WO2022037563A1 - 一种光源、光传输方法和光注入锁定系统 - Google Patents

一种光源、光传输方法和光注入锁定系统 Download PDF

Info

Publication number
WO2022037563A1
WO2022037563A1 PCT/CN2021/112953 CN2021112953W WO2022037563A1 WO 2022037563 A1 WO2022037563 A1 WO 2022037563A1 CN 2021112953 W CN2021112953 W CN 2021112953W WO 2022037563 A1 WO2022037563 A1 WO 2022037563A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
continuous light
laser
continuous
output
Prior art date
Application number
PCT/CN2021/112953
Other languages
English (en)
French (fr)
Inventor
毛远峰
程远兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21857656.9A priority Critical patent/EP4192028A4/en
Publication of WO2022037563A1 publication Critical patent/WO2022037563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0035Construction using miscellaneous components, e.g. circulator, polarisation, acousto/thermo optical
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • the present application relates to the field of optical communications, and in particular, to a light source, an optical transmission method and an optical injection locking system.
  • the uplink transmission of the PON system may adopt a code division multiple access (Code Division Multiple Access, CDMA) method. That is, all optical network units (Optical Network Unit, ONU) simultaneously send uplink data to the optical line terminal (Optical Line Terminal, OLT), and different ONUs correspond to different CDMA codes.
  • CDMA Code Division Multiple Access
  • all ONUs should transmit signals of the same wavelength, which can be implemented by optical injection locking.
  • the continuous light emitted by the master laser in the OLT needs to be injected into the slave lasers in each ONU.
  • the polarization direction of the continuous light injected into the ONU may change due to environmental changes (such as the stress and temperature of the fiber).
  • the polarization direction of the injected continuous light is different from that of the continuous light emitted from the laser, and it is impossible to realize that the wavelength of the continuous light emitted from the laser is the same as that of the continuous light emitted by the main laser.
  • the embodiments of the present application provide a light source, an optical transmission method, and an optical injection locking system, which can realize that the wavelength of the output light of the laser is the same as the wavelength of the injected continuous light.
  • an embodiment of the present application provides a light source, including: a polarization conversion device, a laser, and a plurality of waveguides.
  • the polarization conversion device includes a first port, a second port and a third port. The first port and the second port are coupled to the laser through different waveguides.
  • a polarization conversion device is used to receive the injected continuous light through the third port. After that, the injected continuous light is converted into the first continuous light and the second continuous light. Further, the first continuous light is transmitted to the laser through the first port, and the second continuous light is transmitted to the laser through the second port.
  • the polarization direction of the first continuous light and the polarization direction of the second continuous light are the same as the polarization direction of the continuous light generated by the laser.
  • a laser is used to generate a first output light and a second output light based on the injected continuous light. Further, the first output light is transmitted to the polarization conversion device through the first port, and the second output light is transmitted to the polarization conversion device through the second port.
  • the wavelength of the first output light, the wavelength of the second output light and the wavelength of the injected continuous light are the same.
  • the polarization conversion device is further configured to combine the first output light and the second output light, and output the combined first output light and the second output light through the third port.
  • the wavelength of the output light of the laser and the wavelength of the injected continuous light can be the same.
  • both the first output light and the second output light generated by the laser are continuous light.
  • An implementation manner of the solution is provided, which makes the solution more practical.
  • both the first output light and the second output light are optical signals.
  • the light source also includes a phase shifter (Phase Shifter, PS).
  • One end of the PS is coupled to the laser through a waveguide, and the other end of the PS is coupled to the first port through a waveguide.
  • the PS is used to adjust the phase of the first output light, and transmit the phase-adjusted first output light to the polarization conversion device through the first port.
  • the phases of the combined first output light and the second output light are synchronized.
  • one end of the PS is coupled to the laser through a waveguide, and the other end of the PS is coupled to the second port through a waveguide.
  • the PS is used to adjust the phase of the second output light, and transmit the phase-adjusted second output light to the polarization conversion device through the second port.
  • the phases of the combined first output light and the second output light are synchronized.
  • the phase of any optical signal output by the laser can be adjusted by the PS, which ensures the phase synchronization of the two optical signals after the multiplexing.
  • the polarization conversion device may specifically be a Polarization Splitter and Rotator (PSR). This makes the scheme more achievable.
  • PSR Polarization Splitter and Rotator
  • the polarization conversion device includes a polarization beam splitter (Polarization Beam Splitter, PBS) and a polarization rotator (Polarization Rotator, PR).
  • the PBS includes a first port, a third port and a fourth port.
  • the PR includes a second port and a fifth port. The fourth port and the fifth port are coupled through the waveguide.
  • the PBS is used to convert the injected continuous light into the first continuous light and the third continuous light.
  • the first continuous light is transmitted to the laser through the first port
  • the third continuous light is transmitted to the PR through the second port.
  • the polarization direction of the first continuous light and the polarization direction of the third continuous light are orthogonal to each other.
  • the PR is used to convert the third continuous light into the second continuous light and transmit the second continuous light to the laser.
  • the PSR can be replaced by a combination of PBS and PR, which improves the scalability of the solution.
  • the laser includes a first end face and a second end face, the first continuous light is input into the laser from the first end face, and the second continuous light is input into the laser from the second end face. It should be understood that the light generated by the laser is output from both end faces of the laser. Then, the injected laser and the light and the light output from the laser can share the same set of waveguides, saving the number of required waveguides.
  • the polarization conversion device, the laser, and the plurality of waveguides share the same substrate.
  • the material of the substrate is a silicon-based semiconductor material.
  • the material of the plurality of waveguides includes at least one of silicon, silicon dioxide, or silicon nitride.
  • the material of the substrate is indium phosphide (InP).
  • the material of the plurality of waveguides includes at least one of InP, Indium Gallium Arsenide Phosphorus (InGaAsP), or Indium Gallium Aluminum Arsenide (InGaAlAs). It should be understood that the two sections of the waveguide for transmitting the first continuous light and the second continuous light can be physically connected to the two end faces of the laser.
  • the light source can be realized in the form of an integrated chip, which further improves the achievability of the solution.
  • the polarization conversion device and the plurality of waveguides share a first substrate, and the laser uses a second substrate.
  • the material of the first substrate is a silicon-based semiconductor material.
  • the material of the plurality of waveguides includes at least one of silicon, silicon dioxide, or silicon nitride.
  • the material of the second substrate is InP.
  • the material of the first substrate is InP.
  • the material of the plurality of waveguides includes at least one of InP, InGaAsP, or InGaAlAs.
  • the material of the second substrate is a silicon-based semiconductor material.
  • the two sections of waveguide for transmitting the first continuous light and the second continuous light cannot be physically connected with the two end faces of the laser 1, but are coupled together through air.
  • the polarization conversion device and the laser can be integrated into two independent chips.
  • the light source can be an integrated device in which the two chips are packaged together, which further improves the expansibility of the solution.
  • the injected continuous light is from the OLT and the light source is located in the ONU.
  • the light source can be specifically applied in a PON scenario, which improves the practicability of the solution.
  • the embodiments of the present application provide an optical transmission method.
  • the method includes the following steps. First, the injected continuous light is received. Next, the injected continuous light is converted into the first continuous light and the second continuous light, and the first continuous light and the second continuous light are transmitted to the laser through different waveguides.
  • the polarization direction of the first continuous light and the polarization direction of the second continuous light are the same as the polarization direction of the continuous light generated by the laser.
  • the first output light and the second output light generated by the laser according to the injected continuous light are combined, and the combined first output light and the second output light are output.
  • the wavelength of the first output light, the wavelength of the second output light and the wavelength of the injected continuous light are the same.
  • both the first output light and the second output light are continuous lights.
  • both the first output light and the second output light are optical signals.
  • the method further includes: performing phase adjustment on the first output light or the second output light, so that the phases of the combined first output light and the second output light are Synchronize.
  • converting the injected continuous light into the first continuous light and the second continuous light includes converting the injected continuous light into the first continuous light and the second continuous light through the PSR.
  • converting the continuous light to the first continuous light and the second continuous light includes converting the continuous light to the first continuous light and the third continuous light through the PBS. Wherein, the polarization direction of the first continuous light and the polarization direction of the third continuous light are orthogonal to each other. The third continuous light is converted into the second continuous light by PR.
  • the laser includes a first end face and a second end face.
  • the first continuous light is input into the laser from the first end face.
  • the second continuous light is input to the laser from the second end face.
  • the injected continuous light is from the OLT and the laser is located in the ONU.
  • the present application provides an optical injection locking system including a first light source and a second light source.
  • the first light source is used for emitting continuous light to the second light source.
  • the second light source is a light source as in any embodiment of the first aspect above.
  • the first light source is located in the optical line terminal OLT, and the second light source is located in the optical network unit ONU.
  • the polarization conversion device in the light source will convert the injected continuous light into the first continuous light and the second continuous light, and convert the first continuous light and the second continuous light
  • the light is transmitted to the laser in the light source through different waveguides.
  • the polarization direction of the first continuous light and the polarization direction of the second continuous light are the same as the polarization direction of the continuous light generated by the laser. Therefore, the wavelength of the output light of the laser and the wavelength of the injected continuous light can be the same.
  • 1 is a schematic diagram of an application scenario of the optical injection locking system in the application
  • FIG. 2 is a schematic diagram of another application scenario of the optical injection locking system in the application.
  • FIG. 3 is a schematic diagram of the first embodiment of the light source in the application.
  • Figure 4(a) is a schematic diagram of two optical signals with inconsistent phases
  • Fig. 4(b) is a schematic diagram of the phase of the two optical signals being consistent
  • FIG. 5 is a schematic diagram of a second embodiment of the light source in the application.
  • FIG. 6 is a schematic diagram of a third embodiment of the light source in the application.
  • FIG. 7 is a schematic diagram of a fourth embodiment of the light source in the application.
  • FIG. 10 is a schematic diagram of an embodiment of the optical transmission method in the present application.
  • the embodiments of the present application provide a light source, an optical transmission method, and an optical injection locking system, which can realize that the wavelength of the output light of the laser is the same as the wavelength of the injected continuous light.
  • the terms “first”, “second”, “third” and “fourth” in the description and claims of the present application and the drawings are used to distinguish similar objects, rather than limit specific ones. order or sequence. It is to be understood that the above terms are interchangeable under appropriate circumstances so that the embodiments described herein can be practiced in sequences other than those described herein.
  • the terms “comprising” and “having”, and any variations thereof, are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those steps or units expressly listed, but may include steps or units not expressly listed or for such process, method, product or Other steps or units inherent to the device.
  • the light source provided in this application is mainly applied to an optical injection locking system, and the optical injection locking system in this application is first introduced below.
  • FIG. 1 is a schematic diagram of an application scenario of the optical injection locked system in the present application.
  • the light injection locking system includes a first light source 1 and a second light source 2 .
  • the continuous light emitted by the first light source 1 will be injected into the second light source 2, and the wavelength of the continuous light emitted by the second light source 2 can be the same as the wavelength of the continuous light emitted by the first light source 1 by using the optical injection locking technology.
  • An isolator or a circulator may also be arranged between the first light source 1 and the second light source 2 to ensure that the light emitted by the first light source 1 can be injected into the second light source 2 in one direction.
  • the first light source 1 is generally referred to as a master laser
  • the second light source 2 is generally referred to as a slave laser.
  • FIG. 2 is a schematic diagram of another application scenario of the optical injection locking system in the present application.
  • the optical injection locking system can be applied in a passive optical network (Passive Optical Network, PON) scenario.
  • the continuous light emitted by the optical line terminal (Optical Line Terminal, OLT) 10 is transmitted to each optical network unit (Optical Network Unit, ONU) through the splitter 20 .
  • the OLT is provided with a first light source 1 .
  • a second light source 2 is provided in each ONU (31, 32 and 33 as shown in FIG. 2).
  • the uplink transmission in the PON scenario may adopt the CDMA mode, that is, each ONU sends uplink data to the OLT at the same time, and different ONUs correspond to different CDMA codes.
  • each ONU can be made to transmit signals of the same wavelength through the optical injection locking technology.
  • the above-mentioned optical injection locking system can also be applied to other scenarios except PON, which is not specifically limited in this application.
  • PON which is not specifically limited in this application.
  • it can also be applied to a scheme of increasing the modulation bandwidth of the second light source.
  • it can also be applied to a scheme of reducing the chirp of the second light source, or the like.
  • the wavelength of the continuous light emitted by the second light source is the same as the wavelength of the continuous light emitted by the first light source, it is necessary to ensure that the polarization direction of the continuous light injected into the second light source is the same as that of the continuous light generated by the second light source.
  • the polarization directions are the same.
  • the polarization direction of the continuous light injected into the second light source may be changed due to the influence of the environment.
  • the present application provides a light source, so that the polarization direction of the continuous light injected into the local laser of the light source is the same as the polarization direction of the continuous light generated by the local laser.
  • the light source provided in the present application is the above-mentioned second light source, and the continuous light injected into the second light source comes from the above-mentioned first light source.
  • FIG. 3 is a schematic diagram of the first embodiment of the light source in the application.
  • the light source includes a polarization conversion device 101 and a laser 102 .
  • the polarization conversion device 101 includes a port 101a, a port 101b and a port 101c. Among them, the port 101c is used to receive the injected continuous light.
  • Port 101a and port 101b are coupled to laser 102 through different waveguides.
  • the polarization conversion device 101 is used to convert the injected continuous light into the first continuous light and the second continuous light.
  • the first continuous light is output from the port 101a and transmitted to the laser 102 through the waveguide.
  • the second continuous light is output from port 101b and transmitted to laser 102 through the waveguide. Specifically, the first continuous light and the second continuous light are injected from two different end faces of the laser 102, respectively.
  • the polarization direction of the continuous light generated by the laser 102 is set.
  • the injected continuous light can be of any polarization direction.
  • the injected continuous light can be understood as a combination of two continuous lights whose polarization directions are orthogonal to each other according to a certain ratio.
  • the polarization conversion device 101 can divide the injected continuous light into two paths.
  • the polarization direction of one of the continuous lights is the same as the polarization direction of the continuous light generated by the laser 102 , that is, the first continuous light.
  • the polarization direction of the other continuous light is orthogonal to the polarization direction of the continuous light generated by the laser 102 .
  • the polarization conversion device 101 then adjusts the polarization direction of the other continuous light to be the same as the polarization direction of the continuous light generated by the laser 102, thereby obtaining the second continuous light.
  • the laser 102 produces Transverse Electric (TE) polarized light.
  • the injected continuous light is composed of TE polarized light and Transverse Magnetic (TM) polarized light in a certain proportion.
  • the polarization changing device 101 converts the injected continuous light into two paths of TE polarized light, wherein one path of TE polarized light is output from port 101a, and the other path of TE polarized light is output from port 101b. It can be understood that, if the laser 102 generates TM polarized light, the polarization conversion device can also convert the injected continuous light into two channels of TM polarized light.
  • the laser 102 is used to generate a first output light and a second output light according to the injected continuous light.
  • the first output light and the second output light are respectively emitted from two end faces of the laser 102 .
  • Transmission of the first output light through the waveguide is input to the polarization conversion device 101 from the port 101a.
  • Transmission of the second output light through the waveguide is input to the polarization conversion device 101 from the port 101b.
  • the polarization conversion device 101 is further configured to combine the first output light and the second output light, and output the combined continuous light through the port 101c. It should be noted that, before the polarization conversion device 101 combines the first output light and the second output light, the polarization direction of the first output light or the second output light can also be adjusted. In order to form the continuous light of mixed polarization after wave combination. It should be understood that the wavelength of the first output light, the wavelength of the second output light and the wavelength of the injected continuous light are the same.
  • a controller 103 is further provided at the periphery of the light source, for adjusting the power and wavelength of the continuous light output by the laser 102 according to the power and wavelength of the injected continuous light.
  • the ratio of the power of the injected continuous light to the power of the continuous light generated by the laser 102 is greater than a preset value, and the difference between the wavelength of the injected continuous light and the wavelength of the continuous light generated by the laser 102 is within a preset range.
  • the controller 103 can be observed by a spectrometer whether the wavelength of the continuous light generated by the laser is the same as the wavelength of the first continuous light or the wavelength of the second continuous light. If they are different, the controller 103 continues to adjust the power and wavelength of the continuous light output by the laser 102 until wavelength locking is achieved. It should be noted that the controller 103 may specifically be an electric chip or a thermoelectric cooler (Thermoelectric Cooler, TEC). The TEC adjusts the power and wavelength of the output light of the laser 102 by changing the temperature of the laser 102. The electrical chip adjusts the power and wavelength of the output light of the laser 102 by changing the current applied to the laser 102 .
  • Thermoelectric Cooler TEC
  • the TEC adjusts the power and wavelength of the output light of the laser 102 by changing the temperature of the laser 102.
  • the electrical chip adjusts the power and wavelength of the output light of the laser 102 by changing the current applied to the laser 102 .
  • the electrical chip loads the laser 102 with direct current, the first output light and the second output light generated by the laser are both continuous light.
  • the electrical chip loads the electrical signal on the laser 102
  • the first output light and the second output light generated by the laser are both optical signals.
  • the problem of phase inconsistency may occur.
  • FIG. 4(a) is a schematic diagram showing that the phases of the two optical signals are inconsistent.
  • FIG. 4( b ) is a schematic diagram showing that the phases of the two optical signals are consistent.
  • phase shifter Phase Shifter, PS
  • PS Phase Shifter
  • FIG. 5 is a schematic diagram of a second embodiment of the light source in the present application.
  • the light source also includes a phase adjuster 104 .
  • One end of the phase adjuster 104 is coupled to the port 101a through a waveguide, and the other end of the phase adjuster 104 is coupled to the laser 102 through a waveguide.
  • the phase adjuster 104 is used to adjust the phase of the first optical signal (first output light) output by the laser 102 .
  • the phase-adjusted first optical signal is input to the polarization conversion device 101 through the port 101a.
  • the second optical signal (second output light) output from the laser 102 is input to the polarization conversion device 101 through the port 101b.
  • the combined wave signal output by the polarization conversion device 101 can be observed through an oscilloscope, and the offset of the phase adjuster 104 can be pre-calibrated according to the actual observation result. In order to ensure the phase synchronization of the first optical signal and the second optical signal after being combined by the polarization conversion device 101 .
  • the above-mentioned phase adjuster 104 may specifically be a thermal phase shifter (Heater).
  • the phase of the optical signal is adjusted by changing the voltage applied to the thermal phase shifter.
  • the phase adjuster can also be a PN junction waveguide region.
  • the phase of the optical signal is adjusted by changing the injected current or voltage in the waveguide region.
  • phase adjuster 104 may also be disposed on the transmission path of another optical signal.
  • one end of the phase adjuster 104 is coupled to the port 101b through a waveguide, and the other end is coupled to the laser 102 through a waveguide.
  • phase adjusters may also be provided on the transmission paths of the two optical signals output by the laser 102 . If one of the phase regulators fails, the normal operation of the light source can still be guaranteed. It should be understood that the above-mentioned optional embodiments are all transformations based on the structure shown in FIG. 5 , and the accompanying drawings are not provided here.
  • the polarization conversion device 101 may specifically be a polarization splitter and rotator (Polarization Splitter and Rotator, PSR).
  • PSR Polarization Splitter and Rotator
  • the second type, the polarization conversion device 101 includes a polarization beam splitter (Polarization Beam Splitter, PBS) and a polarization rotator (Polarization Rotator, PR). A detailed description will be given below with reference to FIG. 6 .
  • FIG. 6 is a schematic diagram of a third embodiment of the light source in the present application.
  • Port 105c of polarizing beam splitter 105 is used to receive the injected continuous light.
  • the polarizing beam splitter 105 is used to convert the injected continuous light into the first continuous light and the third continuous light. Wherein, the polarization direction of the first continuous light and the polarization direction of the third continuous light are orthogonal to each other.
  • the first continuous light is output from the port 105a of the polarizing beam splitter 105 and transmitted to the laser 102 through the waveguide.
  • the third continuous light is output from port 105b of polarization beam splitter 105, and is input to polarization rotator 106 from port 106a by transmission through the waveguide.
  • the polarization rotator 106 is used to adjust the polarization direction of the third continuous light, so that the polarization direction of the second continuous light obtained by converting the third continuous light is the same as the polarization direction of the first continuous light.
  • the second continuous light is output from port 106b of polarization rotator 106 and transmitted to laser 102 through the waveguide.
  • FIG. 7 is a schematic diagram of a fourth embodiment of the light source in the present application.
  • the light source may further include a phase adjuster 104 , a wave combining device 107 , a beam splitter 108 and a photodetector (PD) 109 .
  • One end of the phase adjuster 104 is coupled to the port 101a through a waveguide, and the other end of the phase adjuster 104 is coupled to an input port of the wave combining device 107 through a waveguide.
  • the other input port of the multiplexing device 107 is coupled to the port 101b of the polarization conversion device 101 through a waveguide.
  • the output port of the multiplexer 107 is coupled with the input port of the optical splitter 108 through a waveguide.
  • One output port of the optical splitter 108 is coupled to the laser 102 through a waveguide.
  • the other output port of the optical splitter 108 is coupled to the photodetector 109 through a waveguide.
  • the wave combining device 107 is used to combine the first continuous light and the second continuous light, and transmit the combined continuous light to the optical splitter 108 .
  • the optical splitter 108 is used for splitting the combined continuous light; one of the continuous lights is input to the laser 102 , and the other continuous light is input to the photodetector 109 . It should be noted that, after the first continuous light and the second continuous light are combined, extinction may occur due to interference. Therefore, it is necessary to determine whether extinction occurs according to the detection result of the photodetector 109 . Specifically, if the detection result of the photodetector 109 is 0, it means that extinction occurs. Then, the phase of the first continuous light needs to be adjusted by the phase adjuster 104 . In order to ensure that the first continuous light and the second continuous light will not be extinguished after being combined, it is ensured that continuous light can be injected into the laser 102 .
  • phase adjuster 104 may also be disposed on the transmission path of another optical signal.
  • one end of the phase adjuster 104 is coupled to the port 101b through a waveguide, and the other end of the phase adjuster 104 is coupled to another input port of the multiplexer 107 through a waveguide.
  • the polarization conversion device 101 and the laser 102 may use the same substrate, or may use different substrates. They are introduced separately below.
  • FIG. 8 is a schematic cross-sectional view of the light source in the application.
  • the polarization conversion device 101 , the laser 102 and the waveguide 110 are all grown on the substrate 111 . That is, the light source is an integrally formed structure including the substrate.
  • the laser 102 needs to be fabricated based on the substrate 111 .
  • the polarization conversion device 101 can be further processed on the substrate 111 of the laser 102 .
  • the laser 102 is not limited to the part grown on the substrate 111 , and the substrate 111 is also a component of the laser 102 .
  • the polarization conversion device 101 is not limited to the part grown on the substrate 111 , and the substrate 111 is also a component of the polarization conversion device 101 .
  • the waveguide 110 includes two sections of waveguide as shown in FIG. 3 above. Specifically, the two sections of the waveguide can be physically connected to the two end faces of the laser 102 . Based on the structure shown in FIG. 8 , the light source in this application can be implemented in the form of an integrated chip.
  • FIG. 9 is another schematic cross-sectional view of the light source in the application.
  • the polarization conversion device 101 and the waveguide 110 are grown on the substrate 112 .
  • Laser 102 is grown on substrate 113 .
  • the laser 102 is not limited to the part grown on the substrate 113 , and the substrate 113 is also a component of the laser 102 .
  • the polarization conversion device 101 is not limited to the part grown on the substrate 112 , and the substrate 112 is also a component of the polarization conversion device 101 .
  • the waveguide 110 includes two sections of waveguide as shown in FIG. 3 above.
  • the two sections of waveguide cannot be physically connected to the two end faces of the laser 102, but are coupled together through air.
  • the polarization conversion device 101 and the laser 102 in this application can be integrated into two independent chips, respectively.
  • the light source in this application may be an integrated device that packages the two chips together.
  • the material of the substrate shown in FIGS. 8 and 9 above may be a silicon-based semiconductor material or indium phosphide (InP).
  • the material of the waveguide grown on the substrate may include at least one of silicon, silicon dioxide or silicon nitride.
  • the substrate is an InP material
  • the material of the waveguide grown on the substrate may include at least one of InP, Indium Gallium Arsenide Phosphorus (InGaAsP) or Indium Gallium Aluminum Arsenide (InGaAlAs).
  • the above-mentioned laser 102 may be a silicon-based laser or a III-V group material laser.
  • the substrate material that can be used for the silicon-based laser is a silicon-based semiconductor material.
  • the substrate material that the III-V material laser can use is InP.
  • the laser of group III-V material can also be bonded to the substrate of silicon-based semiconductor material, which is not specifically limited here.
  • the polarization conversion device in the light source will convert the injected continuous light into the first continuous light and the second continuous light, and transmit the first continuous light and the second continuous light to the light source through different waveguides. laser.
  • the polarization direction of the first continuous light and the polarization direction of the second continuous light are the same as the polarization direction of the continuous light generated by the laser. Therefore, the wavelength of the output light of the laser and the wavelength of the injected continuous light can be the same.
  • the light transmission method combined with the light source is introduced below. It should be noted that the structure of the device corresponding to the optical transmission method may be as described in the foregoing device embodiments. However, it is not limited to the light sources described above.
  • FIG. 10 is a schematic diagram of an embodiment of the optical transmission method in the present application.
  • the optical transmission method includes the following steps.
  • the injected continuous light comes from the first light source as shown in FIG. 1 or FIG. 2 .
  • the second light source shown in Figure 1 or Figure 2 is used to receive the injected continuous light.
  • the injected continuous light can be in any polarization direction.
  • the polarization directions of the converted first continuous light and the second continuous light are the same as the polarization directions of the continuous light generated by the local laser.
  • the first continuous light and the second continuous light are respectively injected from two different end faces of the laser.
  • the power and wavelength of the continuous light output by the laser can be adjusted according to the power and wavelength of the injected continuous light. so that the wavelength of the first output light, the wavelength of the second output light and the wavelength of the injected continuous light are the same.
  • the first output light and the second output light are respectively output from two different end faces of the laser.
  • the first output light and the second output light generated by the laser are both continuous light.
  • the first output light and the second output light generated by the laser are both optical signals.
  • a phase inconsistency problem may occur.
  • the phase of the first optical signal or the second optical signal may also be adjusted, so that the phases of the combined first optical signal and the second optical signal are Synchronize.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光源、光传输方法和光注入锁定系统,可以实现激光器的输出光的波长和注入的连续光的波长相同。该光源包括:偏振转换装置、激光器和多个波导。偏振转换装置用于将注入的连续光转换为第一连续光和第二连续光,并通过不同的波导传输至激光器。其中,第一连续光的偏振方向、第二连续光的偏振方向与激光器产生的连续光的偏振方向相同。激光器用于根据注入的连续光产生第一输出光和第二输出光,并将第一输出光和第二输出光传输至偏振转换装置。其中,第一输出光的波长、第二输出光的波长和注入的连续光的波长相同。偏振转换装置还用于对第一输出光和第二输出光进行合波并输出。

Description

一种光源、光传输方法和光注入锁定系统
本申请要求于2020年8月21日提交中国国家知识产权局、申请号为202010849185.9、申请名称为“一种光源、光传输方法和光注入锁定系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种光源、光传输方法和光注入锁定系统。
背景技术
随着光通信技术的迅猛发展,无源光网络(Passive Optical Network,PON)系统在光通信技术中的应用越来越广。其中,PON系统的上行传输可以采用码分多址(Code Division Multiple Access,CDMA)的方式。即所有光网络单元(Optical Network Unit,ONU)同时向光线路终端(Optical Line Terminal,OLT)发送上行数据,不同的ONU对应的CDMA编码不同。
为了避免OLT接收各ONU发射的信号时出现干扰,所有ONU应当发射相同波长的信号,具体可以通过光注入锁定的方式实现。需要将OLT中的主激光器发射的连续光注入各ONU中的从激光器。然而,主激光器发射的连续光经过光纤的传输后,可能会由于环境变化(如光纤的应力和温度等)使得注入ONU的连续光的偏振方向发生变化。导致注入的连续光的偏振方向和从激光器发射的连续光的偏振方向不同,无法实现从激光器发射的连续光的波长和主激光器发射的连续光的波长相同。
发明内容
本申请实施例提供了一种光源、光传输方法和光注入锁定系统,可以实现激光器的输出光的波长和注入的连续光的波长相同。
第一方面,本申请实施例提供了一种光源,包括:偏振转换装置、激光器和多个波导。偏振转换装置包括第一端口、第二端口和第三端口。第一端口和第二端口通过不同的波导与激光器耦合。偏振转换装置用于通过第三端口接收注入的连续光。之后,将注入的连续光转换为第一连续光和第二连续光。进而,通过第一端口将第一连续光传输至激光器,通过第二端口将第二连续光传输至激光器。其中,第一连续光的偏振方向、第二连续光的偏振方向与激光器产生的连续光的偏振方向相同。激光器用于根据注入的连续光产生第一输出光和第二输出光。进而,将第一输出光通过第一端口传输至偏振转换装置,将第二输出光通过第二端口传输至偏振转换装置。其中,第一输出光的波长、第二输出光的波长和注入的连续光的波长相同。偏振转换装置还用于对第一输出光和第二输出光进行合波,并通过第三端口输出合波后的第一输出光和第二输出光。
在该实施方式中,由于第一连续光和第二连续光的偏振方向与激光器产生的连续光的偏振方向相同。因此可以实现激光器的输出光的波长和注入的连续光的波长相同。
在一些可能的实施方式中,激光器产生的第一输出光和第二输出光均为连续光。提供了本方案的一种实现方式,使得本方案更具有实用性。
在一些可能的实施方式中,第一输出光和第二输出光均为光信号。光源还包括相位调节器(Phase Shifter,PS)。PS的一端通过波导与激光器耦合,PS的另一端通过波导与第一端口耦合。PS用于对第一输出光进行相位调节,并将相位调节后的第一输出光通过第一端口传输至偏振转换装置。以使得合波后的第一输出光和第二输出光的相位同步。或者,PS的一端通过波导与激光器耦合,PS的另一端通过波导与第二端口耦合。PS用于对第二输出光进行相位调节,并将相位调节后的第二输出光通过第二端口传输至偏振转换装置。以使得合波后的第一输出光和第二输出光的相位同步。
在该实施方式中,可以通过PS对激光器输出的任意一路光信号的相位进行调节,保证了合波后的两路光信号的相位同步。
在一些可能的实施方式中,偏振转换装置具体可以是偏振分束旋转器(Polarization Splitter and Rotator,PSR)。使得本方案更具有可实现性。
在一些可能的实施方式中,偏振转换装置包括偏振分束器(Polarization Beam Splitter,PBS)和偏振旋转器(Polarization Rotator,PR)。PBS包括第一端口、第三端口和第四端口。PR包括第二端口和第五端口。第四端口和第五端口通过波导耦合。PBS用于将注入的连续光转换为第一连续光和第三连续光。进而,通过第一端口将第一连续光传输至激光器,通过第二端口将第三连续光传输至PR。其中,第一连续光的偏振方向和第三连续光的偏振方向相互正交。PR用于将第三连续光转换为第二连续光,并将第二连续光传输至激光器。
在该实施方式中,可以通过PBS和PR的组合代替PSR,提高了本方案的扩展性。
在一些可能的实施方式中,激光器包括第一端面和第二端面,第一连续光从第一端面输入激光器,第二连续光从第二端面输入激光器。应理解,激光器产生的光是从激光器的两个端面输出。那么,注入激光器和光和激光器输出的光可以共用同一组波导,节省了所需波导的数量。
在一些可能的实施方式中,偏振转换装置、激光器、多个波导共用同一衬底。衬底的材料为硅基半导体材料。多个波导的材料包括硅、二氧化硅或氮化硅中的至少一种。或者,衬底的材料为磷化铟(InP)。多个波导的材料包括InP、铟镓砷磷(InGaAsP)或铟镓铝砷(InGaAlAs)中的至少一种。应理解,用于传输第一连续光和第二连续光的两段波导可以与激光器的两个端面实现物理连接。该光源可以通过集成芯片的形式实现,进一步提高了本方案的可实现性。
在一些可能的实施方式中,偏振转换装置和多个波导共用第一衬底,激光器采用第二衬底。第一衬底的材料为硅基半导体材料。多个波导的材料包括硅、二氧化硅或氮化硅中的至少一种。第二衬底的材料为InP。或者,第一衬底的材料为InP。多个波导的材料包括InP、InGaAsP或InGaAlAs中的至少一种。第二衬底的材料为硅基半导体材料。应理解,用于传输第一连续光和第二连续光的两段波导不能与激光器1的两个端面实现物理连接,而是通过空气耦合在一起。偏振转换装置和激光器可以分别集成为相互独立的两个芯片。该光源可以是将这两个芯片封装在一起的集成器件,进一步提高了本方案的扩展性。
在一些可能的实施方式中,注入的连续光来自OLT,光源位于ONU中。该光源具体可应用于PON场景中,提高了本方案的实用性。
第二方面,本申请实施例提供了一种光传输方法。该方法包括如下步骤。首先,接收注入的连续光。接下来,将注入的连续光转换为第一连续光和第二连续光,并将第一连续光和第二连续光通过不同的波导传输至激光器。其中,第一连续光的偏振方向、第二连续光的偏振方向与激光器产生的连续光的偏振方向相同。进而,对激光器根据注入的连续光产生的第一输出光和第二输出光进行合波,并输出合波后的第一输出光和第二输出光。其中,第一输出光的波长、第二输出光的波长和注入的连续光的波长相同。
在一些可能的实施方式中,第一输出光和第二输出光均为连续光。
在一些可能的实施方式中,第一输出光和第二输出光均为光信号。对第一输出光和第二输出光进行合波之前,方法还包括:对第一输出光或第二输出光进行相位调节,以使得合波后的第一输出光和第二输出光的相位同步。
在一些可能的实施方式中,将注入的连续光转换为第一连续光和第二连续光包括:通过PSR将注入的连续光转换为第一连续光和第二连续光。
在一些可能的实施方式中,将连续光转换为第一连续光和第二连续光包括:通过PBS将连续光转换为第一连续光和第三连续光。其中,第一连续光的偏振方向和第三连续光的偏振方向相互正交。通过PR将第三连续光转换为第二连续光。
在一些可能的实施方式中,激光器包括第一端面和第二端面。第一连续光从第一端面输入激光器。第二连续光从第二端面输入激光器。
在一些可能的实施方式中,注入的连续光来自OLT,激光器位于ONU中。
第三方面,本申请提供了一种光注入锁定系统,该系统包括第一光源和第二光源。其中,第一光源用于向第二光源发射连续光。第二光源是如上述第一方面的任一实施方式中的光源。
在一些可能的实施方式中,第一光源位于光线路终端OLT中,第二光源位于光网络单元ONU中。
从以上技术方案可以看出,本申请实施例具有以下优点:光源中的偏振转换装置会将注入的连续光转换为第一连续光和第二连续光,并将第一连续光和第二连续光通过不同的波导传输至光源中的激光器。其中,第一连续光的偏振方向、第二连续光的偏振方向与激光器产生的连续光的偏振方向相同。从而可以实现激光器的输出光的波长和注入的连续光的波长相同。
附图说明
图1为本申请中光注入锁定系统的一个应用场景示意图;
图2为本申请中光注入锁定系统的另一个应用场景示意图;
图3为本申请中光源的第一个实施例示意图;
图4(a)为两路光信号相位不一致的示意图;
图4(b)为两路光信号相位一致的示意图;
图5为本申请中光源的第二个实施例示意图;
图6为本申请中光源的第三个实施例示意图;
图7为本申请中光源的第四个实施例示意图;
图8为本申请中光源的一种截面示意图;
图9为本申请中光源的另一种截面示意图;
图10为本申请中光传输方法的一个实施例示意图。
具体实施方式
本申请实施例提供了一种光源、光传输方法和光注入锁定系统,可以实现激光器的输出光的波长和注入的连续光的波长相同。需要说明的是,本申请说明书和权利要求书及附图中的术语“第一”、“第二”、“第三”和“第四”等用于区别类似的对象,而非限定特定的顺序或先后次序。应理解,上述术语在适当情况下可以互换,以便在本申请描述的实施例能够以除了在本申请描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请所提供的光源主要应用于光注入锁定系统,下面首先对本申请中的光注入锁定系统进行介绍。
图1为本申请中光注入锁定(optical injection locked)系统的一个应用场景示意图。该光注入锁定系统包括第一光源1和第二光源2。其中,第一光源1发射的连续光将注入第二光源2,利用光注入锁定技术可以使得第二光源2发射的连续光的波长与第一光源1发射的连续光的波长相同。第一光源1和第二光源2之间还可以设置有隔离器或环形器,用于保证第一光源1发射的光可以单向注入到第二光源2中。应理解,在光注入锁定系统中,第一光源1通常称作主激光器,第二光源2通常称作从激光器。
图2为本申请中光注入锁定系统的另一个应用场景示意图。该光注入锁定系统可以应用于无源光网络(Passive Optical Network,PON)场景中。光线路终端(Optical Line Terminal,OLT)10发射的连续光通过分路器20传输至各光网络单元(Optical Network Unit,ONU)。其中,OLT中设置有第一光源1。每个ONU(如图2中所示的31、32和33)中设置有第二光源2。应理解,PON场景中的上行传输可以采用CDMA的方式,即各ONU同时向OLT发送上行数据,不同的ONU对应不同的CDMA编码。为了避免OLT接收各ONU发射的信号时出现干扰,可以通过光注入锁定技术使得各ONU发射相同波长的信号。
可以理解的是,上述光注入锁定系统还可以应用于除了PON之外的其他场景,本申请具体不做限定。例如,还可以应用于增加第二光源的调制带宽的方案。或者,还可以应用于减少第二光源的啁啾的方案等。
需要说明的是,为了实现上述第二光源发射的连续光的波长和第一光源发射的连续光的波长相同,需要保证注入第二光源的连续光的偏振方向与第二光源产生的连续光的偏振方向相同。然而,第一光源向第二光源发射的连续光在传输过程中,可能会受环境的影响导致注入第二光源的连续光的偏振方向发生变化。
为此,本申请提供了一种光源,使得注入光源本地激光器的连续光的偏振方向与本地激光器产生的连续光的偏振方向相同。应理解,本申请所提供的光源是上述的第二光源,注入第二光源的连续光来自上述的第一光源。
图3为本申请中光源的第一个实施例示意图。该光源包括偏振转换装置101和激光器102。其中,偏振转换装置101包括端口101a、端口101b和端口101c。其中,端口101c用于接收注入的连续光。端口101a和端口101b通过不同的波导与激光器102耦合。
偏振转换装置101用于将注入的连续光转换为第一连续光和第二连续光。第一连续光从端口101a输出并通过波导传输至激光器102。第二连续光从端口101b输出并通过波导传输至激光器102。具体地,第一连续光和第二连续光分别从激光器102的两个不同的端面注入。
应理解,激光器102产生的连续光的偏振方向是设定好的。而注入的连续光可以是任意的偏振方向。其中,注入的连续光可以理解为由两路偏振方向相互正交的连续光按照一定比例组合而成。具体地,偏振转换装置101可以将注入的连续光分成两路。其中一路连续光的偏振方向与激光器102产生的连续光的偏振方向相同,即第一连续光。其中另一路连续光的偏振方向与激光器102产生的连续光的偏振方向相互正交。偏振转换装置101再将上述另一路连续光的偏振方向调整到与激光器102产生的连续光的偏振方向相同,从而得到第二连续光。
例如,激光器102产生的是横电(Transverse Electric,TE)偏振光。注入的连续光由TE偏振光和横磁(Transverse Magnetic,TM)偏振光按照一定比例组合而成。偏振装换装置101将注入的连续光转换为两路TE偏振光,其中一路TE偏振光从端口101a输出,另一路TE偏振光从端口101b输出。可以理解的是,如果激光器102产生的是TM偏振光,那么偏振转换装置也可以将注入的连续光转换为两路TM偏振光。
激光器102用于根据注入的连续光产生第一输出光和第二输出光。其中,第一输出光和第二输出光分别从激光器102的两个端面发射。第一输出光通过波导的传输从端口101a输入偏振转换装置101。第二输出光通过波导的传输从端口101b输入偏振转换装置101。偏振转换装置101还用于对第一输出光和第二输出光进行合波,并通过端口101c输出合波后的连续光。需要说明的是,偏振转换装置101对第一输出光和第二输出光进行合波之前,还可以调整第一输出光或第二输出光的偏振方向。以使得合波后形成混合偏振的连续光。应理解,第一输出光的波长、第二输出光的波长和注入的连续光的波长相同。
在一种可能的实现方式中,该光源的外围还设置有控制器103,用于根据注入的连续光的功率和波长调整激光器102输出的连续光的功率和波长。使得注入的连续光的功率与激光器102产生的连续光的功率之比大于预设值,并且注入的连续光的波长与激光器102产生的连续光的波长的差值在预设范围内。在满足了上述条件后,激光器102产生的连续光就可以与注入的连续光实现波长锁定。具体地,可以通过光谱仪观测激光器产生的连续光的波长是否与第一连续光的波长或第二连续光的波长相同。如果不同,则继续通过控制器103调整激光器102输出的连续光的功率和波长,直到实现波长锁定为止。需要说明的是,控制器103具体可以是电芯片或者热电制冷器(Thermoelectric Cooler,TEC)。其中,TEC通过 改变激光器102的温度来调整激光器102的输出光的功率和波长。电芯片通过改变施加在激光器102上的电流来调整激光器102的输出光的功率和波长。
应理解,若电芯片在激光器102上加载的是直流电,则激光器产生的第一输出光和第二输出光均为连续光。
可选地,若电芯片在激光器102上加载了电信号,则激光器产生的第一输出光和第二输出光均为光信号。从激光器102的两个端面发射的两路光信号传输至偏振转换装置101后可能会出现相位不一致的问题。具体可以参照图4(a)和图4(b)。图4(a)为两路光信号相位不一致的示意图。图4(b)为两路光信号相位一致的示意图。
因此,需要在至少一路光信号的传输路径上引入相位调节器(Phase Shifter,PS),用于对光信号进行相位调节。以使得经偏振转换装置101合波后的两路光信号的相位同步。下面结合图5进行详细说明。
图5为本申请中光源的第二个实施例示意图。该光源还包括相位调节器104。其中,相位调节器104的一端通过波导与端口101a耦合,相位调节器104的另一端通过波导与激光器102耦合。相位调节器104用于对激光器102输出的第一光信号(第一输出光)进行相位调节。相位调节后的第一光信号通过端口101a输入偏振转换装置101。激光器102输出的第二光信号(第二输出光)通过端口101b输入偏振转换装置101。可以理解的是,在该光源正式投入使用之前,可以通过示波器观测偏振转换装置101输出的合波信号,并根据实际的观测结果预先标定好相位调节器104的偏置。以保证经偏振转换装置101合波后的第一光信号和第二光信号的相位同步。
可选地,上述相位调节器104具体可以是热移相器(Heater)。通过改变加载在热移相器上的电压来调节光信号的相位。或者,相位调节器还可以是PN结型的波导区。通过改变波导区的注入电流或电压来调节光信号的相位。
除了上述图5所示的结构外,相位调节器104还可以设置在另一路光信号的传输路径上。例如,相位调节器104的一端通过波导与端口101b耦合,其另一端通过波导与激光器102耦合。或者,还可以在激光器102输出的两路光信号的传输路径上都设置相位调节器。如果其中一路相位调节器出现故障,仍可以保证该光源的正常工作。应理解,上述可选的实施方式都是在图5所示结构的基础上进行的变换,此处不再提供附图。
需要说明的是,在实际应用中,上述偏振转换装置101有多种具体的实现方式。第一种、偏振转换装置101具体可以是偏振分束旋转器(Polarization Splitter and Rotator,PSR)。关于PSR的功能可以参照上述对偏振转换装置101的功能介绍,具体此处不再赘述。第二种、偏振转换装置101包括偏振分束器(Polarization Beam Splitter,PBS)和偏振旋转器(Polarization Rotator,PR)。下面结合图6进行详细介绍。
图6为本申请中光源的第三个实施例示意图。偏振分束器105的端口105c用于接收注入的连续光。偏振分束器105用于将注入的连续光转换为第一连续光和第三连续光。其中,第一连续光的偏振方向和第三连续光的偏振方向相互正交。第一连续光从偏振分束器105的端口105a输出,并通过波导传输至激光器102。第三连续光从偏振分束器105的端口105b输出,并通过波导的传输从端口106a输入偏振旋转器106。偏振旋转器106用于调整第三连续光的偏振方向,使得对第三连续光转换得到的第二连续光的偏振方向与第一连续光的偏 振方向相同。第二连续光从偏振旋转器106的端口106b输出,并通过波导传输至激光器102。
在一些可能的实施方式中,上述的第一连续光和第二连续光在注入激光器102之前,还可以先进行合波。合波后的第一连续光和第二连续光从激光器102的同一个端面注入。图7为本申请中光源的第四个实施例示意图。该光源还可以包括相位调节器104、合波装置107、分光器108和光电探测器(Photo detector,PD)109。相位调节器104的一端通过波导与端口101a耦合,相位调节器104的另一端通过波导与合波装置107的一个输入端口耦合。合波装置107的另一个输入端口通过波导与偏振转换装置101的端口101b耦合。合波装置107的输出端口通过波导与分光器108的输入端口耦合。分光器108的一个输出端口通过波导与激光器102耦合。分光器108的另一个输出端口通过波导与光电探测器109耦合。合波装置107用于对第一连续光和第二连续光进行合波,并将合波后的连续光传输至分光器108。分光器108用于对合波后的连续光进行分路;其中一路连续光输入激光器102,另一路连续光输入光电探测器109。需要说明的是,第一连续光和第二连续光经过合波后可能会由于干涉而出现消光的情况。因此需要根据光电探测器109的检测结果来确定是否出现消光的情况。具体地,若光电探测器109的检测结果为0,则说明出现了消光的情况。那么,就需要通过相位调节器104调整第一连续光的相位。以使得第一连续光和第二连续光经过合波后不会出现消光的情况,保证了可以有连续光注入激光器102。
可以理解的是,除了上述图7所示的结构之外,相位调节器104还可以设置在另一路光信号的传输路径上。例如,相位调节器104的一端通过波导与端口101b耦合,相位调机器104的另一端通过波导与合波装置107的另一个输入端口耦合。
需要说明的是,偏振转换装置101和激光器102可以采用同一衬底,也可以采用不同的衬底。下面分别进行介绍。
图8为本申请中光源的一种截面示意图。如图8所示,偏振转换装置101、激光器102和波导110都是生长在衬底111的。也即是说,该光源是一个包括衬底的一体成型结构。具体地,激光器102是需要基于衬底111来制造的。那么,可以在激光器102的衬底111上进一步加工出偏振转换装置101。需要说明的是,激光器102不仅限于衬底111上生长出来的那一部分,衬底111也是激光器102的组成部分。同理,偏振转换装置101不仅限于衬底111上生长出来的那一部分,衬底111也是偏振转换装置101的组成部分。应理解,波导110包括如上述图3中所示的两段波导。这两段波导具体可以与激光器102两个端面实现物理连接。基于图8所示的结构,本申请中的光源可以通过集成芯片的形式实现。
图9为本申请中光源的另一种截面示意图。如图9所示,偏振转换装置101和波导110是生长在衬底112上的。激光器102是生长在衬底113上的。需要说明的是,激光器102不仅限于衬底113上生长出来的那一部分,衬底113也是激光器102的组成部分。同理,偏振转换装置101不仅限于衬底112上生长出来的那一部分,衬底112也是偏振转换装置101的组成部分。应理解,波导110包括如上述图3中所示的两段波导。这两段波导不能与激光器102的两个端面实现物理连接,而是通过空气耦合在一起。基于图9所示的结构,本申请中的偏振转换装置101和激光器102可以分别集成为相互独立的两个芯片。本申请中的光源可以是将这两个芯片封装在一起的集成器件。
可选地,上述图8和图9中所示衬底的材料可以是硅基半导体材料或磷化铟(InP)。若衬底为硅基半导体材料,则衬底上生长的波导的材料可以包括硅、二氧化硅或氮化硅中的至少一种。若衬底为InP材料,则衬底上生长的波导的材料可以包括InP、铟镓砷磷(InGaAsP)或铟镓铝砷(InGaAlAs)中的至少一种。
可选地,上述激光器102可以是硅基激光器或III-V族材料的激光器。其中,硅基激光器可以采用的衬底材料为硅基半导体材料。III-V族材料的激光器可以采用的衬底材料为InP。此外,也可以将III-V族材料的激光器键合到硅基半导体材料的衬底上,具体此处不做限定。
本申请实施例中,光源中的偏振转换装置会将注入的连续光转换为第一连续光和第二连续光,并将第一连续光和第二连续光通过不同的波导传输至光源中的激光器。其中,第一连续光的偏振方向、第二连续光的偏振方向与激光器产生的连续光的偏振方向相同。从而可以实现激光器的输出光的波长和注入的连续光的波长相同。
基于上面针对光源的介绍,下面对结合光源的光传输方法进行介绍。需要说明的是,该光传输方法对应的装置结构可以如上述装置实施例的描述。但是,并不限于上述描述的光源。
图10为本申请中光传输方法的一个实施例示意图。在该示例中,光传输方法包括如下步骤。
1001、接收注入的连续光。
应理解,本实施例同样应用于如图1或图2所示的光注入锁定系统。注入的连续光来自如图1或图2所示的第一光源。图1或图2中所示的第二光源用于接收注入的连续光。
1002、将注入的连续光转换为第一连续光和第二连续光,并将第一连续光和第二连续光通过不同的波导传输至激光器。
本实施例中,注入的连续光可以是任意的偏振方向。而经过转换得到的第一连续光和第二连续光的偏振方向与本地激光器产生的连续光的偏振方向相同。其中,具体的转换过程可以参照上述装置实施例中对偏振转换装置的功能介绍,此处不再赘述。需要说明的是,第一连续光和第二连续光分别从激光器不同的两个端面注入。
1003、对激光器根据注入的连续光产生的第一输出光和第二输出光进行合波,并输出合波后的第一输出光和第二输出光。
本实施例中,可以根据注入的连续光的功率和波长来调整激光器输出的连续光的功率和波长。以使得第一输出光的波长、第二输出光的波长和注入的连续光的波长相同。具体的实现方式可以参阅上述图3所对应的相关介绍,此处不再赘述。需要说明的是,第一输出光和第二输出光分别从激光器不同的两个端面输出。
应理解,若在激光器102上加载的是直流电,则激光器产生的第一输出光和第二输出光均为连续光。
可选地,若在激光器102上加载了电信号,则激光器产生的第一输出光和第二输出光均为光信号。需要说明的是,从激光器102的两个端面发射的第一光信号(第一输出光)和第二光信号(第二输出光)进行合波后可能会出现相位不一致的问题。那么,在对第一光信号和第二光信号合波之前,还可以对第一光信号或第二光信号进行相位调节,以使得合波后 的第一光信号和第二光信号的相位同步。具体的实现方式可以参阅上述图5所对应的相关介绍,此处不再赘述。
需要说明的是,以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (18)

  1. 一种光源,其特征在于,所述光源包括:偏振转换装置、激光器和多个波导,所述偏振转换装置包括第一端口、第二端口和第三端口,所述第一端口和所述第二端口通过不同的波导与所述激光器耦合;
    所述偏振转换装置用于通过所述第三端口接收注入的连续光,将所述注入的连续光转换为第一连续光和第二连续光,通过所述第一端口将所述第一连续光传输至所述激光器,通过所述第二端口将所述第二连续光传输至所述激光器,其中,所述第一连续光的偏振方向、所述第二连续光的偏振方向与所述激光器产生的连续光的偏振方向相同;
    所述激光器用于根据所述注入的连续光产生第一输出光和第二输出光,将所述第一输出光通过所述第一端口传输至所述偏振转换装置,将所述第二输出光通过所述第二端口传输至所述偏振转换装置,所述第一输出光的波长、所述第二输出光的波长和所述注入的连续光的波长相同;
    所述偏振转换装置还用于对所述第一输出光和所述第二输出光进行合波,并通过所述第三端口输出所述合波后的第一输出光和第二输出光。
  2. 根据权利要求1所述的光源,其特征在于,所述第一输出光和所述第二输出光均为连续光。
  3. 根据权利要求1所述的光源,其特征在于,所述第一输出光和所述第二输出光均为光信号,所述光源还包括相位调节器PS;
    所述PS的一端通过波导与所述激光器耦合,所述PS的另一端通过波导与所述第一端口耦合,所述PS用于对所述第一输出光进行相位调节,并将所述相位调节后的第一输出光通过所述第一端口传输至所述偏振转换装置,以使得合波后的第一输出光和第二输出光的相位同步;
    或者,
    所述PS的一端通过波导与所述激光器耦合,所述PS的另一端通过波导与所述第二端口耦合,所述PS用于对所述第二输出光进行相位调节,并将所述相位调节后的第二输出光通过所述第二端口传输至所述偏振转换装置,以使得合波后的第一输出光和第二输出光的相位同步。
  4. 根据权利要求1至3中任一项所述的光源,其特征在于,所述偏振转换装置为偏振分束旋转器PSR。
  5. 根据权利要求1至3中任一项所述的光源,其特征在于,所述偏振转换装置包括偏振分束器PBS和偏振旋转器PR,所述PBS包括所述第一端口、所述第三端口和第四端口,所述PR包括所述第二端口和第五端口,所述第四端口和所述第五端口通过波导耦合;
    所述PBS用于将所述注入的连续光转换为所述第一连续光和第三连续光,通过所述第一端口将所述第一连续光传输至所述激光器,通过所述第二端口将所述第三连续光传输至所述PR,所述第一连续光的偏振方向和所述第三连续光的偏振方向相互正交;
    所述PR用于将所述第三连续光转换为所述第二连续光,并将所述第二连续光传输至所述激光器。
  6. 根据权利要求1至5中任一项所述的光源,其特征在于,所述激光器包括第一端面和第二端面,所述第一连续光从所述第一端面输入所述激光器,所述第二连续光从所述第二端 面输入所述激光器。
  7. 根据权利要求1至6中任一项所述的光源,其特征在于,所述偏振转换装置、所述激光器、所述多个波导共用同一衬底;
    所述衬底的材料为硅基半导体材料,所述多个波导的材料包括硅、二氧化硅或氮化硅中的至少一种;或者,所述衬底的材料为磷化铟InP,所述多个波导的材料包括InP、铟镓砷磷InGaAsP或铟镓铝砷InGaAlAs中的至少一种。
  8. 根据权利要求1至6中任一项所述的光源,其特征在于,所述偏振转换装置和所述多个波导共用第一衬底,所述激光器采用第二衬底;
    所述第一衬底的材料为硅基半导体材料,所述多个波导的材料包括硅、二氧化硅或氮化硅中的至少一种,所述第二衬底的材料为InP;或者,所述第一衬底的材料为InP,所述多个波导的材料包括InP、InGaAsP或InGaAlAs中的至少一种,所述第二衬底的材料为硅基半导体材料。
  9. 根据权利要求1至8中任一项所述的光源,其特征在于,所述注入的连续光来自光线路终端OLT,所述光源位于光网络单元ONU中。
  10. 一种光传输方法,其特征在于,所述方法包括:
    接收注入的连续光;
    将所述注入的连续光转换为第一连续光和第二连续光,并将所述第一连续光和所述第二连续光通过不同的波导传输至激光器,所述第一连续光的偏振方向、所述第二连续光的偏振方向与所述激光器产生的连续光的偏振方向相同;
    对所述激光器根据所述注入的连续光产生的第一输出光和第二输出光进行合波,并输出所述合波后的第一输出光和第二输出光,所述第一输出光的波长、所述第二输出光的波长和所述注入的连续光的波长相同。
  11. 根据权利要求10所述的方法,其特征在于,所述第一输出光和所述第二输出光均为连续光。
  12. 根据权利要求10所述的方法,其特征在于,所述第一输出光和所述第二输出光均为光信号,对所述第一输出光和所述第二输出光进行合波之前,所述方法还包括:
    对所述第一输出光或所述第二输出光进行相位调节,以使得合波后的第一输出光和第二输出光的相位同步。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,将所述注入的连续光转换为第一连续光和第二连续光包括:
    通过偏振分束旋转器PSR将所述注入的连续光转换为第一连续光和第二连续光。
  14. 根据权利要求10至12中任一项所述的方法,其特征在于,将所述连续光转换为第一连续光和第二连续光包括:
    通过偏振分束器PBS将所述连续光转换为所述第一连续光和第三连续光,所述第一连续光的偏振方向和所述第三连续光的偏振方向相互正交;
    通过偏振旋转器PR将所述第三连续光转换为所述第二连续光。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述激光器包括第一端面和第二端面,所述第一连续光从所述第一端面输入所述激光器,所述第二连续光从所述第二 端面输入所述激光器。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述注入的连续光来自光线路终端OLT,所述激光器位于光网络单元ONU中。
  17. 一种光注入锁定系统,其特征在于,所述系统包括:第一光源和第二光源,所述第一光源用于向所述第二光源发射连续光,所述第二光源如权利要求1至9中任一项所述的光源。
  18. 根据权利要求17所述的系统,其特征在于,所述第一光源位于光线路终端OLT中,所述第二光源位于光网络单元ONU中。
PCT/CN2021/112953 2020-08-21 2021-08-17 一种光源、光传输方法和光注入锁定系统 WO2022037563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21857656.9A EP4192028A4 (en) 2020-08-21 2021-08-17 LIGHT SOURCE, OPTICAL TRANSMISSION METHOD AND OPTICAL INJECTION LOCKING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010849185.9 2020-08-21
CN202010849185.9A CN114079832B (zh) 2020-08-21 2020-08-21 一种光源、光传输方法和光注入锁定系统

Publications (1)

Publication Number Publication Date
WO2022037563A1 true WO2022037563A1 (zh) 2022-02-24

Family

ID=80282300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112953 WO2022037563A1 (zh) 2020-08-21 2021-08-17 一种光源、光传输方法和光注入锁定系统

Country Status (3)

Country Link
EP (1) EP4192028A4 (zh)
CN (1) CN114079832B (zh)
WO (1) WO2022037563A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621178A (zh) * 2009-07-17 2010-01-06 北京大学 激光器自动锁模控制器
CN103260095A (zh) * 2013-05-31 2013-08-21 电子科技大学 一种基于混沌同步的保密无源光网络
CN103780311A (zh) * 2014-01-15 2014-05-07 电子科技大学 支持相干光网络的wdm栅格频率标准的光源管理方法
CN105409070A (zh) * 2013-01-02 2016-03-16 Oe解决方案美国股份有限公司 具有集成的马赫-曾德尔调制器的可调节u激光器发射器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082610B (zh) * 2009-12-01 2014-07-30 华为技术有限公司 自注入锁定光源、光源自注入锁定方法和系统
GB2505902B (en) * 2012-09-13 2015-04-29 Univ Southampton Optical transmitter
US9874696B2 (en) * 2015-02-19 2018-01-23 Elenion Technologies, Inc. Integrated polarization splitter and rotator including a third region for tuning the polarization dependent loss of output transverse electric signals
US20160337041A1 (en) * 2015-05-15 2016-11-17 Futurewei Technologies, Inc. Polarization Independent Reflective Modulator
CN104953461A (zh) * 2015-07-03 2015-09-30 上海高意激光技术有限公司 一种基于扭摆模腔和体光栅的固体激光器
EP3402094B1 (en) * 2016-02-02 2021-04-28 Huawei Technologies Co., Ltd. Optical reflective multiplexer chip, laser transmitter chip and optical transmitter
WO2017177372A1 (zh) * 2016-04-12 2017-10-19 华为技术有限公司 生成光信号的器件、方法和芯片
US10036851B1 (en) * 2016-05-31 2018-07-31 Seagate Technology Llc Waveguide system with polarization rotator and polarization splitter
US10551640B2 (en) * 2016-11-21 2020-02-04 Futurewei Technologies, Inc. Wavelength division multiplexed polarization independent reflective modulators
US10330959B2 (en) * 2017-05-22 2019-06-25 Futurewei Technologies, Inc. Polarization insensitive micro ring modulator
GB2572455B (en) * 2018-03-28 2020-07-01 Rockley Photonics Ltd Polarization rotator
CN110011780B (zh) * 2019-03-04 2020-06-02 华中科技大学 一种模数混合电光混沌信号同步发生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621178A (zh) * 2009-07-17 2010-01-06 北京大学 激光器自动锁模控制器
CN105409070A (zh) * 2013-01-02 2016-03-16 Oe解决方案美国股份有限公司 具有集成的马赫-曾德尔调制器的可调节u激光器发射器
CN103260095A (zh) * 2013-05-31 2013-08-21 电子科技大学 一种基于混沌同步的保密无源光网络
CN103780311A (zh) * 2014-01-15 2014-05-07 电子科技大学 支持相干光网络的wdm栅格频率标准的光源管理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4192028A4

Also Published As

Publication number Publication date
CN114079832A (zh) 2022-02-22
CN114079832B (zh) 2023-03-28
EP4192028A4 (en) 2024-01-17
EP4192028A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
US10623108B2 (en) Optical delay lines for electrical skew compensation
EP3289407B1 (en) Polarization independent reflective modulator
US9083469B2 (en) Device and method for controlling lasing wavelength of tunable laser, and a wavelength division multiplexed-passive optical network having the same
US9515728B2 (en) Light source module and optical transceiver
WO2020043096A1 (zh) 一种相干检测的实现装置、系统及方法
US20120213519A1 (en) Transmission device of a low-noise optical signal having a low-noise multi-wavelength light source, a transmission device of broadcast signals using a low-noise multi-wavelength light source, and an optical access network having the same
US10178452B2 (en) Optical interconnect having optical splitters and modulators integrated on same chip
US20140314368A1 (en) Directly-modulated multi-polarization optical transmitters
US20230254044A1 (en) Laser chip, injection-locked laser, and network device
WO2022037563A1 (zh) 一种光源、光传输方法和光注入锁定系统
US20230319449A1 (en) Optical communication apparatus and optical communication method
US20220320832A1 (en) Systems and Methods for Distributing Optical Signals Using a Photonic Integrated Circuit
KR100972650B1 (ko) 파장 분할 다중 방식 수동형 광 네트워크용 광 송신기의구동 전류 제어 시스템 및 그 방법
US10411825B2 (en) Apparatus for transmitting optical signals between a central unit and at least one remote unit
KR101778555B1 (ko) 간섭형 잡음억제기를 이용한 듀얼 패브리-페롯 레이저 기반의 광송신기
US11509396B2 (en) Polarization multi/demultiplexed optical transceiver circuit
KR100533658B1 (ko) 수동형 광 가입자 망을 위한 다파장 광원
JP2009071425A (ja) 光通信システムおよび光通信装置
WO2023174165A1 (zh) 相干接收装置、相干发送装置和相干通信系统
JP5026366B2 (ja) 波長多重光送信器
Lai Development Trends of Silicon Photonics Coherent Transceivers
CN117353826A (zh) 信号处理设备及信号处理方法
KR100525041B1 (ko) 수동형 광 가입자 망의 가입자측 광 접속기
JP2001094514A (ja) 光送信方法及び光送信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021857656

Country of ref document: EP

Effective date: 20230301

NENP Non-entry into the national phase

Ref country code: DE