WO2022036755A1 - 用于塞铜工艺 fpc 的涨缩预测方法、装置、设备及存储介质 - Google Patents

用于塞铜工艺 fpc 的涨缩预测方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022036755A1
WO2022036755A1 PCT/CN2020/112488 CN2020112488W WO2022036755A1 WO 2022036755 A1 WO2022036755 A1 WO 2022036755A1 CN 2020112488 W CN2020112488 W CN 2020112488W WO 2022036755 A1 WO2022036755 A1 WO 2022036755A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
expansion
contraction
historical
similarity
Prior art date
Application number
PCT/CN2020/112488
Other languages
English (en)
French (fr)
Inventor
陈康
陈勇利
韩佳明
计美阳
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声精密制造科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声精密制造科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022036755A1 publication Critical patent/WO2022036755A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2115/00Details relating to the type of the circuit
    • G06F2115/12Printed circuit boards [PCB] or multi-chip modules [MCM]

Definitions

  • the present application relates to the technical field of FPC processing, and in particular to a method, device, equipment and storage medium for predicting expansion and contraction of FPC used in a copper plugging process.
  • Flexible circuit board also known as FPC
  • FPC Flexible circuit board
  • soft board or FPC With the characteristics of high density, light weight and thin thickness, it is often used in the bending part of electronic products as the connecting line of electronic modules.
  • Microvia is a key process to achieve higher density circuit board layer and any layer interconnection technology to achieve higher density interconnection, that is, the processing of microvias between layers.
  • the copper plugging process introduces the conductive copper paste with good processability and conductive effect into the micropores of the circuit board to form a conductive paste plugged micropore structure, which can improve the flexibility of the interconnection design of the printed circuit board holes. Support for complex printed circuit products.
  • the copper plugging process is to first complete the circuit etching and drilling, and then complete the interlayer alignment, the alignment accuracy between the layers is very high, so it is particularly important to deal with the expansion and contraction between the layers before pressing.
  • the existing technology needs to make a template for the expansion and contraction control of the copper plug process FPC.
  • This method requires manual extraction of expansion and contraction data from each station, which is a remedial measure and prolongs the production cycle; it cannot prevent and control expansion and contraction in advance, and it greatly wastes the production cost and labor cost of the enterprise.
  • the purpose of the present application is to provide a method, device, equipment and storage medium for predicting expansion and contraction of FPC in copper plugging process, which can simplify the production process, improve production efficiency and effectively improve the first pass rate of products.
  • An embodiment of the present application provides a method for predicting expansion and contraction of FPC for a copper plugging process, including:
  • the material information and the station information exists in the expansion and contraction information database, obtain the corresponding historical expansion and contraction in the expansion and contraction information database value, and the historical expansion and contraction value is determined as the expansion and contraction prediction result.
  • the expansion and contraction information database includes historical design information, historical material information, historical station information, and historical expansion and contraction values, and the design information, the material information, and the station
  • the information is compared with the expansion and contraction information database, and the steps of obtaining the comparison result include:
  • the comparison result is the There are data similar to the design information, the material information and the station information in the expansion and contraction information database.
  • the design information includes the panel design of each layer, the residual copper ratio, the number of laser blind holes, the aperture diameter and the distribution of blind holes; the determination of whether the historical design information is similar to the design information
  • the steps include:
  • the similarity of the panel design is greater than 90%, the similarity of the residual copper rate is greater than 85%, and the similarity of the number of laser blind holes, the aperture and the distribution of blind holes is greater than 80%, it is determined that the The historical design information is similar to the design information.
  • the material information includes the FCCL model and batch number of each layer, the dimensional stability test information of each batch of FCCL, the expansion and shrinkage information of the exposure film, and the PET model;
  • the steps of whether the information is similar to the material information include:
  • the similarity of the dimensional stability test information of the FCCL is greater than 95%
  • the similarity of the expansion and contraction information of the exposure film is greater than 95% %
  • the station information includes development and etching line speed information of each layer, target quantity and distribution information, PET lamination and peeling parameter information, and copper paste filling parameter information; the history of judging the history
  • the steps of whether the workstation information is similar to the said workstation information include:
  • the similarity of the development and etching line speed information is greater than 95%, the similarity of the number of targets and distribution information is greater than 90%, the similarity of the PET lamination and peeling parameter information is greater than 85%, the When the similarity of the copper paste filling parameter information is greater than 85%, it is determined that the historical station information is similar to the station information.
  • the method further includes:
  • the expansion and contraction prediction result is manually analyzed.
  • the expansion and contraction prediction method further includes:
  • the expansion and contraction information database is established according to the historical design information, historical material information, historical station information and the historical expansion and contraction value of the lines of each layer of the FPC.
  • Another embodiment of the present application provides a device for predicting expansion and contraction of FPC in a copper plugging process, including:
  • the acquisition module is used to acquire the design information, material information and station information of the FPC to be processed
  • a comparison module used to compare the design information, the material information and the station information with the expansion and contraction information database to obtain a comparison result
  • the prediction module is used to obtain data in the expansion and contraction information database when the comparison result is that there is data similar to the design information, the material information and the station information in the expansion and contraction information database. For the corresponding historical expansion and contraction value, the historical expansion and contraction value is determined as the expansion and contraction prediction result.
  • Another embodiment of the present application provides an FPC processing equipment, including the expansion and contraction prediction device.
  • Yet another embodiment of the present application provides a computer storage medium storing a program file capable of implementing the described method for predicting expansion and contraction of FPC for a copper plugging process.
  • the beneficial effects of the present application are: by comparing the design information, material information, and station information of the FPC with the expansion and contraction information database, the predicted expansion and contraction results are obtained and applied to the FPC processing and production, and the expansion and contraction of the sample are measured and the initial design is modified.
  • the production process is simplified, the production efficiency is improved, the one-time pass rate of the product is improved, and the production cost and labor cost are saved.
  • FIG. 1 is a schematic flowchart of a method for predicting expansion and contraction of a copper plugging process FPC according to a first embodiment of the present application
  • FIG. 2 is a schematic flowchart of step S102 in FIG. 1;
  • step S201 in FIG. 2 is a schematic flowchart of step S201 in FIG. 2;
  • FIG. 4 is a schematic flowchart of step S202 in FIG. 2;
  • FIG. 5 is a schematic flowchart of step S203 in FIG. 2;
  • FIG. 6 is a schematic flowchart of a method for predicting expansion and contraction of FPC for a copper plugging process according to the second embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of the expansion and contraction prediction device for the copper plugging process FPC according to the first embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an expansion and contraction prediction device for a copper plugging process FPC according to a second embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of the FPC processing equipment according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a computer storage medium according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for predicting expansion and contraction of an FPC for a copper plugging process according to a first embodiment of the present application. It should be noted that, if there is substantially the same result, the method of the present application is not limited to the sequence of the processes shown in FIG. 1 . As shown in Figure 1, the method includes:
  • Step S101 Acquire design information, material information and station information of the FPC to be processed.
  • the FPC to be processed includes multi-layer circuits
  • the design information includes the panel design of each layer, the residual copper rate, the number of laser blind holes, the diameter and the distribution of blind holes
  • the material information includes the FCCL model and batch number of each layer
  • the dimensional stability test information of each batch of FCCL, the expansion and contraction information of the exposure film, the PET model, the station information includes the development and etching line speed information of each layer, the number and distribution of targets, PET lamination and peeling parameter information, copper Paste filling parameter information.
  • Step S102 Compare the design information, material information, and station information with the expansion and contraction information database to obtain a comparison result.
  • the expansion and contraction information database includes historical design information, historical material information, historical station information, and historical expansion and contraction values of the lines of each layer of the FPC.
  • the method further includes: establishing an expansion and contraction information database according to historical design information, historical material information, historical station information and historical expansion and contraction values of the lines of each layer of the FPC.
  • step S102 further includes the following steps:
  • Step S201 Determine whether the historical design information is similar to the design information.
  • step S201 please refer to FIG. 3, including the following steps:
  • Step S301 Determine whether the similarity of the panel designs is greater than 90%.
  • Step S302 Determine whether the similarity of the residual copper rate is greater than 85%.
  • Step S303 Determine whether the similarity of the number of laser blind holes, the aperture diameter and the distribution of blind holes is greater than 80%.
  • Steps S301, S302, and S303 in this embodiment are performed in no particular order.
  • steps S301, S302, and S303 simultaneously satisfy the similarity of the panel design is greater than 90%, the similarity of the residual copper rate is greater than 85%, and the laser
  • step S304 is performed.
  • Step S304 Determine that the historical design information is similar to the design information.
  • Step S202 Determine whether the historical material information is similar to the material information.
  • step S202 referring to FIG. 4, the following steps are included:
  • Step S401 Determine whether the FCCL type, batch number and PET model are the same.
  • Step S402 Determine whether the similarity of the dimensional stability test information of the FCCL is greater than 95%.
  • Step S403 Determine whether the similarity of the expansion and contraction information of the exposure film is greater than 95%.
  • Steps S401, S402, and S403 in this embodiment are performed in no particular order.
  • steps S401, S402, and S403 satisfy the requirements that the FCCL type, batch number, and PET model are all the same, and the dimensional stability test information of the FCCL is similar
  • step S404 is performed.
  • Step S404 Determine that the historical material information is similar to the material information.
  • Step S203 Determine whether the historical workstation information is similar to the workstation information.
  • step S203 referring to FIG. 5, the following steps are included:
  • Step S501 Determine whether the similarity between the development and etching line speed information is greater than 95%.
  • Step S502 Determine whether the similarity between the number of targets and the distribution information is greater than 90%.
  • Step S503 Determine whether the similarity of the PET lamination and stripping parameter information is greater than 85%.
  • Step S504 Determine whether the similarity of the copper paste filling parameter information is greater than 85%.
  • Step S501, step S502, step S503 and step S504 in this embodiment are performed in no particular order.
  • step S501, step S502, step S503 and step S504 simultaneously satisfy that the similarity between the development and etching line speed information is greater than 95% and the number of targets
  • the similarity of the distribution information is greater than 90%
  • the similarity of the PET lamination and peeling parameter information is greater than 85%
  • the similarity of the copper paste filling parameter information is greater than 85%
  • Step S505 It is determined that the historical station information is similar to the station information.
  • Steps S201, S202, and S203 in this embodiment are executed in no particular order.
  • steps S201, S202, and S203 satisfy the requirements that historical design information is similar to design information, historical material information is similar to material information, and historical workstation information is similar to
  • the comparison result is that there is data similar to the design information, material information and station information in the expansion and contraction information database, and then step S103 is executed; when steps S201, S202 and S203 do not meet the above-mentioned
  • the comparison result is that there is no data similar to the design information, material information and station information in the expansion and contraction information database.
  • steps S201, S202 and S203 do not satisfy the above conditions at the same time, it should be understood that only one or both of steps S201, S202 and S203 satisfy similar conditions or none of the steps satisfy similar conditions.
  • Step S103 when the comparison result is that there is data similar to the design information, material information and station information in the expansion and contraction information database, obtain the corresponding historical expansion and contraction value in the expansion and contraction information database, and determine the historical expansion and contraction value as Prediction results of expansion and contraction.
  • the expansion and shrinkage prediction method for FPC in the copper plugging process obtains the predicted expansion and contraction results by comparing the design information, material information, and station information of the FPC with the expansion and contraction information database and applies them to the FPC processing.
  • the production process compared with measuring the expansion and contraction of the template and modifying the initial design, the production process is simplified, the production efficiency is improved, the first-time pass rate of the product is improved, and the production cost and labor cost are saved.
  • FIG. 6 is a schematic flowchart of a method for predicting expansion and contraction of an FPC for a copper plugging process according to a second embodiment of the present application. It should be noted that, if there is substantially the same result, the method of the present application is not limited to the sequence of the processes shown in FIG. 6 . As shown in Figure 6, the method includes:
  • Step S601 Acquire design information, material information and station information of the FPC to be processed.
  • Step 601 in FIG. 6 in this embodiment is similar to step S101 in FIG. 1 , and details are not repeated here.
  • Step S602 Compare the design information, material information and station information with the expansion and contraction information database to obtain a comparison result.
  • Step 602 in FIG. 6 in this embodiment is similar to step S102 in FIG. 1 , and details are not repeated here.
  • step S603 when the comparison result is that data similar to the design information, material information and station information exists in the expansion and contraction information database, step S603 is performed; when the comparison result is that the expansion and contraction information database does not exist When the data is similar to the design information, material information and station information, step S604 is executed.
  • Step S603 When obtaining the corresponding historical expansion and contraction value in the expansion and contraction information database, determine the historical expansion and contraction value as the expansion and contraction prediction result
  • Step S604 Manually analyze the expansion and contraction prediction results.
  • step S604 the expansion and contraction prediction result is manually analyzed and then fed back to the line process, and the line process adjusts the initial parameters according to the expansion and contraction prediction result.
  • the comparison result is that there is no design information, material information and station information in the expansion and contraction information database.
  • the prediction results of expansion and contraction are manually analyzed to prevent the incomplete collection of information in the expansion and contraction information database, to ensure that the expansion and contraction prediction can be carried out smoothly, and to avoid affecting the processing process of FPC.
  • FIG. 7 is a schematic structural diagram of the expansion and contraction prediction device for FPC in the copper plugging process according to the first embodiment of the present application.
  • the expansion and contraction prediction device 70 includes: an acquisition module 71 , a comparison module 72 and a prediction module 73.
  • the acquisition module 71 is used to acquire the design information, material information and station information of the FPC to be processed.
  • the comparison module 72 is coupled to the acquisition module 71, and is used for comparing the design information, material information and station information with the expansion and contraction information database to obtain a comparison result.
  • the prediction module 73 is coupled with the comparison module 72, and is used to obtain the corresponding historical inflation in the inflation and contraction information database when the comparison result is that there is data similar to the design information, material information and station information in the inflation and contraction information database.
  • the contraction value is determined as the historical expansion and contraction value as the expansion and contraction prediction result.
  • FIG. 8 is a schematic structural diagram of the expansion and contraction prediction device for FPC in the copper plugging process according to the second embodiment of the present application.
  • the expansion and contraction prediction device 80 includes: an acquisition module 81 , a comparison module 82 , a first The prediction module 83 and the second prediction module 84 .
  • the obtaining module 81 is used to obtain the design information, material information and station information of the FPC to be processed.
  • the comparison module 82 is coupled to the acquisition module 81, and is used for comparing the design information, material information and station information with the expansion and contraction information database to obtain the comparison result.
  • the first prediction module 83 is coupled with the comparison module 82, and is used to obtain the corresponding data in the expansion and contraction information database when the comparison result is that there is data similar to the design information, material information and station information in the expansion and contraction information database.
  • the historical expansion and contraction value, the historical expansion and contraction value is determined as the expansion and contraction prediction result.
  • the second prediction module 84 is coupled to the comparison module 82, and is used for manually analyzing the expansion and contraction prediction when the comparison result is that there is no data similar to the design information, material information and station information in the expansion and contraction information database. result.
  • FIG. 9 is a schematic structural diagram of the FPC processing equipment according to the embodiment of the present application.
  • the FPC processing equipment 90 includes an expansion and shrinkage prediction device 91, a circuit etching device 92, a PET film sticking device 93, a laser device 94, a printing device 95, PET peeling device 96 and pressing device 97 .
  • the expansion and contraction prediction device 91 is used to predict the expansion and contraction value in advance, and then the circuit is etched by the circuit etching device 92, the PET film is pasted by the PET filming device 93, the laser device 94 is used for laser blind holes, and then the printing device 95 is used.
  • the copper paste is printed and filled into the blind holes, the PET is demolded by the PET peeling device 96, and finally the lines are pressed by the pressing device 97 to complete the FPC processing.
  • FIG. 10 is a schematic structural diagram of a computer storage medium according to an embodiment of the present application.
  • the computer storage medium of the embodiment of the present application stores a program file 11 capable of implementing all the above methods, wherein the program file 11 may be stored in the above-mentioned computer storage medium in the form of a software product, and includes several instructions to make a computer device (It may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory).
  • Various media that can store program codes, such as Memory), magnetic disks or optical discs, or terminal devices such as computers, servers, mobile phones, and tablets.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • General Factory Administration (AREA)

Abstract

一种用于塞铜工艺FPC的涨缩预测方法、装置、设备及存储介质,涉及FPC制作技术领域。该涨缩预测方法包括:获取待加工FPC的设计信息、物料信息以及工站信息(S101);将设计信息、物料信息以及工站信息与涨缩信息数据库进行比对,获得比对结果(S102);当比对结果为涨缩信息数据库中存在与设计信息、物料信息以及工站信息均相似的数据时,获取涨缩信息数据库中相应的历史涨缩值,将历史涨缩值确定为涨缩预测结果(S103)。通过上述方法,能够简化生产流程,提高生产效率同时有效提升产品的一次合格率。

Description

用于塞铜工艺FPC的涨缩预测方法、装置、设备及存储介质 技术领域
本申请涉及FPC加工技术领域,具体涉及一种用于塞铜工艺FPC的涨缩预测方法、装置、设备及存储介质。
背景技术
柔性电路板(又称FPC)是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性,绝佳的可绕性印刷电路板,简称软板或FPC,具有配线密度高、重量轻、厚度薄的特点,常用于电子产品的弯折部分,作为电子模块的接驳线路。
微孔化是实现更高密度电路板层与任意层互连技术实现更高密度互连的关键工艺,即连接层与层之间的微孔加工。但随着FPC层数的增加,其高纵横比使得传统的电镀工艺难以实现层间互联,新型塞铜工艺应运而生。塞铜工艺通过将具有良好的加工性和导电效果的导电铜膏引入到电路板的微孔内,形成导电膏塞微孔结构,可提高印制电路板孔互连设计的灵活性,为实现功能复杂的印制电路产品提供支持。但由于塞铜工艺是先完成电路蚀刻与钻孔,再完成层间对位,对层间的对位精度要求很高,因而对各层之间压合前的涨缩的处理尤为重要。
现有技术针对塞铜工艺FPC的涨缩控制需要制作样板,首先完成各层线路蚀刻后测量其涨缩,再根据各层线路的涨缩,给出对应钻孔所需的涨缩,钻孔完成后再进行塞铜,测量塞铜后的涨缩,并根据塞铜后的涨缩再进行初始设计信息的调整。此方法需要人工从各工站手动提取涨缩数据,属于补救性措施,且延长了生产周期;既无法提前预防与控制涨缩,又极大的浪费企业的生产成本及人力成本。
因此,有必要提供一种新的技术方案以解决上述技术问题。
技术问题
本申请的目的在于提供一种用于塞铜工艺FPC的涨缩预测方法、装置、设备及存储介质,能够简化生产流程,提高生产效率同时有效提升产品的一次合格率。
技术解决方案
本申请的技术方案如下:
本申请的实施例提供一种用于塞铜工艺FPC的涨缩预测方法,包括:
获取待加工FPC的设计信息、物料信息以及工站信息;
将所述设计信息、所述物料信息以及所述工站信息与涨缩信息数据库进行比对,获得比对结果;
当所述比对结果为所述涨缩信息数据库中存在与所述设计信息、所述物料信息以及所述工站信息均相似的数据时,获取所述涨缩信息数据库中相应的历史涨缩值,将所述历史涨缩值确定为涨缩预测结果。
根据本申请的一个实施例,所述涨缩信息数据库包括历史设计信息、历史物料信息、历史工站信息以及历史涨缩值,所述将所述设计信息、所述物料信息以及所述工站信息与涨缩信息数据库进行比对,获得比对结果的步骤包括:
判断所述历史设计信息与所述设计信息是否相似;
判断所述历史物料信息与所述物料信息是否相似;
判断所述历史工站信息与所述工站信息是否相似;
当同时满足所述历史设计信息与所述设计信息相似、所述历史物料信息与所述物料信息相似以及所述历史工站信息与所述工站信息相似时,所述比对结果为所述涨缩信息数据库中存在与所述设计信息、所述物料信息以及所述工站信息均相似的数据。
根据本申请的一个实施例,所述设计信息包括各层的拼板设计、残铜率、激光盲孔数量、孔径及盲孔分布;所述判断所述历史设计信息与所述设计信息是否相似的步骤包括:
判断所述拼板设计的相似度是否大于90%;
判断所述残铜率的相似度是否大于85%;
判断所述激光盲孔数量、孔径及盲孔分布的相似度是否大于80%;
当同时满足所述拼板设计的相似度大于90%、所述残铜率的相似度大于85%以及所述激光盲孔数量、孔径及盲孔分布的相似度大于80%时,确定所述历史设计信息与所述设计信息相似。
根据本申请的一个实施例,所述物料信息包括各层FCCL型号及批次号、各批次FCCL的尺寸安定性测试信息、曝光菲林的涨缩信息、PET型号;所述判断所述历史物料信息与所述物料信息是否相似的步骤包括:
分别判断所述FCCL类型、所述批次号以及所述PET型号是否相同;
判断所述FCCL的尺寸安定性测试信息的相似度是否大于95%;
判断所述曝光菲林的涨缩信息的相似度是否大于95%;
当同时满足所述FCCL类型、所述批次号以及所述PET型号均相同、所述FCCL的尺寸安定性测试信息的相似度大于95%以及所述曝光菲林的涨缩信息的相似度大于95%时,确定所述历史物料信息与所述物料信息相似。
根据本申请的一个实施例,所述工站信息包括各层的显影与蚀刻线速信息、打靶数量及分布信息、PET贴合与剥离参数信息、铜膏填充参数信息;所述判断所述历史工站信息与所述工站信息是否相似的步骤包括:
判断所述显影与蚀刻线速信息的相似度是否大于95%;
判断所述打靶数量及分布信息的相似度是否大于90%;
判断所述PET贴合与剥离参数信息的相似度是否大于85%;
判断所述铜膏填充参数信息的相似度是否大于85%;
当同时满足所述显影与蚀刻线速信息的相似度大于95%、所述打靶数量及分布信息的相似度大于90%、所述PET贴合与剥离参数信息的相似度大于85%、所述铜膏填充参数信息的相似度大于85%时,确定所述历史工站信息与所述工站信息相似。
根据本申请的一个实施例,在所述将所述设计信息、所述物料信息以及所述工站信息与涨缩信息数据库进行比对,获得比对结果的步骤之后,还包括:
当所述比对结果为所述涨缩信息数据库中不存在与所述设计信息、所述物料信息以及所述工站信息均相似的数据时,由人工分析出涨缩预测结果。
根据本申请的一个实施例,所述涨缩预测方法还包括:
根据FPC的各层线路的历史设计信息、历史物料信息、历史工站信息以及所述历史涨缩值建立所述涨缩信息数据库。
本申请的另一实施例提供一种用于塞铜工艺FPC的涨缩预测装置,包括:
获取模块,用于获取待加工FPC的设计信息、物料信息以及工站信息;
比对模块,用于将所述设计信息、所述物料信息以及所述工站信息与涨缩信息数据库进行比对,获得比对结果;
预测模块,用于当所述比对结果为所述涨缩信息数据库中存在与所述设计信息、所述物料信息以及所述工站信息均相似的数据时,获取所述涨缩信息数据库中相应的历史涨缩值,将所述历史涨缩值确定为涨缩预测结果。
本申请的另一实施例提供一种FPC加工设备,包括所述的涨缩预测装置。
本申请的再一实施例提供一种计算机存储介质,存储有能够实现所述的用于塞铜工艺FPC的涨缩预测方法的程序文件。
有益效果
本申请的有益效果在于:通过将FPC的设计信息、物料信息、工站信息与涨缩信息数据库进行对比,获得预测涨缩结果并运用到FPC加工制作中,与测量样板涨缩并修改初始设计相比,简化生产流程、提高生产效率、提升产品的一次合格率同时节省生产成本和人力成本。
附图说明
图1为本申请第一实施例的用于塞铜工艺FPC的涨缩预测方法的流程示意图;
图2为图1中步骤S102的流程示意图;
图3为图2中步骤S201的流程示意图;
图4为图2中步骤S202的流程示意图;
图5为图2中步骤S203的流程示意图;
图6是本申请第二实施例的用于塞铜工艺FPC的涨缩预测方法的流程示意图;
图7是本申请第一实施例的用于塞铜工艺FPC的涨缩预测装置的结构示意图;
图8是本申请第二实施例的用于塞铜工艺FPC的涨缩预测装置的结构示意图;
图9是本申请实施例的FPC加工设备的结构示意图;
图10是本申请实施例的计算机存储介质的结构示意图。
本发明的实施方式
下面结合附图和实施方式对本申请作进一步说明。
图1是本申请第一实施例的用于塞铜工艺FPC的涨缩预测方法的流程示意图。需注意的是,若有实质上相同的结果,本申请的方法并不以图1所示的流程顺序为限。如图1所示,该方法包括:
步骤S101:获取待加工FPC的设计信息、物料信息以及工站信息。
在步骤S101中,待加工FPC包括多层线路,设计信息包括各层的拼板设计、残铜率、激光盲孔数量、孔径及盲孔分布,物料信息包括各层FCCL型号及批次号、各批次FCCL的尺寸安定性测试信息、曝光菲林的涨缩信息、PET型号,工站信息包括各层的显影与蚀刻线速信息、打靶数量及分布信息、PET贴合与剥离参数信息、铜膏填充参数信息。
步骤S102:将设计信息、物料信息以及工站信息与涨缩信息数据库进行比对,获得比对结果。
在步骤S102中,涨缩信息数据库包括FPC的各层线路的历史设计信息、历史物料信息、历史工站信息以及历史涨缩值。在步骤S102之前还包括:根据FPC的各层线路的历史设计信息、历史物料信息、历史工站信息以及历史涨缩值建立涨缩信息数据库。
请参见图2,步骤S102还包括以下步骤:
步骤S201:判断历史设计信息与所述设计信息是否相似。
在步骤S201中,请参见图3,包括以下步骤:
步骤S301:判断拼板设计的相似度是否大于90%。
步骤S302:判断残铜率的相似度是否大于85%。
步骤S303:判断激光盲孔数量、孔径及盲孔分布的相似度是否大于80%。
本实施例的步骤S301、步骤S302以及步骤S303不分先后执行顺序,当步骤S301、步骤S302以及步骤S303同时满足拼板设计的相似度大于90%、残铜率的相似度大于85%以及激光盲孔数量、孔径及盲孔分布的相似度大于80%时,执行步骤S304。
步骤S304:确定历史设计信息与设计信息相似。
步骤S202:判断历史物料信息与物料信息是否相似。
在步骤S202中,请参见图4,包括以下步骤:
步骤S401:分别判断FCCL类型、批次号以及PET型号是否相同。
步骤S402:判断FCCL的尺寸安定性测试信息的相似度是否大于95%。
步骤S403:判断曝光菲林的涨缩信息的相似度是否大于95%。
本实施例的步骤S401、步骤S402以及步骤S403不分先后执行顺序,当步骤S401、步骤S402以及步骤S403同时满足FCCL类型、批次号以及PET型号均相同、FCCL的尺寸安定性测试信息的相似度大于95%以及曝光菲林的涨缩信息的相似度大于95%时,执行步骤S404。
步骤S404:确定历史物料信息与物料信息相似。
步骤S203:判断历史工站信息与工站信息是否相似。
在步骤S203中,请参见图5,包括以下步骤:
步骤S501:判断显影与蚀刻线速信息的相似度是否大于95%。
步骤S502:判断打靶数量及分布信息的相似度是否大于90%。
步骤S503:判断PET贴合与剥离参数信息的相似度是否大于85%。
步骤S504:判断铜膏填充参数信息的相似度是否大于85%。
本实施例的步骤S501、步骤S502、步骤S503以及步骤S504不分先后执行顺序,当步骤S501、步骤S502、步骤S503以及步骤S504同时满足显影与蚀刻线速信息的相似度大于95%、打靶数量及分布信息的相似度大于90%、PET贴合与剥离参数信息的相似度大于85%、铜膏填充参数信息的相似度大于85%时,执行步骤S505。
步骤S505:确定历史工站信息与工站信息相似。
本实施例的步骤S201、步骤S202以及步骤S203不分先后执行顺序,当步骤S201、步骤S202以及步骤S203同时满足历史设计信息与设计信息相似、历史物料信息与物料信息相似以及历史工站信息与工站信息相似时,则比对结果为涨缩信息数据库中存在与设计信息、物料信息以及工站信息均相似的数据,然后执行步骤S103;当步骤S201、步骤S202以及步骤S203没有同时满足上述条件时,则比对结果为所述涨缩信息数据库中不存在与设计信息、物料信息以及工站信息均相似的数据。当步骤S201、步骤S202以及步骤S203没有同时满足上述条件应当理解为仅步骤S201、步骤S202以及步骤S203中的其中一个或两个满足相似条件或者没有一个步骤满足相似条件。
步骤S103:当比对结果为涨缩信息数据库中存在与设计信息、物料信息以及工站信息均相似的数据时,获取涨缩信息数据库中相应的历史涨缩值,将历史涨缩值确定为涨缩预测结果。
本申请的第一实施例的用于塞铜工艺FPC的涨缩预测方法通过将FPC的设计信息、物料信息、工站信息与涨缩信息数据库进行对比,获得预测涨缩结果并运用到FPC加工制作中,与测量样板涨缩并修改初始设计相比,简化生产流程、提高生产效率、提升产品的一次合格率同时节省生产成本和人力成本。
图6是本申请第二实施例的用于塞铜工艺FPC的涨缩预测方法的流程示意图。需注意的是,若有实质上相同的结果,本申请的方法并不以图6所示的流程顺序为限。如图6所示,该方法包括:
步骤S601:获取待加工FPC的设计信息、物料信息以及工站信息。
本实施例图6中的步骤601与图1中的步骤S101类似,在此不再一一赘述。
步骤S602:将设计信息、物料信息以及工站信息与涨缩信息数据库进行比对,获得比对结果。
本实施例图6中的步骤602与图1中的步骤S102类似,在此不再一一赘述。此外,本实施例中,当比对结果为涨缩信息数据库中存在与设计信息、物料信息以及工站信息均相似的数据时,执行步骤S603;当比对结果为涨缩信息数据库中不存在与设计信息、物料信息以及工站信息均相似的数据时,执行步骤S604。
步骤S603:获取涨缩信息数据库中相应的历史涨缩值时,将历史涨缩值确定为涨缩预测结果
步骤S604:由人工分析出涨缩预测结果。
在步骤S604中,由人工分析出涨缩预测结果后反馈至线路制程,线路制程根据该涨缩预测结果进行初始参数调整。
本申请的第二实施例的用于塞铜工艺FPC的涨缩预测方法在第一实施例的基础上,在比对结果为涨缩信息数据库中不存在与设计信息、物料信息以及工站信息均相似的数据时,由人工分析出涨缩预测结果,预防涨缩信息数据库信息收集不全的情况,保证涨缩预测能够顺利进行,避免影响FPC的加工进程。
图7是本申请第一实施例的用于塞铜工艺FPC的涨缩预测装置的结构示意图,如图7所示,该涨缩预测装置70包括:获取模块71、比对模块72以及预测模块73。
获取模块71用于获取待加工FPC的设计信息、物料信息以及工站信息。
比对模块72与获取模块71耦接,用于将设计信息、物料信息以及工站信息与涨缩信息数据库进行比对,获得比对结果。
预测模块73与比对模块72耦接,用于当比对结果为涨缩信息数据库中存在与设计信息、物料信息以及工站信息均相似的数据时,获取涨缩信息数据库中相应的历史涨缩值,将历史涨缩值确定为涨缩预测结果。
图8是本申请第二实施例的用于塞铜工艺FPC的涨缩预测装置的结构示意图,如图8所示,该涨缩预测装置80包括:获取模块81、比对模块82、第一预测模块83以及第二预测模块84。
获取模块81用于获取待加工FPC的设计信息、物料信息以及工站信息。
比对模块82与获取模块81耦接,用于将设计信息、物料信息以及工站信息与涨缩信息数据库进行比对,获得比对结果。
第一预测模块83与比对模块82耦接,用于当比对结果为涨缩信息数据库中存在与设计信息、物料信息以及工站信息均相似的数据时,获取涨缩信息数据库中相应的历史涨缩值,将历史涨缩值确定为涨缩预测结果。
第二预测模块84与比对模块82耦接,用于当比对结果为涨缩信息数据库中不存在与设计信息、物料信息以及工站信息均相似的数据时,由人工分析出涨缩预测结果。
图9是本申请实施例的FPC加工设备的结构示意图,如图9所示,FPC加工设备90包括涨缩预测装置91、线路蚀刻装置92、PET贴膜装置93、镭射装置94、印刷装置95、PET剥离装置96以及压合装置97。在FPC加工过程中,首先由涨缩预测装置91提前预测涨缩值,然后利用线路蚀刻装置92蚀刻线路,利用PET贴膜装置93进行PET贴膜,利用镭射装置94镭射盲孔,再利用印刷装置95将铜膏印刷填入盲孔中,通过PET剥离装置96进行PET脱模,最后经压合装置97压合线路,完成FPC加工。
参阅图10,图10为本申请实施例的计算机存储介质的结构示意图。本申请实施例的计算机存储介质存储有能够实现上述所有方法的程序文件11,其中,该程序文件11可以以软件产品的形式存储在上述计算机存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的计算机存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (10)

1、一种用于塞铜工艺FPC的涨缩预测方法,其特征在于,包括:
获取待加工FPC的设计信息、物料信息以及工站信息;
将所述设计信息、所述物料信息以及所述工站信息与涨缩信息数据库进行比对,获得比对结果;
当所述比对结果为所述涨缩信息数据库中存在与所述设计信息、所述物料信息以及所述工站信息均相似的数据时,获取所述涨缩信息数据库中相应的历史涨缩值,将所述历史涨缩值确定为涨缩预测结果。
2、根据权利要求1所述的涨缩预测方法,其特征在于,所述涨缩信息数据库包括历史设计信息、历史物料信息、历史工站信息以及历史涨缩值,所述将所述设计信息、所述物料信息以及所述工站信息与涨缩信息数据库进行比对,获得比对结果的步骤包括:
判断所述历史设计信息与所述设计信息是否相似;
判断所述历史物料信息与所述物料信息是否相似;
判断所述历史工站信息与所述工站信息是否相似;
当同时满足所述历史设计信息与所述设计信息相似、所述历史物料信息与所述物料信息相似以及所述历史工站信息与所述工站信息相似时,所述比对结果为所述涨缩信息数据库中存在与所述设计信息、所述物料信息以及所述工站信息均相似的数据。
3、根据权利要求2所述的涨缩预测方法,其特征在于,所述设计信息包括各层的拼板设计、残铜率、激光盲孔数量、孔径及盲孔分布;所述判断所述历史设计信息与所述设计信息是否相似的步骤包括:
判断所述拼板设计的相似度是否大于90%;
判断所述残铜率的相似度是否大于85%;
判断所述激光盲孔数量、孔径及盲孔分布的相似度是否大于80%;
当同时满足所述拼板设计的相似度大于90%、所述残铜率的相似度大于85%以及所述激光盲孔数量、孔径及盲孔分布的相似度大于80%时,确定所述历史设计信息与所述设计信息相似。
4、根据权利要求2所述的涨缩预测方法,其特征在于,所述物料信息包括各层FCCL型号及批次号、各批次FCCL的尺寸安定性测试信息、曝光菲林的涨缩信息、PET型号;所述判断所述历史物料信息与所述物料信息是否相似的步骤包括:
分别判断所述FCCL类型、所述批次号以及所述PET型号是否相同;
判断所述FCCL的尺寸安定性测试信息的相似度是否大于95%;
判断所述曝光菲林的涨缩信息的相似度是否大于95%;
当同时满足所述FCCL类型、所述批次号以及所述PET型号均相同、所述FCCL的尺寸安定性测试信息的相似度大于95%以及所述曝光菲林的涨缩信息的相似度大于95%时,确定所述历史物料信息与所述物料信息相似。
5、根据权利要求2所述的涨缩预测方法,其特征在于,所述工站信息包括各层的显影与蚀刻线速信息、打靶数量及分布信息、PET贴合与剥离参数信息、铜膏填充参数信息;所述判断所述历史工站信息与所述工站信息是否相似的步骤包括:
判断所述显影与蚀刻线速信息的相似度是否大于95%;
判断所述打靶数量及分布信息的相似度是否大于90%;
判断所述PET贴合与剥离参数信息的相似度是否大于85%;
判断所述铜膏填充参数信息的相似度是否大于85%;
当同时满足所述显影与蚀刻线速信息的相似度大于95%、所述打靶数量及分布信息的相似度大于90%、所述PET贴合与剥离参数信息的相似度大于85%、所述铜膏填充参数信息的相似度大于85%时,确定所述历史工站信息与所述工站信息相似。
6、根据权利要求1所述的涨缩预测方法,其特征在于,在所述将所述设计信息、所述物料信息以及所述工站信息与涨缩信息数据库进行比对,获得比对结果的步骤之后,还包括:
当所述比对结果为所述涨缩信息数据库中不存在与所述设计信息、所述物料信息以及所述工站信息均相似的数据时,由人工分析出涨缩预测结果。
7、根据权利要求1所述的涨缩预测方法,其特征在于,所述涨缩预测方法还包括:
根据FPC的各层线路的历史设计信息、历史物料信息、历史工站信息以及所述历史涨缩值建立所述涨缩信息数据库。
8、一种用于塞铜工艺FPC的涨缩预测装置,其特征在于,包括:
获取模块,用于获取待加工FPC的设计信息、物料信息以及工站信息;
比对模块,用于将所述设计信息、所述物料信息以及所述工站信息与涨缩信息数据库进行比对,获得比对结果;
预测模块,用于当所述比对结果为所述涨缩信息数据库中存在与所述设计信息、所述物料信息以及所述工站信息均相似的数据时,获取所述涨缩信息数据库中相应的历史涨缩值,将所述历史涨缩值确定为涨缩预测结果。
9、一种FPC加工设备,其特征在于,包括权利要求8所述的涨缩预测装置。
10、一种计算机存储介质,其特征在于,存储有能够实现如权利要求1-7中任一项所述的用于塞铜工艺FPC的涨缩预测方法的程序文件。
 
PCT/CN2020/112488 2020-08-20 2020-08-31 用于塞铜工艺 fpc 的涨缩预测方法、装置、设备及存储介质 WO2022036755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010844703.8 2020-08-20
CN202010844703.8A CN112131825A (zh) 2020-08-20 2020-08-20 用于塞铜工艺fpc的涨缩预测方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022036755A1 true WO2022036755A1 (zh) 2022-02-24

Family

ID=73850393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112488 WO2022036755A1 (zh) 2020-08-20 2020-08-31 用于塞铜工艺 fpc 的涨缩预测方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112131825A (zh)
WO (1) WO2022036755A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117889917A (zh) * 2024-03-13 2024-04-16 深圳市邦正精密机械有限公司 一种基于mes的fpc板防重补贴实时状态监测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572600A (zh) * 2016-10-12 2017-04-19 江西景旺精密电路有限公司 一种新型pcb线性涨缩控制方法
CN108304963A (zh) * 2018-04-11 2018-07-20 惠州美锐电子科技有限公司 一种多层线路板的涨缩预测方法
CN111278230A (zh) * 2020-03-26 2020-06-12 定颖电子(黄石)有限公司 一种印刷线路板底片筛选方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668444B (zh) * 2018-06-25 2020-03-06 广州兴森快捷电路科技有限公司 涨缩控制方法、加工方法和系统、计算机存储介质和设备
CN109409017A (zh) * 2018-12-14 2019-03-01 深圳市景旺电子股份有限公司 一种在电路板生产系统中快速准确修改涨缩标识的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572600A (zh) * 2016-10-12 2017-04-19 江西景旺精密电路有限公司 一种新型pcb线性涨缩控制方法
CN108304963A (zh) * 2018-04-11 2018-07-20 惠州美锐电子科技有限公司 一种多层线路板的涨缩预测方法
CN111278230A (zh) * 2020-03-26 2020-06-12 定颖电子(黄石)有限公司 一种印刷线路板底片筛选方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117889917A (zh) * 2024-03-13 2024-04-16 深圳市邦正精密机械有限公司 一种基于mes的fpc板防重补贴实时状态监测方法

Also Published As

Publication number Publication date
CN112131825A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
US8806421B1 (en) System and method for designing via of printed circuit board
CN110765723B (zh) 一种基于bp神经网络的走线建模优化方法和装置
WO2022036755A1 (zh) 用于塞铜工艺 fpc 的涨缩预测方法、装置、设备及存储介质
KR101831643B1 (ko) 표면 상호 연결부 및 무전해 충진물을 포함하는 캐비티를 포함하는 패키지 기판
CN108495486A (zh) 一种高速背板的制作方法及高速背板
CN110135082B (zh) 一种pcb设计中负片层铜皮避让过孔的方法
KR100440605B1 (ko) 양면구조의 연성 인쇄회로기판의 제조 방법
CN105072824A (zh) 一种嵌入式线路板的制作方法
KR101077430B1 (ko) 리지드-플렉시블 기판의 제조방법
CN103906354A (zh) 电路板及其制造方法
CN114900960A (zh) 封装基板的制作方法及封装基板
JP2003101234A (ja) 多層配線基板およびその製造方法、並びにその製造に用いる製造装置
CN103327743A (zh) 一种针对线路板阻焊开窗2Mil以内的对位生产方法
Brizoux et al. Development of a Design & Manufacturing Environment for Reliable and Cost-Effective PCB Embedding Technology
CN111565514A (zh) 一种5g功放电路板的生产方法
US20230098501A1 (en) Organic film stress buffer for interface of metal and dielectric
US20230207503A1 (en) Stress arrest lip on copper pad for low roughness copper
CN112739066A (zh) 一种pcb及其制作方法
CN114286541B (zh) 一种hdi板的加工方法、hdi板及电子设备
US20230341458A1 (en) Detecting a via stripping issue in a printed circuit board
WO2024045975A1 (zh) 印刷电路板、电子设备及印刷电路板制备方法
TWI782730B (zh) 智慧化電路板製程
US20230064497A1 (en) Resistor-embedded circuit board and method for processing the resistor-embedded circuit board
US20090136656A1 (en) Method of manufacturing printed circuit board
US20160088722A1 (en) Rough Copper for Noise Reduction in High Speed Circuits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949961

Country of ref document: EP

Kind code of ref document: A1