WO2022036428A1 - Reator atmosférico a plasma para produção de nanotubos de carbono em larga escala e carbono amorfo - Google Patents

Reator atmosférico a plasma para produção de nanotubos de carbono em larga escala e carbono amorfo Download PDF

Info

Publication number
WO2022036428A1
WO2022036428A1 PCT/BR2021/050347 BR2021050347W WO2022036428A1 WO 2022036428 A1 WO2022036428 A1 WO 2022036428A1 BR 2021050347 W BR2021050347 W BR 2021050347W WO 2022036428 A1 WO2022036428 A1 WO 2022036428A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
plasma
carbon
gas
hydrocarbon
Prior art date
Application number
PCT/BR2021/050347
Other languages
English (en)
French (fr)
Inventor
Aurelio REIS DA COSTA LABANCA
Cláudio FERNANDES DA SILVA
Original Assignee
Petróleo Brasileiro S.A. - Petrobras
Serviço Nacional De Aprendizagem Industrial – Senai - Dr/Rn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petróleo Brasileiro S.A. - Petrobras, Serviço Nacional De Aprendizagem Industrial – Senai - Dr/Rn filed Critical Petróleo Brasileiro S.A. - Petrobras
Priority to JP2023512302A priority Critical patent/JP2023538103A/ja
Priority to CA3189872A priority patent/CA3189872A1/en
Priority to CN202180070226.7A priority patent/CN116349412A/zh
Priority to DE112021004387.0T priority patent/DE112021004387T5/de
Priority to US18/042,021 priority patent/US20240010496A1/en
Publication of WO2022036428A1 publication Critical patent/WO2022036428A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0898Hot plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/50Production of nanostructures

Definitions

  • the present invention deals with a plasma reactor with application in the area of thermal decomposition of (light) hydrocarbon molecules, aiming at the production of carbon nanotubes on a large scale, as well as amorphous carbon of superior quality in terms of purity.
  • the material produced by the partial combustion of the load does not have a level of purity as high as the invention, which performs the pyrolysis of the hydrocarbon by means of thermal plasma or the heat coming from it.
  • the plasma pyrolysis of hydrocarbons in addition to generating two products (hydrogen and carbon), is an alternative for decarbonizing fossil fuels.
  • the objective is to evaluate its potential in reducing the emission of greenhouse gases.
  • Plasma decarbonization can assist in the development of cleaner processes in the carbon production industry, in hydrogen generation or even in electrical generation.
  • the carbon black, or carbon black, as it is known commercially, has high added value and great worldwide demand; in addition, plasma pyrolysis of light hydrocarbons such as methane provides superior quality carbonaceous materials not available in today's carbon black market.
  • An innovative alternative is the breakage of molecules via plasma, capable of causing the decomposition of methane gas without burning the gas.
  • Document PI0305309-1 discloses a plasma pyrolysis process aiming at the production of gaseous hydrogen and solid carbonaceous material from the decomposition of hydrocarbons and alcohols, exemplified herein for the decomposition of methane gas and its use.
  • the process consists of supplying thermal energy to the hydrocarbon stream in sufficient quantity for its decomposition reaction.
  • a stream of hydrogen gas is used which is ionized (the plasma gas) and serves as a vehicle for the decomposition of the hydrocarbon.
  • This flow is initially from an external source of hydrogen and later composed of hydrogen generated by the hydrocarbon pyrolysis process itself.
  • a source of direct current electrical energy it supplies the energy necessary for the electrical discharges inside the reactor, in a region called plasma-arc.
  • the document discloses a process and method that use plasma for the decomposition of hydrocarbon (methane gas), producing carbon material, however, the invention uses argon gas as plasma gas and with electrical currents in the order of 5 at 20% of that used in the document (PI0305309-1) it is possible to obtain the same test conditions inside the chamber in the present invention. This is due to the different way of injecting the process gases, and also to the new design of the electrodes.
  • the useful life of the electrodes of the present invention is longer, as a function of the electrical contact of the arc (arc root) on the cathode occurring entirely on the surface of the tungsten piece with 2% thoria.
  • US5997837 discloses a method for the decomposition of hydrocarbons for the production of hydrogen and carbon black, in which the feed material is passed through a plasma torch, which causes a pyrolytic decomposition of the feed material.
  • the feed material is transported through the plasma torch in a cooled inlet tube and is first heated in an area in the immediate vicinity of the plasma flame.
  • the material thus produced is passed on to one or more subsequent stages, where the final and complete decomposition of the hydrocarbons to carbon black and hydrogen takes place. In this area, additional raw material can be added to quench and react with the black carbon already produced.
  • the electrodes of the present invention are made of different materials, being more resistant and presenting geometric differences. Furthermore, the present invention makes use of different plasma gas, aimed at the production of carbon nanomaterials.
  • the present invention deals with a plasma reactor aimed at the production of carbon nanotubes on a large scale and amorphous carbon, different from what is disclosed by the documents of the state of the art.
  • the present invention deals with a plasma reactor for the thermal decomposition of light hydrocarbon molecules aiming at the production of carbon nanotubes on a large scale, as well as amorphous carbon of superior quality in terms of purity. As it is obtained at pressures close to atmospheric, said reactor has a superior capacity for the production of nanotubes than methods that operate at low pressure.
  • the pyrolysis of the hydrocarbon by means of thermal plasma or the heat from it presents a carbonaceous material with a higher purity content than those obtained by the methods most used in the production of solid carbon (Carbon Black), which are based on in the burning of part of the hydrocarbon in the cargo.
  • Carbon Black solid carbon
  • the useful life of the electrodes because they are metallic and due to the electrical contact of the arc on the cathode occurring entirely in the tungsten piece with 2% thory, is at least three times longer than conventional carbon ones.
  • Yet another objective of the present invention is to provide an alternative for the decarbonization of fossil fuels.
  • Additional objectives of the present invention relate to reducing torch assembly and disassembly difficulties, eliminating leaks in the cooling system, eliminating the problem of low thermal dissipation due to the large size of the anode that made it difficult to cool, among others that will be apparent to those versed in the subject.
  • the plasma reactor (T+C) for the thermal decomposition of hydrocarbon molecules aiming at the production of large-scale carbon nanotubes (E) and amorphous carbon of superior quality in terms of purity, has a reaction chamber (C) made of stainless steel, as shown in Figure 1.
  • the chamber (C) is composed of two sections, called the upper section (A) and the lower section (B).
  • the fixing structure of the plasma pyrolysis equipment ( Figure 2) was built in carbon steel. Its base was designed to ensure the stability of the structure, preventing it from tipping over with the weight of the electrode set ( Figure 3) and the reaction chamber (C). The base also has enough space to accommodate the electrical source and the thermostatic bath for cooling the electrodes. [0024]
  • the upper section (A) of the reaction chamber (C) has a window to allow the visualization of the electric arc and visual monitoring of the process throughout the reaction tests.
  • the lower section of the chamber (B) is composed of only one temperature sensor input (i) and two larger diameter inputs (ii,iii) that can be used for “QUENCHING” if necessary or input for sensor pressure sensor or even temperature sensor.
  • the upper flange (F) was designed to ensure the coupling of the electrode system for plasma torch generation (T).
  • This section of the chamber (A) also contains two inputs for temperature sensors (1,11), equidistant from each other, and a third input of larger diameter that can be used for “QUENCHING” (III) or for inserting a sensor to measure the temperature at the boundary point between the two sections or to monitor the pressure downstream of the reaction zone.
  • the plasma torch (T) is equipped with an induced magnetic field, responsible for rotating the arc at a predetermined speed, which is an important factor to ensure a homogeneous temperature for the plasma gas at a low consumption of the electrode.
  • the plasma torch (T) provides the energy necessary for the decomposition of the hydrocarbon charge.
  • the radiation from it, as well as the convection of heat from the plasma gas provides enough energy for the hydrocarbons, existing in the load, to reach the temperature of complete pyrolysis of the methane molecules (-1000 °C).
  • the process should preferably take place at temperatures above 2500 °C.
  • FIG. 3 plasma torch
  • Said injector (1) carries out the injection of the gas in the axial direction.
  • Figure 4 represents a cathode (19) and Figure 5 the anodes (D1, D2 and D3) which, because they are metallic and due to the electrical contact of the cathode arc, occur entirely in the tungsten piece with 2% of thoria, the electrodes have a useful life at least three times longer than conventional carbon electrodes (US5997837) or another pair of metallic electrodes (PI0305309-1 ), even with temperatures inside the chamber of the same magnitude.
  • the new torch (T) has a superior design in terms of coupling between parts, more refined, where some parts are coupled through threads; the tungsten insert with 2% thoria with forced fit in a copper piece forming what can be called a decathode (19), in addition to well-fitting sleeves for safe cooling of the electrodes.
  • the new torch (T) also features an improved design of the electrodes, which have a longer life due to the precise tungsten thoriated nocathode insert (19) (which forces the electrical arc root to be located on the external surface of the tungsten insert with 2% thoria, which works as a cathode - 19) and new geometries for three different types of anode.
  • the reaction chamber (C) was tested with the new plasma torch (T), obtaining temperatures inside the chamber (C) of the same magnitude, despite a lower energy consumption compared to PI0305309-1 , and producing carbon in solid state.
  • the upper cabin (AC) will be used to support the electrode set and for the installation of pressure and temperature indicators, mass flow controllers, switches in general, start buttons, electrical supply stop and current control device provided to the system.
  • the carbonaceous material to be obtained may have a high content of carbon nanostructures, such as carbon nanotubes (E), depending mainly on the temperature in the zone of the bed containing catalysts. It is possible to manufacture carbon nanotubes (E) when using catalysts inside the reaction chamber (C) and to manufacture amorphous carbon when catalysts are not used.
  • Argon gas was used as plasma gas, being maintained at an electrical discharge of about 5 to 50 A and 22 to 32 V.
  • the cathode (19) was cooled with water at a temperature of about 22 - 26°C.
  • helium gas can be used as plasma gas.
  • the heat from the plasma arc is low in the radial direction and the highest temperatures are possible in the region (A) of the chamber (C) downstream of the plasma arc, preferably in the axial axis of the chamber (C). Therefore, the thermal decomposition of methane will occur mainly due to the heat coming from the plasma torch (T) in the axial direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Plasma Technology (AREA)

Abstract

A presente invenção trata de um reator a plasma para a decomposição térmica e/ou plasmática de moléculas de hidrocarbonetos visando à produção de nanotubos de carbono em larga escala, bem como carbono amorfo de qualidade superior em termos de pureza. Por ser operado em pressões próximas à atmosférica e poder apresentar operação em regime de fluxo contínuo, dito reator possui capacidade superior para produção de nanotubos de carbono. A pirólise do hidrocarboneto mediante plasma térmico ou do calor proveniente deste, produz material carbonoso que apresenta um teor de pureza mais elevado do que aqueles obtidos pelos métodos mais usados na produção de carbono sólido, os quais são baseados, geralmente, na queima de parte do hidrocarboneto da carga.

Description

“REATOR ATMOSFÉRICO A PLASMA PARA PRODUÇÃO DE NANOTUBOS DE CARBONO EM LARGA ESCALA E CARBONO AMORFO” Campo da Invenção
[0001] A presente invenção trata de um reator a plasma com aplicação na área de decomposição térmica de moléculas de hidrocarbonetos (leves), visando à produção de nanotubos de carbono em larga escala, bem como carbono amorfo de qualidade superior em termos de pureza.
Descrição do Estado da Técnica
[0002] A produção de hidrogênio a partir de um combustível primário, geralmente hidrocarbonetos, é conhecida como reforma. Ocorre em reformadores (reatores) com o auxílio de catalisadores. O processo de produção do hidrogênio é classificado de acordo com as reações envolvidas na produção do gás. São quatro os processos de produção de hidrogênio a partir de hidrocarbonetos (não sólidos): a reforma a vapor, a reforma por oxidação parcial, a reforma autotérmica e a reforma pirolítica.
[0003] Os métodos mais utilizados para a produção de carbono no estado sólido, ou negro-de-fumo, como é comercialmente conhecido, são baseados na queima de parte do hidrocarboneto da carga, fornecendo assim energia térmica à reação de pirólise (decomposição térmica) do gás natural, do metano ou de outros hidrocarbonetos.
[0004] O material produzido pela combustão parcial da carga, pelas características do processo, não apresenta um teor de pureza tão elevado quanto da invenção, que realiza a pirólise do hidrocarboneto mediante plasma térmico ou do calor proveniente deste.
[0005] A pirólise a plasma de hidrocarbonetos, além de gerar dois produtos (hidrogênio e carbono), consiste em uma alternativa de descarbonização de combustíveis fósseis. Objetiva-se avaliar seu potencial na redução da emissão de gases do efeito estufa. A descarbonização a plasma pode auxiliar no desenvolvimento de processos mais limpos na indústria de produção de carbono, na geração de hidrogênio ou mesmo na geração elétrica. [0006] 0 negro de fumo, ou carbon black, como é conhecido comercialmente, apresenta elevado valor agregado e grande demanda mundial; além disso, a pirólise a plasma de hidrocarbonetos leves, tais como o metano, propicia materiais carbonosos de qualidade superior e inexistentes no mercado atual de carbon black.
[0007] A quebra molecular de um hidrocarboneto é realizada termicamente. Existem processos de pirólise do metano que são usados na produção de carbon black: nestes, a energia necessária à quebra das moléculas de CH4 é fornecida pela queima do próprio metano.
[0008] Uma alternativa inovadora é a quebra das moléculas via plasma, capaz de provocar a decomposição do gás metano sem a queima do gás.
[0009] A geração de descargas elétricas no interior de um reator em condições apropriadas possibilita a formação de um arco-plasmático, que fornece energia térmica para a decomposição do hidrocarboneto e agrega um efeito catalítico à reação devido à ocorrência de processos de colisão entre as partículas presentes.
[0010] Uma hipótese importante do processo proposto é a possibilidade de obtenção de carbono de maior valor agregado do que os negros de fumo convencionais, como os especiais, ou materiais carbonosos nanoestruralmente organizados em átomos de carbono, como os fulerenos e nanotubos.
[0011] O documento PI0305309-1 divulga um processo de pirólise a plasma visando a produção de hidrogênio gasoso e material carbonoso sólido a partir da decomposição de hidrocarbonetos e álcoois, aqui exemplificado para a decomposição do gás metano e seu uso. O processo consiste no fornecimento de energia térmica ao fluxo de hidrocarbonetos em quantidade suficiente para a sua reação de decomposição. Utiliza-se um fluxo de gás hidrogênio que é ionizado (o gás do plasma) e que serve de veículo à decomposição do hidrocarboneto. Este fluxo é inicialmente oriundo de fonte externa de hidrogênio e posteriormente composto de hidrogênio gerado pelo próprio processo de pirólise do hidrocarboneto. Uma fonte de energia elétrica de corrente contínua fornece a energia necessária às descargas elétricas no interior do reator, em região denominada arco-plasmático. O documento, assim como a invenção, revela um processo e método que utilizam plasma para a decomposição de hidrocarboneto (gás metano), produzindo material de carbono, porém, a invenção usa gás argônio como gás do plasma e com correntes elétricas na ordem de 5 a 20% da usada no documento (PI0305309-1 ) é possível obter as mesmas condições de testes no interior da câmara na presente invenção. Isso se dá pelo modo diferenciado de injeção dos gases de processo, e também ao novo desenho dos eletrodos. A vida útil dos eletrodos da presente invenção é maior, isso em função do contato elétrico do arco (raiz do arco) nocatodo ocorrer inteiramente na superfície da peça de tungsténio com 2% de thória.
[0012] O documento US5997837 divulga um método para a decomposição de hidrocarbonetos para a produção de hidrogênio e carbon black, em que o material de alimentação é passado através de uma tocha de plasma, o que provoca uma decomposição pirolítica do material de alimentação. O material de alimentação é transportado através da tocha de plasma em um tubo de entrada resfriado e sofre um primeiro aquecimento em uma área na vizinhança imediata da chama de plasma. O material assim produzido é passado para um ou mais estágios subsequentes, onde ocorre a decomposição final e completa dos hidrocarbonetos para carbon black e hidrogênio. Nesta área pode ser adicionada matéria prima adicional que provoque a tempera (quenching) e que reaja com o carbono black já produzido. Um aumento é assim causado no tamanho de partícula, na densidade e na quantidade produzida sem fornecimento de energia adicional e, posteriormente, os produtos produzidos são expelidos e separados, e o gás quente pode ser transportado em um tubo de retorno para a tocha, a fim de aumentar ainda mais o rendimento energético. O documento, apesar de também revelar um processo e método que utilizam plasma para a decomposição de hidrocarboneto (gás metano), produzindo material de carbono, os eletrodos da presente invenção são feitos de materiais diferentes, sendo mais resistentes e apresentam diferenças geométricas. Além disso, a presente invenção faz uso de gás do plasma diferente, voltado à produção de nanomateriais de carbono.
[0013] A presente invenção trata de um reator a plasma visando à produção de nanotubos de carbono em larga escala e carbono amorfo, diferente do que é divulgado pelos documentos do estado da técnica.
Descrição Resumida da Invenção
[0014] A presente invenção trata de um reator a plasma para a decomposição térmica de moléculas de hidrocarbonetos leves visando à produção de nanotubos de carbono em larga escala, bem como carbono amorfo de qualidade superior em termos de pureza. Por ser obtido em pressões próximas à atmosférica, dito reator possui capacidade superior para produção de nanotubos aos métodos que operam a baixa pressão.
[0015] Ademais, a pirólise do hidrocarboneto mediante plasma térmico ou do calor proveniente deste, apresenta um material carbonoso com teor de pureza mais elevado do que aqueles obtidos pelos métodos mais usados na produção de carbono sólido (Carbon Black), os quais são baseados na queima de parte do hidrocarboneto da carga. Além disso, a vida útil dos eletrodos, por serem metálicos e em função do contato elétrico do arco no catodo ocorrer inteiramente na peça de tungsténio com 2% de thória, é no mínimo três vezes maior do que os convencionais de carbono.
Objetivos da invenção
[0016] É um objetivo da presente invenção produzir nanotubos de carbono em larga escala.
[0017] É também objetivo da presente invenção produzir carbono amorfo de qualidade superior em termos de pureza.
[0018] Ainda um outro objetivo da presente invenção é prover uma alternativa para a descarbonização de combustíveis fósseis.
[0019] Objetivos adicionais da presente invenção se relacionam com a redução de dificuldades de montagem e desmontagem da tocha, eliminação de vazamentos no sistema de refrigeração, eliminação do problema de baixa dissipação térmica devido à grande dimensão do anodo que dificultava a sua refrigeração, dentre outros que serão aparentes para aqueles versados no assunto.
[0020] Esses e outros objetivos serão alcançados pelo reator a plasma objeto da presente invenção.
Breve Descrição dos Desenhos
[0021] A presente invenção será descrita com mais detalhes a seguir, com referência às figuras em anexo que, de uma forma esquemática e não limitativa do escopo inventivo, representam exemplos da mesma. Nos desenhos, têm-se:
- A Figura 1 ilustrando a câmara de reação;
- A Figura 2 ilustrando a estrutura de fixação do equipamento de pirólise a plasma;
- A Figura 3 ilustrando a tocha de plasma;
- A Figura 4 ilustrando um eletrodo (cátodo);
- A Figura 5 ilustrando os anodos da tocha no formato reto (D1 ), cônico (D2) e em degrau (D3);
- A Figura 6 com imagens MEV de nanotubos de carbono (E) produzidos.
Descrição Detalhada da Invenção
[0022] O reator a plasma (T+C) para a decomposição térmica de moléculas de hidrocarbonetos, visando à produção de nanotubos de carbono (E) em larga escala e carbono amorfo de qualidade superior em termos de pureza, possui uma câmara de reação (C) confeccionada em aço inoxidável, conforme desenho da Figura 1 . A câmara (C) é composta por duas seções, denominadas de seção superior (A) e seção inferior (B).
[0023] A estrutura de fixação do equipamento de pirólise a plasma (Figura 2) foi construída em aço carbono. A sua base foi projetada de modo a garantir estabilidade da estrutura, evitando que a mesma tombe com o peso do conjunto de eletrodos (Figura 3) e da câmara de reação (C). A base também tem espaço suficiente para acomodar a fonte elétrica e o banho termostático para refrigeração dos eletrodos. [0024] A seção superior (A) da câmara de reação (C) possui uma janela para possibilitar a visualização do arco elétrico e acompanhamento visual do processo ao longo dos testes reacionais.
[0025] A seção inferior da câmara (B) é composta apenas por uma entrada de sensor de temperatura (i) e duas entradas de maior diâmetro (ii,iii) que pode ser usada para “QUENCHING” caso seja necessário ou entrada para sensor de pressão ou mesmo sensor de temperatura.
[0026] O flange superior (F) foi desenhado de modo a garantir o acoplamento do sistema de eletrodos para geração de tocha a plasma (T). Esta seção da câmara (A) também contém duas entradas para sensores de temperatura (1,11), equidistantes entre si, e uma terceira entrada de maior diâmetro que poderá ser usada para “QUENCHING” (III) ou para inserção de um sensor para medir a temperatura no ponto de fronteira entre as duas seções ou ainda para monitorar a pressão a jusante a zona de reação.
[0027] A tocha a plasma (T) é dotada de campo magnético induzido, responsável pela rotação do arco a uma velocidade pré-determinada, o que é um fator importante para assegurar uma temperatura homogênea para o gás de plasma a um baixo consumo do eletrodo. A tocha a plasma (T) fornece energia necessária para a decomposição da carga de hldrocarbonetos. A radiação proveniente dela, bem como a convecção de calor proveniente do gás de plasma, fornece energia suficiente para que os hidrocarbonetos, existentes na carga, alcancem a temperatura de pirólise completa das moléculas de metano (-1000 °C). Para a produção de materiais de carbono de maior qualidade o processo deve ocorrer preferencialmente em temperaturas superiores a 2500 °C.
[0028] Na Figura 3 (tocha de plasma) é possível observar os componentes importantes para o funcionamento da tocha a plasma (T), como o injetor (1 ), o flange de acoplamento (2), o anodo (4), a camisa de injeção (6), o suporte do catodo (7), a camisa do catodo (9) e o catodo (19), a refrigeração do catodo (8), o isolador (10) e a camisa externa (18). O referido injetor (1 ) realiza a injeção do gás na direção axial.
[0029] Após as duas seções (A e B) temos uma redução de 4” para 2” com mais duas entradas auxiliares (j, jj), uma para um sensor de temperatura e outra para um sensor de pressão. Esta redução converge para um tubo horizontal (T) também de 2” com um bico de injeção (K) de gás para “QUENCHING”. Esta seção de tubo, também contém duas entradas auxiliares, uma para monitoramento de temperatura do gás (L), antes da entrada do sistema de separação gás/sólido, e outra para medição de pressão (K).
[0030] A Figura 4 representa umcatodo (19) e a Figura 5 os anodos (D1 , D2 e D3) que por serem metálicos e em função do contato elétrico do arco docatodo ocorrer inteiramente na peça de tungsténio com 2% de thória, os eletrodos possuem vida útil no mínimo três vezes maior do que os eletrodos convencionais de carbono (US5997837) ou outro par de eletrodos metálicos (PI0305309-1 ), mesmo com temperaturas no interior da câmara na mesma magnitude.
[0031] A nova tocha (T) apresenta um projeto superior em termos de acoplamento entre as peças, mais refinado, onde algumas peças são acopladas por intermédio de roscas; o inserto de tungsténio com 2% de thória com ajuste forçado em peça de cobre formando o que se pode chamar decatodo (19), além de camisas bem ajustadas para refrigeração segura dos eletrodos. A nova tocha (T) apresenta também um projeto melhorado dos eletrodos, que apresentam maior vida útil em virtude do preciso inserto de tungsténio thoriado nocatodo (19) (que força a raiz do arco elétrico se localizar sobre a superfície externa do inserto de tungsténio com 2% de thória, que funciona comocatodo - 19) e novas geometrias para três tipos diferentes de anodo. A câmara de reação (C) foi testada com a nova tocha a plasma (T), obtendo-se temperaturas no interior da câmara (C) na mesma magnitude, apesar de um menor consumo energético em relação a PI0305309-1 , e produzindo carbono no estado sólido.
[0032] Parte do sistema elétrico-eletrónico será instalado na coluna de sustentação (Figura 2 - CL) e na cabine superior (Figura 2 - CA), que além da função estrutural, servirá de cabine para a passagem de cabos de força e instalação de componentes eletrônicos.
[0033] A cabine superior (CA) será usada para apoio do conjunto de eletrodos e para instalação dos indicadores de pressão e temperatura, controladores de fluxo mássico, chaves em geral, botoeiras de partida, parada da fonte elétrica e dispositivo de controle da corrente fornecida ao sistema.
[0034] Considerando-se a partida a frio, ou seja, desde a temperatura ambiente, do reator (T+C) desenvolvido no projeto, é possível obter cerca de 1 g de material carbonoso de alta pureza, fornecendo ao plasma de argônio, uma energia inferior a 1 ,2 kWh. O material carbonoso a ser obtido poderá possuir um alto teor de nanoestruturados em carbono, tais como nanotubos de carbono (E), a depender principalmente da temperatura na zona do leito contendo catalisadores. É possível fabricar nanotubos de carbono (E) quando se emprega catalisadores no interior da câmara de reação (C) e fabricar carbono amorfo quando não são empregados catalisadores.
[0035] O gás argônio foi usado como gás de plasma, sendo mantido a uma descarga elétrica de cerca de 5 a 50 A e 22 a 32 V. Em todos os testes foi feita uma refrigeração docatodo (19) com água a uma temperatura de cerca de 22 - 26° C. Alternativamente pode-se utilizar o gás hélio como gás de plasma.
[0036] O calor proveniente do arco a plasma é baixo na direção radial e as temperaturas mais elevadas são possíveis na região (A) da câmara (C) à jusante ao arco de plasma, preferencialmente no eixo axial da câmara (C). Sendo assim, a decomposição térmica do metano ocorrerá principalmente devido ao calor proveniente da tocha (T) a plasma na direção axial.
[0037] Deve ser notado que, apesar de a presente invenção ter sido descrita com relação aos desenhos em anexo, esta poderá sofrer modificações e adaptações pelos técnicos versados no assunto, dependendo da situação específica, mas desde que dentro do escopo inventivo definido pelas reivindicações.

Claims

Reivindicações
1 - REATOR ATMOSFÉRICO A PLASMA, caracterizado por compreender: pelo menos uma câmara (C) de reação confeccionada em aço inoxidável, composta por uma (A) ou duas seções (A e B), com uma tocha a plasma (T) possuindo um injetor (1 ), um flange de acoplamento (2), uma camisa de injeção (6), um suporte docatodo (7), um eletrodo contendo peça de tungsténio com 2% de thória ( catodo) (19), um anodo (4), uma superfície de refrigeração docatodo (8), camisa docatodo (9), um isolador (10) e uma camisa externa (18).
2- REATOR, de acordo com a reivindicação 1 , caracterizado por compreender catalisadores no interior da câmara de reação (C) para fabricar nanotubos de carbono (E) e carbono amorfo quando não são empregados catalisadores.
3~ REATOR, de acordo com a reivindicação 1 , caracterizado pelo contato elétrico do arco nocatodo (19) ocorrer inteiramente na superfície da peça de tungsténio com 2% de thória.
4- REATOR, de acordo com a reivindicação 1 , caracterizado pela câmara de reação (C) estar a jusante da tocha a plasma (T).
5- REATOR, de acordo com a reivindicação 1 , caracterizado por compreender um injetor (1 ) para realizar a injeção do gás na direção axial.
6- REATOR, de acordo com a reivindicação 5, caracterizado pelo gás injetado ser o argônio.
7~ REATOR, de acordo com a reivindicação 5, caracterizado pelo gás injetado ser o hélio.
8- REATOR, de acordo com a reivindicação 6, caracterizado pelo gás ser mantido a uma descarga elétrica de cerca de 5 a 50 A e 33 a 32V.
PCT/BR2021/050347 2020-08-20 2021-08-17 Reator atmosférico a plasma para produção de nanotubos de carbono em larga escala e carbono amorfo WO2022036428A1 (pt)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023512302A JP2023538103A (ja) 2020-08-20 2021-08-17 カーボンナノチューブの大量生産及びアモルファスカーボンの生産のための大気圧プラズマ反応器
CA3189872A CA3189872A1 (en) 2020-08-20 2021-08-17 Atmospheric plasma reactor for the large-scale production of carbon nanotubes and amorphous carbon
CN202180070226.7A CN116349412A (zh) 2020-08-20 2021-08-17 用于大规模碳纳米管生产和无定形碳生产的大气等离子体反应器
DE112021004387.0T DE112021004387T5 (de) 2020-08-20 2021-08-17 ATMOSPHÄRISCHER PLASMAREAKTOR ZUR HERSTELLUNG VON KOHLENSTOFF-NANORÖHREN IN GROßEM MAßSTAB UND AMORPHEM KOHLENSTOFF
US18/042,021 US20240010496A1 (en) 2020-08-20 2021-08-17 Atmospheric plasma reactor for the large-scale production of carbon nanotubes and amorphous carbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020200170341 2020-08-20
BR102020017034-1A BR102020017034A2 (pt) 2020-08-20 2020-08-20 Reator atmosférico a plasma para produção de nanotubos de carbono em larga escala e carbono amorfo

Publications (1)

Publication Number Publication Date
WO2022036428A1 true WO2022036428A1 (pt) 2022-02-24

Family

ID=80322302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050347 WO2022036428A1 (pt) 2020-08-20 2021-08-17 Reator atmosférico a plasma para produção de nanotubos de carbono em larga escala e carbono amorfo

Country Status (7)

Country Link
US (1) US20240010496A1 (pt)
JP (1) JP2023538103A (pt)
CN (1) CN116349412A (pt)
BR (1) BR102020017034A2 (pt)
CA (1) CA3189872A1 (pt)
DE (1) DE112021004387T5 (pt)
WO (1) WO2022036428A1 (pt)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9206894A (pt) * 1991-12-12 1995-11-28 Kvaerner Eng Método e dispositivo para decomposição de hidrocarbonos
US6068827A (en) * 1992-04-07 2000-05-30 Kvaerner Engineering As Decomposition of hydrocarbon to carbon black
FR2813158A1 (fr) * 2000-08-18 2002-02-22 Air Liquide Electrode pour torche a plasma a insert emissif de duree de vie amelioree
US20130039838A1 (en) * 2007-06-15 2013-02-14 Nanocomp Technologies, Inc. Systems and methods for production of nanostructures using a plasma generator
CN108675282A (zh) * 2018-04-19 2018-10-19 华北电力大学 等离子体加强火焰法制备碳纳米管工业量产装置
WO2020153685A1 (ko) * 2019-01-21 2020-07-30 엘지전자 주식회사 열플라즈마 처리장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9206894A (pt) * 1991-12-12 1995-11-28 Kvaerner Eng Método e dispositivo para decomposição de hidrocarbonos
US5997837A (en) * 1991-12-12 1999-12-07 Kvaerner Technology And Research Ltd. Method for decomposition of hydrocarbons
US6068827A (en) * 1992-04-07 2000-05-30 Kvaerner Engineering As Decomposition of hydrocarbon to carbon black
FR2813158A1 (fr) * 2000-08-18 2002-02-22 Air Liquide Electrode pour torche a plasma a insert emissif de duree de vie amelioree
US20130039838A1 (en) * 2007-06-15 2013-02-14 Nanocomp Technologies, Inc. Systems and methods for production of nanostructures using a plasma generator
CN108675282A (zh) * 2018-04-19 2018-10-19 华北电力大学 等离子体加强火焰法制备碳纳米管工业量产装置
WO2020153685A1 (ko) * 2019-01-21 2020-07-30 엘지전자 주식회사 열플라즈마 처리장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, T., REHMET ET AL.: "Experimental comparison of methane pyrolysis in thermal plasma", PLASMA CHEMISTRY AND PLASMA PROCESSING, vol. 37, 25 February 2017 (2017-02-25), pages 1033 - 1049, XP036262484, DOI: 10.1007/s11090-017-9806-x *
SHAVELKINA, M.B. ET AL.: "Effect of the substrate material on the structure of carbon nanomaterials upon synthesis in a plasma jet reactor", JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES, vol. 10, no. 4, 31 July 2016 (2016-07-31), pages 849 - 854, XP036031342, DOI: 10.1134/S1027451016030344 *

Also Published As

Publication number Publication date
JP2023538103A (ja) 2023-09-06
DE112021004387T5 (de) 2023-06-01
BR102020017034A2 (pt) 2022-03-03
US20240010496A1 (en) 2024-01-11
CN116349412A (zh) 2023-06-27
CA3189872A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
SA516371564B1 (ar) تصميم مشعل بلازما
KR101168800B1 (ko) 탄소 없는 물의 해리 및 수소 관련 전력의 생산
WO2017190045A1 (en) Secondary heat addition to particle production process and apparatus
JP2004510014A (ja) 炭素含有供給材料を限定されたナノ構造を有する炭素含有材料に転換するための装置および方法
Tsyganov et al. Ethanol reforming into hydrogen-rich gas applying microwave ‘tornado’-type plasma
US2964678A (en) Arc plasma generator
Kim et al. Continuous synthesis of nanostructured sheetlike carbons by thermal plasma decomposition of methane
JPH08339893A (ja) 直流アークプラズマトーチ
WO2022036428A1 (pt) Reator atmosférico a plasma para produção de nanotubos de carbono em larga escala e carbono amorfo
Piavis et al. An experimental investigation of reverse vortex flow plasma reforming of methane
Wu et al. Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge
Safronov et al. AC plasma torches. arc initiation systems. design features and applications
US3407281A (en) Plasma producing apparatus
Rutberg et al. Study of electric arcs in an air-steam mixture in AC plasma torches
Akatsuka et al. Arc‐heated magnetically trapped expanding plasma jet generator
Kim et al. Enthalpy probe measurements and three-dimensional modelling on air plasma jets generated by a non-transferred plasma torch with hollow electrodes
BR112020011060A2 (pt) método para a produção de gás de síntese
Strelko et al. Historical milestones in the development and creation of radio frequency inductively coupled plasma torches
US20100270142A1 (en) Combustion flame plasma hybrid reactor systems, chemical reactant sources and related methods
Kang et al. Variations of methane conversion process with the geometrical effect in rotating gliding arc reactor
US3793438A (en) Method for production of carbon black
Czernichowski et al. Further development of plasma sources: the GlidArc-III
JP2009007237A (ja) 高周波加熱炉を利用した炭素ナノチューブの大量合成装置
US20230166227A1 (en) Plasma/ionic reactor
RU167295U1 (ru) Свч плазменный конвертор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3189872

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023512302

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18042021

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21857064

Country of ref document: EP

Kind code of ref document: A1