WO2022037605A1 - 金属加热体、金属加热装置及金属加热体的制造方法 - Google Patents

金属加热体、金属加热装置及金属加热体的制造方法 Download PDF

Info

Publication number
WO2022037605A1
WO2022037605A1 PCT/CN2021/113228 CN2021113228W WO2022037605A1 WO 2022037605 A1 WO2022037605 A1 WO 2022037605A1 CN 2021113228 W CN2021113228 W CN 2021113228W WO 2022037605 A1 WO2022037605 A1 WO 2022037605A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
metal
area
layer
insulating
Prior art date
Application number
PCT/CN2021/113228
Other languages
English (en)
French (fr)
Inventor
胡如国
Original Assignee
芜湖艾尔达科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010830351.0A external-priority patent/CN111954320B/zh
Priority claimed from CN202010830887.2A external-priority patent/CN111962074A/zh
Priority claimed from CN202010830356.3A external-priority patent/CN111836413A/zh
Priority claimed from CN202010830332.8A external-priority patent/CN111836412A/zh
Application filed by 芜湖艾尔达科技有限责任公司 filed Critical 芜湖艾尔达科技有限责任公司
Priority to US18/021,122 priority Critical patent/US20230328846A1/en
Priority to CN202180050338.6A priority patent/CN116195365A/zh
Priority to EP21857697.3A priority patent/EP4181625A1/en
Publication of WO2022037605A1 publication Critical patent/WO2022037605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/16Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being mounted on an insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/019Heaters using heating elements having a negative temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the invention relates to the field of electric heating, in particular to a metal heating body, a metal heating device and a manufacturing method of the metal heating body.
  • the heating element using the resistance wire as the heating method is sealed and filled with magnesium powder in the metal tube, and the fluid is heated by the heating tube.
  • the heating component in the film heating method is to print the metal resistance film on the heating component. Before printing the metal resistance film, an insulating layer needs to be printed first, and the metal resistance film needs to be sintered by multiple printings. It is easy to crack and peel off after hot and cold shocks.
  • An object of the present invention is to provide a metal heating body, a metal heating device and a manufacturing method of the metal heating body which are resistant to high and low temperature impact and have a stable structure.
  • a metal heating body comprising a metal base material and an electric heating layer, the electric heating layer is fixed with the metal base material, and the electric heating element is in a direction away from the metal base material.
  • the layer has an insulating area and a heating area, the insulating area and the heating area are integral structures, the insulating area isolates the heating area and the metal substrate, and the metal heating body also has two electrode layers, so A part of the insulating area is located between the electrode layer and the metal substrate, wherein at least part of one electrode layer is electrically connected to one end of the heating area, and at least part of the other electrode layer is electrically connected to the other end of the heating area. One end is electrically connected.
  • a metal heating device comprising a fixing frame and a metal heating body according to the above technical solutions, wherein the metal heating body is a metal tube, and the metal heating body is fixed on the fixing frame
  • the metal heating device has an inlet and an outlet, and the inlet and the outlet communicate with the inner cavity of the metal tube.
  • a manufacturing method of a metal heating body comprising:
  • the electric heating layer includes an insulating area and a heating area
  • the electrode paste material is fixed to the electrothermal layer to form an electrode layer.
  • a manufacturing method of a metal heating body comprising:
  • the nano-heating material with a part of the metal oxide of the metal oxide film to form an electrothermal layer, the electrothermal layer comprising an anodized film area and a heating area;
  • the electrode material slurry is fixed to the electrothermal layer to form an electrode layer.
  • the metal heating body of the above technical scheme includes a metal base material and an electric heating layer, the electric heating layer is fixed with the metal base material, the electric heating layer has a heating area and an insulating area, and the heating area and the insulating area are integrated into one structure, and the structure is stable, so that it can be used in high Under the impact of low temperature, it is not easy to fall off and crack, and the performance is stable.
  • the above manufacturing method combines the nano heating material with the insulating material of part of the insulating blank layer to form an electric heating layer, and the electric heating layer has an insulating area and a heating area; the prepared metal heating body has a heating area and an insulating area, and the structure is stable, so that Under high and low temperature impact, it is not easy to fall off and crack, and the performance is stable.
  • the above manufacturing method forms a metal oxide film area on the surface of the metal base material by anodizing the metal base material; the nano heating material is combined with a part of the metal oxide of the metal oxide film to form an electric heating layer, and the electric heating layer is formed.
  • the layer includes an anodized film area and a heating area; the prepared metal heating body has a heating area and an anodized film area, and the structure is stable, so that it is not easy to fall off and crack under high and low temperature impact, and has stable performance.
  • FIG. 1 is a schematic structural diagram of an embodiment of the metal heating body of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an embodiment of the metal heating body of the present invention.
  • FIG. 3 is a schematic cross-sectional view of another embodiment of the metal heating body of the present invention.
  • FIG. 4 is a schematic cross-sectional view of yet another embodiment of the metal heating body of the present invention.
  • FIG. 5 is a schematic structural diagram of an existing membrane heating tube
  • Fig. 6 is the structural representation of the existing membrane heating sheet
  • FIG. 7 is a schematic diagram of an embodiment of the metal heating device of the present invention.
  • FIG. 8 is a flow chart of a method for manufacturing a metal heating body according to the present invention.
  • FIG. 9 is a schematic cross-sectional view of another embodiment of the metal heating body of the present invention.
  • FIG. 10 is a schematic cross-sectional view of yet another embodiment of the metal heating body of the present invention.
  • FIG. 11 is a schematic cross-sectional view of another embodiment of the metal heating body of the present invention.
  • FIG. 12 is a flow chart of another method of manufacturing a metal heating body according to the present invention.
  • FIG. 1 shows a schematic structural diagram of a metal heating body.
  • the metal heating body includes a metal base material 1 and an electric heating layer 2.
  • the electric heating layer 2 is fixed to the metal base material 1, and the two fixed phases are It means that the electric heating layer does not fall off after being attached to the metal substrate 1 and keeps the two as an integral structure.
  • the electric heating layer 2 has a heating area 23 and an insulating area 21, the insulating area 21 and the heating area 23 are integrated, and the insulating area 21 isolates the heating area 23 and the metal substrate 1.
  • insulating area The integrated structure of the region 21 and the heating region 23 refers to a structure in which the insulating region 21 and the heating region 23 are in the same layer.
  • the direction away from the metal substrate refers to the direction radiating outward from the center of the metal substrate.
  • the metal heating body also has two electrode layers 3, a part of the insulating area 21 is located between the electrode layer 3 and the metal substrate 1, wherein at least part of one electrode layer 3 is electrically connected to one end of the heating area 23, and the other electrode layer 3 At least part of the heating zone is electrically connected to the other end of the heating zone.
  • the metal heating body is a metal plate or a metal sheet
  • the heating area 23 is in a circular or square or other irregular structure
  • one end of the heating area represents a certain part of a circle or a square or other irregular structure
  • the heating The other end of the zone represents another part of a circle or square or other irregular structure.
  • the number of electrode layers 3 may also be three or more.
  • the insulating area 21 is made of different materials from the heating area 23 .
  • the insulating area 21 includes a fusion area 22 , and the fusion area 22 is fused with the same material as the heating area 23 .
  • the formation of the electrothermal layer 2 includes fixing the insulating material on the metal base material preferably by screen printing, forming an insulating blank layer, and combining the nano-heating material with parts preferably by vacuum evaporation or vapor deposition or ion sputtering or plasma plating.
  • the insulating materials of the insulating blank layer are combined to form an electric heating layer, and the electric heating layer includes an insulating area 21 and a heating area 23 . Since the insulating area 21 has a fusion area 22, in the fusion area 22, due to the fusion of the nano heating material and the insulating material, the insulating area 21 and the heating area 23 form a dense structure, and the structure is stable, so that it can be stable under high and low temperature shocks. Easy to fall off, crack, stable performance.
  • the metal substrate 1 can be a metal tube, a metal plate or a metal sheet, etc.
  • the thickness of the metal substrate 1 is between 0.05-3 mm; the electric heating layer 2 covers the metal substrate 1 with a continuous and uninterrupted surface, and the heating zone 23 is also continuous.
  • the uninterrupted surface covers the metal substrate 1 , or the heating zone 23 covers the metal substrate 1 in one piece.
  • the one-piece type means that the heating zone 23 is not divided and is in the form of a whole piece. Since the heating area 23 covers the metal substrate 1 in one piece, when the metal heating body is energized, the entire heating area 23 is rapidly heated, so that the metal substrate 1 covered by the entire heating area 23 has a similar temperature.
  • the material 1 can uniformly heat the fluid to be heated.
  • the uniformly heated heating zone 23 exerts a relatively uniform stress on the metal substrate 1, which is helpful for the crack resistance and deformation resistance of the metal substrate 1.
  • the electric heating layer 2 can be continuously and uninterruptedly covered on the outer circumference of the metal tube, the electric heating layer 2 is located in the middle area of the metal tube, and the covering area of the electric heating layer 2 occupies 60% of the surface area of the metal tube. -90%.
  • the coating area of the electric heating layer 2 accounts for 60-90% of the inner surface area of the metal tube.
  • the coating area of the electric heating layer 2 accounts for 60% of the outer surface area of the metal tube. -90%.
  • the electric heating layer 2 can cover the metal plate or metal sheet continuously and uninterruptedly. 60-90%.
  • the resistivity of the metal heating body is 85%-95%, wherein the resistivity refers to the ratio of the working resistance to the normal temperature resistance.
  • the resistance is R1
  • the resistivity R2/R1
  • the resistivity of the metal heating body is close to 1, which can make the metal heating body in the The heating efficiency during heating is high, and at the same time, since the resistance of the metal heating body changes little at work and at normal temperature, it is easier to control the temperature of the metal heating body.
  • the power density of the heating zone of the metal heating body can be in the range of 5-200W/cm 2 , and the power density refers to the ratio of power to the area of the heating zone.
  • the power density range is very wide and can be applied to many products.
  • the metal substrate 1 is a metal tube
  • the diameter of the metal tube is 6-80mm
  • the heating power of the metal tube can be 200-10000W
  • the power density of the heating zone of the metal tube is 30-180W/cm 2 .
  • the power density is high, so that high power can be achieved with a small heating area. In the case that high power can be achieved to meet the application requirements, the overall structure of the metal heating body can be made small and compact.
  • the thickness of the fusion zone 22 of the metal heating body is in the range of 0.01-10 ⁇ m
  • the thickness of the heating zone 23 is in the range of 1-30 ⁇ m
  • the thickness of the insulating zone 21 is in the range of 10-210 ⁇ m.
  • the thickness of the heating area 23 is in the range of 1-30 ⁇ m, the thickness is very small, but since the insulating area 21 has a fusion area 22, and the thickness of the fusion area 22 is in the range of 0.01-10 ⁇ m, the thickness between the heating area 23 and the insulating area 21 is strongly guaranteed.
  • the connection makes the structure of the electric heating layer 2 stable, and it is not easy to fall off and break.
  • the nano-heating material in the fusion zone 22 is fused with the insulating material, which improves the thermal conductivity of the metal in the insulating zone, which can make the thickness of the insulating zone 21 smaller, in the range of 10-210 ⁇ m, so,
  • the thickness of the electric heating layer 2 is very thin, which is also beneficial to the uniformity of the electric heating layer 2 .
  • Metal substrates include stainless steel, iron, titanium, titanium alloys, aluminum, aluminum alloys, and the like.
  • the nano heating materials include, for example, TIO metal oxide nano heating materials, LiO metal oxide nano heating materials, ZnO metal oxide nano heating materials, In 2 O 3 metal oxide nano heating materials, SnO 2 metal oxide nano heating materials , at least one of Ca 2 InO 4 metal oxide nano-heating materials, graphene nano-heating materials, and nano-silver heating materials.
  • nano heating materials include, for example, TIO metal oxide nano heating materials, LiO metal oxide nano heating materials, ZnO metal oxide nano heating materials, In 2 O 3 metal oxide nano heating materials, SnO 2 metal oxide nano heating materials Two or more kinds of materials, Ca 2 InO 4 metal oxide nano-heating materials, graphene nano-heating materials, and nano-silver heating materials.
  • TIO metal oxide nanoheating material and Ca2InO4 metal oxide nanoheating material For example, TIO metal oxide nanoheating material and Ca2InO4 metal oxide nanoheating material, ZnO metal oxide nanoheating material and In2O3 metal oxide nanoheating material, TIO metal oxide nanoheating material and LiO metal Oxide nano heating material, SnO 2 metal oxide nano heating material, Ca 2 InO 4 metal oxide nano heating material and nano silver heating material, SnO 2 metal oxide nano heating material, Ca 2 InO 4 metal oxide nano heating material and graphene nano-heating materials, etc.
  • the insulating region 21 includes a non-metal sintered and solidified glass body or an organic coating material or electronic paste.
  • the electrode layer 3 of the electrothermal layer 2 is fixed on the electrothermal layer 2 by screen printing and sintering of silver paste, and the sintering temperature is 120-180°C. 3, the electrode layer 3 may partially cover the heating area 23, so that the electrode layer 3 and the heating area 23 are better electrically connected. Referring to FIG. 2 , the electrode layer 3 can also be in close contact with the heating area 23 , and power is supplied to the heating area 23 through the electrode layer 3 .
  • the distance between the electrode layer 3 and the metal conductive part is farther than the distance between the insulating area 21 and the metal conductive part, so as to ensure the electrical safety distance.
  • the metal heating body may further include an electrical insulating layer 4 covering the electrode layer 3 and the heating zone 23 .
  • the electrically insulating layer 4 is formed by sintering an insulating material to the heating zone 23 by screen printing.
  • the metal heating body also includes a sintered coating 5, which is made of a negative temperature coefficient resistance material, the sintered coating 5 is located in the electrical insulating layer 4, and the sintering of the negative temperature coefficient resistance material Coating 5 is a sintered coating 5 with NTC properties.
  • FIG. 5 and Fig. 6 are structural diagrams of the existing thick-film heating film.
  • Fig. 5 and Fig. 6 show the heating element having a substrate 1', a heating film 2' and an electrode 3', as shown in Figs. 5 and 6
  • the heating films 2' are spaced apart.
  • the heating temperature is high in the area where the metal film is provided, and the heating temperature is low in the area where the metal film is not provided, so that the substrate is easily broken, and the uniformity of the fluid heating is also poor.
  • the insulating layer and heating film of this thick film heating structure are formed by multiple screen printing and curing, so the thickness of the heating film and insulating layer is relatively thick, and the thickness of the insulating layer is about 100 ⁇ m. It is formed by secondary screen printing. After the heating film is heated, the heat is transferred to the substrate through the insulating layer. Due to the large thickness of the insulating layer, the heat transfer efficiency is reduced, and the consistency of the heating film to the substrate is also affected. It is set at intervals, which further affects the heat transfer efficiency, which is easy to cause the deformation of the substrate and the peeling of the heating film.
  • FIG. 7 shows a schematic structural diagram of a metal heating device.
  • the metal heating device includes a metal heating body 10 and a fixing frame 13.
  • the metal heating body 10 is a metal tube.
  • the metal heating body 10 is fixed on the fixing frame 13.
  • the metal heating device has an inlet 11 and an outlet 12.
  • the inlet 11 and the outlet 12 are connected to the metal The lumen of the tube communicates.
  • Metal heating devices can be applied to various heating places with instant heating needs.
  • the manufacturing method of the metal heating body including the following steps:
  • the electric heating layer includes an insulating area and a heating area
  • the electrode paste material is fixed to the electrothermal layer to form an electrode layer.
  • the insulating area and the heating area form an integral structure, the insulating area includes a fusion area, and the fusion area is fused with nano heating materials.
  • the insulating area has a fusion area. Because the nano heating material and the insulating material are fused in the fusion area, the insulating area and the heating area with the fusion area form a dense structure, and the structure is stable, so that it can not easily fall off under high and low temperature shocks. , cracking, stable performance.
  • the sintering temperature for fixing the insulating material on the metal substrate by screen printing is 500-1000°C. At this temperature, the insulating material can be printed more firmly on the metal substrate.
  • the insulating material is, for example, a non-metallic sinter-curable glass body or an organic coating material or an electronic paste.
  • the nano heating material is combined with a part of the insulating material of the insulating blank layer by vacuum evaporation, vapor deposition, ion sputtering or plasma plating.
  • the nano heating materials include, for example, TIO metal oxide nano heating materials, LiO metal oxide nano heating materials, ZnO metal oxide nano heating materials, In 2 O 3 metal oxide nano heating materials, SnO 2 metal oxide nano heating materials , at least one of Ca 2 InO 4 metal oxide nano-heating materials, graphene nano-heating materials, and nano-silver heating materials.
  • nano heating materials include, for example, TIO metal oxide nano heating materials, LiO metal oxide nano heating materials, ZnO metal oxide nano heating materials, In 2 O 3 metal oxide nano heating materials, SnO 2 metal oxide nano heating materials Two or more of materials, Ca 2 InO 4 metal oxide nano-heating materials, graphene nano-heating materials, and nano-silver heating materials.
  • TIO metal oxide nanoheating material and Ca2InO4 metal oxide nanoheating material For example, TIO metal oxide nanoheating material and Ca2InO4 metal oxide nanoheating material, ZnO metal oxide nanoheating material and In2O3 metal oxide nanoheating material, TIO metal oxide nanoheating material and LiO metal Oxide nano heating material, SnO 2 metal oxide nano heating material, Ca 2 InO 4 metal oxide nano heating material and nano silver heating material, SnO 2 metal oxide nano heating material, Ca 2 InO 4 metal oxide nano heating material and graphene nano-heating materials, etc.
  • the electrode material paste is specifically selected from silver paste, the fixing method is preferably screen printing and sintering, and the sintering temperature is 120-500°C.
  • the insulating material is sintered and fixed on the electrothermal layer by screen printing to form an electrical insulating layer.
  • the electrical insulating layer can be used to block the heating area and the external environment, which is more conducive to ensuring the safety of electricity use.
  • the negative temperature coefficient resistance material is sintered and fixed on the electrical insulating layer to form a sintered coating.
  • the sintered coating has NTC properties, and the temperature of the substrate and the fluid to be heated can be measured through the change of resistance to achieve a certain degree of temperature control. , used to ensure the temperature measurement of the metal heating body and improve the electrical safety of the metal heating body.
  • FIG. 9 shows a schematic structural diagram of another metal heating body.
  • the metal heating body includes a metal substrate 1 and an electric heating layer 2.
  • the electric heating layer 2 includes an anodized film area and a heating area.
  • the thin film area isolates the heating area and the metal substrate, and the anodized thin film area and the heating area are integral structures.
  • the materials of the anodized thin film area and the heating area are different, and the anodized thin film area further includes a fusion area, and the fusion area is fused with the same material as that of the heating area.
  • the metal base material 1 is an aluminum base material 1
  • the electric heating layer 2 is fixed to the aluminum base material 1, and the two are fixed to each other, which means that the electric heating layer does not fall off after being attached to the aluminum base material 1. Keep both as one overall structure.
  • the anodized thin film region is specifically an aluminum oxide thin film region 21 and a fusion region 22 .
  • the electric heating layer 2 has an anodized film area and a heating area 23, the anodized film area and the heating area 23 are integrated, and the anodized film area isolates the heating area 23 and the aluminum substrate 1.
  • the anodized film area and the heating area 23 are integrated into a structure, which means that the anodized film area and the heating area 23 are the same layer structure.
  • the direction away from the aluminum base material refers to the direction radiating outward from the center of the aluminum base material.
  • the aluminum base material includes materials such as aluminum and aluminum alloys.
  • the metal heating body also has two electrode layers 3, a part of the aluminum oxide film area 21 is located between the electrode layer 3 and the aluminum substrate 1, and at least part of one electrode layer 3 is electrically connected to one end of the heating area 23, and the other At least part of the electrode layer 3 is electrically connected to the other end of the heating zone.
  • the metal heating body is a metal plate or a metal sheet
  • the heating area 23 is in a circular or square or other irregular structure
  • one end of the heating area represents a certain part of a circle or a square or other irregular structure
  • the heating The other end of the area represents another part of a circular or square or other irregular structure, that is, one end and the other end in this paper are more inclined to be the end when current flows, and the number of electrode layers 3 can also be 3 or more.
  • the aluminum oxide film region 21 is formed by anodizing the aluminum substrate to form an aluminum oxide film on the surface of the aluminum substrate.
  • the aluminum oxide film is dense and continuous.
  • the aluminum oxide film is covered by deposition, ion sputtering or plasma plating, etc., so as to form the electrothermal layer 2, and the electrothermal layer includes an aluminum oxide film area 21 and a heating area.
  • the aluminum oxide film area 21 covers the aluminum substrate with a continuous and uninterrupted surface. Due to the high hardness of aluminum oxide, the aluminum oxide film area 21 plays a role in the structure of the metal heating body between the aluminum substrate, the fusion area and the heating area. The electrical insulation between them ensures the electrical safety of the metal heating body.
  • the alumina film zone 21 and the heating zone 23 form a dense structure with a stable structure, so that it is not easy to fall off and crack under high and low temperature impact, and the performance is stable. .
  • the aluminum substrate 1 can be an aluminum tube, an aluminum plate, an aluminum sheet, etc., and the thickness of the aluminum substrate 1 is between 0.05-5 mm; the heating zone 23 covers the aluminum substrate 1 with a continuous and uninterrupted surface.
  • the one-piece type means that the heating zone 23 is not divided and is in the form of a whole piece. Since the heating zone 23 covers the aluminum substrate 1 in one piece, when the metal heating body is energized, the entire heating zone 23 is rapidly heated, so that the aluminum substrate 1 covered by the entire heating zone 23 has a similar temperature.
  • the aluminum substrate 1 can uniformly heat the fluid to be heated. On the other hand, the uniformly heated heating zone 23 exerts a relatively uniform stress on the aluminum substrate 1, which is helpful for crack resistance and anti-cracking of the aluminum substrate 1. deformed.
  • the heating zone 23 can be continuously and uninterruptedly covered on the outer periphery of the aluminum tube. 60-90%.
  • the coating area of the heating zone 23 accounts for 60-90% of the inner surface area of the aluminum tube.
  • the electric heating layer 2 is located on the outer surface of the aluminum tube, the coating area of the heating zone 23 accounts for 60% of the outer surface area of the aluminum tube. -90%.
  • the heating area 23 can be continuously and uninterruptedly covered on the aluminum plate or the aluminum sheet, the electric heating layer 2 is located in the middle area of the aluminum plate or the aluminum sheet, and the heating area 23 covers the area of the aluminum plate or aluminum sheet. 60-90% of the surface area of the sheet.
  • the resistivity of the heating zone of the metal heating body is 85%-115%, wherein the resistivity refers to the ratio of the working resistance to the normal temperature resistance.
  • the resistance is R1
  • the resistivity R2/R1
  • the resistivity of the metal heating body is close to 1, which can make the metal heating body in the The heating efficiency during heating is high, and at the same time, since the resistance of the metal heating body changes little at work and at normal temperature, it is easier to control the temperature of the metal heating body.
  • the power density of the metal heating body can be in the range of 1-150W/ cm2 , and the power density refers to the ratio of power to the area of the heating zone.
  • the power density range is very wide and can be applied to many products.
  • the aluminum base material 1 is an aluminum tube
  • the diameter of the aluminum tube is 6-80mm
  • the heating power of the aluminum tube can be 10-3000W
  • the power density of the heating zone of the aluminum tube is 1-100W/cm 2 .
  • the power density is high, so that high power can be achieved with a small heating area. In the case that high power can be achieved to meet the application requirements, the overall structure of the metal heating body can be made small and compact.
  • the metal heating body has an aluminum base material
  • the electric heating layer fixed on the aluminum base material has an aluminum oxide film area and a heating area
  • the power density of the heating area can be very small, for example, when 1-10W/cm 2 , it can be passed through Driven by batteries, etc.
  • the thickness of the fusion zone 22 of the metal heating body is in the range of 0.01-10 ⁇ m
  • the thickness of the heating zone 23 is in the range of 1-20 ⁇ m
  • the thickness of the anodized film region is in the range of 3-40 ⁇ m.
  • the thickness of the heating area 23 is in the range of 1-20 ⁇ m
  • the thickness is very small, but because the aluminum oxide film area 21 has a fusion area 22, and the thickness of the fusion area 22 is in the range of 0.01-10 ⁇ m, the heating area 23 and the anodized film are strongly guaranteed.
  • the connection between the zones makes the structure of the heating zone stable and not easy to fall off and break.
  • the aluminum oxide film region 21 is formed by anodizing the aluminum base material, the thickness can be very small.
  • the nanomaterials in the fusion region 22 are fused with aluminum oxide, which improves the anode
  • the metal thermal conductivity of the oxide film area further makes the thickness of the anodized film area smaller, in the range of 3-40 ⁇ m, so that the thickness of the electric heating layer 2 is very thin, which is also conducive to the uniformity of the electric heating layer 2 .
  • the heating area 23 includes SnO 2 metal oxide nanomaterials
  • the aluminum oxide film area 21 includes a non-metal sintered and solidified glass body or an organic coating material.
  • the heating zone 23 includes graphene nanomaterials
  • the aluminum oxide film zone 21 includes a non-metal sinterable and curable glass body or an organic coating material.
  • the heating zone 23 may include TIO metal oxide nano-heating materials, In 2 O 3 metal oxide nano-heating materials, ZnO metal oxide nano-heating materials, LiO metal oxide nano-heating materials, SnO 2 metal oxides At least one of nano heating materials, Ca 2 InO 4 metal oxide nano heating materials, graphene nano heating materials, and nano silver heating materials.
  • the heating zone 23 includes TIO metal oxide nano-heating material, In 2 O 3 metal oxide nano-heating material, ZnO metal oxide nano-heating material, LiO metal oxide nano-heating material, SnO 2 metal oxide nano-heating material, More than two kinds of Ca 2 InO 4 metal oxide nano-heating materials, graphene nano-heating materials, and nano-silver heating materials make the electrical conductivity of the heating zone stronger.
  • TIO metal oxide nanoheating material and Ca2InO4 metal oxide nanoheating material For example, TIO metal oxide nanoheating material and Ca2InO4 metal oxide nanoheating material, ZnO metal oxide nanoheating material and In2O3 metal oxide nanoheating material, TIO metal oxide nanoheating material and LiO metal Oxide nano heating material, SnO 2 metal oxide nano heating material, Ca 2 InO 4 metal oxide nano heating material and nano silver heating material, SnO 2 metal oxide nano heating material, Ca 2 InO 4 metal oxide nano heating material and graphene nano-heating materials, etc.
  • the electrode layer 3 of the electrothermal layer 2 is fixed on the electrothermal layer by screen printing and sintering of silver paste, and the sintering temperature is 120-500°C.
  • the electrode layer 3 may partially cover the heating area 23 , so that the electrode layer 3 and the heating area 23 are electrically connected better.
  • the electrode layer 3 can also be in close contact with the heating area 23, and power is supplied to the heating area 23 through the electrode layer 3.
  • the distance between the electrode layer 3 and the metal conductive part should be farther than the distance between the aluminum oxide film region 21 and the metal conductive part, so as to ensure the electrical safety distance.
  • the metal heating body may further include an electrical insulating layer 4 covering the electrode layer 3 and the heating area 23 .
  • the electrically insulating layer 4 is formed by sintering an insulating material to the heating zone 23 by screen printing.
  • the metal heating body also includes a sintered coating 5, which is made of a negative temperature coefficient resistance material, the sintered coating 5 is located in the electrical insulating layer 4, and the sintering of the negative temperature coefficient resistance material Coating 5 is a sintered coating 5 with NTC properties.
  • the manufacturing method of the metal heating body including the following steps:
  • a metal base material is provided; the metal base material is specifically selected from aluminum base materials, the aluminum base material includes aluminum and aluminum alloy materials, and the aluminum base material includes shapes such as aluminum tubes, aluminum plates, and aluminum sheets;
  • the electrothermal layer includes an aluminum oxide film area, a fusion area and a heating area;
  • the silver paste is screen-printed, sintered and fixed on the electrothermal layer to form a silver electrode.
  • the aluminum oxide film is formed by anodizing the aluminum substrate.
  • the aluminum oxide film forms a dense and continuous uninterrupted film on the surface of the aluminum substrate, and the hardness of aluminum oxide is high.
  • an electric heating layer is formed, and the aluminum oxide of the aluminum oxide film and the nano heating material in contact with the nano heating material will form a fusion zone, so that the aluminum oxide film and the nano heating material form an electric heating layer structure.
  • the electric heating layer includes The aluminum oxide film area, fusion area and heating area make the metal heating body have the properties of high and low temperature impact resistance and stable structure.
  • the aluminum oxide film area also plays the role of electrical insulation between the aluminum base material, the fusion area and the heating area in the structure of the metal heating body, so as to ensure the safety of electricity consumption of the metal heating body.
  • the aluminum substrate Before anodizing the aluminum substrate, the aluminum substrate needs to be pretreated; the pretreatment includes the following steps:
  • the impurities attached to the surface of the aluminum substrate can be cleaned with tap water, and then washed with deionized water to reduce the influence of the residual impurities on the surface of the aluminum substrate on the subsequent anodization.
  • Alkaline etching treatment is performed on the aluminum substrate. If the aluminum substrate is stored in the external environment for a long time, there may be oxides on the surface of the aluminum substrate. Therefore, it needs to be treated before anodizing. The metal surface of the material is exposed. Specifically, the aluminum substrate is soaked in sodium hydroxide or potassium hydroxide solution for a certain period of time.
  • the aluminum substrate is cleaned with water, or tap water can be used first, followed by a secondary rinse with deionized water.
  • the activation treatment includes the steps:
  • the acid solution can be selected from nitric acid, sulfuric acid, acetic acid or phosphoric acid.
  • an acid solution with a suitable concentration and soaking time can be selected.
  • the aluminum substrate is first rinsed with tap water, then the aluminum substrate is rinsed with tap water with pH>6, and finally the aluminum substrate is washed with pure water with pH>5 more than once.
  • the metal substrate is immersed in an acid solution with a set temperature and a set concentration, and anodizing treatment is carried out with a current of a set density;
  • the acid solution can be a sulfuric acid solution or a mixed solution of sulfuric acid; the set temperature is in the range of 10-50°C; the set density of the current is in the range of 0.5-2A/dm 2 .
  • the acid solution may include a mixed solution of sulfuric acid and oxalic acid, and the acid solution includes nickel and iron metal salts;
  • an aluminum oxide film is formed on the surface of the aluminum substrate, which is heated to 150-800 ° C, and the nano heating material is combined with part of the aluminum oxide film by vacuum evaporation or vapor deposition or ion sputtering or plasma plating.
  • Alumina combined, nano heating materials such as TIO metal oxide nano heating materials, In 2 O 3 metal oxide nano heating materials, ZnO metal oxide nano heating materials, LiO metal oxide nano heating materials, SnO 2 metal oxide nano heating materials At least one of heating material, Ca 2 InO 4 metal oxide nano heating material, graphene nano heating material, and nano silver heating material.
  • nano heating materials include, for example, TIO metal oxide nano heating materials, LiO metal oxide nano heating materials, ZnO metal oxide nano heating materials, In 2 O 3 metal oxide nano heating materials, SnO 2 metal oxide nano heating materials Two or more of materials, Ca 2 InO 4 metal oxide nano-heating materials, graphene nano-heating materials, and nano-silver heating materials.
  • TIO metal oxide nanoheating material and Ca2InO4 metal oxide nanoheating material For example, TIO metal oxide nanoheating material and Ca2InO4 metal oxide nanoheating material, ZnO metal oxide nanoheating material and In2O3 metal oxide nanoheating material, TIO metal oxide nanoheating material and LiO metal Oxide nano heating material, SnO 2 metal oxide nano heating material, Ca 2 InO 4 metal oxide nano heating material and nano silver heating material, SnO 2 metal oxide nano heating material, Ca 2 InO 4 metal oxide nano heating material and graphene nano-heating materials, etc.
  • the aluminum oxide film is formed into an electric heating layer, including a fusion zone where the nano-heating material and alumina are fused, the fusion zone isolates the heating zone and the alumina film zone, and the thickness of the fusion zone is in the range of 0.01-10 ⁇ m.
  • the thickness of the region is in the range of 1-20 ⁇ m, and the thickness of the aluminum oxide film is in the range of 2-30 ⁇ m.
  • the curing and sintering temperature of the silver paste screen printing and sintering fixed on the electrothermal layer is 120-600°C.
  • the insulating material is sintered and fixed on the outside of the electrothermal layer by screen printing to form an electrical insulating layer.
  • the electrical insulating layer can be used to block the heating area and the external environment, which is more conducive to ensuring the safety of electricity use.
  • the insulating material is, for example, a non-metallic sinter-curable glass body or an organic coating material.
  • the negative temperature coefficient resistance material is sintered and fixed on the electrical insulating layer to form a sintered coating.
  • the sintered coating has NTC properties, and the temperature of the substrate and the fluid to be heated can be measured through the change of resistance to achieve a certain degree of temperature control. , used to ensure the temperature measurement of the metal heating body and improve the electrical safety of the metal heating body.
  • the metal heating body formed by the above-mentioned metal heating body manufacturing method may have a tubular structure, a plate structure or a sheet structure.
  • a stainless steel pipe with a pipe diameter of 30mm and a thickness of 3mm, and the stainless steel pipe is 304 food grade;
  • the electronic paste is fixed on the outer periphery of the stainless steel tube by screen printing and sintering at 700 ⁇ 50°C to form an insulating blank layer;
  • the mixed material containing LiO metal oxide nano-heating material and ZnO metal oxide nano-heating material is combined with the insulating material of part of the insulating blank layer by plasma plating at a high temperature of 400 ⁇ 50 ° C to form an electric heating layer, and the electric heating layer includes insulation.
  • Zone and heating zone the heating zone is formed by a mixture of LiO metal oxide nano-heating material and ZnO metal oxide nano-heating material, the insulating zone has a fusion zone, and the fusion zone is fused with LiO metal oxide nano-heating material, ZnO metal oxide
  • the thickness of the fusion area is 5 ⁇ m
  • the thickness of the heating area is 15 ⁇ m
  • the thickness of the insulating area is 35 ⁇ m.
  • the fusion area quickly transfers the heat from the heating area to the insulating area, and further It is transmitted to the metal substrate through the insulating area, so that the metal substrate is heated evenly, and it is not easy to deform and cause the electric heating layer to fall off and rupture.
  • the silver paste screen is printed and sintered at 250 ⁇ 50° C. to be fixed on the electric heating layer to form a silver electrode, thus forming a metal electric heating pipe that can be used for heating.
  • the prepared metal electric heating tube When the prepared metal electric heating tube is heated to 500°C, it is immediately cooled with 20°C water, the surface insulation area does not fall off, and a high voltage of 1500V is applied to the metal electric heating tube, the electric heating layer does not break down, does not fall off, and has stable performance.
  • a titanium tube with a diameter of 10mm and a thickness of 2mm;
  • the non-metallic sintered and solidified glass body is sintered and fixed on the outer periphery of the titanium tube at 800-850 ° C by screen printing to form an insulating blank layer;
  • the mixed material containing ZnO metal oxide nano-heating material, In 2 O 3 metal oxide nano-heating material and SnO 2 metal oxide nano-heating material was combined with part of the insulating blank layer by vacuum evaporation at a high temperature of 400 ⁇ 50°C.
  • the insulating materials are combined to form an electric heating layer, which includes an insulating area and a heating area.
  • the material is formed, the insulating area has a fusion area, and the fusion area is fused with ZnO metal oxide nano-heating material, In 2 O 3 metal oxide nano-heating material, SnO 2 metal oxide nano-heating material and insulating material, and the thickness of the fusion area is 3 ⁇ m, the thickness of the heating area is 8 ⁇ m, and the thickness of the insulating area is 30 ⁇ m.
  • the fusion area quickly transfers the heat from the heating area to the insulating area, and then transfers it to the metal substrate through the insulating area, so that the metal substrate is heated.
  • the heating is uniform, and it is not easy to deform and cause the heating layer to fall off and rupture;
  • the silver paste is screen-printed and sintered at 300-350° C. to be fixed on the electric heating layer to form a silver electrode, thus forming a metal electric heating tube that can be used for heating.
  • the prepared metal electric heating tube When the prepared metal electric heating tube is heated to 500°C, it is immediately cooled with 20°C water, the surface insulation area does not fall off, and a high voltage of 1500V is applied to the metal electric heating tube, the electric heating layer does not break down, does not fall off, and has stable performance.
  • an aluminum tube with a diameter of 10mm and a thickness of 1mm;
  • the aluminum tube is pretreated first, and the impurities attached to the surface of the aluminum substrate can be cleaned with tap water first, and then cleaned with deionized water to reduce the influence of the residual impurities on the surface of the aluminum substrate on the subsequent anodization.
  • the cleaned aluminum tube is anodized
  • anodizing treatment is carried out with a current of 0.5-2A/dm 2 density; an aluminum oxide film is formed on the surface of the aluminum tube;
  • the Ca 2 InO 4 metal oxide nano-heating material and the SnO 2 metal oxide nano-heating material are combined with part of the aluminum oxide of the aluminum oxide film by vacuum evaporation to form an electric heating layer, and the electric heating layer includes the aluminum oxide film area, fusion zone and heating zone, wherein the thickness of the aluminum oxide film zone is 15 ⁇ m, the thickness of the fusion zone is 8 ⁇ m, and the thickness of the heating zone is 10 ⁇ m.
  • the silver paste is screen-printed and sintered at 350-400° C. to be fixed on the electric heating layer; thus, an aluminum electric heating pipe is formed.
  • the prepared metal electric heating tube When the prepared metal electric heating tube is heated to 500°C, it is immediately cooled with 20°C water, the surface insulation area does not fall off, and the withstand voltage strength reaches 1500V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

本发明公开了一种金属加热体、金属加热装置及金属加热体的制造方法,包括金属基材和电热层,所述电热层具有加热区和绝缘区,所述绝缘区隔离所述加热区和所述金属基材,所述金属加热体具有至少两个电极层,所述至少两个电极层至少部分设置于所述加热区或者位于所述加热区两端。金属加热体的电热层具有加热区和绝缘区,由于绝缘区、加热区形成一层结构,结构稳定,使其可以在高低温冲击下,不容易脱落、龟裂,性能稳定。

Description

金属加热体、金属加热装置及金属加热体的制造方法
本申请要求于2020年08月18日提交中国专利局、申请号为2020108303510、发明名称为“金属加热体的制造方法”的中国专利申请的优先权,2020年08月18日提交中国专利局、申请号为2020108303328、发明名称为“金属加热体及金属加热装置”的中国专利申请的优先权,2020年08月18日提交中国专利局、申请号为2020108303563、发明名称为“金属加热体及金属加热装置”的中国专利申请的优先权,2020年08月18日提交中国专利局、申请号为2020108308872、发明名称为“金属加热体的制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电加热领域,尤其涉及一种金属加热体、金属加热装置及金属加热体的制造方法。
背景技术
一般的电加热产品有采用电阻丝加热方式或者膜加热方式。以电阻丝为加热方式的加热部件是用镁粉等密封填充于金属管内,通过加热管对流体进行加热。以膜加热方式的加热部件是将金属电阻膜印刷在加热部件上,在印刷金属电阻膜前需要先印刷一层绝缘层,而且金属电阻膜需要通过多次印刷烧结,多层印刷结构在多次冷热冲击后容易破裂剥离。
发明内容
本发明的目的在于提供一种耐高低温冲击、且结构稳定的金属加热体、金属加热装置及金属加热体的制造方法。
为实现上述目的,采用如下技术方案:一种金属加热体,包括金属基材和电热层,所述电热层与所述金属基材相固定,在远离所述金属基材的方向,所述电热层具有绝缘区和加热区,所述绝缘区与所述加热区为一体结构,所述绝缘区隔离所述加热区和所述金属基材,所述金属加热体还具有两个电极层,所述绝缘区的一部分位于所述电极层与所述金属基材之间,其中一个电极层的至少部分与所述加热区的一端电连接,另一个电极层的至少部分与所述加热区的另一端电连接。
为实现上述目的,采用如下技术方案:一种金属加热装置,包括固定架和根据上述技术方案所述的金属加热体,所述金属加热体为金属管,所述金属加热体固定于所述固定架,所述金属加热装置具有进口和出口,所述进口与所述出口与所述金属管内腔连通。
为实现上述目的,采用如下技术方案:
一种金属加热体的制造方法,包括:
提供一种金属基材;
将绝缘材料固定于所述金属基材,形成绝缘坯料层;
将纳米加热材料与部分所述绝缘坯料层的绝缘材料结合,形成电热层,所述电热层包括绝缘区和加热区;
将电极浆料材料固定于所述电热层,形成电极层。
为实现上述目的,采用如下技术方案:
一种金属加热体的制造方法,包括:
提供一种金属基材;
对金属基材进行阳极氧化处理,在金属基材表面形成金属氧化物薄膜区;
将纳米加热材料与部分所述金属氧化物薄膜的金属氧化物结合,形成电热层,所述电热层包括阳极氧化薄膜区和加热区;
将电极材料浆料固定于所述电热层,形成电极层。
上述技术方案的金属加热体包括金属基材和电热层,电热层与金属基材相固定,电热层具有加热区和绝缘区,加热区与绝缘区为一体结构,结构稳定,使其可以在高低温冲击下,不容易脱落、龟裂,性能稳定。
上述制造方法将纳米加热材料与部分所述绝缘坯料层的绝缘材料结合,形成电热层,电热层具有绝缘区和加热区;制得的金属加热体具有加热区和绝缘区,结构稳定,使其可以在高低温冲击下,不容易脱落、龟裂,性能稳定。
上述制造方法通过对金属基材进行阳极氧化处理,在金属基材表面形成金属氧化物薄膜区;将纳米加热材料与部分所述金属氧化物薄膜的金属氧化物结合,形成电热层,所述电热层包括阳极氧化薄膜区和加热区;制得的金属加热体具有加热区和阳极氧化薄膜区,结构稳定,使其可以在高低温冲击下,不容易脱落、龟裂,性能稳定。
附图说明
图1为本发明金属加热体的一种实施方式结构示意图;
图2为本发明金属加热体的一种实施方式的剖面示意图;
图3为本发明金属加热体的另一种实施方式的剖面示意图;
图4为本发明金属加热体的又一种实施方式的剖面示意图;
图5为现有膜加热管的结构示意图;
图6为现有膜加热片的结构示意图;
图7为本发明金属加热装置的一种实施方式的简略示意图。
图8为本发明一种金属加热体的制造方法的流程图;
图9为本发明金属加热体的另一种实施方式的剖面示意图;
图10为本发明金属加热体的又一种实施方式的剖面示意图;
图11为本发明金属加热体的又一种实施方式的剖面示意图;
图12为本发明另一种金属加热体的制造方法的流程图。
具体实施方式
参照图1-图4,图1示意出一种金属加热体的结构示意图,金属加热体包括金属基材1和电热层2,电热层2与金属基材1相固定,这两者相固定是指电热层附着在金属基材1上后不掉落保持两者为一个整体结构。
在远离所述金属基材的方向,电热层2具有加热区23和绝缘区21,绝缘区21和加热区23为一体结构,绝缘区21隔离加热区23和金属基材1,本文中,绝缘区21和加热区23为一体结构是指绝缘区21和加热区23为同一层的结构。其中,远离金属基材的方向是指以金属基材为中心向外辐射方向。
金属加热体还具有两个电极层3,绝缘区21的一部分位于电极层3与金属基材1之间,其中一个电极层3的至少部分与加热区23的一端电连接,另一个电极层3的至少部分与加热区的另一端电连接。当然在金属加热体以金属板或金属片等结构时,加热区23呈圆形或方形或其他不规则结构时,加热区的一端代表圆形或方形或其他不规则结构的某一个部位,加热区的另一端代表圆形或方形或其他不规则结构的另一个部位。电极层3也可以为3个或更多。
绝缘区21与加热区23的材料不同,绝缘区21包括融合区22,融合区22中融入有与加热区23的材料相同的材料。
电热层2的形成包括将绝缘材料优选通过丝网印刷固定于所述金属基材,形成绝缘坯料层,将纳米加热材料优选通过真空蒸镀或气相沉积或离子溅射或等离子镀等方式与部分绝缘坯料层的绝缘材料结合,形成电热层,电热层包括绝缘区21和加热区23。由于绝缘区21具有融合区22,融合区22里由于纳米加热材料与绝缘材料融合,使得绝缘区21、加热区23形成一层致密的结构,结构稳定,使其可以在高低温冲击下,不容易脱落、龟裂,性能稳定。
金属基材1可以为金属管或金属板或金属片等,金属基材1厚度为0.05-3毫米之间;电热层2以连续不间断的面覆盖金属基材1,加热区23也以连续不间断的面覆盖金属基材1,或者说加热区23以一片式覆盖所述金属基材1。本文中,一片式是指加热区23不分开,呈整片形式。由于加热区23以一片式覆盖金属基材1,在金属加热体被通电时,整个加热区23迅速加热,使得整片加热区23覆盖的金属基材1具有差不多的温度,一方面使得金属基材1对欲加热的流体可以实现均匀地加热,另一方面,均匀受热的加热区23对金属基材1的应力比较均匀,有助于金属基材1的抗裂、防变形。
具体的,当金属基材1为金属管时,电热层2可以连续不间断的面包覆在金属管外周,电热层2位于金属管中部区域,电热层2包覆区域占金属管表面积的60-90%。在电热层2位于金属管内表面时,电热层2包覆区域占金属管内表面积的60-90%,在电热层2位于金属管外表面时,电热层2包覆区域占金属管外表面积的60-90%。
当金属基材1为金属板或金属片时,电热层2可以连续不间断的面覆盖在金属板或金属片,电热层2位于金属管中部区域,电热层2包覆区域占金属管表面积的60-90%。
金属加热体的电阻系数为85%-95%,其中,电阻系数是指工作电阻与常温电阻之比值。例如,当金属加热体未工作时,电阻为R1,当金属加热体通电加热时,工作电阻为R2,电阻系数=R2/R1,金属加热体的电阻系数接近于1,能使金属加热体在加热时的加热效率较高,同时由于金属加热体在工作及常温下的电阻变化不大,也更易于金属加热体的温度控制。
金属加热体的加热区的功率密度可以在5-200W/cm 2范围内,功率密度是指功率与加热区面积的比值。功率密度范围很广,可适用于产品较多。当金属基材1为金属管时,金属管管径为6-80mm,金属管的加热功率可以为200-10000W,金属管的加热区功率密度为30-180W/cm 2。功率密度较高,使得加热区面积较小的情况下即可实现高功率,在能实现较高功率满足应用所需的情况下,金属加热体整体结构可以做的很小,结构小巧。
金属加热体的融合区22厚度在0.01-10μm范围内,加热区23厚度在1-30μm范围内,绝缘区21厚度在10-210μm范围内。虽然加热区23厚度在1-30μm范围,厚度非常小,但由于绝缘区21具有一个融合区22,且融合区22厚度在0.01-10μm范围,强力地保证了加热区23和绝缘区21之间的连接,使得电热层2结构稳定,不容易脱落、破裂。另外,也由于融合区22的存在,融合区22内纳米加热材料与绝缘材料融合,提升了绝缘区的金属导热性,可以使得绝缘区21厚度也较小,在10-210μm范围内,如此,电热层2厚度很薄,也有利于电热层2的均匀性。
金属基材包括不锈钢、铁、钛、钛合金、铝、铝合金等。
所述纳米加热材料例如包括TIO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的至少一种。
具体的,纳米加热材料例如包括TIO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的两种以上。例如,TIO金属氧化物纳米加热材料和Ca 2InO 4金属氧化物纳米加热材料,ZnO金属氧化物纳米加热材料和In 2O 3金属氧化物纳米加热材料,TIO金属氧化物纳米加热材料和LiO金属氧化物纳米加热材料,SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料和纳米银加热材料,SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料和石墨烯纳米加热材料等。
具体的,作为一种实施方式,绝缘区21包括非金属可烧结固化的玻璃体或者有机涂层材料或者电子浆料。
电热层2的电极层3是通过将银浆料丝网印刷烧结固定于电热层2,烧结温度为120-180℃。参照图3,电极层3可部分覆盖于加热区23,使得电极层 3与加热区23电连接较好。参照图2,电极层3也可以紧贴着加热区23,通过电极层3向加热区23供电。电极层3距离金属导电部件的距离要远于绝缘区21距离金属导电部位的距离,保证电气安全距离。
参照图4,金属加热体还可以包括电绝缘层4,电绝缘层4覆盖电极层3和加热区23。电绝缘层4是通过将绝缘材料利用丝网印刷烧结固定于加热区23而形成。
金属加热体还包括烧结涂层5,所述烧结涂层5由负温度系数电阻性能材料制成,所述烧结涂层5位于所述电绝缘层4,所述负温度系数电阻性能材料的烧结涂层5为NTC性能的烧结涂层5。
作为对比,图5和图6就是现有厚膜式加热膜的结构图,图5和图6示意出的加热部件具有基材1’、加热膜2’和电极3’,图5和图6中的加热膜2’是间隔分开设置。在设置有金属膜的区域加热温度高,在未设置有金属膜的区域加热温度低,如此容易使基材破裂,且流体加热的均匀性也较差。
这种厚膜式加热结构的绝缘层和加热膜是通过多次丝网印刷固化后形成,如此加热膜和绝缘层厚度较厚,绝缘层厚度在近100μm左右,由于加热膜和绝缘层是多次丝网印刷而形成的,加热膜受热后热量经绝缘层传递至基材,因绝缘层厚度较大,降低了传热效率,也影响了加热膜传递至基材的一致性,而且加热膜是间隔设置,更加影响传热效率,容易引起基材变形,加热膜脱落。
参照图7,图7示意出一种金属加热装置的简略结构示意图。金属加热装置包括金属加热体10、固定架13,金属加热体10为金属管,金属加热体10固定于固定架13,金属加热装置具有进口11和出口12,进口11与出口12与所述金属管内腔连通。金属加热装置可应用于各种即热需求的加热场所。
参照图8,金属加热体的制造方法,包括以下步骤:
提供一种金属基材;
将绝缘材料固定于所述金属基材,形成绝缘坯料层;
将纳米加热材料与部分所述绝缘坯料层的绝缘材料结合,形成电热层,所述电热层包括绝缘区和加热区;
将电极浆料材料固定于所述电热层,形成电极层。
所述绝缘区与所述加热区形成一体结构,所述绝缘区包括融合区,所述融合区融合有纳米加热材料。绝缘区具有融合区,由于融合区里纳米加热材料与绝缘材料融合,使得具有融合区的绝缘区和加热区形成一层致密的结构,结构稳定,使其可以在高低温冲击下,不容易脱落、龟裂,性能稳定。
将所述绝缘材料通过丝网印刷固定于所述金属基材的烧结温度为500-1000℃。在这个温度下,绝缘材料可以更为牢固地印刷在金属基材上。
绝缘材料例如为非金属可烧结固化的玻璃体或者有机涂层材料或者电子浆料。
所述纳米加热材料通过真空蒸镀或气相沉积或离子溅射或等离子镀方式 与部分所述绝缘坯料层的绝缘材料结合。所述纳米加热材料例如包括TIO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的至少一种。
具体的,纳米加热材料例如包括TIO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的两种以上。例如,TIO金属氧化物纳米加热材料和Ca 2InO 4金属氧化物纳米加热材料,ZnO金属氧化物纳米加热材料和In 2O 3金属氧化物纳米加热材料,TIO金属氧化物纳米加热材料和LiO金属氧化物纳米加热材料,SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料和纳米银加热材料,SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料和石墨烯纳米加热材料等。
所述电极材料浆料具体选自银浆料,所述固定的方式优选采用丝网印刷烧结,所述烧结的温度为120-500℃。
进一步,将绝缘材料通过丝网印刷烧结固定于所述电热层,形成电绝缘层。电绝缘层可用于阻隔加热区和外界环境,更利于保证用电安全。
将负温度系数电阻性能材料烧结固定于所述电绝缘层,形成烧结涂层,烧结涂层具有NTC性能,可以通过电阻的变化来测定基材和待加热流体的温度,实现一定程度的温度控制,用于确保金属加热体的温度测定,提升金属加热体的用电安全性。
参照图9-图11,图9示意出另一种金属加热体的结构示意图,金属加热体包括金属基材1和电热层2,电热层2包括阳极氧化薄膜区和加热区,所述阳极氧化薄膜区隔离所述加热区和所述金属基材,所述阳极氧化薄膜区和所述加热区为一体结构。
在本申请中,所述阳极氧化薄膜区与加热区的材料不同,则所述阳极氧化薄膜区还包括融合区,所述融合区中融入有与所述加热区的材料相同的材料。在本实施方式中,金属基材1为铝制基材1,电热层2与铝制基材1相固定,这两者相固定是指电热层附着在铝制基材1上后不掉落保持两者为一个整体结构。所述阳极氧化薄膜区具体为氧化铝薄膜区21和融合区22。
在远离所述铝制基材的方向,电热层2具有阳极氧化薄膜区和加热区23,阳极氧化薄膜区和加热区23为一体结构,阳极氧化薄膜区隔离加热区23和铝制基材1,本文中,阳极氧化薄膜区和加热区23为一体结构是指阳极氧化薄膜区和加热区23为同一层的结构。其中,远离铝制基材的方向是指以铝制基材为中心向外辐射方向。
本文中,铝制基材包括铝、铝合金等材料。
金属加热体还具有两个电极层3,氧化铝薄膜区21的一部分位于电极层3与铝制基材1之间,其中一个电极层3的至少部分与加热区23的一端电连接,另一个电极层3的至少部分与加热区的另一端电连接。当然在金属加热体以金属板或金属片等结构时,加热区23呈圆形或方形或其他不规则结构时,加热区的一端代表圆形或方形或其他不规则结构的某一个部位,加热区的另一端代表圆形或方形或其他不规则结构的另一个部位,即本文中的一端、另一端更倾向于是电流流动时的端部,电极层3也可以为3个或更多。
氧化铝薄膜区21的形成是通过对铝制基材进行阳极氧化处理,以在铝制基材表面形成氧化铝薄膜,氧化铝薄膜致密和连续不间断,然后将纳米材料通过真空蒸镀或气相沉积或离子溅射或等离子镀等方式覆盖于氧化铝薄膜,如此形成电热层2,电热层包括氧化铝薄膜区21和加热区。氧化铝薄膜区21以一片式连续不间断的面覆盖铝制基材,由于氧化铝的硬度高,氧化铝薄膜区21在金属加热体结构中起着铝制基材与融合区、加热区之间的电绝缘作用,保证金属加热体的用电安全。
由于融合区22里纳米材料与氧化铝融合,使得氧化铝薄膜区21、加热区23形成一层致密的结构,结构稳定,使其可以在高低温冲击下,不容易脱落、龟裂,性能稳定。
铝制基材1可以为铝管或铝板或铝片等,铝制基材1厚度为0.05-5毫米之间;加热区23以一片式连续不间断的面覆盖所述铝制基材1。本文中,一片式是指加热区23不分开,呈整片形式。由于加热区23以一片式覆盖铝制基材1,在金属加热体被通电时,整个加热区23迅速加热,使得整片加热区23覆盖的铝制基材1具有差不多的温度,一方面使得铝制基材1对欲加热的流体可以实现均匀地加热,另一方面,均匀受热的加热区23对铝制基材1的应力比较均匀,有助于铝制基材1的抗裂、防变形。
具体的,当铝制基材1为铝管时,加热区23可以连续不间断的面包覆在铝管外周,加热区23位于铝管中部区域,加热区23包覆区域占铝管表面积的60-90%。在加热区23位于铝管内表面时,加热区23包覆区域占铝管内表面积的60-90%,在电热层2位于铝管外表面时,加热区23包覆区域占铝管外表面积的60-90%。
当铝制基材1为铝板或铝片时,加热区23可以连续不间断的面覆盖在铝板或铝片,电热层2位于铝板或铝片中部区域,加热区23包覆区域占铝板或铝片表面积的60-90%。
金属加热体的加热区的电阻系数为85%-115%,其中,电阻系数是指工作电阻与常温电阻之比值。例如,当金属加热体未工作时,电阻为R1,当金属加热体通电加热时,工作电阻为R2,电阻系数=R2/R1,金属加热体的电阻系数接近于1,能使金属加热体在加热时的加热效率较高,同时由于金属加热体在工作及常温下的电阻变化不大,也更易于金属加热体的温度控制。
金属加热体的功率密度可以在1-150W/cm 2范围内,功率密度是指功率与加热区面积的比值。功率密度范围很广,可适用于产品较多。当铝制基材1为铝管时,铝管管径为6-80mm,铝管的加热功率可以为10-3000W,铝管的加热区的功率密度为1-100W/cm 2。功率密度较高,使得加热区面积较小的情况下即可实现高功率,在能实现较高功率满足应用所需的情况下,金属加热体整体结构可以做的很小,结构小巧。由于金属加热体具有铝制基材,铝制基材上固定的电热层具有氧化铝薄膜区和加热区,加热区的功率密度可以非常小,例如1-10W/cm 2时,这时可以通过电池等驱动。
金属加热体的融合区22厚度在0.01-10μm范围内,加热区23厚度在1-20μm范围内,阳极氧化薄膜区厚度在3-40μm范围内。虽然加热区23厚度在1-20μm范围,厚度非常小,但由于氧化铝薄膜区21具有一个融合区22,且融合区22厚度在0.01-10μm范围,强力地保证了加热区23和阳极氧化薄膜区之间的连接,使得加热区结构稳定,不容易脱落、破裂。另外,由于氧化铝薄膜区21是通过对铝制基材进行阳极氧化而形成的,厚度可以非常小,同时也由于融合区22的存在,融合区22内纳米材料与氧化铝融合,提升了阳极氧化薄膜区的金属导热性,更进一步使得阳极氧化薄膜区厚度较小,在3-40μm范围内,如此,电热层2厚度很薄,也有利于电热层2的均匀性。
具体的,作为一种实施方式,加热区23包括SnO 2金属氧化物纳米材料,氧化铝薄膜区21包括非金属可烧结固化的玻璃体或者有机涂层材料。
作为另一种实施方式,加热区23包括石墨烯纳米材料,所述氧化铝薄膜区21包括非金属可烧结固化的玻璃体或者有机涂层材料。
作为其他实施方式,加热区23可以包括TIO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的至少一种。例如,加热区23包括TIO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的两种以上,使得加热区的导电性更强。例如,TIO金属氧化物纳米加热材料和Ca 2InO 4金属氧化物纳米加热材料,ZnO金属氧化物纳米加热材料和In 2O 3金属氧化物纳米加热材料,TIO金属氧化物纳米加热材料和LiO金属氧化物纳米加热材料,SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料和纳米银加热材料,SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料和石墨烯纳米加热材料等。
电热层2的电极层3是通过将银浆料丝网印刷烧结固定于电热层,烧结温度为120-500℃。参照图10,电极层3可部分覆盖于加热区23,使得电极层3与加热区23电连接较好。参照图9,电极层3也可以紧贴着加热区23,通过 电极层3向加热区23供电。电极层3距离金属导电部件的距离要远于氧化铝薄膜区21距离金属导电部位的距离,保证电气安全距离。
参照图11,金属加热体还可以包括电绝缘层4,电绝缘层4覆盖电极层3和加热区23。电绝缘层4是通过将绝缘材料通过丝网印刷烧结固定于加热区23而形成。
金属加热体还包括烧结涂层5,所述烧结涂层5由负温度系数电阻性能材料制成,所述烧结涂层5位于所述电绝缘层4,所述负温度系数电阻性能材料的烧结涂层5为NTC性能的烧结涂层5。
参照图12,金属加热体的制造方法,包括以下步骤:
提供一种金属基材;所述金属基材具体选自铝制基材,所述铝制基材包括铝、铝合金材料,铝制基材包括铝管、铝板、铝片等形状;
对铝制基材进行阳极氧化处理,在铝制基材表面形成氧化铝薄膜;
将纳米加热材料和部分氧化铝薄膜的氧化铝结合,形成电热层,所述电热层包括氧化铝薄膜区、融合区和加热区;
将银浆料丝网印刷烧结固定于所述电热层,形成银电极。
通过对铝制基材进行阳极氧化形成氧化铝薄膜,氧化铝薄膜在铝制基材表面形成一层致密和连续不间断的薄膜,且氧化铝的硬度较高,将纳米加热材料与部分氧化铝薄膜的氧化铝结合时形成电热层,与纳米加热材料接触的氧化铝薄膜的氧化铝和纳米加热材料会形成融合区,使得氧化铝薄膜和纳米加热材料形成了一层电热层结构,电热层包括氧化铝薄膜区、融合区和加热区,使得金属加热体具有耐高低温冲击、结构稳定的性质。
另外,氧化铝薄膜区在金属加热体结构中还起着铝制基材与融合区、加热区之间的电绝缘作用,保证金属加热体的用电安全。
对铝制基材进行阳极氧化处理前,需要对铝制基材进行预处理;所述预处理包括以下步骤:
清洗铝制基材;可先用自来水清洗铝制基材表面附着杂质,然后用去离子水清洗,降低铝制基材表面残留的杂质对后续阳极氧化的影响。
对铝制基材进行碱蚀处理,如果铝制基材在外界环境中存放较久,铝制基材表面可能会有氧化物,所以在阳极氧化前需要先对其进行处理,将铝制基材金属面裸露出来。具体的,将铝制基材置于氢氧化钠或氢氧化钾溶液中浸泡一定时间。
例如,在50±10℃环境下,在氢氧化钠溶液中浸泡60秒。例如,在60±10℃环境下,在氢氧化钾溶液中浸泡50秒。
碱蚀处理后,用水清洗铝制基材,也可以先用自来水清洗,然后用去离子水进行二次冲洗。
在对基材表面进行碱蚀处理后,合金材料中的某些物质比如铁、锰、铜、镁等不溶于碱,会残留在工件表面,形成一层灰黑色的疏松物质,影响后续工 艺,需要去除,去除的方式可以采用手工擦除的方式,但是效率低、效果差,所以本方案中可以采用化学溶液法,可以使铝制基材表面呈现出具有金属光泽的结晶组织并使之充分活化,还可以与碱蚀后残余的碱液中和。
具体地,活化处理包括步骤:
将铝制基材在酸性溶液内浸泡预设时间;
具体的方案中,酸性溶液可以选用硝酸、硫酸、醋酸或磷酸等。
根据碱蚀处理后铝制基材表面的情况,可选用合适浓度的酸溶液及浸泡时长等。
浸泡后用自来水、去离子水清洗铝制基材。
具体的,先用自来水冲洗铝制基材,再用PH>6的自来水冲洗铝制基材,最后用PH>5的纯水清洗铝制基材一次以上。
在进行阳极氧化处理时,将金属基材浸泡在设定温度和设定浓度的酸溶液内,并通以设定密度的电流进行阳极氧化处理;
酸溶液可以为硫酸溶液或硫酸的混合溶液;设定温度在10-50℃范围内;电流的设定密度在0.5-2A/dm 2范围内。
具体的方案中,酸溶液可以包括硫酸和草酸的混合溶液,所述酸溶液中包括镍、铁金属盐;
阳极氧化后,需要对经过阳极氧化处理的金属基材进行清洗,先用自来水冲洗金属基材,再用PH>6的自来水冲洗金属基材,最后用PH>5的纯水清洗金属基材一次以上。
阳极氧化处理后,铝制基材表面形成有氧化铝薄膜,将其加热至150-800℃,将纳米加热材料通过真空蒸镀或气相沉积或离子溅射或等离子镀方式与部分氧化铝薄膜的氧化铝结合,纳米加热材料例如为TIO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的至少一种。
具体的,纳米加热材料例如包括TIO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的两种以上。例如,TIO金属氧化物纳米加热材料和Ca 2InO 4金属氧化物纳米加热材料,ZnO金属氧化物纳米加热材料和In 2O 3金属氧化物纳米加热材料,TIO金属氧化物纳米加热材料和LiO金属氧化物纳米加热材料,SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料和纳米银加热材料,SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料和石墨烯纳米加热材料等。
通过纳米加热材料的沉积,将氧化铝薄膜形成为电热层,包括纳米加热材 料与氧化铝融合的融合区,融合区隔离加热区和氧化铝薄膜区,融合区厚度在0.01-10μm范围内,加热区厚度在1-20μm范围内,氧化铝薄膜区厚度在2-30μm范围内。
将银浆料丝网印刷烧结固定于电热层的固化和烧结温度为120-600℃。银电极至少为两个,一个位于加热区一侧,并且与加热区电连接,另一个位于加热区另一侧,与加热区电连接。
进一步,将绝缘材料通过丝网印刷烧结固定于所述电热层外侧,形成电绝缘层。电绝缘层可用于阻隔加热区和外界环境,更利于保证用电安全。绝缘材料例如为非金属可烧结固化的玻璃体或者有机涂层材料。
将负温度系数电阻性能材料烧结固定于所述电绝缘层,形成烧结涂层,烧结涂层具有NTC性能,可以通过电阻的变化来测定基材和待加热流体的温度,实现一定程度的温度控制,用于确保金属加热体的温度测定,提升金属加热体的用电安全性。
通过上述金属加热体制造方法形成的金属加热体可以为管式结构、板式结构或片状结构。
为了进一步理解本发明,下面结合实施例对本发明提供的上述方案进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
提供一种管径为30mm,厚度为3mm的不锈钢管,不锈钢管为304食品级;
将电子浆料在700±50℃下通过丝网印刷烧结固定在不锈钢管外周,形成绝缘坯料层;
将含有LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料的混合材料在400±50℃高温下以等离子镀方式与部分绝缘坯料层的绝缘材料结合,形成电热层,该电热层包括绝缘区和加热区,加热区由LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料的混合材料形成,绝缘区具有融合区,融合区里融合有LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料和绝缘材料,融合区的厚度为5μm,加热区厚度为15μm,绝缘区厚度为35μm,在加热区通电加热的过程中,融合区快速将加热区热量传递至绝缘区,并进而通过绝缘区传递至金属基材,使得金属基材受热均匀,不容易变形引起电热层的脱落,破裂。
将银浆料丝网在250±50℃下印刷烧结固定于所述电热层,形成银电极,如此形成可用于加热的金属电热管。
将制得的金属电热管加热到500℃时,立即使用20℃水进行冷却,表面绝缘区不脱落,对该金属电热管施加1500V高压,电热层不击穿,不脱落,性能稳定。
实施例2
提供一种管径为10mm,厚度为2mm的钛管;
将非金属可烧结固化的玻璃体在800-850℃下通过丝网印刷烧结固定在钛管外周,形成绝缘坯料层;
将含有ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料的混合材料通过400±50℃高温下以真空蒸镀方式与部分绝缘坯料层的绝缘材料结合,形成电热层,该电热层包括绝缘区和加热区,加热区由ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料的混合材料形成,绝缘区具有融合区,融合区里融合有ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料和绝缘材料,融合区的厚度为3μm,加热区厚度为8μm,绝缘区厚度为30μm,在加热区通电加热的过程中,融合区快速将加热区热量传递至绝缘区,并进而通过绝缘区传递至金属基材,使得金属基材受热均匀,不容易变形引起电热层的脱落,破裂;
将银浆料在300-350℃下丝网印刷烧结固定于电热层,形成银电极,如此形成可用于加热的金属电热管。
将制得的金属电热管加热到500℃时,立即使用20℃水进行冷却,表面绝缘区不脱落,对该金属电热管施加1500V高压,电热层不击穿,不脱落,性能稳定。
实施例3
提供一种管径为10mm,厚度为1mm的铝管;
先对铝管进行预处理,可先用自来水清洗铝制基材表面附着杂质,然后用去离子水清洗,降低铝制基材表面残留的杂质对后续阳极氧化的影响。
对铝管碱蚀处理,将铝制基材置于50±10℃环境下,在氢氧化钠溶液中浸泡60秒。先用自来水清洗铝管,然后用去离子水进行二次冲洗;
对铝管活化处理,将铝管在浓度为30%的硝酸中浸泡30秒;
浸泡后先用自来水冲洗铝管,再用PH>6的自来水冲洗铝制基材,最后用PH>5的纯水清洗铝制基材一次以上;
将清洗后的铝管进行阳极氧化处理,
将清洗后的铝管浸泡在10-50℃范围内的硫酸与草酸的混合溶液中,酸溶液中包括镍、铁金属盐;
设定温度和设定浓度的酸溶液内,并通以0.5-2A/dm 2密度的电流进行阳极氧化处理;在铝管表面形成氧化铝薄膜;
阳极氧化后,需要对经过阳极氧化处理的铝管进行清洗,先用自来水冲洗铝管,再用PH>6的自来水冲洗,最后用PH>5的纯水清洗一次以上;
将形成有氧化铝薄膜的铝管加热至550-600℃;
将Ca 2InO 4金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料通过真空蒸镀方式与部分所述氧化铝薄膜的氧化铝结合,形成电热层,电热层包括 氧化铝薄膜区、融合区和加热区,其中氧化铝薄膜区厚度为15μm,融合区厚度为8μm,加热区厚度为10微米。
在350-400℃下将银浆料丝网印刷烧结固定于电热层;如此,形成铝制电热管。
将制得的金属电热管加热到500℃时,立即使用20℃水进行冷却,表面绝缘区不脱落,而且承受耐压强度达到1500V。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,例如对“前”、“后”、“左”、“右”、“上”、“下”等方向性的界定,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行相互组合、修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (36)

  1. 一种金属加热体,其特征在于,包括金属基材和电热层,所述电热层与所述金属基材相固定,在远离所述金属基材的方向,所述电热层具有绝缘区和加热区,所述绝缘区与所述加热区为一体结构,所述绝缘区隔离所述加热区和所述金属基材,所述金属加热体还具有两个电极层,所述绝缘区的一部分位于所述电极层与所述金属基材之间,其中一个电极层的至少部分与所述加热区的一端电连接,另一个电极层的至少部分与所述加热区的另一端电连接。
  2. 根据权利要求1所述的金属加热体,其特征在于,所述绝缘区与所述加热区的材料不同,所述绝缘区包括融合区,所述融合区中融入有与所述加热区的材料相同的材料。
  3. 根据权利要求1或2所述的金属加热体,其特征在于,所述金属基材包括金属管或金属板或金属片,所述金属基材厚度为0.05-3毫米之间;所述电热层以连续不间断的方式覆盖所述金属基材的表面,所述加热区以连续不间断的面覆盖所述金属基材。
  4. 根据权利要求1或2所述的金属加热体,其特征在于,所述金属加热体的加热区的电阻系数为85%-115%,所述电阻系数是指工作电阻与常温电阻之比值。
  5. 根据权利要求3所述的金属加热体,其特征在于,所述金属管管径为6-80mm,所述金属加热体的加热区的加热功率为200-10000W,所述金属加热体的加热区的功率密度为30-180W/cm 2
  6. 根据权利要求2所述的金属加热体,其特征在于,所述融合区厚度在0.01-10μm范围内,所述加热区厚度在1-30μm范围内,所述绝缘区厚度在10-210μm范围内。
  7. 根据权利要求1或2或5或6所述的金属加热体,其特征在于,所述加热区包括TIO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的至少一种;
    和/或所述绝缘区包括非金属可烧结固化的玻璃体或者有机涂层材料或者电子浆料;
    和/或所述金属加热体还包括电绝缘层,所述电绝缘层覆盖所述加热区;所述金属加热体还包括烧结涂层,所述烧结涂层由负温度系数电阻性能材料制成,所述烧结涂层位于所述电绝缘层,所述负温度系数电阻性能材料的烧结涂层为NTC性能的烧结涂层。
  8. 根据权利要求1或2或5或6所述的金属加热体,其特征在于,所述金属基材的材料为钛、钛合金、不锈钢、铁、铝、铝合金。
  9. 一种金属加热体,其特征在于,其特征在于,包括金属基材和电热层,所述电热层与所述金属基材相固定,在远离所述金属基材的方向,所述电热层包括阳极氧化薄膜区和加热区,所述阳极氧化薄膜区隔离所述加热区和所述金属基材,所述阳极氧化薄膜区和所述加热区为一体结构,所述金属加热体还具有两个电极层,所述阳极氧化薄膜区的一部分位于所述电极层与所述金属基材之间,其中一个电极层的至少部分与所述加热区的一端电连接,另一个电极层的至少部分与所述加热区的另一端电连接。
  10. 根据权利要求9所述的金属加热体,其特征在于,所述阳极氧化薄膜区与所述加热区的材料不同,所述阳极氧化薄膜区还包括融合区,所述融合区中融入有与所述加热区的材料相同的材料。
  11. 根据权利要求9所述的金属加热体,其特征在于,所述金属基材为铝制基材,所述阳极氧化薄膜区包括氧化铝薄膜区和融合区。
  12. 根据权利要求11所述的金属加热体,其特征在于,所述铝制基材包括铝管或铝板,所述铝制基材厚度为0.05-5毫米之间;所述电热层以连续不间断的面覆盖所述铝制基材,所述加热区以连续不间断的面覆盖所述铝制基材。
  13. 根据权利要求11或12所述的金属加热体,其特征在于,所述铝制基材为铝管,所述铝管管径为6-80mm,所述铝管的加热功率为10-5000W,所述铝管的加热区的功率密度为1-100W/cm 2
  14. 根据权利要求10或11或12所述的金属加热体,其特征在于,所述融合区厚度在0.01-10μm范围内,所述加热区厚度在1-20μm范围内,所述阳极氧化薄膜区厚度在3-40μm范围内。
  15. 一种金属加热装置,其特征在于,包括固定架和根据权利要求1-14中任一项所述的金属加热体,所述金属加热体为金属管,所述金属加热体固定于所述固定架,所述金属加热装置具有进口和出口,所述进口与所述出口与所述金属管内腔连通。
  16. 一种金属加热体的制造方法,其特征在于,包括:
    提供一种金属基材;
    将绝缘材料固定于所述金属基材,形成绝缘坯料层;
    将纳米加热材料与部分所述绝缘坯料层的绝缘材料结合,形成电热层,所述电热层包括绝缘区和加热区;
    将电极浆料材料固定于所述电热层,形成电极层。
  17. 根据权利要求16所述的制造方法,其特征在于,所述绝缘区与所述加热区形成一体结构,所述绝缘区包括融合区,所述融合区融合有所述纳米加热材料。
  18. 根据权利要求16所述的制造方法,其特征在于,将所述绝缘材料通过丝网印刷固定于所述金属基材的烧结温度为500-1000℃。
  19. 根据权利要求16所述的制造方法,其特征在于,所述纳米加热材料 通过真空蒸镀或气相沉积或离子溅射或等离子镀方式与部分所述绝缘坯料层的绝缘材料结合。
  20. 根据权利要求16-19中任一项所述的制造方法,其特征在于,所述融合区厚度在0.01-10μm范围内,所述加热区厚度在1-30μm范围内,所述绝缘区厚度在10-210μm范围内。
  21. 根据权利要求16-19中任一项所述的制造方法,其特征在于,所述将电极材料固定于所述电热层具体为:
    将银浆料丝网印刷烧结固定于所述电热层,所述烧结的温度为120-500℃。
  22. 根据权利要求16-19中任一项所述的制造方法,其特征在于,还包括步骤:将绝缘材料通过丝网印刷烧结固定于所述电热层,形成电绝缘层。
  23. 根据权利要求22所述的制造方法,其特征在于,将负温度系数电阻性能材料烧结固定于所述电绝缘层,形成烧结涂层。
  24. 根据权利要求16-19中任一项所述的制造方法,其特征在于,所述纳米加热材料包括TIO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的至少一种。
  25. 根据权利要求16-19中任一项所述的制造方法,其特征在于,将纳米加热材料以连续不间断地方式与部分所述绝缘坯料层的绝缘材料结合,形成呈连续不间断的面方式覆盖绝缘区的加热区。
  26. 一种金属加热体的制造方法,其特征在于,包括:
    提供一种金属基材;
    对金属基材进行阳极氧化处理,在金属基材表面形成金属氧化物薄膜区;
    将纳米加热材料与部分所述金属氧化物薄膜区的金属氧化物结合,形成电热层,所述电热层包括阳极氧化薄膜区和加热区;
    将电极材料浆料固定于所述电热层,形成电极层。
  27. 根据权利要求26所述的制造方法,其特征在于,所述阳极氧化薄膜区包括金属氧化物薄膜区和融合区。
  28. 根据权利要求26所述的制造方法,其特征在于,所述金属基材为铝制基材,所述阳极氧化薄膜区包括氧化铝薄膜区和融合区。
  29. 根据权利要求28所述的制造方法,其特征在于,对铝制基材进行阳极氧化处理前,需要对铝制基材进行预处理;所述预处理包括以下步骤:
    清洗铝制基材;
    在50±10℃环境下,将铝制基材置于氢氧化钠或氢氧化钾溶液中浸泡一定时间。
  30. 根据权利要求28所述的制造方法,其特征在于,还包括活化处理,包括以下步骤:
    将铝制基材从氢氧化钠或氢氧化钾溶液中取出,浸泡于硝酸、磷酸、硫酸、醋酸的酸性溶液中;
    用水清洗浸泡后的铝制基材。
  31. 根据权利要求26-30中任一项所述的制造方法,其特征在于,在进行阳极氧化处理时,将金属基材浸泡在设定温度和设定浓度的酸溶液内,并通以设定密度的电流进行阳极氧化处理;
    所述酸溶液为硫酸溶液或硫酸的混合溶液;
    所述设定温度在10-50℃范围内;
    所述电流的设定密度在0.5-2A/dm 2范围内。
  32. 根据权利要求31所述的制造方法,其特征在于,所述酸溶液包括硫酸和草酸的混合溶液,所述酸溶液中包括镍、铁金属盐;
    阳极氧化后,需要对经过阳极氧化处理的金属基材进行清洗,先用自来水冲洗金属基材,再用PH>6的自来水冲洗金属基材,最后用PH>5的纯水清洗金属基材一次以上。
  33. 根据权利要求28-30或32中任一项所述的制造方法,其特征在于,还包括以下步骤:
    将形成有金属氧化物薄膜的金属基材加热至150-800℃;
    将所述纳米加热材料通过真空蒸镀或气相沉积或离子溅射或等离子镀方式与部分所述金属氧化物薄膜的氧化物结合。
  34. 根据权利要求33所述的制造方法,其特征在于,
    所述融合区具有纳米加热材料,所述融合区厚度在0.01-10μm范围内,所述加热区厚度在1-20μm范围内,所述金属氧化物薄膜区厚度在2-30μm范围内。
  35. 根据权利要求26或27或28或29或30或32或34所述的制造方法,其特征在于,所述电极材料浆料固定于所述电热层的步骤具体为:
    将银浆料丝网印刷烧结固定于电热层;
    所述烧结的温度为120-600℃;
    和/或包括以下步骤:将绝缘材料通过丝网印刷烧结固定于所述电热层外侧,形成电绝缘层;将负温度系数电阻性能材料烧结固定于所述电绝缘层,形成烧结涂层。
  36. 根据权利要求26或27或28或29或30或32或34所述的制造方法,其特征在于,所述纳米加热材料包括TIO金属氧化物纳米加热材料、In 2O 3金属氧化物纳米加热材料、ZnO金属氧化物纳米加热材料、LiO金属氧化物纳米加热材料、SnO 2金属氧化物纳米加热材料、Ca 2InO 4金属氧化物纳米加热材料、石墨烯纳米加热材料、纳米银加热材料中的至少一种。
PCT/CN2021/113228 2020-08-18 2021-08-18 金属加热体、金属加热装置及金属加热体的制造方法 WO2022037605A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/021,122 US20230328846A1 (en) 2020-08-18 2021-08-18 Metal heating body, metal heating device, and metal heating body manufacturing method
CN202180050338.6A CN116195365A (zh) 2020-08-18 2021-08-18 金属加热体、金属加热装置及金属加热体的制造方法
EP21857697.3A EP4181625A1 (en) 2020-08-18 2021-08-18 Metal heating body, metal heating device, and metal heating body manufacturing method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010830351.0A CN111954320B (zh) 2020-08-18 2020-08-18 金属加热体的制造方法
CN202010830887.2A CN111962074A (zh) 2020-08-18 2020-08-18 金属加热体的制造方法
CN202010830351.0 2020-08-18
CN202010830356.3A CN111836413A (zh) 2020-08-18 2020-08-18 金属加热体及金属加热装置
CN202010830356.3 2020-08-18
CN202010830887.2 2020-08-18
CN202010830332.8A CN111836412A (zh) 2020-08-18 2020-08-18 金属加热体及金属加热装置
CN202010830332.8 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022037605A1 true WO2022037605A1 (zh) 2022-02-24

Family

ID=80322551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113228 WO2022037605A1 (zh) 2020-08-18 2021-08-18 金属加热体、金属加热装置及金属加热体的制造方法

Country Status (4)

Country Link
US (1) US20230328846A1 (zh)
EP (1) EP4181625A1 (zh)
CN (1) CN116195365A (zh)
WO (1) WO2022037605A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883229A (zh) * 2003-11-20 2006-12-20 皇家飞利浦电子股份有限公司 薄膜加热元件
CN109123805A (zh) * 2018-09-21 2019-01-04 深圳麦克韦尔股份有限公司 烘烤烟具及其金属基电加热件
US20190037644A1 (en) * 2017-07-31 2019-01-31 Samsung Electronics Co., Ltd. Structure, planar heater including the same, heating device including the planar heater, and method of preparing the structure
CN110381613A (zh) * 2019-07-16 2019-10-25 芜湖艾尔达科技有限责任公司 一种纳米面状电阻膜金属电热装置
CN111836413A (zh) * 2020-08-18 2020-10-27 芜湖艾尔达科技有限责任公司 金属加热体及金属加热装置
CN111836412A (zh) * 2020-08-18 2020-10-27 芜湖艾尔达科技有限责任公司 金属加热体及金属加热装置
CN111954320A (zh) * 2020-08-18 2020-11-17 芜湖艾尔达科技有限责任公司 金属加热体的制造方法
CN111962074A (zh) * 2020-08-18 2020-11-20 芜湖艾尔达科技有限责任公司 金属加热体的制造方法
CN212305683U (zh) * 2020-08-18 2021-01-05 芜湖艾尔达科技有限责任公司 金属加热体及金属加热装置
CN212936226U (zh) * 2020-08-18 2021-04-09 芜湖艾尔达科技有限责任公司 金属加热体及金属加热装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883229A (zh) * 2003-11-20 2006-12-20 皇家飞利浦电子股份有限公司 薄膜加热元件
US20190037644A1 (en) * 2017-07-31 2019-01-31 Samsung Electronics Co., Ltd. Structure, planar heater including the same, heating device including the planar heater, and method of preparing the structure
CN109123805A (zh) * 2018-09-21 2019-01-04 深圳麦克韦尔股份有限公司 烘烤烟具及其金属基电加热件
CN110381613A (zh) * 2019-07-16 2019-10-25 芜湖艾尔达科技有限责任公司 一种纳米面状电阻膜金属电热装置
CN111836413A (zh) * 2020-08-18 2020-10-27 芜湖艾尔达科技有限责任公司 金属加热体及金属加热装置
CN111836412A (zh) * 2020-08-18 2020-10-27 芜湖艾尔达科技有限责任公司 金属加热体及金属加热装置
CN111954320A (zh) * 2020-08-18 2020-11-17 芜湖艾尔达科技有限责任公司 金属加热体的制造方法
CN111962074A (zh) * 2020-08-18 2020-11-20 芜湖艾尔达科技有限责任公司 金属加热体的制造方法
CN212305683U (zh) * 2020-08-18 2021-01-05 芜湖艾尔达科技有限责任公司 金属加热体及金属加热装置
CN212936226U (zh) * 2020-08-18 2021-04-09 芜湖艾尔达科技有限责任公司 金属加热体及金属加热装置

Also Published As

Publication number Publication date
EP4181625A1 (en) 2023-05-17
US20230328846A1 (en) 2023-10-12
CN116195365A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN109137035B (zh) 一种铝基覆铜板的制备方法
JP2010018831A (ja) 受熱部材、及び、排気管放熱システム
WO2015071635A1 (en) Flexible electronic substrate
CN101521986A (zh) 金属基印刷电路板
TW200923129A (en) Method of coating metallic material
WO2022037605A1 (zh) 金属加热体、金属加热装置及金属加热体的制造方法
WO2008125010A1 (fr) Procédé de fabrication d'un substrat de circuit à conduction thermique élevée
CN111962074A (zh) 金属加热体的制造方法
WO2008125009A1 (fr) Substrat de circuit à conduction thermique élevée
CN101298674B (zh) 绝缘导热金属基板的制造方法
CN101509135B (zh) 钨铜合金热沉基片耐焊金属膜层的制作方法
CN212936226U (zh) 金属加热体及金属加热装置
TWI686361B (zh) 附膜玻璃板之製造方法
JPWO2005035829A1 (ja) 耐食アルミ導電性材料及びその製造方法
CN111836413A (zh) 金属加热体及金属加热装置
CN212305683U (zh) 金属加热体及金属加热装置
CN110340174A (zh) 一种电容器用钽铝复合板带的生产方法
US20040168927A1 (en) Electroconductive structure and electroplating method using the structure
CN111954320A (zh) 金属加热体的制造方法
CN111836412A (zh) 金属加热体及金属加热装置
CN103429009A (zh) 一种含金属铝层的印刷电路板制作方法
CN110863175A (zh) 金属掩膜板的表面处理方法
CN112466512A (zh) 一种无机包覆绝缘铜线及其制备方法
CN111591984A (zh) 一种基于派瑞林的石墨烯转移方法
JP2000049372A (ja) 太陽電池用絶縁基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021857697

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE