WO2022037345A1 - 激光雷达的探测方法、激光雷达及包括其的车辆系统 - Google Patents

激光雷达的探测方法、激光雷达及包括其的车辆系统 Download PDF

Info

Publication number
WO2022037345A1
WO2022037345A1 PCT/CN2021/106692 CN2021106692W WO2022037345A1 WO 2022037345 A1 WO2022037345 A1 WO 2022037345A1 CN 2021106692 W CN2021106692 W CN 2021106692W WO 2022037345 A1 WO2022037345 A1 WO 2022037345A1
Authority
WO
WIPO (PCT)
Prior art keywords
lasers
lidar
laser
view
emit
Prior art date
Application number
PCT/CN2021/106692
Other languages
English (en)
French (fr)
Inventor
梁峰
周小童
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Publication of WO2022037345A1 publication Critical patent/WO2022037345A1/zh
Priority to US18/091,887 priority Critical patent/US20230137192A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates

Definitions

  • the present invention generally relates to the technical field of lidar, and in particular, to a detection method of lidar, lidar and a vehicle system including the same.
  • Figure 1 shows a form of identification of the radar's coordinate system.
  • the Z direction represents the direction consistent with the rotation axis, which is also called the vertical direction.
  • the angular spacing of each wire bundle in the vertical direction is called the vertical resolution.
  • the XOY plane is the horizontal plane, and the resolution on the horizontal plane is called the horizontal resolution.
  • the vertical angular resolution of each wiring harness can be set by adjusting the relative arrangement of the light sources themselves.
  • FIG. 2A and FIG. 2B the existing mechanical radar generally has two arrangements of lasers, and the corresponding two beam exit modes are: the multiple wire beams of the mechanical radar shown in FIG.
  • FIG. 1 , FIG. 2A and FIG. 2B only select one row of lasers as a schematic diagram, and specifically, more than one row of lasers may be provided.
  • the rotation frequency of the mechanical radar in the prior art is generally 10 Hz or 20 Hz.
  • a mechanical radar with a rotation frequency of 10 Hz basically transmits and receives all beams at intervals of 0.2° in the horizontal angle.
  • the point cloud image obtained by scanning at this frequency is shown in Figure 3B.
  • a mechanical radar with a rotation frequency of 20HZ basically transmits and receives all wire beams at intervals of 0.4° in the horizontal angle.
  • the point cloud image obtained by scanning at this frequency is shown in Figure 4B.
  • the sequence of multi-wire harness transmission and reception may be round-robin transmission and reception (including one-line-by-line transmission, or part of multiple lines in parallel, but not all wire harnesses are sent and received at the same time), or multiple wire harnesses may be sent and received at the same time.
  • Figures 3A, 3B and Figures 4A and 4B are only schematic diagrams. While emitting and receiving light, the mechanical radar continues to rotate normally, rather than stagnant, because the speed of light is much faster than the speed of the mechanical radar itself, so Figures 3A, 3B and FIGS. 4A and 4B ignore the rotation of the mechanical radar, and only schematically show the angular interval of the transmit and receive light. 3A and 3B and FIGS. 4A and 4B only show the relative magnitude relationship of the frequencies of the emitting light ranging, and do not show the actual emitting light frequencies.
  • the embodiment of the present invention realizes flexible adjustment of the horizontal angular resolution of the laser radar by controlling the light emission of multiple lasers in different horizontal fields of view, reduces the power consumption of the device, and improves the ranging range of the laser radar.
  • the present invention proposes a detection method for a laser radar, the laser radar can rotate at a constant speed around its axis of rotation, and includes a transmitting unit with a plurality of lasers, and the detection method includes:
  • S102 Receive the echo reflected by the detection laser beam on the target, and convert it into an electrical signal
  • S103 Calculate the distance and/or reflectivity of the target according to the electrical signal.
  • the step S101 includes:
  • the plurality of lasers are controlled to select at least partially different lasers to emit probe laser beams at different horizontal angles.
  • the plurality of lasers are arranged in one or more columns along the direction of the rotation axis
  • the step S101 includes: in at least part of the horizontal field of view, controlling the one or more columns to be relatively vertical in the one or more columns
  • the laser corresponding to the center of the field of view emits the probe laser beam at a higher frequency than the laser corresponding to the position relatively perpendicular to the edge of the field of view.
  • the step S101 includes: controlling the plurality of lasers so that within a preset field of view on the front side of the vehicle in which the lidar is installed in the direction of travel, the preset field of view is smaller than the preset field of view.
  • the probe laser beam is emitted at a higher frequency.
  • the plurality of lasers are arranged in one or more columns along the direction of the rotation axis, and the detection method further includes:
  • the step S101 further includes: determining a desired horizontal angular resolution of the lidar point cloud according to the scene information, and then adjusting the light emission of the laser.
  • the step S101 includes: when it is detected or received that the vehicle on which the lidar is installed is in a downhill state, controlling at least one of the lasers in a row that is relatively close to the bottom to be more close than the laser that is relatively close
  • the upper laser emits the probe laser beam at a higher frequency.
  • the step S101 includes: when it is detected or received that the vehicle on which the lidar is installed is in an uphill state, controlling at least one of the lasers in a row that is relatively close to the top of the laser to be relatively close to the laser The lower laser emits the probe laser beam at a higher frequency.
  • the step S101 includes: when a preset obstacle is detected, according to the type and position of the obstacle, controlling the laser to scan the obstacle next time in a different manner from the above Scan the frequency of the same obstacle for detection.
  • the step S101 includes: when a person or a traffic cone is detected, controlling the laser to perform detection at a higher frequency when scanning the obstacle next time.
  • the step S101 includes: when a tree is detected, controlling the laser to perform detection at a lower frequency when scanning the obstacle next time.
  • the present invention also provides a laser radar, the laser radar can rotate at a constant speed around its rotation axis, and the laser radar includes:
  • a transmitting unit comprising a plurality of lasers, the plurality of lasers being configured to emit detection laser beams for detecting a target;
  • a receiving unit for receiving the echoes reflected by the detection laser beam on the target and converting them into electrical signals
  • control unit which is coupled to the emitting unit and configured to control the plurality of lasers to emit the detection laser beams so that the lidar has a non-uniform horizontal angular resolution.
  • control unit is configured to: control the plurality of lasers to emit probe laser beams at frequencies that are relatively different from each other; and/or
  • the plurality of lasers are controlled to select at least partially different lasers to emit probe laser beams at different horizontal angles.
  • the plurality of lasers are arranged in one or more columns along the direction of the rotation axis, and the control unit is configured such that: in at least part of the horizontal field of view, the lasers are relatively close to the one or more columns.
  • the laser corresponding to the center position of the vertical field of view emits the probe laser beam at a higher frequency than the laser corresponding to the position relatively near the edge of the vertical field of view.
  • control unit is configured such that the plurality of lasers are within a preset field of view on the front side of the traveling direction of the vehicle on which the lidar is mounted, and are further outside the preset field of view than the preset field of view.
  • the probe laser beam is emitted at a higher frequency.
  • the plurality of lasers are arranged in one or more columns along the direction of the rotation axis, and the control unit is configured to determine a desired horizontal angle of the lidar point cloud according to the received scene information resolution, thereby adjusting the light emission of the laser.
  • control unit is adapted to, when a preset obstacle is detected, according to the type and position of the obstacle, control the next scan of the obstacle to be different from the last scan of the same The frequency of the obstacle is detected.
  • control unit is adapted to control the laser to detect at a higher frequency the next time the obstacle is scanned when a person or a traffic cone is detected.
  • control unit is adapted to control the laser to detect at a lower frequency the next time the obstacle is scanned when a tree is detected.
  • the present invention also provides a vehicle system, comprising:
  • the lidar is installed on the vehicle body to detect objects around the vehicle body.
  • the lidar is mounted on the front end of the vehicle body, and the control unit of the lidar is configured such that the plurality of lasers are in front of the traveling direction of the vehicle on which the lidar is mounted.
  • the detection laser beam is emitted at a higher frequency than outside the preset field of view.
  • the lidar is installed on the roof of the vehicle body, the plurality of lasers are arranged in one or more rows along the direction of the rotation axis, and the vehicle system further includes a camera unit , the camera unit can collect images around the vehicle and determine scene information according to the images, the lidar control unit communicates with the camera unit to receive the scene information, and is configured to be able to receive the scene information according to the scene information, determine the desired horizontal angular resolution of the lidar point cloud, and then adjust the emission of the laser.
  • the embodiment of the present invention realizes the flexible configuration of the horizontal angular resolution of the lidar by adjusting the luminous frequency of different wire harnesses, maximizes the use of the limited flight time and power consumption, and improves the measurement accuracy of the lidar. distance range.
  • Figure 1 shows a form of identification of the radar's coordinate system
  • FIG. 2A shows a schematic diagram of the uniform arrangement of lasers in the existing mechanical radar
  • FIG. 2B shows a schematic diagram of the non-uniform arrangement of lasers in the existing mechanical radar
  • FIG. 3A shows a schematic diagram of horizontal angular interval between the transmission and reception of the wiring harness of the mechanical radar with a rotation frequency of 10 Hz;
  • Fig. 3B shows a partial schematic diagram of the point cloud image of the lidar obtained by scanning according to Fig. 3A;
  • FIG. 4A shows a schematic diagram of the horizontal angular interval of a mechanical radar with a rotation frequency of 20 Hz;
  • Fig. 4B shows a partial schematic diagram of the point cloud image of the lidar obtained by scanning according to Fig. 4A;
  • FIG. 5 shows a flowchart of a detection method for a lidar according to an embodiment of the present invention
  • FIG. 6 shows a schematic diagram of the transceiver ranging of a lidar in a horizontal angle range according to an embodiment of the present invention
  • FIG. 7 shows a schematic diagram of a lidar point cloud according to an embodiment of the present invention.
  • FIG. 8A and 8B illustrate partial schematic diagrams of a lidar point cloud according to an embodiment of the present invention
  • FIGS. 9A and 9B illustrate partial schematic diagrams of a lidar point cloud according to an embodiment of the present invention
  • FIGS. 10A and 10B illustrate partial schematic diagrams of a lidar point cloud according to an embodiment of the present invention
  • 11A and 11B illustrate partial schematic diagrams of a lidar point cloud according to an embodiment of the present invention
  • Fig. 12 shows a schematic diagram of a lidar mounted on the top of a vehicle according to an embodiment of the present invention
  • FIGS. 13A and 13B show schematic diagrams of the arrangement of lasers according to an embodiment of the present invention.
  • FIG. 14 shows a partial schematic diagram of a scanned point cloud according to an embodiment of the present invention.
  • 15A and 15B show side and front views of a lidar mounted on the front of a vehicle according to an embodiment of the present invention
  • FIG. 16A shows a schematic diagram of the transceiver ranging of the lidar shown in FIG. 15A and FIG. 15B within a horizontal angle range;
  • 16B shows a schematic diagram of a lidar point cloud according to an embodiment of the present invention
  • FIG. 17 shows a schematic diagram of a vehicle with a lidar installed in a downhill state according to an embodiment of the present invention
  • FIG. 18A and 18B show a schematic diagram of the arrangement of lasers in the lidar shown in FIG. 17 ;
  • FIG. 18C shows a partial schematic diagram of a lidar point cloud according to an embodiment of the present invention
  • FIG. 19 shows a schematic diagram of a vehicle mounted with a lidar in an uphill state according to an embodiment of the present invention
  • FIG. 20A and 20B show a schematic diagram of the arrangement of lasers in the lidar shown in FIG. 19 ;
  • FIG. 20C shows a partial schematic diagram of a lidar point cloud according to an embodiment of the present invention
  • FIG. 21 shows a schematic diagram of lidar detection according to an embodiment of the present invention.
  • FIG. 22 shows a schematic diagram of the detection of a lidar when a traffic cone is detected according to an embodiment of the present invention
  • Fig. 23 shows a schematic diagram of the detection of a lidar when a pedestrian is detected according to an embodiment of the present invention
  • FIG. 24 shows a schematic diagram of detection by a lidar when a tree is detected according to an embodiment of the present invention
  • Figure 25 shows a block diagram of a lidar according to one embodiment of the present invention.
  • FIG. 26 shows a schematic diagram of a vehicle system according to one embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection: it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection: it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes that the first feature is directly above and diagonally above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature “below”, “below” and “beneath” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature has a lower level than the second feature.
  • the horizontal angular resolution of the mechanical radar is at the factory.
  • the settings are fixed and the horizontal angular resolution of each harness is uniform and the same.
  • none of the current mechanical radars on the market have the function of flexibly configuring the horizontal angular resolution of certain wiring harnesses as needed.
  • mechanical radars have different requirements for the horizontal angular resolution of different angles of the field of view or different wire bundles. , which is more concerned with the obstacles in the forward direction of the vehicle. If all the wiring harnesses of the mechanical radar are set to the same horizontal angular resolution, it will not only increase the power consumption of the mechanical radar, but also make it more difficult to achieve human eye safety, and also consume more flight time, limiting the measurement of the mechanical radar. distance range, and cannot meet customized requirements.
  • the laser beam can be
  • the radar has a non-uniform horizontal angular resolution, which can reduce the power consumption of the mechanical radar, improve the ranging range of the mechanical radar, and meet more customization requirements.
  • FIG. 5 shows a flowchart of a detection method for a lidar according to an embodiment of the present invention.
  • the lidar can rotate around its axis at a constant speed, and the lidar includes a transmitting unit with multiple lasers, such as the multiple lasers shown in FIG. 2A or FIG. 2B , which can be arranged uniformly or non-uniformly.
  • the detection method 100 includes:
  • step S101 controlling the plurality of lasers to emit detection laser beams, so that the lidar has a non-uniform horizontal angular resolution.
  • FIG. 6 is a schematic diagram illustrating a working manner of a laser radar in a horizontal field of view for transmitting and receiving ranging according to an embodiment of the present invention. As shown in the figure, the lidar rotates around its rotation axis (the rotation axis is the Z direction, which is perpendicular to the paper surface, and only point O can be seen).
  • the gray sharp corners shown in the figure indicate that at a certain horizontal corner, all All channels of the lidar are used for transceiver ranging, and the black sharp corners shown in the figure indicate that at another horizontal corner, only part of the lidar channels are sent and received.
  • the number of distance channels is higher than the number of transmit and receive distance measurement channels represented by the black sharp corners.
  • step S102 Receive echoes reflected by the detection laser beam on the target, and convert them into electrical signals.
  • the detection laser beam is emitted into the environment around the target object, and after encountering the target object, it is reflected, and the reflected echo is received by the lidar, and the echo signal is converted into an electrical signal for output.
  • Step S103 Calculate the distance and/or reflectivity between the target and the lidar according to the electrical signal.
  • FIG. 7 shows a schematic diagram of a lidar point cloud obtained by using an existing scanning scheme, wherein the plurality of lasers of the lidar are arranged in one or more columns along the direction of the rotation axis thereof.
  • Figure 7 shows the point cloud distribution of the lidar in the horizontal and vertical directions (ie, the directions parallel to the rotation axis).
  • the point cloud in the middle row is denser in the vertical direction than the point cloud in the upper and lower sides (non-central channel), and the density in the horizontal direction is higher. the same density.
  • the step S101 includes: controlling the plurality of lasers to emit probe laser beams at frequencies that are relatively different from each other.
  • FIGS. 8A and 8B show a partial schematic diagram of a lidar point cloud according to an embodiment of the present invention, wherein the point cloud in the center channel is compared with the point cloud in the non-center channel in the horizontal direction.
  • the density is larger on the upper and lower sides, which indicates that the laser relatively close to the middle position in the lidar emits the detection laser beam at a higher emission frequency than the laser relatively close to the two sides, that is, the horizontal angular resolution of the central channel is encrypted, thereby achieving Adjustment of LiDAR's angular resolution in the horizontal direction.
  • the horizontal angular resolution of the channel at the middle position remains basically the same as that shown in Fig. 7, while the horizontal angular resolution of the channel at the two end positions is similar.
  • it is greatly reduced, for example, it is reduced to 50% of that in FIG. 7 .
  • the horizontal angular resolution of the channel at the middle position is twice that of the channel at both ends, that is, the laser of the channel at the middle position emits detection lasers twice every time
  • the lasers of the channels at the two end positions emit the probe laser beam only once.
  • the transmission frequency between the two can also be designed in other ratios according to actual needs.
  • the step S101 includes: controlling the plurality of lasers to emit detection laser beams at relatively different frequencies in different horizontal fields of view.
  • FIG. 9A shows a partial schematic diagram of a lidar point cloud according to an embodiment of the present invention. Different from Figure 8, the distribution of point clouds in the horizontal direction in Figure 9A is not uniform. The area 9-2 has a higher density of point clouds in the horizontal direction than the areas 9-1 and 9-3 on both sides, which indicates that the lidar emits detection laser beams with different frequencies in different areas within the horizontal field of view. Realize the adjustment of the angular resolution in the horizontal direction by the lidar. Similarly, optionally, the point cloud in the center channel in FIG. 9A has a higher density in the vertical direction than the point cloud in the non-center channel. Therefore, while adjusting the horizontal angular resolution of the lidar, The vertical angular resolution of the lidar can also be adjusted.
  • FIG. 9B shows a partial schematic diagram of a lidar point cloud according to another embodiment of the present invention.
  • multiple channels or all channels of the lidar have different horizontal angular resolutions in the horizontal field of view.
  • the horizontal angular resolution of each channel is significant Above the edge of the horizontal field of view.
  • Fig. 10A shows a partial schematic diagram of a lidar point cloud according to an embodiment of the present invention. Similar to Fig. 9A, the field of view in the horizontal direction in Fig. 10A is also divided into 10-1, 10-2, 10 from left to right -3 Three regions, different from Fig. 9A, in the horizontal direction, the region 10-2 has a higher density of point clouds on the central channel than the regions 10-1 and 10-3 on both sides, non-center The point cloud density of the three areas on the channel is the same, that is, the horizontal angle resolution of the lidar is adjusted by encrypting part of the horizontal angle area of the central channel.
  • the laser of the laser radar corresponding to the center of the vertical field of view in the one or more columns can be selected to be controlled to be higher than the laser in the one or more columns relatively close to the center of the vertical field of view.
  • the frequency of the laser corresponding to the edge position of the vertical field of view emits the probe laser beam to obtain a non-uniform horizontal angular resolution.
  • FIG. 10B shows a partial schematic diagram of a lidar point cloud according to another embodiment of the present invention, similar to FIG. 9B .
  • the difference from FIG. 9B is that in FIG. 10B , at the middle position of the horizontal field of view, the laser corresponding to the position relatively close to the center of the vertical field of view of the lidar is higher than the laser corresponding to the position relatively close to the edge of the vertical field of view.
  • the frequency of the laser that emits the probe laser beam is higher than the laser corresponding to the position relatively close to the edge of the vertical field of view.
  • the step S101 includes: controlling the plurality of lasers, and at different horizontal angles, selecting at least some of the different lasers to emit detection laser beams.
  • FIG. 11A shows a partial schematic diagram of a lidar point cloud according to an embodiment of the present invention. It can be seen from Fig. 11A that the point clouds are staggered in the vertical direction. Taking the laser radar with the total number of channels for sending and receiving X as an example, at time t1, the horizontal angle corresponding to the laser radar is ⁇ 1, and the control of sending and receiving is at this time.
  • Channel 1 to channel X1 conducts transceiver ranging; at time t2, the horizontal angle corresponding to the lidar is ⁇ 2, and at this time, the transceiver channel 1+X1 to channel X is controlled to perform transceiver ranging; at time t3, the lidar corresponds to The horizontal angle is ⁇ 3. At this time, the transceiver channel 1 to channel X1 are controlled to perform transceiver ranging (wherein the X1 is smaller than the X), and so on, some transceiver channels in the total transceiver channel perform interleaved transceiver ranging.
  • the transceiver channel 1 to channel X1 are controlled to perform transceiver ranging; at time t2, the corresponding horizontal angle is ⁇ 2, and at this time, the transceiver channel 1+ is controlled X1 to channel X2 for receiving and transmitting ranging; at time t3, the corresponding horizontal angle is ⁇ 3, at this time, the receiving and sending channel 1+X2 to channel X is controlled to perform transmitting and receiving ranging, where X1 is smaller than X2, and X2 is smaller than the X. That is, according to requirements, multiple different horizontal fields of view can be selected, different multiple transceiver channels can be controlled, and transceiver ranging can be performed within the horizontal field of view, so that the lidar can obtain different horizontal angular resolutions.
  • the lidar has non-uniform resolution in the vertical field of view.
  • Figure 11B shows a partial schematic view of the point cloud in the case of the lidar with uniform resolution in the vertical field of view.
  • the step S101 includes: controlling the plurality of lasers so that within a preset field of view on the front side of the vehicle on which the lidar is installed, the laser is emitted at a higher frequency than outside the preset field of view. the detection laser beam.
  • the lidar is mounted on the top of the vehicle and rotates around its axis of rotation.
  • the vehicle drives forward, and its main field of view corresponds to the detection range of the lidar near the center channel.
  • the horizontal angular resolution of the center channel is higher than that of the non-center channels on both sides. It is therefore important to control the laser in a relatively near center position to emit a probing laser beam at a higher frequency than the laser in a relatively near side position, so that the vehicle is more densely in the main field of view when driving forward. point cloud to obtain more detection information.
  • the lidar has 128 channels or wire bundles, and channel 26 to channel 89 are set as horizontal encryption channels, transmitting and receiving ranging is performed every 0.1°, and other channels are set to receive and receive ranging every 0.2°.
  • FIGS. 13A and 13B respectively show schematic diagrams of the arrangement of lasers according to an embodiment of the present invention, the lasers are arranged in one or more columns along the direction of the rotation axis of the lidar, and FIGS. 13A and 13B schematically show the As shown in Figure 13A, the lasers are arranged uniformly in the vertical direction; as shown in Figure 13B, the lasers are non-uniformly arranged in the vertical direction, and the specific arrangement is dense in the middle and sparse on both sides.
  • the laser radar described in FIG. 12 adopts the laser arrangement shown in FIG. 13B , and encrypts the horizontal angular resolution of the central channel, thereby simultaneously adjusting the horizontal angular resolution and the vertical angular resolution. .
  • all light source columns in the lidar can be set to be uniformly arranged as shown in FIG. 13A (for example, the point cloud images are shown in FIGS.
  • Non-uniform arrangement as shown in Figure 13B (for example, the point cloud diagrams shown in Figures 8A, 9A, 10A, and 11A); some of the light source columns may be arranged in a uniform arrangement as shown in Figure 13A, and the rest of the light source columns may be arranged as shown in Figure 13B
  • the specific number of light source columns can be set according to actual needs.
  • the arrangement relationship of the plurality of light source columns may also be different, for example, some of the light source columns are arranged vertically, and the rest of the light source columns are aligned side by side, or side by side staggered, so as to realize different application scenarios different detection needs.
  • Fig. 14 shows a partial schematic diagram of a scanning point cloud according to an embodiment of the present invention.
  • the rotation speed of the lidar is fixed, and the four scanning lines shown in the figure are relatively uniformly arranged, where ⁇ 1> ⁇ 2, the rotation angle ⁇ 1 corresponds to the lidar scanning from point P51 to point P52 on the point cloud, and the rotation angle ⁇ 2 corresponds to the lidar scanning from point P52 to point P53 on the point cloud.
  • the rotation angle ⁇ 3 corresponds to the lidar scanning from the point P11 on the point cloud to the point P12, ⁇ 4, ⁇ 5, ⁇ 6 and so on.
  • the lidar is installed at the front of the vehicle, such as a headlight, and rotates around its axis of rotation.
  • Figures 15A and 15B show the side view and the front view of the vehicle, respectively.
  • the lidar is used for blind-filling radar, and its main field of view is the horizontal angle range of the vehicle's forward direction. field, which corresponds to the detection range of the lidar within the field of view ⁇ .
  • FIGS. 16A and 16B FIG. 16A shows a schematic diagram of the transceiver ranging of the lidar shown in FIGS. 15A and 15B within a horizontal angle range
  • FIG. 16B shows a point cloud diagram of the lidar.
  • a plurality of transceiver channels of the lidar are set to emit detection laser beams at a frequency higher than the field of view of the field of view ⁇ within the field of view ⁇ , or make the transceiver channels in the field of view outside the field of view ⁇ . Closed, so that the vehicle can obtain a denser point cloud in the field of view with a horizontal angle range of ⁇ when the vehicle is driving forward, so as to obtain more detection information.
  • the transceiver channel of the lidar performs normal detection, or performs detection at a higher frequency.
  • the transmit and receive channels of the lidar can stop emitting light, or alternatively, light-emitting detection can be performed at a lower frequency.
  • the plurality of lasers are arranged in one or more columns along the direction of the rotation axis
  • the detection method further includes: receiving scene information.
  • the step S101 further includes: determining a desired horizontal angular resolution of the lidar point cloud according to the scene information, and then adjusting the light emission of the laser.
  • the judgment of the scene information can be realized with the help of other sensors such as cameras.
  • the lidar is used in conjunction with the camera, and the camera is used for image acquisition and image recognition to provide the lidar with some scene information for its judgment. ; It is also possible to obtain the point cloud only by the lidar, and judge the current environment and scene information of the vehicle through the point cloud information.
  • Fig. 17 shows a schematic diagram of a vehicle with a lidar installed in a downhill state according to an embodiment of the present invention.
  • Figs. 18A and 18B show a schematic diagram of the arrangement of lasers in the lidar shown in Fig. 17
  • 18A shows the case where the lasers are uniformly arranged in the vertical direction
  • FIG. 18B shows the case where the lasers are non-uniformly arranged in the vertical direction.
  • the lidar is mounted on the top of the vehicle and rotates around its axis of rotation.
  • Fig. 19 shows a schematic diagram of a vehicle with a lidar installed in an uphill state according to an embodiment of the present invention.
  • Figs. 20A and 20B show a schematic diagram of the arrangement of lasers in the lidar shown in Fig. 19
  • 20A shows the case where the lasers are uniformly arranged in the vertical direction
  • FIG. 20B shows the case where the lasers are non-uniformly arranged in the vertical direction.
  • the lidar is mounted on the top of the vehicle and rotates around its axis of rotation.
  • FIG. 20C shows a partial schematic view of the point cloud in the case of the laser arrangement of FIG. 20B .
  • the laser when a preset obstacle is detected, according to the type and position of the obstacle, the laser is controlled to scan the obstacle next time to be different from scanning the same obstacle last time frequency to detect.
  • the processing unit of the lidar can process and identify the point cloud.
  • the point cloud processing unit outside the lidar can process and identify the point cloud to identify the type of obstacles.
  • the driving direction and relative speed of the vehicle can be judged. Combined with the speed of the lidar, it can be estimated The time when the vehicle is next scanned or the corresponding horizontal field of view. Correspondingly, when the lidar scans to the horizontal field of view for the second time, the detection frequency can be adjusted.
  • pedestrians and traffic cones are objects that the autonomous driving system needs to pay special attention to, or traffic sensitive objects, which are objects that affect the driver's decision to slow down or stop.
  • Figure 22 and Figure 23 show the situation where the lidar scans a traffic cone or a pedestrian, respectively.
  • the laser can be controlled to detect with a higher frequency when scanning the obstacle next time.
  • the detection can be performed at a lower frequency in the next scan, as shown in Figure 24.
  • the present invention also relates to a lidar, such as a block diagram of a lidar according to an embodiment of the present invention as shown in FIG. 25 .
  • the lidar 200 can rotate around its rotation axis, and the lidar 200 includes: a transmitting unit 210 , a receiving unit 220 and a control unit 230 .
  • the transmitting unit 210 includes a plurality of lasers 211, and the plurality of lasers 211 are configured to emit a detection laser beam L1 for detecting the target object OB.
  • the receiving unit 220 is configured to receive the echo L1' reflected by the detection laser beam L1 on the target object OB, and convert it into an electrical signal.
  • the control unit 230 is coupled to the emission unit 210 and configured to control the plurality of lasers 211 to emit the detection laser beam L1 , so that the lidar 200 has a non-uniform horizontal angular resolution.
  • the control unit 230 is configured to control the plurality of lasers 211 to emit the probe laser beams L1 at frequencies relatively different from each other.
  • the laser relatively close to the middle position in the lidar is controlled to emit a detection laser beam at a higher emission frequency than the lasers relatively close to both sides, so that the point cloud density of the central channel is higher than that of the non-central channel, Enables horizontal angular resolution encryption for the center channel.
  • the control unit 230 is configured to: control the plurality of lasers 211 to emit probe laser beams L1 at relatively different frequencies in different horizontal fields of view.
  • the multiple lasers 211 controlling the lidar emit detection laser beams with different frequencies in different regions (9-1, 9-2, 9-3) in the horizontal field of view to obtain points with different densities Cloud, thereby realizing the adjustment of the angular resolution in the horizontal direction by the lidar.
  • the control unit 230 is configured to: control the plurality of lasers 211 to select at least partially different lasers to emit the detection laser beam L1 at different horizontal angles.
  • a lidar with a total number of transceiving channels X at different times t1, t2, and t3 corresponding horizontal angles ⁇ 1, ⁇ 2, and ⁇ 3, respectively control the lidar’s transceiving channel 1 to channel 1 X1, channel 1+X1 to channel X, and channel 1 to channel X1 perform transceiver ranging (wherein the X1 is less than X) to obtain staggered point clouds, so as to adjust the horizontal angular resolution of the lidar.
  • the control unit 230 is configured such that: in at least part of the horizontal field of view In the one or more columns, the laser corresponding to the center of the vertical field of view emits the detection laser beam L1 at a higher frequency than the laser corresponding to the edge of the vertical field of view, as shown in FIGS. 11A and 11B . Show.
  • control unit 230 is configured such that: a preset field of view of the plurality of lasers 211 on the front side of the traveling direction of the vehicle on which the lidar 200 is installed Within ⁇ , the detection laser beam L1 is emitted at a higher frequency than outside the preset field of view ⁇ , so as to obtain more detection information within the preset field of view ⁇ .
  • the control unit 230 is configured to determine the desired lidar point according to the received scene information
  • the horizontal angular resolution of the cloud in turn adjusts the light emission of the laser 211 .
  • the scene information includes that the vehicle on which the lidar is installed is in a downhill state and an uphill state. The following will further describe the adjustment of the laser in different scenarios with reference to FIGS. 17 , 18 , 19 and 20 .
  • the control unit 230 is configured to: when detecting or receiving that the vehicle on which the lidar 200 is installed is in a downhill state, causing at least one of the lasers in the column that is relatively close below to emit the probe laser beam L1 at a higher frequency than the laser relatively close above, so that the downhill vehicle is deflected to the sky at a more vertical angle of interest
  • the field of view gets a denser point cloud.
  • the control unit 230 is configured to: when detecting or receiving that the vehicle on which the lidar 200 is installed is in an uphill state, causing at least one of the lasers in the column that is relatively close above to emit the probe laser beam L1 at a higher frequency than the laser located relatively close below, so that the uphill vehicle is deflected to the ground at a more vertical angle of interest
  • the field of view gets a denser point cloud.
  • the arrangement density of the lasers located relatively close to the center of the vertical field of view is higher than that of the lasers located relatively close to the edge of the vertical field of view.
  • control unit is adapted to control the next scan of the obstacle to be different from the previous scan according to the type and position of the obstacle when a preset obstacle is detected.
  • the frequency of the same obstacle is detected.
  • control unit is adapted to control the laser to detect at a higher frequency when scanning the obstacle next time when a person or a traffic cone is detected, as shown in FIG. 22 and FIG. 23 shown.
  • control unit is adapted to control the laser to detect at a lower frequency when a tree is detected next time the obstacle is scanned, as shown in FIG. 24 .
  • the present invention also relates to a vehicle system.
  • FIG. 26 a schematic diagram of a vehicle system according to an embodiment of the present invention is shown.
  • the vehicle system 300 includes: a vehicle body 310 and the lidar 200 .
  • the lidar 200 is installed on the vehicle body 310 to detect objects around the vehicle body 310 .
  • the control unit of the lidar 200 is configured such that: the plurality of lasers are installed at the same
  • the detection laser beam is emitted at a higher frequency than outside the preset field of view ⁇ within a preset field of view ⁇ on the front side of the vehicle with the lidar 200 in the direction of travel.
  • the vehicle system 300 further includes a camera unit (not shown in the figure), which can collect images around the vehicle and determine scene information according to the images.
  • the control unit of the lidar 200 is connected to the camera.
  • the unit communicates to receive the scene information, and is configured to determine a desired horizontal angular resolution of the lidar point cloud according to the scene information, and then adjust the light emission of the laser.
  • the scene information may include, for example, that the vehicle is in a downhill state or the vehicle is in an uphill state.
  • the lasers located relatively close to the bottom emit the detection laser at a higher frequency than the lasers located relatively close to the top.
  • the lasers located relatively close to the top of the at least one column of lasers of the lidar 200 are controlled to emit the lasers at a higher frequency than the lasers located relatively close to the bottom.
  • the laser beam is detected to adjust the horizontal angular resolution of the lidar 200 .
  • the embodiment of the present invention proposes a method for adjusting the horizontal angular resolution.
  • the laser radar can be sent and received at different frequencies by controlling different channels or wire bundles of the laser radar, so that the laser radar has a non-uniform range.
  • the horizontal angular resolution of the lidar can be adjusted to achieve the controllability of the horizontal angular resolution of the lidar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(200)的探测方法(100)、激光雷达(200)及包括其的车辆系统(300),激光雷达(200)可绕其转轴旋转,包括具有多个激光器(211)的发射单元(210),探测方法(100)包括:步骤S101,控制多个激光器(211)发射探测激光束,使得激光雷达(200)具有非均匀的水平角度分辨率;步骤S102,接收探测激光束在目标物上反射的回波,并转换为电信号;步骤S103,根据电信号,计算目标物的距离和/或反射率。由此实现对激光雷达(200)的水平角度分辨率的灵活配置,减少了飞行时间和功耗,提高了激光雷达(200)的测距范围。

Description

激光雷达的探测方法、激光雷达及包括其的车辆系统 技术领域
本发明大致涉及激光雷达技术领域,尤其涉及一种激光雷达的探测方法、激光雷达及包括其的车辆系统。
背景技术
图1中示出了雷达的坐标系的一种标识形式,参考图1,Z方向表征与转轴一致的方向,也叫垂直方向,在垂直方向各线束彼此的角度间隔叫做垂直分辨率。XOY平面为水平面,在水平面上的分辨率叫做水平分辨率。当前的多线束(如40线、64线及128线)机械雷达,可以通过调整光源本身的相对排布来对每个线束的垂直角度分辨率加以设置。参照图1、图2A和图2B,现有的机械雷达一般具备两种激光器的排布方式,且对应两种光束的出射方式,分别为:如图2A所示的机械雷达的多个线束在垂直视场内均匀分布,即每一个线束的垂直角度分辨率均相同,如图2B所示的机械雷达的每个线束的夹角并不相同,而是中间线束的垂直角度分辨率相对两侧更加密集。需要说明的是,图1、图2A及图2B只是选择一列激光器作为示意图,具体地,可以设置不止一列激光器。
现有技术中机械雷达的旋转频率一般是10HZ或者20HZ。可以参考图3A所示,旋转频率为10HZ的机械雷达,基本是水平角度每间隔0.2°进行所有线束的收发,如是16线的激光雷达,按照此频率扫描得到的点云图参考图3B。可以参考图4A所示,旋转频率为20HZ的机械雷达,基本是水平角度每间隔0.4°进行所有线束的收发,如是16线的激光雷达,按照此频率扫描得到的点云图参考图4B。如上所述多线束收发的顺序,可以是轮巡收发(包括一线一线地进行,或者部分多线并行,但并非所有线束同时收发),也可以是多个线束同时收发。需要说明的是,图3A、3B及图4A、4B只是示意图,在发光及收光的同时,机械雷达继续正常旋转,而非停滞,因为光速比机械雷达本身的转速快很多,所以图3A、3B和图4A、4B忽略机械雷达的旋转,仅示意性示出收发光的角度间隔。且图3A、3B及图4A、4B只是表示相对的收发光测距的频率的大小关系,不表示真实的收发光频率。
背景技术部分的内容仅仅是发明人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
本发明的实施例通过控制多个激光器在不同水平视场内的发光,实现了对激光雷达水平角度分辨率的灵活调节,降低了器件的功耗,提高了激光雷达的测距范围。
有鉴于现有技术的至少一个缺陷,本发明提出一种激光雷达的探测方法,所述激 光雷达可绕其转轴匀速旋转,包括具有多个激光器的发射单元,所述探测方法包括:
S101:控制所述多个激光器发射探测激光束,使得激光雷达具有非均匀的水平角度分辨率;
S102:接收所述探测激光束在目标物上反射的回波,并转换为电信号;
S103:根据所述电信号,计算所述目标物的距离和/或反射率。
根据本发明的一个方面,所述步骤S101包括:
控制所述多个激光器,以彼此相对不同的频率发射探测激光束;和/或
控制所述多个激光器,在不同的水平视场内,以相对不同的频率发射探测激光束;和/或
控制所述多个激光器,在不同的水平角度上,选择至少部分不同的激光器发射探测激光束。
根据本发明的一个方面,所述多个激光器沿着转轴方向排布成一列或多列,所述步骤S101包括:在至少部分水平视场内,控制处于所述一列或多列中相对靠垂直视场中心位置对应的激光器,以高于处于相对靠垂直视场边缘位置对应的激光器的频率,发射所述探测激光束。
根据本发明的一个方面,所述步骤S101包括:控制所述多个激光器,使得在安装有所述激光雷达的车辆的行进方向前侧的预设视场内,以比所述预设视场外更高的频率发射所述探测激光束。
根据本发明的一个方面,所述多个激光器排布成沿着所述转轴方向的一列或多列,所述探测方法还包括:
接收场景信息,
其中所述步骤S101还包括:根据所述场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器的发光。
根据本发明的一个方面,所述步骤S101包括:当检测到或接收到安装有所述激光雷达的车辆处于下坡状态时,控制至少其中一列激光器中处于相对靠近下方的激光器以比处于相对靠近上方的激光器更高的频率发射所述探测激光束。
根据本发明的一个方面,所述步骤S101包括:当检测到或接收到安装有所述激光雷达的车辆处于上坡状态时,控制至少其中一列激光器中处于相对靠近上方的激光器以比处于相对靠近下方的激光器更高的频率发射所述探测激光束。
根据本发明的一个方面,所述步骤S101包括:当检测到预设的障碍物时,根据所述障碍物的类型和位置,控制所述激光器在下一次扫描所述障碍物时,以不同于上次扫描同一障碍物的频率进行探测。
根据本发明的一个方面,所述步骤S101包括:当检测到人或者交通锥时,控制所述激光器在下一次扫描所述障碍物时,以更高的频率进行探测。
根据本发明的一个方面,所述步骤S101包括:当检测到树木时,控制所述激光器在下一次扫描所述障碍物时,以更低的频率进行探测。
本发明还提供一种激光雷达,所述激光雷达可绕其转轴匀速旋转,所述激光雷达包括:
发射单元,包括多个激光器,所述多个激光器配置成可发射探测激光束用于探测目标物;
接收单元,用于接收所述探测激光束在目标物上反射的回波,并转换为电信号;和
控制单元,所述控制单元与所述发射单元耦接,并配置成可控制所述多个激光器发射所述探测激光束,使得激光雷达具有非均匀的水平角度分辨率。
根据本发明的一个方面,所述控制单元配置成:控制所述多个激光器,以彼此相对不同的频率发射探测激光束;和/或
控制所述多个激光器,在不同的水平视场内,以相对不同的频率发射探测激光束;和/或
控制所述多个激光器,在不同的水平角度上,选择至少部分不同的激光器发射探测激光束。
根据本发明的一个方面,所述多个激光器沿着转轴方向排布成一列或多列,所述控制单元配置成使得:在至少部分水平视场内,处于所述一列或多列中相对靠垂直视场中心位置对应的激光器以高于处于相对靠垂直视场边缘位置对应的激光器的频率发射所述探测激光束。
根据本发明的一个方面,所述控制单元配置成使得:所述多个激光器在安装有所述激光雷达的车辆的行进方向前侧的预设视场内,以比所述预设视场外更高的频率发射所述探测激光束。
根据本发明的一个方面,所述多个激光器排布成沿着所述转轴方向的一列或多列,所述控制单元配置成可根据接收的场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器的发光。
根据本发明的一个方面,所述控制单元适于当检测到预设的障碍物时,根据所述障碍物的类型和位置,控制在下一次扫描所述障碍物时,以不同于上次扫描同一障碍物的频率进行探测。
根据本发明的一个方面,所述控制单元适于当检测到人或者交通锥时,控制所述激光器在下一次扫描所述障碍物时,以更高的频率进行探测。
根据本发明的一个方面,所述控制单元适于当检测到树木时,控制所述激光器在下一次扫描所述障碍物时,以更低的频率进行探测。
本发明还提供一种车辆系统,包括:
车辆本体;和
如上所述的激光雷达,所述激光雷达安装在所述车辆本体上,以对所述车辆本体周围的目标物进行探测。
根据本发明的一个方面,所述激光雷达安装在所述车辆本体的前端,所述激光雷达的控制单元配置成使得:所述多个激光器在与安装有所述激光雷达的车辆的行进方向前侧的预设视场内,以比所述预设视场外更高的频率发射所述探测激光束。
根据本发明的一个方面,所述激光雷达安装在所述车辆本体的车顶上,所述多个激光器排布成沿着所述转轴方向的一列或多列,所述车辆系统还包括摄像单元,所述 摄像单元可采集所述车辆周围的图像并根据所述图像确定场景信息,所述激光雷达的控制单元与所述摄像单元通讯以接收所述场景信息,并配置成可根据所述场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器的发光。
本发明的实施例根据应用场景的不同,通过调节不同线束的发光频率,实现了对激光雷达水平角度分辨率的灵活配置,最大限度地利用有限的飞行时间和功耗,提高了激光雷达的测距范围。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1中示出了雷达的坐标系的一种标识形式;
图2A示出了现有的机械雷达中激光器均匀排布的示意图;
图2B示出了现有的机械雷达中激光器非均匀排布的示意图;
图3A示出了旋转频率为10HZ的机械雷达的线束收发的水平角度间隔示意图;
图3B示出了根据图3A扫描得到的激光雷达的点云图的局部示意图;
图4A示出了旋转频率为20HZ的机械雷达的水平角度间隔示意图;
图4B示出了根据图4A扫描得到的激光雷达的点云图的局部示意图;
图5示出了根据本发明一个实施例的激光雷达的探测方法的流程图;
图6示出了根据本发明一个实施例的激光雷达在水平角度范围内的收发测距示意图;
图7示出了根据本发明一个实施例的激光雷达点云的示意图;
图8A和图8B示出了根据本发明实施例的激光雷达点云的局部示意图;
图9A和图9B示出了根据本发明实施例的激光雷达点云的局部示意图;
图10A和图10B示出了根据本发明一个实施例的激光雷达点云的局部示意图;
图11A和图11B示出了根据本发明一个实施例的激光雷达点云的局部示意图;
图12示出了根据本发明一个实施例的激光雷达安装在车辆顶部的示意图;
图13A和图13B示出了根据本发明实施例的激光器的排布示意图;
图14示出了根据本发明一个实施例的扫描点云的局部示意图;
图15A和图15B示出了根据本发明一个实施例的激光雷达安装在车辆前部的侧视图和正视图;
图16A示出了图15A和图15B所示的激光雷达在水平角度范围内的收发测距示意图;
图16B示出了根据本发明一个实施例的激光雷达点云的示意图;
图17示出了根据本发明一个实施例的安装有激光雷达的车辆处于下坡状态的示意图;
图18A和图18B示出了图17所示的激光雷达中激光器的排布示意图;图18C示出了根据本发明一个实施例的激光雷达点云的局部示意图;
图19示出了根据本发明一个实施例的安装有激光雷达的车辆处于上坡状态的示意图;
图20A和20B示出了图19所示的激光雷达中激光器的排布示意图;图20C示出了根据本发明一个实施例的激光雷达点云的局部示意图;
图21示出了根据本发明一个实施例的激光雷达探测的示意图;
图22示出了根据本发明一个实施例激光雷达在检测到交通锥时的探测的示意图;
图23示出了根据本发明一个实施例激光雷达在检测到行人时的探测的示意图;
图24示出了根据本发明一个实施例激光雷达在检测到树木时的探测的示意图;
图25示出了根据本发明一个实施例的激光雷达的框图;和
图26示出了根据本发明一个实施例的车辆系统的示意图。
具体实施方式
为了使得本领域技术人员更好地理解和实现本发明,下面将详细介绍本申请的各个实施例。在在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
参考上图3A、3B或者图4A、4B所示出的现有技术中的激光雷达,无论是对于图3A、3B还是图4A、4B示出的工作情况,机械雷达的水平角度分辨率在出厂时即已经固定设置,且每个线束的水平角度分辨率均均匀相同。换言之,目前市面上所有的机械雷达,均未具备可以根据需要进行灵活配置某些线束的水平角度分辨率的功能。
而在实际不同的应用场景中,机械雷达对于视场不同角度或不同线束的水平角度分辨率要求并不相同,比如用于无人驾驶的激光雷达,相对于车辆行驶侧向内的环境障碍物,其对车辆行驶前向的障碍物更为关心。如果机械雷达的所有线束都设置为同样的水平角度分辨率,不仅会增加机械雷达的功耗,还会使人眼安全更难实现,同时也会消耗更多的飞行时间,限制机械雷达的测距范围,且无法满足定制化需求。
基于这种思考,本申请的发明人开始构思得到非均匀的水平角度分辨率的雷达,但是雷达转速极快,如间断性控制雷达在不同水平FOV的转速,很不合理,并且这样也无法使得某些特定线束具备比其他线束不同的水平角度分辨率。经过大量实验与理论研究,发明人构思出了本申请的方案,在确保激光雷达可绕其转轴匀速旋转的前提下,通过相应地控制所述多个激光器发射探测激光束的参数,可以使得激光雷达具有非均匀的水平角度分辨率,从而可以降低机械雷达的功耗,提升机械雷达的测距范围,以及满足更多的定制化需求。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图5示出了根据本发明一个实施例的激光雷达的探测方法的流程图。其中所述激光雷达可绕其转轴匀速旋转,所述激光雷达包括具有多个激光器的发射单元,比如图2A或图2B所示出的多个激光器,可以均匀或者非均匀排列均可。如图所示,所述探测方法100包括:
在步骤S101:控制所述多个激光器发射探测激光束,使得激光雷达具有非均匀的水平角度分辨率。参照图6,图6示出了根据本发明一个实施例的激光雷达在水平视场内的收发测距的工作方式的示意图。如图所示,所述激光雷达绕其转轴(转轴为Z方向,是垂直纸面的方向,只能看到O点)旋转,图中所示灰色尖角表明在某一个水平转角时,所述激光雷达的所有通道均进行收发测距,而图中所示黑色尖角表明在另一水平转角时,所述激光雷达只有部分的通道进行收发测距,因此灰色尖角所代表的收发测距通道数高于黑色尖角代表的收发测距通道数。由此可知,可以通过控制激光雷达在不同水平角度时和/或水平视场发光的通道数,来调节激光雷达扫描点云的疏密,从而调节水平角度分辨率。通过本方案,可以得到期望或者适当的激光雷达点云的疏 密程度,从而可以最大限度地利用有限的飞行时间,节省激光雷达的功耗。
在步骤S102:接收所述探测激光束在目标物上反射的回波,并转换为电信号。所述探测激光束被发射至目标物周围的环境中,遇到所述目标物后被反射,反射后的回波被所述激光雷达接收,将回波信号转换为电信号输出。
在步骤S103:根据所述电信号,计算所述目标物与所述激光雷达之间的距离和/或反射率。
图7示出了采用现有扫描方案得到的激光雷达点云的示意图,其中所述激光雷达的所述多个激光器沿着其转轴方向排布成一列或多列。图7中示出了激光雷达在水平方向和竖直方向(即平行于转轴的方向)上的点云分布。由图7可以看出,处于中间若干行(中心通道)的点云与处于上下两侧的若干行(非中心通道)的点云相比,在竖直方向上的密度更大,在水平方向上的密度相同。这表明激光雷达的中心通道(由相对靠近中间位置的激光器与其对应的探测器组成)的垂直角度分辨率被加密,水平角度分辨率在各处均相同。因此,仅对垂直角度分辨率进行调节,可选地,可以通过将激光雷达上的一列或多列靠近中间位置的激光器排列较密,将相对靠近两侧位置的激光器排列较疏来实现。下面将参照图7所示的点云,结合图8、图9、图10、图11对激光雷达如何调节水平角度分辨率做进一步说明。
根据本发明的一个实施例,其中所述步骤S101包括:控制所述多个激光器,以彼此相对不同的频率发射探测激光束。参照图8A和8B所示,图8A和8B示出了根据本发明实施例的激光雷达点云的局部示意图,其中处于中心通道的点云与处于非中心通道的点云相比,在水平方向上的密度更大,这表明激光雷达中相对靠近中间位置的激光器以高于相对靠近两侧的激光器的发射频率发出探测激光束,即所述中心通道的水平角度分辨率被加密,由此实现激光雷达对水平方向角度分辨率的调节。与图7所示的点云相比,在图8A中,处于中间位置的通道的水平角度分辨率保持与图7所示的基本一致,而处于两端位置处的通道的水平角度分辨率相比图7所示的被大幅降低,例如降低为图7的50%。在图8B所示的点云中,处于中间位置的通道的水平角度分辨率为处于两端位置处的通道的水平角度分辨率的两倍,即中间位置的通道的激光器每发射两次探测激光束,处于两端位置的通道的激光器仅发射一次探测激光束。当然,二者之间的发射频率也可以根据实际需求而设计为其他的比例。
根据本发明的一个实施例,其中所述步骤S101包括:控制所述多个激光器,在不同的水平视场内,以相对不同的频率发射探测激光束。参照图9A所示,图9A示出了根据本发明一个实施例的激光雷达点云的局部示意图。不同于图8,图9A中水平方向上的点云分布并不均匀,水平方向的视场被分为三个区域,从左到右分别为9-1、9-2、9-3,中间的区域9-2比两侧的区域9-1和9-3在水平方向上的点云密度更大,这表明激光雷达在水平视场内的不同区域发射频率不同的探测激光束,由此实现激光雷达对水平方向角度分辨率的调节。同理可选地,图9A中处于中心通道的点云与处于非中心通道的点云相比,在竖直方向上的密度更大,因此在对激光雷达的水平角度分辨率调节的同时,也可以对激光雷达的垂直方向角度分辨率的调节。
图9B示出了根据本发明另一个实施例的激光雷达点云的局部示意图。如图9B所 示,所述激光雷达的多个通道或者所有通道在水平视场内具有不同的水平角度分辨率,在图9B的水平视场的中间位置处,各个通道的水平角度分辨率显著高于水平视场的边缘位置处。
图10A示出了根据本发明一个实施例的激光雷达点云的局部示意图,与图9A类似,图10A中水平方向的视场也被从左到右分为10-1、10-2、10-3三个区域,与图9A不同的是,水平方向上,所述区域10-2在所述中心通道上比两侧的区域10-1和10-3的点云密度更高,非中心通道上所述三个区域的点云密度相同,即通过对中心通道的部分水平角度区域进行加密,来对激光雷达的水平角度分辨率进行调节。本领域的技术人员可以理解,可以根据需要,选择在至少部分水平视场内,控制激光雷达的处于所述一列或多列中相对靠垂直视场中心位置对应的激光器,以高于处于相对靠垂直视场边缘位置对应的激光器的频率,发射所述探测激光束,来得到非均匀的水平角度分辨率。
图10B示出了根据本发明另一个实施例的激光雷达点云的局部示意图,类似于图9B。但是与图9B不同之处在于,在图10B中,在水平视场的中间位置处,激光雷达的相对靠垂直视场中心位置对应的激光器,以高于处于相对靠垂直视场边缘位置对应的激光器的频率,发射所述探测激光束。
根据本发明的一个实施例,其中所述步骤S101包括:控制所述多个激光器,在不同的水平角度上,选择至少部分不同的激光器发射探测激光束。参照图11A所示,图11A示出了根据本发明一个实施例的激光雷达点云的局部示意图。由图11A可以看出,在竖直方向上点云交错排列,以收发总通道个数为X的激光雷达为例,在t1时刻,所述激光雷达对应的水平角度为α1,此时控制收发通道1至通道X1进行收发测距;在t2时刻,所述激光雷达对应的水平角度为α2,此时控制收发通道1+X1至通道X进行收发测距;在t3时刻,所述激光雷达对应的水平角度为α3,此时控制收发通道1至通道X1进行收发测距(其中所述X1小于所述X),如此重复,总收发通道中的部分收发通道进行交错收发测距。根据本发明的另一个实施例,在t1时刻,对应水平角度为α1,此时控制收发通道1至通道X1进行收发测距;在t2时刻,对应水平角度为α2,此时控制收发通道1+X1至通道X2进行收发测距;在t3时刻,对应水平角度为α3,此时控制收发通道1+X2至通道X进行收发测距,其中所述X1小于所述X2,所述X2小于所述X。即可以根据需要,选择多个不同的水平视场,控制不同的多个收发通道,在所述水平视场内进行收发测距,以使所述激光雷达得到不同的水平角度分辨率。
图11A中,激光雷达在垂直视场内具有非均匀的分辨率。图11B中示出了激光雷达在垂直视场内具有均匀分辨率情形下的点云的局部示意图。
图12和图15A分别示出了根据本发明一个实施例的安装有所述激光雷达的车辆的示意图。所述步骤S101包括:控制所述多个激光器,使得在安装有所述激光雷达的车辆的行进方向前侧的预设视场内,以比所述预设视场外更高的频率发射所述探测激光束。下面将结合图12至图16做详细说明。
如图12所示,所述激光雷达安装在所述车辆的顶部,并绕其转轴旋转。所述车辆向前行驶,其主要视场对应的是激光雷达靠近中心通道位置的探测范围,这种情形下, 中心通道的水平角度分辨率相比两侧的非中心通道的水平角度分辨率更为重要,因此控制所述处于相对靠近中间位置的激光器,以高于处于相对靠近两侧位置的激光器的频率发射探测激光束,使得所述车辆在向前行驶时的主要视场内得到更密的点云,从而获得更多探测信息。优选地,所述激光雷达具有128个通道或者线束,设置通道26至通道89为水平加密通道,每隔0.1°进行一次收发测距,设置其他通道每隔0.2°进行一次收发测距。
图13A和13B分别示出了根据本发明实施例的激光器的排布示意图,所述激光器沿着激光雷达的转轴方向排布成一列或多列,图13A和图13B示意性地示出了所述一列激光器的排布,其中图13A所示,所述激光器在垂直方向上均匀排列;图13B所示,所述激光器在垂直方向上非均匀排列,具体排列为中间密两边疏。可选地,图12中所述的激光雷达采用图13B所示的激光器排列方式,并对所述中心通道的水平角度分辨率加密,由此可以实现同时调节水平角度分辨率和垂直角度分辨率。本领域的技术人员可以理解,在实际的激光雷达中,可以设置多列如图13A及图13B示出的光源,并且在每一列中,光源的类型可以相同,也可以不同,其中所述光源可选地为本发明中的激光器。根据本发明的一个实施例,所述激光雷达中的所有光源列可以均设置为如图13A所示的均匀排列(点云图例如图8B、9B、10B、11B所示),也可以均设置为如图13B所示的非均匀排列(点云图例如图8A、9A、10A、11A所示);可以是其中部分光源列设置为如图13A所示的均匀排列,其余部分光源列设置为如图13B所示的非均匀排列,具体的光源列个数可以根据实际需要进行设置。根据本发明的另一个实施例,其中多个光源列的彼此排布关系也可以不同,例如其中部分光源列竖直排列,其余部分光源列并排对齐排列,或并排交错排列,以实现不同应用场景的不同探测需求。
图14示出了根据本发明一个实施例的扫描点云的局部示意图,如图所示,所述激光雷达的转速固定不变,图中示出的四条扫描线相对均匀排布,其中α1>α2,所述转角α1对应所述激光雷达从点云上的点P51扫描至点P52,所述转角α2对应所述激光雷达从点云上的点P52扫描至点P53。类似地,转角α3对应所述激光雷达从点云上的点P11扫描至点P12,α4、α5、α6以此类推。以P1X为例,α3(P11→P12)=α4(P14→P15)>α5(P12→P13)=α6(P13→P14),因此可以看出在视场为α1范围内的水平角度分辨率低于视场为α2范围内的水平角度分辨率。
如图15A和15B所示,所述激光雷达安装在所述车辆的前部如车灯的位置,并绕其转轴旋转。图15A和图15B分别示出了所述车辆的侧视图和正视图,如图所示,所述激光雷达用于补盲雷达,其主要视场为车辆前进方向的水平角度范围为α的视场,对应的是激光雷达在所述视场α内的探测范围。参照图16A和16B,图16A示出了图15A和15B所示的激光雷达在水平角度范围内的收发测距示意图,图16B示出了激光雷达的点云图。这种情形下,设置所述激光雷达的多个收发通道在视场α内以高于视场α的视场的频率发射探测激光束,或者在视场α之外的视场时使得收发通道关闭,使得所述车辆在向前行驶时的水平角度范围为α的视场内得到更密的点云,从而获得更多探测信息。如图16B所示,其中α2-α1=α,在α1到α2的水平视场内,激光雷达的收发通道进行正常的探测,或者以较高的频率进行探测。在0度到α1以及α2到360 度的水平视场内,激光雷达的收发通道可以停止发光,或者可替换的,以较低的频率进行发光探测。
根据本发明的一个实施例,所述多个激光器排布成沿着所述转轴方向的一列或多列,所述探测方法还包括:接收场景信息。其中所述步骤S101还包括:根据所述场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器的发光。其中对所述场景信息进行判断,可以借助其他传感器例如摄像头来实现,具体地,将激光雷达与摄像头配合使用,通过摄像头进行图像采集和图像识别为激光雷达提供一些场景的信息,以供其判断;也可以只靠激光雷达获取点云,通过点云信息来判断当前车辆所处的环境及场景信息。
图17示出了根据本发明一个实施例的安装有激光雷达的车辆处于下坡状态的示意图,可选地,图18A和18B示出了图17所示的激光雷达中激光器的排布示意图,其中图18A所示为所述激光器在垂直方向上均匀排列的情况,图18B所示为所述激光器在垂直方向上非均匀排列的情况。如图17所示,所述激光雷达安装在所述车辆的顶部,并绕其转轴旋转。当检测到或接收到安装有所述激光雷达的所述车辆处于下坡行驶时,此时其主要视场为垂直于所述转轴并偏向天空的角度范围,对应的是激光雷达相对靠近下方通道位置的探测范围,这种情形下,不管是图18A还是图18B的排列情况,都可以通过控制至少其中一列激光器中处于相对靠近下方的激光器(例如下半部)以比处于相对靠近上方的激光器(例如上半部)更高的频率发射所述探测激光束,使所述激光雷达在靠近上方天空的视场内得到的更密的点云,从而获得更多探测信息。图18C示出了图18A的激光器排列情形下的点云的局部示意图。
图19示出了根据本发明一个实施例的安装有激光雷达的车辆处于上坡状态的示意图,可选地,图20A和20B示出了图19所示的激光雷达中激光器的排布示意图,其中图20A所示为所述激光器在垂直方向上均匀排列的情况,图20B所示为所述激光器在垂直方向上非均匀排列的情况。如图19所示,所述激光雷达安装在所述车辆的顶部,并绕其转轴旋转。当检测到或接收到安装有所述激光雷达的所述车辆处于上坡行驶时,此时其主要视场为垂直于所述转轴并偏向地面的角度范围,对应的是激光雷达相对靠近上方通道位置的探测范围,这种情形下,不管是图20A还是图20B的排列情况,都可以通过控制至少其中一列激光器中处于相对靠近上方的激光器(例如上半部)以比处于相对靠近下方的激光器(例如下半部)更高的频率发射所述探测激光束,使所述激光雷达在靠近下方地面的视场内得到的更密的点云,从而获得更多探测信息。图20C示出了图20B的激光器排列情形下的点云的局部示意图。
根据本发明的一个实施例,当检测到预设的障碍物时,根据所述障碍物的类型和位置,控制所述激光器在下一次扫描所述障碍物时,以不同于上次扫描同一障碍物的频率进行探测。激光雷达的处理单元可以对点云进行处理和识别,可选的,激光雷达外部的点云处理单元可以对点云进行处理和识别,从而识别出障碍物的类型。当识别出预设的障碍物类型时,根据其类型和位置,在激光雷达下一次旋转到与该障碍物相对应的水平角度时,可以按照不同于上次扫描同一障碍物的频率进行探测。例如图21所示,根据激光雷达第一次扫描的点云判断出障碍物为车辆,根据激光雷达的点云可 以判断该车辆行驶的方向和相对速度,同时结合激光雷达的转速,可以预估下一次扫描到该车辆的时间或者所对应的水平视场角度。相应的,在激光雷达第二次扫描到该水平视场角度时,可以调整探测的频率。
在自动驾驶的场景中,行人和交通锥是自动驾驶系统需要特别关注的对象,或者说是交通敏感物,就是会影响到驾驶员决断是否减速或者停车的一些物体。图22和图23分别示出了激光雷达扫描到交通锥或者行人的情形。根据本发明,当检测到行人或者交通锥时,可以控制所述激光器在下一次扫描所述障碍物时,以更高的频率进行探测。
而当扫描到一些道路两旁静态的物体例如树木时,在下一次扫描时,可以以更低的频率进行探测,如图24所示。
本发明还涉及一种激光雷达,如图25示出的根据本发明一个实施例的激光雷达的框图。所述激光雷达200可绕其转轴旋转,所述激光雷达200包括:发射单元210、接收单元220和控制单元230。其中所述发射单元210包括多个激光器211,所述多个激光器211配置成可发射探测激光束L1用于探测目标物OB。所述接收单元220用于接收所述探测激光束L1在目标物OB上反射的回波L1’,并转换为电信号。所述控制单元230与所述发射单元210耦接,并配置成可控制所述多个激光器211发射所述探测激光束L1,使得激光雷达200具有非均匀的水平角度分辨率。
根据本发明的一个实施例,所述控制单元230配置成:控制所述多个激光器211,以彼此相对不同的频率发射探测激光束L1。参照图8A所示,控制激光雷达中相对靠近中间位置的激光器以高于相对靠近两侧的激光器的发射频率发出探测激光束,使中心通道的点云密度高于非中心通道的点云密度,实现中心通道的水平角度分辨率加密。
根据本发明的一个实施例,所述控制单元230配置成:控制所述多个激光器211,在不同的水平视场内,以相对不同的频率发射探测激光束L1。参照图9A所示,控制激光雷达的多个激光器211在水平视场内的不同区域(9-1、9-2、9-3)发射频率不同的探测激光束,得到密度各不相同的点云,由此实现激光雷达对水平方向角度分辨率的调节。
根据本发明的一个实施例,所述控制单元230配置成:控制所述多个激光器211,在不同的水平角度上,选择至少部分不同的激光器发射探测激光束L1。参照图11A所示,对于具有总收发通道数为X的激光雷达,在不同时刻t1、t2、t3所分别对应的水平角度α1、α2、α3,分别控制所述激光雷达的收发通道1至通道X1、通道1+X1至通道X、通道1至通道X1进行收发测距(其中所述X1小于X),得到交错排列的点云,以实现对激光雷达水平角度分辨率的调节。
根据本发明的一个实施例,参照图13A和13B所示,其中所述多个激光器211沿着转轴方向排布成一列或多列,所述控制单元230配置成使得:在至少部分水平视场内,处于所述一列或多列中相对靠垂直视场中心位置对应的激光器以高于处于相对靠垂直视场边缘位置对应的激光器的频率发射所述探测激光束L1,如图11A和11B所示。
根据本发明的一个实施例,参照图16A所示,其中所述控制单元230配置成使得:所述多个激光器211在安装有所述激光雷达200的车辆的行进方向前侧的预设视场α 内,以比所述预设视场α外更高的频率发射所述探测激光束L1,以在所述预设视场α内得到更多的探测信息。
根据本发明的一个实施例,其中所述多个激光器211排布成沿着所述转轴方向的一列或多列,所述控制单元230配置成可根据接收的场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器211的发光。其中所述场景信息包括安装有所述激光雷达的车辆处于下坡状态和上坡状态,下面将结合图17、图18、图19、图20对不同场景下所述激光器的调节作进一步说明。
根据本发明的一个实施例,参照图17和图18A、18B和18C所示,所述控制单元230配置成:当检测到或接收到安装有所述激光雷达200的车辆处于下坡状态时,使得至少其中一列激光器中处于相对靠近下方的激光器以比处于相对靠近上方的激光器更高的频率发射所述探测激光束L1,以使所述下坡车辆在更被关注的垂直角度偏向于天空的视场获得更密的点云。
根据本发明的一个实施例,参照图19和图20A、20B和20C所示,所述控制单元230配置成:当检测到或接收到安装有所述激光雷达200的车辆处于上坡状态时,使得至少其中一列激光器中处于相对靠近上方的激光器以比处于相对靠近下方的激光器更高的频率发射所述探测激光束L1,以使所述上坡车辆在更被关注的垂直角度偏向于地面的视场获得更密的点云。
根据本发明的一个实施例,参照图13B所示,在至少其中一列激光器中,处于相对靠垂直视场中心位置对应的激光器的排布密度高于处于相对靠垂直视场边缘位置对应的激光器的排布密度。
根据本发明的一个实施例,所述控制单元适于当检测到预设的障碍物时,根据所述障碍物的类型和位置,控制在下一次扫描所述障碍物时,以不同于上次扫描同一障碍物的频率进行探测。
根据本发明的一个实施例,所述控制单元适于当检测到人或者交通锥时,控制所述激光器在下一次扫描所述障碍物时,以更高的频率进行探测,如图22和图23所示。
根据本发明的一个实施例,所述控制单元适于当检测到树木时,控制所述激光器在下一次扫描所述障碍物时,以更低的频率进行探测,如图24所示。
本发明还涉及一种车辆系统,如图26示出的根据本发明一个实施例的车辆系统的示意图,所述车辆系统300包括:车辆本体310和所述激光雷达200。其中所述激光雷达200安装在所述车辆本体310上,以对所述车辆本体310周围的目标物进行探测。
根据本发明的一个实施例,参照图15a所示,其中所述激光雷达200安装在所述车辆本体310的前端,所述激光雷达200的控制单元配置成使得:所述多个激光器在与安装有所述激光雷达200的车辆的行进方向前侧的预设视场α内,以比所述预设视场α外更高的频率发射所述探测激光束。
根据本发明的一个实施例,参照图12所示,其中所述激光雷达200安装在所述车辆本体310的车顶上,所述多个激光器排布成沿着所述转轴方向的一列或多列。所述车辆系统300还包括摄像单元(图中未示出),所述摄像单元可采集所述车辆周围的图像并根据所述图像确定场景信息,所述激光雷达200的控制单元与所述摄像单元通讯 以接收所述场景信息,并配置成可根据所述场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器的发光。所述场景信息例如可包括:车辆处于下坡状态或车辆处于上坡状态。当所述车辆处于下坡状态时,参照图17所示,控制所述激光雷达200的至少一列激光器中处于相对靠近下方的激光器以比处于相对靠近上方的激光器更高的频率发射所述探测激光束;当所述车辆处于上坡状态时,参照图19所示,控制所述激光雷达200的至少一列激光器中处于相对靠近上方的激光器以比处于相对靠近下方的激光器更高的频率发射所述探测激光束,以调节激光雷达200的水平角度分辨率。
本发明的实施例提出了一种调节水平角度分辨率的方法,可以根据实际应用场景的不同需要,通过控制激光雷达的不同通道或者线束按照不同的频率进行收发测距,使得激光雷达具有非均匀的水平角度分辨率,从而实现对激光雷达水平角度分辨率的可调控。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种激光雷达的探测方法,所述激光雷达可绕其转轴匀速旋转,包括具有多个激光器的发射单元,所述探测方法包括:
    S101:控制所述多个激光器发射探测激光束,使得激光雷达具有非均匀的水平角度分辨率;
    S102:接收所述探测激光束在目标物上反射的回波,并转换为电信号;
    S103:根据所述电信号,计算所述目标物的距离和/或反射率。
  2. 根据权利要求1所述的探测方法,其中所述步骤S101包括:
    控制所述多个激光器,以彼此相对不同的频率发射探测激光束;和/或
    控制所述多个激光器,在不同的水平视场内,以相对不同的频率发射探测激光束;和/或
    控制所述多个激光器,在不同的水平角度上,选择至少部分不同的激光器发射探测激光束。
  3. 根据权利要求1或2所述的探测方法,其中所述多个激光器沿着转轴方向排布成一列或多列,所述步骤S101包括:在至少部分水平视场内,控制处于所述一列或多列中相对靠垂直视场中心位置对应的激光器,以高于处于相对靠垂直视场边缘位置对应的激光器的频率,发射所述探测激光束。
  4. 根据权利要求1或2所述的探测方法,其中所述步骤S101包括:控制所述多个激光器,使得在安装有所述激光雷达的车辆的行进方向前侧的预设视场内,以比所述预设视场外更高的频率发射所述探测激光束。
  5. 根据权利要求1或2所述的探测方法,其中所述多个激光器排布成沿着所述转轴方向的一列或多列,所述探测方法还包括:
    接收场景信息,
    其中所述步骤S101还包括:根据所述场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器的发光。
  6. 根据权利要求5所述的探测方法,所述步骤S101包括:当检测到或接收到安装有所述激光雷达的车辆处于下坡状态时,控制至少其中一列激光器中处于相对靠近下方的激光器以比处于相对靠近上方的激光器更高的频率发射所述探测激光束。
  7. 根据权利要求5所述的探测方法,所述步骤S101包括:当检测到或接收到安装有所述激光雷达的车辆处于上坡状态时,控制至少其中一列激光器中处于相对靠近上方的激光器以比处于相对靠近下方的激光器更高的频率发射所述探测激光束。
  8. 根据权利要求5所述的探测方法,所述步骤S101包括:当检测到预设的障碍物时,根据所述障碍物的类型和运动速度,控制所述激光器在下一次扫描所述障碍物时,以不同于上次扫描所述障碍物的频率进行探测。
  9. 根据权利要求8所述的探测方法,所述步骤S101包括:当检测到交通敏感物时,控制所述激光器在下一次扫描所述障碍物时,以更高的频率进行探测,所述交通敏感物包括行人或者交通锥;和/或
    当检测到非敏感物时,控制所述激光器在下一次扫描所述障碍物时,以更低的频率进行探测,其中所述非敏感物包括树木。
  10. 一种激光雷达,所述激光雷达可绕其转轴匀速旋转,所述激光雷达包括:
    发射单元,包括多个激光器,所述多个激光器配置成可发射探测激光束用于探测目标物;
    接收单元,用于接收所述探测激光束在目标物上反射的回波,并转换为电信号;和
    控制单元,所述控制单元与所述发射单元耦接,并配置成可控制所述多个激光器发射所述探测激光束,使得激光雷达具有非均匀的水平角度分辨率。
  11. 根据权利要求10所述的激光雷达,其中所述控制单元配置成:控制所述多个激光器,以彼此相对不同的频率发射探测激光束;和/或
    控制所述多个激光器,在不同的水平视场内,以相对不同的频率发射探测激光束;和/或
    控制所述多个激光器,在不同的水平角度上,选择至少部分不同的激光器发射探测激光束。
  12. 根据权利要求10或11所述的激光雷达,其中所述多个激光器沿着转轴方向排布成一列或多列,所述控制单元配置成使得:在至少部分水平视场内,处于所述一列或多列中相对靠垂直视场中心位置对应的激光器以高于处于相对靠垂直视场边缘位置对应的激光器的频率发射所述探测激光束。
  13. 根据权利要求10或11所述的激光雷达,其中所述控制单元配置成使得:所述多个激光器在安装有所述激光雷达的车辆的行进方向前侧的预设视场内,以比所述预设视场外更高的频率发射所述探测激光束。
  14. 根据权利要求10或11所述的激光雷达,其中所述多个激光器排布成沿着所述转轴方向的一列或多列,所述控制单元配置成可根据接收的场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器的发光。
  15. 根据权利要求10或11所述的激光雷达,所述控制单元适于当检测到预设的障碍物时,根据所述障碍物的类型和位置,控制在下一次扫描所述障碍物时,以不同于上次扫描同一障碍物的频率进行探测。
  16. 根据权利要求15所述的激光雷达,其中所述控制单元适于当检测到人或者交通锥时,控制所述激光器在下一次扫描所述障碍物时,以更高的频率进行探测。
  17. 根据权利要求15所述的激光雷达,其中所述控制单元适于当检测到树木时,控制所述激光器在下一次扫描所述障碍物时,以更低的频率进行探测。
  18. 一种车辆系统,包括:
    车辆本体;和
    如权利要求10-17中任一项所述的激光雷达,所述激光雷达安装在所述车辆本体上,以对所述车辆本体周围的目标物进行探测。
  19. 根据权利要求18所述的车辆系统,其中所述激光雷达安装在所述车辆本体的前端,所述激光雷达的控制单元配置成使得:所述多个激光器在与安装有所述激光雷达的车辆的行进方向前侧的预设视场内,以比所述预设视场外更高的频率发射所述探测激光束。
  20. 根据权利要求18所述的车辆系统,其中所述激光雷达安装在所述车辆本体的车顶上,所述多个激光器排布成沿着所述转轴方向的一列或多列,所述车辆系统还包括摄像单元,所述摄像单元可采集所述车辆周围的图像并根据所述图像确定场景信息,所述激光雷达的控制单元与所述摄像单元通讯以接收所述场景信息,并配置成可根据所述场景信息,确定期望的激光雷达点云的水平角度分辨率,进而调节所述激光器的发光。
PCT/CN2021/106692 2020-08-21 2021-07-16 激光雷达的探测方法、激光雷达及包括其的车辆系统 WO2022037345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/091,887 US20230137192A1 (en) 2020-08-21 2022-12-30 Detection method of lidar, lidar, and system for vehicle including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010851537.4 2020-08-21
CN202010851537.4A CN112099053A (zh) 2020-08-21 2020-08-21 激光雷达的探测方法、激光雷达及包括其的车辆系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/091,887 Continuation US20230137192A1 (en) 2020-08-21 2022-12-30 Detection method of lidar, lidar, and system for vehicle including the same

Publications (1)

Publication Number Publication Date
WO2022037345A1 true WO2022037345A1 (zh) 2022-02-24

Family

ID=73753408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106692 WO2022037345A1 (zh) 2020-08-21 2021-07-16 激光雷达的探测方法、激光雷达及包括其的车辆系统

Country Status (3)

Country Link
US (1) US20230137192A1 (zh)
CN (1) CN112099053A (zh)
WO (1) WO2022037345A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099053A (zh) * 2020-08-21 2020-12-18 上海禾赛光电科技有限公司 激光雷达的探测方法、激光雷达及包括其的车辆系统
CN112986951B (zh) * 2021-04-29 2023-03-17 上海禾赛科技有限公司 使用激光雷达测量目标物反射率的方法及激光雷达
CN113468735B (zh) * 2021-06-24 2024-03-22 国汽(北京)智能网联汽车研究院有限公司 一种激光雷达仿真方法、装置、系统和存储介质
CN115616533A (zh) * 2021-07-16 2023-01-17 上海禾赛科技有限公司 激光雷达的探测方法、发射单元以及激光雷达
CN115704904B (zh) * 2021-08-09 2023-09-15 北京一径科技有限公司 激光雷达系统
CN116359885A (zh) * 2021-12-28 2023-06-30 上海禾赛科技有限公司 激光雷达的探测方法以及激光雷达
CN114325741B (zh) * 2021-12-31 2023-04-07 探维科技(北京)有限公司 探测模组及激光测距系统
WO2023141782A1 (zh) * 2022-01-25 2023-08-03 华为技术有限公司 激光雷达和激光雷达的控制方法
CN117916631A (zh) * 2022-02-21 2024-04-19 深圳市大疆创新科技有限公司 一种障碍物的探测方法、装置、可移动平台及程序产品
CN116881625B (zh) * 2023-09-06 2023-11-14 南京邮电大学 一种多无人艇探测正态分布目标概率的计算方法
CN117761701B (zh) * 2024-02-22 2024-05-17 浙江智加信息科技有限公司 一种全天候工作的激光雷达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170031012A1 (en) * 2015-07-30 2017-02-02 BAE SYSTEMS Information and Electronic Systems Integration Inc.. Frequency measurement focal plane array input circuit
CN107238827A (zh) * 2016-03-29 2017-10-10 莱卡地球系统公开股份有限公司 激光扫描器
CN206773192U (zh) * 2017-06-19 2017-12-19 上海禾赛光电科技有限公司 基于多个非均匀分布激光器的激光雷达
CN109116366A (zh) * 2018-06-27 2019-01-01 上海禾赛光电科技有限公司 一种非均匀脉冲能量的多线束激光雷达
CN109597093A (zh) * 2018-11-14 2019-04-09 深圳市速腾聚创科技有限公司 激光雷达的参数调整方法及装置
CN112099053A (zh) * 2020-08-21 2020-12-18 上海禾赛光电科技有限公司 激光雷达的探测方法、激光雷达及包括其的车辆系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219532B (zh) * 2017-06-29 2019-05-21 西安知微传感技术有限公司 基于mems微扫描镜的三维激光雷达及测距方法
CN108061904B (zh) * 2017-12-29 2020-12-22 华为技术有限公司 多线激光雷达
CN109116367B (zh) * 2018-06-27 2020-05-19 上海禾赛光电科技有限公司 一种激光雷达
CN109655810B (zh) * 2019-03-05 2021-02-19 深圳市镭神智能系统有限公司 一种激光雷达抗干扰的方法、激光雷达及车辆
CN110174660B (zh) * 2019-04-25 2020-09-25 上海禾赛光电科技有限公司 激光雷达及其数据处理方法
CN210572728U (zh) * 2019-06-26 2020-05-19 深圳市镭神智能系统有限公司 一种激光雷达及激光雷达系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170031012A1 (en) * 2015-07-30 2017-02-02 BAE SYSTEMS Information and Electronic Systems Integration Inc.. Frequency measurement focal plane array input circuit
CN107238827A (zh) * 2016-03-29 2017-10-10 莱卡地球系统公开股份有限公司 激光扫描器
CN206773192U (zh) * 2017-06-19 2017-12-19 上海禾赛光电科技有限公司 基于多个非均匀分布激光器的激光雷达
CN109116366A (zh) * 2018-06-27 2019-01-01 上海禾赛光电科技有限公司 一种非均匀脉冲能量的多线束激光雷达
CN109597093A (zh) * 2018-11-14 2019-04-09 深圳市速腾聚创科技有限公司 激光雷达的参数调整方法及装置
CN112099053A (zh) * 2020-08-21 2020-12-18 上海禾赛光电科技有限公司 激光雷达的探测方法、激光雷达及包括其的车辆系统

Also Published As

Publication number Publication date
US20230137192A1 (en) 2023-05-04
CN112099053A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2022037345A1 (zh) 激光雷达的探测方法、激光雷达及包括其的车辆系统
US10551494B2 (en) Road information detection apparatus and road information detection method
US20180306905A1 (en) Method of Providing a Dynamic Region of interest in a LIDAR System
US20230417879A1 (en) Fiber-based transmitter and receiver channels of light detection and ranging systems
CN108955584A (zh) 一种路面探测方法及装置
KR20220097220A (ko) 서로 다른 지향각을 갖는 복수의 채널을 구비하는 라이다 광원용 발광장치
US20220283311A1 (en) Enhancement of lidar road detection
CN117561458A (zh) 用于车辆角安装的lidar系统和方法
US6288774B1 (en) Distance measuring device
KR102394452B1 (ko) 빔 조향 레이더를 이용한 신호대기 차량 검지 시스템 및 그 방법
US20230266443A1 (en) Compact lidar design with high resolution and ultra-wide field of view
US20230138819A1 (en) Compact lidar systems for detecting objects in blind-spot areas
US11662440B2 (en) Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner
WO2022187060A2 (en) Enhancement of lidar road detection
WO2022187170A1 (en) Fiber-based transmitter and receiver channels of light detection and ranging systems
US20230213623A1 (en) Systems and methods for scanning a region of interest using a light detection and ranging scanner
US20240134011A1 (en) Two dimensional transmitter array-based lidar
CN216900931U (zh) 混合激光雷达及车辆
US20240230848A9 (en) Two dimensional transmitter array-based lidar
US20240168206A1 (en) Systems and methods for polygon mirror angles adjustment
US12013490B2 (en) Distance measurement unit
US20240103174A1 (en) Point cloud data compression via below horizon region definition
US20240210541A1 (en) Detector alignment method for lidar production
US20220342045A1 (en) Compact lidar design with high resolution and ultra-wide field of view
US20240230898A9 (en) Laser source with multiple seeds for lidar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857440

Country of ref document: EP

Kind code of ref document: A1