WO2022035065A1 - Method for manufacturing middle platform device for led chip test performed before transfer of led chips to display panel - Google Patents

Method for manufacturing middle platform device for led chip test performed before transfer of led chips to display panel Download PDF

Info

Publication number
WO2022035065A1
WO2022035065A1 PCT/KR2021/009054 KR2021009054W WO2022035065A1 WO 2022035065 A1 WO2022035065 A1 WO 2022035065A1 KR 2021009054 W KR2021009054 W KR 2021009054W WO 2022035065 A1 WO2022035065 A1 WO 2022035065A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
display panel
chip
led
led chips
Prior art date
Application number
PCT/KR2021/009054
Other languages
French (fr)
Korean (ko)
Inventor
민재식
이재엽
박재석
조병구
Original Assignee
(주)라이타이저
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)라이타이저 filed Critical (주)라이타이저
Publication of WO2022035065A1 publication Critical patent/WO2022035065A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present invention is an intermediate stage substrate MPF for enabling 1:1 transfer to a display panel after passing all electrical tests before transferring the micro-unit LED chip to the same or integer multiple pitch interval of the display panel.
  • (Middle Platform) relates to a manufacturing method.
  • a light emitting diode is one of light emitting devices that emits light when an electric current is applied thereto. Light-emitting diodes can emit high-efficiency light with a low voltage, and thus have an excellent energy-saving effect.
  • the luminance problem of light emitting diodes has been greatly improved, and it has been applied to various devices such as a backlight unit of a liquid crystal display device, an electric sign board, a display device, and a home appliance.
  • ⁇ -LED micro light emitting diode
  • micro light emitting diodes are manufactured in plurality on a sapphire substrate, and then, by a mechanical transfer method, pick & place, micro light emitting diodes are placed on glass or flexible substrate one by one. are transcribed
  • micro light emitting diodes Since the micro light emitting diodes are picked up one by one and transferred, it is referred to as a 1:1 pick-and-place transfer method.
  • the size of the micro light emitting diode chip manufactured on the sapphire substrate is small and thin, during the pick and place transfer process of transferring the micro light emitting diode chips one by one, the chip is damaged, the transfer fails, or the chip alignment ( Alignment) fails, or a problem such as a tilt of the chip is generated.
  • Patent Document 1 Republic of Korea Patent 10-0853410
  • the present invention for solving the above-described problems performs an electrical test of a plurality of chips formed or disposed on a base substrate, and a plurality of LED chips disposed to be the same as the target pitch of the display panel are transferred and arranged to form one display panel. ;1
  • a transferable MPF Microwave Film
  • Another object of the present invention is to provide a method of manufacturing an MPF implemented in a pixel array so that 1:1 transfer is possible based on the LED pixel unit of the display panel.
  • Another object of the present invention is to provide a method for rapidly manufacturing a large-area display device.
  • Middle platform (MPF, Middle Platform) device manufacturing method for the LED chip test before transfer to the LED chip display panel for solving the above-described problems, preparing a substrate, a substrate preparation step; A pressure-sensitive adhesive coating step of coating the pressure-sensitive adhesive on the substrate; a chip disposing step of transferring or disposing the RGB chip pixel array onto the adhesive of the substrate; curing the pressure-sensitive adhesive after the RGB chip pixel arrays are transferred or disposed; a pad area expansion and exposing step of passivating the electrode pad to expand the electrode pad and exposing the electrode pad; an expansion pad forming step of expanding the electrode pad by depositing a metal on the exposed electrode pad; and a measuring step of locating the probe card in the expanded state of the electrode pad, electrically connecting to each RGB chip, and performing electrical and optical tests.
  • MPF Middle platform
  • the method may further include a dicing step of dicing each RGB pixel in a pre- or post-process of the measuring step.
  • the method may further include a replacement step of replacing defective pixels in units of pixels according to a measurement result.
  • the LED chips can maximize the cost reduction effect by using a horizontal chip base.
  • the step of forming the expansion pad includes a process of passivation to cover the LED chips, a process of exposing the pad formed on the LED chips to the passivation by a patterned mask, and a patterned shadow mask. and depositing metal on the pads of the LED chips to form the expanded pads.
  • the step of forming the expansion pad includes a process of passivation to cover the LED chips, a process of exposing the passivation by a mask patterned on the pads formed on the LED chips, and a PR (photoresist) layer It may include a process of depositing a metal by forming and forming an expansion pad by allowing the metal layer to be expanded only on the pads of the LED chips through a lift-off process.
  • a plurality of a pair of probe pins formed on the probe card for electrical and optical measurement are in contact with the expanded pad, and the distance between the pair of probe pins is Before the pad is expanded, the distance between the pair of probe pins through which the pad can be electrically contacted is larger than the distance between the probe pins, so that measurement can be facilitated.
  • the MPF constitutes a unit MPF in which the LED chips are arranged in a matrix with a predetermined number, and the LED chips are transferred to the display panel in units of the unit MPF, and according to the quantity of the unit MPF, the display panel of the display panel. Large area is possible.
  • the LED chips transferred or disposed on the MPF use RGB as one pixel, and the pitch between pixels is the same as the pixel pitch of the display panel. may serve as a shadow substrate of the display panel.
  • an electrical test of a plurality of chips formed or disposed on the base substrate is performed, and a plurality of LED chips disposed at the same target pitch of the display panel are transferred and arranged, 1:1 to the display panel. It is possible to provide a method of manufacturing a transferable MPF (Middle Platform).
  • MPF Middle Platform
  • FIG. 2 is a view for explaining the glass substrate (S110) and glue layer coating (S120) processes of FIG. 1 .
  • FIG. 3 is a view for explaining the process S130 (RGB Transfer-Pixel Array) and S140 (Glue Layer Hard Bake) of FIG. 1 .
  • FIG. 4 is a view for explaining the S150 process (Passivation & PAD open) of FIG. 1 .
  • FIG. 5 is a view for explaining the process S160 (PAD Extension) of FIG. 1 .
  • FIG. 6 is a view for explaining a process S170 (Pixel Measurement) of FIG. 1 .
  • FIG. 7 is a view for explaining a process S180 (Pixel Array Dicing) of FIG. 1 .
  • FIG. 8 is a view for explaining a process (Repair) S190 of FIG. 1 .
  • FIG. 9 is a view for explaining a process of 1:1 transfer from the MPF unit to the display panel by using the RGB pixel units that have been tested and diced as one unit group.
  • the upper (above) or lower (below) two components are in direct contact with each other or one or more other components disposed between two components.
  • each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not fully reflect the actual size.
  • the chip, CSP, LED pixel CSP, and LED sub-pixel CSP used in the present invention may be defined as follows.
  • a chip is a concept including an LED chip, an RGB chip, an R chip, a G chip, a B chip, a mini LED chip, and a micro LED chip.
  • the chip will be described as an R chip, a G chip, or a B chip, but it should be noted that the chip is not limited to only the R chip, G chip, or B chip.
  • a chip scale package is a package that has recently received a lot of attention in the development of a single chip package, and refers to a single chip package having a semiconductor/package area ratio of 80% or more.
  • LED pixel CSP refers to a single package in which one LED pixel is CSP packaged by using Red LED, Green LED, and Blue LED as one pixel unit.
  • the LED sub-pixel CSP refers to a single package in which each of Red LED, Green LED, and Blue LED is used as one sub-pixel unit and CSP is packaged in one LED sub-pixel unit.
  • a light emitting body formed on a wafer may be defined as an LED chip.
  • MPF Middle Platform
  • the MPF (Middle Platform) manufacturing method preparing a substrate (S110, Glass Substrate), coating the adhesive on the substrate (S120, Glue Layer Coating) , transferring the RGB chip pixel array to the substrate (S130, RGB Transfer-Pixel Array), curing the adhesive after the RGB chip pixel arrays are transferred (S140, Glue Layer Hard Bake), passivation to expand the electrode pad and exposing the electrode pad (S150, Passivation & PAD open), depositing a metal on the existing electrode pad to expand the pad (S160, PAD Extension), placing the probe card in the expanded state to each After electrically connecting to the RGB chip, performing electrical and optical tests (S170, Pixel Measurement), dicing for each RGB pixel (S180, Pixel Array Dicing), and replacing defective pixels as a result of measurement (S190, Repair) may be included.
  • the order of the pixel measurement (S170) process and the pixel array dicing (S180) process may be changed.
  • the substrate can be any transparent material such as Glass, Quartz, PET, PC, PI, and the adhesive is transparent as a glue layer coating. Both oil-based adhesives can be used.
  • the transfer of each RGB pixel is performed by a pick & place or mass transfer (stamping transfer, roll-to-roll transfer method, printing transfer method, laser transfer method, etc.) method to form pixels. and is not limited by its transcription method.
  • Glue layer hard baking fixes the pixel array, proceeds to form passivation, and removes the reactivity and hardening process for about 4 hours at 170°C to maintain the hardened solid state. there is.
  • the pitch gap between the micro-unit LED chips is very narrow. This is to extend the area of the electrode pad already formed by using the area to extend the pitch between the electrodes, thereby minimizing the error in measuring characteristics and completing all characteristic evaluation before transferring the display panel.
  • S170 Panel Measurement
  • S180 Panel Array Dicing
  • S190 Repair
  • step 1 preparations are made in advance before the display panel transfer.
  • MPF is a substrate before being transferred to a display panel, and in the present application, it is referred to as a middle platform in the sense of a substrate transferred from a wafer or tape on which an LED chip is formed for each RGB.
  • the middle platform is an independent substrate before being transferred from the wafer to the display panel and has the following meanings.
  • the RGB pixel pitch transferred to the middle platform may correspond to the pixel pitch of the display panel 1:1.
  • the sub-pixel spacing of the RGB pixels transferred to the middle platform is formed to be equal to or larger than the spacing between the RGB pixels formed on the wafer (or tape), thereby forming LED chips close to the wafer (or tape) at equal intervals.
  • the chip cost is excellent as it can be manufactured without damage to the wafer net die.
  • the RGB chip transferred to the middle platform is a pixel unit, and the LED chips of the middle platform are transferred so that the RGB pixel pitch of the middle platform and the pixel pitch of the display panel are the same so that the RGB pixel pitch of the middle platform is transferred to the display panel in a matrix-arranged unit unit.
  • the meaning is that it is the shadow of
  • the MPF uses a relatively inexpensive lateral chip-based LED chip instead of using a relatively expensive flip chip and vertical chip-based LED chip.
  • FIG. 2 is a view for explaining the glass substrate (S110) and glue layer coating (S120) processes of FIG. 1 .
  • an adhesive layer 120 is formed on the substrate 110 and the substrate 110 .
  • the substrate 110 may be made of any transparent material such as Glass, Quartz, PET, PC, or PI.
  • the adhesive layer 120 is transparent as a glue layer coating and can be used if it has adhesive properties, and silicone, epoxy, water-based adhesive or oil-based adhesive can all be used.
  • FIG. 3 is a view for explaining the process S130 (RGB Transfer-Pixel Array) and S140 (Glue Layer Hard Bake) of FIG. 1 .
  • the method in which the LED chips 11 are transferred on the substrate 110 may be performed in various ways, for example, pick & place, stamping transfer, roll-to-roll transfer method, printing transfer method, laser There are no restrictions on the method of transcription, etc.
  • the plurality of light emitting devices emitting light of the same wavelength band formed on the wafer (or tape) may be light emitting chips emitting red, green, and blue light, and the red, green, and blue light chips constitute one pixel.
  • LED chips are arrayed in units of pixels, and the pitch of each pixel is formed to be the same as the pixel pitch of the display panel.
  • micro LED is very small (1 ⁇ 100 ⁇ m level), and the unit cost of a tape or wafer to form a micro LED is relatively high, it is advantageous to integrate and form as many LEDs as possible on one unit tape or wafer, In this case, the pitch interval between the LEDs is very narrow, which may cause problems in transcription and testing, but these parts are taken into consideration in the present invention.
  • the LED chip of the present invention is based on a horizontal chip, it is possible to reduce the cost by about 10 times or more compared to when a vertical chip is used.
  • one or more carrier substrates may be used in the middle.
  • the RGB chips 11R, 11G, and 11B are sequentially transferred to the substrate 110 by various transfer methods.
  • FIG. 3 shows the RGB LED chips 11R, 11G, and 11B selectively and sequentially transferred onto the substrate 110, (B) is a plan view, and (A) is a cross-sectional view taken along X-Y of (B).
  • the LED chips 11R, 11G, and 11B sequentially transferred to the substrate 110 form one LED pixel 20, RGB pixel CSP, and horizontal and vertical LED pixels 20 are arranged on the substrate 110. can be placed in
  • the state in which the RGB LED chips 11R, 11G, and 11B are transferred or arranged at regular intervals at a predetermined pitch in units of pixels on the adhesive layer 120 of the substrate 110 constitutes the MPF 100
  • the RGB LED In a state in which the pads of the chips 11R, 11G, and 11B are expanded and in a defect-free state in which electrical/optical measurement is completed and bad pixels are replaced, the device before transfer to the display panel can be defined as the ideal MPF 100, and in the following The MPF 100 is described assuming a device including a basic concept and an ideal concept.
  • 4 and 5 are diagrams for explaining in detail an area expansion and pad expansion process of RGB chips transferred to a substrate.
  • FIG. 4 is a view for explaining the S150 process (Passivation & PAD open) of FIG. 1 .
  • an area expansion is performed to expand the existing pad 13 before finalization.
  • the area expansion is a pre-process for enabling the expansion of the area (or volume) of each pad (electrode) formed on the LED chip within the CSP (Chip Scale Package), and has the meaning of securing a space for the expansion of the pad. .
  • pad expansion means expanding the pad of an existing LED chip by depositing metal in the left, right, up and down, or left and right up and down directions.
  • a passivation 130 is formed (or coated) to cover the RGB chips 11R, 11G, and 11B on the substrate 110 .
  • the passivation 130 is an epoxy-based material, and may be SU-8.
  • the passivation 130 is patterned through a photo process and a develop process.
  • the patterned passivation 130 surrounds one LED chip and is coupled to one LED chip to form one sub-pixel CSP.
  • Each RGB sub-pixel CSP (RGB chip) has a larger volume than the conventional RGB sub-pixel CSP, and as a result, each R sub-pixel CSP (11R), G sub-pixel CSP (11G), and B sub-pixel CSP (11B). ) is expanded.
  • the RGB sub-pixel CSP is a combination of passivation (photoresist layer, 130) patterned to the RGB chip, and the surface area is increased more than the surface area of the initial LED chip, so that the pad can be expanded (pattern part ( 12)) can be obtained.
  • the size of the micro LED is several micro units, the size of the pad is inevitably small accordingly.
  • an area in which the size of the pad can be increased can be secured.
  • one sub-pixel CSP Chip Scale Package
  • Chip Scale Package is a generic term for a small package close to the size of a chip, and a package having a size close to that of a bare chip in which a lead frame protecting the chip appearance and a wire for electrical connection do not exist.
  • R sub-pixel CSP (11R), G sub-pixel CSP (11G), and B sub-pixel CSP (11B) form one RGB pixel CSP (20), but with area expansion and pad expansion, RGB pixel CSP ( 20) may form an extended RGB pixel CSP.
  • a photo resist (PR) 140 is coated on an area other than the area where the pad is to be expanded.
  • FIG. 5 is a view for explaining the process S160 (PAD Extension) of FIG. 1 .
  • a metal 150 is deposited on a substrate 110 .
  • the PR 140 layer is removed by the PR 140 lift-off method so that only the electrode pad remains from the deposited pad.
  • a method using a shadow mask may be used as a method of depositing a metal.
  • the shadow mask process is as follows.
  • a patterned shadow mask (not shown) is disposed on the area-extended RGB chips 11R, 11G, and 11B.
  • a metal for pad extension is deposited to a predetermined thickness on the shadow mask and the area-extended RGB chips 11R, 11G, and 11B.
  • the shadow mask is removed.
  • an extension pad 13E made of a pad extension metal may be formed on the pad 13 of the RGB chips 11R, 11G, and 11B of which the region is extended.
  • FIG. 6 is a view for explaining a process S170 (Pixel Measurement) of FIG. 1 .
  • the LED chips are transferred and disposed on the substrate 110 through the processes of FIGS. 2 to 5 , and the characteristics of FIG. 6 are measured in a state in which the pad is expanded.
  • the probe card 160 may test electrical and optical characteristics of the RGB chips 11R, 11G, and 11B transferred to the substrate 110 .
  • the probe card according to the embodiment of the present invention may include a base substrate 161 and probe pins 160a and 160b electrically connected to the base substrate.
  • the size (horizontal*length) of the base substrate 161 may correspond to the size (horizontal*length) of the substrate 110 .
  • the base substrate 161 and the substrate 110 may have the same size.
  • the present invention is not limited thereto, and the size or shape of the base substrate may be different from the size or shape of the substrate 110 of the MPF according to design needs.
  • the pair of probe pins 160a and 160b connected to the base substrate 161 may correspond to one RGB chip 11R, 11G, and 11B disposed on the substrate 110 on a one-to-one basis.
  • the pad of the R chip 11R may be positioned toward the probe card, and the light emitting surface of the R chip 11R may be positioned toward the substrate 110 .
  • the test signal When the test signal is applied, the light does not go out toward the probe card covered by the pad, but is emitted toward the substrate 110 .
  • An optical characteristic detector (integrating sphere, 200 ) located below the substrate 110 may detect the emitted light.
  • the first probe pin 160a and the second probe pin 160b are used to test electrical and optical characteristics of the R chip 11R, G chip, and B chip, respectively.
  • the first probe pin 160a is in contact with one pad 13E of the R chip 11R, and the second probe pin 160b is the R chip 11R. It is brought into contact with the other pad 13E'.
  • one pad 13E and another pad 13E' are extension pads.
  • the R chip 11R and the first and second probe pins 160a and 160b may be electrically connected.
  • a test signal is transmitted to the R chip 11Rx through the first and second probe pins 160a and 160b to test whether light is emitted from the R chip 11Rx (electrical characteristic test), or Even when light is emitted, it is possible to test whether there is any functional error such as whether light of a normal wavelength band is emitted or light of an appropriate intensity is emitted (optical property test).
  • the probe card according to the embodiment of the present invention does not test the electrical and optical characteristics of the chip formed on each tape (or wafer), but the electrical and optical characteristics of the sub-pixel CSP pad-extended on the substrate 110 of the MPF. It is characterized in that it tests
  • the probe card is inevitably smaller according to the size of the chip.
  • the size of the probe pin should also be reduced. It is not easy to manufacture a probe card with a reduced size of the probe pin, and the reliability of the test result is also reduced.
  • the sub-pixel CSP when the electrical and optical properties of the pad-extended sub-pixel CSP are tested during the transfer process, the sub-pixel CSP has a larger area than the chip on the wafer, and the pad surface area is also Since it is in a wide state, it is possible to have sufficient space to measure with the probe card.
  • expansion pads 13E and 13E' are disposed on the pad of the sub-pixel CSP and have a larger surface area than the pad before expansion, and the distance P1 between the first and second probe pins 160a and 160b is extended.
  • the pad 13E, 13E' is extended by the widened interval.
  • the present invention solves this problem through a direct expansion pad within the MPF 100 .
  • the test measurement result may reflect the electrical characteristic test result and the optical characteristic test result. Even if it passes the electrical characteristic test result, if it does not pass the optical characteristic test result, it may be determined as an error. The opposite is also true.
  • a method of repairing the sub-pixel CSPs may use a pickup and place method of removing an erroneous sub-pixel CSP from among the sub-pixel CSPs and replacing the new sub-pixel CSP in its place.
  • FIG. 7 is a view for explaining a process S180 (Pixel Array Dicing) of FIG. 1 .
  • FIG. 7 illustrates a process of dicing in RGB pixel units after group measurement is completed according to an embodiment of the present invention.
  • the LED chips transferred and disposed on the substrate 110 are electrically and optically measured in a group measurement method through the probe card, after confirming that all LED chips are operating normally (or after a replacement process)
  • Each of the RGB pixels CSP may be diced in pixel units 20E.
  • FIG. 8 is a view for explaining a process (Repair) S190 of FIG. 1 .
  • FIG. 8 is a diagram illustrating a process of performing repair in units of pixels when a bad pixel is generated after group measurement is completed according to an embodiment of the present invention.
  • the actual MPF of the present invention may refer to a substrate in a state in which an LED chip is transferred, an expansion pad process is performed, an electrical and optical test is performed, and a defective replacement is completed.
  • FIG. 9 is a view for explaining a process of 1:1 transfer from an MPF in a unit unit to a display panel using RGB pixel units that have been tested and diced as one unit group.
  • FIG. 9 is a diagram for explaining 1:1 transfer from an MPF unit to a display panel by using RGB pixel units that have been tested and diced as one unit group.
  • Each of the diced RGB pixel CSPs may be 1:1 transferred to a display panel using a plurality of predetermined arrangement as one unit MPF 210 .

Abstract

The present invention relates to a method for manufacturing a middle platform (MPF), which is a substrate of an intermediate step for enabling, prior to the transfer of micro-sized LED chips to a display panel at a pitch distance that is the same as that of the display panel or at an integer multiple pitch distance, the LED chips to be 1:1 transferred to the display panel after passing through all electrical and optical tests. A method for manufacturing an MPF device for an LED chip test performed before the transfer of LED chips to a display panel, according to an implementation aspect of the present invention, may comprise: a substrate preparation step of preparing a substrate; an adhesive coating step of coating the substrate with an adhesive; a chip arrangement step of transferring/arranging an RGB chip pixel array to/on the adhesive of the substrate; a hardening step of hardening the adhesive after transferring/arranging RGB chip pixel arrays; a pad area extension and exposure step of performing passivation in order to extend an electrode pad and exposing the electrode pad; an extended pad forming step of extending the electrode pad by depositing metal on the exposed electrode pad; and a measurement step of placing a probe card in an extended state of the electrode pad to electrically connect the probe card to each RGB chip, and then performing electrical and optical tests.

Description

LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법Middle platform device manufacturing method for LED chip test before transfer to LED chip display panel
본 발명은 마이크로 단위의 LED 칩을 디스플레이 패널의 피치 간격과 동일하게 또는 정수배 피치 간격으로 전사시키기 전에 모든 전기적 테스트를 거친 후 디스플레이 패널로의 1:1 전사가 가능하도록 하기 위한 중간 단계의 기판인 MPF(Middle Platform)의 제조 방법에 관한 것이다.The present invention is an intermediate stage substrate MPF for enabling 1:1 transfer to a display panel after passing all electrical tests before transferring the micro-unit LED chip to the same or integer multiple pitch interval of the display panel. (Middle Platform) relates to a manufacturing method.
발광 다이오드(Light Emitting Diode: LED)는 전류가 인가되면 광을 방출하는 발광 소자 중 하나이다. 발광 다이오드는 저 전압으로 고효율의 광을 방출할 수 있어 에너지 절감 효과가 뛰어나다. A light emitting diode (LED) is one of light emitting devices that emits light when an electric current is applied thereto. Light-emitting diodes can emit high-efficiency light with a low voltage, and thus have an excellent energy-saving effect.
최근, 발광 다이오드의 휘도 문제가 크게 개선되어, 액정표시장치의 백라이트 유닛(Backlight Unit), 전광판, 표시기, 가전 제품 등과 같은 각종 기기에 적용되고 있다.Recently, the luminance problem of light emitting diodes has been greatly improved, and it has been applied to various devices such as a backlight unit of a liquid crystal display device, an electric sign board, a display device, and a home appliance.
마이크로 발광 다이오드(μ-LED)의 크기는 1 ~ 100μm 수준으로 매우 작고, 40 인치(inch)의 디스플레이 장치를 구현하기 위해서는 대략 2,500만개 이상의 픽셀이 요구된다. The size of a micro light emitting diode (μ-LED) is very small, ranging from 1 to 100 μm, and approximately 25 million or more pixels are required to implement a 40-inch display device.
따라서, 40 인치의 디스플레이 장치를 하나 만드는데 단순한 픽 앤 플레이스(Pick & Place) 방법으로는 시간적으로 최소 한달이 소요되는 문제가 있다. Therefore, there is a problem in that it takes at least a month in terms of a simple pick and place method to make one 40-inch display device.
기존의 마이크로 발광 다이오드(μ-LED)는 사파이어 기판 상에 다수개로 제작된 후, 기계적 전사(Transfer) 방법인, 픽 앤 플레이스(pick & place)에 의해, 마이크로 발광 다이오드가 하나씩 유리 혹은 유연성 기판 등에 전사된다. Existing micro light emitting diodes (μ-LEDs) are manufactured in plurality on a sapphire substrate, and then, by a mechanical transfer method, pick & place, micro light emitting diodes are placed on glass or flexible substrate one by one. are transcribed
마이크로 발광 다이오드를 하나씩 픽업(pick-up)하여 전사하므로, 1:1 픽 앤 플레이스 전사 방법이라고 지칭한다. Since the micro light emitting diodes are picked up one by one and transferred, it is referred to as a 1:1 pick-and-place transfer method.
그런데, 사파이어 기판 상에 제작된 마이크로 발광 다이오드 칩의 크기는 작고 두께가 얇기 때문에, 마이크로 발광 다이오드 칩을 하나씩 전사하는 픽 앤 플레이스 전사 공정 중에 상기 칩이 파손되거나, 전사가 실패하거나, 칩의 얼라인먼트(Alignment)가 실패되거나, 또는 칩의 틸트(Tilt)가 발생되는 등의 문제가 발생되고 있다. However, since the size of the micro light emitting diode chip manufactured on the sapphire substrate is small and thin, during the pick and place transfer process of transferring the micro light emitting diode chips one by one, the chip is damaged, the transfer fails, or the chip alignment ( Alignment) fails, or a problem such as a tilt of the chip is generated.
또한, 전사 과정에 필요한 시간이 너무 오래 걸리는 문제가 있다.In addition, there is a problem that the time required for the transcription process is too long.
또한, 마이크로 단위의 LED의 경우 서브 픽셀간 간격 및 픽셀 간 간격이 매우 작으므로 전기적 테스트시 프로브 핀의 미세 간격조절이 어렵고 접촉 불량으로 인한 신뢰성 확보가 어렵다는 문제가 있어 왔다.In addition, in the case of a micro-unit LED, since the distance between sub-pixels and the distance between pixels is very small, there has been a problem in that it is difficult to adjust the fine spacing of the probe pins during electrical testing and it is difficult to secure reliability due to poor contact.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록특허 10-0853410(Patent Document 1) Republic of Korea Patent 10-0853410
상술한 문제점을 해결하기 위한 본 발명은, 베이스 기판에 형성 또는 배치된 다수의 칩의 전기적 테스트를 수행하고 디스플레이 패널의 목표 피치와 동일하게 배치된 다수의 LED 칩이 전사 배열되어, 디스플레이 패널로 1;1 전사가 가능한 MPF(Middle Platform)의 제조 방법을 제공하고자 한다. The present invention for solving the above-described problems performs an electrical test of a plurality of chips formed or disposed on a base substrate, and a plurality of LED chips disposed to be the same as the target pitch of the display panel are transferred and arranged to form one display panel. ;1 To provide a method for manufacturing a transferable MPF (Middle Platform).
또한, 디스플레이 패널의 LED 픽셀 단위를 베이스로 하여 1:1로 전사가 가능하도록 픽셀 어레이로 구현된 MPF의 제조 방법을 제공하고자 한다.Another object of the present invention is to provide a method of manufacturing an MPF implemented in a pixel array so that 1:1 transfer is possible based on the LED pixel unit of the display panel.
또한, 웨이퍼 단에서 LED 칩의 전기적 측정을 하지 않고, 대규모 그룹 측정이 가능한 MPF를 제공하며, 웨이퍼 단에서 칩단위 측정이 불요하므로 웨이퍼(또는 테이프)에는 마이크로 단위의 LED칩을 미세 간격으로 다수개 형성시킬 수 있어 고 비용을 절대적으로 감소시키고자 한다.In addition, it does not perform electrical measurement of LED chips at the wafer stage, and provides MPF that enables large-scale group measurement. Since chip unit measurement is unnecessary at the wafer stage, a plurality of micro-unit LED chips are placed on the wafer (or tape) at minute intervals. We want to absolutely reduce the high cost.
또한, LED 칩의 픽셀 단위 전사와 CSP 영역 내에서의 영역확장을 통해 전극 패드의 확장이 가능하고, 이로 인해 프로브 카드의 측정이 용이하며, 또한 테스트 후에 불량칩의 교체가 가능한 MPF를 제공하고자 한다.In addition, it is possible to extend the electrode pad through pixel unit transfer of the LED chip and the area expansion within the CSP area, which makes it easy to measure the probe card, and also provides an MPF that allows replacement of defective chips after testing. .
또한, 비교적 고가의 Flip chip과 수직칩 베이스의 LED 칩을 사용하지 않고 비교적 저가의 Lateral chip(수평칩) 베이스의 LED 칩을 사용하는 것이 가능하여 생산단가의 효율성을 갖을 수 있는 MPF를 제공하고자 한다.In addition, it is possible to use a relatively inexpensive lateral chip-based LED chip without using a relatively expensive flip chip and vertical chip-based LED chip. .
또한, 대면적의 디스플레이 장치를 신속하게 제조할 수 있는 방법을 제공하고자 한다.Another object of the present invention is to provide a method for rapidly manufacturing a large-area display device.
본 발명의 해결하고자 하는 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved of the present invention is not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. will be.
상술한 과제를 해결하기 위한 본 발명의 실시 형태에 따른 LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼(MPF, Middle Platform) 장치 제조 방법은, 기판을 준비하는, 기판 준비 단계; 상기 기판 상에 점착제를 코팅하는, 점착제 코팅 단계; RGB 칩 픽셀 어레이를 상기 기판의 점착제 상으로 전사 또는 배치하는, 칩 배치 단계; RGB 칩 픽셀 어레이들이 전사 또는 배치된 후 상기 점착제를 경화시키는, 경화 단계; 전극 패드를 확장시키기 위해서 패시베이션하고 전극 패드를 노출시키는, 패드 영역확장 및 노출 단계; 노출된 상기 전극 패드 상에 금속을 증착하여 상기 전극 패드를 확장시키는, 확장 패드 형성 단계; 및 상기 전극 패드가 확장된 상태에서 프로브 카드를 위치시켜 각각의 RGB 칩에 전기적으로 연결한 후 전기 및 광학 시험을 수행하는, 측정 단계;를 포함하여 이루어질 수 있다. Middle platform (MPF, Middle Platform) device manufacturing method for the LED chip test before transfer to the LED chip display panel according to an embodiment of the present invention for solving the above-described problems, preparing a substrate, a substrate preparation step; A pressure-sensitive adhesive coating step of coating the pressure-sensitive adhesive on the substrate; a chip disposing step of transferring or disposing the RGB chip pixel array onto the adhesive of the substrate; curing the pressure-sensitive adhesive after the RGB chip pixel arrays are transferred or disposed; a pad area expansion and exposing step of passivating the electrode pad to expand the electrode pad and exposing the electrode pad; an expansion pad forming step of expanding the electrode pad by depositing a metal on the exposed electrode pad; and a measuring step of locating the probe card in the expanded state of the electrode pad, electrically connecting to each RGB chip, and performing electrical and optical tests.
여기서, 상기 측정 단계의 전공정 또는 후공정에 RGB 픽셀별로 다이싱하는, 다이싱 단계;를 더 포함할 수 있다. Here, the method may further include a dicing step of dicing each RGB pixel in a pre- or post-process of the measuring step.
여기서, 상기 측정 단계 및 상기 다이싱 단계가 이루어진 후, 측정 결과에 따라 불량 픽셀을 픽셀 단위로 교체하는, 교체 단계;를 더 포함할 수 있다.Here, after the measuring step and the dicing step are performed, the method may further include a replacement step of replacing defective pixels in units of pixels according to a measurement result.
여기서, 상기 LED 칩들은 수평칩 베이스(Lateral Chip Base)를 사용하여, 비용 절감 효과를 극대화할 수 있다.Here, the LED chips can maximize the cost reduction effect by using a horizontal chip base.
여기서, 상기 확장 패드 형성 단계는, 상기 LED 칩들을 덮도록 패시베이션(Passivation)하는 공정과, 상기 LED 칩들에 형성된 패드를 패턴된 마스크에 의해 상기 패시베이션을 노출시키는 공정과, 패터닝된 쉐도우 마스크를 통해 상기 LED 칩들의 패드 상에 금속을 증착하여 확장된 패드를 형성하는 공정을 포함할 수 있다.Here, the step of forming the expansion pad includes a process of passivation to cover the LED chips, a process of exposing the pad formed on the LED chips to the passivation by a patterned mask, and a patterned shadow mask. and depositing metal on the pads of the LED chips to form the expanded pads.
여기서, 상기 확장 패드 형성 단계는, 상기 LED 칩들을 덮도록 패시베이션(Passivation)하는 공정과, 상기 LED 칩들에 형성된 패드를 패턴된 마스크에 의해 상기 패시베이션을 노출시키는 공정과, PR(포토레지스트)층을 형성하여 금속을 증착하고, Lift-off 공정을 통해 상기 LED 칩들의 패드 상에만 확장된 금속층이 남도록 하여 확장 패드를 형성하는 공정을 포함할 수 있다. Here, the step of forming the expansion pad includes a process of passivation to cover the LED chips, a process of exposing the passivation by a mask patterned on the pads formed on the LED chips, and a PR (photoresist) layer It may include a process of depositing a metal by forming and forming an expansion pad by allowing the metal layer to be expanded only on the pads of the LED chips through a lift-off process.
여기서, 상기 확장 패드 형성 단계를 통해 패드가 확장된 상태에서, 전기 및 광학 측정을 위해 프로브 카드에 형성된 다수의 한 쌍의 프로브 핀이 확장된 패드에 접촉되며, 상기 한 쌍의 프로브 핀의 간격은 상기 패드의 확장 전에 상기 패드의 전기적 접촉이 가능한 한 쌍의 프로브 핀의 간격 보다 커서 측정이 용이하게 할 수 있다. Here, in a state in which the pad is expanded through the step of forming the expansion pad, a plurality of a pair of probe pins formed on the probe card for electrical and optical measurement are in contact with the expanded pad, and the distance between the pair of probe pins is Before the pad is expanded, the distance between the pair of probe pins through which the pad can be electrically contacted is larger than the distance between the probe pins, so that measurement can be facilitated.
여기서, 상기 MPF는 LED 칩들이 소정의 기설정된 갯수로 행렬 배열된 유닛(Unit) MPF를 이루며, 상기 유닛 MPF 단위로 디스플레이 패널로 상기 LED 칩들이 전사되어 상기 유닛 MPF의 수량에 따라 상기 디스플레이 패널의 대면적화가 가능하다. Here, the MPF constitutes a unit MPF in which the LED chips are arranged in a matrix with a predetermined number, and the LED chips are transferred to the display panel in units of the unit MPF, and according to the quantity of the unit MPF, the display panel of the display panel. Large area is possible.
여기서, 상기 MPF에 전사 또는 배치된 LED 칩들은 RGB를 한 픽셀로 하고, 픽셀간 피치는 디스플레이 패널의 픽셀 피치와 동일하여, 상기 MPF로부터 상기 디스플레이 패널로 전사시 1;1로 대응하여 전사되어 MPF가 디스플레이 패널의 섀도우 기판의 역할을 수행할 수 있다.Here, the LED chips transferred or disposed on the MPF use RGB as one pixel, and the pitch between pixels is the same as the pixel pitch of the display panel. may serve as a shadow substrate of the display panel.
상술한 본 발명의 구성에 따르면, 베이스 기판에 형성 또는 배치된 다수의 칩의 전기적 테스트를 수행하고 디스플레이 패널의 목표 피치와 동일하게 배치된 다수의 LED 칩이 전사 배열되어, 디스플레이 패널로 1:1 전사가 가능한 MPF(Middle Platform)의 제조 방법을 제공할 수 있다. According to the above-described configuration of the present invention, an electrical test of a plurality of chips formed or disposed on the base substrate is performed, and a plurality of LED chips disposed at the same target pitch of the display panel are transferred and arranged, 1:1 to the display panel. It is possible to provide a method of manufacturing a transferable MPF (Middle Platform).
또한, 웨이퍼 단에서 LED 칩의 전기적 측정을 하지 않고, 대규모 그룹 측정이 가능한 MPF를 제공하며, 웨이퍼 단에서 칩단위 측정이 불요하므로 웨이퍼(또는 테이프)에는 마이크로 단위의 LED칩을 미세 간격으로 다수개 형성시킬 수 있어 고 비용을 절대적으로 감소시킬 수 있다.In addition, it does not perform electrical measurement of LED chips at the wafer stage, and provides MPF that enables large-scale group measurement. Since chip unit measurement is unnecessary at the wafer stage, a plurality of micro-unit LED chips are placed on the wafer (or tape) at minute intervals. can be formed, so that the high cost can be absolutely reduced.
또한, LED 칩의 픽셀 단위 전사와 CSP 영역 내에서의 영역확장을 통해 전극 패드의 확장이 가능하고, 이로 인해 프로브 카드의 측정이 용이하며, 또한 테스트 후에 불량칩의 교체가 가능한 MPF를 제공할 수 있다.In addition, it is possible to expand the electrode pad through pixel unit transfer of the LED chip and the area expansion within the CSP area, which makes it easy to measure the probe card, and also provides an MPF that can replace defective chips after testing. there is.
또한, MPF 내에서 불량 픽셀 교체가 이루어지므로 기존에 TFT Array에서 교체 시 발생할 수 있는 전기적 불량 또는 이를 방지하기 위한 고가 설비 등이 불필요하다.In addition, since defective pixels are replaced in the MPF, there is no need for electrical defects that may occur when replacing the TFT array or expensive equipment to prevent the same.
또한, 비교적 고가의 Flip chip과 수직칩 베이스의 LED 칩을 사용하지 않고 비교적 저가의 Lateral chip 베이스의 LED 칩을 사용하는 것이 가능하여 생산단가의 효율성을 갖을 수 있는 MPF를 제공할 수 있다.In addition, it is possible to use a relatively inexpensive lateral chip-based LED chip without using a relatively expensive flip chip and a vertical chip-based LED chip, so that it is possible to provide an MPF having an efficiency in production cost.
또한, 대면적의 디스플레이 장치를 신속하게 제조할 수 있는 방법을 제공할 수 있다.In addition, it is possible to provide a method for rapidly manufacturing a large-area display device.
도 1은 본 발명의 실시 형태에 따라 MPF(Middle Platform)를 제조하는 프로세스를 도시한 것이다.1 illustrates a process for manufacturing a Middle Platform (MPF) in accordance with an embodiment of the present invention.
도 2는 도 1의 S110(Glass Substrate) 및 S120(Glue Layer Coating)공정을 설명하기 위한 도면이다.FIG. 2 is a view for explaining the glass substrate (S110) and glue layer coating (S120) processes of FIG. 1 .
도 3은 도 1의 S130(RGB Transfer-Pixel Array) 및 S140 공정(Glue Layer Hard Bake)을 설명하기 위한 도면이다.3 is a view for explaining the process S130 (RGB Transfer-Pixel Array) and S140 (Glue Layer Hard Bake) of FIG. 1 .
도 4는 도 1의 S150 공정(Passivation & PAD open)을 설명하기 위한 도면이다.FIG. 4 is a view for explaining the S150 process (Passivation & PAD open) of FIG. 1 .
도 5는 도 1의 S160 공정(PAD Extension)을 설명하기 위한 도면이다.FIG. 5 is a view for explaining the process S160 (PAD Extension) of FIG. 1 .
도 6은 도 1의 S170 공정(Pixel Measurement)을 설명하기 위한 도면이다.FIG. 6 is a view for explaining a process S170 (Pixel Measurement) of FIG. 1 .
도 7은 도 1의 S180 공정(Pixel Array Dicing)을 설명하기 위한 도면이다.FIG. 7 is a view for explaining a process S180 (Pixel Array Dicing) of FIG. 1 .
도 8은 도 1의 S190 공정(Repair)을 설명하기 위한 도면이다.FIG. 8 is a view for explaining a process (Repair) S190 of FIG. 1 .
도 9는 테스트와 다이싱이 완료된 RGB 픽셀 단위를 하나의 Unit 그룹으로 하여 유닛 단위의 MPF에서 디스플레이 패널로의 1:1 전사가 이루어지는 공정을 설명하기 위한 도면이다.9 is a view for explaining a process of 1:1 transfer from the MPF unit to the display panel by using the RGB pixel units that have been tested and diced as one unit group.
실시 형태의 설명에 있어서, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. In the description of the embodiment, in the case where it is described as being formed "above (above) or under (below)" of each component, the upper (above) or lower (below) two components are in direct contact with each other or one or more other components disposed between two components.
또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In addition, when expressed as "upper (upper) or lower (lower)", the meaning of not only an upper direction but also a lower direction based on one component may be included.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.In the drawings, the thickness or size of each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description. In addition, the size of each component does not fully reflect the actual size.
본 발명에서 사용되는 칩, CSP, LED 픽셀 CSP, LED 서브 픽셀 CSP는 다음과 같이 정의될 수 있다.The chip, CSP, LED pixel CSP, and LED sub-pixel CSP used in the present invention may be defined as follows.
칩은 LED 칩, RGB 칩, R 칩, G 칩, B 칩, 미니(Mini) LED 칩 및 마이크로(Micro) LED 칩 등을 모두 포함하는 개념이다. 이하에서는, 설명의 편의 상, 상기 칩을 R 칩, G 칩 또는 B 칩으로 설명하지만, 상기 칩이 R 칩, G 칩 또는 B 칩으로만 한정되는 것은 아님에 유의해야 한다.A chip is a concept including an LED chip, an RGB chip, an R chip, a G chip, a B chip, a mini LED chip, and a micro LED chip. Hereinafter, for convenience of description, the chip will be described as an R chip, a G chip, or a B chip, but it should be noted that the chip is not limited to only the R chip, G chip, or B chip.
CSP(Chip Scale Package)는 단일 칩 패키지(single chip package)의 발전에 있어 최근 매우 주목받는 패키지로서 반도체/패키지 면적 비가 80% 이상인 단일 칩 패키지를 의미한다.A chip scale package (CSP) is a package that has recently received a lot of attention in the development of a single chip package, and refers to a single chip package having a semiconductor/package area ratio of 80% or more.
LED 픽셀 CSP는 Red LED, Green LED 및 Blue LED를 하나의 픽셀 단위로 하여 하나의 LED 픽셀을 CSP 패키징한 단일 패키지를 의미한다.LED pixel CSP refers to a single package in which one LED pixel is CSP packaged by using Red LED, Green LED, and Blue LED as one pixel unit.
LED 서브 픽셀 CSP는 Red LED, Green LED, Blue LED 각각을 하나의 서브 픽셀 단위로 하여 하나의 LED 서브 픽셀 단위로 CSP 패키징한 단일 패키지를 의미한다.The LED sub-pixel CSP refers to a single package in which each of Red LED, Green LED, and Blue LED is used as one sub-pixel unit and CSP is packaged in one LED sub-pixel unit.
웨이퍼 상에 형성된 발광체는 LED 칩으로 정의될 수 있다.A light emitting body formed on a wafer may be defined as an LED chip.
도 1은 본 발명의 실시 형태에 따라 MPF(Middle Platform)를 제조하는 프로세스를 도시한 것이다.1 illustrates a process for manufacturing a Middle Platform (MPF) in accordance with an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시 형태에 따른 MPF(Middle Platform)의 제조 방법은, 기판을 준비하는 단계(S110, Glass Substrate), 기판 상에 점착제를 코팅하는 단계(S120, Glue Layer Coating), RGB 칩 픽셀 어레이를 기판으로 전사하는 단계(S130, RGB Transfer-Pixel Array), RGB 칩 픽셀 어레이들이 전사된 후 점착제를 경화시키는 단계(S140, Glue Layer Hard Bake), 전극 패드를 확장시키기 위해서 패시베이션하고 전극 패드를 노출시키는 단계(S150, Passivation & PAD open), 기존 전극 패드에 금속으로 증착하여 패드를 확장시키는 단계(S160, PAD Extension), 전극 패드가 확장된 상태에서 프로브 카드를 위치시켜 각각의 RGB 칩에 전기적으로 연결한 후 전기 및 광학 시험을 수행하는 단계(S170, Pixel Measurement), RGB 픽셀별로 다이싱하는 단계(S180, Pixel Array Dicing), 및 측정 결과 불량 픽셀을 교체하는 단계(S190, Repair)를 포함하여 이루어질 수 있다.Referring to Figure 1, the MPF (Middle Platform) manufacturing method according to an embodiment of the present invention, preparing a substrate (S110, Glass Substrate), coating the adhesive on the substrate (S120, Glue Layer Coating) , transferring the RGB chip pixel array to the substrate (S130, RGB Transfer-Pixel Array), curing the adhesive after the RGB chip pixel arrays are transferred (S140, Glue Layer Hard Bake), passivation to expand the electrode pad and exposing the electrode pad (S150, Passivation & PAD open), depositing a metal on the existing electrode pad to expand the pad (S160, PAD Extension), placing the probe card in the expanded state to each After electrically connecting to the RGB chip, performing electrical and optical tests (S170, Pixel Measurement), dicing for each RGB pixel (S180, Pixel Array Dicing), and replacing defective pixels as a result of measurement (S190, Repair) may be included.
여기서, S170(Pixel Measurement) 공정과 S180(Pixel Array Dicing) 공정은 그 순서가 바뀌어도 무방하다.Here, the order of the pixel measurement (S170) process and the pixel array dicing (S180) process may be changed.
이후 MPF로부터 디스플레이 패널로 1:1 전사되어 하나의 디스플레이 패널을 완성할 수 있다.Thereafter, 1:1 transfer is performed from the MPF to the display panel to complete one display panel.
S110 공정과 S120 공정에서, 기판은 Glass, Quartz, PET, PC, PI 등 투명한 재질은 모두 가능하며, 점착제는 Glue layer 코팅으로서 투명하며 점착 특성이 있으면 모두 사용이 가능하고 Silicone, Epoxy, 수성 점착제 또는 유성 점착제 모두 사용이 가능하다.In the S110 process and S120 process, the substrate can be any transparent material such as Glass, Quartz, PET, PC, PI, and the adhesive is transparent as a glue layer coating. Both oil-based adhesives can be used.
S130 공정과 S140 공정에서, 각각의 RGB 픽셀의 전사는 픽 앤 플레이스(Pick & Place) 또는 Mass transfer(Stamping transfer, 롤투롤 전사 방식, 프린팅 전사 방식, 레이저 전사 방식 등) 방식에 의해 펙셀들이 형성될 수 있으며, 그 전사 방식에 구애되지 않는다.In the S130 process and the S140 process, the transfer of each RGB pixel is performed by a pick & place or mass transfer (stamping transfer, roll-to-roll transfer method, printing transfer method, laser transfer method, etc.) method to form pixels. and is not limited by its transcription method.
Glue layer hard baking은 픽셀 어레이(Pixel Array)를 고정하고, 패시베이션(Passivation) 형성을 위하여 진행하며, 반응성을 없애고 경화된 고체 상태를 유지하기 위하여 170℃에서 대략 4시간 정도의 경화 공정을 수행할 수 있다.Glue layer hard baking fixes the pixel array, proceeds to form passivation, and removes the reactivity and hardening process for about 4 hours at 170°C to maintain the hardened solid state. there is.
S150(Passivation & PAD open) 공정과 S160(PAD Extension) 공정은 마이크로 단위의 LED 칩 간의 피치 간격이 매우 협소해 이들의 전기적, 광학적 특성 측정에 어려움을 해소하기 위해서 CSP(Chip Scale Package) 단위에서 잉여 영역을 활용하여 이미 형성된 전극 패드의 면적을 확장시켜 전극 간의 피치를 확장시킴으로써 특성 측정시의 오류를 최소화하고 디스플레이 패널 전사 전에 모든 특성 평가를 완성할 수 있도록 하기 위함이다.In the S150 (Passivation & PAD open) process and S160 (PAD Extension) process, the pitch gap between the micro-unit LED chips is very narrow. This is to extend the area of the electrode pad already formed by using the area to extend the pitch between the electrodes, thereby minimizing the error in measuring characteristics and completing all characteristic evaluation before transferring the display panel.
S170(Pixel Measurement), S180(Pixel Array Dicing) 및 S190(Repair)는 디스플레이 패널로의 전사 전에 RGB 픽셀별로 각각 특성을 측정하고, 불량 픽셀은 교체하도록 하여, 완벽한 픽셀 어레이가 배열된 상태에서 1:1로 디스플레이 패널 전사 전의 사전 준비을 하게 된다.S170 (Pixel Measurement), S180 (Pixel Array Dicing), and S190 (Repair) measure the characteristics of each RGB pixel before transferring to the display panel, and replace the defective pixels, so that the perfect pixel array is arranged 1: In step 1, preparations are made in advance before the display panel transfer.
이렇듯, MPF는 디스플레이 패널로 전사되기 전의 기판이며, 각각의 RGB별로 LED 칩이 형성된 웨이퍼나 테이프로부터 전사된 기판으로서의 의미로 본 출원에서는 미들 플렛폼(Middle Platform)으로 명명한다.As such, MPF is a substrate before being transferred to a display panel, and in the present application, it is referred to as a middle platform in the sense of a substrate transferred from a wafer or tape on which an LED chip is formed for each RGB.
미들 플렛폼은 웨이퍼에서 디스플레이 패널로 전사되기 전의 독립된 기판으로서 다음의 의미를 갖는다.The middle platform is an independent substrate before being transferred from the wafer to the display panel and has the following meanings.
첫째, 미들 플렛폼에 전사된 RGB 픽셀 피치는 디스플레이 패널의 픽셀 피치와 1:1로 대응될 수 있다.First, the RGB pixel pitch transferred to the middle platform may correspond to the pixel pitch of the display panel 1:1.
둘째, 미들 플렛폼에 전사된 RGB 픽셀의 서브 픽셀 간격은 웨이퍼(또는 테이프)에 형성된 RGB들의 칩간 간격 보다 같거나 크게 형성되며, 이로써, 웨이퍼(또는 테이프) 상에 등간격으로 밀접하여 LED 칩들을 형성시킬 수 있어 웨이퍼 넷 다이(Net Die) 손해 없이 생산이 가능하여 Chip cost가 우수하다.Second, the sub-pixel spacing of the RGB pixels transferred to the middle platform is formed to be equal to or larger than the spacing between the RGB pixels formed on the wafer (or tape), thereby forming LED chips close to the wafer (or tape) at equal intervals. The chip cost is excellent as it can be manufactured without damage to the wafer net die.
셋째, 디스플레이 장치에 표면실장시 픽셀 불량시의 교체 문제를 사전에 해소하는 것이 가능하도록 디스플레이 패널 전사 전에 미들 플렛폼에서 모든 전기적, 광학적 특성을 측정하고, 오류가 있는 픽셀 단위로 교체가 이루어지도록 하여, 디스플레이 패널에서의 RGB 픽셀의 불량을 없애 양품의 장치를 생산하는 것이 가능하다.Third, all electrical and optical properties are measured on the middle platform before display panel transfer so that it is possible to solve the replacement problem in case of defective pixels during surface mounting on the display device, and replacement is made in units of pixels with errors, It is possible to produce high-quality devices by eliminating the defects of RGB pixels in the display panel.
넷째, 미들 플렛폼으로 전사된 RGB 칩은 픽셀 단위이며 행렬 배열된 유니트 단위로 디스플레이 패널로 전사되도록 미들 플렛폼의 RGB 픽셀 피치와 디스플레이 패널의 픽셀 피치가 동일하도록 미들 플렛폼의 LED 칩들이 전사 배치된 디스플레이 패널의 섀도우(Shadow)라는 데 그 의미가 있다.Fourth, the RGB chip transferred to the middle platform is a pixel unit, and the LED chips of the middle platform are transferred so that the RGB pixel pitch of the middle platform and the pixel pitch of the display panel are the same so that the RGB pixel pitch of the middle platform is transferred to the display panel in a matrix-arranged unit unit. The meaning is that it is the shadow of
다섯째, 비교적 고가의 Flip chip과 수직칩 베이스의 LED 칩을 사용하지 않고 비교적 저가의 Lateral chip 베이스의 LED 칩을 사용한 MPF라는 데 또한 의미가 있다.Fifth, it is also meaningful that the MPF uses a relatively inexpensive lateral chip-based LED chip instead of using a relatively expensive flip chip and vertical chip-based LED chip.
이하 도 2 내지 도 8를 통해 본 발명의 실시예에 따른 미들 플랫폼의 제조 공정을 상세하게 설명한다.Hereinafter, a manufacturing process of the middle platform according to an embodiment of the present invention will be described in detail with reference to FIGS. 2 to 8 .
도 2는 도 1의 S110(Glass Substrate) 및 S120(Glue Layer Coating)공정을 설명하기 위한 도면이다.FIG. 2 is a view for explaining the glass substrate (S110) and glue layer coating (S120) processes of FIG. 1 .
도 2를 참조하면, 기판(110)과 기판(110) 상에 점착층(120)을 형성한다.Referring to FIG. 2 , an adhesive layer 120 is formed on the substrate 110 and the substrate 110 .
기판(110)은 Glass, Quartz, PET, PC, PI 등 투명한 재질은 모두 가능하다.The substrate 110 may be made of any transparent material such as Glass, Quartz, PET, PC, or PI.
점착층(120)은 Glue layer 코팅으로서 투명하며 점착 특성이 있으면 모두 사용이 가능하고 Silicone, Epoxy, 수성 점착제 또는 유성 점착제 모두 사용이 가능하다.The adhesive layer 120 is transparent as a glue layer coating and can be used if it has adhesive properties, and silicone, epoxy, water-based adhesive or oil-based adhesive can all be used.
도 3은 도 1의 S130(RGB Transfer-Pixel Array) 및 S140 공정(Glue Layer Hard Bake)을 설명하기 위한 도면이다.3 is a view for explaining the process S130 (RGB Transfer-Pixel Array) and S140 (Glue Layer Hard Bake) of FIG. 1 .
S130과 S140 공정에서, LED 칩(11)들이 기판(110) 상에 전사되는 방법은 다양한 방식 예를 들면, 픽 앤 플레이스(Pick & Place), Stamping transfer, 롤투롤 전사 방식, 프린팅 전사 방식, 레이저 전사 방식 등 제한을 두지 않는다.In the processes S130 and S140, the method in which the LED chips 11 are transferred on the substrate 110 may be performed in various ways, for example, pick & place, stamping transfer, roll-to-roll transfer method, printing transfer method, laser There are no restrictions on the method of transcription, etc.
다만, 웨이퍼(또는 테이프)에 형성 배열된 RGB LED 칩들은 기판(110) 상으로 전사될 때, RGB 픽셀 피치가 이후 전사될 디스플레이 패널의 픽셀 피치와 1:1로 대응되도록 전사될 필요성은 갖는다.However, when the RGB LED chips formed and arranged on the wafer (or tape) are transferred onto the substrate 110 , it is necessary to transfer the RGB pixel pitch so that the pixel pitch of the display panel to be transferred thereafter corresponds to 1:1.
웨이퍼(또는 테이프) 상에 형성된 같은 파장 대역의 광을 방출하는 복수의 발광 소자는 적색, 녹색, 청색의 광을 방출하는 발광 칩일 수 있고, 적색, 녹색, 청색의 광의 칩은 하나의 픽셀를 이루는 것으로 정의되며, 본 발명의 실시예에 따른 MPF는 LED 칩들이 픽셀 단위로 어레이되고 픽셀 단위의 피치가 디스플레이 패널의 픽셀 피치와 동일하게 형성된다.The plurality of light emitting devices emitting light of the same wavelength band formed on the wafer (or tape) may be light emitting chips emitting red, green, and blue light, and the red, green, and blue light chips constitute one pixel. In the MPF according to the embodiment of the present invention, LED chips are arrayed in units of pixels, and the pitch of each pixel is formed to be the same as the pixel pitch of the display panel.
특히, 마이크로 LED의 크기는 1~100㎛ 수준으로 매우 작고, 마이크로 LED를 형성시키는 테이프나 웨이퍼의 단가가 비교적 높음으로 최대한 많은 수의 LED를 하나의 단위 테이프나 웨이퍼에 집적 형성시키는 것이 유리하나, 그럴 경우 LED 간의 피치 간격이 매우 협소하여 전사 및 테스트에 문제가 생길 수 있으나 본 발명에서는 이러한 부분들을 고려하게 된다.In particular, since the size of micro LED is very small (1~100㎛ level), and the unit cost of a tape or wafer to form a micro LED is relatively high, it is advantageous to integrate and form as many LEDs as possible on one unit tape or wafer, In this case, the pitch interval between the LEDs is very narrow, which may cause problems in transcription and testing, but these parts are taken into consideration in the present invention.
특히, 본 발명의 LED 칩은 수평칩을 베이스로 함으로써, 수직칩을 사용할 때 보다 대략 10배 이상의 비용을 절감할 수 있는 효과를 가져온다.In particular, since the LED chip of the present invention is based on a horizontal chip, it is possible to reduce the cost by about 10 times or more compared to when a vertical chip is used.
웨이퍼(또는 테이프)에 형성된 발광소자를 픽셀 단위로 MPF로 전사시 중간에 하나 이상의 캐리어 기판이 이용될 수도 있다.When transferring the light emitting device formed on the wafer (or tape) to the MPF pixel by pixel, one or more carrier substrates may be used in the middle.
도 3을 참조하면, 다양한 전사 방식들에 의해 RGB 칩(11R, 11G, 11B)들이 각각 기판(110)으로 RGB 칩 순으로 전사된다.Referring to FIG. 3 , the RGB chips 11R, 11G, and 11B are sequentially transferred to the substrate 110 by various transfer methods.
도 3은 기판(110) 상에 선택적 및 순차적으로 전사된 RGB LED 칩(11R, 11G, 11B)을 표현한 것이고, (B)는 평면도이며 (A)는 (B)의 X-Y의 단면도를 나타낸다.3 shows the RGB LED chips 11R, 11G, and 11B selectively and sequentially transferred onto the substrate 110, (B) is a plan view, and (A) is a cross-sectional view taken along X-Y of (B).
기판(110)에 순차적으로 전사된 LED 칩들(11R, 11G, 11B)은 하나의 LED 픽셀(20, RGB 픽셀 CSP)을 이루게 되며, 가로 및 세로 배열의 LED 픽셀(20)이 기판(110) 상에 배치될 수 있다.The LED chips 11R, 11G, and 11B sequentially transferred to the substrate 110 form one LED pixel 20, RGB pixel CSP, and horizontal and vertical LED pixels 20 are arranged on the substrate 110. can be placed in
기본적으로 기판(110)의 점착층(120) 상에 RGB LED 칩(11R, 11G, 11B)이 픽셀 단위로 소정의 피치 등간격으로 전사되거나 배치된 상태가 MPF(100)을 이루게 되며, RGB LED 칩(11R, 11G, 11B)의 패드가 확장된 상태 및 전기/광학 측정이 완료되고 불량 픽셀을 교체한 무결점 상태에서 디스플레이 패널로 전사 전의 장치를 이상적인 MPF(100)로 규정할 수 있으며, 이하에서는 MPF(100)를 기본적인 개념 및 이상적인 개념을 포함한 장치를 상정하여 설명된다. Basically, the state in which the RGB LED chips 11R, 11G, and 11B are transferred or arranged at regular intervals at a predetermined pitch in units of pixels on the adhesive layer 120 of the substrate 110 constitutes the MPF 100 , and the RGB LED In a state in which the pads of the chips 11R, 11G, and 11B are expanded and in a defect-free state in which electrical/optical measurement is completed and bad pixels are replaced, the device before transfer to the display panel can be defined as the ideal MPF 100, and in the following The MPF 100 is described assuming a device including a basic concept and an ideal concept.
도 4 및 도 5는 기판으로 전사된 RGB 칩들의 영역 확장 및 패드 확장 공정을 상세하게 설명하기 위한 도면들이다.4 and 5 are diagrams for explaining in detail an area expansion and pad expansion process of RGB chips transferred to a substrate.
도 4는 도 1의 S150 공정(Passivation & PAD open)을 설명하기 위한 도면이다.FIG. 4 is a view for explaining the S150 process (Passivation & PAD open) of FIG. 1 .
먼저, 도 3의 기판(110) 상에 LED 칩이 픽셀별로 전사 배치된 상태에서 기존의 확정전의 패드(13)을 확장시키기 위해 영역 확장을 수행한다.First, in a state in which an LED chip is transferred and disposed for each pixel on the substrate 110 of FIG. 3 , an area expansion is performed to expand the existing pad 13 before finalization.
여기서, 영역 확장은 CSP(Chip Scale Package) 내에서 LED 칩에 형성된 패드(전극)을 각각 면적(또는 부피)의 확장을 가능하게 하기 위한 사전 공정으로서, 패드의 확장을 위한 공간 확보의 의미를 가진다.Here, the area expansion is a pre-process for enabling the expansion of the area (or volume) of each pad (electrode) formed on the LED chip within the CSP (Chip Scale Package), and has the meaning of securing a space for the expansion of the pad. .
또한, 패드 확장은 기존에 가지고 있는 LED 칩의 패드를 좌우, 상하 또는 좌우 상하 방향으로 금속을 증착시켜 확대하는 것을 의미한다.In addition, pad expansion means expanding the pad of an existing LED chip by depositing metal in the left, right, up and down, or left and right up and down directions.
도 4의 (A)를 참조하면, 기판(110) 상에 RGB 칩(11R, 11G, 11B)들을 덮도록 패시베이션(130, Passivation)을 형성(또는 코팅)한다. 여기서, 패시베이션(130)은 에폭시 기반의 물질로서, SU-8일 수 있다.Referring to FIG. 4A , a passivation 130 is formed (or coated) to cover the RGB chips 11R, 11G, and 11B on the substrate 110 . Here, the passivation 130 is an epoxy-based material, and may be SU-8.
도 4의 (B)을 참조하면, 패시베이션(130)을 포토(photo) 공정과 현상(develop) 공정을 통해 패터닝한다. Referring to FIG. 4B , the passivation 130 is patterned through a photo process and a develop process.
패시베이션(130)의 패턴부(12) 내부에 하나의 LED 칩의 패드가 노출되도록 패턴된다(PAD Open).It is patterned so that the pad of one LED chip is exposed inside the pattern part 12 of the passivation 130 (PAD Open).
패터닝된 패시베이션(130)이 하나의 LED 칩을 둘러싸고, 하나의 LED 칩에 결합됨으로서 하나의 서브 픽셀 CSP가 형성될 수 있다. The patterned passivation 130 surrounds one LED chip and is coupled to one LED chip to form one sub-pixel CSP.
각각의 RGB 서브 픽셀 CSP(RGB 칩)는 기존의 RGB 서브 픽셀 CSP 보다 부피가 더 증가하게 되고, 결국 각각의 R 서브 픽셀 CSP(11R), G 서브 픽셀 CSP(11G), B 서브 픽셀 CSP(11B)의 영역이 확장된다. Each RGB sub-pixel CSP (RGB chip) has a larger volume than the conventional RGB sub-pixel CSP, and as a result, each R sub-pixel CSP (11R), G sub-pixel CSP (11G), and B sub-pixel CSP (11B). ) is expanded.
이와 같이, RGB 서브 픽셀 CSP은, RGB 칩에 패터닝된 패시베이션(포토레지스트층, 130)이 결합된 것으로서, 표면적이 처음의 LED 칩의 표면적보다 더 증가되어 패드를 확장할 수 있는 영역(패턴부(12)을 의미함)을 확보할 수 있게 된다. As such, the RGB sub-pixel CSP is a combination of passivation (photoresist layer, 130) patterned to the RGB chip, and the surface area is increased more than the surface area of the initial LED chip, so that the pad can be expanded (pattern part ( 12)) can be obtained.
마이크로 LED는 크기가 수 마이크로 단위이기 때문에, 그 만큼 패드의 크기도 작을 수밖에 없다. 하지만, 이렇게 각 칩을 서브 픽셀 CSP화 함으로써, 패드의 크기를 넓힐 수 있는 영역을 확보할 수 있다. Since the size of the micro LED is several micro units, the size of the pad is inevitably small accordingly. However, by making each chip into a sub-pixel CSP in this way, an area in which the size of the pad can be increased can be secured.
이와 같이, 하나의 서브 픽셀 CSP(Chip Scale Package)는, 칩 크기에 가까운 소형 패키지를 총칭하는 것으로, 칩 외형을 보호하는 리드 프레임과 전기적 연결을 위한 와이어가 존재하지 않는 베어 칩에 가까운 크기의 패키지일 수 있다.As described above, one sub-pixel CSP (Chip Scale Package) is a generic term for a small package close to the size of a chip, and a package having a size close to that of a bare chip in which a lead frame protecting the chip appearance and a wire for electrical connection do not exist. can be
확장 전의 LED 칩은 R 서브 픽셀 CSP(11R), G 서브 픽셀 CSP(11G), B 서브 픽셀 CSP(11B)가 하나의 RGB 픽셀 CSP(20)을 형성하나 영역 확장 및 패드 확장으로 RGB 픽셀 CSP(20)에서 확장된 RGB 픽셀 CSP를 형성시킬 수 있다.In the LED chip before expansion, R sub-pixel CSP (11R), G sub-pixel CSP (11G), and B sub-pixel CSP (11B) form one RGB pixel CSP (20), but with area expansion and pad expansion, RGB pixel CSP ( 20) may form an extended RGB pixel CSP.
도 4의 (C)를 참조하면, 패드가 오픈된 상태에서 패드가 확장될 영역 외의 영역에 PR(Photo Resist, 140)를 코팅한다.Referring to FIG. 4C , in an open state, a photo resist (PR) 140 is coated on an area other than the area where the pad is to be expanded.
이는 이후 패드가 확장될 영역에 금속을 증착시키기 위한 사전 공정에 해당된다.This corresponds to a pre-process for depositing a metal in the area where the pad is to be expanded.
도 5는 도 1의 S160 공정(PAD Extension)을 설명하기 위한 도면이다.FIG. 5 is a view for explaining the process S160 (PAD Extension) of FIG. 1 .
도 4의 공정이 수행된 후, 패드(13)을 확장 패드(13E)로 전환하기 위한 공정이 수행된다.After the process of FIG. 4 is performed, a process for converting the pad 13 into the expansion pad 13E is performed.
도 5의 (A)를 참조하면, 기판(110) 상에 금속(150)을 증착시킨다.Referring to FIG. 5A , a metal 150 is deposited on a substrate 110 .
도 5의 (B)를 참조하면, 증착된 패드에서 전극 패드만을 남기도록 PR(140) 리프트-오프(Lift-off) 공법으로 PR(140)층을 제거한다. Referring to FIG. 5B , the PR 140 layer is removed by the PR 140 lift-off method so that only the electrode pad remains from the deposited pad.
PR(140)층이 제거되면, 목적의 확장 패드(13E)만이 기존 패드(13)와 결합된 채 남아 있게 되고, 기존의 협소한 패드(13)는 확장된 영역을 갖는 확장 패드(13E)를 형성하게 된다.When the PR 140 layer is removed, only the desired expansion pad 13E remains coupled to the existing pad 13, and the existing narrow pad 13 forms the expansion pad 13E having an expanded area. will form
Lift-off 공법 외에 금속을 증착하는 방법으로 쉐도우 마스크를 이용한 방법이 이용될 수도 있다.In addition to the lift-off method, a method using a shadow mask may be used as a method of depositing a metal.
쉐도우 마스크 공정은 아래와 같다.The shadow mask process is as follows.
영역 확장된 RGB 칩(11R, 11G, 11B) 상에 패터닝된 쉐도우 마스크(미도시)를 배치한다.A patterned shadow mask (not shown) is disposed on the area-extended RGB chips 11R, 11G, and 11B.
쉐도우 마스크와 영역 확장된 RGB 칩(11R, 11G, 11B) 상에 패드 확장용 금속을 소정 두께만큼 증착한다.A metal for pad extension is deposited to a predetermined thickness on the shadow mask and the area-extended RGB chips 11R, 11G, and 11B.
패드 확장용 금속의 증착이 완료되면, 쉐도우 마스크를 제거한다. When the deposition of the metal for pad extension is completed, the shadow mask is removed.
쉐도우 마스크를 제거함으로서, 영역 확장된 RGB 칩(11R, 11G, 11B)의 패드(13) 상에 패드 확장용 금속에 의한 확장 패드(13E)가 형성될 수 있다. By removing the shadow mask, an extension pad 13E made of a pad extension metal may be formed on the pad 13 of the RGB chips 11R, 11G, and 11B of which the region is extended.
도 6은 도 1의 S170 공정(Pixel Measurement)을 설명하기 위한 도면이다.FIG. 6 is a view for explaining a process S170 (Pixel Measurement) of FIG. 1 .
도 2 내지 도 5의 공정을 통해 기판(110) 상에 LED 칩들이 전사 배치되고, 패드가 확장된 상태에서 도 6의 특성 측정이 이루어진다.The LED chips are transferred and disposed on the substrate 110 through the processes of FIGS. 2 to 5 , and the characteristics of FIG. 6 are measured in a state in which the pad is expanded.
도 6을 참조하면, 본 발명의 실시 형태에 따른 프로브 카드(160)는 기판(110)에 전사되어 있는 RGB 칩(11R, 11G, 11B)들의 전기적 및 광학적 특성을 테스트할 수 있다.Referring to FIG. 6 , the probe card 160 according to the embodiment of the present invention may test electrical and optical characteristics of the RGB chips 11R, 11G, and 11B transferred to the substrate 110 .
본 발명의 실시 형태에 따른 프로브 카드는, 베이스 기판(161), 베이스 기판에 전기적으로 연결된 프로브 핀(160a, 160b)을 포함할 수 있다.The probe card according to the embodiment of the present invention may include a base substrate 161 and probe pins 160a and 160b electrically connected to the base substrate.
베이스 기판(161)의 크기(가로*세로)는, 기판(110)의 크기(가로*세로)에 대응될 수 있다. 예를 들어, 베이스 기판(161)과 기판(110)은 크기가 동일할 수 있다.The size (horizontal*length) of the base substrate 161 may correspond to the size (horizontal*length) of the substrate 110 . For example, the base substrate 161 and the substrate 110 may have the same size.
그러나 이에 한정하는 것은 아니며, 설계 상의 필요에 따라 베이스 기판의 크기 또는 형상은 MPF의 기판(110)의 크기 또는 형상과 상이할 수도 있다.However, the present invention is not limited thereto, and the size or shape of the base substrate may be different from the size or shape of the substrate 110 of the MPF according to design needs.
베이스 기판(161)에 연결된 한 쌍의 프로브 핀(160a, 160b)은 기판(110)에 배치된 하나의 RGB 칩(11R, 11G, 11B)들과 일대일로 대응할 수 있다.The pair of probe pins 160a and 160b connected to the base substrate 161 may correspond to one RGB chip 11R, 11G, and 11B disposed on the substrate 110 on a one-to-one basis.
R 칩(11R)의 패드는 프로브 카드쪽, R 칩(11R)의 발광면은 기판(110)쪽으로 위치하고 있을 수 있다. 테스트 신호가 인가되면 빛은 패드가 가린 프로브 카드 쪽으로는 나가지 못하고, 기판(110)쪽으로 방출된다. 기판(110) 아래 쪽에 위치한 광학적 특성 검출기(적분구, 200)가 방출되는 빛을 검출할 수 있다. The pad of the R chip 11R may be positioned toward the probe card, and the light emitting surface of the R chip 11R may be positioned toward the substrate 110 . When the test signal is applied, the light does not go out toward the probe card covered by the pad, but is emitted toward the substrate 110 . An optical characteristic detector (integrating sphere, 200 ) located below the substrate 110 may detect the emitted light.
제1 프로브 핀(160a)과 제2 프로브 핀(160b)은 각 R 칩(11R), G 칩, B 칩의 전기적 및 광학적 특성을 테스트하는데 이용된다. The first probe pin 160a and the second probe pin 160b are used to test electrical and optical characteristics of the R chip 11R, G chip, and B chip, respectively.
전기적 및 광학적 특성의 테스트를 예를 들어 설명하면, 제1 프로브 핀(160a)이 R 칩(11R)의 일 패드(13E)에 접촉되고, 제2 프로브 핀(160b)이 R 칩(11R)의 다른 일 패드(13E')에 접촉되도록 한다. 여기서, 일 패드(13E)와 다른 일 패드(13E')은 확장 패드이다. Taking the electrical and optical characteristics test as an example, the first probe pin 160a is in contact with one pad 13E of the R chip 11R, and the second probe pin 160b is the R chip 11R. It is brought into contact with the other pad 13E'. Here, one pad 13E and another pad 13E' are extension pads.
이러한 접촉에 의해, R 칩(11R)과 제1 및 제2 프로브 핀(160a, 160b)이 전기적으로 연결될 수 있다. Through such contact, the R chip 11R and the first and second probe pins 160a and 160b may be electrically connected.
전기적 연결이 완료되면, 테스트 신호를 제1 및 제2 프로브 핀(160a, 160b)을 통해 R 칩(11Rx)으로 전송하여 R 칩(11Rx)에서 광이 방출되는지를 테스트(전기적 특성 테스트)하거나, 광이 방출되더라도 정상적인 파장 대역의 광이 방출되는지, 적절한 강도의 광이 방출되는지 등의 기능상의 오류가 없는지를 테스트(광학적 특성 테스트)할 수 있다.When the electrical connection is completed, a test signal is transmitted to the R chip 11Rx through the first and second probe pins 160a and 160b to test whether light is emitted from the R chip 11Rx (electrical characteristic test), or Even when light is emitted, it is possible to test whether there is any functional error such as whether light of a normal wavelength band is emitted or light of an appropriate intensity is emitted (optical property test).
또한, 본 발명의 실시 형태에 따른 프로브 카드는 각 테이프(또는 웨이퍼)에 형성된 칩의 전기적 및 광학적 특성을 테스트하는 것이 아니라, MPF의 기판(110) 상에서 패드 확장된 서브 픽셀 CSP의 전기적 및 광학적 특성을 테스트한다는 점에서 특징이 있다. In addition, the probe card according to the embodiment of the present invention does not test the electrical and optical characteristics of the chip formed on each tape (or wafer), but the electrical and optical characteristics of the sub-pixel CSP pad-extended on the substrate 110 of the MPF. It is characterized in that it tests
각 테이프 또는 웨이퍼에 형성된 칩들이 미니 또는 마이크로 칩인 경우, 테이프(또는 웨이퍼) 상에 형성된 칩들 간 피치가 굉장히 좁고, 각 칩의 일반적인 패드도 매우 작을 수밖에 없다. When the chips formed on each tape or wafer are mini or microchips, the pitch between the chips formed on the tape (or wafer) is very narrow, and the general pad of each chip is inevitably very small.
따라서, 각 웨이퍼에 형성된 칩의 전기적 및 광학적 특성을 테스트하기 위해서는 프로브 카드도 칩의 크기에 따라 작아질 수밖에 없다. Therefore, in order to test the electrical and optical characteristics of the chip formed on each wafer, the probe card is inevitably smaller according to the size of the chip.
프로브 카드의 크기가 소형화되면, 프로브 핀의 크기도 함께 작아져야 하는데, 프로브 핀의 크기를 줄인 프로브 카드를 제작하는 것이 쉽지 않고, 테스트 결과의 신뢰성도 낮아진다. If the size of the probe card is reduced, the size of the probe pin should also be reduced. It is not easy to manufacture a probe card with a reduced size of the probe pin, and the reliability of the test result is also reduced.
하지만, 본 발명의 실시 형태에서와 같이, 전사 과정에서 패드 확장된 서브 픽셀 CSP의 전기적 및 광학적 특성을 테스트하면, 서브 픽셀 CSP는 웨이퍼 상의 칩보다 영역이 확장되어 크기가 커져 있고, 패드의 표면적 또한 넓어져 있는 상태이므로, 프로브 카드로 측정 가능한 충분한 공간을 가질 수 있다. However, as in the embodiment of the present invention, when the electrical and optical properties of the pad-extended sub-pixel CSP are tested during the transfer process, the sub-pixel CSP has a larger area than the chip on the wafer, and the pad surface area is also Since it is in a wide state, it is possible to have sufficient space to measure with the probe card.
따라서, 프로브 카드를 칩의 크기에 맞춰 초소형화할 필요가 없으며, 테스트 결과의 신뢰성도 향상될 수 있고, 테스트 시간도 획기적으로 줄일 수 있다. Accordingly, there is no need to miniaturize the probe card according to the size of the chip, the reliability of the test result can be improved, and the test time can be remarkably reduced.
또한, 확장 패드(13E, 13E')는 서브 픽셀 CSP의 패드 상에 배치되고 확장 전의 패드보다 표면적이 더 넓게 형성되며, 제1 및 제2 프로브 핀(160a, 160b) 간의 간격(P1)은 확장 패드(13E, 13E')의 넓어진 간격만큼 확장된다. In addition, the expansion pads 13E and 13E' are disposed on the pad of the sub-pixel CSP and have a larger surface area than the pad before expansion, and the distance P1 between the first and second probe pins 160a and 160b is extended. The pad 13E, 13E' is extended by the widened interval.
확장 전의 패드(13)의 경우는 패드간 거리(P2)가 P1 보다 작으므로 프로브 핀(160a, 160b) 간의 간격 역시 작아져야 하므로, 특히 마이크로 단위의 LED의 경우 프로브 핀 간 간격이 더욱 작아져 측정시의 쇼트 등에 의한 오류로 인해 신뢰성이 확보되지 못하고, 테스트 자체가 어려우며 대량의 그룹 측정이 어렵게 된다. In the case of the pad 13 before expansion, since the distance between the pads (P2) is smaller than that of P1, the distance between the probe pins (160a, 160b) must also be reduced. Reliability is not secured due to errors caused by short circuits, etc., the test itself is difficult, and it is difficult to measure a large number of groups.
본 발명은 이러한 문제를 MPF(100) 내에서의 직접적인 확장 패드를 통해 해결하고 있다.The present invention solves this problem through a direct expansion pad within the MPF 100 .
테스트 측정 결과는, 전기적 특성 테스트 결과와 광학적 특성 테스트 결과를 반영한 것일 수 있다. 전기적 특성 테스트 결과에 통과하더라도 광학적 특성 테스트 결과에 통과하지 못하면, 오류로 판단할 수 있다. 반대의 경우도 마찬가지이다. 서브 픽셀 CSP들을 수리(repair)하는 방법은 서브 픽셀 CSP들 중 오류가 생긴 서브 픽셀 CSP를 제거하고, 새로운 서브 픽셀 CSP를 픽업했던 그 자리에 대체하는 픽업 플레이스 방법을 이용할 수 있다.The test measurement result may reflect the electrical characteristic test result and the optical characteristic test result. Even if it passes the electrical characteristic test result, if it does not pass the optical characteristic test result, it may be determined as an error. The opposite is also true. A method of repairing the sub-pixel CSPs may use a pickup and place method of removing an erroneous sub-pixel CSP from among the sub-pixel CSPs and replacing the new sub-pixel CSP in its place.
도 7은 도 1의 S180 공정(Pixel Array Dicing)을 설명하기 위한 도면이다.FIG. 7 is a view for explaining a process S180 (Pixel Array Dicing) of FIG. 1 .
도 7은 본 발명의 실시 형태에 따라 그룹 측정이 완료된 후 RGB 픽셀 단위로 다이싱시킨 과정을 도시한 것이다.7 illustrates a process of dicing in RGB pixel units after group measurement is completed according to an embodiment of the present invention.
도 7을 참조하면, 기판(110) 상에서 전사 배치된 LED 칩들은 프로브 카드를 통해 그룹 측정 방식으로 전기적, 광학적 측정을 통해 모든 LED 칩들이 정상 작동되는 상태를 확인한 후에(또는 교체 공정을 거친 후에) RGB 픽셀 CSP는 픽셀 단위(20E)로 각각 다이싱될 수 있다.Referring to FIG. 7 , the LED chips transferred and disposed on the substrate 110 are electrically and optically measured in a group measurement method through the probe card, after confirming that all LED chips are operating normally (or after a replacement process) Each of the RGB pixels CSP may be diced in pixel units 20E.
본 발명에서는 그룹 측정 후에 다이싱하는 것을 실시예로서 설명하였지만, 그 순서는 변경되어도 무방하다.In the present invention, dicing after group measurement has been described as an embodiment, but the order may be changed.
도 8은 도 1의 S190 공정(Repair)을 설명하기 위한 도면이다.FIG. 8 is a view for explaining a process (Repair) S190 of FIG. 1 .
도 8은 본 발명의 실시 형태에 따라 그룹 측정이 완료된 후 불량 화소가 발생된 경우, 픽셀 단위로 교체(Repair)를 행하는 공정을 나타낸 것이다.8 is a diagram illustrating a process of performing repair in units of pixels when a bad pixel is generated after group measurement is completed according to an embodiment of the present invention.
도 6과 도 7의 그룹 측정과 다이싱이 이루어진 후, 측정에 따른 불량 화소가 발생된 경우 미리 MPF(100) 단에서 픽셀 단위로 교체(Repair)가 가능하다.After the group measurement and dicing of FIGS. 6 and 7 are performed, when a defective pixel is generated according to the measurement, it is possible to replace (repair) pixel by pixel in the MPF 100 in advance.
이로써, MPF(100)로부터 디스플레이 패널로 전사가 되기 전에 모든 픽셀의 전기적, 광학적 테스트가 완료됨으로써, 디스플레이 패널에서의 픽셀 교체 공정이 불요하여 양질의 디스플레이 패널의 생산이 가능하게 된다.As a result, electrical and optical tests of all pixels are completed before being transferred from the MPF 100 to the display panel, thereby eliminating the need for a pixel replacement process in the display panel, thereby making it possible to produce a high-quality display panel.
본 발명의 실질적인 MPF는 LED 칩이 전사 배치되 후, 확장 패드 공정을 거치고, 전기적 및 광학적 테스트를 거친 후, 불량 교체까지 완료된 상태의 기판을 의미할 수 있다.The actual MPF of the present invention may refer to a substrate in a state in which an LED chip is transferred, an expansion pad process is performed, an electrical and optical test is performed, and a defective replacement is completed.
도 9는 테스트와 다이싱이 완료된 RGB 픽셀 단위를 하나의 Unit 그룹으로 하여 유닛 단위의 MPF에서 디스플레이 패널로의 1:1 전사가 이루어지는 공정을 설명하기 위한 도면이다.FIG. 9 is a view for explaining a process of 1:1 transfer from an MPF in a unit unit to a display panel using RGB pixel units that have been tested and diced as one unit group.
도 9는 테스트와 다이싱이 완료된 RGB 픽셀 단위를 하나의 Unit 그룹으로 하여 유닛 단위의 MPF에서 디스플레이 패널로의 1:1 전사를 설명하기 위한 도면들이다.FIG. 9 is a diagram for explaining 1:1 transfer from an MPF unit to a display panel by using RGB pixel units that have been tested and diced as one unit group.
다이싱된 각각의 RGB 픽셀 CSP는 정해진 다수개의 배열을 하나의 유닛 MPF(210)로 하여 디스플레이 패널로 1:1 전사될 수 있다.Each of the diced RGB pixel CSPs may be 1:1 transferred to a display panel using a plurality of predetermined arrangement as one unit MPF 210 .
또한, 여러개의 유닛 MPF(210)를 다수개 군으로 하여 더욱 큰 디스플레이 패널에 LED 칩을 전사시킬 수 있으며, 이 역시 디스플레이 패널의 LED 픽셀 피치와 MPF 상의 LED 픽셀 피치가 동일하여 1:1로 전사할 수 있고, 전사와 동시에 대면적의 디스플레이 장치가 구성될 수 있다.In addition, by using a plurality of units MPF 210 as a plurality of groups, it is possible to transfer the LED chip to a larger display panel, which is also transferred 1:1 because the LED pixel pitch of the display panel and the LED pixel pitch on the MPF are the same. and a large-area display device can be configured at the same time as the transfer.
이상에서 실시 형태들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 형태에 포함되며, 반드시 하나의 실시 형태에만 한정되는 것은 아니다. 나아가, 각 실시 형태에서 예시된 특징, 구조, 효과 등은 실시 형태들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 형태들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, etc. described in the above embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, features, structures, effects, etc. illustrated in each embodiment can be combined or modified for other embodiments by those of ordinary skill in the art to which the embodiments belong. Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.
또한, 이상에서 실시 형태를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 형태의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 형태에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In addition, although the embodiment has been mainly described in the above, this is only an example and does not limit the present invention, and those of ordinary skill in the art to which the present invention pertains in the range that does not deviate from the essential characteristics of the present embodiment. It will be appreciated that various modifications and applications not illustrated are possible. For example, each component specifically shown in the embodiment can be implemented by deformation|transformation. And differences related to such modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.
[부호의 설명][Explanation of code]
11R, 11G, 11B : LED 칩11R, 11G, 11B: LED chip
100 : MPF(Middle Platform)100: MPF (Middle Platform)
110 : 기판110: substrate
120 : 점착층120: adhesive layer

Claims (9)

  1. 기판을 준비하는, 기판 준비 단계;A substrate preparation step of preparing a substrate;
    상기 기판 상에 점착제를 코팅하는, 점착제 코팅 단계;A pressure-sensitive adhesive coating step of coating the pressure-sensitive adhesive on the substrate;
    RGB 칩 픽셀 어레이를 상기 기판의 점착제 상으로 전사 또는 배치하는, 칩 배치 단계; a chip disposing step of transferring or disposing the RGB chip pixel array onto the adhesive of the substrate;
    RGB 칩 픽셀 어레이들이 전사 또는 배치된 후 상기 점착제를 경화시키는, 경화 단계;curing the pressure-sensitive adhesive after the RGB chip pixel arrays are transferred or disposed;
    전극 패드를 확장시키기 위해서 패시베이션하고 전극 패드를 노출시키는, 패드 영역확장 및 노출 단계;a pad area expansion and exposing step of passivating the electrode pad to expand the electrode pad and exposing the electrode pad;
    노출된 상기 전극 패드 상에 금속을 증착하여 상기 전극 패드를 확장시키는, 확장 패드 형성 단계; 및an expansion pad forming step of expanding the electrode pad by depositing a metal on the exposed electrode pad; and
    상기 전극 패드가 확장된 상태에서 프로브 카드를 위치시켜 각각의 RGB 칩에 전기적으로 연결한 후 전기 및 광학 시험을 수행하는, 측정 단계;를 포함하는, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼(MPF, Middle Platform) 장치 제조 방법.In a state in which the electrode pad is extended, a probe card is placed and electrically connected to each RGB chip, and then an electrical and optical test is performed, a measurement step of performing an LED chip test before transferring to an LED chip display panel, including a Middle platform (MPF, Middle Platform) device manufacturing method for.
  2. 제1항에 있어서,According to claim 1,
    상기 측정 단계의 전공정 또는 후공정에 RGB 픽셀별로 다이싱하는, 다이싱 단계;를 더 포함하는, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법.A middle platform device manufacturing method for LED chip testing before transferring to an LED chip display panel, further comprising; a dicing step of dicing each RGB pixel in a pre-process or post-process of the measuring step.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 측정 단계 및 상기 다이싱 단계가 이루어진 후, 측정 결과에 따라 불량 픽셀을 픽셀 단위로 교체하는, 교체 단계;를 더 포함하는, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법.After the measuring step and the dicing step are performed, a replacement step of replacing defective pixels in units of pixels according to the measurement results; manufacturing a middle platform device for testing LED chips before transferring to an LED chip display panel, further comprising method.
  4. 제1항에 있어서,According to claim 1,
    상기 LED 칩들은 수평칩 베이스(Lateral Chip Base)인, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법.The LED chips are a horizontal chip base (Lateral Chip Base), a middle platform device manufacturing method for LED chip testing before transferring to an LED chip display panel.
  5. 제1항에 있어서,According to claim 1,
    상기 확장 패드 형성 단계는,The step of forming the expansion pad,
    상기 LED 칩들을 덮도록 패시베이션(Passivation)하는 공정과,A process of passivation to cover the LED chips;
    상기 LED 칩들에 형성된 패드를 패턴된 마스크에 의해 상기 패시베이션을 노출시키는 공정과,exposing the passivation by a patterned mask on the pad formed on the LED chips;
    패터닝된 쉐도우 마스크를 통해 상기 LED 칩들의 패드 상에 금속을 증착하여 확장된 패드를 형성하는 공정을 포함하는, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법.A method of manufacturing a middle platform device for testing an LED chip before transferring to an LED chip display panel, comprising the step of depositing a metal on the pads of the LED chips through a patterned shadow mask to form an extended pad.
  6. 제1항에 있어서,According to claim 1,
    상기 확장 패드 형성 단계는,The step of forming the expansion pad,
    상기 LED 칩들을 덮도록 패시베이션(Passivation)하는 공정과,A process of passivation to cover the LED chips;
    상기 LED 칩들에 형성된 패드를 패턴된 마스크에 의해 상기 패시베이션을 노출시키는 공정과,exposing the passivation by a patterned mask on the pad formed on the LED chips;
    PR(포토레지스트)층을 형성하여 금속을 증착하고, Lift-off 공정을 통해 상기 LED 칩들의 패드 상에만 확장된 금속층이 남도록 하여 확장 패드를 형성하는 공정을 포함하는, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법.Transfer to an LED chip display panel, including a process of depositing a metal by forming a PR (photoresist) layer, and forming an expanded pad by leaving only the expanded metal layer on the pads of the LED chips through a lift-off process Method of manufacturing middle platform device for LED chip test before.
  7. 제1항에 있어서,According to claim 1,
    상기 확장 패드 형성 단계를 통해 패드가 확장된 상태에서, 전기 및 광학 측정을 위해 프로브 카드에 형성된 다수의 한 쌍의 프로브 핀이 확장된 패드에 접촉되며,In a state in which the pad is expanded through the step of forming the expansion pad, a plurality of a pair of probe pins formed on the probe card for electrical and optical measurement are in contact with the expanded pad,
    상기 한 쌍의 프로브 핀의 간격은 상기 패드의 확장 전에 상기 패드의 전기적 접촉이 가능한 한 쌍의 프로브 핀의 간격 보다 큰, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법.The distance between the pair of probe pins is greater than the distance between the pair of probe pins through which the pads can be electrically contacted before the pad is expanded.
  8. 제1항에 있어서,According to claim 1,
    상기 MPF는 LED 칩들이 소정의 기설정된 갯수로 행렬 배열된 유닛(Unit) MPF를 이루며,The MPF constitutes a unit MPF in which the LED chips are arranged in a matrix with a predetermined number,
    상기 유닛 MPF 단위로 디스플레이 패널로 상기 LED 칩들이 전사되어 상기 유닛 MPF의 수량에 따라 상기 디스플레이 패널의 대면적화가 가능한, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법.A method of manufacturing a middle platform device for testing LED chips before transferring to an LED chip display panel, wherein the LED chips are transferred to the display panel in units of the unit MPF, so that the display panel can be enlarged according to the quantity of the unit MPF.
  9. 제1항에 있어서,According to claim 1,
    상기 MPF에 전사 또는 배치된 LED 칩들은 RGB를 한 픽셀로 하고, 픽셀간 피치는 디스플레이 패널의 픽셀 피치와 동일하여, 상기 MPF로부터 상기 디스플레이 패널로 전사시 1;1로 대응하여 전사되는, LED칩 디스플레이 패널로의 전사 전의 LED칩 테스트를 위한 미들 플랫폼 장치 제조 방법.The LED chips transferred or disposed on the MPF have RGB as one pixel, and the pitch between pixels is the same as the pixel pitch of the display panel, so when transferring from the MPF to the display panel, the LED chips are transferred in a 1:1 correspondence. Middle platform device manufacturing method for LED chip testing before transfer to display panel.
PCT/KR2021/009054 2020-08-13 2021-07-14 Method for manufacturing middle platform device for led chip test performed before transfer of led chips to display panel WO2022035065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200101885A KR102273832B1 (en) 2020-08-13 2020-08-13 Manufacturing method of middle platform device for testing of led chips before transferring process of led chips into display pannel
KR10-2020-0101885 2020-08-13

Publications (1)

Publication Number Publication Date
WO2022035065A1 true WO2022035065A1 (en) 2022-02-17

Family

ID=76861208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009054 WO2022035065A1 (en) 2020-08-13 2021-07-14 Method for manufacturing middle platform device for led chip test performed before transfer of led chips to display panel

Country Status (2)

Country Link
KR (1) KR102273832B1 (en)
WO (1) WO2022035065A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100295916B1 (en) * 1998-10-19 2001-10-26 황인길 Test Structure and Method for Measuring Minimum Area Design Rule
JP2005049131A (en) * 2003-07-30 2005-02-24 Seiwa Electric Mfg Co Ltd Led chip optical characteristic measuring instrument and led chip optical characteristic measuring method
KR20100132536A (en) * 2008-03-31 2010-12-17 크리 인코포레이티드 Emission tuning methods and devices fabricated utilizing methods
KR20170057512A (en) * 2015-11-16 2017-05-25 삼성전자주식회사 Light source, method of manufacturing the same, and display apparatus having the same
KR20200010590A (en) * 2017-06-20 2020-01-30 테소로 사이언티픽, 인코포레이티드 Light emitting diode (LED) test device and manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853410B1 (en) 2001-04-11 2008-08-21 소니 가부시키가이샤 Element transfer method, element arrangement method using the same, and image display apparatus production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100295916B1 (en) * 1998-10-19 2001-10-26 황인길 Test Structure and Method for Measuring Minimum Area Design Rule
JP2005049131A (en) * 2003-07-30 2005-02-24 Seiwa Electric Mfg Co Ltd Led chip optical characteristic measuring instrument and led chip optical characteristic measuring method
KR20100132536A (en) * 2008-03-31 2010-12-17 크리 인코포레이티드 Emission tuning methods and devices fabricated utilizing methods
KR20170057512A (en) * 2015-11-16 2017-05-25 삼성전자주식회사 Light source, method of manufacturing the same, and display apparatus having the same
KR20200010590A (en) * 2017-06-20 2020-01-30 테소로 사이언티픽, 인코포레이티드 Light emitting diode (LED) test device and manufacturing method

Also Published As

Publication number Publication date
KR102273832B1 (en) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022025415A1 (en) Middle platform device for transfer of led chips to display, and led chip tests before same transfer
WO2019017670A1 (en) Apparatus and method for manufacturing led module
WO2018199428A1 (en) Micro led display device and manufacturing method therefor
WO2020226306A1 (en) Micro led transfer method and display module manufactured by the same
WO2019093641A1 (en) Led display device including tft substrate having led driving units formed thereon
WO2018143682A1 (en) Light-emitting diode unit
WO2021015407A1 (en) Display module having led packages and manufacturing method thereof
WO2019045549A1 (en) Display device and method for manufacturing same
WO2020213937A1 (en) Led transferring method and display module manufactured by the same
WO2020159142A1 (en) Led transfer device comprising mask and led transferring method using the same
WO2021075794A1 (en) Manufacturing method of display apparatus, interposer substrate, and computer program stored in readable medium
WO2020204356A1 (en) Display module and method of manufacturing the same
WO2021215741A1 (en) Photosensitive transfer resin for transferring led chip, method for transferring led chip using photosensitive transfer resin, and method for manufacturing display device using same
WO2021194213A1 (en) Probe head and probe card comprising same
WO2020080779A1 (en) Light emitting diode and manufacturing method of light emitting diode
WO2021085756A1 (en) Donor substrate and led transfer method using same
WO2022035065A1 (en) Method for manufacturing middle platform device for led chip test performed before transfer of led chips to display panel
WO2021096099A1 (en) Display device manufacturing method and display device manufactured thereby
WO2019160241A1 (en) Compression bonding apparatus and method for manufacturing light source module using same
WO2012011628A1 (en) Probe card and manufacturing method therefor
WO2020096325A1 (en) Micro-led positioning error correcting carrier and micro-led transfer system
WO2021145522A1 (en) Method of manufacturing display apparatus, display apparatus, and structure for manufacturing display apparatus
WO2020013441A1 (en) Electronic apparatus, method for manufacturing led module and computer-readable recording medium
WO2021101341A1 (en) Element transfer method, and electronic panel manufacturing method using same
WO2020122694A2 (en) Display device using semiconductor light-emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21856071

Country of ref document: EP

Kind code of ref document: A1