WO2022036578A1 - 电池装置、控制电路、被供电装置及电子设备 - Google Patents

电池装置、控制电路、被供电装置及电子设备 Download PDF

Info

Publication number
WO2022036578A1
WO2022036578A1 PCT/CN2020/109943 CN2020109943W WO2022036578A1 WO 2022036578 A1 WO2022036578 A1 WO 2022036578A1 CN 2020109943 W CN2020109943 W CN 2020109943W WO 2022036578 A1 WO2022036578 A1 WO 2022036578A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
interface
battery
connection interface
level signal
Prior art date
Application number
PCT/CN2020/109943
Other languages
English (en)
French (fr)
Inventor
李丰江
张伟鸿
周瑜
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080006385.6A priority Critical patent/CN113169411A/zh
Priority to PCT/CN2020/109943 priority patent/WO2022036578A1/zh
Publication of WO2022036578A1 publication Critical patent/WO2022036578A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery device, a control circuit, a powered device, and an electronic device.
  • More and more electronic devices are powered by detachable battery devices, such as drones, handheld gimbal and so on.
  • the battery device is provided with an output button. After the battery device and the powered device are connected, the output button set on the battery device needs to be manually operated, and the battery device knows that the powered device is in place, so that the battery device will perform the operation on the powered device. Otherwise, the battery device cannot know that the powered device is in place, so it will not supply power to the powered device, and the powered device cannot work normally.
  • Embodiments of the present application provide a battery device, a control circuit, a powered device, and an electronic device, so as to solve the problem that the design of the battery device in the prior art is not simple enough.
  • an embodiment of the present application provides a battery device that can be detachably connected to a powered device, the battery device comprising: a housing; a battery cell housed in the housing; and a connection interface for connecting with the powered device The device is electrically connected; a switch circuit is installed in the housing, and the switch circuit is electrically connected between the battery cell and the connection interface, and is used to control the conduction or the connection interface of the battery core and the connection interface.
  • the control circuit installed in the housing and electrically connected to the connection interface; wherein, when the battery device and the powered device are connected together, the control circuit is configured to operate according to the The level signal of the connection interface determines that the powered device is in place, and controls the conduction of the switch circuit when the powered device is in place, so as to conduct the power supply path between the battery device and the powered device.
  • the switch circuit When the switch circuit is turned on, the battery device transmits relevant information of the battery device through the connection interface, or supplies power to the powered device through the connection interface.
  • an embodiment of the present application provides a control circuit, the circuit is located in a first device, the first device can be detachably connected to a second device, and the first device includes a control circuit for connecting with the second device.
  • the control circuit includes: a detection sub-circuit, which is electrically connected to the connection interface; when the first device and the second device are connected together, the detection sub-circuit is used for The level signal of the connection interface is detected, and the presence of the second device is determined according to the level signal.
  • an embodiment of the present application provides a powered device, the powered device can be detachably connected to a battery device, and the powered device includes: a housing; a battery interface for electrically connecting to a connection interface of the battery device connection, and a controller installed in the casing and electrically connected to the battery interface; wherein, when the battery device and the powered device are connected together, the battery interface can collect a level signal, The level signal is used by the battery device to determine that the powered device is in place, so as to supply power to the powered device through the battery interface; when the battery device starts to supply power through the connection interface, the controller Relevant information transmitted by the battery device is received through the battery interface, or power is received through the battery interface.
  • an embodiment of the present application provides an electronic device, including the battery device described in the first aspect and the powered device described in the third aspect.
  • Embodiments of the present application provide a battery device, a control circuit, a powered device, and an electronic device.
  • the battery device includes a battery cell, a connection interface, a switch circuit, and a control circuit, wherein the connection interface is used for electrical connection with the powered device.
  • the control circuit is used to determine that the powered device is in place according to the level signal of the connection interface, and when the powered device is in place, control the conduction of the switch circuit to turn on the battery device
  • the control circuit in the battery device can determine that the powered device is in place according to the level signal of the connection interface, and then conduct the power supply path between the battery device and the powered device.
  • connection interface realizes the in-situ detection of the powered device, that is, the connection interface is not only used for the electrical connection between the battery device and the powered device, but also for the control circuit to perform in-situ detection on the powered device, so that no setting is required on the battery device.
  • the button is specially used for the in-situ detection of the powered device by the battery device, thereby making the design of the battery device more concise.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2A is a front view of a handheld gimbal provided by an embodiment of the application.
  • 2B is a rear view of a handheld gimbal provided by an embodiment of the application.
  • FIG. 2C is a left side view of a handheld gimbal provided by an embodiment of the present application.
  • 2D is a right side view of a handheld gimbal provided by an embodiment of the application.
  • 2E is a top view of a handheld gimbal provided by an embodiment of the application.
  • 2F is a bottom view of a handheld gimbal provided by an embodiment of the application.
  • 2G and 2H are other views of a handheld gimbal provided by an embodiment of the present application.
  • 3A is a front view of a gimbal handle provided by an embodiment of the application.
  • 3B is a rear view of a gimbal handle provided by an embodiment of the application.
  • 3C is a left side view of a gimbal handle provided by an embodiment of the application.
  • 3D is a right side view of a gimbal handle provided by an embodiment of the application.
  • 3E is a top view of a gimbal handle provided by an embodiment of the application.
  • 3F is a bottom view of a pan-tilt handle provided by an embodiment of the application.
  • 3G and 3H are other views of the pan-tilt handle provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a control circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a control circuit provided by another embodiment of the present application.
  • 6A is a schematic circuit diagram of a first device provided by an embodiment of the present application when the second device is not connected together;
  • 6B is a schematic circuit diagram of a current path formed when the first device and the second device are connected together according to an embodiment of the present application;
  • FIG. 7A is a schematic circuit diagram of a first device provided by another embodiment of the present application when the second device is not connected together;
  • 7B is a schematic circuit diagram of a current path formed when the first device and the second device are connected together according to another embodiment of the application;
  • FIG. 8 is a circuit schematic diagram of a control circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic circuit diagram of a control circuit provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a control circuit provided by another embodiment of the application.
  • 11A is a schematic circuit diagram of a first device and a second device not connected together according to another embodiment of the present application;
  • 11B is a schematic circuit diagram of a current path formed when the first device and the second device are connected together according to another embodiment of the present application;
  • 12A is a schematic circuit diagram of a first device and a second device not connected together according to another embodiment of the present application;
  • 12B is a schematic circuit diagram of a current path formed when the first device and the second device are connected together according to another embodiment of the present application;
  • FIG. 13 is a circuit schematic diagram of a control circuit provided by another embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a battery device provided by an embodiment of the application.
  • FIG. 15 is a schematic circuit diagram of a battery device provided by an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a powered device according to an embodiment of the present application.
  • More and more electronic devices are powered by detachable battery devices, such as drones, handheld gimbal and so on.
  • the power supply device supplies power, otherwise, the battery device cannot know that the power supply device is in place, so it will not supply power to the power supply device, and the power supply device cannot work normally.
  • the above-mentioned manner of arranging the output button on the battery device has the problem that the design of the battery device is not simple enough. In order to meet the needs of portability and lightness of electronic equipment, it is necessary to think about how to carry out simplified design, and the requirements for structural design are high.
  • One of these methods is to use control circuits instead of buttons.
  • the battery can detect the presence of the electronic device, and the battery will automatically output voltage to supply power to the electronic device. Control battery output without pressing a button.
  • an additional connection interface is required.
  • connection interface is inconvenient for processing and production, on the other hand, additional space is required, which causes difficulties in structural design, and at the same time, the appearance of the product is not beautiful and concise.
  • the battery housekeepers, chargers and other devices used in conjunction with the primary battery device are not compatible with the use of the new battery device, and these supporting products will also be forced to be upgraded and iterated according to the changes in the connection terminals. Therefore, it is not conducive to the normalized management of batteries and supporting products, and increases the workload of research and development.
  • the embodiment of the present application proposes a method of multiplexing connection interfaces, and for one of the connection interfaces, the original interface function is retained, and the in-position detection function is added for it.
  • the application scenario may include a first device 11 and a second device 12 that can be detachably connected to the first device 11 .
  • the second device 12 and the first device 11 are connected together, it means that the first device 11 is in place.
  • the second device 12 is not connected with the first device 11, it means that the first device 11 is not in place.
  • the first device 11 includes a control circuit 11A and a connection interface 11B, and the control circuit 11A is electrically connected to the connection interface 11B.
  • the connection interface 11B is used for the electrical connection between the first device 11 and the second device 12 .
  • the control circuit 11A is configured to determine that the second device 12 is in place according to the level signal of the connection interface 11B.
  • the second device 12 may include an interface matching the connection interface 11B, so that the second device 12 can be electrically connected with the connection interface 11B.
  • the interface in the first device 11 for electrically connecting the first device and the second device may include other interfaces than the connection interface 11B in addition to the connection interface 11B.
  • the embodiments of the present application can be applied to any type of scenario where the first device 11 needs to know the presence of the second device 12. Based on the presence of the second device 12, the first device 11 can switch from the first state to the first state. two states.
  • the first device may include a battery device
  • the second device may include a powered device
  • the first state may be a state where the power supply path is disconnected
  • the second state may be a state where the power supply path is turned on.
  • the first device may include a battery device
  • the second device may include a gimbal or a drone body, so that the battery device can use the control circuit 11 to detect the presence of the gimbal (or the drone body), so that the When the gimbal (or the drone body) is in place, the power supply path is turned on to supply power to the gimbal (or the drone body).
  • the first device in the case where the second device includes a gimbal and the first device includes a battery device, the first device can be installed in the shell of the gimbal handle, so that the battery installed in the gimbal handle is held in the hand-held gimbal scenario.
  • the device can use the control circuit 11A to realize the in-position detection of the pan/tilt.
  • the structure of the hand-held pan/tilt can be shown in Figures 2A-2H, with reference to Figures 2A-2H, the hand-held pan-tilt includes a pan-tilt 21 and a pan-tilt handle 22, and a battery device (not shown) is installed in the shell of the pan-tilt handle 22. ). It should be noted that the structures of the handheld gimbal shown in FIGS. 2A-2H are only examples.
  • connection interface 11B may pass through the casing and be exposed outside the casing, thereby facilitating the electrical connection between the connection interface 11B of the battery device and the pan/tilt head.
  • the structure of the pan-tilt handle 22 with the battery device installed can be shown in FIGS. 3A-3F. Referring to FIGS. 3A-3F, a battery device is installed in the shell 22A of the pan-tilt handle 22, and the connection interface 11B of the battery device is passed through. The case 22A is exposed to the outside of the case 22A. It should be noted that the structure of the pan/tilt handle 22 shown in FIGS. 3A-3H is only an example.
  • the pan/tilt handle and the pan/tilt are detachably connected, so that the battery device and the pan/tilt can be connected or disconnected through the detachable connection between the pan/tilt handle and the pan/tilt.
  • a button is provided on the battery device. If the battery device obtains a trigger operation for the button, it can be determined that the powered device is in place. If the battery device does not obtain the trigger operation for the button, it is considered that the powered device is. If it is not in place, the button needs to be set on the battery device, so that the design of the battery device is not simple enough.
  • the first device includes a control circuit 11A and a connection interface 11B, and the control circuit 11A determines that the second device is in place according to the level signal of the connection interface 11B, thereby realizing the control circuit 11A through the multiplexed connection interface 11B.
  • the in-situ detection of the second device 12 is realized in a way, that is, the connection interface 11B is used not only for the electrical connection between the first device 11 and the second device 12, but also for the control circuit 11A to perform in-situ detection on the second device 12, so that the A device does not need to be provided with a button dedicated to the in-situ detection of the second device by the first device, thereby making the design of the first device more concise.
  • FIG. 4 is a schematic structural diagram of a control circuit provided by an embodiment of the present application.
  • the control circuit 11A may include: a detection sub-circuit 41 that is electrically connected to the connection interface 11B; when the first device and the second device are connected together, The detection sub-circuit 41 is used to detect the level signal of the connection interface 11B, and determine that the second device 12 is in place according to the level signal.
  • the level signal of the connection interface 11B is different .
  • the presence of the second device can be determined based on the level signal of the connection interface 11B.
  • the level signal of the connection interface 11B is the first level signal; when the first device and the second device are not connected together, the The level signal of the connection interface 11B is a second level signal.
  • the first level signal and the second level signal are different. Based on this, the presence of the second device may be determined for the first level signal based on the level signal of the connection interface 11B.
  • the fact that the first device and the second device are connected together can mean that the two are electrically connected together.
  • the fact that the first device and the second device are connected together can mean that the two devices are communicatively connected together.
  • a specific current path can be formed when the first device and the second device are connected together, but not when the first device and the second device are not connected together, so that the specific current path is not formed when the first device and the second device are not connected together.
  • the level signal of the connection interface is different in the two cases.
  • the specific current path may pass through the second device.
  • the particular current path may not pass through the second device.
  • the first level signal includes a low level signal
  • the second level signal includes a pulse signal.
  • the first level signal includes a low level signal
  • the second level signal includes a high level signal.
  • the second level signal is a signal of the connection interface 11B when the second device is not in position
  • the second level signal is a pulse signal, compared with the high level signal of the second level signal, It is beneficial to reduce the power consumption caused by the level signal of the connection interface 11B being the second level signal when the second device is not in place.
  • the first level signal includes a high level signal
  • the second level signal includes a low level signal
  • the first level signal includes a pulse signal
  • the second level signal includes a pulse signal.
  • the signals include low level signals. Considering that the first level signal is the second device in position, the level signal of the connection interface 11B, through the first level signal is a pulse signal, compared with the first level signal is a high level signal, It is beneficial to reduce the power consumption caused by the level signal of the connection interface 11B being the first level signal when the second device is in place.
  • the detection subcircuit 41 may be any type of circuit capable of detecting the level signal of the connection interface 11B, and determining that the in-position state of the second device is in-position when the level signal is the first level signal.
  • the detection sub-circuit 41 may include an integrated circuit (IC, integrated circuit), the integrated circuit may include a detection terminal, the detection terminal and the connection interface 11B, and the integrated circuit may detect the level signal of the connection interface 11B through the detection terminal, And when the level signal is the first level signal, it is determined that the second device is in place.
  • the detection terminal may be, for example, a general-purpose input/output port (GPIO, General-purpose input/output) port of the detection sub-circuit 41 .
  • GPIO General-purpose input/output
  • connection interface 11B may specifically be any type of hardware interface that can be used to connect the first device and the second device.
  • the connection interface 11B may be a socket-type interface.
  • the connection interface may be a pin-type interface.
  • the connection interface 11B may be a contact interface.
  • connection interface 11B may be an interface for electrically connecting the first device and the second device.
  • the number of connection interfaces 11B may be one or more.
  • connection interface 11B may comprise a communication interface.
  • the connection interface may include that the connection interface includes a serial clock line (SCL, Serial Clock Line (SCL, Serial Clock). Line) interface, and/or, Serial Data Line (SDA) interface.
  • the connection interface may include a transmit (TX, transport) interface, and/ Or, receive (RX, receive) interface.
  • the connection interface may include a sending HDQ interface.
  • connection interface 11B may include a power interface.
  • connection interface 11B may specifically be a negative power supply interface.
  • the control circuit includes a detection sub-circuit, and the detection sub-circuit determines that the second device is in place according to the level signal of the connection interface used for electrical connection with the second device, thereby realizing the detection sub-circuit
  • the in-situ detection of the second device is realized by multiplexing the connection interface, that is, the connection interface is not only used for the electrical connection between the first device and the second device, but also for the control circuit to perform in-situ detection on the second device, so that the first device is used for electrical connection with the second device.
  • a device does not need to be provided with a button dedicated to the in-situ detection of the second device by the first device, thereby making the design of the first device more concise.
  • FIG. 5 is a schematic structural diagram of a control circuit provided by another embodiment of the present application.
  • the control circuit 11A may further include a first sub-circuit 42 ; the first sub-circuit 42 is electrically connected to the connection interface 11B ; wherein, when the first device 11 and the second device 12 are connected together, the first sub-circuit 42 is electrically connected to the auxiliary circuit x in the second device through the connection interface 11B to form a current path.
  • the connection interface 11B is not connected to the second device 12 since the connection interface 11B is not connected to the second device, the first sub-circuit 42 is not electrically connected to the auxiliary circuit in the second device 12, Therefore, the current path cannot be formed.
  • the level signal of the connection interface 11B is the second level signal.
  • the first sub-circuit 42 is electrically connected with the auxiliary circuit in the second device through the connection interface 11B to form a current path, since the current path is through the connection interface 11B Therefore, the current path formed can change the level signal of the connection interface 11B, and the level signal of the connection interface 11B is changed from the second level signal when the current path is not formed to the current path formed. the first level signal when .
  • the first sub-circuit 42 may include a voltage terminal for providing a voltage so that the first sub-circuit 42 can communicate with the second device 12 when the first device 11 and the second device 12 are connected together.
  • the auxiliary circuit forms the current path.
  • the first sub-circuit 42 may not include a voltage terminal, and the first sub-circuit 42 may be electrically connected to the voltage terminal, so that when the first device 11 and the second device 12 are connected together, the first sub-circuit 42 can A current path is formed with auxiliary circuits in the second device 12 . Based on this, one end of the first sub-circuit 42 may be electrically connected to the first voltage end, and the other end may be electrically connected to the connection interface 11B.
  • the circuit structure of the first sub-circuit 42 can be flexibly implemented according to requirements.
  • the first sub-circuit 42 may include a first resistor, one end of the first resistor is electrically connected to the first voltage terminal, and the other end of the first resistor is electrically connected to the connection interface.
  • the function of electrically connecting the first voltage terminal and the connection interface can be achieved.
  • the first sub-circuit 42 may further include a first anti-backflow diode, and the first anti-backflow diode is connected in series with the first resistor. It can be understood that when the current flows from the first voltage terminal in the current path, the anode of the first anti-backflow diode is electrically connected to the first voltage terminal, and the cathode of the first anti-backflow diode is electrically connected to the connection interface 1B; When the medium current flows to the first voltage terminal, the cathode of the first anti-backflow diode is electrically connected to the first voltage terminal, and the anode of the first anti-backflow diode is electrically connected to the connection interface 1B.
  • the first anti-backflow diode in the first sub-circuit 42, the current can be prevented from being backflowed into the integrated circuit, which is beneficial to improve the reliability of the integrated circuit.
  • the first sub-circuit 42 may further include a first voltage regulator, and the first voltage regulator is connected in series with the first resistor.
  • the first regulator may be, for example, a low dropout linear regulator (LDO, low dropout regulator).
  • LDO low dropout linear regulator
  • the first sub-circuit 42 may further include a first switch, and the first switch is connected in series with the first resistor.
  • the first voltage terminal includes a power supply terminal or an output terminal
  • the first sub-circuit includes a first switch, and the level signal output by the first sub-circuit can be controlled to be a pulse signal, so that the second level signal can be a pulse signal .
  • the first voltage regulator can be a voltage regulator with an enable pin, and a pulse signal can also be obtained by controlling the enable pin.
  • the formed current path may include: first voltage terminal ⁇ first subcircuit ⁇ connection interface 11B ⁇ auxiliary circuit.
  • the voltage provided by the first voltage terminal may be higher.
  • the first voltage terminal may include a power terminal (VCC) to provide a power supply voltage.
  • the first voltage terminal may be provided by the detection sub-circuit 41.
  • the detection sub-circuit 41 is electrically connected to the first sub-circuit 42, the detection sub-circuit 41 includes an output terminal, and the first voltage terminal includes the output.
  • the formed current path may include: auxiliary circuit ⁇ connection interface 11B ⁇ first subcircuit ⁇ first voltage terminal.
  • the voltage provided by the first voltage terminal may be relatively low.
  • the first voltage terminal may include a ground terminal (GND) to provide a voltage of 0V.
  • the aforementioned auxiliary circuit can be used to connect the first voltage terminal with other voltage terminals (hereinafter referred to as the second voltage terminal) other than the first voltage terminal, and the current path can be between the first voltage terminal and the voltage terminal. a current path formed by the second voltage terminal. It can be understood that the voltage of the first voltage terminal is different from the voltage of the second voltage terminal.
  • the voltage of the first voltage terminal may be lower than that of the second voltage terminal.
  • the current path may include the second voltage terminal ⁇ auxiliary circuit ⁇ connection interface 11B ⁇ first sub-circuit 42 ⁇ first voltage terminal. Therefore, the voltage provided by the second voltage terminal may be relatively high.
  • the second voltage terminal may include a power terminal.
  • the voltage of the first voltage terminal may be higher than that of the second voltage terminal.
  • the current path may include the first voltage terminal ⁇ the first sub-circuit 42 ⁇ the connection interface 11B ⁇ the auxiliary circuit ⁇ the second voltage terminal. Therefore, the voltage provided by the second voltage terminal may be relatively low.
  • the second voltage terminal may include a ground terminal.
  • the second voltage terminal may be located in the second device. In another embodiment, the second voltage terminal may be located in the first device.
  • the second device 12 is not connected to the first
  • the level signal of the connection interface 11B may be a high level signal or a pulse signal.
  • a current path as shown in FIG. 6B can be formed, in which the level signal of the connection interface 11B can be a low-level signal, and the detection sub-circuit 41 may determine that the second device 12 is in place according to the detected level signal of the connection interface 11B being a low level signal.
  • the second device 12 is not connected to the first
  • the level signal of the connection interface 11B may be a low level signal.
  • a current path as shown in FIG. 7B can be formed, and the level signal of the connection interface 11B in the current path can be a high-level signal or a pulse signal.
  • the detection sub-circuit 41 may determine that the second device 12 is in place according to the detected level signal of the connection interface 11B being a high level signal or a pulse signal.
  • connection interface 11B in FIGS. 6A-7B may be, for example, an SCL interface, an SDA interface, a TX interface, or an RX interface. It can be understood that, in other embodiments, the connection interface 11B may also be other types of interfaces.
  • control circuit further includes a protection sub-circuit, and the protection sub-circuit is electrically connected between the detection sub-circuit and the connection interface.
  • the protection subcircuit may for example comprise resistors or RC filtering.
  • the detection sub-circuit can be protected by the protection sub-circuit, which is beneficial to improve the reliability of the control circuit.
  • the first voltage terminal is provided by the IC chip
  • the second voltage terminal is located in the second device and the connection interface is an SCL interface as an example, as shown in FIG.
  • the RL1 port of the IC chip outputs a high level of +3.3V
  • the RL0 port is in an input state
  • the level signal of the RL0 port is a high level signal.
  • a current path is formed when the first devices 11 are connected together: +3.3V output by RL1 ⁇ R1 ⁇ D1 ⁇ SCL interface ⁇ R3 ⁇ ground terminal, through the voltage division of R1 and R3 resistors, so that The voltage at point A can be close to 0V, so the level signal of the RL0 port is a low level signal, and the IC chip can determine that the second device 12 is in place according to the detected level signal of the SCL interface being a low level signal.
  • the RL0 port can be understood as the aforementioned detection terminal
  • the RL1 port can be understood as the aforementioned output terminal
  • the series connected resistor R1 and the anti-backflow diode D1 can be understood as the aforementioned first sub-circuit
  • the ground terminal can be understood as the aforementioned first sub-circuit
  • the second voltage terminal, the resistor R3 electrically connected to the SCL interface on the second device side can be understood as the aforementioned auxiliary circuit.
  • Resistor R2 is used for current limiting, which can be understood as the aforementioned protection sub-circuit
  • resistor R9 is used for voltage division.
  • R1 can select a resistor with a larger resistance value to reduce power consumption, for example, a resistor with a resistance of more than one megaohm can be selected.
  • the resistance value of R3 is related to R1. The principle of determination is that the level signal detected by the RL0 port can be a low level signal through the voltage division of R1 and R3.
  • FIG. 8 mainly shows a schematic diagram of a related circuit of the in-position detection, other circuits are omitted, and the circuit schematic diagram shown in FIG. 8 is only an example.
  • the number of the connection interfaces 11B is taken as an example. In other embodiments, the number of the connection interfaces 11B may also be multiple. Taking the detection sub-circuit comprising an IC chip, the first voltage terminal is provided by the IC chip, the second voltage terminal is located in the first device, and the two connection interfaces 11B are two power supply negative terminals as an example, as shown in FIG.
  • the RL1 port of the IC chip outputs a +5V high level
  • the RL0 port is in an input state
  • the level signal of the RL0 port is a high level signal. As shown in FIG.
  • the RL0 port can be understood as the aforementioned detection terminal
  • the RL1 port can be understood as the aforementioned output terminal
  • the series-connected resistor R1 and the anti-backflow diode D1 can be understood as the aforementioned first sub-circuit
  • the ground terminal can be understood as the aforementioned first sub-circuit
  • the second voltage terminal, the connecting line electrically connected between the two power supply negative terminals on the second device side can be understood as the aforementioned auxiliary circuit.
  • Resistor R2 is used for current limiting, which can be understood as the aforementioned protection sub-circuit.
  • FIG. 9 mainly shows a schematic diagram of a related circuit of in-position detection, other circuits are omitted, and the circuit schematic diagram shown in FIG. 9 is only an example.
  • the control circuit 11A may further include a second sub-circuit.
  • the connection interface 11B may include a first connection interface B1 and a second connection interface B2
  • the control circuit 11A may further include a second sub-circuit 43 .
  • the detection sub-circuit 41 and the first sub-circuit 42 are both electrically connected to the first connection interface B1; the second sub-circuit 43 is electrically connected to the second connection interface B2;
  • the connection interface B1 is used for electrical connection with one end of the auxiliary circuit x, and the second connection interface B1 is used for electrical connection with the other end of the auxiliary circuit x; when the first device 11 and the second device 12 are connected together At this time, the first sub-circuit 42 and the second sub-circuit 43 are electrically connected to the auxiliary circuit x through the connection interface 11B to form the current path.
  • the first subcircuit 42, the second subcircuit 43 and the current path formed with the auxiliary circuit x may include: the first subcircuit 42 ⁇ the first connection interface B1 ⁇ the auxiliary circuit x ⁇ the first connection interface B2 ⁇ The second subcircuit 43 .
  • the first subcircuit 42, the second subcircuit 43 and the current path formed with the auxiliary circuit x may include: the second subcircuit 43 ⁇ the first connection interface B2 ⁇ the auxiliary circuit x ⁇ the first connection interface B1 ⁇ first subcircuit 42 .
  • the first sub-circuit 42 when the first sub-circuit 42 does not include a voltage terminal for supplying voltage, one end of the first sub-circuit 42 may be electrically connected to the first voltage terminal, and the other end may be electrically connected to the first connection interface B1.
  • the formed current path may include: the first voltage terminal ⁇ the first sub-circuit 42 ⁇ the first connection interface B1 ⁇ the auxiliary circuit x ⁇ the first connection interface B2 ⁇ the second sub-circuit 43, or the second sub-circuit 43 Circuit 43 ⁇ first connection interface B2 ⁇ auxiliary circuit x ⁇ first connection interface B1 ⁇ first sub-circuit 42 ⁇ first voltage terminal.
  • the second sub-circuit 43 may include a second voltage terminal O2.
  • the second sub-circuit 43 may not include the second voltage terminal O2.
  • One end of the second sub-circuit 43 may be electrically connected to the second voltage terminal O2, and the other end may be electrically connected to the second connection interface B2.
  • the formed current path may include: the first voltage terminal ⁇ the first sub-circuit 42 ⁇ the first connection interface B1 ⁇ the auxiliary circuit x ⁇ the first connection interface B2 ⁇ the second sub-circuit 43 ⁇ the second voltage terminal, or, the second Voltage terminal ⁇ second subcircuit 43 ⁇ first connection interface B2 ⁇ auxiliary circuit x ⁇ first connection interface B1 ⁇ first subcircuit 42 ⁇ first voltage terminal.
  • the circuit structure of the second sub-circuit 43 can be flexibly implemented according to requirements.
  • the second sub-circuit 43 may include a second resistor, one end of the second resistor is electrically connected to the second voltage terminal O2, and the other end is electrically connected to the second connection interface B2.
  • the second resistor By including the second resistor in the second sub-circuit 43, the function of electrically connecting the second voltage terminal and the second connection interface can be achieved.
  • the second sub-circuit 43 may further include: a second anti-backflow diode, the second anti-backflow diode is connected in series with the second resistor. It can be understood that when the current flows from the second voltage terminal in the current path, the anode of the second anti-backflow diode is electrically connected to the second voltage terminal, and the cathode of the second anti-backflow diode is electrically connected to the second connection interface; When the current in the passage flows to the second voltage terminal, the cathode of the second anti-backflow diode is electrically connected to the second voltage terminal, and the anode of the second anti-backflow diode is electrically connected to the second connection interface.
  • the second anti-backflow diode in the second sub-circuit 43, the current can be prevented from being backflowed into the integrated circuit, which is beneficial to improve the reliability of the integrated circuit.
  • the second sub-circuit 43 may further include a second voltage regulator, and the second voltage regulator is connected in series with the second resistor.
  • the second voltage stabilizer By including the second voltage stabilizer in the second sub-circuit 43, the voltage fluctuation can be reduced, which is beneficial to improve the stability of the connection interface voltage.
  • the second sub-circuit 43 may further include a second switch, and the second switch is connected in series with the second resistor.
  • the second voltage terminal includes a power terminal
  • the second sub-circuit includes a second switch
  • the level signal output by the second sub-circuit can be controlled to be a pulse signal, so that the first level signal can be a pulse signal.
  • the second voltage regulator can be a voltage regulator with an enable pin, and a pulse signal can also be obtained by controlling the enable pin.
  • the second device 12 is not connected to the first
  • the level signal of the first connection interface B1 may be a high level signal or a pulse signal.
  • a current path as shown in FIG. 11B can be formed, in which the level signal of the first connection interface B1 can be a low-level signal, and the detection
  • the sub-circuit 41 may determine that the second device 12 is in place according to the detected level signal of the first connection interface B1 being a low level signal.
  • the second device 12 is not connected to the first device 12 .
  • the level signal of the first connection interface B1 may be a low level signal.
  • the detection sub-circuit 41 can determine that the second device 12 is in place according to the detected level signal of the first connection interface B1 being a high-level signal or a pulse signal.
  • the first connection interface B1 in FIGS. 11A-12B may be, for example, one of the SCL interface and the SDA interface, and the second connection interface B2 may be, for example, the other one; or, the first connection interface B1 may be, for example, a TX One of the interface and the RX interface, and the second connection interface B2 may be the other one, for example. It can be understood that, in other embodiments, the first connection interface B1 and the second connection interface B2 may also be other types of interfaces.
  • the first voltage terminal is provided by the IC chip
  • the second voltage terminal is located in the first device
  • the first connection interface B1 is an SDA interface
  • the second connection interface B2 is an SCL interface as an example, as shown in Figure 13
  • the RL0 port is in the input state. Due to the pull-down of the resistor R4, the level signal of the RL0 port is a low level signal. As shown in FIG.
  • a current path is formed when the second device 12 and the first device 11 are connected together: power supply terminal ⁇ R1 -> D1 -> SCL interface ⁇ R5 ⁇ SDA interface ⁇ R4 ⁇ ground terminal, through a resistor
  • the voltage division of R1, R4 and R5 makes the level signal of the RL0 port a high level signal, and the IC chip can determine that the second device 12 is in place according to the detected level signal of the RL0 port being a high level signal.
  • the RL0 port can be understood as the aforementioned detection terminal
  • the ground terminal can be understood as the aforementioned first voltage terminal O1
  • the power terminal can be understood as the aforementioned second power supply terminal O2
  • the switch 1 the voltage regulator, the resistor connected in series R1 and the anti-backflow diode D1 can be understood as the aforementioned first sub-circuit
  • the resistor R2 used for current limiting can be understood as the aforementioned protection sub-circuit
  • the resistor R5 electrically connected to the SCL interface and the SDA interface on the second device side can be understood as the aforementioned auxiliary circuit.
  • the second device side may further include pull-up resistors R6 and R7, which are SMBus communication protocols
  • the required pull-up resistor, VCC' is the pull-up power required by the SMBus communication protocol.
  • the RL0 port cannot detect the high-level signal.
  • the auxiliary circuit can also switch circuit 1 and switch circuit 2.
  • the power supplies of switch circuit 1 and switch circuit 2 are both VCC", when VCC" is normally powered, switch circuit 1 and switch circuit 2 are closed, otherwise switch circuit 1 and switch circuit 2 are disconnected, and VCC" is provided by the first device.
  • VCC cannot supply power
  • switch circuit 1 and switch circuit 2 are disconnected.
  • the switch circuit 1 and the switch circuit 2 are disconnected, and the power terminal ⁇ R1->D1->SCL interface is formed. ⁇ R5 ⁇ SDA interface ⁇ R4 ⁇ The current path of the ground terminal.
  • FIG. 13 mainly shows a schematic diagram of the related circuits of the in-position detection, other circuits are omitted, and the circuit schematic diagram shown in FIG. 13 is only an example.
  • the detection sub-circuit 11A is further configured to determine that the second device is not in place according to the level signal.
  • the detection subcircuit 11A may determine that the second device is not in place when the level signal is the second level signal. By determining that the second device is not in place, the first device can know that the second device is not in place through the level signal of the connection interface, and then can switch from the second state to the first state.
  • control circuit 11A is further configured to control the first device to maintain the output power supply voltage when it is determined that the second device is in place and no target object is detected low power mode.
  • the target object includes a discharge current and/or a communication signal from the second device.
  • the control circuit includes a detection subcircuit and a first subcircuit. Both the detection subcircuit and the first subcircuit are electrically connected to the connection interface.
  • the first A sub-circuit is electrically connected to the auxiliary circuit in the second device through the connection interface, forming a current path to change the level signal of the connection interface, and then the detection sub-circuit can determine that the second device is in position according to the level signal of the connection interface , the detection sub-circuit realizes the in-position detection of the second device by multiplexing the connection interface, thereby making the design of the first device more concise.
  • the battery device 140 includes: a casing 141 ; a battery cell 142 , which is accommodated in the casing 141 ;
  • the switch circuit 144 is installed in the housing 141, and the switch circuit 144 is electrically connected between the battery cell 142 and the connection interface 143, and is used to control the power supply device.
  • the core 142 is connected or disconnected from the connection interface 143; and the control circuit 145 is installed in the casing 141 and is electrically connected to the connection interface 143; When the power supply devices are connected together, the control circuit 145 is configured to determine that the powered device is in place according to the level signal of the connection interface 143 , and turn on the battery device 140 when the powered device is in place.
  • the relevant information may be, for example, battery temperature, voltage, remaining power information, and the like.
  • control circuit 145 is further configured to determine, according to the level signal of the connection interface 143, that the powered device is not in place, where When the powered device is not in place, the switch circuit 144 is controlled to be disconnected, so as to disconnect the power supply path between the battery device 140 and the powered device.
  • the powered device includes a gimbal or a drone body.
  • the battery device also serves as a handle. Therefore, the battery device can be directly used as the handle of the powered device, which is convenient for the user to hold.
  • the battery device is detachably installed in the housing of the handle; or, the battery device is integrally provided with the handle.
  • connection interface passes through the housing 141, and/or the connection interface is exposed outside the housing of the handle.
  • the powered device includes a gimbal
  • the battery device is provided on a gimbal handle
  • the gimbal handle and the gimbal are detachably connected.
  • control circuit 145 and the connection interface 143, reference may be made to the foregoing embodiments, and details are not repeated here.
  • the circuit schematic diagram of the battery device may be shown in FIG. 15 .
  • the MOS tube is electrically connected between the positive pole of the battery cell 142 and the power supply positive interface P+ interface, and the negative pole of the battery core 142 is electrically connected with the power supply negative pole interface P- interface.
  • the MOS tube can be understood as the switch circuit 144.
  • the MOS tube is an N-channel Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET, Metal-Oxide-Semiconductor Field-Effect Transistor) as an example.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the IC chip when the powered device is electrically connected to the battery device, the IC chip can determine that the powered device is in place according to the level signal of the detection terminal RL0 being a low level signal. Further, the IC chip can control the conduction of the MOS transistor to electrically connect the positive electrode of the battery cell 142 to the P+ interface, thereby conducting the power supply path between the battery device 140 and the powered device.
  • the IC chip can determine that the powered device is not in place according to the level signal of the detection terminal RL0 being a high level signal. Further, the IC chip can control the MOS transistor to be turned off to disconnect the positive electrode of the battery cell 142 from being electrically connected to the P+ interface, thereby disconnecting the power supply path between the battery device 140 and the powered device.
  • circuit schematic diagram of the battery device shown in FIG. 15 is only an example.
  • the battery device provided by the embodiments of the present application includes a battery cell, a connection interface, a switch circuit, and a control circuit, wherein the connection interface is used for electrical connection with a powered device, and when the powered device and the battery device are connected together , the control circuit is used to determine that the powered device is in place according to the level signal of the connection interface, and control the conduction of the switch circuit when the powered device is in place to conduct the battery device and the power supply path to be powered, and realize the battery device.
  • the control circuit in the device can determine that the powered device is in place according to the level signal of the connection interface, and then turn on the power supply path between the battery device and the powered device.
  • connection interface is used not only for the electrical connection between the battery device and the powered device, but also for the control circuit to perform in-situ detection on the powered device, so that the battery device does not need to be provided with a dedicated battery device for the powered device.
  • the button for in-situ detection makes the design of the battery device more concise and facilitates the normalized management of the battery and supporting products.
  • FIG. 16 is a schematic structural diagram of a powered device provided by an embodiment of the application; as shown in FIG. 16 , the powered device 160 includes: a housing 161; a battery interface 162 for electrical connection with the connection interface of the battery device, and The controller 163 is installed in the casing 161 and is electrically connected to the battery interface 162; wherein, when the battery device and the powered device are connected together, the battery interface 162 can collect the electrical level The level signal is used by the battery device to determine that the powered device is in place, so as to supply power to the powered device through the battery interface; when the battery device starts to supply power through the connection interface, the The controller 163 receives relevant information transmitted by the battery device through the battery interface 162 , or receives power through the battery interface 162 .
  • the battery interface 162 in FIG. 16 is an interface matched with the connection interface of the battery device.
  • the powered device may further include an auxiliary circuit x, the auxiliary circuit x is electrically connected to the battery interface; when the battery device and the powered device are connected together, the auxiliary circuit x is used for electrical connection with the circuit in the battery device, forming a current path.
  • the auxiliary circuit x is used to connect the first voltage terminal and the second voltage terminal to form a current path between the first voltage terminal and the second voltage terminal, and the first voltage terminal located in the battery unit.
  • the second voltage terminal may be located in the powered device, or the second voltage terminal may be located in the battery device.
  • the auxiliary circuit may include the second voltage terminal.
  • one end of the auxiliary circuit is electrically connected to the battery interface, and the other end is electrically connected to the second voltage terminal.
  • the auxiliary circuit includes a connecting wire (for example, a connecting wire between two power supply negative terminals in FIG. 9 ), and the connecting wire is electrically connected between the battery interface and the second voltage terminal.
  • the auxiliary circuit includes a first resistor (eg, R3 in FIG. 8 ), and the first resistor is electrically connected between the battery interface and the second voltage terminal.
  • the battery interface includes a first battery interface and a second battery interface; one end of the auxiliary circuit is electrically connected to the first battery interface, and the other end is electrically connected to the second battery interface.
  • the auxiliary circuit includes a connecting wire electrically connected between the first battery interface and the second battery interface.
  • the auxiliary circuit includes a second resistor (eg, R5 in FIG. 13 ), and the second resistor is electrically connected between the first battery interface and the second battery interface.
  • the powered device further includes: a switch circuit, the switch circuit is electrically connected between the controller and the battery interface; when the battery device and the powered device are connected together, and The switch circuit controls the disconnection of the battery interface and the controller when power is not supplied through the battery interface.
  • the switch circuit may be, for example, the switch circuit 1 and the switch circuit 2 in FIG. 13 .
  • the powered device includes a switch circuit electrically connected between the controller and the battery interface, and the switch circuit is used for disconnecting the power supply between the controller and the battery interface when the battery device does not start supplying power to the powered device through the battery interface.
  • the electrical connection can avoid the problem that the level signal of the battery interface cannot correctly represent the in-position state caused by the current flowing through other circuits other than the auxiliary circuit.
  • the battery interface passes through the casing, and/or the battery interface is exposed outside the casing.
  • the powered device includes a battery interface that is electrically connected to the connection interface of the battery device and a controller that is electrically connected to the battery interface.
  • the battery interface can collect a level signal, and the level signal is used by the battery device to determine that the powered device is in place, so as to supply power to the powered device through the battery interface.
  • the controller passes The battery interface receives relevant information transmitted by the battery device or receives power through the battery interface, so that when the powered device is connected to the battery device, the battery device can be based on the level of the battery interface of the powered device (that is, the connection interface of the battery device).
  • the signal confirms that the powered device is in place, so that the battery device does not need to be provided with a button dedicated to the presence detection of the powered device by the battery device, thereby making the design of the battery device more concise and facilitating the normalized management of batteries and supporting products.
  • an embodiment of the present application further provides an electronic device, where the electronic device includes the battery device shown in FIG. 14 and the powered device shown in FIG. 16 .
  • the electronic device includes a movable platform.
  • the movable platform includes at least one of the following: a handheld gimbal, an unmanned aerial vehicle, a gimbal vehicle, an unmanned vehicle, and a motion camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Power Sources (AREA)

Abstract

一种电池装置、控制电路、被供电装置及电子设备。该电池装置包括:壳体;电芯,收容于壳体内;连接接口,用于与被供电装置进行电连接;开关电路,安装在壳体内,开关电路电连接在电芯与连接接口之间,用于控制电芯与连接接口的导通或断开;以及,控制电路,安装在壳体内,与连接接口电连接;当电池装置与被供电装置连接在一起时,控制电路用于根据连接接口的电平信号确定被供电装置在位,在被供电装置在位情况下控制开关电路的导通,以导通电池装置与被供电装置的供电通路。本申请能够使得电池装置的设计更加简洁。

Description

电池装置、控制电路、被供电装置及电子设备 技术领域
本申请涉及电池技术领域,尤其涉及一种电池装置、控制电路、被供电装置及电子设备。
背景技术
使用可拆卸式的电池装置进行供电的电子设备越来越多,例如无人机、手持云台等。
通常,电池装置上设置有输出按键,在电池装置和被供电装置连接后,需要人工操作电池装置上设置的输出按键,电池装置获知被供电装置在位,从而电池装置才会给被供电装置进行供电,否则,电池装置无法获知被供电装置在位,从而不会给被供电装置供电,被供电装置无法正常工作。
然而,上述在电池装置上设置输出按键的方式,存在电池装置的设计不够简洁的问题。
发明内容
本申请实施例提供一种电池装置、控制电路、被供电装置及电子设备,用以解决现有技术中电池装置的设计不够简洁的问题。
第一方面,本申请实施例提供一种电池装置,能够与被供电装置可拆卸连接,所述电池装置包括:壳体;电芯,收容于所述壳体内;连接接口,用于与被供电装置进行电连接;开关电路,安装在所述壳体内,所述开关电路电连接在所述电芯与所述连接接口之间,用于控制所述电芯与所述连接接口的导通或断开;以及,控制电路,安装在所述壳体内,与所述连接接口电连接;其中,当所述电池装置与所述被供电装置连接在一起时,所述控制电路 用于根据所述连接接口的电平信号确定所述被供电装置在位,在所述被供电装置在位情况下控制所述开关电路的导通,以导通所述电池装置与被供电装置的供电通路。当所述开关电路导通时,所述电池装置通过所述连接接口传输所述电池装置的相关信息,或者通过所述连接接口为所述被供电装置供电。
第二方面,本申请实施例提供一种控制电路,所述电路位于第一装置中,所述第一装置能够与第二装置可拆卸连接,所述第一装置包括用于与所述第二装置进行电连接的连接接口;所述控制电路包括:检测子电路,与所述连接接口电连接;当所述第一装置与所述第二装置连接在一起时,所述检测子电路用于检测所述连接接口的电平信号,并根据所述电平信号确定所述第二装置在位。
第三方面,本申请实施例提供一种被供电装置,所述被供电装置能够与电池装置可拆卸连接,所述被供电装置包括:壳体;电池接口,用于与电池装置的连接接口电连接,以及控制器,安装在所述壳体内,与所述电池接口电连接;其中,当所述电池装置与所述被供电装置连接在一起时,所述电池接口能够采集到电平信号,所述电平信号用于电池装置确定所述被供电装置在位,以通过所述电池接口为所述被供电装置供电;当所述电池装置开始通过所述连接接口供电时,所述控制器通过所述电池接口接收所述电池装置传输的相关信息,或者通过所述电池接口接收供电。
第四方面,本申请实施例提供一种电子设备,包括第一方面所述的电池装置以及第三方面所述的被供电装置。
本申请实施例提供一种电池装置、控制电路、被供电装置及电子设备,通过电池装置包括电芯、连接接口、开关电路以及控制电路,其中,连接接口用于与被供电装置进行电连接,当被供电装置和电池装置连接在一起时,控制电路用于根据连接接口的电平信号确定被供电装置在位,在被供电装置在位情况下控制开关电路的导通,以导通电池装置与被供电的供电通路,实现了电池装置中的控制电路能够根据连接接口的电平信号确定被供电装置在位,进而导通电池装置与被供电装置的供电通路,由于电池装置是通过复用连接接口的方式实现对被供电装置的在位检测,即连接接口既用于电池装置与被供电装置进行电连接,又用于控制电路针对被供电装置进行在位检测,使得电池装置上无需设置专用于电池装置针对被供电装置进行在位检测的按键,从而使得电池装置的设计更加简洁。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的应用场景示意图;
图2A为本申请一实施例提供的手持云台的前视图;
图2B为本申请一实施例提供的手持云台的后视图;
图2C为本申请一实施例提供的手持云台的左视图;
图2D为本申请一实施例提供的手持云台的右视图;
图2E为本申请一实施例提供的手持云台的上视图;
图2F为本申请一实施例提供的手持云台的下视图;
图2G和图2H为本申请一实施例提供的手持云台的其他视图;
图3A为本申请一实施例提供的云台手柄的前视图;
图3B为本申请一实施例提供的云台手柄的后视图;
图3C为本申请一实施例提供的云台手柄的左视图;
图3D为本申请一实施例提供的云台手柄的右视图;
图3E为本申请一实施例提供的云台手柄的上视图;
图3F为本申请一实施例提供的云台手柄的下视图;
图3G和图3H为本申请一实施例提供的云台手柄的其他视图;
图4为本申请一实施例提供的控制电路的结构示意图;
图5为本申请另一实施例提供的控制电路的结构示意图;
图6A为本申请一实施例提供的第一装置未与第二装置连接在一起时的电路示意图;
图6B为本申请一实施例提供的第一装置与第二装置连接在一起时形成电流通路的电路示意图;
图7A为本申请另一实施例提供的第一装置未与第二装置连接在一起时的电路示意图;
图7B为本申请另一实施例提供的第一装置与第二装置连接在一起时形 成电流通路的电路示意图;
图8为本申请一实施例提供的控制电路的电路原理图;
图9为本申请另一实施例提供的控制电路的电路原理图;
图10为本申请又一实施例提供的控制电路的结构示意图;
图11A为本申请又一实施例提供的第一装置未与第二装置连接在一起时的电路示意图;
图11B为本申请又一实施例提供的第一装置与第二装置连接在一起时形成电流通路的电路示意图;
图12A为本申请又一实施例提供的第一装置未与第二装置连接在一起时的电路示意图;
图12B为本申请又一实施例提供的第一装置与第二装置连接在一起时形成电流通路的电路示意图;
图13为本申请又一实施例提供的控制电路的电路原理图;
图14为本申请一实施例提供的电池装置的结构示意图;
图15为本申请一实施例提供的电池装置的电路原理图;
图16为本申请一实施例提供的被供电装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
使用可拆卸式的电池装置进行供电的电子设备越来越多,例如无人机、手持云台等。
发明人发现,通常,电池装置上设置有输出按键,在电池装置和被供电装置连接后,需要人工操作电池装置上设置的输出按键,电池装置获知被供电装置在位,从而电池装置才会给被供电装置进行供电,否则,电池装置无法获知被供电装置在位,从而不会给被供电装置供电,被供电装置无法正常工作。
然而,上述在电池装置上设置输出按键的方式,存在电池装置的设计不够简洁的问题。为了满足电子设备的便携化和轻巧化的需求,需要思考如何进行简洁化设计,对结构设计要求高。其中的一个方法就是,应用控制电路替代按键。当电子设备接入电池时,电池可检测到电子设备在位,电池将自动输出电压给电子设备供电。无需按下按键,控制电池输出。但是,如果使用常规的在位检测,需要额外的连接接口。如果增加额外的连接接口,一方面连接接口不便于加工生产,另一方面需要额外的空间、对结构设计造成困难,同时从产品外观上看也不够美观、简洁。此外,与原电池装置相配套使用的电池管家、充电器等装置都不能兼容新的电池装置使用,这些配套产品也将被迫根据连接端子的变化而进行升级迭代。因此不利于电池和配套产品的归一化管理,增加研发工作量。
基于上述至少一个问题,本申请实施例提出复用连接接口的方式,对于其中一个连接接口,既保留原有的接口功能,又为其新增在位检测功能。
本申请实施例可以应用于如图1所示的应用场景中,如图1所示,该应用场景可以包括第一装置11,以及能够与第一装置11可拆卸连接的第二装置12。其中,在第二装置12与第一装置11连接在一起时,表示第一装置11在位。在第二装置12未与第一装置11连接在一起时,表示第一装置11不在位。
如图1所示,第一装置11包括控制电路11A和连接接口11B,控制电路11A与连接接口11B电连接。其中,连接接口11B用于第一装置11与第二装置12进行电连接。当第一装置11与第二装置12连接在一起时,控制电路11A用于根据连接接口11B的电平信号,确定第二装置12在位。
可以理解的是,第二装置12中可以包括与连接接口11B匹配的接口,以便于第二装置12与连接接口11B进行电连接。所述第一装置11中用于所述第一装置与所述第二装置进行电连接的接口,除了包括所述连接接口11B,还可以包括所述连接接口11B之外的其他接口。
需要说明的是,本申请实施例可以应用于第一装置11需要获知第二装置12在位的任意类型场景,基于第二装置12的在位,第一装置11可以由第一状态切换至第二状态。
一个实施例中,第一装置可以包括电池装置,第二装置可以包括被供电装置,第一状态可以为供电通路断开状态,第二状态可以为供电通路导通状态。
一个实施例中,第一装置可以包括电池装置,第二装置可以包括云台或无人机机身,实现电池装置使用控制电路11检测云台(或无人机机身)的在位,以在云台(或无人机机身)在位情况下,导通供电通路以便向云台(或无人机机身)供电。
一个实施例中,在第二装置包括云台,第一装置包括电池装置情况下,第一装置可以安装于云台手柄的壳体内,从而使得手持云台场景下安装于云台手柄内的电池装置能够采用控制电路11A实现云台的在位检测。手持云台的结构可以如图2A-图2H所示,参考图2A-图2H,手持云台包括云台21和云台手柄22,云台手柄22的壳体内安装有电池装置(未示出)。需要说明的是,图2A-图2H所示的手持云台的结构仅为举例。
可选的,连接接口11B可以穿设所述壳体而暴露在所述壳体的外部,从而能够便于电池装置的连接接口11B与云台进行电连接。安装有电池装置的云台手柄22的结构可以如图3A-图3F所示,参考图3A-图3F,云台手柄22的壳体22A内安装有电池装置,电池装置的连接接口11B穿设壳体22A而暴露在壳体22A的外部。需要说明的是,图3A-图3H所示的云台手柄22的结构仅为举例。
可选的,所述云台手柄和所述云台可拆卸连接,从而能够通过云台手柄和云台的可拆卸连接,使得电池装置和云台连接或者不连接。
传统技术中,电池装置上设置有按键,如果电池装置获取到针对该按键的触发操作,则可以确定被供电装置在位,如果电池装置未获取到针对该按键的触发操作,则认为被供电装置不在位,电池装置上需要设置该按键,导致电池装置的设计不够简洁。
本申请实施例中,通过第一装置包括控制电路11A和连接接口11B,控制电路11A根据连接接口11B的电平信号,确定第二装置在位,实现了控制电路11A通过复用连接接口11B的方式实现对第二装置12的在位检测,即连接接口11B既用于第一装置11与第二装置12进行电连接,又用于控制电路11A针对第二装置12进行在位检测,使得第一装置上无需设置专用于第一装置针对第二装置进行在位检测的按键,从而使得第一装置的设计更加简洁。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图4为本申请一实施例提供的控制电路的结构示意图。如图4所示,该控 制电路11A可以包括:检测子电路41,所述检测子电路41与所述连接接口11B电连接;当所述第一装置与所述第二装置连接在一起时,所述检测子电路41用于检测所述连接接口11B的电平信号,并根据所述电平信号确定所述第二装置12在位。
其中,所述第一装置和所述第二装置连接在一起,与所述第一装置和所述第二装置未连接在一起两种情况下,所述连接接口11B的所述电平信号不同。由此,可以基于连接接口11B的电平信号确定第二装置在位。
示例性的,当第一装置与第二装置连接在一起时,所述连接接口11B的所述电平信号为第一电平信号;当第一装置未与第二装置连接在一起时,所述连接接口11B的所述电平信号为第二电平信号。所述第一电平信号和所述第二电平信号不同。基于此,可以基于连接接口11B的电平信号为第一电平信号确定第二装置在位。第一装置与第二装置连接在一起,可以表示两者电连接在一起。第一装置与第二装置连接在一起,可以表示两者通信连接在一起。
由于电荷的迁移可以改变电压,因此可以通过第一装置和第二装置连接在一起时形成特定的电流通路,而第一装置和第二装置未连接在一起时未形成该特定的电流通路,使得两种情况下连接接口的电平信号不同。一个实施例,该特定的电流通路可以经过第二装置。另一个实施例,该特定的电流通路可以不经过第二装置。
一个实施例,所述第一电平信号包括低电平信号,所述第二电平信号包括脉冲信号。另一个实施例,所述第一电平信号包括低电平信号,所述第二电平信号包括高电平信号。考虑到第二电平信号是第二装置不在位情况下,所述连接接口11B的电平信号,通过第二电平信号是脉冲信号,与第二电平信号是高电平信号相比,有利于减少在第二装置不在位情况下,连接接口11B的电平信号为第二电平信号所带来的功耗。
又一个实施例,所述第一电平信号包括高电平信号,所述第二电平信号包括低电平信号;或者,所述第一电平信号包括脉冲信号,所述第二电平信号包括低电平信号。考虑到第一电平信号是第二装置在位情况下,所述连接接口11B的电平信号,通过第一电平信号是脉冲信号,与第一电平信号是高电平信号相比,有利于减少在第二装置在位情况下,连接接口11B的电平信号为第一电平信号所带来的功耗。
检测子电路41可以为能够检测连接接口11B的电平信号,并在该电平信号为第一电平信号时确定第二装置在位状态为在位的任意类型电路。一个实施例中,检测子电路41可以包括集成电路(IC,integrated circuit),该集成电路可以包括检测端,检测端与连接接口11B,集成电路可以通过检测端检测连接接口11B的电平信号,并在该电平信号为第一电平信号时确定第二装置在位。其中,所述检测端例如可以为检测子电路41的通用型输入输出端口(GPIO,General-purpose input/output)端口。
连接接口11B具体可以为能够用于第一装置和第二装置进行连接的任意类型的硬件接口。一个实施例,连接接口11B可以为插座式接口。另一个实施例,连接接口可以为插针式接口。又一个实施例中,连接接口11B可以为触点式接口。
连接接口11B可以是用于第一装置和第二装置实现电连接的接口。连接接口11B的数量可以为一个或多个。
一个实施例,连接接口11B可以包括通信接口。以所述第一装置11采用集成电路总线(I2C,Inter-Integrated Circuit Bus)协议与所述第二装置12通信为例,连接接口可以包括所述连接接口包括串行时钟线(SCL,Serial Clock Line)接口,和/或,串行数据线(Serial Data Line,SDA)接口。以所述第一装置11采用通用异步收发传输器(UART,Universal Asynchronous Receiver/Transmitter)协议与所述第二装置12通信为例,所述连接接口可以包括发送(TX,transport)接口,和/或,接收(RX,receive)接口。以所述第一装置11采用HDQ(Headquarters)协议与所述第二装置12通信为例,所述连接接口可以包括发送HDQ接口。
另一个实施例,连接接口11B可以包括电源接口。为了避免对于电源输出的影响,连接接口11B具体可以为电源负极接口。
本申请实施例提供的控制电路,通过控制电路包括检测子电路,检测子电路根据用于与第二装置进行电连接的连接接口的电平信号,确定第二装置在位,实现了检测子电路通过复用连接接口的方式实现对第二装置的在位检测,即连接接口既用于第一装置与第二装置进行电连接,又用于控制电路针对第二装置进行在位检测,使得第一装置上无需设置专用于第一装置针对第二装置进行在位检测的按键,从而使得第一装置的设计更加简洁。
图5为本申请另一实施例提供的控制电路的结构示意图。如图5所示,本 实施例在图4所示实施例的基础上,进一步的,控制电路11A还可以包括第一子电路42;所述第一子电路42与所述连接接口11B电连接;其中,当第一装置11与第二装置12连接在一起时,所述第一子电路42通过所述连接接口11B与所述第二装置中的辅助电路x电连接,形成电流通路。
可以理解的是,当第一装置11未与第二装置12连接在一起时,由于连接接口11B未与第二装置连接,第一子电路42与第二装置12中的辅助电路未电连接,因此不能形成所述电流通路。未形成所述电流通路时,所述连接接口11B的电平信号为第二电平信号。
通过当第一装置11与第二装置12连接在一起时,第一子电路42通过连接接口11B与第二装置中的辅助电路电连接,形成电流通路,由于所述电流通路是经连接接口11B形成的,因此形成的所述电流通路能够改变连接接口11B的电平信号,将连接接口11B的电平信号由未形成所述电流通路时的第二电平信号,改变为形成所述电流通路时的第一电平信号。
一个实施例,第一子电路42可以包括电压端,该电压端用于提供电压,以在第一装置11与第二装置12连接在一起时,第一子电路42能够与第二装置12中的辅助电路形成电流通路。
另一个实施例,第一子电路42可以不包括电压端,第一子电路42可以与电压端电连接,以在第一装置11与第二装置12连接在一起时,第一子电路42能够与第二装置12中的辅助电路形成电流通路。基于此,所述第一子电路42的一端可以与第一电压端电连接,另一端可以与所述连接接口11B电连接。
所述第一子电路42的电路结构可以根据需求灵活实现。示例性的,所述第一子电路42可以包括第一电阻,所述第一电阻的一端与所述第一电压端电连接,所述第一电阻的另一端与所述连接接口电连接。通过第一子电路42包括第一电阻,可以实现电连接第一电压端和连接接口的作用。
可选的,所述第一子电路42还可以包括第一防倒灌二极管,所述第一防倒灌二极管与所述第一电阻串联。可以理解的是,在电流通路中电流从第一电压端流出时,第一防倒灌二极管的正极与第一电压端电连接,第一防倒灌二极管的负极与连接接口1B电连接;在电流通路中电流流向第一电压端时,第一防倒灌二极管的负极与第一电压端电连接,第一防倒灌二极管的正极与连接接口1B电连接。通过第一子电路42包括第一防倒灌二极管,可以防止电流倒灌至集成电路内部,有利于提高集成电路的可靠性。
和/或,可选的,所述第一子电路42还可以包括第一稳压器,所述第一稳压器与所述第一电阻串联。第一稳压器例如可以为低压差线性稳压器(LDO,low dropout regulator)。通过第一子电路42包括第一稳压器,可以减小电压波动,有利于提高连接接口电压的稳定性。
和/或,可选的,所述第一子电路42还可以包括第一开关,所述第一开关与所述第一电阻串联。在第一电压端包括电源端或输出端情况下,通过第一子电路包括第一开关,可以控制经第一子电路输出的电平信号为脉冲信号,从而使得第二电平信号可以脉冲信号。可替换的,第一稳压器可以为带使能引脚的稳压器,通过控制使能引脚,也可以获得脉冲信号。
一个实施例,所形成的电流通路可以包括:第一电压端→第一子电路→连接接口11B→辅助电路。此种情形下,第一电压端所提供的电压可以较高。示例性的,所述第一电压端可以包括电源端(VCC),以提供电源电压。
或者,第一电压端可以由检测子电路41提供,示例性的,检测子电路41与所述第一子电路42电连接,所述检测子电路41包括输出端,所述第一电压端包括所述输出端。
另一个实施例,所形成的电流通路可以包括:辅助电路→连接接口11B→第一子电路→第一电压端。此种情形下,第一电压端所提供的电压可以较低,示例性的,所述第一电压端可以包括地端(GND),以提供0V电压。
前述辅助电路可以用于连通所述第一电压端与所述第一电压端之外的其他电压端(以下记为第二电压端),所述电流通路可以为在所述第一电压端与所述第二电压端形成的电流通路。可以理解的是,第一电压端的电压与第二电压端的电压不同。
一个实施例中,第一电压端的电压可以低于第二电压端。相应的,所述电流通路可以包括第二电压端→辅助电路→连接接口11B→第一子电路42→第一电压端。由此,第二电压端所提供的电压可以较高,示例性的,所述第二电压端可以包括电源端。
另一个实施例中,第一电压端的电压可以高于第二电压端。相应的,所述电流通路可以包括第一电压端→第一子电路42→连接接口11B→辅助电路→第二电压端。由此,第二电压端所提供的电压可以较低,示例性的,所述第二电压端可以包括地端。
一个实施例,所述第二电压端可以位于所述第二装置中。另一个实施例, 所述第二电压端可以位于所述第一装置中。
以第一电压端O1为电源端,第二电压端O2为地端,且第二电压端O2位于所述第二装置中为例,如图6A所示,在第二装置12未与第一装置11连接在一起的情况下,连接接口11B的电平信号可以为高电平信号或者脉冲信号。在第二装置12与第一装置11连接在一起的情况下,可以形成如图6B所示的电流通路,在该电流通路中连接接口11B的电平信号可以为低电平信号,检测子电路41可以根据检测到的连接接口11B的电平信号为低电平信号确定第二装置12在位。
以第一电压端O1为地端,第二电压端O2为电源端,且第二电压端O2位于所述第二装置中为例,如图7A所示,在第二装置12未与第一装置11连接在一起的情况下,连接接口11B的电平信号可以为低电平信号。在第二装置12与第一装置11连接在一起的情况下,可以形成如图7B所示的电流通路,在该电流通路中连接接口11B的电平信号可以为高电平信号或脉冲信号,检测子电路41可以根据检测到的连接接口11B的电平信号为高电平信号或脉冲信号确定第二装置12在位。
图6A-图7B中的连接接口11B例如可以为SCL接口、SDA接口、TX接口或RX接口等。可以理解的是,在其他实施例中,连接接口11B还可以为其他类型接口。
在上述实施例的基础上,可选的,所述控制电路还包括保护子电路,所述保护子电路电连接在所述检测子电路和所述连接接口之间。保护子电路例如可以包括电阻或者RC滤波。通过保护子电路可以实现对检测子电路的保护,有利于提高控制电路的可靠性。
以检测子电路包括IC芯片,第一电压端由IC芯片提供,第二电压端位于第二装置中且连接接口为SCL接口为例,如图8所示,在第二装置12未与第一装置11连接在一起的情况下,IC芯片的RL1端口输出+3.3V高电平,RL0端口为输入状态,RL0端口的电平信号为高电平信号。如图8所示,在第一装置11连接在一起的情况下形成电流通路:RL1输出的+3.3V→R1→D1→SCL接口→R3→地端,通过R1和R3电阻的分压,使得A点处的电压可以接近0V,从而RL0端口的电平信号为低电平信号,IC芯片可以根据检测到的SCL接口的电平信号为低电平信号确定第二装置12在位。
图8中,RL0端口可以理解为前述的检测端,RL1端口可以理解为前述的 输出端,串联的电阻R1和防倒灌二极管D1可以理解为前述的第一子电路,地端可以理解为前述的第二电压端,第二装置侧与SCL接口电连接的电阻R3可以理解为前述的辅助电路。电阻R2用于限流,可以理解为前述的保护子电路,电阻R9用于分压。其中,R1可以选择阻值较大的电阻,以降低功耗,例如可以选择一兆欧姆以上的电阻。R3的阻值大小与R1有关,确定的原则是通过R1和R3的分压能够使得RL0端口检测到的电平信号可以为低电平信号。
需要说明的是,图8主要示出了在位检测相关电路的原理图,其他电路省略,且图8所示出的电路原理图仅为举例。
图8中以连接接口11B的数量为一个为例,在其他实施例中,连接接口11B的数量也可以为多个。以检测子电路包括IC芯片,第一电压端由IC芯片提供,第二电压端位于第一装置中且两个连接接口11B为两个电源负极接口为例,如图9所示,在第二装置12未与第一装置11连接在一起的情况下,IC芯片的RL1端口输出+5V高电平,RL0端口为输入状态,RL0端口的电平信号为高电平信号。如图9所示,在第二装置12与第一装置11连接在一起的情况下,由于第二装置中的两个电源负极接口是电连接在一起的,且P 2-是与第二电压端(即地端)电连接,因此形成电流通路:RL1输出的+5V→R1→D1→P 1-接口→第二装置12两个电源负极接口→P 2-接口→地端,从而RL0端口的电平信号为低电平信号,IC芯片可以根据检测到的P 2-接口的电平信号为低电平信号确定第二装置12在位。
图9中,RL0端口可以理解为前述的检测端,RL1端口可以理解为前述的输出端,串联的电阻R1和防倒灌二极管D1可以理解为前述的第一子电路,地端可以理解为前述的第二电压端,第二装置侧电连接在两个电源负极接口之间的连接线可以理解为前述的辅助电路。电阻R2用于限流,可以理解为前述的保护子电路。需要说明的是,图9主要示出了在位检测相关电路的原理图,其他电路省略,且图9所示出的电路原理图仅为举例。
可选的,在连接接口的个数为多个情况下,控制电路11A还可以包括第二子电路。如图10所示,连接接口11B可以包括第一连接接口B1和第二连接接口B2,控制电路11A还可以包括第二子电路43。其中,所述检测子电路41和所述第一子电路42均与所述第一连接接口B1电连接;所述第二子电路43与所述第二连接接口B2电连接;所述第一连接接口B1用于与所述辅助电路x的一端电连接,所述第二连接接口B1用于与所述辅助电路x的另一端电连接;当第一装置 11与第二装置12连接在一起时,所述第一子电路42和所述第二子电路43通过所述连接接口11B与所述辅助电路x电连接,形成所述电流通路。
一个实施例中,第一子电路42、第二子电路43和与辅助电路x所形成的电流通路可以包括:第一子电路42→第一连接接口B1→辅助电路x→第一连接接口B2→第二子电路43。另一个实施例中,第一子电路42、第二子电路43和与辅助电路x所形成的电流通路可以包括:第二子电路43→第一连接接口B2→辅助电路x→第一连接接口B1→第一子电路42。
进一步的,在第一子电路42不包括用于提供电压的电压端时,所述第一子电路42的一端可以与第一电压端电连接,另一端可以与所述第一连接接口B1电连接情况下,所形成的电流通路可以包括:第一电压端→第一子电路42→第一连接接口B1→辅助电路x→第一连接接口B2→第二子电路43,或者,第二子电路43→第一连接接口B2→辅助电路x→第一连接接口B1→第一子电路42→第一电压端。
一个实施例,第二子电路43可以包括第二电压端O2。
另一个实施例中,第二子电路43可以不包括第二电压端O2。所述第二子电路43的一端可以与所述第二电压端O2电连接,另一端可以与所述第二连接接口B2电连接。所形成的电流通路可以包括:第一电压端→第一子电路42→第一连接接口B1→辅助电路x→第一连接接口B2→第二子电路43→第二电压端,或者,第二电压端→第二子电路43→第一连接接口B2→辅助电路x→第一连接接口B1→第一子电路42→第一电压端。
所述第二子电路43的电路结构可以根据需求灵活实现。示例性的,所述第二子电路43可以包括第二电阻,所述第二电阻的一端与所述第二电压端O2电连接,另一端与所述第二连接接口B2电连接。通过第二子电路43包括第二电阻,可以实现电连接第二电压端和第二连接接口的作用。
可选的,所述第二子电路43还可以包括:第二防倒灌二极管,所述第二防倒灌二极管与所述第二电阻串联。可以理解的是,在电流通路中电流从第二电压端流出时,第二防倒灌二极管的正极与第二电压端电连接,第二防倒灌二极管的负极与第二连接接口电连接;在电流通路中电流流向第二电压端时,第二防倒灌二极管的负极与第二电压端电连接,第二防倒灌二极管的正极与第二连接接口电连接。通过第二子电路43包括第二防倒灌二极管,可以防止电流倒灌至集成电路内部,有利于提高集成电路的可靠性。
和/或,可选的,所述第二子电路43还可以包括第二稳压器,所述第二稳压器与所述第二电阻串联。通过第二子电路43包括第二稳压器,可以减小电压波动,有利于提高连接接口电压的稳定性。
和/或,可选的,所述第二子电路43还可以包括第二开关,所述第二开关与所述第二电阻串联。在第二电压端包括电源端情况下,通过第二子电路包括第二开关,可以控制经第二子电路输出的电平信号为脉冲信号,从而使得第一电平信号可以脉冲信号。可替换的,第二稳压器可以为带使能引脚的稳压器,通过控制使能引脚,也可以获得脉冲信号。
以第一电压端O1为电源端,第二电压端O2为地端,且第二电压端O2位于所述第一装置中为例,如图11A所示,在第二装置12未与第一装置11连接在一起的情况下,第一连接接口B1的电平信号可以为高电平信号或者脉冲信号。在第二装置12与第一装置11连接在一起的情况下,可以形成如图11B所示的电流通路,在该电流通路中第一连接接口B1的电平信号可以为低电平信号,检测子电路41可以根据检测到的第一连接接口B1的电平信号为低电平信号确定第二装置12在位。
以第一电压端O1为地端,第二电压端O2为电源端,且第二电压端O2位于所述第一装置中为例,如图12A所示,在第二装置12未与第一装置11连接在一起的情况下,第一连接接口B1的电平信号可以为低电平信号。在第二装置12与第一装置11连接在一起的情况下,可以形成如图12B所示的电流通路,在该电流通路中第一连接接口B1的电平信号可以为高电平信号或脉冲信号,检测子电路41可以根据检测到的第一连接接口B1的电平信号为高电平信号或脉冲信号确定第二装置12在位。
图11A-图12B中的第一连接接口B1例如可以为SCL接口和SDA接口中的一者,第二连接接口B2例如可以为其中的另一者;或者,第一连接接口B1例如可以为TX接口和RX接口中的一者,第二连接接口B2例如可以为其中的另一者。可以理解的是,在其他实施例中,第一连接接口B1和第二连接接口B2还可以为其他类型接口。
以检测子电路包括IC芯片,第一电压端由IC芯片提供,第二电压端位于第一装置中且第一连接接口B1为SDA接口,第二连接接口B2为SCL接口为例,如图13所示,在第二装置12未与第一装置11连接在一起的情况下,RL0端口为输入状态由于电阻R4的下拉,RL0端口的电平信号为低电平信号。如图13所 示,在第二装置12与第一装置11连接在一起的情况下形成电流通路:电源端→R1->D1->SCL接口→R5→SDA接口→R4→地端,通过电阻R1、R4和R5的分压,使得RL0端口的电平信号为高电平信号,IC芯片可以根据检测到的RL0端口的电平信号为高电平信号确定第二装置12在位。
图13中,RL0端口可以理解为前述的检测端,地端可以理解为前述的第一电压端O1,电源端可以理解为前述的第二电源端O2,串联的开关1、稳压器、电阻R1和防倒灌二极管D1可以理解为前述的第一子电路,电阻R2用于限流可以理解为前述的保护子电路,第二装置侧与SCL接口和SDA接口电连接的电阻R5可以理解为前述的辅助电路。
参考图13,如果第一装置和第二装置之间采用系统管理总线(SMBus,System Management Bus)进行通信,则第二装置侧还可以包括上拉电阻R6和R7,R6和R7是SMBus通信协议要求的上拉电阻,VCC’是SMBus通信协议要求的上拉电源。为了避免形成电流通路时从VCC’漏电导致RL0端口检测不到高电平信号,如图13所示,辅助电路还可以开关电路1和开关电路2,开关电路1和开关电路2的电源均为VCC”,在VCC”正常供电时,开关电路1和开关电路2闭合,否则开关电路1和开关电路2断开,VCC”由第一装置提供。在第二装置未与第一装置连接时,VCC”无法供电,开关电路1和开关电路2断开。进一步的,在第二装置与第一装置连接且第一装置未确定第二装置在位的情况下,开关电路1和开关电路2断开,并形成电源端→R1->D1->SCL接口→R5→SDA接口→R4→地端的电流通路。在第二装置确定第一装置在位并向第一装置供电之后,VCC”正常供电,开关电路1和开关电路2闭合,第一装置和第二装置可以正常SMBus通信。
需要说明的是,图13中主要示出了在位检测相关电路的原理图,其他电路省略,且图13所示出的电路原理图仅为举例。
在上述实施例的基础上,可选的,所述检测子电路11A,还用于根据所述电平信号确定所述第二装置不在位。检测子电路11A可以在所述电平信号为所述第二电平信号时,确定所述第二装置不在位。通过确定所述第二装置不在位,使得第一装置可以通过连接接口的电平信号获知第二装置不在位,进而可以将由第二状态切换回第一状态。
在上述实施例的基础上,可选的,所述控制电路11A,还用于确定所述第二装置在位且未检测到目标对象的情况下,控制所述第一装置处于保持输出 供电电压的低功耗模式。在一个实施例中,所述目标对象包括放电电流和/或来自所述第二装置的通信信号。通过在第二装置在位且未检测到目标对象情况下,控制第一装置处于输出供电电压的低功耗模式,有利于降低第一装置的功耗。
本申请实施例提供的控制电路,通过控制电路包括检测子电路和第一子电路,检测子电路和第一子电路均与连接接口电连接,在第一装置与第二装置连接在一起时第一子电路通过连接接口与所述第二装置中的辅助电路电连接,形成电流通路以使连接接口的电平信号变化,进而检测子电路能够根据连接接口的电平信号确定第二装置在位,实现了检测子电路通过复用连接接口的方式实现对第二装置的在位检测,从而使得第一装置的设计更加简洁。
图14为本申请一实施例提供的电池装置的结构示意图;如图14所示,该电池装置140包括:壳体141;电芯142,收容于所述壳体141内;连接接口143,用于与被供电装置进行电连接;开关电路144,安装在所述壳体141内,所述开关电路144电连接在所述电芯142与所述连接接口143之间,用于控制所述电芯142与所述连接接口143的导通或断开;以及,控制电路145,安装在所述壳体141内,与所述连接接口143电连接;其中,当所述电池装置与所述被供电装置连接在一起时,所述控制电路145用于根据所述连接接口143的电平信号确定所述被供电装置在位,在所述被供电装置在位情况下导通所述电池装置140与被供电装置的供电通路;当所述开关电路导通时,所述电池装置140通过所述连接接口143传输所述电池装置140的相关信息,或者通过所述连接接口143为所述被供电装置供电。所述相关信息例如可以为电池的温度、电压、剩余电量信息等。
可选的,当所述电池装置未与所述被供电装置连接在一起时,所述控制电路145还用于根据所述连接接口143的电平信号确定所述被供电装置不在位,在所述被供电装置不在位情况下控制所述开关电路144的断开,以断开所述电池装置140与被供电装置的供电通路。
示例性的,所述被供电装置包括云台或无人机机身。
示例性的,所述电池装置还用作手柄。从而能够直接将电池装置作为被供电装置的手柄使用,便于用户握持。
示例性的,所述电池装置可拆卸安装于手柄的壳体内;或者,所述电池装置与所述手柄一体设置。
示例性的,所述连接接口穿设所述壳体141,和/或,所述连接接口暴露在所述手柄的壳体外部。
示例性的,所述被供电装置包括云台,所述电池装置设于云台手柄,所述云台手柄和所述云台可拆卸连接。
需要说明的是,控制电路145和连接接口143的具体描述,可以参见前述实施例,在此不再赘述。
以控制电路145实现在位检测的电路原理图如图8所示为例,电池装置的电路原理图可以如图15所示。如图15所示,MOS管电连接在电芯142的正极与电源正极接口P+接口之间,电芯142的负极与电源负极接口P-接口电连接。其中,MOS管可以理解为开关电路144,图15中以MOS管为N沟道金氧半场效晶体管(MOSFET,Metal-Oxide-Semiconductor Field-Effect Transistor)为例。
参考图15,在被供电装置与电池装置电连接时,IC芯片可以根据检测端RL0的电平信号为低电平信号确定被供电装置在位。进一步的,IC芯片可以控制MOS管导通,以将电芯142的正极与P+接口电连接,从而导通电池装置140与被供电装置的供电通路。
在被供电装置未与电池装置电连接时,IC芯片可以根据检测端RL0的电平信号为高电平信号确定被供电装置不在位。进一步的,IC芯片可以控制MOS管关断,以断开电芯142的正极与P+接口电连接,从而断开电池装置140与被供电装置的供电通路。
需要说明的是,图15所示的电池装置的电路原理图仅为举例。
本申请实施例提供的电池装置,通过电池装置包括电芯、连接接口、开关电路以及控制电路,其中,连接接口用于与被供电装置进行电连接,当被供电装置和电池装置连接在一起时,控制电路用于根据连接接口的电平信号确定被供电装置在位,在被供电装置在位情况下控制开关电路的导通,以导通电池装置与被供电的供电通路,实现了电池装置中的控制电路能够根据连接接口的电平信号确定被供电装置在位,进而导通电池装置与被供电装置的供电通路,由于在位检测检测电路是通过复用连接接口的方式实现对被供电装置的在位检测,即连接接口既用于电池装置与被供电装置进行电连接,又用于控制电路针对被供电装置进行在位检测,使得电池装置上无需设置专用于电池装置针对被供电装置进行在位检测的按键,从而使得电池装置的设计更加简洁,利于电池和配套产品的归一化管理。
图16为本申请一实施例提供的被供电装置的结构示意图;如图16所示,该被供电装置160包括:壳体161;电池接口162,用于与电池装置的连接接口电连接,以及控制器163,安装在所述壳体161内,与所述电池接口162电连接;其中,当所述电池装置与所述被供电装置连接在一起时,所述电池接口162能够采集到电平信号,所述电平信号用于电池装置确定所述被供电装置在位,以通过所述电池接口为所述被供电装置供电;当所述电池装置开始通过所述连接接口供电时,所述控制器163通过所述电池接口162接收所述电池装置传输的相关信息,或者通过所述电池接口162接收供电。
可以理解的是,图16中的电池接口162是与电池装置的连接接口匹配的接口。
一个实施例中,所述被供电装置还可以包括辅助电路x,所述辅助电路x与所述电池接口电连接;当所述电池装置与所述被供电装置连接在一起时,所述辅助电路x用于与所述电池装置中的电路电连接,形成电流通路。
一个实施例中,所述辅助电路x用于连通第一电压端和第二电压端,以在所述第一电压端和所述第二电压端之间形成电流通路,所述第一电压端位于所述电池装置中。
其中,所述第二电压端可以位于所述被供电装置中,或者所述第二电压端可以位于所述电池装置中。
一个实施例中,所述辅助电路可以包括所述第二电压端。
另一个实施例中,所述辅助电路的一端与所述电池接口电连接,另一端与所述第二电压端电连接。示例性的,所述辅助电路包括连接线(例如图9中两个电源负极接口之间的连接线),所述连接线电连接在所述电池接口和所述第二电压端之间。或者,示例性的,所述辅助电路包括第一电阻(例如图8中的R3),所述第一电阻电连接在所述电池接口和所述第二电压端之间。
又一个实施例中,所述电池接口包括第一电池接口和第二电池接口;所述辅助电路的一端与所述第一电池接口电连接,另一端与所述第二电池接口电连接。示例性的,所述辅助电路包括连接线,所述连接线电连接在所述第一电池接口和所述第二电池接口之间。或者,示例性的,所述辅助电路包括第二电阻(例如图13中的R5),所述第二电阻电连接在所述第一电池接口和所述第二电池接口之间。
可选的,所述被供电装置还包括:开关电路,所述开关电路电连接在所 述控制器和所述电池接口之间;当所述电池装置与所述被供电装置连接在一起、且未开始通过所述电池接口供电时,所述开关电路控制所述电池接口和所述控制器的断开。其中,所述开关电路例如可以为图13中的开关电路1和开关电路2。通过被供电装置包括电连接在控制器和电池接口之间的开关电路,开关电路用于在电池装置未开始通过所述电池接口向被供电装置供电时,断开控制器和电池接口之间的电连接,能够避免电流流经辅助电路之外的其他电路而造成电池接口的电平信号无法正确表征在位状态的问题。
一个实施例中,所述电池接口穿设所述壳体,和/或,所述电池接口暴露在所述壳体的外部。
需要说明的是,关于电池接口的电平信号以及辅助电路的具体描述,可以参见前述实施例,在此不再赘述。
本申请实施例提供的被供电装置,通过被供电装置包括用于与电池装置的连接接口电连接的电池接口以及与电池接口电连接的控制器,当电池装置与被供电装置连接在一起时,电池接口能够采集到电平信号,电平信号用于电池装置确定所述被供电装置在位,以通过电池接口为所述被供电装置供电,当电池装置开始通过连接接口供电时,控制器通过电池接口接收电池装置传输的相关信息或者通过电池接口接收供电,实现了被供电装置与电池装置连接在一起时,电池装置可以基于被供电装置的电池接口(即电池装置的连接接口)的电平信号确定被供电装置在位,使得电池装置上无需设置专用于电池装置针对被供电装置进行在位检测的按键,从而使得电池装置的设计更加简洁,利于电池和配套产品的归一化管理。
另外,本申请实施例还提供一种电子设备,该电子设备包括图14所示的电池装置以及图16所示的被供电装置。
示例性的,所述电子设备包括可移动平台。
示例性的,所述可移动平台包括如下至少一种:手持云台、无人机、云台车、无人驾驶车辆、运动相机。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (124)

  1. 一种电池装置,其特征在于,能够与被供电装置可拆卸连接,所述电池装置,包括:
    壳体;
    电芯,收容于所述壳体内;
    连接接口,用于与被供电装置进行电连接;
    开关电路,安装在所述壳体内,所述开关电路电连接在所述电芯与所述连接接口之间,用于控制所述电芯与所述连接接口的导通或断开;以及,
    控制电路,安装在所述壳体内,与所述连接接口电连接;
    其中,当所述电池装置与所述被供电装置连接在一起时,所述控制电路用于根据所述连接接口的电平信号确定所述被供电装置在位,在所述被供电装置在位情况下控制所述开关电路的导通,以导通所述电池装置与被供电装置的供电通路;
    当所述开关电路导通时,所述电池装置通过所述连接接口传输所述电池装置的相关信息,或者通过所述连接接口为所述被供电装置供电。
  2. 根据权利要求1所述的电池装置,其特征在于,当所述电池装置与所述被供电装置连接在一起时,所述电平信号为第一电平信号;当所述电池装置未与所述被供电装置连接在一起时,所述电平信号为第二电平信号,所述第一电平信号和所述第二电平信号不同。
  3. 根据权利要求2所述的电池装置,其特征在于,所述第一电平信号包括低电平信号,所述第二电平信号包括脉冲信号。
  4. 根据权利要求2所述的电池装置,其特征在于,所述第一电平信号包括低电平信号,所述第二电平信号包括高电平信号。
  5. 根据权利要求2所述的电池装置,其特征在于,所述第一电平信号包括高电平信号,所述第二电平信号包括低电平信号。
  6. 根据权利要求2所述的电池装置,其特征在于,所述第一电平信号包括脉冲信号,所述第二电平信号包括低电平信号。
  7. 根据权利要求1-6任一项所述的电池装置,其特征在于,所述控制电路包括:
    检测子电路,与所述连接接口电连接;
    当所述电池装置与所述被供电装置连接在一起时,所述检测子电路用于 检测所述连接接口的电平信号,并根据所述电平信号确定所述被供电装置在位。
  8. 根据权利要求7所述的电池装置,其特征在于,所述控制电路还包括:
    第一子电路,所述第一子电路与所述连接接口电连接;
    其中,当所述电池装置与所述被供电装置连接在一起时,所述第一子电路通过所述连接接口与所述被供电装置中的辅助电路电连接,形成电流通路。
  9. 根据权利要求8所述的电池装置,其特征在于,所述第一子电路的一端与第一电压端电连接,另一端与所述连接接口电连接。
  10. 根据权利要求9所述的电池装置,其特征在于,所述第一电压端包括地端。
  11. 根据权利要求9所述的电池装置,其特征在于,所述第一电压端包括电源端。
  12. 根据权利要求9所述的电池装置,其特征在于,所述检测子电路与所述第一子电路电连接,所述检测子电路包括输出端,所述第一电压端包括所述输出端。
  13. 根据权利要求9所述的电池装置,其特征在于,所述辅助电路用于连通所述第一电压端与第二电压端。
  14. 根据权利要求13所述的电池装置,其特征在于,所述第一电压端的电压低于所述第二电压端。
  15. 根据权利要求13所述的电池装置,其特征在于,所述第一电压端的电压高于所述第二电压端。
  16. 根据权利要求13所述的电池装置,其特征在于,所述第二电压端包括电源端。
  17. 根据权利要求13所述的电池装置,其特征在于,所述第二电压端包括地端。
  18. 根据权利要求13所述的电池装置,其特征在于,所述第二电压端位于所述被供电装置中。
  19. 根据权利要求13所述的电池装置,其特征在于,所述第二电压端位于所述电池装置中。
  20. 根据权利要求9所述的电池装置,其特征在于,所述第一子电路包括第一电阻,所述第一电阻的一端与所述第一电压端电连接,所述第一电阻 的另一端与所述连接接口电连接。
  21. 根据权利要求20所述的电池装置,其特征在于,所述第一子电路还包括第一防倒灌二极管,所述第一防倒灌二极管与所述第一电阻串联。
  22. 根据权利要求20所述的电池装置,其特征在于,所述第一子电路还包括第一稳压器,所述第一稳压器与所述第一电阻串联。
  23. 根据权利要求20所述的电池装置,其特征在于,所述第一子电路还包括第一开关,所述第一开关与所述第一电阻串联。
  24. 根据权利要求8所述的电池装置,其特征在于,所述连接接口包括第一连接接口和第二连接接口,所述检测子电路和所述第一子电路均与所述第一连接接口电连接;所述控制电路还包括第二子电路,所述第二子电路与所述第二连接接口电连接;
    所述第一连接接口用于与所述辅助电路的一端电连接,所述第二连接接口用于与所述辅助电路的另一端电连接;
    当所述电池装置与所述被供电装置连接在一起时,所述第一子电路和所述第二子电路通过所述连接接口与所述辅助电路电连接,形成所述电流通路。
  25. 根据权利要求24所述的电池装置,其特征在于,所述第一连接接口包括第一通信接口,所述第二连接接口包括第二通信接口。
  26. 根据权利要求25所述的电池装置,其特征在于,所述电池装置采用集成电路总线I 2C协议与所述被供电装置通信;
    所述第一连接接口包括串行时钟线SCL接口,所述第二连接接口包括串行数据线SDA接口;或者,所述第一连接接口包括串行数据线SDA接口,所述第二连接接口包括串行时钟线SCL接口。
  27. 根据权利要求25所述的电池装置,其特征在于,所述电池装置采用通用异步收发传输器UART协议与所述被供电装置通信;
    所述第一连接接口包括发送TX接口,所述第二连接接口包括接收RX接口;或者,所述第一连接接口包括接收RX接口,所述第二连接接口包括发送TX接口。
  28. 根据权利要求24所述的电池装置,其特征在于,所述第一子电路的一端与第一电压端电连接,另一端与所述第一连接接口电连接;所述辅助电路用于连通所述第一电压端与第二电压端;
    所述第二子电路的一端与所述第二电压端电连接,另一端与所述第二连 接接口电连接。
  29. 根据权利要求28所述的电池装置,其特征在于,所述第二子电路包括第二电阻,所述第二电阻的一端与所述第二电压端电连接,另一端与所述第二连接接口电连接。
  30. 根据权利要求29所述的电池装置,其特征在于,所述第二子电路还包括:第二防倒灌二极管,所述第二防倒灌二极管与所述第二电阻串联。
  31. 根据权利要求29所述的电池装置,其特征在于,所述第二子电路还包括第二稳压器,所述第二稳压器与所述第二电阻串联。
  32. 根据权利要求29所述的电池装置,其特征在于,所述第二子电路还包括第二开关,所述第二稳压器与所述第二开关串联。
  33. 根据权利要求2所述的电池装置,其特征在于,所述控制电路还包括保护子电路,所述保护子电路电连接在所述检测子电路和所述连接接口之间。
  34. 根据权利要求1所述的电池装置,其特征在于,所述电池装置中用于所述电池装置与所述被供电装置进行电连接的接口,既包括所述连接接口又包括所述连接接口之外的其他接口。
  35. 根据权利要求1所述的电池装置,其特征在于,所述连接接口既用于与所述被供电装置进行电连接,又用于所述控制电路针对所述被供电装置进行在位检测。
  36. 根据权利要求1所述的电池装置,其特征在于,所述连接接口包括通信接口。
  37. 根据权利要求36所述的电池装置,其特征在于,所述电池装置采用I 2C协议与所述被供电装置通信;所述连接接口包括SCL接口和/或SDA接口。
  38. 根据权利要求36所述的电池装置,其特征在于,所述电池装置采用通用异步收发传输器UART协议与所述被供电装置通信;所述连接接口包括发送TX接口和/或接收RX接口。
  39. 根据权利要求36所述的电池装置,其特征在于,所述电池装置采用HDQ协议与所述被供电装置通信;所述连接接口包括发送HDQ接口。
  40. 根据权利要求1所述的电池装置,其特征在于,所述连接接口包括电源负极接口。
  41. 根据权利要求1所述的电池装置,其特征在于,当所述电池装置未 与所述被供电装置连接在一起时,所述控制电路还用于根据所述连接接口的电平信号确定所述被供电装置不在位,在所述被供电装置不在位情况下控制所述开关电路的断开,以断开所述电池装置与被供电装置的供电通路。
  42. 根据权利要求1所述的电池装置,其特征在于,所述控制电路,还用于确定所述被供电装置在位且未检测到目标对象的情况下,控制所述电池装置处于保持输出供电电压的低功耗模式。
  43. 根据权利要求42所述的电池装置,其特征在于,所述目标对象包括放电电流和/或来自所述被供电装置的通信信号。
  44. 根据权利要求1所述的电池装置,其特征在于,所述被供电装置包括云台或无人机机身。
  45. 根据权利要求1所述的电池装置,其特征在于,所述电池装置还用作手柄。
  46. 根据权利要求1所述的电池装置,其特征在于,所述电池装置可拆卸安装于手柄的壳体内;或者,所述电池装置与所述手柄一体设置。
  47. 根据权利要求46所述的电池装置,其特征在于,所述连接接口穿设所述壳体,和/或,所述连接接口暴露在所述手柄的壳体外部。
  48. 根据权利要求1所述的电池装置,其特征在于,所述被供电装置包括云台,所述电池装置设于云台手柄,所述云台手柄和所述云台可拆卸连接。
  49. 一种控制电路,其特征在于,所述电路位于第一装置中,所述第一装置能够与第二装置可拆卸连接,所述第一装置包括用于与所述第二装置进行电连接的连接接口;所述控制电路包括:
    检测子电路,与所述连接接口电连接;
    当所述第一装置与所述第二装置连接在一起时,所述检测子电路用于检测所述连接接口的电平信号,并根据所述电平信号确定所述第二装置在位。
  50. 根据权利要求49所述的电路,其特征在于,当所述第一装置与所述第二装置连接在一起时,所述电平信号为第一电平信号;当所述第一装置未与所述第二装置连接在一起时,所述电平信号为第二电平信号,所述第一电平信号和所述第二电平信号不同。
  51. 根据权利要求50所述的电路,其特征在于,所述第一电平信号包括低电平信号,所述第二电平信号包括脉冲信号。
  52. 根据权利要求50所述的电路,其特征在于,所述第一电平信号包括 低电平信号,所述第二电平信号包括高电平信号。
  53. 根据权利要求50所述的电路,其特征在于,所述第一电平信号包括高电平信号,所述第二电平信号包括低电平信号。
  54. 根据权利要求50所述的电路,其特征在于,所述第一电平信号包括脉冲信号,所述第二电平信号包括低电平信号。
  55. 根据权利要求49-54任一项所述的电路,其特征在于,所述控制电路还包括:
    第一子电路,所述第一子电路与所述连接接口电连接;
    其中,当所述第一装置与所述第二装置连接在一起时,所述第一子电路通过所述连接接口与所述第二装置中的辅助电路电连接,形成电流通路。
  56. 根据权利要求55所述的电路,其特征在于,所述第一子电路的一端与第一电压端电连接,另一端与所述连接接口电连接。
  57. 根据权利要求56所述的电路,其特征在于,所述第一电压端包括地端。
  58. 根据权利要求56所述的电路,其特征在于,所述第一电压端包括电源端。
  59. 根据权利要求56所述的电路,其特征在于,所述检测子电路与所述第一子电路电连接,所述检测子电路包括输出端,所述第一电压端包括所述输出端。
  60. 根据权利要求56所述的电路,其特征在于,所述辅助电路用于连通所述第一电压端与第二电压端。
  61. 根据权利要求60所述的电路,其特征在于,所述第一电压端的电压低于所述第二电压端。
  62. 根据权利要求60所述的电路,其特征在于,所述第一电压端的电压高于所述第二电压端。
  63. 根据权利要求60所述的电路,其特征在于,所述第二电压端包括电源端。
  64. 根据权利要求60所述的电路,其特征在于,所述第二电压端包括地端。
  65. 根据权利要求60所述的电路,其特征在于,所述第二电压端位于所述第二装置中。
  66. 根据权利要求60所述的电路,其特征在于,所述第二电压端位于所述第一装置中。
  67. 根据权利要求56所述的电路,其特征在于,所述第一子电路包括第一电阻,所述第一电阻的一端与所述第一电压端电连接,所述第一电阻的另一端与所述连接接口电连接。
  68. 根据权利要求67所述的电路,其特征在于,所述第一子电路还包括第一防倒灌二极管,所述第一防倒灌二极管与所述第一电阻串联。
  69. 根据权利要求67所述的电路,其特征在于,所述第一子电路还包括第一稳压器,所述第一稳压器与所述第一电阻串联。
  70. 根据权利要求67所述的电路,其特征在于,所述第一子电路还包括第一开关,所述第一开关与所述第一电阻串联。
  71. 根据权利要求55所述的电路,其特征在于,所述连接接口包括第一连接接口和第二连接接口,所述检测子电路和所述第一子电路均与所述第一连接接口电连接;所述控制电路还包括第二子电路,所述第二子电路与所述第二连接接口电连接;
    所述第一连接接口用于与所述辅助电路的一端电连接,所述第二连接接口用于与所述辅助电路的另一端电连接;
    当所述第一装置与所述第二装置连接在一起时,所述第一子电路和所述第二子电路通过所述连接接口与所述辅助电路电连接,形成所述电流通路。
  72. 根据权利要求71所述的电路,其特征在于,所述第一连接接口包括第一通信接口,所述第二连接接口包括第二通信接口。
  73. 根据权利要求72所述的电路,其特征在于,所述第一装置采用集成电路总线I 2C协议与所述第二装置通信;
    所述第一连接接口包括串行时钟线SCL接口,所述第二连接接口包括串行数据线SDA接口;或者,所述第一连接接口包括串行数据线SDA接口,所述第二连接接口包括串行时钟线SCL接口。
  74. 根据权利要求73所述的电路,其特征在于,所述第一装置采用通用异步收发传输器UART协议与所述第二装置通信;
    所述第一连接接口包括发送TX接口,所述第二连接接口包括接收RX接口;或者,所述第一连接接口包括接收RX接口,所述第二连接接口包括发送TX接口。
  75. 根据权利要求71所述的电路,其特征在于,所述第一子电路的一端与第一电压端电连接,另一端与所述第一连接接口电连接;所述辅助电路用于连通所述第一电压端与第二电压端;
    所述第二子电路的一端与所述第二电压端电连接,另一端与所述第二连接接口电连接。
  76. 根据权利要求75所述的电路,其特征在于,所述第二子电路包括第二电阻,所述第二电阻的一端与所述第二电压端电连接,另一端与所述第二连接接口电连接。
  77. 根据权利要求76所述的电路,其特征在于,所述第二子电路还包括:第二防倒灌二极管,所述第二防倒灌二极管与所述第二电阻串联。
  78. 根据权利要求76所述的电路,其特征在于,所述第二子电路还包括第二稳压器,所述第二稳压器与所述第二电阻串联。
  79. 根据权利要求76所述的电路,其特征在于,所述第二子电路还包括第二开关,所述第二开关与所述第二电阻串联。
  80. 根据权利要求49所述的电路,其特征在于,当所述第一装置未与所述第二装置连接在一起时,所述检测子电路还用于根据所述连接接口的电平信号,确定所述第二装置不在位。
  81. 根据权利要求49所述的电路,其特征在于,所述控制电路还包括保护子电路,所述保护子电路电连接在所述检测子电路和所述连接接口之间。
  82. 根据权利要求49所述的电路,其特征在于,所述第一装置中用于所述第一装置与所述第二装置进行电连接的接口,既包括所述连接接口又包括所述连接接口之外的其他接口。
  83. 根据权利要求49所述的电路,其特征在于,所述连接接口既用于与所述第二装置进行电连接,又用于所述控制电路针对所述第二装置进行在位检测。
  84. 根据权利要求49所述的电路,其特征在于,所述连接接口包括通信接口。
  85. 根据权利要求84所述的电路,其特征在于,所述第一装置采用I 2C协议与所述第二装置通信;所述连接接口包括SCL接口和/或SDA接口。
  86. 根据权利要求84所述的电路,其特征在于,所述第一装置采用UART协议与所述第二装置通信;所述连接接口包括TX接口和/或RX接口。
  87. 根据权利要求84所述的电路,其特征在于,所述第一装置采用HDQ协议与所述第二装置通信;所述连接接口包括发送HDQ接口。
  88. 根据权利要求49所述的电路,其特征在于,所述连接接口包括电源负极接口。
  89. 根据权利要求49所述的电路,其特征在于,所述控制电路,还用于确定所述第二装置在位且未检测到目标对象的情况下,控制所述第一装置处于保持输出供电电压的低功耗模式。
  90. 根据权利要求89所述的电路,其特征在于,所述目标对象包括放电电流和/或来自所述第二装置的通信信号。
  91. 根据权利要求49所述的电路,其特征在于,所述第一装置包括电池装置。
  92. 根据权利要求91所述的电路,其特征在于,所述第二装置包括云台或无人机机身。
  93. 一种被供电装置,其特征在于,所述被供电装置能够与电池装置可拆卸连接,所述被供电装置包括:
    壳体;
    电池接口,用于与电池装置的连接接口电连接,以及
    控制器,安装在所述壳体内,与所述电池接口电连接;
    其中,当所述电池装置与所述被供电装置连接在一起时,所述电池接口能够采集到电平信号,所述电平信号用于电池装置确定所述被供电装置在位,以通过所述电池接口为所述被供电装置供电;
    当所述电池装置开始通过所述连接接口供电时,所述控制器通过所述电池接口接收所述电池装置传输的相关信息,或者通过所述电池接口接收供电。
  94. 根据权利要求93所述的被供电装置,其特征在于,当所述电池装置与所述被供电装置连接在一起时,所述电平信号为第一电平信号;当所述电池装置未与所述被供电装置连接在一起时,所述电平信号为第二电平信号,所述第一电平信号和所述第二电平信号不同。
  95. 根据权利要求94所述的被供电装置,其特征在于,所述第一电平信号包括低电平信号,所述第二电平信号包括脉冲信号。
  96. 根据权利要求94所述的被供电装置,其特征在于,所述第一电平信号包括低电平信号,所述第二电平信号包括高电平信号。
  97. 根据权利要求94所述的被供电装置,其特征在于,所述第一电平信号包括高电平信号,所述第二电平信号包括低电平信号。
  98. 根据权利要求94所述的被供电装置,其特征在于,所述第一电平信号包括脉冲信号,所述第二电平信号包括低电平信号。
  99. 根据权利要求93-98任一项所述的被供电装置,其特征在于,所述被供电装置还包括辅助电路,所述辅助电路与所述电池接口电连接;
    当所述电池装置与所述被供电装置连接在一起时,所述辅助电路用于与所述电池装置中的电路电连接,形成电流通路。
  100. 根据权利要求99所述的被供电装置,其特征在于,所述辅助电路用于连通第一电压端和第二电压端,以在所述第一电压端和所述第二电压端之间形成电流通路,所述第一电压端位于所述电池装置中。
  101. 根据权利要求100所述的被供电装置,其特征在于,所述第一电压端的电压高于所述第二电压端。
  102. 根据权利要求101所述的被供电装置,其特征在于,所述第二电压端包括地端。
  103. 根据权利要求100所述的被供电装置,其特征在于,所述第一电压端的电压低于所述第二电压端。
  104. 根据权利要求103所述的被供电装置,其特征在于,所述第二电压端包括电源端。
  105. 根据权利要求100所述的被供电装置,其特征在于,所述第二电压端位于所述被供电装置中。
  106. 根据权利要求105所述的被供电装置,其特征在于,所述辅助电路的一端与所述电池接口电连接,另一端与所述第二电压端电连接。
  107. 根据权利要求106所述的被供电装置,其特征在于,所述辅助电路包括连接线,所述连接线电连接在所述电池接口和所述第二电压端之间。
  108. 根据权利要求106所述的被供电装置,其特征在于,所述辅助电路包括第一电阻,所述第一电阻电连接在所述电池接口和所述第二电压端之间。
  109. 根据权利要求100所述的被供电装置,其特征在于,所述第一电压端位于所述电池装置中。
  110. 根据权利要求109所述的被供电装置,其特征在于,所述电池接口包括第一电池接口和第二电池接口;所述辅助电路的一端与所述第一电池接 口电连接,另一端与所述第二电池接口电连接。
  111. 根据权利要求110所述的被供电装置,其特征在于,所述辅助电路包括连接线,所述连接线电连接在所述第一电池接口和所述第二电池接口之间。
  112. 根据权利要求110所述的被供电装置,其特征在于,所述辅助电路包括第二电阻,所述第二电阻电连接在所述第一电池接口和所述第二电池接口之间。
  113. 根据权利要求93所述的被供电装置,其特征在于,所述被供电装置还包括:开关电路,所述开关电路电连接在所述控制器和所述电池接口之间;
    当所述电池装置与所述被供电装置连接在一起、且未开始通过所述电池接口供电时,所述开关电路控制所述电池接口和所述控制器的断开。
  114. 根据权利要求93所述的被供电装置,其特征在于,所述电池接口包括通信接口。
  115. 根据权利要求114所述的被供电装置,其特征在于,所述电池装置采用集成电路总线I 2C协议与所述被供电装置通信;所述连接接口包括串行时钟线SCL接口和/或串行数据线SDA接口。
  116. 根据权利要求114所述的被供电装置,其特征在于,所述电池装置采用通用异步收发传输器UART协议与所述被供电装置通信;所述连接接口包括发送TX接口和/或接收RX接口。
  117. 根据权利要求114所述的被供电装置,其特征在于,所述电池装置采用HDQ协议与所述被供电装置通信;所述连接接口包括发送HDQ接口。
  118. 根据权利要求93所述的被供电装置,其特征在于,所述连接接口包括电源负极接口。
  119. 根据权利要求93所述的被供电装置,其特征在于,所述被供电装置包括云台或无人机机身。
  120. 根据权利要求93所述的被供电装置,其特征在于,所述电池接口穿设所述壳体,和/或,所述电池接口暴露在所述壳体的外部。
  121. 根据权利要求93所述的被供电装置,其特征在于,所述被供电装置包括云台,所述电池装置设于云台手柄,所述云台手柄和所述云台可拆卸连接。
  122. 一种电子设备,其特征在于,包括权利要求1-49所述的电池装置,以及权利要求93-121任一项所述的被供电装置。
  123. 根据权利要求122所述的电子设备,其特征在于,所述电子设备包括可移动平台。
  124. 根据权利要求123所述的电子设备,其特征在于,所述可移动平台包括如下至少一种:手持云台、无人机、云台车、无人驾驶车辆、运动相机。
PCT/CN2020/109943 2020-08-19 2020-08-19 电池装置、控制电路、被供电装置及电子设备 WO2022036578A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080006385.6A CN113169411A (zh) 2020-08-19 2020-08-19 电池装置、控制电路、被供电装置及电子设备
PCT/CN2020/109943 WO2022036578A1 (zh) 2020-08-19 2020-08-19 电池装置、控制电路、被供电装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109943 WO2022036578A1 (zh) 2020-08-19 2020-08-19 电池装置、控制电路、被供电装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022036578A1 true WO2022036578A1 (zh) 2022-02-24

Family

ID=76879296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109943 WO2022036578A1 (zh) 2020-08-19 2020-08-19 电池装置、控制电路、被供电装置及电子设备

Country Status (2)

Country Link
CN (1) CN113169411A (zh)
WO (1) WO2022036578A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546627A (zh) * 2019-01-23 2019-03-29 於锋 一种锂电池组安全充电保护方法及其充电保护电路
EP3581948A1 (en) * 2018-05-25 2019-12-18 Samsung SDI Co., Ltd. Apparatus for verifying electrical connectivity
CN111025195A (zh) * 2019-12-19 2020-04-17 山东爱德邦智能科技有限公司 一种检测电路
CN111142046A (zh) * 2020-01-15 2020-05-12 江西联智集成电路有限公司 负载感测模块、负载感测方法以及充电装置
CN212085855U (zh) * 2020-05-28 2020-12-04 湖南拓疆能源科技有限公司 一种低压锂电池电力接插件可靠性检测及保护装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408583B (zh) * 2008-11-25 2010-12-08 中兴通讯股份有限公司 印刷电路板之间插接状态的检测方法、装置及印刷电路板
TWI394973B (zh) * 2010-09-23 2013-05-01 Mstar Semiconductor Inc 運用於手持式電子裝置中的電池偵測器與電池偵測方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3581948A1 (en) * 2018-05-25 2019-12-18 Samsung SDI Co., Ltd. Apparatus for verifying electrical connectivity
CN109546627A (zh) * 2019-01-23 2019-03-29 於锋 一种锂电池组安全充电保护方法及其充电保护电路
CN111025195A (zh) * 2019-12-19 2020-04-17 山东爱德邦智能科技有限公司 一种检测电路
CN111142046A (zh) * 2020-01-15 2020-05-12 江西联智集成电路有限公司 负载感测模块、负载感测方法以及充电装置
CN212085855U (zh) * 2020-05-28 2020-12-04 湖南拓疆能源科技有限公司 一种低压锂电池电力接插件可靠性检测及保护装置

Also Published As

Publication number Publication date
CN113169411A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP6596447B2 (ja) 給電装置およびその制御回路、受電装置およびその制御回路、それを用いた電子機器および充電アダプタ、異常検出方法
JP6838879B2 (ja) 受電装置およびその制御回路、電子機器、給電システムの動作方法
EP3471404B1 (en) Electronic apparatus
US8880909B2 (en) Auto-detect polling for correct handshake to USB client
US20170005494A1 (en) Multi-functional hub integrated with ac power supply
US20170102736A1 (en) Portable docking device capable of projecting video content
JP2010154692A (ja) 電子機器における充電装置、電子機器及び充電方法
JP2016218972A (ja) Usbハブ装置
US20080133802A1 (en) Electronic device and interface system
TW201439781A (zh) 用於偵測主機裝置至配件裝置之連接之方法與系統
JP2006296126A (ja) 充電システム,充電器及び携帯情報端末機
TW200803108A (en) Chargeable electronic device and power supply system for the same
CN109861038B (zh) 可自动切换连接模式的usb连接埠及其控制方法
US20140068113A1 (en) Data transmission between a portable electronic device and various accessory devices via respective dedicated connection interfaces
WO2022036578A1 (zh) 电池装置、控制电路、被供电装置及电子设备
US10193286B2 (en) Electronic device and control method thereof
CN114501285A (zh) 一种插拔检测电路及插拔检测方法
US20230238749A1 (en) Power delivery device and control method of power supply path
CN110800168B (zh) 改变连接器中包括的端子的阻抗的方法和装置
WO2011158310A1 (ja) 通信装置
CN110597375B (zh) 外部设备供电装置
US20220050515A1 (en) Transmission device with external power
US9401821B2 (en) Powered device, power supply system, and operation mode selection method
TWI670603B (zh) 電子裝置
US20200335994A1 (en) Method of managing charging circuit and system for managing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949790

Country of ref document: EP

Kind code of ref document: A1