关系示意图;
图12c是图11所示的方法中,U-SIG SRP1字段和U-SIG SRP2字段与UL SRP字段之间的关系示意图;
图13是802.11be的触发帧中公共信息字段和用户信息字段的帧格式又一种示意图;
图14是本申请实施例提供的触发帧传输方法,以及PPDU传输方法的一种示意流程图;
图15a是本申请实施例提供的触发帧中进行U-SIG的SRP指示的一示意图;
图15b是本申请实施例提供的触发帧中进行U-SIG的SRP指示的另一示意图;
图16是本申请实施例提供的空间复用方法的一示意流程图;
图17是本申请实施例提供的空间复用方法的时序示意图;
图18是本申请实施例提供的空间复用方法的另一示意流程图;
图19是本申请实施例提供的通信装置1的结构示意图;
图20是本申请实施例提供的通信装置2的结构示意图;
图21是本申请实施例提供的通信装置3的结构示意图;
图22是本申请实施例提供的通信装置1000的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于理解本申请实施例的提供方法,下面将对本申请实施例提供的方法的系统架构和/或应用场景进行说明。可理解的,本申请实施例描述的系统架构和/或应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例提供一种在触发帧中指示空间复用参数的方法,可以调度EHT站点、或同时调度HE站点和EHT站点。
本实施例的触发帧,一种实现方式是:不改变其公共信息字段,而在用户信息列表字段部分,利用某个特殊用户信息字段,单独指示EHT TB PPDU中的空间复用参数;另一种实现方式是:利用其公共信息字段中部分字段,以指示EHT TB PPDU中的空间复用参数,从而无需在用户信息列表字段部分增加某个特殊用户信息字段。再一种实现方式中,在触发帧的用户信息列表字段部分增加某个特殊用户信息字段,以指示EHT TB PPDU中的空间复用参数和U-SIG预留信息。
针对以上前两种实现方式,本申请实施例均不改变或者增加EHT TB PPDU的U-SIG字段的长度(U-SIG字段占用2个OFDM符号,共8微秒(us)),根据触发帧中的4个UL SRP字段,或者根据触发帧中的UL EHT SRP字段,或者根据4个UL SRP字段和UL EHT SRP字段来设置EHT TB PPDU的空间复用参数字段,从而可以使得HE站点和EHT站点能够在同一个触发帧下接受调度,并可以在EHT标准中实现空间复用,使得处于重叠基本服务集中的WLAN设备能够同时传输,提高传输效率。
本实施例提供的在触发帧中指示空间复用参数的方法和PPDU中空间复用参数字段的确定方法,可以应用于无线通信系统中,比如无线局域网系统中。该PPDU中空间复用参数字段的确定方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现。该通信设备可以是接入点设备或站点设备;该通信设备还可以是一种支持多条链路并行传输的无线通信设备,例如,该通信设备可以称为多链路设备(multi-link device,MLD)或多频段设备。相比于仅支持单条链路传输的通信设备来说,多链路设备具有更高的传输效率和更大的吞吐率。
本申请实施例提供的在触发帧中指示空间复用参数的方法和PPDU中空间复用参数字段的确定方法可以应用于AP与一个或多个STA通信的场景中,还可以应用于AP与AP的通信场景,也同样适用于STA与STA的通信场景。参见图1,图1是本申请实施例提供的无线通信系统的架构示意图。如图1所示,该无线通信系统可以包括一个或多个AP(如图2中的AP1和AP2)和一个或多个STA(如图2中的STA1、STA2以及STA3),且AP1和AP2可以位于同一个OBSS内。其中,AP和STA均支持WLAN通信协议,该通信协议可以包括 802.11be(或称为Wi-Fi 7,EHT协议),还可以包括802.11ax,802.11ac等协议。当然,随着通信技术的不断演进和发展,该通信协议还可以包括802.11be的下一代协议等。以WLAN为例,实现本申请方法的装置可以是WLAN中的AP或STA,或者是,安装在AP或STA中的芯片或处理系统。
接入点(例如图1中的AP1或AP2)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中其他设备(比如站点或其他接入点)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN系统中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
站点(例如图1中的STA1、STA2或STA3)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或接入点通信的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置或,娱乐设备,游戏设备或系统,全球定位系统设备等,STA还可以为上述这些终端中的芯片和处理系统。
WLAN系统可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
802.11标准关注物理(physical layer,PHY)层和媒体接入控制(media access control,MAC)层部分。一个示例中,参见图2a,图2a是本申请实施例提供的接入点的结构示意图。其中,AP可以是多天线/多射频的,也可以是单天线/单射频的,该天线/射频用于发送/接收数据分组。一种实现中,AP的天线或射频部分可以与AP的主体部分分离,呈拉远布局的结构。图2a中,AP可以包括物理层处理电路和媒体接入控制处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。另一个示例中,参见图3b,图2b是本申请实施例提供的站点的结构示意图。图2b示出了单个天线/射频的STA结构示 意图,实际场景中,STA也可以是多天线/多射频的,并且可以是两个以上天线的设备,该天线/射频用于发送/接收数据分组。一种实现中,STA的天线或射频部分可以与STA的主体部分分离,呈拉远布局的结构。图2b中,STA可以包括PHY处理电路和MAC处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
上述内容简要阐述了本申请实施例的系统架构,为更好地理解本申请实施例的技术方案,下面将介绍与本申请实施例相关的几个内容。
1、重叠基本服务集(Overlapping BSS,OBSS)
重叠基本服务集:一个基本服务集与站点的基本服务集工作在同一信道上,并且该基本服务集(部分或全部)在该站点的基本服务集的基本服务区内,这部分重叠的基本服务区即称为重叠基本服务集(overlapping basic service set(OBSS):A basic service set(BSS)operating on the same channel as the station’s(STA’s)BSS and within(either partly or wholly)its basic service area(BSA))。其中,基本服务区是指包含基本服务集成员的区域,它可能包含其他BSS的成员(basic service area(BSA):The area containing the members of a basic service set(BSS).It might contain members of other BSSs)。
换句话说,一个BSS的基本服务区与另一个BSS的基本服务区重叠的部分为OBSS。可理解的,这里的重叠可以是一个BSS和另一个BSS的基本服务区部分重叠,也可以是包含关系,即一个BSS的基本服务区落在另一个BSS的基本服务区内。如图3a所示,图3a是一个BSS与另一个BSS部分重叠形成的OBSS的示意图。图3a中,AP1、STA1以及STA3属于BSS1,AP2和STA2属于BSS2,BSS1和BSS2存在重叠区域,且AP1和AP2位于BSS1与BSS2的重叠区域内,也即位于BSS1和BSS2形成的OBSS内。如图3b所示,图3b是一个BSS包含另一个BSS形成的OBSS的示意图。图3b中,AP1、STA1、以及STA3属于BSS1,AP2和STA2属于BSS2,BSS1包含BSS2,且AP1和AP2位于BSS1与BSS2的重叠区域(即图3b中BSS2的基本服务区),也即位于BSS1和BSS2形成的OBSS内。
可选的,位于同一个OBSS内的WLAN设备可以接收到来自两个BSS的信息。例如,以图3a为例,当位于同一个BSS内的AP1与STA1进行数据传输时,位于另一个BSS的AP2可以接收到AP1和STA1发送的信息,或者AP2还可以接收到STA3发送的信息;AP2可以根据AP1传递的空间复用参数,自适应调整AP2向STA2发送PPDU的功率,以实现在OBSS内部的同时传输。同理,当位于同一个BSS内的AP2与STA2进行数据传输时,位于另一个BSS的AP1可以接收到AP2发送的信息;AP1也可以根据AP2传递的空间复用参数,自适应调整AP1向STA1和/或STA3发送PPDU的功率,以实现在OBSS内部的同时传输。
2、802.11ax标准中基于触发帧的上行调度传输方法
参见图4,图4是802.11ax标准中基于触发帧的上行调度传输方法的示意图。如图4所示,802.11ax标准中基于触发帧的上行调度传输方法具体包括:(1)AP发送触发帧,该触发帧用于调度一个或多个STA发送上行基于触发的HE PPDU。基于触发的HE PPDU可以简写为HE TB PPDU。其中,参见图5a,图5a是触发帧的帧格式示意图。如图5a所示,触发帧中包括公共信息(common information)字段和用户信息列表(user information list)字段。其中,公共信息字段包含所有STA都需要读取的公共信息,包括AP发射功率(AP TX Power)字段和上行空间复用(UL Spatial Reuse)字段。用户信息列表字段包括一个或多个用户信息字段,一个用户信息字段包含一个STA需要读取的信息。参见图5b,图5b是802.11ax的触 发帧中公共信息字段和用户信息字段的帧格式示意图。如图5b所示,在用户信息字段中,关联标识12(association identification 12,AID12)表示某一个STA的关联标识,而资源单元(resource unit,RU)分配(RU allocation)子字段用来指示这个STA(AID12所指示的STA)所分配到的具体的资源单元位置。
(2)一个或多个STA接收到该触发帧后,从该触发帧中解析出与自己的AID相匹配的用户信息字段,然后在该用户信息字段中的资源单元分配子字段所指示的RU上发送HE TB PPDU。
(3)AP接收到该HE TB PPDU后,向一个或多个STA回复确认帧,以确认AP已收到该HE TB PPDU。
一种示例中,HE TB PPDU中可能包括的各字段的含义及功能可参考下述表1所示。
表1
Figure PCTCN2021125779-appb-000001
3、802.11be标准中基于触发帧的上行调度传输方法及相应的EHT TB PPDU
802.11be会沿用802.11ax基于触发的上行调度传输方法,其触发帧的帧格式和方法流程与802.11ax类似。
参见图6a,图6a是802.11be的触发帧中公共信息字段和用户信息字段的帧格式示意图。图6a所示的触发帧可以用于调度EHT站点进行上行数据传输,比如调度EHT站点发送EHT TB PPDU。应理解,图6a仅是示意,本申请实施例关注公共信息字段的上行空间复用字段中的UL SRP字段,该触发帧中的其他字段可以与图6a不同,即有其他表现形式,本申请实施例对此不做限定。例如,公共信息字段部分包括的上行HE-SIG A2保留(UL HE-SIG A2 reserved)字段又可称为UL U-SIG reserved字段。参见图6b,图6b是EHT TB PPDU的帧结构示意图。如图6b所示,EHT TB PPDU包括传统短训练序列、传统长训练序列、传统信令字段、重复传统信令字段、通用信令字段、极高吞吐率短训练序列、极高吞吐率长训练序列、数据字段、以及数据分组扩展字段。其中,EHT TB PPDU中包括的各字段的含义可参考下述表2所示。
表2
Figure PCTCN2021125779-appb-000002
Figure PCTCN2021125779-appb-000003
一种示例中,EHT TB PPDU中的U-SIG字段的内容如表3所示:
表3 EHT TB PPDU中U-SIG字段含义
Figure PCTCN2021125779-appb-000004
Figure PCTCN2021125779-appb-000005
由上述图6b和表3中EHT TB PPDU的U-SIG结构和内容可知,EHT TB PPDU中U-SIG由于长度限制,U-SIG中最多包含2个SRP字段,例如Spatial Reuse 1和Spatial Reuse 2,每个SRP字段的长度为4比特;而触发帧的公共信息字段中携带4个UL SRP字段,HE TB PPDU的HE-SIG-A字段中也包含4个SRP字段,与触发帧中的4个UL SRP字段一一对应。因此,在触发帧调度EHT站点发送上行EHT TB PPDU的场景下,不能按照HE TB PPDU中SRP字段的设置方法来设置EHT TB PPDU中的SRP字段,所以如何设置触发帧,以指示EHT TB PPDU设置EHT TB PPDU中的SRP字段,以及STA在发送EHT TB PPDU时,如何设置EHT TB PPDU中的SRP字段,以使HE站点和EHT站点能够在同一个触发帧下接受调度并反馈空间复用参数,成为了亟待解决的问题。
本申请实施例提供一种触发帧中指示空间复用参数,以及一种PPDU中空间复用参数字段的确定方法,针对不同带宽,在不改变EHT TB PPDU的帧结构的情况下,通过对触发帧进行设计,以及对EHT TB PPDU中空间复用参数的设置,使得HE站点和EHT站点能够在同一个触发帧下接受调度,并可以在EHT标准中实现空间复用,使得处于重叠基本服务集中的WLAN设备能够同时传输,提高传输效率。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请提供的技术方案通过实施例一至实施例五进行阐述。其中,实施例一阐述在不改变802.11ax的情况下,不同带宽(20/40/80/160/320MHz)的EHT TB PPDU中空间复用参数如何设置。实施例二阐述在触发帧中利用其公共信息字段中预留字段作为实现上行EHT空间复用字段的功能(HE-SIG-A2预留字段和预留字段统称为预留字段),如何指示EHT TB PPDU中的空间复用参数。实施例三阐述在触发帧中利用其公共信息字段中的预留字段和用户信息列表字段,如何指示EHT TB PPDU中的空间复用参数。实施例四阐述802.11be中基于空间复用参数的空间复用方法。可理解的,本申请实施例一至实施例四所描述的技术方案可以任一组合形成新的实施例。
可理解的,本申请中的AP和STA既可以是单链路设备,也可以是多链路设备中的一个功能实体或功能单元,比如本申请中的AP是AP多链路设备中的某个AP,STA是站点多链路设备中的某个STA,本申请对此不做限定。
可理解的,下文以一个或多个AP与一个或多个STA组成的通信系统为例,对本申请提供的方法进行阐述。其中,该AP支持802.11be协议(或称为Wi-Fi 7,EHT协议),还可以支持其他WLAN通信协议,如802.11ax,802.11ac等协议。该一个或多个STA中存在至少一个STA支持802.11be协议,即存在至少一个EHT站点。应理解,本申请中的AP和STA还可以支持802.11be的下一代协议。也就是说,本申请提供的方法不仅适用于802.11be协议,还可以适用于802.11be的下一代协议。
实施例一
本申请实施例一主要介绍不改变触发帧的情况下(或者不改变触发帧的内容的情况下),20/40/80/160/320MHz带宽的EHT TB PPDU中空间复用参数的设置。
本实施例一中,触发帧如图5b所示,其中,
参见图7a,图7a是本申请实施例提供的触发帧中指示空间复用参数以及对应的PPDU 中空间复用参数字段的确定方法的第一种示意流程图。如图7a所示,该方法包括但不限于以下步骤:
S101,AP发送触发帧,该触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU。
S102,STA接收该触发帧。
S103,STA发送EHT TB PPDU,该EHT TB PPDU的通用信令字段U-SIG中,只存在一个空间复用参数SRP字段,该SRP字段指示整个带宽的空间复用参数。该SRP字段指示的值基于该触发帧的公共信息字段中的一个或多个上行空间复用参数UL SRP字段指示的值确定。
一种实现方式中,如图7b所示,该SRP1字段指示的值等于4个上行空间复用参数UL SRP字段指示的4个空间复用字段的最小值,可以表示为SRP=min{UL SRP1,UL SRP2,UL SRP3,UL SRP4}。
另一种实现中,该SRP1字段指示的值等于4个上行空间复用参数UL SRP字段指示的4个空间复用字段的任一值,可以表示为SRP1等于UL SRP1或UL SRP2或UL SRP3或UL SRP4}。
S104,AP接收站点发送的该EHT TB PPDU。
参见图8a,图8a是本申请实施例提供的触发帧中指示空间复用参数以及对应的PPDU中空间复用参数字段的确定方法的第二种示意流程图。如图8a所示,该方法包括但不限于以下步骤:
S201,AP发送触发帧,该触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU。该触发帧的结构和组成参见图6a。
S202,STA接收该触发帧。
S203,STA发送EHT TB PPDU,该EHT TB PPDU的通用信令字段U-SIG包括两个空间复用参数SRP1字段和SRP2字段,分别用于指示整个带宽中,低频率的一半对应的空间复用参数,和高频率的一半对应的空间复用参数。其中空间复用参数SRP1字段和SRP2字段指示的值分别基于该触发帧的公共信息字段中的一个或多个上行空间复用参数UL SRP字段指示的值确定。
一种实现方式中,SRP1字段和SRP2字段分别用于指示不同子信道上的SRP值,该SRP值等于对应子信道上AP的发射功率与AP能够接受的最大干扰功率之和。应理解,EHT TB PPDU的U-SIG中SRP1字段和SRP2字段还可以有其他名称,例如PSR1字段和PSR2字段,本申请实施例对此不做限定。
一种实现方式中,如图8b所示,当EHT TB PPDU的带宽为20/40/80/160MHz且为非聚合PPDU时,U-SIG中的SRP1字段的值等于触发帧的上行空间复用字段中指示的4个空间复用字段中UL SR1字段和UL SR2字段的最小值,可以表示为SRP1=min{UL SRP1,UL SRP2}。
U-SIG中SRP2字段的值可以等于触发帧的上行空间复用字段中指示的4个空间复用字段中UL SR3字段和UL SR4字段的最小值,可以表示为SRP2=min{SRP3,UL SRP4}。
一种实现方式中,如图8b所示,当EHT带宽为320MHz时或者TB PPDU为聚合PPDU时,U-SIG中的SRP1字段的值等于SRP2字段的值,两者均等于触发帧中上行空间复用字段中指示的4个空间复用字段的最小值,SRP1=SRP2=min{UL SRP1,UL SRP2,UL SRP3, UL SRP4}。
S204,AP接收站点发送的该EHT TB PPDU。
可选的,上述7a和8a所示的触发帧中指示空间复用参数方法流程中涉及的触发帧不仅可以用于触发EHT站点发送EHT TB PPDU,还可以用于触发HE站点发送HE TB PPDU。或者,上述触发帧仅用于触发EHT站点发送EHT TB PPDU;或仅用于触发HE站点发送HE TB PPDU。本申请实施例关注触发帧用于触发EHT站点发送EHT TB PPDU的情况,但不限于该触发帧仅用于触发EHT站点发送EHT TB PPDU的情况,也可以是同时触发EHT站点发送EHT TB PPDU和HE站点/EHT站点发送HE TB PPDU的情况。可理解的,HE站点只能发送HE TB PPDU,而EHT站点可以兼容802.11ax协议,所以EHT站点既可以发送HE TB PPDU,也可以发送EHT TB PPDU。
具体的,可参见图9,图9是本申请实施例提供的触发帧同时调度HE站点和EHT站点进行上行数据传输的时序示意图。如图9所示,AP发送触发帧,该触发帧用于同时调度HE站点(如图9中的STA1)和EHT站点(如图9中的STA2)进行上行数据传输。STA1和STA2接收到该触发帧后,间隔一段时间(例如,短帧间间隔),STA1发送HE TB PPDU,STA2发送EHT TB PPDU。AP接收到上行多用户PPDU后,间隔一段时间(例如,短帧间间隔)回复多站点块确认(Multiple STA Block Acknowledge,M-BA)帧,用于确认AP已收到一个或多个站点发送的PPDU。可理解,图9所示的触发帧也可以只用于调度EHT站点,即图9中的STA1和STA2都为EHT站点。还应理解,图9所示的触发帧也可以只调度站点发送EHT TB PPDU,即图9中STA1和STA2都发送EHT TB PPDU。
具体地,上述触发帧可以以广播的形式发送,AP发送该触发帧后,一个或多个站点可以接收到该触发帧。如果该触发帧同时用于调度EHT站点发送EHT TB PPDU和HE站点发送HE TB PPDU,则EHT站点可以基于接收到的该触发帧的公共信息字段中的一个或多个UL SRP字段指示的值,设置EHT TB PPDU的U-SIG中SRP1字段和SRP2字段指示的值,并发送该EHT TB PPDU。换句话说,EHT站点也可以基于接收到的该触发帧的公共信息字段中的一个或多个UL SRP字段的值,设置EHT TB PPDU的U-SIG中SRP1字段和SRP2字段的值。HE站点可以将接收到的该触发帧中4个UL SRP字段的值、一一复制到HE TB PPDU的4个SRP字段中,并发送该HT TB PPDU。
可选的,本申请涉及的UL SRP字段或SRP字段的取值与含义的对应关系可以如下述表4所示。其中,上行空间复用参数(UL SRP)字段也可以称为上行参数空间复用(UL PSR)字段,本申请中UL SRP和UL PSR可以相互替换使用,也即SRP和PSR可以相互替换使用。可理解的,上行空间复用参数的值由AP决定,等于AP的发射功率与AP能够接受的最大干扰功率之和。
表4
Figure PCTCN2021125779-appb-000006
Figure PCTCN2021125779-appb-000007
可理解的,本申请中,UL SRP字段指示的值可以是上述表4的第二列中的任一个值,UL SRP字段的值可以是上述表4的第一列中的任一个值。
实施例二
本申请实施例二主要介绍如何设置触发帧(即改变触发帧的内容)以适应U-SIG的SRP字段,以及触发帧的内容改变后,基于触发的PPDU(HE TB PPDU和EHT TB PPDU)中空间复用参数如何设置。
可理解的,在实际应用中,本申请实施例二可以结合前述实施例一中的某些实现方式一起实施,也可以单独实施,本申请实施例对此不做限定。
本实施例二中,将利用如图5b或6a所示的触发帧的HE-SIG-A2预留字段,或进一步的利用预留字段,实现对EHT TB PPDU的空间复用参数的指示。
具体的,如图10所示,利用触发帧的公共信息字段中的预留字段(该预留字段包括HE-SIG-A2预留字段和预留字段),设置上行EHT PPDU带宽子字段,用于指示EHT STA发送HE TB PPDU还是EHT TB PPDU的HE/EHT子字段,上行EHT空间复用字段,可选的,还可以包括特殊用户存在指示子字段。该上行EHT空间复用字段单独指示EHT TB PPDU中的空间复用参数,或者与上行空间复用字段配合,以指示EHT TB PPDU中的空间复用参数,换句话说,EHT TB PPDU的U-SIG中的SRP字段的值,取决于该上行EHT空间复用字段与上行空间复用字段中的至少一个。
如图10所示的触发帧的HE-SIG-A2预留字段和预留字段的内容如表5所示:
表5上行HE-SIG-A2预留和/或预留字段
Figure PCTCN2021125779-appb-000008
应理解,上述上行HE-SIG-A2预留和/或预留字段中所包括的各个子字段,可以包括部分或全部。还应理解,表5中的各子字段的名称,还可以取作其他名称,本申请所示例的不作为限制。各个子字段所占的比特数为举例,本申请实施例不对此进行限制。
其中,表5中的上行EHT PPDU带宽字段在单独指示上行EHT PPDU的带宽时的含义如表6所示:
表6:上行EHT PPDU带宽字段单独指示上行EHT PPDU带宽
上行EHT PPDU带宽字段 含义
000 20MHz
001 40MHz
010 80MHz
011 160MHz
100 320MHz
101 预留
110 预留
111 预留
应理解,上述上行EHT PPDU带宽字段的取值和其含义之间的对应关系为举例,本申请实施例还可以有其他的对应方式。例如,100可以指示320MHz-1;101可以指示320MHz-2;320MHz-1和320MHz-2分别代表两种320MHz信道的信道划分:信道中心频率为31/95/159的320MHz-1和中心频率为63/127/191的320MHz-2。
需要指出目前标准中引入了两种预留指示,一种叫Validate(验证)预留比特/条目,当接收端不懂该字段的指示时,会丢弃该帧;另外一种叫Disregard(丢弃)预留比特/条目,当接收端不懂该字段的指示时,会忽略该字段,继续解读其他字段。对于上行EHT PPDU带宽字段,该预留条目需要是验证预留条目,即当非EHT的接收端不懂该字段的指示时,会丢弃该帧。
下面结合如图10所示的触发帧,描述触发帧中指示空间复用参数以及对应的PPDU中空间复用参数字段的确定方法。
参见图11,图11是本申请实施例提供的触发帧中指示空间复用参数以及对应的PPDU中空间复用参数字段的确定方法的第三种示意流程图。如图11所示,该触发帧中指示空间复用参数以及对应的PPDU中空间复用参数字段的确定方法包括但不限于以下步骤:
S301,AP发送触发帧,该触发帧用于触发站点发送EHT TB PPDU,该触发帧的公共信息字段的上行空间复用字段中包括4个UL SRP字段;此外,该触发帧的UL HE-SIG-A2预留字段和/或预留字段被利用作为指示EHT空间复用参数。一种实现中,如图10所示,UL HE-SIG-A2预留字段和/或预留字段包括:上行EHT PPDU带宽子字段,HE/EHT子字段,上行EHT空间复用字段,以及特殊用户存在指示字段。
S302,STA接收该触发帧。
S303,STA发送EHT TB PPDU,该EHT TB PPDU的U-SIG中可包括一个SRP字段或两个SRP字段。
一种实现方式中,如图12a所示,U-SIG只存在一个SRP字段,指示整个带宽的空间复用参数,此时SRP字段的值等于上行EHT空间复用字段的值。
另一种实现方式中,如图12b所示,U-SIG存在两个SRP字段,表示为U-SIG SRP1和 U-SIG SRP2,分别指示整个带宽低频率一半和高频率一半的空间复用参数,SRP1字段的值由触发帧中的上行空间复用字段指示,一种示例中,U-SIG SRP1字段可以等于空间复用字段中指示的4个空间复用字段的最小值或任一值;U-SIG SRP2字段的值由该触发帧中的上行EHT空间复用字段指示。
再一种实现方式中,如图12c所示,U-SIG存在两个SRP字段,表示为U-SIG SRP1和U-SIG SRP2U-SIG存在两个SRP字段。
当带宽为20/40/80/160MHz时且TB PPDU为非聚合PPDU时,只通过上行空间复用字段指示两个SRP字段;其中U-SIG SRP1字段的值可以等于空间复用字段中指示的4个空间复用字段中UL SRP1字段和UL SR2字段的最小值或任一值;U-SIGSRP2字段的值可以等于空间复用字段中指示的4个空间复用字段中UL SR3字段和UL SR4字段的最小值或任一值。此时上行EHT空间复用字段为预留或者不存在。
当带宽为320MHz时或TB PPDU为聚合PPDU时,再利用上行空间复用字段指示两个SRP中的SRP1字段,其中U-SIG SRP1字段的值可以等于空间复用字段中指示的4个空间复用字段的最小值;U-SIG SRP2字段的值等于上行EHT空间复用字段指示的值。
S304,AP接收站点发送的EHT TB PPDU。
一种实现方式中,上述触发帧不仅可以用于触发EHT站点发送EHT TB PPDU,还可以用于触发HE站点发送HE TB PPDU。或者,上述触发帧仅用于触发EHT站点发送EHT TB PPDU;或仅用于触发HE站点发送HE TB PPDU。本申请实施例关注触发帧用于触发EHT站点发送EHT TB PPDU的情况,但不限于该触发帧仅用于触发EHT站点发送EHT TB PPDU的情况,也可以是同时触发EHT站点发送EHT TB PPDU和HE站点/EHT站点发送HE TB PPDU的情况。
一种实现方式中,EHT TB PPDU的U-SIG中仅包括1个空间复用参数(SRP)字段,例如SRP1字段;或可以包括2个空间复用参数(SRP)字段,分别为SRP1字段和SRP2字段。SRP1字段和SRP2字段分别用于指示不同子信道上的SRP值,该SRP值等于对应子信道上AP的发射功率与AP能够接受的最大干扰功率之和。应理解,EHT TB PPDU的U-SIG中SRP1字段和SRP2字段还可以有其他名称,例如PSR1字段和PSR2字段,本申请实施例对此不做限定。
上述触发帧的公共信息字段中的上行空间复用字段仍然包括4个UL SRP字段,分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段。触发帧的公共信息字段中的上行EHT空间复用字段示意为UL EHT SRP。EHT TB PPDU中的U-SIG中的空间复用字段示意为SRP1,SRP2。
可理解的,实际应用中,如果本申请实施例二结合前述实施例一一起实施,则20/40/80/160/320MHz带宽下,触发帧中UL SRP1字段至UL SRP4字段的设置,EHT TB PPDU U-SIG中SRP1字段和SRP2字段的设置可以总结如下表7所示。其中,表7中的“/”表示“或”的关系。
表7
Figure PCTCN2021125779-appb-000009
Figure PCTCN2021125779-appb-000010
应理解,对于聚合PPDU场景,HE TB PPDU和EHT TB PPDU带宽分别为160MHz,或者HE TB PPDU带宽为80MHz,EHT TB PPDU带宽为160MHz,或者打孔打掉80MHz的320MHz。
还应理解,聚合PPDU场景下,HE TB PPDU的HE-SIG-A中的空间复用参数的设置遵从现有技术,在此不再赘述。
可见,本申请实施例,通过触发帧中上行空间复用字段UL SRP值或进一步利用触发帧中的HE-SIG-A2预留字段和/或预留字段作为UL EHT空间复用字段指示EHT TB PPDU设置U-SIG的SRP字段,并通过设置U-SIG中的空间复用字段,使得该触发帧能够调度EHT站点发送上行EHT TB PPDU,也可以使HE站点和EHT站点能够在同一个触发帧下接受调度。
实施例三
本申请实施例三主要介绍利用触发帧中携带特殊的用户信息字段,为EHT TB PPDU做单独的空间复用参数和U-SIG预留字段的指示,以及在触发帧不携带该特殊用户信息字段时,EHT TB PPDU的空间复用参数和U-SIG预留字段如何设置的技术方案。
可理解的,在实际应用中,本申请实施例三可以结合前述实施例一或前述实施例二中, 关于20MHz、40MHz、80MHz以及160MHz带宽下U-SIG中SRP1字段和SRP2字段的设置方式一起实施;本申请实施例三也可以单独实施,本申请实施例对此不做限定。
参见图13,图13示意的触发帧中,该触发帧的公共信息字段中可以包括4个UL SRP字段,分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段。该4个UL SRP字段可以分别用于指示HE TB PPDU中4个SRP字段的值。
该触发帧的用户信息列表字段中包括多个用户信息字段,其中一个用户信息字段为特殊的用户信息字段,示意为user info(STA1)。
一种实现方式中,该特殊的用户信息字段可以包括UL SRP字段和U-SIG预留指示字段,UL SRP字段用于指示EHT TB PPDU的U-SIG中SRP1字段和SRP2字段的值,或者,该特殊的用户信息字段的UL SRP字段用于指示EHT TB PPDU的U-SIG中SRP2字段的值。U-SIG预留指示字段用于指示EHT TB PPDU的U-SIG中U-SIG预留字段的值。
另一种实现方式中,该特殊的用户信息字段不包括UL SRP字段但可以包括U-SIG预留指示字段,EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值均由触发帧的公共信息字段中的UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示,或由公共信息字段中的HE-SIG-A2的UL EHT SRP字段指示。U-SIG预留指示字段用于指示EHT TB PPDU的U-SIG中U-SIG预留字段的值。
一种实现方式中,该特殊的用户信息字段的关联标识(association identifier,AID)12字段的值为预设值,该预设值可以是2008至2044、或者2046至4095中的任意一个,比如该预设值为2044。该预设值也可以是1-2007里边,没有分配给任何一个关联STA的AID(比如2007)。
又一种实现方式中,特殊的用户信息字段不需要携带完整的AID12的值,只需要将最高比特置1,后续11比特中有任意1比特固定为0,就可以同现有的任何已经用的AID12的值区分开来。其他的10比特,可以用来传递信息。
802.11ax标准,触发帧携带了9比特UL HE-SIG-A2预留字段,但是直到802.11ax标准制定完成,HE-SIG-A2预留比特也没有重新定义过,造成了9比特的浪费。对于802.11be标准,如图9所示,EHT TB PPDU的U-SIG部分,除了SRP1和SRP4之外,还包括U-SIG预留字段,即预留了12个比特,该12个预留比特的值,需要通过触发帧进行指示,这是触发帧需要用特殊的用户信息字段携带上行U-SIG字段预留指示的原因。EHT TB PPDU的U-SIG中的U-SIG预留字段对应的比特采用缺省值,则不需要在触发帧中进行指示。而是在有需要时候再通过触发帧中的特殊用户信息字段的上行U-SIG预留指示字段指示具体的值,如此会节省开触发帧的比特开销。如果802.11be之后的版本也没需要,则802.11be都不需要在触发帧中携带特殊用户信息字段。
应理解,上述特殊用户信息字段在802.11be发布的版本1(release1,R1)可能不存在;但是支持R1的设备需要能读懂特殊用户信息字段,如果特殊用户信息字段存在了,就不能使用缺省值,而需要采用特殊用户字段中指示的值。这样是为了防止R1设备和R2设备共同传输U-SIG时,内容不同,造成互相干扰,造成AP或者第三方站点无法正确接收。
综上所述,该特殊用户信息字段是否存在,以及存在的含义如表8所示:
表8特殊用户信息字段的含义
Figure PCTCN2021125779-appb-000011
Figure PCTCN2021125779-appb-000012
需要说明的是,如果U-SIG中只有一个SRP字段,那么预留字段是16比特。如果U-SIG中有两个SRP字段,那么预留字段是12比特。
其中,EHT TB PPDU的U-SIG预留字段的值,部分来自于触发帧中的特殊用户字段的指示,部分来自于上行HE-SIG-A2预留和/或预留字段的指示。如果后续标准要修改某些预留字段的含义,可以优先修改HE-SIG-A2预留和/或预留字段对应的预留值。如此不需要携带特殊用户字段,节约触发帧的比特开销。
应理解,表8中所示的特殊用户信息字段包括的上行通用信令字段预留指示字段和物理层版本字段可以部分或全部存在,还应理解,表8中的各子字段的名称,还可以取作其他名称,本申请所示例的不作为限制。各个子字段所占的其各自对应的比特数仅为举例,本申请实施例还可以为其设置其他的比特数。
参见图14,图14是本申请实施例提供的触发帧传输方法以及对应的PPDU传输方法的一种示意流程图。如图14所示,该触发帧传输方法以及对应的PPDU传输方法包括但不限于以下步骤:
S401,AP发送触发帧,该触发帧用于触发站点发送EHT TB PPDU,该触发帧中还携带第二指示信息,所述第二指示信息用于指示EHT TB PPDU的U-SIG中的U-SIG预留字段的值。
该触发帧中携带中还携带第一指示信息,该第一指示信息用于指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值;
S402,STA接收该触发帧。
S403,STA发送EHT TB PPDU,该EHT TB PPDU的U-SIG中的U-SIG预留字段的值为缺省值,或者基于所述第二指示信息确定。该EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值基于该第一指示信息确定。
S404,AP接收站点发送的EHT TB PPDU。
可选的,上述触发帧不仅可以用于触发EHT站点发送EHT TB PPDU,还可以用于触发HE站点发送HE TB PPDU。或者,上述触发帧仅用于触发EHT站点发送EHT TB PPDU;或仅用于触发HE站点发送HE TB PPDU。本申请实施例关注触发帧用于触发EHT站点发送EHT TB PPDU的情况,但不限于该触发帧仅用于触发EHT站点发送EHT TB PPDU的情况,也可以是同时触发EHT站点发送EHT TB PPDU和HE站点/EHT站点发送HE TB PPDU的情况。
可选的,EHT TB PPDU的U-SIG中仅包括2个空间复用参数(SRP)字段,分别为SRP1字段和SRP2字段。SRP1字段和SRP2字段分别用于指示不同子信道上的SRP值,该SRP值等于对应子信道上AP的发射功率与AP能够接受的最大干扰功率之和。应理解,EHT TB  PPDU的U-SIG中SRP1字段和SRP2字段还可以有其他名称,例如PSR1字段和PSR2字段,本申请实施例对此不做限定。
其中,上述触发帧中可以携带第一指示信息,该第一指示信息可以用于指示EHT TB PPDU的U-SIG中SRP1字段和SRP2字段的值,或者,该第一指示信息用于指示EHT TB PPDU的U-SIG中SRP2字段的值。
一种实现方式中,该第一指示信息可以位于触发帧的公共信息字段的上行空间复用字段中,STA在发送EHT TB PPDU时,其中的U-SIG中的SRP字段的值的设置方式的详见实施例一的描述,在此不在赘述。此实现方式中,触发帧不包括第二指示信息,因此,EHT TB PPDU的U-SIG部分的U-SIG预留字段设置为缺省值。或者触发帧包括第二指示信息,该第二指示信息位于特殊的用户信息字段中,因此,EHT TB PPDU的U-SIG部分的U-SIG预留字段设置为该第二指示信息指示的值。
又一种实现方式中,该第一指示信息的一部分位于触发帧的公共信息字段的上行空间复用字段中,一部分位于触发帧的公共信息字段的上行EHT空间复用字段中;或者第一指示信息全部位于触发帧的公共信息字段的上行EHT空间复用字段中,STA在发送EHT TB PPDU时,其中的U-SIG中的SRP字段的值的设置方式的详见实施例二的描述,在此不在赘述,此实现方式中,触发帧不包括第二指示信息,因此,EHT TB PPDU的U-SIG部分的U-SIG预留字段设置为缺省值。或者触发帧包括第二指示信息,该第二指示信息位于特殊的用户信息字段中,因此,EHT TB PPDU的U-SIG部分的U-SIG预留字段设置为该第二指示信息指示的值。
再一种实现方式中,该第一指示信息和第二指示信息均可以位于触发帧的用户信息字段中,该用户信息字段为特殊的用户信息字段。
上述提及的特殊的用户信息字段,一种实现方式中,不需要携带完整的AID12的值,只需要将最高比特置1,后续11比特中有任意1比特固定为0,就可以同现有的任何已经用的AID12的值区分开来。其他的10比特,可以用来传递信息。另一种实现中,该特殊用户信息字段的关联标识(association identifier,AID)12字段的值为预设值,该预设值可以是2007,或2008至2044、或者2046至4095中的任意一个,比如该预设值为2044。同时,第二指示信息也位于所述特殊用户信息字段中。
针对EHT站点,将触发帧中的某个用户信息字段中的AID12字段设置为特殊值(比如AID12=2044或2207)或者未分配AID或者该AID12字段被设置为不是完整的AID12的值,使EHT站点能够识别该用户信息字段是为设置U-SIG中的SRP字段和U-SIG预留字段而服务的。也就是说,该特殊用户信息字段中携带上述第一指示信息,用于指示U-SIG中SRP1字段和/或SRP2字段的值,该特殊用户信息字段中还携带上述第二指示信息,用于指示U-SIG中U-SIG预留字段的值。应理解,HE站点不解析该触发帧中AID12字段为特殊值的用户信息字段,或者HE站点收到AID12字段为特殊值的用户信息字段,表示与HE站点无关,也就是说,该触发帧中新增的第一指示信息不影响HE站点的行为。
当该第一指示信息用于指示U-SIG中SRP1字段和SRP2字段的值时,将该用户信息字段的AID12字段后的某8个比特用来携带该第一指示信息,其中该8个比特的前4比特指示U-SIG中SRP1字段的值,该8个比特的后4比特用于指示SRP2字段的值。应理解,该8个比特可以用第一字段和第二字段表示,该第一字段为该8个比特的前4比特,该第二字段为该8个比特的后4比特。也就是说,AID12字段后的第一字段用于指示U-SIG中SRP1字段的值,AID12字段后的第二字段用于指示U-SIG中SRP2字段的值。还应理解,该第一字段 可以称为用于U-SIG的UL SRP1字段,该第二字段可以称为用于U-SIG的UL SRP2字段,该第一字段和该第二字段还可以有其他名称,本申请实施例对此不做限定。
EHT站点接收触发帧后,将即将发送的EHT TB PPDU的U-SIG中SRP1字段的值设置为该触发帧的用户信息字段中第一字段的值,并将U-SIG中SRP2字段的值设置为该触发帧的用户信息字段中第二字段的值。其中,该触发帧的用户信息字段中第一字段和第二字段分别对应160MHz带宽。比如,该第一字段对应频率从低到高的第一个160MHz带宽,该第二字段对应频率从低到高的第二个160MHz带宽。换句话说,U-SIG中SRP1字段对应频率从低到高的第一个160MHz带宽,U-SIG中SRP2字段对应频率从低到高的第二个160MHz带宽。
参见图15a,图15a是本申请实施例提供的触发帧中进行U-SIG的SRP指示的一示意图。如图15a所示,该触发帧的用户信息字段中包括AID12字段、用于U-SIG的UL SRP1字段、以及用于U-SIG的UL SRP2字段、UL U-SIG预留指示字段等。该AID12字段的值为特殊值。用于U-SIG的UL SRP1字段、和用于U-SIG的UL SRP2字段,位于AID12字段后,可以与AID12字段紧邻,也可以不与AID12字段紧邻。用于U-SIG的UL SRP1字段指示U-SIG中SRP1字段的值,用于U-SIG的UL SRP2字段指示U-SIG中SRP2字段的值。其中,用于U-SIG的UL SRP1字段指示的值等于主160MHz信道上AP的发射功率与AP能够接受的最大干扰功率之和,用于U-SIG的UL SRP2字段指示的值等于次160MHz信道上AP的发射功率与AP能够接受的最大干扰功率之和。UL U-SIG预留指示字段用于指示STA在发送EHT TB PPDU时,其中的U-SIG的U-SIG预留字段的值。
当该第一指示信息只用于指示U-SIG中SRP2字段的值时,将该用户信息字段的AID12字段后的某4个比特用来携带该第一指示信息,即该4个比特用于指示U-SIG中SRP2字段的值。该4个比特可以称为用于U-SIG的UL SRP2字段,该4个比特还可以有其他名称,本申请实施例对此不做限定。可选的,当该第一指示信息只用于指示U-SIG中SRP2字段的值时,可以将触发帧的公共信息字段中的4个预留比特,例如HE-SIG-A2预留字段或预留字段中的4个预留比特,用来携带该第一指示信息,即该4个预留比特用于指示U-SIG中SRP2字段的值。上述触发帧的公共信息字段中包括4个UL SRP字段。EHT站点接收到触发帧后,将即将发送的EHT TB PPDU的U-SIG中SRP1字段的值设置为该触发帧的公共信息字段包括的4个UL SRP字段的值中的最小值,即SRP1=min(UL SRP1,UL SRP2,UL SRP3,UL SRP4);并将U-SIG中SRP2字段的值设置为该触发帧的特殊用户信息字段中用于U-SIG的UL SRP2字段的值。其中,U-SIG中SRP1字段对应频率从低到高的第一个160MHz带宽,U-SIG中SRP2字段对应频率从低到高的第二个160MHz带宽。EHT站点还将发送的EHT TB PPDU的U-SIG中U-SIG预留字段的值,设置为触发帧中特殊用户信息字段中UL U-SIG预留指示字段的值。
参见图15b,图15b是本申请实施例提供的触发帧中进行U-SIG的SRP指示的另一示意图。如图15b所示,一种实现方式中,该触发帧的公共信息字段中包括4个UL SRP字段,分别用于指示主160MHz信道上频率从低到高的4个40MHz子信道的SRP值;或者另一种实现方式中,该触发帧的公共信息字段的HE-SIG-A2预留字段和/或预留字段用作UL EHT SRP字段,指示主160MHz信道的SRP值。该触发帧的特殊用户信息字段中包括AID12字段、和用于U-SIG的UL SRP2字段等。该AID12字段的值为特殊值或不完整的AID12的值。用于U-SIG的UL SRP2字段,位于AID12字段后,可以与AID12字段紧邻,也可以不与AID12字段紧邻。用于U-SIG的UL SRP2字段指示U-SIG中SRP2字段的值。其中,用于U-SIG的 UL SRP2字段指示的值等于次160MHz信道上AP的发射功率与AP能够接受的最大干扰功率之和,或等于次160MHz信道上的SRP值。
EHT站点接收到触发帧后,将即将发送的EHT TB PPDU的U-SIG中SRP1字段的值设置为该触发帧的公共信息字段包括的4个UL SRP字段的值中的最小值,即SRP1=min(UL SRP1,UL SRP2,UL SRP3,UL SRP4);并将U-SIG中SRP2字段的值设置为该触发帧的特殊用户信息字段中用于U-SIG的UL SRP2字段的值。其中,U-SIG中SRP1字段对应频率从低到高的第一个160MHz带宽,U-SIG中SRP2字段对应频率从低到高的第二个160MHz带宽。EHT站点还将发送的EHT TB PPDU的U-SIG中U-SIG预留字段的值,设置为触发帧中特殊用户信息字段中UL U-SIG预留指示字段的值。
应理解,本申请实施例主要关注320MHz带宽下,U-SIG中SRP1字段和SRP2字段,以及U-SIG中U-SIG预留字段的设置方式,在160MHz及其以下带宽中,U-SIG中SRP1字段,和SRP2字段的设置方式可以参考前述实施例一或前述实施例二中的相关描述,在此不再赘述。
可见,本申请实施例在320MHz带宽的情况下,利用触发帧中某个特殊的用户信息字段,为EHT TB PPDU做单独的空间复用参数和U-SIG预留字段的指示,其含义清晰,且不影响HE站点的调度,可以在同一个触发帧下调度HE站点和EHT站点。当触发帧中不存在上述特殊的用户信息字段时,EHT TB PPDU的U-SIG的空间复用参数则可根据触发帧中的上行空间复用字段和/或上行EHT空间复用字段的指示进行设置,而U-SIG预留字段可以设置为缺省值。
综上所述,本申请实施例一到实施例三中,EHT TB PPDU中U-SIG与触发帧之间的关系可归纳如表9所示:
表9
Figure PCTCN2021125779-appb-000013
Figure PCTCN2021125779-appb-000014
应理解,表9中的U-SIG所包含的各个子字段仅为举例,还可以包括其中的部分。还应理解,表9中的各子字段的名称,还可以取作其他名称,本申请所示例的不作为限制。各个子字段占用的比特数,可以根据实际情况作出调整,本申请不限制。
实施例四
前述实施例一至实施例三讲述了不同场景下,一个或多个站点在发送EHT TB PPDU时如何设置U-SIG的SRP字段和U-SIG预留字段的方法。本申请实施例四主要介绍802.11be中基于空间复用参数的空间复用方法。
可理解的,在实际应用中,本申请实施例四可以结合前述实施例一至实施例三中任一个实施例一起实施,也可以单独实施例,本申请实施例对此不做限定。
可理解的,本申请实施例中的第一AP和第一STA属于同一个BSS,记为BSS1;第二AP和第二STA属于另一个BSS,记为BSS2。第一AP和第二AP位于BSS1和BSS2形成的OBSS内。所以为了减少第二AP发送参数空间复用发送(parameterized spatial reuse transmission,PSRT)PPDU时产生的能量、对第一AP接收EHT TB PPDU的干扰,需要约束第二AP发送PSRT PPDU时的发射功率。
可选的,本申请实施例中的第二AP可以接收到第一AP和第一STA发送的信息。
参见图16,图16是本申请实施例提供的空间复用方法的一示意流程图。如图16所示, 该空间复用方法包括但不限于以下步骤:
S501,第一AP发送包含触发帧(trigger frame)的参数空间复用接收(parameterized spatial reuse reception,PSRR)PPDU,该触发帧用于调度第一STA发送EHT TB PPDU。相应地,第一STA接收该触发帧。
可理解的,该PSRR PPDU除了包含触发帧外,还可以包含其他信息,但本申请实施例关注PSRR PPDU中的触发帧部分,所以本申请实施例对PSRR PPDU中包含的其他信息不展开说明。
具体地,上述包含触发帧的PSRR PPDU用于调度站点进行上行数据传输,如发送上行EHT TB PPDU。如前述图6a或图10所示,触发帧的公共信息字段包含上行空间复用(UL Spatial Reuse)字段。其中,上行空间复用字段可以包括4个长度为4比特的上行空间复用参数(UL SRP)字段,用于表示AP的发射功率与AP能够接受的最大干扰功率之和。该上行空间复用字段包括的4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段。不同带宽下,该4个UL SRP字段的实现方式可以参考前述实施例一至实施例三中任一实施例的实现方式,在此不再赘述。
S502,第一STA发送EHT TB PPDU。相应地,第一AP接收站点发送的EHT TB PPDU。
其中,本申请实施例中的“第一AP”是前述实施例一至实施例三中描述的“AP”,本申请实施例中的“第一STA”是前述实施例一至实施例三中描述的“STA”。
具体地,本申请实施例中步骤S502的实现方式,可以参考前述实施例一中步骤S103的实现方式,在此不再赘述。或者,本申请实施例中步骤S502的实现方式,可以参考前述实施例二中步骤S203的实现方式,在此不再赘述。或者,本申请实施例中步骤S502的实现方式,可以参考前述实施例三中步骤S303的实现方式,在此不再赘述。
S503,第二AP根据EHT TB PPDU的U-SIG中包括的SRP1字段和SRP2字段分别指示的值,和/或触发帧的公共信息字段中包括的4个UL SRP字段分别指示的值,确定参数空间复用发送PSRT PPDU的发射功率。
S504,第二AP按照该PSRT PPDU的发射功率,发送该PSRT PPDU。相应地,第二STA接收该PSRT PPDU。
具体地,由于第一AP和第二AP位于BSS1和BSS2形成的OBSS内,所以第一AP发送的触发帧,第二AP也可以接收到。故,在第一AP发送包含触发帧的PSRR PPDU后,第二AP接收包含该触发帧的PSRR PPDU,该触发帧中包括4个UL SRP字段,一个UL SRP字段指示的值等于第一AP的发射功率与第一AP能够接受的最大干扰功率之和。第二AP也可以接收到第一STA发送的EHT TB PPDU,该EHT TB PPDU的U-SIG中包括SRP1字段和SRP2字段。该SRP1字段指示的值等于第一子信道上第一AP的发射功率与第一AP能够接受的最大干扰功率之和,该SRP2字段指示的值为第二子信道上第一AP的发射功率与第一AP能够接受的最大干扰功率之和。第一子信道和第二子信道的带宽大小等于EHT TB PPDU的带宽的一半,且第一子信道的频率小于第二子信道的频率。
第二AP在接收到PSRR PPDU和EHT TB PPDU之后(即确定第一STA已经发送了EHT TB PPDU),第二AP根据接收到PSRR PPDU的功率(即接收功率水平,received power level,RPL)、以及U-SIG中包括的SRP1字段和SRP2字段分别指示的值和/或4个UL SRP字段分别指示的值,计算发送PSRT PPDU所用的发射功率。第二AP按照计算得到的发射功率,发送PSRT PPDU。相应地,第二STA接收该PSRT PPDU,并向第二AP返回响应于PSRT PPDU的响应帧。
参见图17,图17是本申请实施例提供的空间复用方法的时序示意图。其中,假设AP1和AP2位于同一个OBSS内,AP1和STA1属于BSS1,AP2和STA2属于BSS2。如图14所示,AP1(即上述第一AP)发送包含触发帧的PSRR PPDU,STA1(即上述第一STA)接收到该PSRR PPDU后,间隔一段时间(例如短帧间间隔),根据该触发帧的指示,发送上行EHT TB PPDU。由于AP1和AP2位于同一个OBSS内,AP2可以接收到AP1发送的PSRR PPDU、和STA发送的EHT TB PPDU。在AP2(即上述第二AP)接收到PSRR PPDU和EHT TB PPDU之后,AP2再根据接收到PSRR PPDU的功率(即RPL)、以及EHT TB PPDU中的2个SRP值和/或4个UL SRP值,计算其发送PSRT PPDU所用的功率。在检测到EHT TB PPDU发送后,AP2根据计算所得功率来发送PSRT PPDU。STA2(即上述第二STA)接收到该PSRT PPDU后,间隔一段时间(例如短帧间间隔)发送块确认帧(block acknowledge),用于确认STA2已收到PSRT PPDU。
可选的,第二AP计算得到的PSRT PPDU的发射功率满足以下公式:
(第二AP发送PSRT)PPDU发射功率–log 10(PSRT PPDU带宽/20MHz)≤SRP–RPL………………………………………………………………………………………….(1-1)
其中,公式(1-1)中log 10(PSRT PPDU带宽/20MHz)表示带宽归一化因子。公式(1-1)中SRP为一个子信道上的SRP值。公式(1-1)中RPL是在PSRR PPDU带宽内,触发PPDU(包含该触发帧的PPDU)的非-HE部分或者非EHT部分上,所有接收天线连接器上联合的发送功率(RPL is the combined transmit power at the receive antenna connector,over the PSRR PPDU bandwidth,during the non-HE portion of the HE PPDU preamble of the triggering PPDU,averaged over all antennas used to receive the PPDU)。公式(1-1)中的SRP和PRL的值都已经经过带宽归一化。应理解,因为UL SRP字段指示的值等于AP(这里是第一AP)的发射功率与AP(这里是第一AP)能够接受的最大干扰功率之和,所以AP(这里是第一AP)能够接受的最大干扰功率由空间复用参数(SRP)值决定。
可选的,第二AP可以通过PSRR PPDU获得RPL,而不获取PSRR PPDU中的UL SRP,而是通过EHT TB PPDU的U-SIG获得SRP。也就是说,第二AP根据接收到PSRR PPDU的功率(即RPL)、以及U-SIG中包括的SRP1字段和SRP2字段分别指示的值,计算发送PSRT PPDU所用的发射功率。或者,第二AP可以通过PSRR PPDU同时获得RPL和UL SRP,确定接收到了EHT TB PPDU后,不获取U-SIG中的SRP。也就是说,第二AP根据接收到PSRR PPDU的功率(即RPL)、以及4个UL SRP字段分别指示的值,计算发送PSRT PPDU所用的发射功率。
可选的,上述公式(1-1)可以等价于下述公式(1-2):
归一化的第二AP的发射功率≤第一AP的发射功率+第一AP可接受的最大干扰功率-第二AP收到第一AP发送PSRR PPDU的功率………………………………………………(1-2)
其中,公式(1-2)的右边,即:第一AP的发射功率-第二AP收到第一AP发送PSRR PPDU的功率,等于第一AP和第二AP之间的路损(pathloss)。
因此,公式(1-2)也可以等价于下述公式(1-3):
归一化的第二AP的发射功率≤第一AP可接受的最大干扰功率+第一AP和第二AP之间的路损………………………………………………………………………………………(1-3)
其中,公式(1-3)还可以等价于下述公式(1-4):
归一化的第二AP的发射功率-第一AP和第二AP之间的路损≤第一AP可接受的最大干 扰功率…………………………………………………………………………………………(1-4)
其中,因为公式(1-4)的左边,即归一化的第二AP的发射功率-第一AP和第二AP之间的路损,表示第二AP对第一AP的干扰,所以公式(1-4)可以等价于下述公式(1-5):
第二AP对第一AP的干扰≤第一AP可接受的最大干扰功率……………………(1-5)
可见,本申请实施例针对EHT TB PPDU提供一种空间复用方法,可以兼容U-SIG中2个SRP字段的情况,在EHT标准中实现空间复用,使得处于重叠基本服务集中的设备能够同时传输,提高传输效率。
作为一个可选实施例,本申请提供的空间复用方法也可以应用于第二STA中。参见图18是本申请实施例提供的空间复用方法的另一示意流程图。可理解的,本申请实施例中的第一AP和第一STA属于同一个BSS,记为BSS1;第二AP和第二STA属于另一个BSS,记为BSS2。第一AP和第二STA位于BSS1和BSS2形成的OBSS内。所以为了减少第二STA发送PSRT PPDU的响应帧时产生的能量、对第一AP接收EHT TB PPDU的干扰,需要约束第二STA发送响应帧时的发射功率。
可选的,本申请实施例中的第二STA可以接收到第一AP和第一STA发送的信息。
如图18所示,该空间复用方法包括但不限于以下步骤:
S601,第一AP发送包含触发帧的参数空间复用接收PSRR PPDU,该触发帧用于调度第一STA发送EHT TB PPDU。相应地,第一STA接收该触发帧。
S602,第一STA发送EHT TB PPDU。相应地,第一AP接收站点发送的EHT TB PPDU。
具体地,本申请实施例中步骤S601和步骤S602的实现方式,可以参考前述图16所示实施例中步骤S501和步骤S502的实现方式,在此不再赘述。
S603,第二AP发送PSRT PPDU。相应地,第二STA接收该PSRT PPDU。
S604,第二STA根据EHT TB PPDU的U-SIG中包括的SRP1字段和SRP2字段分别指示的值,触发帧的公共信息字段中包括的4个UL SRP字段分别指示的值,UL EHT SRP字段指示的值中的一个或多个,确定响应于PSRT PPDU的响应帧的发射功率。
S605,第二STA按照该响应帧的发射功率,发送该响应帧。
具体地,本申请实施例中的步骤S604和步骤S605的实现方式,可以参考前述图16所示实施例的步骤S503和步骤S504的实现方式,在此不再赘述。应理解,步骤S604中响应于PSRT PPDU的响应帧的发射功率对应步骤S503中PSRT PPDU的发射功率,步骤S604中该响应帧的发射功率确定方式参考步骤S503中PSRT PPDU的发射功率确定方式,在此不再赘述。
可选的,第二AP也可以位于BSS1和BSS2形成的OBSS内。所以为了减少第二STA发送PSRT PPDU的响应帧时产生的能量、和第二AP发送PSRT PPDU时产生的能量,对第一AP接收EHT TB PPDU的干扰,需要同时约束第二STA发送响应帧时的发射功率,和第二AP发送PSRT PPDU时的发射功率。因此,当第一AP、第二STA、以及第二AP都位于BSS1和BSS2形成的OBSS内时,第二AP在发送PSRT PPDU之前(即步骤S603之前),第二AP可以根据EHT TB PPDU的U-SIG中包括的SRP1字段和SRP2字段分别指示的值,触发帧的公共信息字段中包括的4个UL SRP字段分别指示的值,UL EHT SRP字段指示的值中的一个或多个,确定PSRT PPDU的发射功率。此时,步骤S603具体为按照该PSRT PPDU的发射功率,发送该PSRT PPDU。
可见,本申请实施例针对EHT TB PPDU提供一种空间复用方法,可以兼容U-SIG中1 个SRP字段或2个SRP字段的情况,在EHT标准中实现空间复用,使得处于重叠基本服务集中的设备能够同时传输,提高传输效率。
上述内容详细阐述了本申请提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对AP和STA进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图19至图22详细描述本申请实施例的通信装置。其中,该通信装置是接入点或站点,进一步的,该通信装置可以为AP中的装置;或者,该通信装置为STA中的装置。
在采用集成的单元的情况下,参见图19,图19是本申请实施例提供的通信装置1的结构示意图。该通信装置1可以为AP或AP中的芯片,比如Wi-Fi芯片等。如图19所示,该通信装置1包括收发单元11,处理单元12。
第一种设计中,该处理单元12用于生成触发帧,该触发帧用于触发站点发送EHT TB PPDU;该收发单元11,还用于接收站点发送的EHT TB PPDU,该EHT TB PPDU的通用信令字段U-SIG中空间复用参数SRP1字段和SRP2字段指示的值分别基于该触发帧的公共信息字段中的一个或多个上行空间复用参数UL SRP字段指示的值确定。具体的,可以参见前述实施例一中的步骤S103中关于EHT TB PPDU的描述,在此不再赘述。
第二种设计中,该处理单元12,用于生成触发帧;收发单元11,用于发送触发帧。该触发帧用于触发站点发送EHT TB PPDU,该触发帧的公共信息字段中包括4个UL SRP字段,且公共信息字段的HE-SIG A2预留字段和预留字段用作UL EHT空间复用参数的指示,包括UL EHT SRP字段;
该收发单元11,还用于接收站点发送的EHT TB PPDU,该EHT TB PPDU的U-SIG包括两个SRP字段,SRP1字段和SRP2字段。
当EHT TB PPDU的带宽为20/40/80/160MHz且为非聚合PPDU时,U-SIG中的SRP1字段的值等于触发帧的上行空间复用字段中指示的4个空间复用字段中UL SR1字段和UL SR2字段的最小值,可以表示为SRP1=min{UL SRP1,UL SRP2}。
U-SIG中SRP2字段的值可以等于触发帧的上行空间复用字段中指示的4个空间复用字段中UL SR3字段和UL SR4字段的最小值,可以表示为SRP2=min{SRP3,UL SRP4}。
一种实现方式中,如图8b所示,当EHT带宽为320MHz时或者TB PPDU为聚合PPDU时,U-SIG中的SRP1字段的值等于SRP2字段的值,两者均等于触发帧中上行空间复用字段中指示的4个空间复用字段的最小值,SRP1=SRP2=min{UL SRP1,UL SRP2,UL SRP3,UL SRP4}。
具体的,可以参见前述实施例一中的步骤S203中关于EHT TB PPDU或聚合PPDU的描述,在此不再赘述。
应理解,第一种设计和第二种设计的通信装置1可对应执行前述实施例一,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例一中AP的相应操作,为了简洁,在此不再赘述。
第三种设计中,处理单元12生成触发帧,收发单元11,用于发送触发帧。该触发帧的 公共信息字段中的HE-SIG-A2预留字段和预留字段,被设置为上行EHT PPDU带宽子字段,HE/EHT子字段,上行EHT空间复用字段。该上行EHT空间复用字段单独指示EHT TB PPDU中的空间复用参数,或者与上行空间复用字段配合,以指示EHT TB PPDU中的空间复用参数。具体的,可以参见前述实施例二中的步骤S301中关于触发者的描述,在此不再赘述。
该收发单元11还用于接收站点发送的EHT TB PPDU或聚合PPDU,该EHT TB PPDU的U-SIG中可包括一个SRP字段或两个SRP字段。具体的,可以参见前述实施例二中的步骤S303中关于EHT TB PPDU或聚合PPDU的描述,在此不再赘述。
应理解,第三种设计的通信装置1可对应执行前述实施例二,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例二中AP的相应操作,为了简洁,在此不再赘述。
第四种设计中,该处理单元12用于生成触发帧。该收发单元11,用于发送触发帧,该触发帧用于触发站点发送EHT TB PPDU,该触发帧中携带第一指示信息,该第一指示信息用于指示EHT TB PPDU的U-SIG中SRP1字段和/或SRP2字段的值;可选的,该触发帧中还携带第二指示信息,所述第二指示信息用于指示EHT TB PPDU的U-SIG中的U-SIG预留字段的值;具体的,可参见实施例三中步骤S401以及该实施例汇总关于触发帧的描述,在此不再赘述。
该收发单元11,还用于接收该站点发送的EHT TB PPDU,该EHT TB PPDU的U-SIG中SRP字段和U-SIG预留字段的设置,参见实施例三的描述,在此不再赘述。
应理解,第四种设计的通信装置1可对应执行前述实施例四,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例四中AP的相应操作,为了简洁,在此不再赘述。
参见图20,图20是本申请实施例提供的通信装置2的结构示意图。该通信装置2可以为STA或STA中的芯片,比如Wi-Fi芯片等。如图17所示,该通信装置2包括收发单元21,处理单元22。
第一种设计中,该收发单元21,用于接收触发帧,该触发帧用于触发该通信装置2发送EHT TB PPDU;该收发单元21,还用于发送EHT TB PPDU,该EHT TB PPDU的U-SIG中包括U-SIG预留字段、SRP1字段,或者包括SRP1字段和SRP2字段。
可选的,该处理单元22包括U-SIG预留字段设置子单元221和SRP字段设置子单元222。
其中,U-SIG预留字段设置子单元221用于设置U-SIG预留字段的值,U-SIG预留字段的值基于触发帧是否携带特殊用户字段确定,在触发帧未携带特殊用户信息字段时,U-SIG预留字段的值设置为缺省值;在触发帧携带了特殊用户信息字段,U-SIG预留字段的值基于该特殊用户信息字段中的U-SIG预留指示字段的值确定。
SRP字段设置子单元222用于设置EHT TB PPDU的U-SIG中的SRP1字段和SRP2字段的值。
SRP1字段和SRP2字段的值分别基于该触发帧的公共信息字段中的一个或多个UL SRP字段指示的值,UL EHT SRP字段指示的值,该触发帧的特殊用户信息字段中的UL SRP字段指示的值中的一种或多种确定。
应理解,第一种设计的通信装置2可对应执行前述实施例一至实施例三,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例一至实施例三中STA的相应操作,为了简洁,在此不再赘述。
参见图21,图21是本申请实施例提供的通信装置3的结构示意图。该通信装置3可以为AP或STA,进一步的,该通信装置3可以是AP或STA中的芯片,比如Wi-Fi芯片等。如图21所示,该通信装置3包括确定单元31和收发单元32。
一种设计中,该通信装置3为AP或AP中的芯片。该确定单元31,用于根据EHT TB PPDU的U-SIG中包括的SRP1字段和SRP2字段分别指示的值,触发帧的公共信息字段中包括的4个UL SRP字段分别指示的值,触发帧的公共信息字段的HE-SIG-A2中UL EHT SRP字段指示的值中的一种或多种值,确定PSRT PPDU的发射功率;该收发单元32,用于按照该PSRT PPDU的发射功率,发送该PSRT PPDU。
可选的,该收发单元32,还用于接收触发帧,该触发帧中包括4个UL SRP字段,一个UL SRP字段指示的值为一个子信道上第一AP的发射功率与该第一AP能够接受的最大干扰功率之和,该通信装置3和该第一AP位于同一个OBSS内。其中,第一AP指发送该触发帧的AP。
可选的,该收发单元32,还用于接收EHT TB PPDU,该EHT TB PPDU的U-SIG中包括SRP1字段和SRP2字段,该SRP1字段指示的值为第一子信道上该第一AP的发射功率与该第一AP能够接受的最大干扰功率之和,该SRP2字段指示的值为第二子信道上该第一AP的发射功率与该第一AP能够接受的最大干扰功率之和,该第一子信道和该第二子信道的带宽为等于该EHT TB PPDU的带宽的一半,且该第一子信道的频率小于该第二子信道的频率,该通信装置3和该第一AP位于同一个OBSS内。
应理解,该种设计的通信装置3可对应执行前述图13所示方法,并且该通信装置3中的各个单元的上述操作或功能分别为了实现前述图13中第二AP的相应操作,为了简洁,在此不再赘述。
另一种设计中,该通信装置3为STA或STA中的芯片。该确定单元31,用于根据EHT TB PPDU的U-SIG中包括的SRP1字段和SRP2字段分别指示的值,触发帧的公共信息字段中包括的4个UL SRP字段分别指示的值,触发帧的公共信息字段的HE-SIG-A2中UL EHT SRP字段指示的值中的一种或多种值,确定响应于PSRT PPDU的响应帧的发射功率;该收发单元32,用于按照该响应帧的发射功率,发送该响应帧。
可选的,该收发单元32,还用于接收触发帧,该触发帧中包括4个UL SRP字段,一个UL SRP字段指示的值为一个子信道上第一AP的发射功率与该第一AP能够接受的最大干扰功率之和,该通信装置3和该第一AP位于同一个OBSS内。其中,第一AP指发送该触发帧的AP。
可选的,该收发单元32,还用于接收EHT TB PPDU,该EHT TB PPDU的U-SIG中包括SRP1字段和SRP2字段,该SRP1字段指示的值为第一子信道上该第一AP的发射功率与该第一AP能够接受的最大干扰功率之和,该SRP2字段指示的值为第二子信道上该第一AP的发射功率与该第一AP能够接受的最大干扰功率之和,该第一子信道和该第二子信道的带宽为等于该EHT TB PPDU的带宽的一半,且该第一子信道的频率小于该第二子信道的频率,该通信装置3和该第一AP位于同一个OBSS内。
可选的,该收发单元32,还用于接收第二AP发送的PSRT PPDU。
其中,上述任一种设计中,上述确定单元31可以为处理单元。
应理解,该种设计的通信装置3可对应执行前述图18所示方法,并且该通信装置3中的各个单元的上述操作或功能分别为了实现前述图18中第二STA的相应操作,为了简洁,在 此不再赘述。
以上介绍了本申请实施例的AP和STA,以下介绍所述AP和STA可能的产品形态。应理解,但凡具备上述图19所述的AP的功能的任何形态的产品,但凡具备上述图20所述的STA的功能的任何形态的产品,但凡具备上述图21所述的AP或STA的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的AP和STA的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的AP和STA,可以由一般性的总线体系结构来实现。
为了便于说明,参见图22,图22是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以为AP或STA,或其中的芯片。图22仅示出了通信装置1000的主要部件。除处理器1001和收发器1002之外,所述通信装置还可以进一步包括存储器1003、以及输入输出装置(图未示意)。
处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。收发器1002可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
其中,处理器1001、收发器1002、以及存储器1004可以通过通信总线连接。
一种设计中,通信装置1000可以用于执行前述实施例一中AP的功能:处理器1001可以用于生成图7a中步骤S101发送的触发帧,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图7a中的步骤S101和步骤S104,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例一中STA的功能:处理器1001可以用于生成图7a中步骤S103发送的EHT TB PPDU,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图7a中的步骤S102和步骤S103,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例一中AP的功能:处理器1001可以用于生成图8a中步骤S201发送的触发帧,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图8a中的步骤S201和步骤S204,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例一中STA的功能:处理器1001可以用于生成图8a中步骤S203发送的EHT TB PPDU,和/或用于执行本文所描述的技术的 其它过程;收发器1002可以用于执行图8a中的步骤S202和步骤S203,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例二中AP的功能:处理器1001可以用于生成图11中步骤S301发送的触发帧,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图11中的步骤S301和步骤S304,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例二中STA的功能:处理器1001可以用于生成图11中步骤S303发送的EHT TB PPDU,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图11中的步骤S302和步骤S303,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例三中AP的功能:处理器1001可以用于生成图14中步骤S401发送的触发帧,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图14中的步骤S401和步骤S404,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例三中STA的功能:处理器1001可以用于生成图14中步骤S403发送的EHT TB PPDU,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图14中的步骤S402和步骤S403,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例四中第二AP的功能:处理器1001可以用于执行图16中的步骤S503,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图16中的步骤S504,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例四中第二STA的功能:处理器1001可以用于执行图18中的步骤S604,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图18中的步骤S605,和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述任一方法实施例中描述的方法。计算机程序可能固化在处理器1000中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图19的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的AP和STA,可以由通用处理器来实现。
实现AP的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中AP的功能。具体地,该处理电路可以用于生成图7a中步骤S101发送的触发帧,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图7a中的步骤S101和步骤S104,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例一中AP的功能。具体地,该处理电路用于生成图8a中步骤S201发送的触发帧,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图8a中的步骤S201和步骤S204,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例二中AP的功能。具体地,该处理电路用于生成图11中步骤S301发送的触发帧,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图11中的步骤S301和步骤S304,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例三中AP的功能。具体地,该处理电路用于生成图14中步骤S401发送的触发帧,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图14中的步骤S401和步骤S404,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例四中第二AP的功能。具体地,该处理电路用于执行图16中的步骤S503,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图16中的步骤S504,和/或用于本文所描述的技术的其它过程。
实现STA的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中STA的功能。具体地,该处理电路用于生成图7a中步骤S103发送的EHT TB PPDU,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图7a中的步骤S102和步骤S103,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例一中STA的功能。具体地,该处理电路用于生成图8a中步骤S203发送的EHT TB PPDU,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图8a中的步骤S202和步骤S203,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例二中STA的功能。具体地,该处理 电路用于生成图11中步骤S303发送的EHT TB PPDU,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图11中的步骤S302和步骤S303,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例三中STA的功能。具体地,该处理电路用于生成图14中步骤S403发送的EHT TB PPDU,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图14中的步骤S402和步骤S403,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例四中第二STA的功能。具体地,该处理电路用于执行图18中的步骤S604,和/或用于执行本文所描述的技术的其它过程;该输入输出接口可以用于执行图18中的步骤S605,和/或用于本文所描述的技术的其它过程。
应理解,上述各种产品形态的通信装置,具有上述方法实施例中AP或STA的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种无线通信系统,包括AP和STA,该AP和STA可以执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (32)

  1. 一种触发帧中指示空间复用参数的方法,其特征在于,包括:
    接入点AP发送触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU;
    所述AP接收所述站点发送的EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中空间复用参数SRP指示的值基于所述触发帧的公共信息字段中的一个或多个上行空间复用参数UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种确定。
  2. 一种应用于无线局域网WLAN的通信装置,其特征在于,包括:
    处理器,用于生成触发帧;
    收发器,用于发送所述触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU;
    所述收发器,用于接收所述站点发送的EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中空间复用参数SRP指示的值基于所述触发帧的公共信息字段中的一个或多个上行空间复用参数UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种确定。
  3. 根据权利要求1所述的方法或2所述的通信装置,其特征在于,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;
    所述EHT TB PPDU的U-SIG中包括一个SRP字段,所述一个SRP字段的值等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的最小值。
  4. 根据权利要求1所述的方法或2所述的通信装置,其特征在于,所述UL EHT SRP字段位于公共信息字段的预留字段中;
    所述EHT TB PPDU的U-SIG中包括一个SRP字段,所述一个SRP字段的值等于所述UL EHT SRP字段指示的值。
  5. 根据权利要求1所述的方法或2所述的通信装置,其特征在于,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;
    所述EHT TB PPDU为非聚合PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段;
    所述SRP1字段的值等于所述UL SRP1字段、UL SRP2字段指示的值中的最小值;
    所述SRP2字段的值等于所述UL SRP3字段、UL SRP4字段指示的值中的最小值。
  6. 根据权利要求1所述的方法或2所述的通信装置,其特征在于,所述触发帧的公共信 息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;
    所述EHT TB PPDU的带宽为320MHz或所述EHT TB PPDU为聚合PPDU的部分PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段,所述SRP1字段的值等于所述SRP2字段的值,均等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的最小值。
  7. 根据权利要求1所述的方法或2所述的通信装置,其特征在于,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;
    所述EHT TB PPDU的带宽为320MHz或所述EHT TB PPDU为聚合PPDU的部分PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段,所述SRP1字段的值等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的最小值;所述SRP2字段的值等于所述UL EHT SRP字段的值。
  8. 如权利要求1至3-6中任一项所述的方法或权利要求2-6中任一项所述的通信装置,其特征在于,所述EHT TB PPDU的通用信令字段U-SIG还包括U-SIG预留字段;所述U-SIG预留字段的值为缺省值。
  9. 一种物理层协议数据单元中空间复用参数字段的确定方法,其特征在于,包括:
    站点STA接收触发帧,所述触发帧用于触发所述站点发送极高吞吐量物理层协议数据单元EHT TB PPDU;
    所述STA发送EHT TB PPDU,所述EHT TB PPDU的U-SIG中SRP指示的值基于所述触发帧的公共信息字段中的一个或多个UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种确定。
  10. 一种应用于无线局域网WLAN的通信装置,其特征在于,包括:
    收发器,用于接收触发帧,所述触发帧用于触发所述通信装置发送极高吞吐量物理层协议数据单元EHT TB PPDU;
    处理器,用于生成所述EHT TB PPDU;所述EHT TB PPDU的U-SIG中SRP指示的值基于所述触发帧的公共信息字段中的一个或多个UL SRP字段指示的值,上行EHT空间复用参数UL EHT SRP指示的值中的一种或两种确定;
    所述收发器,用于发送所述EHT TB PPDU。
  11. 根据权利要求9所述的方法或10所述的通信装置,其特征在于,所述UL EHT SRP字段位于公共信息字段的预留字段中;
    所述EHT TB PPDU的U-SIG中包括一个SRP字段,所述一个SRP字段的值等于所述UL EHT SRP字段指示的值。
  12. 根据权利要求9所述的方法或10所述的通信装置,其特征在于,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;
    所述EHT TB PPDU为非聚合PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段;
    所述SRP1字段的值等于所述UL SRP1字段、UL SRP2字段指示的值中的最小值;
    所述SRP2字段的值等于所述UL SRP3字段、UL SRP4字段指示的值中的最小值。
  13. 根据权利要求9所述的方法或10所述的通信装置,其特征在于,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;
    所述EHT TB PPDU的带宽为320MHz或所述EHT TB PPDU为聚合PPDU的部分PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段,所述SRP1字段的值等于所述SRP2字段的值,均等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的最小值。
  14. 根据权利要求9所述的方法或10所述的通信装置,其特征在于,所述触发帧的公共信息字段中包括4个上行空间复用参数UL SRP字段,所述4个UL SRP字段分别为UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段;所述UL EHT SRP字段位于公共信息字段的预留字段中;
    所述EHT TB PPDU的带宽为320MHz或所述EHT TB PPDU为聚合PPDU的部分PPDU,其U-SIG中包括两个SRP字段,分别为SRP1字段和SRP2字段,所述SRP1字段的值等于所述UL SRP1字段、UL SRP2字段、UL SRP3字段、以及UL SRP4字段指示的值中的最小值;所述SRP2字段的值等于所述UL EHT SRP字段的值。
  15. 如权利要求9,11-14中任一项所述的方法或权利要求10-14中任一项所述的通信装置,其特征在于,所述EHT TB PPDU的通用信令字段U-SIG还包括U-SIG预留字段;所述U-SIG预留字段的值为缺省值。
  16. 一种触发帧的传输方法,其特征在于,包括:
    接入点AP发送触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层协议数据单元EHT TB PPDU;所述触发帧还包括用于指示所述EHT TB PPDU中U-SIG预留字段的值的U-SIG预留指示字段;
    所述AP接收所述站点发送的EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定。
  17. 一种用于无线局域网WLAN的通信装置,其特征在于,包括:
    处理器,用于生成触发帧,所述触发帧用于触发站点发送基于触发的极高吞吐率物理层 协议数据单元EHT TB PPDU;所述触发帧还包括用于指示所述EHT TB PPDU中U-SIG预留字段的值的U-SIG预留指示字段;
    收发器,用于发送所述触发帧;
    所述收发器,还用于接收所述站点发送的EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定。
  18. 如权利要求16所述的方法或17所述的通信装置,其特征在于,所述U-SIG预留指示字段位于所述触发帧的用户信息列表字段的特殊用户信息字段中。
  19. 如权利要求18所述的方法或通信装置,其特征在于,所述特殊用户信息字段的关联标识AID12为预设值或为不完整的AID12值。
  20. 如权利要求18或19所述的方法或通信装置,其特征在于,所述特殊用户信息字段还包括:一个用于U-SIG的UL SRP字段;或两个用于U-SIG的UL SRP字段。
  21. 如权利要求16、18至20所述的方法或17至20所述的通信装置,其特征在于,所述触发帧的公共信息字段包括4个上行空间复用参数UL SRP字段;或进一步包括位于所述公共信息字段的预留字段中的上行EHT空间复用参数UL EHT SRP字段。
  22. 如权利要求21所述的方法或通信装置,其特征在于,所述两个用于U-SIG的UL SRP字段分别为U-SIG中的SRP1字段和U-SIG中的SRP2字段;
    所述U-SIG中的SRP1字段的值等于所述触发帧的上行空间复用字段中指示的4个空间复用字段中UL SR1字段和UL SR2字段的任一值;
    所述U-SIG中SRP2字段的值等于所述触发帧的上行空间复用字段中指示的4个空间复用字段中UL SR3字段和UL SR4字段的任一值。
  23. 如权利要求16所述的方法或17所述的通信装置,其特征在于,所述触发帧的公共信息字段中的预留字段中设置用于指示EHT STA发送触发的高效物理层协议数据单元HE TB PPDU还是EHT TB PPDU的HE/EHT子字段。
  24. 如权利要求16所述的方法或17所述的通信装置,其特征在于,所述触发帧还包括:
    上行EHT PPDU带宽扩展字段,用于同UL(HE)BW字段联合指示上行HE带宽和上行EHT带宽;或
    特殊用户存在指示子字段,用于显示指示是否存在特殊用户信息字段。
  25. 一种物理层协议数据单元PPDU的传输方法,其特征在于,包括:
    站点STA接收触发帧,所述触发帧用于触发所述站点发送EHT TB PPDU;所述触发帧还包括用于指示所述EHT TB PPDU中U-SIG预留字段的值的U-SIG预留指示字段;
    所述STA发送EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定。
  26. 一种应用于无线局域网WLAN的通信装置,其特征在于,包括:
    收发器,用于接收触发帧,所述触发帧用于触发所述站点发送EHT TB PPDU;所述触发帧还包括用于指示所述EHT TB PPDU中U-SIG预留字段的值的U-SIG预留指示字段;
    处理器,用于生成所述EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定;
    所述收发器,还用于发送EHT TB PPDU,所述EHT TB PPDU的通用信令字段U-SIG中的U-SIG预留字段的值,基于所述触发帧的所述U-SIG预留指示字段的值确定。
  27. 如权利要求25所述的方法或26所述的通信装置,其特征在于,所述U-SIG预留指示字段位于所述触发帧的用户信息列表字段的特殊用户信息字段中。
  28. 如权利要求27所述的方法或通信装置,其特征在于,所述特殊用户信息字段的关联标识AID12为预设值或为不完整的AID12值。
  29. 如权利要求27或28所述的方法或装置,其特征在于,所述特殊用户信息字段还包括:一个用于U-SIG的UL SRP字段;或两个用于U-SIG的UL SRP字段。
  30. 如权利要求25所述的方法或26所述的通信装置,其特征在于,所述触发帧的公共信息字段包括4个上行空间复用参数UL SRP字段;或进一步包括位于所述公共信息字段的预留字段中的上行EHT空间复用参数UL EHT SRP字段。
  31. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1,3-8,9,11-15,16,18-24,25,27-30中任一项所述的方法。
  32. 一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1,3-8,9,11-15,16,18-24,25,27-30中任一项所述的方法。
PCT/CN2021/125779 2020-12-15 2021-10-22 空间复用参数指示和空间复用参数字段的确定方法及装置 WO2022127377A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2023007002A MX2023007002A (es) 2020-12-15 2021-10-22 Método para indicar el parámetro de reutilización espacial y determinar el campo de parámetro de reutilización espacial y aparato.
CN202180037320.2A CN115669147A (zh) 2020-12-15 2021-10-22 空间复用参数指示和空间复用参数字段的确定方法及装置
EP21905306.3A EP4255075A4 (en) 2020-12-15 2021-10-22 METHOD AND APPARATUS FOR DETERMINING SPATIAL REUSE PARAMETER INDICATION AND SPATIAL REUSE PARAMETER FIELD
AU2021400179A AU2021400179A1 (en) 2020-12-15 2021-10-22 Method for indicating spatial reuse parameter and determining spatial reuse parameter field and apparatus
CA3202490A CA3202490A1 (en) 2020-12-15 2021-10-22 Method for indicating spatial reuse parameter and determining spatial reuse parameter field and apparatus
KR1020237023771A KR20230121109A (ko) 2020-12-15 2021-10-22 공간 재사용 파라미터 표시 방법 및 공간 재사용 파라미터필드 결정 방법 및 장치
JP2023536181A JP2023553662A (ja) 2020-12-15 2021-10-22 空間再利用パラメータを指示し空間再利用パラメータフィールドを決定する方法および装置
US18/335,042 US20230328718A1 (en) 2020-12-15 2023-06-14 Method for indicating spatial reuse parameter and determining spatial reuse parameter field and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011483071.3 2020-12-15
CN202011483071.3A CN114641079A (zh) 2020-12-15 2020-12-15 空间复用参数指示和空间复用参数字段的确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/335,042 Continuation US20230328718A1 (en) 2020-12-15 2023-06-14 Method for indicating spatial reuse parameter and determining spatial reuse parameter field and apparatus

Publications (1)

Publication Number Publication Date
WO2022127377A1 true WO2022127377A1 (zh) 2022-06-23

Family

ID=81945351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125779 WO2022127377A1 (zh) 2020-12-15 2021-10-22 空间复用参数指示和空间复用参数字段的确定方法及装置

Country Status (10)

Country Link
US (1) US20230328718A1 (zh)
EP (1) EP4255075A4 (zh)
JP (1) JP2023553662A (zh)
KR (1) KR20230121109A (zh)
CN (2) CN114641079A (zh)
AU (1) AU2021400179A1 (zh)
CA (1) CA3202490A1 (zh)
MX (1) MX2023007002A (zh)
TW (1) TW202226804A (zh)
WO (1) WO2022127377A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4262306A1 (en) * 2021-01-11 2023-10-18 LG Electronics Inc. Method and device for configuring spatial reuse field in wireless lan system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200274659A1 (en) * 2019-02-26 2020-08-27 Canon Kabushiki Kaisha Communication apparatus, method of controlling communication apparatus, and non-transitory computer-readable storage medium
US20200344007A1 (en) * 2019-04-23 2020-10-29 Qualcomm Incorporated Harq sequences in wireless networks
WO2020231062A1 (ko) * 2019-05-10 2020-11-19 엘지전자 주식회사 멀티 ap 시스템에서 링크 유지
US20200374062A1 (en) * 2019-05-22 2020-11-26 Qualcomm Incorporated Backoff counter and txop duration settings for coordinated access point transmissions
WO2020242106A1 (ko) * 2019-05-27 2020-12-03 엘지전자 주식회사 무선랜 시스템에서 톤 플랜을 기반으로 eht ppdu를 수신하는 방법 및 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180027514A1 (en) * 2016-07-20 2018-01-25 Xiaogang Chen Resource unit indication for extended range packets
US20180062805A1 (en) * 2016-08-25 2018-03-01 Po-Kai Huang Setting of spatial reuse field for he trigger-based ppdu
CN113193884A (zh) * 2017-01-09 2021-07-30 韦勒斯标准与技术协会公司 用信号通知多用户分组的无线通信方法和无线通信终端
WO2018156211A1 (en) * 2017-02-21 2018-08-30 Intel IP Corporation Control fields for null data packet feedback reports
US10708958B2 (en) * 2017-05-22 2020-07-07 Lg Electronics Inc. Transmitting trigger frame in wireless local area network and wireless terminal using the same
US10999110B2 (en) * 2017-07-07 2021-05-04 Qualcomm Incorporated Techniques for selecting PPDU format parameters
US11510098B2 (en) * 2017-08-11 2022-11-22 Intel Corporation Determining a number of spatial streams and a bandwidth
US10365362B2 (en) * 2017-09-11 2019-07-30 Intel IP Corporation Location measurement reporting
US20190116513A1 (en) * 2017-10-16 2019-04-18 Qualcomm Incorporated Extremely high throughput (eht) signal detection
US10785798B2 (en) * 2017-10-25 2020-09-22 Mediatek Singapore Pte. Ltd. Secondary channel spatial reuse in a wireless network
US10827385B2 (en) * 2017-11-06 2020-11-03 Qualcomm Incorporated Techniques for preamble puncturing
US20190141717A1 (en) * 2017-11-06 2019-05-09 Qualcomm Incorporated Techniques for interleaving in single user preamble puncturing
US11159207B2 (en) * 2018-01-10 2021-10-26 Mediatek Singapore Pte. Ltd. Null data packet sounding for preamble puncture techniques
US10856244B2 (en) * 2018-08-02 2020-12-01 Qualcomm Incorporated Orthogonal multiplexing of high efficiency (HE) and extremely high throughput (EHT) wireless traffic
US10813061B2 (en) * 2018-09-18 2020-10-20 Intel Corporation Power reduction in a wireless network
SG10201908525WA (en) * 2019-09-13 2021-04-29 Panasonic Ip Corp America Communication apparatus and communication method for hybrid automatic repeat request operation
US20220132371A1 (en) * 2020-10-26 2022-04-28 Apple Inc. Configuring a Preamble for Trigger-Based Protocol Data Unit
CN117240425A (zh) * 2020-11-12 2023-12-15 华为技术有限公司 Ppdu中空间复用参数字段的确定方法及相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200274659A1 (en) * 2019-02-26 2020-08-27 Canon Kabushiki Kaisha Communication apparatus, method of controlling communication apparatus, and non-transitory computer-readable storage medium
US20200344007A1 (en) * 2019-04-23 2020-10-29 Qualcomm Incorporated Harq sequences in wireless networks
WO2020231062A1 (ko) * 2019-05-10 2020-11-19 엘지전자 주식회사 멀티 ap 시스템에서 링크 유지
US20200374062A1 (en) * 2019-05-22 2020-11-26 Qualcomm Incorporated Backoff counter and txop duration settings for coordinated access point transmissions
WO2020242106A1 (ko) * 2019-05-27 2020-12-03 엘지전자 주식회사 무선랜 시스템에서 톤 플랜을 기반으로 eht ppdu를 수신하는 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4255075A4 *

Also Published As

Publication number Publication date
CN115669147A (zh) 2023-01-31
TW202226804A (zh) 2022-07-01
US20230328718A1 (en) 2023-10-12
CN116684971A (zh) 2023-09-01
EP4255075A4 (en) 2024-05-08
KR20230121109A (ko) 2023-08-17
EP4255075A1 (en) 2023-10-04
CA3202490A1 (en) 2022-06-23
AU2021400179A1 (en) 2023-07-06
JP2023553662A (ja) 2023-12-25
CN114641079A (zh) 2022-06-17
MX2023007002A (es) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2022100492A1 (zh) Ppdu中空间复用参数字段的确定方法及相关装置
WO2021244652A1 (zh) 适用于多链路的组播业务传输方法及装置
CN108495304B (zh) 一种在无线局域网系统中改变aid的方法
WO2022037657A1 (zh) Ppdu的上行参数指示方法及相关装置
US20220225315A1 (en) Wireless communication method and wireless communication terminal
WO2022127377A1 (zh) 空间复用参数指示和空间复用参数字段的确定方法及装置
US20230354284A1 (en) Ppdu uplink bandwidth indication method and related apparatus
TWI792824B (zh) 時間資源分配和接收方法及相關裝置
CN116684971B (zh) 空间复用参数指示和空间复用参数字段的确定方法及装置
US11985096B2 (en) PPDU uplink bandwidth indication method and related apparatus
WO2022257768A1 (zh) 无线局域网中发送功率确定方法及相关装置
WO2023109449A1 (zh) 一种通信方法及通信装置
WO2022188642A1 (zh) 基于触发的空数据分组传输方法及相关装置
WO2023082978A1 (zh) 一种通信方法及通信装置
WO2022257836A1 (zh) Ppdu传输方法及相关装置
WO2023030481A1 (zh) 物理层协议数据单元传输方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905306

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/007002

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2023536181

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3202490

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023011929

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021400179

Country of ref document: AU

Date of ref document: 20211022

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021905306

Country of ref document: EP

Effective date: 20230628

ENP Entry into the national phase

Ref document number: 20237023771

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023011929

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230615