WO2022037177A1 - 空压制氮系统 - Google Patents

空压制氮系统 Download PDF

Info

Publication number
WO2022037177A1
WO2022037177A1 PCT/CN2021/097432 CN2021097432W WO2022037177A1 WO 2022037177 A1 WO2022037177 A1 WO 2022037177A1 CN 2021097432 W CN2021097432 W CN 2021097432W WO 2022037177 A1 WO2022037177 A1 WO 2022037177A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower body
baffle
air
fixed cylinder
nitrogen
Prior art date
Application number
PCT/CN2021/097432
Other languages
English (en)
French (fr)
Inventor
杨佳岩
Original Assignee
中国港湾工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国港湾工程有限责任公司 filed Critical 中国港湾工程有限责任公司
Publication of WO2022037177A1 publication Critical patent/WO2022037177A1/zh
Priority to ZA2022/03835A priority Critical patent/ZA202203835B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids

Definitions

  • the present invention relates to the technical field of gas manufacturing equipment. More specifically, the present invention relates to air-compressed nitrogen systems.
  • the nitrogen generator uses air as the raw material and carbon molecular sieve as the adsorbent, and adopts the principle of pressure swing adsorption at room temperature to separate the air to produce high-purity nitrogen.
  • the existing nitrogen generators have the problems that the air flow rate is fast, the adsorption performance of the carbon molecular sieve is not fully utilized, and the utilization rate of the adsorbent is low.
  • the purpose of the present invention is to provide an air pressure nitrogen suppression system, which can slow down the air flow rate and improve the utilization rate of the adsorbent.
  • an air-compressed nitrogen system including:
  • Air storage tanks in which clean compressed air is stored
  • a nitrogen generator which includes two adsorption towers, the two adsorption towers are arranged in parallel, and any adsorption tower includes:
  • the tower body is in the shape of a hollow cylinder and is arranged in the vertical direction, the top of the tower body is provided with at least one inlet for carbon molecular sieves, and the bottom is provided with an outlet for carbon molecular sieves;
  • a fixed cylinder which is in the shape of a cylinder, is arranged inside the tower body, and is coaxially arranged with the tower body, the top of the fixed cylinder is fixed and seamlessly connected with the top of the tower body, and the bottom is The bottom of the tower body is separated by a certain distance, and two partitions are arranged at intervals along the vertical direction in the fixed cylinder.
  • the two partitions divide the interior of the fixed cylinder into three chambers.
  • the chambers are filled with ceramic balls, and a plurality of air holes are arranged at intervals on the side walls of the chambers, and the chamber located below the fixed cylinder is communicated with the air storage tank;
  • a plurality of first baffles are arranged in the tower body at intervals along the vertical direction, each of the first baffles is a circular truncated shape with a hollow interior and an open top and bottom, and the first baffles are coaxial with the tower body set, and the diameter of its top is larger, the top of the first baffle is fixed and seamlessly connected with the inner side wall of the tower body, and the bottom does not contact the outer side wall of the fixed cylinder;
  • each second baffle plate is a circular truncated shape with hollow interior and open top and bottom, and the second baffle plate is coaxial with the tower body Set, and the diameter of its top is small, the top of the second baffle is fixed and seamlessly connected with the outer side wall of the fixed cylinder, the bottom does not contact the inner side wall of the tower body, and two adjacent second baffles are provided with A first baffle, or a second baffle is arranged between two adjacent first baffles, and the first baffle is not in contact with the second baffle;
  • Nitrogen storage tanks which are respectively communicated with the upper chambers in the two stationary cylinders.
  • the diameter of the bottom of the tower body gradually decreases from top to bottom, and the discharge port of the carbon molecular sieve is arranged in the center of the bottom of the tower body.
  • the second baffle plate is arranged on the outer side wall corresponding to the chamber in the middle of the fixed cylinder.
  • a first baffle is arranged between two adjacent second baffles.
  • the bottom of the fixed cylinder is also provided with a plurality of air holes at intervals, and the air-compressed nitrogen system further includes:
  • the third baffle is a truncated cone with a hollow interior and open top and bottom.
  • the third baffle is arranged coaxially with the tower body, and the diameter of the top is smaller.
  • the top of the third baffle is connected to the outer side of the fixed cylinder.
  • the bottoms of the walls are fixed and seamless, and the bottoms are spaced a certain distance from the bottoms of the towers.
  • the air-compressed nitrogen system it also includes:
  • the fourth baffle which is cylindrical, is coaxially arranged with the fixed cylinder and is equal to the outer diameter of the fixed cylinder, and the top of the fourth baffle is fixed and seamlessly connected to the bottom of the fixed cylinder , the bottom is close to the bottom of the tower body and is separated from the bottom of the tower body by a certain distance.
  • the air pressure nitrogen suppression system there are four feed ports of the carbon molecular sieve, and the four feed ports of the carbon molecular sieve are arranged at equal intervals along the circumferential direction of the tower body.
  • the lower chamber in the fixed cylinder is communicated with the air storage tank through a gas pipe, one end of the gas pipe is connected with the air storage tank, and the other end passes through the tower body and the fourth block in turn. plate and connected to the bottom of the fixed cylinder.
  • the invention can slow down the flow rate of the air in the tower body, so that the carbon molecular sieves in different parts of the tower body can well exert their adsorption performance Therefore, the utilization rate of the adsorbent can be greatly improved, thereby improving the purity of nitrogen.
  • the first baffle, the second baffle and the third baffle are all set in the shape of a truncated cone, so that after the carbon molecular sieve enters the tower body through the feeding port, it can follow the first baffle, the second baffle and the third baffle.
  • the slope of the baffle plate is downward, which makes the carbon molecular sieve easy to be introduced into the tower body, and because the discharge port is arranged in the center of the bottom of the tower body, the carbon molecular sieve can be easily exported from the tower body when it needs to be replaced.
  • FIG. 1 is a schematic structural diagram of an air-compressed nitrogen system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a tower body according to an embodiment of the present invention.
  • the present invention provides an air pressure nitrogen system, including:
  • Air storage tank 1 which stores clean compressed air
  • the nitrogen generator includes two adsorption towers 2, the two adsorption towers 2 are arranged in parallel, and any adsorption tower 2 includes:
  • the tower body 201 is in the shape of a cylinder with a hollow interior and is arranged in the vertical direction.
  • the top of the tower body 201 is provided with at least one carbon molecular sieve inlet 202, and the bottom is provided with a carbon molecular sieve outlet 203;
  • a fixed cylinder 204 which is cylindrical, is arranged inside the tower body 201, and is coaxially arranged with the tower body 201, and the top of the fixed cylinder 204 is fixed with the top of the tower body 201 without any The bottom is separated from the bottom of the tower body 201 by a certain distance.
  • Two partitions are arranged in the fixed cylinder 204 at intervals along the vertical direction, and the two partitions divide the interior of the fixed cylinder 204 into three chambers.
  • the upper and lower chambers in the fixed cylinder 204 are filled with ceramic balls, and a plurality of air holes are arranged at intervals on the side walls of the fixed cylinder 204, and the lower chamber in the fixed cylinder 204 is communicated with the air storage tank 1;
  • a plurality of first baffles 205 are arranged in the tower body 201 at intervals along the vertical direction.
  • Each of the first baffles 205 is a truncated truncated cone with an open top and a bottom.
  • the first baffles 205 It is arranged coaxially with the tower body 201, and the diameter of its top is larger, so that the carbon molecular sieve can go down along the slope of the first baffle 205, and can also slow down the flow rate of the air.
  • the top of the first baffle 205 and the tower body 201 The inner sidewall of the fixed cylinder 204 is fixed and seamlessly connected, and the bottom does not contact the outer sidewall of the fixed cylinder 204;
  • a plurality of second baffles 206 are arranged in the tower body 201 at intervals along the vertical direction. It is arranged coaxially with the tower body 201, and the diameter of its top is small, so that the carbon molecular sieve can go down along the slope of the second baffle 206, and can also slow down the flow rate of the air.
  • the top of the second baffle 206 is connected to the fixed cylinder 204.
  • the outer side wall of the tower body is fixed and seamlessly connected, the bottom does not contact the inner side wall of the tower body 201, and a first baffle plate 205 is provided between two adjacent second baffle plates 206, or two adjacent first baffle plates 205.
  • a second baffle 206 is provided between the 205, and the first baffle 205 does not contact the second baffle 206;
  • the nitrogen storage tank 3 communicates with the upper chambers in the two fixed cylinders 204 respectively.
  • the compressed air when in use, the compressed air first enters the lower chamber in the fixed cylinder 204, and then diffuses outward through the air holes corresponding to the lower chamber in the fixed cylinder 204.
  • the first block The plate 205 and the second baffle 206 can slow down the flow rate of the air in the tower body 201 and greatly improve the adsorption performance of the carbon molecular sieve.
  • the nitrogen gas enters the upper chamber in the fixed cylinder 204 and is stored in the nitrogen storage tank 3 .
  • the diameter of the bottom of the tower body 201 gradually decreases from top to bottom, and the discharge port 203 of the carbon molecular sieve is arranged on the tower body 201
  • the center of the bottom of the carbon molecular sieve makes it easy to export the carbon molecular sieve from the tower body 201 when it needs to be replaced.
  • the second baffle plate 206 is disposed on the outer side wall corresponding to the chamber in the middle of the fixed cylinder 204 .
  • a first baffle plate 205 is disposed between two adjacent second baffle plates 206 in the air nitrogen suppression system.
  • the bottom of the fixed cylinder 204 is also provided with a plurality of air holes at intervals, and the air nitrogen compression system further includes:
  • the third baffle 207 is a truncated cone with a hollow interior and open top and bottom.
  • the third baffle 207 is coaxial with the tower body 201 and has a smaller diameter at the top.
  • the top of the third baffle 207 is similar to
  • the bottom of the outer side wall of the fixed cylinder 204 is fixed and seamlessly connected, and the bottom is separated from the bottom of the tower body 201 by a certain distance. In this way, the air entering the lower chamber in the fixed cylinder 204 can be adsorbed downward by the carbon molecular sieve at the bottom of the fixed cylinder 204, and the bottom of the fixed cylinder 204 is also provided with a third baffle 207, which can slow down the air in the tower body.
  • the flow rate at the bottom of 201 improves the adsorption performance of the carbon molecular sieve at the bottom of the tower body 201.
  • the air-compressed nitrogen system further includes:
  • the fourth baffle 208 is cylindrical, and is disposed coaxially with the fixing cylinder 204 and is equal to the outer diameter of the fixing cylinder 204 , and the top of the fourth baffle 208 is the bottom of the fixing cylinder 204 Fixed and seamlessly connected, the bottom is close to the bottom of the tower body 201 and separated from the bottom of the tower body 201 by a certain distance, but the carbon molecular sieve can enter the center of the bottom of the tower body 201 . Because the central position of the bottom of the tower body 201 is the lowest, by setting the fourth baffle 208, the air in the lower chamber in the fixed cylinder 204 can be discharged and go down along the fourth baffle 208, which can further improve the air flow. The adsorption performance of the carbon molecular sieve at the bottom of the tower body 201.
  • the air pressure nitrogen suppression system there are four feed ports 202 of the carbon molecular sieve, and the four feed ports 202 of the carbon molecular sieve are arranged at equal intervals along the circumferential direction of the tower body 201 . Because the first baffle 205 , the second baffle 206 and the third baffle 207 are all set in the shape of a truncated cone, after the carbon molecular sieve enters the tower body 201 through the feed port 202 , it can follow the first baffle 205 and the second baffle.
  • the slope of the plate 206 and the third baffle 207 is downward, so that the carbon molecular sieve can be easily introduced into the tower body 201, and because the discharge port 203 is arranged in the center of the bottom of the tower body 201, the carbon molecular sieve can be easily removed from the tower when it needs to be replaced. Exported within body 201.
  • the lower chamber in the fixed cylinder 204 is communicated with the air storage tank 1 through a trachea, one end of the trachea is communicated with the air storage tank 1, and the other end is sequentially connected to the air storage tank 1. Pass through the tower body 201 and the fourth baffle 208 and connect with the bottom of the fixed cylinder 204 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

一种空压制氮系统,包括:空气储罐(1);制氮机,包括两个吸附塔(2),吸附塔(2)包括:塔体(201);固定筒(204),顶部与塔体(201)的顶部固定连接,固定筒(204)内设置有两块隔板,两块隔板将固定筒(204)的内部分割成三个腔室,固定筒(204)中位于上方和下方的腔室所对应的侧壁上均间隔设置有多个气孔,固定筒(204)中位于下方的腔室与空气储罐(1)连通;多块第一挡板(205),间隔设置在塔体(201)内,各块第一挡板(205)均为倒圆台形,第一挡板(205)的顶部与塔体(201)的内侧壁固定连接;多块第二挡板(206),间隔设置在塔体(201)内,各块第二挡板(206)均为圆台形,第二挡板(206)的顶部与固定筒(204)的外侧壁固定连接,底部未接触塔体(201)的内侧壁;氮气储罐(3),分别与两个固定筒(204)中位于上方的腔室连通。

Description

空压制氮系统 技术领域
本发明涉及气体制造设备技术领域。更具体地说,本发明涉及空压制氮系统。
背景技术
制氮机是以空气为原料,以碳分子筛为吸附剂,采用常温下变压吸附原理分离空气,制取高纯度的氮气。
现有的制氮机存在着空气流速较快,碳分子筛的吸附性能未充分利用,吸附剂利用率较低的问题。
发明内容
本发明的目的是提供空压制氮系统,其能减缓空气流速,提高吸附剂的利用率。
为了实现根据本发明的这些目的和其它优点,提供了空压制氮系统,包括:
空气储罐,其内储存有洁净的压缩空气;
制氮机,其包括两个吸附塔,两个吸附塔并联设置,任一吸附塔包括:
塔体,其为内部中空的圆柱体形,且沿竖直方向设置,所述塔体的顶部设置有至少一个碳分子筛的入料口,底部设置有碳分子筛的出料口;
固定筒,其为圆筒体形,且设置在所述塔体的内部,并与所述塔体同轴设置,所述固定筒的顶部与所述塔体的顶部固定且无缝连接,底部与所述塔体的底部相隔一定距离,所述固定筒内沿竖直方向间隔设置有两块隔板,两块隔板将固定筒的内部分割成三个腔室,固定筒中位于上方和下方的腔室中均填充有瓷球,且其侧壁上均间隔设置有多个气孔,固定筒中位于下方的腔室与空气储罐连通;
多块第一挡板,其沿竖直方向间隔设置在所述塔体内,各块第一挡板均为内部中空,且顶部和底部均敞开的圆台形,第一挡板与塔体同轴设置,且其顶部的直径较大,第一挡板的顶部与塔体的内侧壁固定且无缝连接,底部未接触所述固定筒的外侧壁;
多块第二挡板,其沿竖直方向间隔设置在所述塔体内,各块第二挡板均为内部中空,且顶部和底部均敞开的圆台形,第二挡板与塔体同轴设置,且其顶部的直径较小,第二挡板的顶部与固定筒的外侧壁固定且无缝连接,底部未接触塔体的内侧壁,相邻 的两块第二挡板间均设置有一块第一挡板,或相邻的两块第一挡板间均设置有一块第二挡板,第一挡板与第二挡板不接触;
氮气储罐,其分别与两个固定筒中位于上方的腔室连通。
优选的是,所述的空压制氮系统中,所述塔体的底部的直径由上到下逐渐减小,所述碳分子筛的出料口设置在所述塔体的底部的中央。
优选的是,所述的空压制氮系统中,所述第二挡板设置在所述固定筒中位于中间的腔室所对应的外侧壁上。
优选的是,所述的空压制氮系统中,相邻的两块第二挡板间均设置有一块第一挡板。
优选的是,所述的空压制氮系统中,所述固定筒的底部也间隔设置有多个气孔,所述空压制氮系统还包括:
第三挡板,其为内部中空,且顶部和底部均敞开的圆台形,第三挡板与塔体同轴设置,且其顶部的直径较小,第三挡板的顶部与固定筒的外侧壁的底部固定且无缝连接,底部与塔体的底部相隔一定距离。
优选的是,所述的空压制氮系统中,还包括:
第四挡板,其为圆筒体形,且与所述固定筒同轴设置,并与所述固定筒的外径相等,所述第四挡板的顶部与固定筒的底部固定且无缝连接,底部靠近塔体的底部并与塔体的底部相隔一定距离。
优选的是,所述的空压制氮系统中,所述碳分子筛的入料口为四个,四个碳分子筛的入料口沿塔体的圆周方向等间隔设置。
优选的是,所述的空压制氮系统中,所述固定筒中位于下方的腔室与空气储罐通过气管连通,气管的一端与空气储罐连通,另一端依次穿过塔体和第四挡板并与固定筒的底部连接。
本发明至少包括以下有益效果:
本发明通过设置第一挡板、第二挡板、第三挡板和第四挡板能减缓空气在塔体内的流速,能使塔体内不同部位的碳分子筛均能很好地发挥其吸附性能,因而能大大提高吸附剂的利用率,进而提高氮气的纯度。
本发明将第一挡板、第二挡板和第三挡板均设置为圆台形,使得碳分子筛通过入料口进入塔体后,能顺着第一挡板、第二挡板和第三挡板的斜面向下,使得碳分子筛易于导入 塔体内,且因出料口设置在塔体的底部的中央,使得碳分子筛在需要更换时,易于从塔体内导出。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1是根据本发明一个实施例的空压制氮系统的结构示意图;
图2是根据本发明一个实施例的塔体的结构示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
需要说明的是,在本发明的描述中,术语“横向”、“纵向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,并不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1和图2所示,本发明提供空压制氮系统,包括:
空气储罐1,其内储存有洁净的压缩空气;
制氮机,其包括两个吸附塔2,两个吸附塔2并联设置,任一吸附塔2包括:
塔体201,其为内部中空的圆柱体形,且沿竖直方向设置,所述塔体201的顶部设置有至少一个碳分子筛的入料口202,底部设置有碳分子筛的出料口203;
固定筒204,其为圆筒体形,且设置在所述塔体201的内部,并与所述塔体201同轴设置,所述固定筒204的顶部与所述塔体201的顶部固定且无缝连接,底部与所述塔体201的底部相隔一定距离,所述固定筒204内沿竖直方向间隔设置有两块隔板,两块隔板将固定筒204的内部分割成三个腔室,固定筒204中位于上方和下方的腔室中均填充有瓷球,且其侧壁上均间隔设置有多个气孔,固定筒204中位于下方的腔室与空气储罐1连通;
多块第一挡板205,其沿竖直方向间隔设置在所述塔体201内,各块第一挡板205均为内部中空,且顶部和底部均敞开的圆台形,第一挡板205与塔体201同轴设置, 且其顶部的直径较大,使得碳分子筛能沿着第一挡板205的斜面向下,也能减缓空气的流速,第一挡板205的顶部与塔体201的内侧壁固定且无缝连接,底部未接触所述固定筒204的外侧壁;
多块第二挡板206,其沿竖直方向间隔设置在所述塔体201内,各块第二挡板206均为内部中空,且顶部和底部均敞开的圆台形,第二挡板206与塔体201同轴设置,且其顶部的直径较小,使得碳分子筛能沿着第二挡板206的斜面向下,也能减缓空气的流速,第二挡板206的顶部与固定筒204的外侧壁固定且无缝连接,底部未接触塔体201的内侧壁,相邻的两块第二挡板206间均设置有一块第一挡板205,或相邻的两块第一挡板205间均设置有一块第二挡板206,第一挡板205与第二挡板206不接触;
氮气储罐3,其分别与两个固定筒204中位于上方的腔室连通。
本方案提供的空压制氮系统,在使用时,压缩空气首先进入固定筒204中位于下方的腔室中,之后通过固定筒204中位于下方的腔室所对应的气孔向外扩散,第一挡板205、第二挡板206能减缓空气在塔体201内的流速,大大提高碳分子筛的吸附性能。之后氮气进入固定筒204中位于上方的腔室中后,储存至氮气储罐3中。
在另一种技术方案中,所述的空压制氮系统中,所述塔体201的底部的直径由上到下逐渐减小,所述碳分子筛的出料口203设置在所述塔体201的底部的中央,使得碳分子筛在需要更换时,易于从塔体201内导出。
在另一种技术方案中,所述的空压制氮系统中,所述第二挡板206设置在所述固定筒204中位于中间的腔室所对应的外侧壁上。
在另一种技术方案中,所述的空压制氮系统中,相邻的两块第二挡板206间均设置有一块第一挡板205。
在另一种技术方案中,所述的空压制氮系统中,所述固定筒204的底部也间隔设置有多个气孔,所述空压制氮系统还包括:
第三挡板207,其为内部中空,且顶部和底部均敞开的圆台形,第三挡板207与塔体201同轴设置,且其顶部的直径较小,第三挡板207的顶部与固定筒204的外侧壁的底部固定且无缝连接,底部与塔体201的底部相隔一定距离。这样使得进入固定筒204中位于下方的腔室中的空气能向下被固定筒204底部的碳分子筛吸附,且因固定筒204的底部还 设置有第三挡板207,能减缓空气在塔体201底部的流速,提高塔体201底部的碳分子筛的吸附性能。
在另一种技术方案中,所述的空压制氮系统中,还包括:
第四挡板208,其为圆筒体形,且与所述固定筒204同轴设置,并与所述固定筒204的外径相等,所述第四挡板208的顶部与固定筒204的底部固定且无缝连接,底部靠近塔体201的底部并与塔体201的底部相隔一定距离,但能使碳分子筛进入塔体201的底部的中央。因塔体201的底部的中央位置最低,通过设置第四挡板208,能使固定筒204中位于下方的腔室中的空气出来后,顺着第四挡板208向下,能进一步地提高塔体201内位于最底部的碳分子筛的吸附性能。
在另一种技术方案中,所述的空压制氮系统中,所述碳分子筛的入料口202为四个,四个碳分子筛的入料口202沿塔体201的圆周方向等间隔设置。因第一挡板205、第二挡板206和第三挡板207均设置为圆台形,使得碳分子筛通过入料口202进入塔体201后,能顺着第一挡板205、第二挡板206和第三挡板207的斜面向下,使得碳分子筛易于导入塔体201内,且因出料口203设置在塔体201的底部的中央,使得碳分子筛在需要更换时,易于从塔体201内导出。
在另一种技术方案中,所述的空压制氮系统中,所述固定筒204中位于下方的腔室与空气储罐1通过气管连通,气管的一端与空气储罐1连通,另一端依次穿过塔体201和第四挡板208并与固定筒204的底部连接。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (8)

  1. 空压制氮系统,其特征在于,包括:
    空气储罐,其内储存有洁净的压缩空气;
    制氮机,其包括两个吸附塔,两个吸附塔并联设置,任一吸附塔包括:
    塔体,其为内部中空的圆柱体形,且沿竖直方向设置,所述塔体的顶部设置有至少一个碳分子筛的入料口,底部设置有碳分子筛的出料口;
    固定筒,其为圆筒体形,且设置在所述塔体的内部,并与所述塔体同轴设置,所述固定筒的顶部与所述塔体的顶部固定且无缝连接,底部与所述塔体的底部相隔一定距离,所述固定筒内沿竖直方向间隔设置有两块隔板,两块隔板将固定筒的内部分割成三个腔室,固定筒中位于上方和下方的腔室中均填充有瓷球,且其侧壁上均间隔设置有多个气孔,固定筒中位于下方的腔室与空气储罐连通;
    多块第一挡板,其沿竖直方向间隔设置在所述塔体内,各块第一挡板均为内部中空,且顶部和底部均敞开的圆台形,第一挡板与塔体同轴设置,且其顶部的直径较大,第一挡板的顶部与塔体的内侧壁固定且无缝连接,底部未接触所述固定筒的外侧壁;
    多块第二挡板,其沿竖直方向间隔设置在所述塔体内,各块第二挡板均为内部中空,且顶部和底部均敞开的圆台形,第二挡板与塔体同轴设置,且其顶部的直径较小,第二挡板的顶部与固定筒的外侧壁固定且无缝连接,底部未接触塔体的内侧壁,相邻的两块第二挡板间均设置有一块第一挡板,或相邻的两块第一挡板间均设置有一块第二挡板,第一挡板与第二挡板不接触;
    氮气储罐,其分别与两个固定筒中位于上方的腔室连通。
  2. 如权利要求1所述的空压制氮系统,其特征在于,所述塔体的底部的直径由上到下逐渐减小,所述碳分子筛的出料口设置在所述塔体的底部的中央。
  3. 如权利要求1所述的空压制氮系统,其特征在于,所述第二挡板设置在所述固定筒中位于中间的腔室所对应的外侧壁上。
  4. 如权利要求3所述的空压制氮系统,其特征在于,相邻的两块第二挡板间均设置有一块第一挡板。
  5. 如权利要求2所述的空压制氮系统,其特征在于,所述固定筒的底部也间隔设置 有多个气孔,所述空压制氮系统还包括:
    第三挡板,其为内部中空,且顶部和底部均敞开的圆台形,第三挡板与塔体同轴设置,且其顶部的直径较小,第三挡板的顶部与固定筒的外侧壁的底部固定且无缝连接,底部与塔体的底部相隔一定距离。
  6. 如权利要求5所述的空压制氮系统,其特征在于,还包括:
    第四挡板,其为圆筒体形,且与所述固定筒同轴设置,并与所述固定筒的外径相等,所述第四挡板的顶部与固定筒的底部固定且无缝连接,底部靠近塔体的底部并与塔体的底部相隔一定距离。
  7. 如权利要求6所述的空压制氮系统,其特征在于,所述碳分子筛的入料口为四个,四个碳分子筛的入料口沿塔体的圆周方向等间隔设置。
  8. 如权利要求6所述的空压制氮系统,其特征在于,所述固定筒中位于下方的腔室与空气储罐通过气管连通,气管的一端与空气储罐连通,另一端依次穿过塔体和第四挡板并与固定筒的底部连接。
PCT/CN2021/097432 2020-08-19 2021-05-31 空压制氮系统 WO2022037177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/03835A ZA202203835B (en) 2020-08-19 2022-04-04 Air-compression nitrogen generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010839367.8 2020-08-19
CN202010839367.8A CN112169532B (zh) 2020-08-19 2020-08-19 空压制氮系统

Publications (1)

Publication Number Publication Date
WO2022037177A1 true WO2022037177A1 (zh) 2022-02-24

Family

ID=73918978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097432 WO2022037177A1 (zh) 2020-08-19 2021-05-31 空压制氮系统

Country Status (3)

Country Link
CN (1) CN112169532B (zh)
WO (1) WO2022037177A1 (zh)
ZA (1) ZA202203835B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169532B (zh) * 2020-08-19 2022-06-24 中国港湾工程有限责任公司 空压制氮系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062023A1 (en) * 1997-11-18 2000-12-27 Praxair Technology, Inc. Thermally powered oxygen/nitrogen plant incorporating an oxygen selective ion transport membrane
US20020163054A1 (en) * 2001-03-21 2002-11-07 Yasuo Suda Semiconductor device and its manufacture method
CN103357243A (zh) * 2013-07-30 2013-10-23 杭州普菲科空分设备有限公司 径向制氧吸附塔
CN205222701U (zh) * 2015-12-09 2016-05-11 江阴同悦机械设备有限公司 制氮机的变压吸附及脱氧纯化系统
CN107661681A (zh) * 2017-11-08 2018-02-06 中国科学院过程工程研究所 一种烟气污染物净化塔
CN210764329U (zh) * 2019-08-05 2020-06-16 镇江市恒利低温技术有限公司 一种制氮机
CN112169532A (zh) * 2020-08-19 2021-01-05 中国港湾工程有限责任公司 空压制氮系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753207B1 (ko) * 2006-04-05 2007-09-03 (주)하나플랜트 질소 발생장치의 흡착탑 구조
CN103801172B (zh) * 2014-02-19 2015-10-28 中国科学院山西煤炭化学研究所 使用循环流化移动床捕获电厂烟气中co2的工艺及装置
WO2017035829A1 (zh) * 2015-09-06 2017-03-09 南京海威机械有限公司 粉尘分离装置
CN107854962A (zh) * 2017-11-13 2018-03-30 宜兴市野马环保工程有限公司 一种适用于VOCs废气吸收吸附设备的油幕净化塔
CN207886932U (zh) * 2017-12-11 2018-09-21 苏州兴泰国光化学助剂有限公司 一种制氧机干燥吸附塔
CN207856613U (zh) * 2018-01-03 2018-09-14 凉山矿业股份有限公司 一种二氧化硫吸附塔
CN108298509A (zh) * 2018-04-11 2018-07-20 重庆建峰化肥有限公司 一种变压吸附空分制氮工艺装置
CN109499343A (zh) * 2018-12-07 2019-03-22 中国化学工程第六建设有限公司 工业锅炉、冶金炉窖烟气脱硫系统及脱硫方法
CN111320147B (zh) * 2020-03-19 2023-04-11 杭州天利空分设备制造有限公司 一种提高变压吸附制氮效率的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062023A1 (en) * 1997-11-18 2000-12-27 Praxair Technology, Inc. Thermally powered oxygen/nitrogen plant incorporating an oxygen selective ion transport membrane
US20020163054A1 (en) * 2001-03-21 2002-11-07 Yasuo Suda Semiconductor device and its manufacture method
CN103357243A (zh) * 2013-07-30 2013-10-23 杭州普菲科空分设备有限公司 径向制氧吸附塔
CN205222701U (zh) * 2015-12-09 2016-05-11 江阴同悦机械设备有限公司 制氮机的变压吸附及脱氧纯化系统
CN107661681A (zh) * 2017-11-08 2018-02-06 中国科学院过程工程研究所 一种烟气污染物净化塔
CN210764329U (zh) * 2019-08-05 2020-06-16 镇江市恒利低温技术有限公司 一种制氮机
CN112169532A (zh) * 2020-08-19 2021-01-05 中国港湾工程有限责任公司 空压制氮系统

Also Published As

Publication number Publication date
ZA202203835B (en) 2022-06-29
CN112169532B (zh) 2022-06-24
CN112169532A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2022037177A1 (zh) 空压制氮系统
CN201776062U (zh) 一种吸附塔进气扩散装置
US11958011B2 (en) Separation device and separation method
CN103357243A (zh) 径向制氧吸附塔
CN201632181U (zh) Psa气流多级扩散装置
CN101396628A (zh) 卧式气液分离器
CN202638404U (zh) 一种多管式气体下喷分布器装置
CN211366956U (zh) 一种分子筛吸附器及含有该分子筛吸附器的微型制氧机
CN207913461U (zh) 制氧机分子筛结构
CN216826140U (zh) 费托合成反应器的分布器
CN216654502U (zh) 一种径向等温合成氨反应器
CN201170176Y (zh) 双向充放气泵
CN203790801U (zh) 一种气体分离吸附塔
CN114225669A (zh) 吸收塔
CN212915065U (zh) 双氧水尾气回收装置
CN107413122A (zh) 一种立式径向流吸附器
CN201423231Y (zh) 医用制氧机
CN204991124U (zh) 一种低噪音消声器
CN212609563U (zh) 一体式分子筛集成塔
CN220221982U (zh) 一种料斗
CN110721637B (zh) 改进型的水反应容器
CN113800474B (zh) 一种高效净化低能耗的工业制氧机
CN101575105A (zh) 制取药用碳酸氢钠的设备
CN216498411U (zh) 一种分子筛塔结构
CN217266002U (zh) 具有多喷淋管的管组结构及前驱体封装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857278

Country of ref document: EP

Kind code of ref document: A1