WO2022037186A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022037186A1
WO2022037186A1 PCT/CN2021/098264 CN2021098264W WO2022037186A1 WO 2022037186 A1 WO2022037186 A1 WO 2022037186A1 CN 2021098264 W CN2021098264 W CN 2021098264W WO 2022037186 A1 WO2022037186 A1 WO 2022037186A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
fiber ferrule
fixing plate
circuit board
Prior art date
Application number
PCT/CN2021/098264
Other languages
English (en)
French (fr)
Inventor
崔伟
刘旭霞
司宝峰
马晓磊
杨思更
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010833918.XA external-priority patent/CN114077019B/zh
Priority claimed from CN202021793499.3U external-priority patent/CN212647091U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US17/547,770 priority Critical patent/US12066670B2/en
Publication of WO2022037186A1 publication Critical patent/WO2022037186A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • G02B6/4261Packages with mounting structures to be pluggable or detachable, e.g. having latches or rails
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • optical communication In new business and application modes such as cloud computing, mobile Internet, and video, optical communication technology will be used.
  • optical communication optical module is a tool to realize the mutual conversion of photoelectric signals, and it is one of the key components in optical communication equipment. .
  • the optical module is mainly used for photoelectric and electro-optical conversion.
  • the transmitting end converts the electrical signal into an optical signal and transmits it through an optical fiber, and the receiving end converts the received optical signal into an electrical signal.
  • the end faces are abutted, and the edge of the other side is abutted with the first boss; the side abutting the end face of the optical fiber ferrule is provided with an opening with a lower end opening, and the inner optical fiber is inserted through the opening in the optical fiber ferrule.
  • an embodiment of the present disclosure discloses an optical module, including: a circuit board, on which a jack is arranged; an optical chip, arranged on the circuit board, for generating an optical signal or receiving an optical signal; a lens assembly , which is covered on the optical chip and used to change the propagation direction of the optical signal; the optical fiber assembly includes an optical fiber ferrule, an internal optical fiber and an optical fiber adapter connected in sequence, and the optical fiber ferrule is inserted into the lens assembly, so that the The optical fiber adapter is used to connect external optical fibers; it is used to receive the optical signal through the lens assembly or the optical signal transmitted by the external optical fiber; the fixing plate is arranged between the optical fiber adapter and the end face of the optical fiber ferrule , its one side is in contact with the end face of the optical fiber ferrule, and its bottom end is inserted into the jack; its side abutting with the end face of the optical fiber ferrule is provided with an opening, and the inner optical fiber passes through the hole.
  • the opening is
  • FIG. 2 is a schematic structural diagram of an optical network terminal
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 4 is an exploded schematic diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an embodiment of the optical module in FIG. 4 after removing the upper casing, the lower casing and the unlocking part;
  • Fig. 6 is a partial exploded schematic diagram in Fig. 5;
  • FIG. 7 is an exploded schematic diagram of a lens assembly and a circuit board in an optical module provided by an embodiment of the present disclosure
  • FIG. 8 is an exploded schematic diagram of an optical fiber assembly and a fixing plate in an optical module according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a fixing plate in an optical module according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure with the upper casing removed;
  • Fig. 11 is the enlarged schematic diagram at A in Fig. 10;
  • FIG. 12 is a transverse cross-sectional view of a fixing plate in an optical module provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of another embodiment of the optical module in FIG. 4 after removing the upper casing, the lower casing and the unlocking part;
  • Fig. 14 is a partial exploded schematic diagram in Fig. 13;
  • 15 is an exploded schematic diagram between an optical fiber assembly and a fixing plate in an optical module according to another embodiment of the present disclosure
  • 16 is a schematic structural diagram of a fixing plate in an optical module according to another embodiment of the present disclosure.
  • FIG. 17 is another perspective view of a fixing plate in an optical module provided by another embodiment of the present disclosure.
  • FIG. 18 is a partial cross-sectional schematic diagram of an optical module provided by another embodiment of the present disclosure.
  • 19 is a schematic partial cross-sectional schematic diagram of another angle of an optical module provided by another embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of a working state of a fixing plate in an optical module according to another embodiment of the present disclosure.
  • FIG. 21 is a schematic diagram of a working effect of a fixing plate in an optical module provided by another embodiment of the present disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to transmit in information transmission equipment such as optical fibers/optical waveguides.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can realize low-cost, low-loss information transmission; while computers and other information processing equipment Electrical signals are used.
  • the optical module realizes the mutual conversion function of the above-mentioned optical and electrical signals in the technical field of optical fiber communication, and the mutual conversion of the optical signal and the electrical signal is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the gold finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data information and grounding, etc.
  • the electrical connection realized by the gold finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of pins on the gold finger has formed a variety of industry protocols/norms.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the sequential connection between the optical network terminal 100 , the optical module 200 , the optical fiber 101 and the network cable 103 .
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing device.
  • the connection between the local information processing device and the remote server is completed by the connection between the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by The optical network terminal 100 with the optical module 200 is completed.
  • the optical network terminal has an optical module interface 102, which is used to access the optical module 200 and establish a two-way electrical signal connection with the optical module 200; Signal connection; the connection between the optical module 200 and the network cable 103 is established through the optical network terminal 100 .
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal serves as the upper computer of the optical module to monitor the operation of the optical module.
  • the remote server has established a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the host computer of the optical module, providing data signals to the optical module and receiving data signals from the optical module.
  • FIG. 2 is a schematic structural diagram of an optical network terminal.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for connecting to an optical module electrical port such as a golden finger;
  • the cage 106 is provided with a heat sink 107, and the heat sink 107 has a first boss portion such as a fin for increasing the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal 100 , specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106 , and the optical port of the optical module is connected to the optical fiber 101 .
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure
  • FIG. 4 is an exploded schematic diagram of an optical module according to an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a circuit board 300 , a lens assembly 400 and an optical fiber assembly 600 .
  • the upper casing 201 is covered with the lower casing 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square body.
  • the lower case 202 includes a main board and two side plates located on both sides of the main board and perpendicular to the main board; the upper case includes a cover plate, and the cover plates are closed on the two sides of the upper case to form a wrapping cavity; the upper shell can also include two side walls located on both sides of the cover plate and vertically arranged with the cover plate, and the two side walls are combined with the two side plates to realize the upper shell 201 The cover is closed on the lower case 202 .
  • the two openings may be openings (204, 205) at both ends of the optical module in the same direction, or may be two openings in different directions of the optical module;
  • the aforementioned same direction refers to the direction in which the connection line between the openings 203 and 2044 is located. , this direction is consistent with the length direction of the optical module 200;
  • the aforementioned different directions refer to the direction in which the connection line between the openings 204 and 205 is located is inconsistent with the length direction of the optical module 200, for example, the opening 203 is located at the end face of the optical module 200, while the opening 204 It is located at the side of the optical module 200 .
  • One of the openings is the electrical port 204, and the gold fingers of the circuit board protrude from the electrical port 204 and are inserted into the host computer such as the optical network terminal; the other opening is the optical port 205, which is used for external optical fiber access to connect the lens inside the optical module
  • the assembly 400; the circuit board 300, the lens assembly 400 and the optical fiber assembly 600 and other optoelectronic devices are located in the package cavity.
  • the combination of the upper casing and the lower casing is adopted to facilitate the installation of the circuit board 300, the lens assembly 400 and the optical fiber assembly 600 into the casing, and the upper casing and the lower casing form the outermost packaging protection of the module Shell;
  • the upper shell and the lower shell are generally made of metal materials, which are used to achieve electromagnetic shielding and heat dissipation.
  • the shell of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning components, heat dissipation and Electromagnetic shielding components cannot be installed and are not conducive to production automation.
  • the unlocking part 203 is located on the outer wall of the enclosing cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging part matched with the cage of the upper computer; pulling the end of the unlocking part 203 can make the unlocking part 203 move relatively on the surface of the outer wall; Fix the optical module in the cage of the host computer; by pulling the unlocking part 203, the engaging part of the unlocking part 203 moves with it, thereby changing the connection relationship between the engaging part and the host computer to release the optical module and the host computer. relationship, so that the optical module can be pulled out from the cage of the host computer.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP), etc.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP, etc.
  • the circuit board 300 is used to provide a signal circuit for electrical connection of the signal, and the signal circuit can provide the signal.
  • the circuit board 300 connects the electrical components in the optical module together according to the circuit design through circuit wiring, so as to realize electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver components are located on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector. Connector connections; these are inconvenient to implement with flexible circuit boards.
  • Flexible circuit boards are also used in some optical modules as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceiver components.
  • the lens assembly 400 is disposed on the circuit board 300, and its function is to change the propagation direction of the optical signal.
  • the optical signal transmitted by the optical fiber assembly 600 enters the lens assembly 400
  • the optical signal is reflected to change the propagation direction of the optical signal, so that it enters the circuit board 300 .
  • the optical signal emitted by the circuit board 300 enters the lens assembly 400
  • the optical signal is reflected to change the propagation direction of the optical signal, so that it is transmitted to the optical fiber assembly 600 .
  • the optical fiber assembly 600 is disposed on the lower casing 202, one end of which is connected to the lens assembly 400, and the other end is connected to an external optical fiber for transmitting optical signals.
  • the optical signal emitted by the lens assembly 400 is transmitted to the external optical fiber through the optical fiber assembly 600
  • the optical signal emitted by the external optical fiber is transmitted into the lens assembly 400 through the optical fiber assembly 600 .
  • FIG. 5 is a schematic structural diagram of an embodiment of the optical module in FIG. 4 after removing the upper casing, the lower casing and the unlocking part
  • FIG. 6 is a partial exploded schematic diagram of FIG. 5 .
  • the optical fiber assembly 600 includes an optical fiber ferrule 601, an internal optical fiber 602, and an optical fiber adapter 603 connected in sequence.
  • One end of the optical fiber ferrule 601 is inserted into the lens assembly 400, and the other end of the optical fiber ferrule 601 is connected to the internal One end of the optical fiber 602 and the other end of the inner optical fiber 602 are inserted into the optical fiber adapter 603 to connect the optical fiber assembly 600 and the lens assembly 400; the other end of the optical fiber adapter 603 is connected to the external optical fiber.
  • the optical signal transmitted by the optical fiber assembly 600 needs to be injected into the lens assembly 400, the optical signal of the external optical fiber enters the lens assembly 400 through the optical fiber adapter 603, the internal optical fiber 602, and the optical fiber ferrule 601 in sequence; When transmitted to the external optical fiber, the optical signal enters the external optical fiber through the optical fiber ferrule 601 , the internal optical fiber 602 and the optical fiber adapter 603 in sequence.
  • FIG. 7 is an exploded schematic diagram of a lens assembly and a circuit board in an optical module according to an embodiment of the present disclosure.
  • the optical module provided by the present disclosure further includes an optical chip, and the optical chip is disposed on the circuit board 300 .
  • an accommodating cavity is provided between the lens assembly 400 and the circuit board 300 , and the optical chip is arranged in the accommodating cavity.
  • the accommodating cavity not only accommodates the light receiving chip 702, but also can accommodate the transimpedance amplifying chip matched with the light receiving chip 702, and the transimpedance amplifying chip matched with the light receiving chip 702 and the light receiving chip Chip 702 is placed in close proximity.
  • the optical chip is the light receiving chip 702
  • the accommodating cavity not only accommodates the light receiving chip 702, but also can accommodate the transimpedance amplifying chip matched with the light receiving chip 702, and the transimpedance amplifying chip matched with the light receiving chip 702 and the light receiving chip Chip 702 is placed in close proximity.
  • the accommodating cavity can accommodate not only the light emitting chip 701, but also the light emitting chip 701 matched with the light emitting chip 701.
  • the driver chip, and the driver chip that cooperates with the light emitting chip 701 and the light emitting chip 701 are arranged in close proximity; it can also accommodate the light receiving chip 702 and the cross-group amplifying chip that cooperates with the light receiving chip 702, and the span
  • the group amplifying chip and the light receiving chip 702 are arranged in close proximity.
  • the specific situation can be set according to the actual situation, which is not limited by the present disclosure.
  • the optical chip is used to generate an optical signal or receive an optical signal.
  • the optical chip since the optical chip may be the light-emitting chip 701 or the light-receiving chip 702, and the light-emitting chip 701 is used to generate the optical signal,
  • the light receiving chip 702 is used for receiving the light signal, so the light chip can generate the light signal or receive the light signal.
  • the lens assembly 400 is disposed on the circuit board 300 and covers the optical chip.
  • the lens assembly 400 is disposed on the circuit board 300 , and is disposed above the optical chip in a cover-type manner.
  • the lens assembly 400 and the circuit board 300 form a packaged light emitting chip 701 and a light receiving chip 702 Equal to the cavity of the optical chip.
  • the light emitted by the light emitting chip 701 enters the optical fiber ferrule 601 after being reflected by the lens assembly 400 , and the light from the optical fiber ferrule 601 enters the light receiving chip 702 after being reflected by the lens assembly 400 .
  • the lens assembly 400 not only functions to seal the optical chip, but also establishes an optical connection between the optical chip and the optical fiber ferrule 601.
  • the lens assembly 400 establishes an optical connection between the optical chip and the optical fiber ferrule 601 , and depends on the function of the lens assembly 400 to change the propagation direction of the optical signal.
  • the optical signal transmitted by the optical fiber ferrule 601 enters the lens assembly 400
  • the optical signal is reflected to change the propagation direction of the optical signal, so that it enters the light receiving chip 702 of the optical chip
  • the optical signal emitted by the light emitting chip 701 enters the lens assembly 400
  • the optical signal is reflected to change the propagation direction of the optical signal, so that it is transmitted to the optical fiber ferrule 601 .
  • the plug-in portion 401 generally includes an inner surface and an outer surface, the inner surface is used for inserting the optical fiber ferrule 601, and the centerlines of the outer surface and the inner surface are consistent.
  • the shape of one end of the optical fiber ferrule 601 matches the shape of the inner surface. Since the cross-sectional shape of one end of the optical fiber ferrule 601 for inserting the plug-in portion is circular, the shape of the inner surface may be circular, oval, rectangular or prismatic.
  • the inner diameter of the inner surface is larger than the inner diameter of one end of the optical fiber ferrule 601 for inserting the plug-in part 401 , so as to facilitate the insertion of the optical fiber ferrule 601 into the plug-in part 401 .
  • the optical fiber ferrule 601 has a accommodating cavity inside, and the inner optical fiber 602 is inserted into the accommodating cavity.
  • the material of the inner optical fiber 602 can be glass or plastic, one end of which is inserted into the optical fiber ferrule 601 and the other end is inserted into the optical fiber adapter 603 for transmitting optical signals.
  • the optical signal emitted by the lens assembly 400 is received through the optical fiber ferrule 601 and transmitted to the optical fiber adapter 603 along the inner optical fiber 602 .
  • the optical signal emitted by the optical fiber adapter 603 is transmitted to the optical fiber ferrule 601 along the inner optical fiber 602 , and the optical fiber ferrule 601 transmits the optical signal into the lens assembly 400 .
  • the optical fiber adapter 603 generally includes an optical fiber ferrule and a sleeve wrapped around the optical fiber ferrule.
  • the optical fiber ferrule of the optical fiber adapter 603 has an accommodation cavity inside, and the inner optical fiber 602 is inserted into the accommodation cavity.
  • the ferrule is inserted into the sleeve, and the end formed by the outer optical fiber is also inserted into the sleeve, thereby realizing the butt joint of the outer optical fiber and the inner optical fiber 602 .
  • An engaging portion is formed on the outside of the sleeve of the optical fiber adapter 603 , and the engaging portion is engaged with the lower casing 202 .
  • the outer side of the optical fiber ferrule 601 is wrapped with a sleeve base 604, and the material of the sleeve base 604 may not be ceramics, such as stainless steel or other alloy materials, which is not limited in the present disclosure.
  • the sleeve base 604 has a larger sleeve hole, through which the optical fiber ferrule 601 passes.
  • the inner diameter of the sleeve hole is larger than the outer diameter of the optical fiber ferrule 601, so that the glue dispensing operation can be performed. glue operation, so as to realize the glue connection between the two.
  • the outer circumference of the sleeve base 604 can be shaped as a hexagonal nut, and of course, other shapes can also be formed, which is not limited in the present disclosure.
  • the optical fiber ferrule 601 After the optical fiber ferrule 601 is inserted into the insertion part 401 of the lens assembly 400, if the optical fiber ferrule 601 shakes, it will affect the communication connection between the lens assembly 400 and the optical fiber assembly 600. Therefore, the optical fiber ferrule 601 needs to be fixed to prevent The stability of the optical fiber ferrule 601 after being inserted into the plug-in part 401 is ensured.
  • FIG. 8 is an exploded schematic diagram of an optical fiber assembly and a fixing plate in an optical module according to an embodiment of the present disclosure.
  • a fixing plate 500 is provided between the optical fiber ferrule 601 and the optical fiber adapter 603.
  • One side of the fixing plate 500 is in contact with the end face of the optical fiber ferrule 601, and the other side
  • the edge of the ferrule can be clamped between the two opposite side walls of the lower casing 202, so as to abut the optical fiber ferrule 601 and prevent the optical fiber ferrule 601 from shaking back and forth.
  • FIG. 9 is a schematic structural diagram of a fixing plate in an optical module according to an embodiment of the present disclosure.
  • the side of the fixing plate 500 abutting against the end face of the optical fiber ferrule 601 is provided with an opening 506 with a lower end opening, and the inner optical fiber 602 is inserted into the optical fiber ferrule 601 through the opening 506, and the fixing plate is The side surface of 500 is in contact with the end face of the optical fiber ferrule 601 , and the optical fiber ferrule 601 is fixed by the fixing plate 500 .
  • the fixing plate 500 After inserting the optical fiber ferrule 601 into the plug-in portion 401 of the lens assembly 400, the fixing plate 500 is placed at the rear end of the optical fiber ferrule 601, and the fixing plate 500 is clamped to the sleeve base from top to bottom through the opening 506 604 so that one side of the fixing plate 500 abuts the end face of the optical fiber ferrule 601 ; In this way, when the optical fiber ferrule 601 has a force to move left and right, the force acts on the fixed plate 500, and the fixed plate 500 generates a reaction force, which acts on the sleeve base 604 and cancels the left and right movement of the optical fiber ferrule 601. force, so that the optical fiber ferrule 601 remains stationary, and the fixing of the optical fiber ferrule 601 is realized.
  • the fixing plate 500 can be opened in a figure-eight shape, and the fixing plate 500 is an elastic plate. That is, the fixing plate 500 includes a first side 501, a second side 502, a third side 503, a fourth side 504 and a fifth side 505.
  • the first side 501 is in contact with the end face of the optical fiber ferrule 601, and the opening 506 is provided in the On the first side 501; the second side 502 and the fourth side 504 are respectively connected to both ends of the first side 501, and the second side 502 and the fourth side 504 can be symmetrically arranged with respect to the first side 501; the third side 503 Connected to the second side surface 502 , the fifth side surface 505 is connected to the fourth side surface 504 , and the third side surface 503 and the fifth side surface 505 can be symmetrically arranged relative to the first side surface 501 .
  • the second side 502 and the first side 501 are arranged at a certain angle, the third side 503 and the second side 502 are arranged at a certain angle; the fourth side 504 and the first side 501 are arranged at a certain angle, the fifth The side surface 505 and the fourth side surface 504 are arranged at a certain angle. That is, the second side 502 , the third side 503 , the fourth side 504 and the fifth side 505 are in a figure-eight shape, so that the third side 503 , the fifth side 505 and the first side 501 are separated from each other, and a fixing plate 500 is added.
  • the distance between the first side 501 and the third side 503 and the fifth side 505 can increase the elasticity of the fixing plate 500 .
  • the fixing plate 500 When the fixing plate 500 is arranged in this way, when the force of the optical fiber ferrule 601 moving left and right acts on the first side 501 of the fixing plate 500, since the fixing plate 500 has a certain elasticity, the force acts on the first side 501, causing the fixing plate 500 The elasticity of the fixing plate 500 causes the fixing plate 500 to generate a reaction force, which acts on the optical fiber ferrule 601 to prevent the optical fiber ferrule 601 from moving back and forth, ensuring the fixation of the optical fiber ferrule 601 .
  • FIG. 10 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure after removing the upper casing
  • FIG. 11 is an enlarged schematic diagram of part A in FIG. 10 .
  • first bosses 2021 are respectively provided on two opposite side walls of the lower casing 202 , and the first bosses 2021 are perpendicular to the side walls of the lower casing 202 ;
  • the fixing plate 500 is arranged between the first boss 2021 and the sleeve base 604 , and the distance between the first boss 2021 and the end face of the optical fiber ferrule 601 is less than or equal to the third side 503 and the first side 501 of the fixing plate 500 In this way, the fixing plate 500 is placed between the first boss 2021 and the optical fiber ferrule 601, and the third side 503 and the fifth side 505 of the fixing plate 500 are respectively in contact with the side of the first boss 2021 , the first side 501 of the fixing plate 500 is
  • the fixing plate 500 is installed between the first boss 2021 and the optical fiber ferrule 601
  • the distance between the first boss 2021 and the end face of the optical fiber ferrule 601 is smaller than that between the third side 503 of the fixing plate 500 and the first
  • the optical fiber ferrule 601 exerts a pressing force on the fixing plate 500
  • the resilient force of the fixing plate 500 makes the optical fiber ferrule 601 and the insertion part 401 of the lens assembly 400 fixed.
  • a bending tongue 507 is provided on the first side 501 of the fixing plate 500, the bending tongue 507 is perpendicular to the first side 501, and the bending tongue 507 is connected to the second side. 502 is located on the same side as the first side 501 .
  • the upper casing 201 of the optical module 200 can be provided with a slot matching the bending tongue 507, and the bending tongue 507 can be clamped with the slot on the upper casing 201, so that the fixing plate 500 can be prevented from falling off.
  • the number of the plugging parts 401 of the lens assembly 400 may be two, and the number of the optical fiber assemblies 600 may also be two.
  • the two optical fiber assemblies 600 can both be single-core bidirectional ferrules, that is, each ferrule can transmit optical signals outwards and transmit optical signals inwards.
  • the two optical fiber assemblies 600 can also be unidirectional ferrules, one transmits optical signals outward, and the other transmits optical signals inward.
  • the first side surface 501 of the fixing plate 500 is provided with two openings 506 that open downwards, and the inner optical fibers 602 in each optical fiber assembly 600 respectively pass through the corresponding openings 506 , and the opening 506 is connected with the sleeve base 604 outside the corresponding optical fiber ferrule 601 by clamping.
  • FIG. 12 is a transverse cross-sectional view of a fixing plate in an optical module according to an embodiment of the present disclosure.
  • the circuit board 300 is provided with circuit traces.
  • the height of the first side 501 of the fixing board 500 can be smaller than the height of the second side 502 and the fourth side 504 .
  • the bottom surfaces of the two side surfaces 502 and the fourth side surface 504 are both in contact with the circuit board 300 , and a gap is provided between the bottom surface of the first side surface 501 and the circuit board 300 . In this way, the circuit traces on the circuit board 300 can be arranged through gaps without changing the arrangement of the circuit traces.
  • second bosses 2022 can also be provided on the opposite side walls of the lower casing 202 , and the height of the second bosses 2022 is lower than the height of the first bosses 2021 . That is, the distance between the second boss 2022 and the circuit board 300 is smaller than the distance between the first boss 2021 and the circuit board 300 .
  • the third side 503 and the fifth side 505 of the fixing plate 500 are respectively vertically installed on the second boss 2022, that is, the bottom surface of the third side 503 is placed on a second boss 2022, and the first The bottom surface of the five side surfaces 505 is placed on another second boss 2022 , so that there is a gap between the bottom surface of the fixing board 500 and the circuit board 300 .
  • the circuit traces on the circuit board 300 can be arranged through gaps without changing the arrangement of the circuit traces.
  • the first side 501 In addition to leaving a gap between the first side 501 of the fixing board 500 and the circuit board 300, or leaving a gap between the entire fixing board 500 and the circuit board 300, the first side 501, There are gaps between the second side 502 , the fourth side 504 and the circuit board 300 , that is, the heights of the first side 501 , the second side 502 and the fourth side 504 of the fixing board 500 are all smaller than the third side 503 of the fixing board 500 . , the height of the fifth side 505, the third side 503 and the fifth side 505 are respectively in contact with the circuit board 300, so that the first side 501, the second side 502 and the fourth side 504 of the fixing board 500 are suspended in the air to avoid affecting the circuit Circuit traces on board 300 .
  • the present disclosure provides an optical module, which includes a lower case, an upper case covered with the lower case, a circuit board for providing signals, an optical chip for generating or receiving optical signals, A lens assembly for changing the propagation direction of an optical signal, an optical fiber assembly for connecting the lens assembly and an external optical fiber, and a fixing plate for fixing the optical fiber assembly.
  • the circuit board is arranged on the lower casing, the optical chip and the lens component are both arranged on the circuit board, and the lens component is connected with the optical fiber component.
  • the optical fiber assembly includes an optical fiber ferrule, an internal optical fiber, and an optical fiber adapter connected in sequence.
  • first bosses are respectively set on the opposite side walls of the lower casing, and a fixing plate is added between the first boss and the optical fiber ferrule, and the width of the fixing plate is less than or equal to the distance between the first boss and the optical fiber ferrule.
  • the fixing plate After inserting the optical fiber ferrule into the plug-in part of the lens assembly, abut one side of the fixing plate on the end face of the optical fiber ferrule, and abut the other side edge of the fixing plate on the first boss on the lower shell , and the fixing plate is opened in a figure-eight shape and has a certain elasticity; the first side of the fixing plate is provided with an opening with a lower end opening, and the opening can be connected with the sleeve base outside the optical fiber ferrule.
  • the first boss and the fixing plate fix the optical fiber ferrule to prevent the optical fiber ferrule from moving left and right.
  • there is a gap between the fixing board and the circuit board to avoid affecting the circuit traces on the circuit board.
  • a fixing plate is added between the optical fiber adapter and the optical fiber ferrule. After one end of the optical fiber ferrule is inserted into the lens assembly, the fixing plate is pressed against the optical fiber ferrule to avoid the left and right movement of the optical fiber ferrule, so as to realize the fixing of the optical fiber ferrule and ensure that the optical fiber ferrule is fixed. transmission of optical signals.
  • FIG. 13 is a schematic structural diagram of another embodiment of the optical module in FIG. 4 after removing the upper casing, the lower casing and the unlocking part
  • FIG. 14 is a partial exploded schematic diagram of FIG. 13 .
  • the optical fiber assembly 600 includes an optical fiber ferrule 601, an internal optical fiber 602 and an optical fiber adapter 603 connected in sequence.
  • One end of the optical fiber ferrule 601 is inserted into the lens assembly 400, and the other end of the optical fiber ferrule 601 is connected to the interior
  • One end of the optical fiber 602 and the other end of the inner optical fiber 602 are inserted into the optical fiber adapter 603 to connect the optical fiber assembly 600 and the lens assembly 400; the other end of the optical fiber adapter 603 is connected to the external optical fiber.
  • the optical module provided by the embodiment of the present disclosure further includes an optical chip, and the optical chip is disposed on the circuit board 300 .
  • an accommodating cavity is provided between the lens assembly 400 and the circuit board 300 , and the optical chip is arranged in the accommodating cavity.
  • the optical chip and its driver/matching chip are set close to each other to shorten the connection between the chips and reduce the signal loss caused by the connection. Therefore, the optical chip and its driver/matching chip are generally The chip is fixed in the accommodating cavity at the same time.
  • the optical chip since the optical chip may be a light-emitting chip or a light-receiving chip, when the optical chip is a light-emitting chip, the accommodating cavity not only accommodates the light-emitting chip, but also accommodates the light-emitting chip and the light-emitting chip.
  • the driver chip matched with the chip, and the driver chip matched with the light emitting chip and the light emitting chip are arranged in close proximity.
  • the accommodating cavity can accommodate not only the light receiving chip, but also a transimpedance amplifying chip matched with the light receiving chip, and the transimpedance amplifying chip matched with the light receiving chip and the light receiving chip are arranged in close proximity.
  • the optical chip is a light receiving chip
  • the accommodating cavity can accommodate not only the light receiving chip, but also a transimpedance amplifying chip matched with the light receiving chip, and the transimpedance amplifying chip matched with the light receiving chip and the light receiving chip are arranged in close proximity.
  • the accommodating cavity can not only accommodate the light emitting chip and the driving chip matched with the light emitting chip, but also The driver chip matched with the light emitting chip and the light emitting chip are set close; it can also accommodate the light receiving chip and the transimpedance amplifying chip matched with the light receiving chip, and the transimpedance amplifying chip matched with the light receiving chip and the light receiving chip can be set close to each other .
  • the specific situation can be set according to the actual situation, which is not limited by the present disclosure.
  • the optical chip is used to generate an optical signal or receive an optical signal.
  • the optical chip can be a light-emitting chip or a light-receiving chip, and the light-emitting chip is used to generate an optical signal, the light-receiving chip is used for For receiving the optical signal, the optical chip can generate the optical signal or receive the optical signal.
  • the lens assembly 400 is disposed on the circuit board 300 and covers the optical chip.
  • the lens assembly 400 is disposed on the circuit board 300, and is disposed above the optical chip in a cover manner, and the lens assembly 400 and the circuit board 300 form an optical chip wrapping the light emitting chip, the light receiving chip and the like. cavity.
  • the light emitted by the light emitting chip is reflected by the lens assembly 400 and then enters the optical fiber ferrule 601 , and the light from the optical fiber ferrule 601 is reflected by the lens assembly 400 and then enters the light receiving chip.
  • the lens assembly 400 not only functions to seal the optical chip, but also establishes an optical connection between the optical chip and the optical fiber ferrule.
  • the lens assembly 400 establishes an optical connection between the optical chip and the optical fiber ferrule 601 , and depends on the function of the lens assembly 400 to change the propagation direction of the optical signal.
  • the optical signal transmitted by the optical fiber ferrule 601 enters the lens assembly 400
  • the optical signal is reflected to change the propagation direction of the optical signal so that it enters the light receiving chip of the optical chip
  • the optical signal emitted by the transmitting chip enters the lens assembly 400
  • the optical signal is reflected, and the propagation direction of the optical signal is changed, so that the optical signal is transmitted to the optical fiber ferrule 601 .
  • the plug-in portion 401 generally includes an inner surface and an outer surface, the inner surface is used for inserting the optical fiber ferrule 601, and the centerlines of the outer surface and the inner surface are consistent.
  • the shape of one end of the optical fiber ferrule 601 matches the shape of the inner surface. Since the cross-sectional shape of one end of the optical fiber ferrule 601 for inserting the plug-in portion is circular, the shape of the inner surface may be circular, oval, rectangular or prismatic.
  • the inner diameter of the inner surface should be larger than the inner diameter of one end of the optical fiber ferrule 601 inserted into the plug-in part 401 , so as to facilitate the insertion of the optical fiber ferrule 601 into the plug-in part 401 .
  • the optical fiber ferrule 601 has a accommodating cavity inside, and the inner optical fiber 602 is inserted into the accommodating cavity.
  • the material of the inner optical fiber 602 can be glass or plastic, one end of which is inserted into the optical fiber ferrule 601 and the other end is inserted into the optical fiber adapter 603 for transmitting optical signals.
  • the optical signal emitted by the lens assembly 400 passes through the optical fiber ferrule 601 and is transmitted to the optical fiber adapter 603 along the inner optical fiber 602;
  • the optical fiber ferrule 601 transmits optical signals into the lens assembly 400 .
  • the optical fiber adapter 603 generally includes an optical fiber ferrule and a sleeve wrapped around the optical fiber ferrule.
  • the optical fiber ferrule of the optical fiber adapter 603 has an accommodation cavity inside, and the inner optical fiber 602 is inserted into the accommodation cavity.
  • the ferrule is inserted into the sleeve, and the end formed by the outer optical fiber is also inserted into the sleeve, thereby realizing the butt joint of the outer optical fiber and the inner optical fiber 602 .
  • An engaging portion is formed on the outside of the sleeve of the optical fiber adapter 603 , and the engaging portion is engaged with the lower casing 202 .
  • the optical fiber ferrule 601 After the optical fiber ferrule 601 is inserted into the insertion part 401 of the lens assembly 400, if the optical fiber ferrule 601 shakes, it will affect the communication connection between the lens assembly 400 and the optical fiber assembly 600. Therefore, the optical fiber ferrule 601 needs to be fixed to prevent The stability of the optical fiber ferrule 601 after being inserted into the plug-in part 401 is ensured.
  • FIG. 16 is a schematic structural diagram of a fixing plate in an optical module according to another embodiment of the present disclosure
  • FIG. 17 is a schematic diagram of another angle of the fixing plate in an optical module according to another embodiment of the present disclosure.
  • the fixing plate 500 includes a metal main board 501a.
  • the bottom edge of the metal main board 501a is provided with a plurality of metal legs, and an opening is formed between the adjacent metal legs, and the inner optical fiber 602 is inserted through the opening. inside the optical fiber ferrule 601 .
  • the circuit board 300 is provided with sockets corresponding to the metal legs, and a plurality of metal legs are respectively inserted into the sockets on the circuit board 300 to fix the fixing plate 500 on the circuit board 300 .
  • the openings provided between the adjacent metal legs may be openings with open lower ends, so as to facilitate the installation of the fixing plate 500 and the optical fiber assembly 600 .
  • the edge of the bottom surface of the metal main board 501a is provided with a first metal leg 503a, a second metal leg 504a and a third metal leg 505a
  • the circuit board 300 is provided with corresponding first sockets 301, second The jack 302 and the third jack 303; when fixing the fixing plate 500, insert the first metal leg 503a into the first jack 301, insert the second metal leg 504a into the second jack 302, and insert the third metal leg 505a Insert into the third socket 303 to fix the fixing board 500 on the circuit board 300 .
  • Limiting protrusions 506a are respectively provided on the sides of the first metal leg 503a and the third metal leg 505a, and the limiting protrusion 506a has a certain distance from the bottom end of the fixing plate 500, so that the first metal leg 503a is inserted into the first metal leg 503a.
  • the limiting protrusion 506a is in contact with the upper surface of the circuit board 300, so that the fixing plate The 500 cannot be inserted into the jack on the circuit board 300, so as to prevent the metal legs of the fixing board 500 from passing through the circuit board 300 and causing interference to other structures of the optical module.
  • a protrusion 502a is provided between the first metal leg 503a, the second metal leg 504a, the third metal leg 505a and the metal main plate 501a of the fixing plate 500, and the protrusion 502a has a C-shaped structure. That is, the first metal legs 503a are connected to the metal main board 501a through the first protrusions, the second metal legs 504a are connected to the metal motherboard 501a through the second protrusions, the third metal legs 505a are connected to the metal motherboard 501a through the third protrusions, and the third metal legs 505a are connected to the metal motherboard 501a through the third protrusions.
  • the first protrusion, the second protrusion and the third protrusion all protrude toward the direction of the optical fiber ferrule 601 , and the first protrusion, the second protrusion and the third protrusion all abut against the end face of the optical fiber ferrule 601 , in order to abut the optical fiber ferrule 601 .
  • FIG. 18 is a schematic partial cross-sectional view of an optical module provided by another embodiment of the present disclosure
  • FIG. 19 is a partial cross-sectional schematic view of another angle of the optical module provided by another embodiment of the present disclosure.
  • the fixing plate 500 is moved downward from above the circuit board 300 so that the first metal legs 503 a are inserted into the circuit board
  • the first jack 301 and the second metal leg 504a on the circuit board 300 are inserted into the second jack 302 on the circuit board 300
  • the third metal leg 505a is inserted into the third jack 303 on the circuit board 300 until the first metal legs 503a
  • the limiting protrusion 506a on the side of the third metal leg 505a is in contact with the upper surface of the circuit board 300.
  • the fixing plate 500 is connected to the metal main board 501a, and the protrusion 502a of the
  • FIG. 20 is a schematic diagram of a working state of a fixing plate in an optical module according to another embodiment of the present disclosure
  • FIG. 21 is a schematic diagram of a working effect of the fixing plate in an optical module according to another embodiment of the present disclosure. As shown in FIG. 20 and FIG.
  • the fixing plate 500 is an elastic part, it can rely on the resilience of the protrusion 502a on the fixing plate 500.
  • the optical fiber ferrule 601 is fixed to the insertion part 401 of the lens assembly 400 to prevent the optical fiber ferrule 601 from moving left and right.
  • the outer side of the optical fiber ferrule 601 can also be wrapped with a sleeve base 604, and the sleeve base 604 can be made of different materials, such as stainless steel or other alloy materials, which are not limited in the present disclosure.
  • the sleeve base 604 has a larger sleeve hole, through which the optical fiber ferrule 601 passes.
  • the inner diameter of the sleeve hole is larger than the outer diameter of the optical fiber ferrule 601, so that the glue dispensing operation can be performed. glue operation, so as to realize the glue connection between the two.
  • the outer circumference of the sleeve base 604 can be shaped as a hexagonal nut, and of course, other shapes can also be formed, which is not limited in the present disclosure.
  • the sleeve base 604 may include a first sleeve and a second sleeve, and the outer diameter of the first sleeve is smaller than the outer diameter of the second sleeve , that is, the outer surface of the sleeve base 604 is arranged in a stepped shape.
  • the opening on the fixing plate 500 can be opened to the edge of the bottom surface of the metal main plate 501a, and the opening on the bottom edge of the metal main plate 501a can be arc-shaped.
  • the barrel is inserted into the opening, and the protruding portion 502a of the fixing plate 500 is in contact with the end face of the second sleeve, so that the optical fiber ferrule 601 can be prevented from moving back and forth.
  • the circuit traces can pass through the openings on the fixing plate 500 , so that the arrangement of the circuit traces does not need to be changed.
  • the top surface of the metal main board 501a is further provided with a metal dome 507a.
  • the metal dome 507a and the protruding part 502a are located on different sides of the metal main board 501a respectively, and the metal dome 507a is inclined upward and its height is higher than the upper casing The lower surface of 201.
  • the upper casing 201 exerts a pressing force on the metal dome 507a, so that the metal dome 507a is inclined downward, that is, the upper casing 201 presses the metal dome 507a tightly, through the pressing force of the upper casing 201. Press to further fix the fixing plate 500 .
  • the number of the plug-in parts 401 of the lens assembly 400 may be two, and the number of the optical fiber assemblies 600 may also be two.
  • the two optical fiber assemblies 600 can both be single-core bidirectional ferrules, that is, each ferrule can transmit optical signals outwards and transmit optical signals inwards.
  • the two optical fiber assemblies 600 can also be unidirectional ferrules, one transmits optical signals outward, and the other transmits optical signals inward.
  • the fixing plate 500 is provided with two openings that open downwards, the inner optical fibers 602 of each optical fiber assembly 600 respectively pass through the corresponding openings, and the openings are connected with the corresponding optical fibers.
  • the sleeve base 604 outside the ferrule 601 is clamped and connected.
  • the present disclosure provides an optical module, which includes a lower case, an upper case covered with the lower case, a circuit board for providing signals, an optical chip for generating or receiving optical signals,
  • the circuit board is arranged on the lower casing, and the optical chip and the lens assembly are both arranged on the circuit board On the top, the lens assembly is connected with the fiber optic assembly.
  • the optical fiber assembly includes an optical fiber ferrule, an internal optical fiber and an optical fiber adapter that are connected in sequence.
  • the fixing board includes a metal main board and a plurality of metal legs. A protrusion is provided between the metal main board and the metal legs, and a corresponding jack is provided on the circuit board.
  • the metal legs are inserted into the jacks on the circuit board to fix the fixing plate; the protruding part of the fixing plate abuts the end face of the optical fiber ferrule to abut the optical fiber ferrule.
  • the optical fiber ferrule is fixed by the fixing plate, which avoids the left and right movement of the optical fiber ferrule, and makes the optical coupling and docking between the lens assembly and the optical fiber assembly more stable, and the installation operation is simple, no need to add glue and bake, save man-hours and disassemble Convenient, easy to repair, no damage to materials.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括下壳体(202)、电路板(300)、透镜组件(400)、光纤组件(600)及固定板(500)。下壳体(202)相对的两侧壁上分别设有第一凸台(2021)。光纤组件(600)包括依次连接的光纤插芯(601)、内部光纤(602)与光纤适配器(603),光纤插芯(601)的另一端插入透镜组件(400),光纤适配器(603)的另一端连接外部光纤。固定板(500)设置于第一凸台(2021)与光纤插芯(601)的端面之间,其一侧与光纤插芯(601)的端面相抵接,另一侧的边缘与第一凸台(2021)相抵接。固定板(500)与光纤插芯(601)端面相抵接的侧面上设有下端开口的开孔(506),内部光纤(602)穿过开孔(506)插入光纤插芯(601)内。

Description

一种光模块
本公开要求在2020年08月18日提交中国专利局、申请号为202010833918.X、专利名称为“一种光模块”、在2020年08月25日提交中国专利局、申请号为202021793499.3、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术,而在光通信中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一。光模块主要用于光电、电光转换,其发射端将电信号转换为光信号并通过光纤传输出去,其接收端将接收到的光信号转换为电信号。
发明内容
一方面,本公开实施例公开了一种光模块,包括:下壳体,其相对的两侧壁上分别设有第一凸台;上壳体,盖合于所述下壳体上;电路板,设置于所述下壳体上;光芯片,设置于所述电路板上,用于产生光信号或接收光信号;透镜组件,覆盖于所述光芯片上,用于改变所述光信号的传播方向;光纤组件,包括依次连接的光纤插芯、内部光纤与光纤适配器,所述光纤插芯的另一端插入所述透镜组件内,所述光纤适配器的另一端连接外部光纤;用于接收通过所述透镜组件的光信号或所述外部光纤传输的光信号;固定板,设置于所述第一凸台与所述光纤插芯的端面之间,其一侧与所述光纤插芯的端面相抵接,另一侧的边缘与所述第一凸台相抵接;与所述光纤插芯端面相抵接的侧面上设有下端开口的开孔,所述内部光纤穿过所述开孔插入所述光纤插芯内。
另一方面,本公开实施例公开了一种光模块,包括:电路板,其上设置有插孔;光芯片,设置于所述电路板上,用于产生光信号或接收光信号;透镜组件,覆盖于所述光芯片上,用于改变所述光信号的传播方向;光纤组件,包括依次连接的光纤插芯、内部光纤与光纤适配器,所述光纤插芯插入所述透镜组件内,所述光纤适配器用于连接外部光纤;用于接收通过所述透镜组件的光信号或接收所述外部光纤传输的光信号;固定板,设置于所述光纤适配器与所述光纤插芯的端面之间,其一侧与所述光纤插芯的端面相抵接,其底端插入所述插孔内;其与所述光纤插芯端面相抵接的侧面上设有开孔,所述内部光纤穿过所述开孔插入所述光纤插芯内。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还 可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络终端结构示意图;
图3为本公开实施例提供的一种光模块的结构示意图;
图4为本公开实施例提供的一种光模块的分解示意图;
图5为图4中的光模块去掉上壳体、下壳体与解锁部件后某一实施例的结构示意图;
图6为图5中某一局部分解示意图;
图7为本公开实施例提供的光模块中透镜组件与电路板的分解示意图;
图8为本公开某一实施例提供的光模块中光纤组件与固定板的分解示意图;
图9为本公开某一实施例提供的光模块中固定板的结构示意图;
图10为本公开某一实施例提供的光模块中去掉上壳体的结构示意图;
图11为图10中A处放大示意图;
图12为本公开实施例提供的光模块中固定板处的横向剖视图;
图13为图4中光模块去掉上壳体、下壳体与解锁部件后另一实施例结构示意图;
图14为图13中某一局部分解示意图;
图15为本公开另一实施例提供的光模块中光纤组件与固定板之间的分解示意图;
图16为本公开另一实施例提供的光模块中固定板的结构示意图;
图17为本公开另一实施例提供的光模块中固定板的另一角度示意图;
图18为本公开另一实施例提供的光模块的局部剖面示意图;
图19为本公开另一实施例提供的光模块的另一角度局部剖面示意图;
图20为本公开另一实施例提供的光模块中固定板的工作状态示意图;
图21为本公开另一实施例提供的光模块中固定板的工作效果示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信息以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义 形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的依次连接。
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接。在本公开某一实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接。在本公开某一实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等第一凸台部。
光模块200插入光网络终端100中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供的光模块的分解示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、透镜组件400及光纤组件600。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体。在本公开某一实施例中,下壳体202包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两 个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口具体可以是位于光模块同一方向的两端开口(204、205),也可以是在光模块不同方向的两处开口;前述同一方向指的是开口203和2044的连线所在的方向,该方向与光模块200的长度方向一致;前述不同方向指的是开口204和205的连线所在的方向与光模块200的长度方向不一致,例如开口203位于光模块200的端面,而开口204则位于光模块200的侧部。其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的透镜组件400;电路板300、透镜组件400与光纤组件600等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、透镜组件400与光纤组件600等器件安装到壳体中,由上壳体、下壳体形成模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利用实现电磁屏蔽以及散热,一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件203的末端可以在使解锁部件203在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件203的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件203,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300用于提供信号电连接的信号电路,信号电路可以提供信号。电路板300通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开某一实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发组件之间可以采用柔性电路板连接。
透镜组件400设置于电路板300上,它的作用是改变光信号的传播方向。当光纤组件600传输的光信号进入透镜组件400时,光信号经过反射,改变光信号的传播方向,使其进入电路板300中。电路板300发出的光信号进入透镜组件400时,光信号经过反射,改变光信号的传播方向,使其传输至光纤组件600中。
光纤组件600设置于下壳体202上,其一端与透镜组件400连接,另一端与外部光纤连接,用于传输光信号。在本公开某一实施例中,透镜组件400发射的光信号经过光纤组件600传输至外部光纤,外部光纤发出的光信号经过光纤组件600传输至透镜组件400内。
图5为图4中光模块去掉上壳体、下壳体与解锁部件后某一实施例的结构示意图,图6为图5中某一局部分解示意图。如图5、图6所示,光纤组件600包括依次连接的光纤插芯601、内部光纤602与光纤适配器603,光纤插芯601的一端插入透镜组件400内,光纤插芯601的另一端连接内部光纤602的一端,内部光纤602的另一端插入光纤适配器603内,以连接光纤组件600与透镜组件400;光纤适配器603的另一端连接外部光纤。当光纤组件600传输的光信号需要射入至透镜组件400时,外部光纤的光信号依次经由光纤适配器603、内部光纤602、光纤插芯601进入透镜组件400内;当光模块发射的光信号需要传输至外部光纤时,光信号依次经由光纤插芯601、内部光纤602与光纤适配器603进入外部光纤中。
图7为本公开实施例提供的光模块中透镜组件与电路板的分解示意图。如图7所示,本公开提供的光模块还包括光芯片,光芯片设置于电路板300上。在本公开某一实施例中,透镜组件400与电路板300之间设有容纳腔,光芯片就设置在该容纳腔内。
由于高速率数据传输要求光芯片及其驱动/匹配芯片之间近距离设置,以缩短芯片之间的连线,减小连线造成的信号损失,因此,一般将光芯片及其驱动/匹配芯片同时固定于该容纳腔内。在本公开某一实施例中,由于光芯片可以是光发射芯片701,也可以是光接收芯片702,当光芯片是光发射芯片701时,该容纳腔内不仅容纳光发射芯片701,还可以容纳与光发射芯片701配合的驱动芯片,且与光发射芯片701配合的驱动芯片和光发射芯片701近距离设置。当光芯片是光接收芯片702时,该容纳腔体不仅容纳光接收芯片702,还可以容纳与光接收芯片702配合的跨阻放大芯片,且与光接收芯片702配合的跨阻放大芯片和光接收芯片702近距离设置。以上均为光芯片为一个的情况。
当容纳腔内包括两个光芯片,即其中一个光芯片为光发射芯片701,另一个光芯片为光接收芯片702时,容纳腔内不仅可以容纳光发射芯片701、与光发射芯片701配合的驱动芯片,且与光发射芯片701配合的驱动芯片和光发射芯片701近距离设置;还可以容纳光接收芯片702和与光接收芯片702配合的跨组放大芯片,且与光接收芯片702配合的跨组放大芯片和光接收芯片702近距离设置。具体情况可以根据实际具体设置,本公开不再限制。
光芯片用于产生光信号或者接收光信号,在本公开某一实施例中,由于光芯片可以是光发射芯片701,也可以是光接收芯片702,且光发射芯片701用于产生光信号,光接收芯片702用于接收光信号,如此光芯片可以产生光信号或接收光信号。
透镜组件400设置于电路板300上,覆盖于光芯片上。在本公开某一实施例中,透镜组件400设置在电路板300上,采用罩设式的方式设置在光芯片的上方,透镜组件400与电路板300形成包裹光发射芯片701、光接收芯片702等光芯片的腔体。光发射芯片701发出的光经透镜组件400反射后进入光纤插芯601中,来自光纤插芯601的光经透镜组件400反射后进入光接收芯片702中。透镜组件400不仅起到密封光芯片的作用,同时也建 立了光芯片与光纤插芯601之间的光连接。
透镜组件400建立光芯片与光纤插芯601之间的光连接,依附于透镜组件400改变光信号传播方向的作用。在本公开某一实施例中,当光纤插芯601传输的光信号进入透镜组件400时,光信号经过反射,改变光信号的传播方向,使其进入光芯片的光接收芯片702;当光芯片的光发射芯片701发出的光信号进入透镜组件400时,光信号经过反射,改变光信号的传播方向,使其传输至光纤插芯601中。
透镜组件400的一端设置有插拔部401,光纤插芯601的一端插入该插拔部401内。插拔部401一般包括内表面与外表面,内表面用于插入光纤插芯601,外表面与内表面的中心线一致。为了方便光纤插芯601插入透镜组件400内,光纤插芯601一端的形状与内表面的形状相配合。由于光纤插芯601中用于插入插拔部的一端的截面形状为圆形,那么内表面的形状可以为圆形、椭圆形、长方形或者棱形。但内表面的内径尺寸要大于光纤插芯601用于插入插拔部401一端的内径尺寸,以方便光纤插芯601插入插拔部401内。
光纤插芯601内部具有容纳腔,内部光纤602插入容纳腔中。内部光纤602的材料可以是玻璃或塑料,其一端插入光纤插芯601内,另一端插入光纤适配器603中,用于传输光信号。在本公开某一实施例中,透镜组件400发出的光信号经过光纤插芯601接收,并沿着内部光纤602传输至光纤适配器603中。或者,光纤适配器603发出的光信号沿着内部光纤602传输至光纤插芯601,光纤插芯601传输光信号至透镜组件400内。
光纤适配器603的一端与内部光纤602的另一端连接,其另一端与外部光纤连接。在本公开某一实施例中,光纤适配器603一般包括光纤插芯和包裹于光纤插芯的套筒,光纤适配器603的光纤插芯内部具有容纳腔体,内部光纤602插入该容纳腔中,光纤插芯插入套筒中,外部光纤形成的末端也插入套筒中,由此实现了外部光纤与内部光纤602的对接。光纤适配器603的套筒外部形成有卡合部,该卡合部卡接于下壳体202。
光纤插芯601的外侧包裹有套筒基座604,该套筒基座604的材质可以不用陶瓷,采用如不锈钢或其他合金材料,本公开对此不作限制。套筒基座604具有较大的套孔,光纤插芯601通过该套孔穿过,该套孔的内径大于光纤插芯601的外径,以便进行点胶操作,在二者的间隙进行点胶操作,从而实现二者之间的胶接。
套筒基座604的外周可以做出六角螺母的形状,当然,也可以做出其他形状,本公开对此不作限制。
将光纤插芯601插入透镜组件400的插拔部401后,若光纤插芯601发生晃动会影响透镜组件400与光纤组件600之间的通信连接问题,因此需要对光纤插芯601进行固定,以保证光纤插芯601插入插拔部401后的稳固性。
图8为本公开某一实施例提供的光模块中光纤组件与固定板的分解示意图。如图8所示,为固定光纤插芯601,在光纤插芯601与光纤适配器603之间设置有固定板500,该固定板500的一侧与光纤插芯601的端面相抵接,另一侧的边缘可卡固于下壳体202相对的两侧壁之间,从而抵住光纤插芯601,避免光纤插芯601前后晃动。
图9为本公开某一实施例提供的光模块中固定板的结构示意图。如图9所示,固定板500与光纤插芯601的端面相抵接的侧面上设有下端开口的开孔506,内部光纤602穿过 该开孔506插入光纤插芯601内,并使得固定板500的侧面与光纤插芯601的端面相抵接,通过固定板500来固定光纤插芯601。
将光纤插芯601插入透镜组件400的插拔部401后,再将固定板500置于光纤插芯601的后端,通过开孔506将固定板500由上至下卡接于套筒基座604的外侧面,使得固定板500的一侧与光纤插芯601的端面相抵接;最后将固定板500另一侧的边缘分别固定于下壳体202相对的两侧面上。如此,光纤插芯601具有左右移动的力时,力作用在固定板500上,由固定板500产生反作用力,反作用力作用在套筒基座604上,抵消了光纤插芯601上左右移动的力,从而使得光纤插芯601保持不动,实现了光纤插芯601的固定。
为通过固定板500来固定光纤插芯601,固定板500可呈八字形张开,且固定板500为弹性板。即固定板500包括第一侧面501、第二侧面502、第三侧面503、第四侧面504与第五侧面505,第一侧面501与光纤插芯601的端面相抵接,且开孔506设置在第一侧面501上;第二侧面502与第四侧面504分别与第一侧面501的两端连接,且第二侧面502与第四侧面504可相对于第一侧面501对称设置;第三侧面503与第二侧面502连接,第五侧面505与第四侧面504连接,且第三侧面503与第五侧面505可相对于第一侧面501对称设置。
第二侧面502与第一侧面501之间成一定角度设置,第三侧面503与第二侧面502之间成一定角度设置;第四侧面504与第一侧面501之间成一定角度设置,第五侧面505与第四侧面504之间成一定角度设置。即第二侧面502、第三侧面503、第四侧面504与第五侧面505呈折八字形,如此第三侧面503、第五侧面505与第一侧面501拉开了距离,增加了固定板500的第一侧面501与第三侧面503、第五侧面505之间的距离,从而可增加固定板500的弹性。
固定板500如此设置时,光纤插芯601左右移动的力作用在固定板500的第一侧面501上时,由于固定板500具有一定弹性,该力作用在第一侧面501上,引起固定板500的变形,固定板500的弹性使得固定板500产生反作用力,该反作用力作用在光纤插芯601上,阻止光纤插芯601前后移动,保证了光纤插芯601的固定。
图10为本公开某一实施例提供的光模块去掉上壳体后的结构示意图,图11为图10中A处放大示意图。如图10、图11所示,为固定固定板500,下壳体202相对的两侧壁上分别设有第一凸台2021,该第一凸台2021垂直于下壳体202的侧壁;固定板500设置在第一凸台2021与套筒基座604之间,第一凸台2021与光纤插芯601端面之间的距离小于或等于固定板500的第三侧面503与第一侧面501之间的距离,如此,将固定板500置于第一凸台2021与光纤插芯601之间,固定板500的第三侧面503与第五侧面505分别与第一凸台2021的侧面相抵接,固定板500的第一侧面501与套筒基座604通过开孔506卡固连接,以此实现了固定板500与光纤插芯601的固定。
另外,将固定板500安装于第一凸台2021与光纤插芯601之间后,当第一凸台2021与光纤插芯601端面之间的距离小于固定板500的第三侧面503与第一侧面501之间的距离时,光纤插芯601对固定板500产生挤压力,固定板500的回弹力使得光纤插芯601与透镜组件400的插拔部401固定。
为进一步提供固定板500的稳固性,固定板500的第一侧面501上设有折弯舌片507,该折弯舌片507垂直于第一侧面501,且折弯舌片507与第二侧面502位于第一侧面501的同一侧。光模块200的上壳体201上可设置与折弯舌片507相匹配的卡槽,通过该折弯舌片507与上壳体201上的卡槽卡接,如此可避免固定板500脱落。
本示例中,透镜组件400的插拔部401是数量可为两个,光纤组件600的数量也为两个。该两个光纤组件600均可以为单芯双向插芯,也就是每一个插芯均可以实现向外传输光信号,也可以向内传输光信号。此外,该两个光纤组件600也可以为单向插芯,一个向外传输光信号,另一个向内传输光信号。
当光纤组件600的数量为两个时,固定板500的第一侧面501上设置有两个向下开口的开孔506,每个光纤组件600内的内部光纤602分别穿过相应的开孔506,且该开孔506与相应光纤插芯601外部的套筒基座604卡固连接。
图12为本公开实施例提供的光模块中固定板处的横向剖视图。如图12所示,电路板300上设置有电路走线,为了不影响电路走线的设置,固定板500的第一侧面501的高度可小于第二侧面502、第四侧面504的高度,第二侧面502、第四侧面504的底面均与电路板300接触,而第一侧面501的底面与电路板300之间设置有空隙。如此,电路板300上的电路走线可通过空隙设置,而不需改变电路走线的布置方式。
为了不影响电路板300上电路走线的设置,也可在下壳体202相对的两侧壁上设置第二凸台2022,该第二凸台2022的高度低于第一凸台2021的高度,即第二凸台2022与电路板300之间的距离小于第一凸台2021与电路板300之间的距离。固定固定板500时,将固定板500的第三侧面503与第五侧面505分别垂直安装于第二凸台2022上,即将第三侧面503的底面放置于一第二凸台2022上,将第五侧面505的底面放置于另一第二凸台2022上,如此固定板500的底面与电路板300之间存在有空隙。如此,电路板300上的电路走线可通过空隙设置,而不需改变电路走线的布置方式。
除了上述在固定板500的第一侧面501与电路板300之间留有空隙,或在整个固定板500与电路板300之间留有空隙外,还可在固定板500的第一侧面501、第二侧面502、第四侧面504与电路板300之间留有空隙,即固定板500的第一侧面501、第二侧面502与第四侧面504的高度均小于固定板500的第三侧面503、第五侧面505的高度,第三侧面503、第五侧面505分别与电路板300接触,如此,固定板500的第一侧面501、第二侧面502与第四侧面504悬空,避免了影响电路板300上的电路走线。
本公开提供了一种光模块,该光模块包括下壳体、与下壳体盖合的上壳体、用于提供信号的电路板、用于产生光信号或接收光信号的光芯片、用于改变光信号传播方向的透镜组件、用于连接透镜组件与外部光纤的光纤组件及用于固定光纤组件的固定板。电路板设置于下壳体上,光芯片与透镜组件均设置于电路板上,透镜组件与光纤组件连接。光纤组件包括依次连接的光纤插芯、内部光纤与光纤适配器,光纤插芯的一端插入透镜组件的插拔部,内部光纤的一端插入光纤插芯的另一端,内部光纤的另一端插入光纤适配器的一端;光纤适配器卡接于下壳体上,光纤适配器的另一端与外部光纤连接。为保证光纤插芯与透镜组件的插接稳固性,在下壳体相对两侧壁上分别设置第一凸台,在第一凸台与光纤插芯 之间增设固定板,该固定板的宽度小于或等于第一凸台与光纤插芯之间的距离。将光纤插芯插入透镜组件的插拔部后,将固定板的一侧抵接于光纤插芯的端面,并将固定板的另一侧边缘抵接于下壳体上的第一凸台上,且该固定板呈八字形张开,具有一定的弹性;固定板的第一侧面上设置有下端开口的开孔,该开孔可与光纤插芯外部的套筒基座卡固连接,通过第一凸台、固定板对光纤插芯进行固定,防止光纤插芯左右移动。另外,固定板与电路板之间留有空隙,避免影响电路板上的电路走线。本公开在光纤适配器与光纤插芯之间增设固定板,光纤插芯的一端插入透镜组件后,该固定板抵住光纤插芯,避免光纤插芯左右移动,实现了光纤插芯的固定,保证了光信号的传输。
图13为图4中光模块去掉上壳体、下壳体与解锁部件后另一实施例结构示意图,图14为图13中某一局部分解示意图。如图13、图14所示,光纤组件600包括依次连接的光纤插芯601、内部光纤602与光纤适配器603,光纤插芯601的一端插入透镜组件400内,光纤插芯601的另一端连接内部光纤602的一端,内部光纤602的另一端插入光纤适配器603内,以连接光纤组件600与透镜组件400;光纤适配器603的另一端连接外部光纤。当光纤组件600传输的光信号需要射入至透镜组件400时,外部光纤的光信号依次经由光纤适配器603、内部光纤602、光纤插芯601进入透镜组件400内;当光模块发射的光信号需要传输至外部光纤时,光信号依次经由光纤插芯601、内部光纤602、光纤适配器603进入外部光纤中。
本公开实施例提供的光模块还包括光芯片,光芯片设置于电路板300上。在本公开某一实施例中,透镜组件400与电路板300之间设有容纳腔,光芯片就设置在该容纳腔内。
由于高速率数据传输要求,光芯片及其驱动/匹配芯片之间近距离设置,以缩短芯片之间的连线,减小连线造成的信号损失,因此,一般将光芯片及其驱动/匹配芯片同时固定于该容纳腔内。在本公开某一实施例中,由于光芯片可以是光发射芯片,也可以是光接收芯片,当光芯片是光发射芯片时,该容纳腔内不仅容纳光发射芯片,还可以容纳与光发射芯片配合的驱动芯片,且与光发射芯片配合的驱动芯片和光发射芯片近距离设置。当光芯片是光接收芯片时,该容纳腔不仅容纳光接收芯片,还可以容纳与光接收芯片配合的跨阻放大芯片,且与光接收芯片配合的跨阻放大芯片和光接收芯片近距离设置。以上均为光芯片为一个的情况。
当容纳腔内包括两个光芯片,即其中一个光芯片为光发射芯片,另一个光芯片为光接收芯片时,容纳腔内不仅可以容纳光发射芯片、与光发射芯片配合的驱动芯片,且与光发射芯片配合的驱动芯片和光发射芯片近距离设置;还可以容纳光接收芯片和与光接收芯片配合的跨阻放大芯片,且与光接收芯片配合的跨阻放大芯片和光接收芯片近距离设置。具体情况可以根据实际具体设置,本公开不再限制。
光芯片用于产生光信号或者接收光信号,在本公开一些实施例中,由于光芯片可以是光发射芯片,也可以是光接收芯片,且光发射芯片用于产生光信号,光接收芯片用于接收光信号,如此光芯片可以产生光信号或接收光信号。
透镜组件400设置于电路板300上,覆盖于光芯片上。在本公开一些实施例中,透镜组件400设置在电路板300上,采用罩设的方式设置在光芯片的上方,透镜组件400与电 路板300形成包裹光发射芯片、光接收芯片等光芯片的腔体。光发射芯片发出的光经透镜组件400反射后进入光纤插芯601中,来自光纤插芯601的光经透镜组件400反射后进入光接收芯片中。透镜组件400不仅起到密封光芯片的作用,同时也建立了光芯片与光纤插芯之间的光连接。
透镜组件400建立光芯片与光纤插芯601之间的光连接,依附于透镜组件400改变光信号传播方向的作用。在本公开一些实施例中,当光纤插芯601传输的光信号进入透镜组件400时,光信号经过反射,改变光信号的传播方向,使其进入光芯片的光接收芯片;当光芯片的光发射芯片发出的光信号进入透镜组件400时,光信号经过反射,改变光信号的传播方向,使其传输至光纤插芯601中。
透镜组件400的一端设置有插拔部401,光纤插芯601的一端插入该插拔部401内。插拔部401一般包括内表面与外表面,内表面用于插入光纤插芯601,外表面与内表面的中心线一致。为了方便光纤插芯601插入透镜组件400内,光纤插芯601一端的形状与内表面的形状相配合。由于光纤插芯601中用于插入插拔部的一端的截面形状为圆形,那么内表面的形状可以为圆形、椭圆形、长方形或者棱形。但内表面的内径尺寸要大于光纤插芯601插入插拔部401一端的内径尺寸,以方便光纤插芯601插入插拔部401内。
光纤插芯601内部具有容纳腔,内部光纤602插入容纳腔中。内部光纤602的材料可以是玻璃或塑料,其一端插入光纤插芯601内,另一端插入光纤适配器603中,用于传输光信号。在本公开一些实施例中,透镜组件400发出的光信号经过光纤插芯601,并沿着内部光纤602传输至光纤适配器603中;或者,光纤适配器603发出的光信号沿着内部光纤602传输至光纤插芯601,光纤插芯601传输光信号至透镜组件400内。
光纤适配器603的一端与内部光纤602的另一端连接,其另一端与外部光纤连接。在本公开某一实施例中,光纤适配器603一般包括光纤插芯和包裹于光纤插芯的套筒,光纤适配器603的光纤插芯内部具有容纳腔体,内部光纤602插入该容纳腔中,光纤插芯套入套筒中,外部光纤形成的末端也插入套筒中,由此实现了外部光纤与内部光纤602的对接。光纤适配器603的套筒外部形成有卡合部,该卡合部卡接于下壳体202。
将光纤插芯601插入透镜组件400的插拔部401后,若光纤插芯601发生晃动会影响透镜组件400与光纤组件600之间的通信连接问题,因此需要对光纤插芯601进行固定,以保证光纤插芯601插入插拔部401后的稳固性。
图15为本公开另一实施例提供的光模块中光纤组件与固定板之间的分解示意图。如图15所示,为固定光纤插芯601,在光纤插芯601与光纤适配器603之间设置有固定板500,该固定板垂直卡接于电路板300上,且固定板500的一侧与光纤插芯601的端面相抵接,从而抵住光纤插芯601,避免光纤插芯601左右晃动。
图16为本公开另一实施例提供的光模块中固定板的结构示意图,图17为本公开另一实施例提供的光模块中固定板的另一角度示意图。如图16、图17所示,固定板500包括金属主板501a,金属主板501a的底面边缘设置有多个金属支脚,相邻金属支脚之间设置有开孔,内部光纤602穿过该开孔插入光纤插芯601内。电路板300上设置有与金属支脚相应的插孔,多个金属支脚分别插入电路板300上的插孔内,以此将固定板500固定于电 路板300上。本示例中,相邻金属支脚之间设置的开孔可为下端开口的开孔,以方便固定板500与光纤组件600的安装。
在本公开一些实施例中,金属主板501a的底面边缘设置有第一金属支脚503a、第二金属支脚504a与第三金属支脚505a,电路板300上设置有相应的第一插孔301、第二插孔302与第三插孔303;固定固定板500时,将第一金属支脚503a插入第一插孔301内,将第二金属支脚504a插入第二插孔302内,将第三金属支脚505a插入第三插孔303内,以此将固定板500固定于电路板300上。
第一金属支脚503a与第三金属支脚505a的侧边上分别设置有限位凸起506a,该限位凸起506a与固定板500的底端具有一定距离,如此将第一金属支脚503a插入第一插孔301内、第二金属支脚504a插入第二插孔302内、第三金属支脚505a插入第三插孔303内时,限位凸起506a与电路板300的上表面相抵接,使得固定板500不能继续插入电路板300上的插孔内,避免固定板500的金属支脚穿过电路板300,对光模块的其他结构造成干扰。
固定板500的第一金属支脚503a、第二金属支脚504a、第三金属支脚505a与金属主板501a之间均设有突出部502a,该突出部502a为C型结构。即第一金属支脚503a通过第一突出部与金属主板501a连接,第二金属支脚504a通过第二突出部与金属主板501a连接,第三金属支脚505a通过第三突出部与金属主板501a连接,第一突出部、第二突出部与第三突出部均朝向光纤插芯601的方向凸起,且第一突出部、第二突出部与第三突出部均与光纤插芯601的端面相抵接,以抵住光纤插芯601。
图18为本公开另一实施例提供的光模块的局部剖面示意图,图19为本公开另一实施例提供的光模块的另一角度局部剖面示意图。如图18、图19所示,将光纤插芯601的一端插入透镜组件400的插拔部401后,将固定板500由电路板300的上方向下移动,使得第一金属支脚503a插入电路板300上的第一插孔301、第二金属支脚504a插入电路板300上的第二插孔302、第三金属支脚505a插入电路板300上的第三插孔303,直至第一金属支脚503a、第三金属支脚505a侧边的限位凸起506a与电路板300的上表面相抵接,此时固定板500上连接金属主板501a、金属支脚的突出部502a与光纤插芯601的端面相抵接,用于抵住光纤插芯601。
图20为本公开另一实施例提供的光模块中固定板的工作状态示意图,图21为本公开另一实施例提供的光模块中固定板的工作效果示意图。如图20、图21所示,为提高光纤插芯601与透镜组件400的插拔部401的对接稳固性,电路板300上插孔与光纤插芯601端面之间的距离L应小于固定板500中突出部502a的凸起高度H,如此将固定板500的第一金属支脚503a、第二金属支脚504a与第三金属支脚505a插入电路板300上相应的第一插孔301、第二插孔302与第三插孔303后,光纤插芯601的端面对固定板500的突出部502a产生挤压力,由于固定板500为弹性件,可依靠固定板500上突出部502a的回弹力将光纤插芯601与透镜组件400的插拔部401固定,防止光纤插芯601左右移动。
本示例中,光纤插芯601的外侧也可包裹有套筒基座604,该套筒基座604的材质可以为不同材料,采用如不锈钢或其他合金材料,本公开对此不作限制。套筒基座604具有较大的套孔,光纤插芯601通过该套孔穿过,该套孔的内径大于光纤插芯601的外径,以 便进行点胶操作,在二者的间隙进行点胶操作,从而实现二者之间的胶接。
套筒基座604的外周可以做出六角螺母的形状,当然,也可以做出其他形状,本公开对此不作限制。
光纤插芯601的外侧包裹有套筒基座604时,该套筒基座604可包括第一套筒与第二套筒,第一套筒的外径尺寸小于第二套筒的外径尺寸,即套筒基座604外表呈阶梯状设置。通过固定板500抵住光纤插芯601时,固定板500上的开孔可开至金属主板501a的底面边缘,设置在金属主板501a底面边缘处的开孔可为圆弧状,将第一套筒插入该开孔内,固定板500的突出部502a与第二套筒的端面相抵接,如此可防止光纤插芯601前后移动。
为了不影响电路板300上电路走线的设置,电路走线可穿过固定板500上的开孔,如此不需改变电路走线的布置方式。
本示例中,金属主板501a的顶面还设置有金属弹片507a,该金属弹片507a与突出部502a分别位于金属主板501a的不同侧,且金属弹片507a向斜上方倾斜,其高度高出上壳体201的下表面。如此盖合上壳体201时,上壳体201对金属弹片507a产生挤压力,使得金属弹片507a向下倾斜,即上壳体201过盈压紧金属弹片507a,通过上壳体201的挤压进一步固定固定板500。
本示例中,透镜组件400的插拔部401的数量可为两个,光纤组件600的数量也为两个。该两个光纤组件600均可以为单芯双向插芯,也就是每一个插芯均可以实现向外传输光信号,也可以向内传输光信号。此外,该两个光纤组件600也可以为单向插芯,一个向外传输光信号,另一个向内传输光信号。
当光纤组件600的数量为两个时,固定板500上设置有两个向下开口的开孔,每个光纤组件600的内部光纤602分别穿过相应的开孔,且该开孔与相应光纤插芯601外部的套筒基座604卡固连接。
本公开提供了一种光模块,该光模块包括下壳体、与下壳体盖合的上壳体、用于提供信号的电路板、用于产生光信号或接收光信号的光芯片、用于改变光信号传播方向的透镜组件、用于连接透镜组件与外部光纤的光纤组件及用于固定光纤组件的固定板,电路板设置于下壳体上,光芯片与透镜组件均设置于电路板上,透镜组件与光纤组件连接。光纤组件包括依次连接的光纤插芯、内部光纤与光纤适配器,光纤插芯的一端插入透镜组件的插拔部,内部光纤的一端插入光纤插芯的另一端,内部光纤的另一端插入光纤适配器的一端;光纤适配器卡接于下壳体上,光纤适配器的另一端与外部光纤连接。为保证光纤插芯与透镜组件的插接稳固性,固定板包括金属主板与多个金属支脚,金属主板与金属支脚之间设置有突出部,电路板上设置有相应的插孔,固定板的金属支脚插入电路板上的插孔内,以固定固定板;固定板的突出部与光纤插芯的端面相抵接,以抵住光纤插芯。如此通过固定板来固定光纤插芯,避免了光纤插芯左右移动,使得透镜组件与光纤组件之间的光学耦合对接更稳定,且其安装操作简便,无需再加胶烘烤,节省工时,拆卸方便,易于返修,不损伤物料。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以 对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (17)

  1. 一种光模块,其特征在于,包括:
    下壳体,其相对的两侧壁上分别设有第一凸台;
    上壳体,盖合于所述下壳体上;
    电路板,设置于所述下壳体上;
    光芯片,设置于所述电路板上,用于产生光信号或接收光信号;
    透镜组件,覆盖于所述光芯片上,用于改变所述光信号的传播方向;
    光纤组件,包括依次连接的光纤插芯、内部光纤与光纤适配器,所述光纤插芯的另一端插入所述透镜组件内,所述光纤适配器的另一端连接外部光纤;用于接收通过所述透镜组件的光信号或所述外部光纤传输的光信号;
    固定板,设置于所述第一凸台与所述光纤插芯的端面之间,其一侧与所述光纤插芯的端面相抵接,另一侧的边缘与所述第一凸台相抵接;其与所述光纤插芯端面相抵接的侧面上设有下端开口的开孔,所述内部光纤穿过所述开孔插入所述光纤插芯内。
  2. 根据权利要求1所述的光模块,其特征在于,所述光纤插芯的外侧包裹有套筒基座,所述套筒基座的外侧面卡固于所述固定板的开孔内。
  3. 根据权利要求1所述的光模块,其特征在于,所述固定板包括第一侧面、第二侧面、第三侧面、第四侧面与第五侧面,所述第一侧面与所述光纤插芯的端面相抵接,且所述开孔设置于所述第一侧面上;
    所述第二侧面的两端分别与所述第一侧面、所述第三侧面连接,所述第二侧面与所述第一侧面之间成一定角度设置,所述第三侧面与所述第二侧面之间成一定角度设置,所述第三侧面与所述第一凸台的侧面相抵接;
    所述第四侧面的两端分别与所述第一侧面、所述第五侧面连接,所述第四侧面与所述第一侧面之间成一定角度设置,所述第五侧面与所述第四侧面之间成一定角度设置,所述第五侧面与所述第一凸台的侧面相抵接。
  4. 根据权利要求3所述的光模块,其特征在于,所述第一侧面的高度小于所述第二侧面的高度,所述第二侧面的底面与所述电路板接触,所述第一侧面的底面与所述电路板之间设置有空隙。
  5. 根据权利要求3所述的光模块,其特征在于,所述下壳体相对的两侧壁上设有第二凸台,所述第二凸台的高度低于所述第一凸台的高度;
    所述第三侧面垂直安装于所述第二凸台上,用于在所述固定板与所述电路板之间设有空隙。
  6. 根据权利要求3所述的光模块,其特征在于,所述第一侧面上设有折弯舌片,所述折弯舌片垂直于所述第一侧面,且所述折弯舌片与所述第二侧面位于所述第一侧面的同一侧,用于卡固于所述上壳体上。
  7. 根据权利要求1所述的光模块,其特征在于,所述固定板为弹性板。
  8. 根据权利要求1所述的光模块,其特征在于,所述第一凸台与所述光纤插芯端面 之间的距离小于所述固定板的第一侧面与第三侧面之间的距离。
  9. 一种光模块,其特征在于,包括:
    电路板,其上设置有插孔;
    光芯片,设置于所述电路板上,用于产生光信号或接收光信号;
    透镜组件,覆盖于所述光芯片上,用于改变所述光信号的传播方向;
    光纤组件,包括依次连接的光纤插芯、内部光纤与光纤适配器,所述光纤插芯插入所述透镜组件内,所述光纤适配器用于连接外部光纤;用于接收通过所述透镜组件的光信号或接收所述外部光纤传输的光信号;
    固定板,设置于所述光纤适配器与所述光纤插芯的端面之间,其一侧与所述光纤插芯的端面相抵接,其底端插入所述插孔内;其与所述光纤插芯端面相抵接的侧面上设有开孔,所述内部光纤穿过所述开孔插入所述光纤插芯内。
  10. 根据权利要求9所述的光模块,其特征在于,所述固定板包括金属主板,所述金属主板的底面边缘设置有多个金属支脚,所述开孔设置于相邻的金属支脚之间,且多个所述金属支脚分别插入所述电路板上的插孔内。
  11. 根据权利要求10所述的光模块,其特征在于,所述金属主板的底面边缘设置有第一金属支脚、第二金属支脚与第三金属支脚,所述电路板上设置有相应的第一插孔、第二插孔与第三插孔,所述第一金属支脚插入所述第一插孔内,所述第二金属支脚插入所述第二插孔内,所述第三金属支脚插入所述第三插孔内;
    所述第一金属支脚与所述第二金属支脚的侧边上分别设置有限位凸起,所述限位凸起与所述电路板的表面相抵接。
  12. 根据权利要求11所述的光模块,其特征在于,所述第一金属支脚、所述第二金属支脚、所述第三金属支脚与所述金属主板之间均设有突出部,所述突出部与所述光纤插芯的端面相抵接。
  13. 根据权利要求12所述的光模块,其特征在于,所述第一插孔与所述光纤插芯端面之间的距离小于所述突出部的凸起高度。
  14. 根据权利要求13所述的光模块,其特征在于,所述固定板为弹性件。
  15. 根据权利要求12所述的光模块,其特征在于,所述光纤插芯的外侧包裹有套筒基座,所述套筒基座包括第一套筒与第二套筒,所述第一套筒的外径尺寸小于所述第二套筒的外径尺寸;
    所述第一套筒插入所述开孔内,所述突出部与所述第二套筒的端面相抵接。
  16. 根据权利要求12所述的光模块,其特征在于,还包括上壳体,所述金属主板的顶面设有金属弹片,所述金属弹片与所述上壳体的下表面相抵接。
  17. 根据权利要求16所述的光模块,其特征在于,所述金属弹片与所述突出部分别位于所述金属主板的不同侧。
PCT/CN2021/098264 2020-08-18 2021-06-04 一种光模块 WO2022037186A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/547,770 US12066670B2 (en) 2020-08-18 2021-12-10 Optical module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010833918.X 2020-08-18
CN202010833918.XA CN114077019B (zh) 2020-08-18 2020-08-18 一种光模块
CN202021793499.3U CN212647091U (zh) 2020-08-25 2020-08-25 一种光模块
CN202021793499.3 2020-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/547,770 Continuation-In-Part US12066670B2 (en) 2020-08-18 2021-12-10 Optical module

Publications (1)

Publication Number Publication Date
WO2022037186A1 true WO2022037186A1 (zh) 2022-02-24

Family

ID=80322563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098264 WO2022037186A1 (zh) 2020-08-18 2021-06-04 一种光模块

Country Status (2)

Country Link
US (1) US12066670B2 (zh)
WO (1) WO2022037186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230008599A1 (en) * 2021-07-06 2023-01-12 Amphenol Fiber Optic Technology (Shenzhen) Co., Ltd. Fiber optic adapter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI847473B (zh) * 2022-09-21 2024-07-01 立佳興業股份有限公司 光學連接器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713362A (zh) * 2012-09-28 2014-04-09 泰科电子(上海)有限公司 光纤连接器组件
CN103995322A (zh) * 2013-02-15 2014-08-20 日立金属株式会社 套圈固定部件
CN107526137A (zh) * 2016-06-21 2017-12-29 住友电工光电子器件创新株式会社 光收发器
US20190346637A1 (en) * 2018-05-09 2019-11-14 Radiall Sa Optoelectronic optical-link module, integrating a device for removably mounting an optical contact element, associated method for toolessly demounting/demounting
CN210119608U (zh) * 2019-07-16 2020-02-28 深圳市亚派光电器件有限公司 光模块
CN111239934A (zh) * 2020-03-18 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN111239930A (zh) * 2020-03-12 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN212647091U (zh) * 2020-08-25 2021-03-02 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929492A (zh) 2016-07-01 2016-09-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN108051893B (zh) 2017-12-11 2020-01-07 青岛海信宽带多媒体技术有限公司 光模块
CN207586483U (zh) 2017-12-29 2018-07-06 中航海信光电技术有限公司 一种光模块
JP2019184745A (ja) * 2018-04-05 2019-10-24 矢崎総業株式会社 光コネクタ
US20190391349A1 (en) * 2018-06-20 2019-12-26 Hisense Broadband Multimedia Technologies Co., Ltd. Optical module
CN111830641B (zh) * 2019-04-23 2022-08-19 苏州旭创科技有限公司 一种光模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713362A (zh) * 2012-09-28 2014-04-09 泰科电子(上海)有限公司 光纤连接器组件
CN103995322A (zh) * 2013-02-15 2014-08-20 日立金属株式会社 套圈固定部件
CN107526137A (zh) * 2016-06-21 2017-12-29 住友电工光电子器件创新株式会社 光收发器
US20190346637A1 (en) * 2018-05-09 2019-11-14 Radiall Sa Optoelectronic optical-link module, integrating a device for removably mounting an optical contact element, associated method for toolessly demounting/demounting
CN210119608U (zh) * 2019-07-16 2020-02-28 深圳市亚派光电器件有限公司 光模块
CN111239930A (zh) * 2020-03-12 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN111239934A (zh) * 2020-03-18 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN212647091U (zh) * 2020-08-25 2021-03-02 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230008599A1 (en) * 2021-07-06 2023-01-12 Amphenol Fiber Optic Technology (Shenzhen) Co., Ltd. Fiber optic adapter
US11609385B2 (en) * 2021-07-06 2023-03-21 Amphenol Fiber Optic Technolgy (Shenzhen) Co., Ltd. Fiber optic adapter

Also Published As

Publication number Publication date
US12066670B2 (en) 2024-08-20
US20220099902A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
CN111239934B (zh) 一种光模块
CN111239930A (zh) 一种光模块
WO2022037186A1 (zh) 一种光模块
WO2021174921A1 (zh) 一种光模块
WO2021120668A1 (zh) 一种光模块
CN212647091U (zh) 一种光模块
CN112230349B (zh) 一种光模块
CN112230350B (zh) 一种光模块
WO2022041801A1 (zh) 一种光模块
CN215181035U (zh) 一种光模块
CN113419315A (zh) 一种光模块
WO2024040967A1 (zh) 光模块
WO2021120669A1 (zh) 一种光模块
CN114077019B (zh) 一种光模块
WO2023020075A1 (zh) 一种新的光模块
WO2022052843A1 (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
WO2022057622A1 (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块
WO2022116619A1 (zh) 一种光模块
CN215181036U (zh) 一种光模块
CN213210543U (zh) 一种光模块
CN212623217U (zh) 一种光模块
WO2022021688A1 (zh) 一种光模块
WO2022083154A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857285

Country of ref document: EP

Kind code of ref document: A1