WO2022034895A1 - 放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラム - Google Patents

放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラム Download PDF

Info

Publication number
WO2022034895A1
WO2022034895A1 PCT/JP2021/029602 JP2021029602W WO2022034895A1 WO 2022034895 A1 WO2022034895 A1 WO 2022034895A1 JP 2021029602 W JP2021029602 W JP 2021029602W WO 2022034895 A1 WO2022034895 A1 WO 2022034895A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
radionuclide
spectrum
radiation
distribution
Prior art date
Application number
PCT/JP2021/029602
Other languages
English (en)
French (fr)
Inventor
貴寿 花田
Original Assignee
日本メジフィジックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メジフィジックス株式会社 filed Critical 日本メジフィジックス株式会社
Priority to JP2022542862A priority Critical patent/JPWO2022034895A1/ja
Priority to EP21855974.8A priority patent/EP4198575A4/en
Priority to CN202180056762.1A priority patent/CN116034292A/zh
Priority to US18/040,272 priority patent/US20230288585A1/en
Publication of WO2022034895A1 publication Critical patent/WO2022034895A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry

Definitions

  • the present invention relates to a radionuclide analyzer, a radionuclide analysis method and a radionuclide analysis program.
  • the present invention has been made in view of these points, and it is possible to analyze the energy distribution of a specific nuclide or the position distribution in a sample from a sample in which radionuclides that emit radiation of a plurality of energies are distributed with high accuracy. It relates to a radionuclide analyzer, a radionuclide analysis method and a radionuclide analysis program that can be performed.
  • the radioactive nuclei species analyzer of the present invention includes a radiation detector that detects the energy of ⁇ -rays emitted from the radioactive nuclei contained in the sample and another energy that is energy of other radiation different from the energy of the ⁇ -rays.
  • the nuclear type identification unit that identifies the radioactive nuclei species that emitted radiation by comparing the measurement spectrum, which is the energy spectrum of the ⁇ -ray detected by the radiation detection unit or the energy spectrum based on the other energy, with the standard spectrum, and the nuclei species identification unit. It has an energy distribution of a specific nuclei species specified by the unit or a distribution acquisition unit for obtaining a position distribution in the sample.
  • the radioactive nuclei species analysis program of the present invention tells a computer the detection result of the ⁇ -ray energy emitted from the radioactive nuclei contained in the sample and another energy which is the energy of other radiation different from the ⁇ -ray energy.
  • An input function that accepts the input of the information to be shown, and a nucleus species identification function that identifies the radioactive nuclei species that emitted radiation by comparing the measurement spectrum, which is an energy spectrum based on the input ⁇ -ray energy or another energy, with a standard spectrum.
  • the distribution acquisition function for obtaining the distribution of the specific nuclei specified by the nuclei identification function in the sample is realized.
  • the method for analyzing a radioactive nuclei of the present invention is a radiation detection step for detecting the energy of ⁇ -rays emitted from a radioactive nuclei contained in a sample and another energy which is energy of another radiation different from the energy of the ⁇ -rays.
  • the nuclear species identification step of specifying the radioactive nuclei species that emitted radiation by comparing the measurement spectrum, which is the energy spectrum of ⁇ -rays detected in the radiation detection step or the energy spectrum based on the other energy, with the standard spectrum, and the nuclei species identification step. It includes a distribution acquisition step of obtaining a distribution of a specific nuclei species specified in the step in the sample.
  • a radionuclide analyzer and a radionuclide analysis method capable of analyzing the energy distribution of a specific nuclide or the position distribution in a sample from a sample in which radionuclides emitting radiation of different energies are distributed with high accuracy. And radionuclide analysis programs can be provided.
  • FIG. 1A is a diagram showing list data according to an embodiment of the present invention
  • FIG. 1B is a diagram for explaining an energy distribution and a position distribution of radionuclides created from the list data.
  • FIG. 1 (c) is a diagram for explaining variations in position distribution. It is a figure for demonstrating the radionuclide analyzer of one Embodiment of this invention. It is a flowchart for demonstrating the radionuclide analysis method performed by the analysis processing apparatus shown in FIG.
  • FIG. 4A shows an ideal energy spectrum measured by the present apparatus
  • FIG. 4B shows an example of overlapping measurement spectra.
  • 5 (a) and 5 (b) are diagrams for explaining the comparison between the measured spectrum and the standard spectrum.
  • FIG. 8A is a diagram showing another process of step S105 of FIG.
  • FIG. 8B is a diagram showing resorted data after the data has been removed.
  • FIG. 9A is a diagram showing a group of measurement spectra.
  • 9 (b) shows the standard spectrum of the measurement spectrum shown in FIG. 9 (a).
  • FIG. 9 (c) shows the count number for each energy of the standard spectrum shown in FIG. 9 (b).
  • FIG. 9D shows the correction spectrum.
  • 9 (e) shows the count number for each energy of the correction spectrum shown in FIG.
  • FIG. 10A is a diagram showing the position distribution of a plurality of radionuclides.
  • FIG. 10B is an image showing the position information of the data, and shows an example including other radionuclides.
  • FIG. 10 (c) is a diagram showing the position information of the data as an image, and shows an example in which other radionuclides are not included.
  • FIG. 1 (a), 1 (b), and 1 (c) are diagrams for explaining the concept of analysis of radionuclides of the present invention.
  • a section of a living body to which a drug containing a radionuclide-labeled compound is administered is cut out to prepare a sample, and the energy of ⁇ -rays emitted from the sample and other radiation different from the energy of this ⁇ -rays are used.
  • Energy (hereinafter referred to as "another energy”) is detected by a radiation detector.
  • FIG. 1A shows data (list data) associated with the detected radiation energy, detection position, and detection timing
  • FIG. 1B shows an energy spectrum (energy distribution) created from the list data. It is a figure for demonstrating the position distribution of a radioactive nucleus species.
  • FIG. 1 (c) is a diagram for explaining variations in position distribution.
  • the list data is data in which the energy of the input radiation and its detection position (hereinafter, both are collectively referred to as radiation data) are sequentially recorded according to the input timing (time).
  • the horizontal axis is the kinetic energy shown in FIG. 1 (a) (hereinafter, simply referred to as “energy” and the unit is keV), and the vertical axis is the number of times radiation of this energy is detected.
  • the energy spectrum S1, S2, S3 created by the above, and the distribution image F of the radioactive nuclei species created from the energy spectrum S1, S2, S3.
  • the count number on the vertical axis represents the amount of radiation having this energy.
  • the portion on the high energy side of the energy spectrum S1 and the portion on the low energy side of the energy spectrum S2 appear in the same energy range (even if the energy spectra overlap). Note).
  • the count number is zero or less than or equal to the measurement error level between the portion on the high energy side of the energy spectrum S2 and the portion on the low energy side of the energy spectrum S3. That is, when the count numbers between the spectra adjacent to each other are low in the measurement error level, as in the case of the energy spectra SA to the energy spectra SD shown in FIG. 4 (a) described later, the energy spectra overlap each other. Call it not.
  • the distribution image F is a schematic diagram showing the state of the position distribution of radionuclides in the image of the sample for which radiation is detected, and each radionuclide distinguished by the difference in shading is the image. The darker the shade, the higher the density.
  • the distribution image F shows the distribution of radionuclides corresponding to the energy spectra S1, S2, and S3 in an superimposed manner.
  • the energy spectra S1, S2, and S3 shown in FIG. 1 (b) correspond to the radionuclides whose peak energy emitted radiation. From this, the energy spectrum of the radiation emitted from the known radionuclide is stored as a standard spectrum, and the radionuclide with the energy represented by the measurement spectrum is generated by comparing it with the measured measurement spectrum. Can be identified. Since the peak shapes (peak height and peak area) of the energy spectra S1, S2, and S3 indicate the amount of radionuclides, the present invention presents each radionuclide present in the sample as shown in FIG. 1 (b). Energy distribution can be obtained. Further, by associating such data with the detection position of radiation, the present invention can obtain the position distribution (distribution image F) of the radionuclide.
  • the present invention isolates the radionuclides that have emitted radiation in the overlapping region of the energy spectrum, and accurately determines the energy distribution and position distribution of each radionuclide.
  • the present invention creates distribution images F1, F2, F3-1, F3-2, F3-3 with high accuracy. It is possible to grasp the behavior of each radionuclide in the living body and the change in the type and concentration of the generated progeny nuclide.
  • FIG. 2 is a diagram for explaining the radionuclide analyzer 1 of the present embodiment.
  • the radionuclide analyzer 1 has a radiation detection unit that detects the energy of ⁇ rays emitted from the radionuclide contained in the sample and another energy.
  • the radionuclide analyzer 1 of FIG. 2 has a radiation detection unit and a detection position acquisition unit that acquires the detection position of the radiation whose energy is detected by the radiation detection unit.
  • the radiation data detection unit 15 functions as a radiation detection unit and a detection position acquisition unit.
  • the radiation data detection unit 15 is provided with a small arithmetic processing device, and the radiation data detection unit 15 creates list data in which the energy and the detection position are associated with each other. As shown in FIG. 1A, the list data created by the radiation data detection unit 15 records the energy and the detection position in the order of detection timing in association with each other. Further, in the present embodiment, the radiation data detection unit 15 counts the number of detections of radiation having the same energy to obtain the count number.
  • the radiation data detection unit 15 detects the energy of ⁇ rays emitted from the radionuclide contained in the sample. Further, the radiation data detection unit 15 emits another energy, that is, ⁇ -rays emitted by another type of radionuclide different from the radionuclide that emitted this ⁇ -ray, or radiation other than ⁇ -rays such as ⁇ -rays and ⁇ -rays. Is also detected.
  • ⁇ rays and other radiations may be collectively referred to as radiations hereafter.
  • the radionuclide analyzer 1 is provided with an analysis processing apparatus 10.
  • the analysis processing device 10 has an arithmetic processing unit 11, and the arithmetic processing unit 11 compares a measurement spectrum, which is an energy spectrum based on the detected ⁇ -ray energy or another energy, with a standard spectrum, and emits radiation of this energy. It has a nuclide identification unit 22 that identifies the radioactive nuclide that released the radiation, and a distribution acquisition unit 23 that obtains the energy distribution of the specified nuclide (hereinafter also referred to as “specific nuclide”) and the position distribution in the sample. Further, the analysis processing device 10 has a built-in memory for storing the standard spectrum data (standard spectrum data) 12 used for identifying the radionuclide.
  • standard spectrum data standard spectrum data
  • the arithmetic processing unit 11 includes an image generation unit 24 that generates an image representing this distribution based on the acquired distribution.
  • the analysis processing device 10 is composed of a known computer device, and is composed of hardware such as a CPU (Central Processing Unit), a memory, an input / output interface, and a display screen, and a program for operating the hardware. ..
  • the standard spectrum data 12 may be stored in a memory built in the analysis processing device 10 or may be stored in an external memory. Further, it may be acquired through a network line.
  • the radiation data detection unit 15 one including a strip detector can be used.
  • the double-sided semiconductor strip detector (DSSD) is provided so that the strip electrodes corresponding to the x-axis on one side and the y-axis on the other side of the flat plate are orthogonal to each other.
  • Charged particles generate electron-hole pairs according to energy in the detector, the electrodes detect this, and the electrodes at the passage points of the charged particles output signals in response to the charged particles passing between the strip electrodes. do.
  • the spatial resolution of detection increases as the spacing between the strip electrodes becomes narrower.
  • the radiation data detection unit 15 is not limited to the configuration using the strip detector.
  • an ⁇ -ray detector such as an ⁇ -ray spectrometer can be used.
  • an ⁇ -ray detector is used for the radiation data detection unit 15, a combination capable of detecting ⁇ -rays and ⁇ -rays may be further combined.
  • the radiation data detected by the radiation data detection unit 15 is input to the nuclide identification unit 22.
  • the nuclide identification unit 22 creates a measurement spectrum which is an energy spectrum of radiation measured from the energy of radiation and the number of detections thereof. Then, the measured spectrum is compared with the standard spectrum included in the standard spectrum data 12 to identify the radionuclide showing the measured spectrum.
  • the distribution acquisition unit 23 integrates the spectrum obtained by correcting the standard spectrum corresponding to the created measurement spectrum in an appropriate energy range, and quantifies the amount of radioactivity in the measurement spectrum to distribute the energy of the radioactive nuclei. To get.
  • the distribution acquisition unit 23 can obtain not only the energy distribution of the measurement spectrum but also the position distribution of the radionuclide in at least a part of the sample.
  • the sample of this embodiment has a planar shape, and in this embodiment, for example, a living tissue is sliced.
  • the distribution acquisition unit 23 sets the detection range from the detection position where the radiation in an arbitrary energy range of the radionuclide is detected.
  • the in-plane position distribution of the radionuclide sample is obtained from the number of detections of radiation in this range.
  • the image generation unit 24 colors the image according to the distribution state of the radionuclide acquired by the distribution acquisition unit 23, and visualizes the concentration and spread of the radionuclide in the image.
  • FIG. 3 is a flowchart for explaining a radionuclide analysis method performed by the analysis processing apparatus 10 shown in FIG. It should be noted that this flowchart is executed by each function realized by the hardware and software of the analysis processing device 10 configured as a computer. That is, the radionuclide analysis method is realized by executing a computer program stored in the memory in the analysis processing device 10 by the CPU.
  • the flowchart shown in FIG. 3 includes an input step of inputting ⁇ -ray energy and another energy.
  • the radiation data detection unit 15 can specify the radiation detection position, the radiation detection position is input at the same time as the radiation energy detection. In FIG. 3, such a step corresponds to step S101.
  • the radionuclide analysis method includes a radionuclide identification step of comparing a measurement spectrum based on ⁇ -ray energy or another energy with a standard spectrum and identifying the radionuclide that emitted radiation having this energy.
  • the nuclide identification step corresponds to steps S102 and S103.
  • the radionuclide analysis method of the present embodiment includes a distribution acquisition step of obtaining a distribution (energy distribution and position distribution) in a sample of a specific nuclide.
  • the distribution acquisition step corresponds to steps S104 to S110.
  • the flowchart of FIG. 3 includes an image creation step of creating an energy spectrum or a distribution image based on the acquired distribution (step S111).
  • FIG. 4A and 4 (b) are diagrams for explaining the nuclide identification process.
  • FIG. 4A shows an ideal energy spectrum obtained by the radionuclide analyzer 1 of the present embodiment
  • FIG. 4B shows an example of overlapping measurement spectra.
  • the horizontal axis shows the radiation energy (keV)
  • the vertical axis shows the number of detections (times) of the energy of each radiation.
  • the energy spectra SA, SB, SC, and SD shown in FIG. 4A appear without overlapping with other energy spectra.
  • Such energy spectra SA, SB, SC, SD have a clear profile, and it is possible to clearly identify the radionuclide and the amount of radioactivity.
  • the falling edge on the low energy side is gentler than the rising edge on the high energy side, and they overlap with the adjacent energy spectra. ing.
  • the region where adjacent energy spectra overlap is also referred to as an overlapping region ⁇ a.
  • the measurement spectra Sa, Sb, Sc, and Sd shown in FIG. 4B are energy spectra of radiation derived from the same or different radionuclides, respectively.
  • the measurement spectra Sa, Sb, Sc, and Sd are measurement spectra based on the ⁇ -ray energy and another energy, and the ⁇ -ray energy and another energy are from radioactive nuclei belonging to the same or different decay series. It is released.
  • the same decay chain refers to a series of conversions of a series of nuclides in which one parent nuclide decays to sequentially produce a daughter nuclide, a granddaughter nuclide, and a progeny nuclide.
  • neptunium series that change, for example, 225 Ac (actinium), 221 Fr (francium), 217 At (astatin), 213 Bi (bismuth), 209 Pb (lead).
  • the decay series for example, the thorium series, which is a decay series from 232 Th (thorium) to 208 Pb (lead), and the decay series from 238 U (uranium) to 206 Pb (lead). There are uranium series and so on.
  • the measurement spectrum Sa indicates a radionuclide A
  • the measurement spectrum Sb indicates a radionuclide B
  • the measurement spectrum Sc indicates a radionuclide C
  • the measurement spectrum Sd indicates a radionuclide D, respectively.
  • the nuclide identification unit 22 creates the measurement spectrum shown in FIG. 4B using the energy and the count value of the radiation output from the radiation data detection unit 15 (step S102).
  • the creation of the measurement spectrum can be realized by plotting the number of detections corresponding to the energy of the radiation.
  • a spectrum including a plurality of measurement spectra Sa, Sb, Sc, and Sd is created, and the measurement spectrum includes a group of spectrum groups of Sa, Sb, Sc, and Sd.
  • FIG. 5 (a) and 5 (b) are diagrams for explaining a process of correcting the amount of radioactivity in the measurement spectra Sa and Sb having overlapping regions.
  • FIG. 5A is a diagram for explaining a process for determining the amount of radioactivity in the measurement spectrum Sa
  • FIG. 5B is a diagram for explaining a process for determining the amount of radioactivity in the measurement spectrum Sb. Is. With respect to the measurement spectrum Sa having the highest energy among the plurality of measurement spectra Sa, Sb, Sc, and Sd shown in FIG. The point is Pm, and the point on the lower energy side of the maximum point Pm and the number of counts monotonically decreasing from the maximum point Pm starts to increase is defined as the turning point Pc.
  • the count number at the turning point Pc is a value exceeding the measurement error level, and the measurement spectrum Sa and the measurement spectrum Sb adjacent thereto overlap each other.
  • the influence of adjacent measurement spectra can be suitably removed, and the amount of radioactivity applied to the target measurement spectrum can be calculated with high accuracy. That is, in the measurement spectrum Sa having the highest energy among the overlapping measurement spectra, the count numbers of the other measurement spectra do not substantially affect the profile from the rising point Pu to the turning point Pc.
  • the nuclide identification unit 22 scans in order from the high energy side to the low energy side of the energy range with respect to Sa that first appears at the highest energy in the measurement spectra Sa from the overlapping measurement spectra Sa. At this time, the nuclide specifying unit 22 recognizes the rising point Pu, the maximum point Pm, and the turning point Pc, and identifies the standard spectrum corresponding to the measurement spectrum Sa by at least the energy value corresponding to the maximum point Pm. Further, the standard spectrum corresponding to the measurement spectrum Sa may be specified by integrating the energy value corresponding to the rising point Pu and / or the energy value corresponding to the turning point Pc. Then, a standard spectrum having the same energy value corresponding to at least the maximum point Pm is selected from the standard spectrum data 12.
  • the radionuclide corresponding to this standard spectrum (here, the radionuclide A) is identified as a radionuclide having an energy distribution represented by the measurement spectrum Sa. Further, the same scan is repeated to identify the radionuclide B as a radionuclide having an energy distribution represented by the measurement spectrum Sb (step S103).
  • the standard spectrum data 12 of the present embodiment data including the spectra of the administered radionuclide and its progeny nuclides are stored as candidates.
  • the nuclei species specifying unit 22 may scan a plurality of measurement spectra including the measurement spectrum Sa depending on the state of the measurement spectrum, and the horizontal axes of FIGS. 4 (a) and 4 (b) may be scanned. It may specify the standard spectrum of a plurality of energy spectra by the energy of.
  • the standardized standard spectrum may be deformed according to the maximum point Pm of the measurement spectrum Sa.
  • the maximum point Pm of the measurement spectrum shows a value slightly different from the actual energy value due to the influence of scattering or the like.
  • the rising point of the standard spectrum may be matched with the rising point Pu of the measurement spectrum Sa on the highest energy side of the overlapped measurement spectra. By doing so, it is possible to eliminate the influence of other overlapping measurement spectra and the influence of scattering.
  • the distribution acquisition unit 23 quantifies the radioactivity in order from the radionuclide on the high energy side, groups the data of the radionuclide, and then removes it from the list data. Further, the distribution acquisition unit 23 further processes the data on the low energy side in the same manner to quantify the radioactivity and group the detection data for each radionuclide. In this process, the distribution acquisition unit 23 quantifies the amount of radioactivity from the measurement spectrum Sa containing the higher energy of the measurement spectra Sa and Sb whose energy ranges overlap as shown in FIG. 5A (step). S104). Then, the detection data derived from the quantified radionuclide is grouped (step S105) and removed from the list data (step S106).
  • a new spectrum group is created from the remaining list data as shown in FIG. 5 (b) (step S107), and as shown in FIG. 5 (b), the radioactivity of the measured spectrum Sb containing the next highest energy.
  • the amount is quantified (step S108).
  • the detection data derived from the quantified radionuclide is grouped (step S109) and removed from the list data (step S110).
  • the measurement spectrum containing higher energy in the present embodiment is the measurement spectrum Sa containing the highest energy among the measurement spectra to be quantified for radioactivity.
  • the present embodiment is not limited to such an example, and the radioactivity is quantified from a plurality of measurement spectra having a relatively high energy according to the tendency of the profile of the measurement spectrum. All you need is.
  • the radioactivity of the measurement spectra derived from other radioactive nuclei affects the profile from the rising point Pu to the turning point Pc. It is done by not doing. That is, the measurement spectra Sa, Sb, Sc, and Sd to be analyzed in the present embodiment all have an overlapping region ⁇ a or an overlapping region ⁇ b (FIG. 5 (b)) in which the tails overlap each other at the falling edges. Occurs. Therefore, in the present embodiment, the measurement spectrum Sa on the high energy side does not include the tail of another spectrum, and the measurement spectrum Sb on the low energy side includes the tail of the measurement spectrum Sa.
  • the overlapping region ⁇ b of the measurement spectrum Sb affects the measurement spectrum on the lower energy side.
  • the measurement spectrum Sa on the high energy side is first removed from the spectrum group, and the influence of the measurement spectrum Sa is removed from the measurement spectrum Sb on the low energy side.
  • the distribution acquisition unit 23 selects a standard spectrum Ssa (indicated by a broken line) corresponding to the radionuclide A specified from the spectrum group having overlapping energy ranges.
  • a spectrum Ssa'(FIG. 9 (d), hereinafter referred to as "corrected spectrum") corrected based on the turning point Pc from the rising point Pu of the measurement spectrum Sa is created.
  • the correction spectrum Ssa' is integrated in the range of an arbitrary numerical value (for example, infinity) from 0, and the value obtained by the integration is estimated to be the amount of total radioactivity of the radionuclide A.
  • the amount of radioactivity including not only the non-overlapping region of the measurement spectrum Sa but also the overlapping region Oa.
  • the profile from the rising point Pu to the turning point Pc of the measurement spectrum Sb is influenced by the radionuclide A by overlapping with the measurement spectrum Sa. Therefore, when the spectrum Ssb'corrected from the standard spectrum Ssb is integrated in the range of 0 to infinity with respect to the measurement spectrum Sb having a shape that remains overlapped with the measurement spectrum Sa, the amount of radioactivity is quantified larger than the actual amount. It will be.
  • the present embodiment as shown in FIG.
  • the detection derived from the radionuclide A is not included by subtracting the correction spectrum Ssa'from the spectrum group having the overlapping energy ranges. , A new spectrum group can be obtained.
  • the standard spectrum Ssb is selected from the standard spectrum data 12 and corrected, and the obtained spectrum Ssb'is in the range of 0 to an arbitrary numerical value (for example, infinity).
  • the amount of radioactivity can be calculated by integrating with.
  • FIG. 6 is a schematic diagram for explaining the effect of the above treatment, and the bar graph of FIG. 6 shows the original radiation of the radionuclide A or the radionuclide B when the radioactivity in the region of each item is quantified. It shows how much quantitative result is obtained for the ability.
  • the standard spectrum Ssa is corrected in the range from the rising point Pu to the turning point Pc with respect to the measurement spectrum Sa in FIG. 5A, and the corrected spectrum Ssa'is the same. It is the result quantified in the range of. In this result, since the tail of the measurement spectrum Sa is not included, it is underestimated from the original radioactivity of the radionuclide A.
  • the standard spectrum Ssa is corrected in the range from the rising point Pu to the turning point Pc with respect to the measurement spectrum Sa in FIG. 5A, and the corrected spectrum Ssa'is set from 0 to infinity. It is the result quantified in the range. In this result, although the tail of the measurement spectrum Sa is included in the region where the energy ranges overlap, the original amount of radioactivity of the radionuclide A can be obtained.
  • the “Sa tail-containing Sb / total region” corrects the standard spectrum Ssb in the range from the rising point Pu to the turning point Pc with respect to the measurement spectrum Sb having a shape that remains overlapped with the measurement spectrum Sa in FIG. 5 (a). , Is the result of quantifying the correction spectrum Ssb'in the range from 0 to infinity. Since the entire region contains the tail of the measured spectrum Sa, the results are overestimated over the original radioactivity of the radionuclide B. Further, in this result, the shape of the measurement spectrum Sb may be distorted due to the inclusion of the tail of the measurement spectrum Sa, and the correction using the standard spectrum Ssb may not be performed correctly.
  • the “Sa tail-containing Sb / non-overlapping region” is the standard spectrum Ssb in the range from the rising point Pu to the turning point Pc with respect to the measurement spectrum Sb having a shape that remains overlapped with the measurement spectrum Sa in FIG. 5 (a). Is corrected, and the correction spectrum Ssb'is quantified in the same range. While the non-overlapping region does not include the tail of the measurement spectrum Sb, the tail of the measurement spectrum Sa is included, so that the quantification result is different from the original radioactivity of the radionuclide B. Further, since the tail of the measurement spectrum Sa is included in the non-overlapping region, the shape of the measurement spectrum Sb may be distorted, and the correction using the standard spectrum Ssb may not be performed correctly.
  • the standard spectrum Ssb is corrected in the range from the rising point Pu to the turning point Pc with respect to the measurement spectrum Sb in FIG. 5 (b), and the corrected spectrum Ssb'is in the same range. It is the result quantified in. Since the tail portion of the measurement spectrum Sa and the tail portion of the measurement spectrum Sb are not included, it is underestimated from the original radioactivity of the radionuclide B.
  • “Sa tail-free Sb / whole region” corrects the standard spectrum Ssb in the range from the rising point Pu to the turning point Pc with respect to the measurement spectrum Sb in FIG. This is the result of quantification in a large range. In this result, the original amount of radionuclide of radionuclide B can be obtained by removing the influence of other radionuclides from the spectrum group having overlapping energy ranges.
  • the distribution acquisition unit 23 has a distribution acquisition unit 23 as shown in FIG. From the list data shown in (a), the detection data of the radioactive nuclei on the high energy side is grouped in an arbitrary energy range (step S105), and the grouped data is removed from the list data (step S106).
  • step S105 the detection data of the radioactive nuclei on the high energy side is grouped in an arbitrary energy range
  • step S106 the grouped data is removed from the list data
  • FIG. 7 is a diagram for explaining a part of the process of step S105, and is a list data in which the list data shown in FIG. 1A is sorted in order from the one having the highest energy regardless of the detection time (hereinafter, the list data). , Also referred to as "resort data"). Further, in the resorted data, the energy is associated with the detection position where this energy is detected by expressing it in coordinates.
  • the distribution acquisition unit 23 divides the energy of the detected radionuclide into a plurality of groups according to the energy range of each radionuclide. At this time, in the present embodiment, the energy data included in the resort data is divided by the energy corresponding to the rising point Pu to the turning point Pc of the measurement spectrum Sa shown in FIG. 5A to form a group Gsa.
  • the group Gsa contains data constituting the non-overlapping region of the measurement spectrum Sa, and is composed of detection data derived only from the radionuclide A.
  • FIG. 8A is a diagram showing another process of step S105.
  • step S105 it is estimated that the specific data (d1 to d6 in this case) is the detection derived from the radionuclide A from the data not included in the group Gsa in the resorted data.
  • the data obtained by adding specific data to the group Gsa becomes the group GA, and is distinguished from other detection data as a detection data group derived from the radionuclide A.
  • FIG. 8B shows the data obtained by removing the detection data group corresponding to the group GA from the resorted data of FIG. 7. Since the resort data shown in FIG.
  • the distribution acquisition unit 23 measures the standard spectrum Ssa among the detection data whose detection position is in the same or arbitrary range as the condition specified in advance (that is, the position is the same as the group Gsa). It is estimated that the count number at any energy of any width derived from the correction spectrum Ssa'corrected to is derived from the detection of radionuclide A, and the detection data for the count number is estimated. Is added to the group Gsa to form the group GA.
  • the detection position satisfies the condition specified in advance, but the count number does not satisfy the condition at any energy of an arbitrary width, that is, the detection that the count number is exceeded and is not included in the group GA.
  • the data mean that there is a radionuclide at the same location as the radionuclide A, which has a lower energy than the radionuclide A.
  • the distribution acquisition unit 23 includes data d1 and d2 corresponding to the coordinates that are not included in the group Gsa and are close to or match the coordinates included in the group Gsa among the resorted data in FIG. 8A. , D3, d4, d5, d6 are selected.
  • the proximity of the coordinates can be determined, for example, by setting a minimum range including all the coordinates included in the group Gsa and determining the positional relationship with the set range. In this embodiment, for example, when the coordinates to be determined are within the set range, or when the coordinates to be determined are within the range and the distance below the arbitrarily set threshold value, the coordinates to be determined are included in the group Gsa. It can be determined that it is close to the detection position.
  • the distribution acquisition unit 23 calculates the count number in any energy of an arbitrary width among the detected data derived from the radioactive nuclei species A based on the correction spectrum Ssa', and "the data included in the group Gsa". From the "data corresponding to the coordinates close to the detection position", it is estimated that the data for the above count number for any energy of any width is the detection data derived from the radioactive nuclei species A, and it is assigned to the group Gsa. In addition, it will be group GA. The data group separated into group GAs is removed as data indicating the energy released from the radionuclide A (step S106) and is not used in the subsequent treatment of the lower energy nuclides.
  • FIG. 9 (a), 9 (b), 9 (c), 9 (d), and 9 (e) are schematic views for explaining the calculation of the count number at any energy of any width.
  • FIG. 9A shows a group of measurement spectra.
  • FIG. 9B shows a standardized standard spectrum Ssa for the measurement spectrum Sa constituting the spectrum group shown in FIG. 9A.
  • FIG. 9 (c) shows the count number Csa for any energy of any width in the standard spectrum Ssa.
  • FIG. 9D shows a correction spectrum Ssa ′ obtained by correcting the standard spectrum Ssa in the non-overlapping region of the measurement spectrum Sa.
  • FIG. 9 (e) shows the count number Csa'for any energy of any width in the correction spectrum Ssa'.
  • the count number Csa derived from the radionuclide A constituting the measurement spectrum Sa corrects the standard spectrum Ssa based on the non-overlapping region (from the rising point Pu to the turning point Pc) of the measurement spectrum Sa, and obtains the corrected spectrum Ssa'. It can be calculated from any energy of any width in the range of constituent energies.
  • the group GA is created by adding the detection data of the count number Csa to the group Gsa for any energy of each arbitrary width from the resorted data satisfying the same detection position condition as the group Gsa. According to such processing, the data having the same position information as the non-overlapping region of the measurement spectrum Sa is grouped and sorted by the number of data according to the amount of radioactivity of the radionuclide A including the overlapping region. Is possible.
  • the distribution acquisition unit 23 obtains a histogram (new spectrum) from the resorted data (denoted as “residual data” in FIG. 3) obtained by removing the group GA data from the measurement spectrum data created by the nuclide identification unit 22. Create (step S107). Since the new resort data does not include the detection data derived from the radionuclide A, a spectrum group that does not include the measurement spectrum Sa, that is, a new spectrum group shown in FIG. 5B can be obtained. Next, the distribution acquisition unit 23 uses the quantification of radioactivity (step S108), the grouping of detection data (step S109), and the resort data for the radionuclide having the next highest energy peak among the new resort data. The grouped data group is removed (step S110).
  • the distribution acquisition unit 23 repeats a series of processes until all the nuclides (or all of any arbitrary nuclides) specified by the nuclide identification unit 22 are grouped.
  • the radiation detection data input in step S101 will be sorted into any group of radionuclides specified by the nuclide identification unit 22 (excluding the noise level detection data).
  • the image generation unit 24 uses the radionuclide quantified in steps S104 and S108 and the detection position information of each radionuclide acquired in steps S105 and S109 to group the radionuclides.
  • the energy spectrum for each or the distribution image F is displayed on a display (not shown) or the like (step S110).
  • FIG. 10A schematically shows the relationship (position distribution) between the positions and quantities of the radionuclides A, B, C, and D.
  • the radionuclide A is distributed in the range Da
  • the radionuclide B is distributed in the range Db
  • the radionuclide C is distributed in the range Dc
  • the radionuclide D is distributed in the range Dd. It is assumed that there is.
  • the ranges Da to Dd are defined as ranges surrounded by broken lines.
  • FIG. 10A schematically shows the relationship (position distribution) between the positions and quantities of the radionuclides A, B, C, and D.
  • the radionuclide A is distributed in the range Da
  • the radionuclide B is distributed in the range Db
  • the radionuclide C is distributed in the range Dc
  • the radionuclide D is distributed in the range Dd. It is assumed that there is.
  • the ranges Da to Dd are defined as ranges surrounded by broken lines.
  • the images are drawn so that the intensities of the images differ depending on the amount of radioactivity (Bq) of the radionuclides A to D.
  • Bq amount of radioactivity
  • FIG. 10 (b) shows the data constituting the energy range from the rising point Pu to the turning point Pc of the measurement spectrum Sb shown in FIG. 5 (a) in the presence of the radionuclide as shown in FIG. 10 (a). It is an image of the position information of.
  • the range indicating the amount of radionuclide A is indicated by Da_e
  • the range indicating the amount of radionuclide B is indicated by Db_e.
  • the range of energy shown in FIG. 10B includes not only the non-overlapping region of the radionuclide B but also the tailing portion of the radionuclide A. Therefore, in FIG.
  • the radionuclides B existing in the range Db only the data constituting the non-overlapping region is imaged (that is, the data of the tailing portion is not included), so that the image is taken.
  • the concentration is relatively low.
  • the tailing portion of the radionuclide A contained in the overlapping region is imaged in the range Da, and the distribution of only the radionuclide B cannot be accurately imaged.
  • FIG. 10 (c) shows the result of imaging the group of radionuclide B when the list data is grouped by each nuclide.
  • the range indicating the amount of radionuclide B is indicated by Db_e.
  • the position information included in the grouped data is the same as that in the non-overlapping region, only the radionuclide B in the range Db_e is imaged.
  • FIG. 10 (c) contains detection data according to the count number of the tailing portion of the radionuclide B, the image of FIG. 10 (c) is the original amount of radionuclide B radioactivity. It is expressed by the corresponding strength.
  • a radionuclide or a compound labeled with a radionuclide is developed on a thin layer plate by a thin layer chromatography method, it is placed at a specific position on a sample (thin layer plate).
  • a sample thin layer plate
  • a radionuclide or a compound labeled with a radionuclide is administered to a living body, excised after a certain period of time, and an organ or tissue is sliced on a plane and distributed at a specific position on a sample prepared.
  • determining the energy distribution of the nuclide or the position distribution in the sample it can be applied to the analysis of the distribution of the parent nuclide or the progeny nuclide caused by its decay.
  • the present embodiment can detect the energy of ⁇ rays emitted from a radionuclide and another energy which is the energy of other radiation different from this energy.
  • the amount of radioactivity in the overlapped part is standardized. Judgment can be made from the spectrum, and the entire distribution including the overlapping region can be obtained. Since this embodiment can accurately determine the distribution of radionuclides regardless of the overlap of energy spectra, it is possible to extract each of the different nuclides and analyze their energy or position distribution with high accuracy. can.
  • the above embodiment includes the following technical ideas.
  • (1) By the radiation detection unit that detects the energy of ⁇ -rays emitted from the radioactive nuclei contained in the sample and another energy that is the energy of other radiation different from the energy of the ⁇ -rays, and the radiation detection unit.
  • the nuclei species identification part that identifies the radioactive nuclei species that emitted radiation by comparing the measured spectrum, which is the detected energy of the ⁇ -ray or the energy spectrum based on the other energy, with the standard spectrum, and the identification part specified by the nuclei species identification part.
  • a radioactive nuclei species analyzer having a distribution acquisition unit for obtaining the energy distribution of nuclei or the position distribution in the sample.
  • the sample is provided with a detection position acquisition unit for acquiring the detection position of the radiation energy detected by the radiation detection unit, the sample has a planar shape, and the distribution acquisition unit is the said in at least a part of the sample.
  • the radionuclide analyzer of (1) or (2) for determining the in-plane position distribution of a radionuclide.
  • the radionuclide analyzer of (3) further comprising an image generation unit for creating an image representing the position distribution.
  • the distribution acquisition unit divides the energy of the radionuclide into a plurality of groups according to the energy range emitted by the radionuclide, and the detection position is within the same predetermined position range and The radionuclide analyzer according to (3) or (4), which separates radionuclides having different groups into one of the groups according to the abundance ratio of the radionuclide in the position range.
  • the radionuclide identification unit scans the measurement spectrum in order from the high energy side to the low energy side of the energy range emitted by the radionuclide, and at least the energy corresponding to the maximum point of the energy of the ⁇ ray is obtained.
  • the radionuclide analyzer according to any one of (1) to (5), which identifies the standard spectrum that matches the measurement spectrum by the value. (7) The radionuclide analyzer according to any one of (1) to (6), wherein the ⁇ -ray energy and the other energy are emitted from a radionuclide belonging to the same or different decay series. (8) The radiation detector is a radionuclide analyzer according to any one of (1) to (7), which includes a strip detector. (9) The computer accepts the input of information indicating the detection result of the ⁇ -ray energy emitted from the radionuclide contained in the sample and another energy which is the energy of other radiation different from the ⁇ -ray energy.
  • the radionuclide identification function that identifies the radionuclide that emitted radiation by comparing the measurement spectrum, which is an energy spectrum based on the input ⁇ -ray energy or another energy, with the standard spectrum, and the radionuclide identification function.
  • a radionuclide analysis program that realizes a distribution acquisition function for finding the distribution of a specified specific nuclide in the sample.
  • a radiation detection step for detecting the energy of ⁇ rays emitted from a radionuclide contained in a sample and another energy which is energy of another radiation different from the energy of the ⁇ rays, and the radiation detection step.
  • a radionuclide identification step for specifying the radionuclide that emitted radiation by comparing the measurement spectrum, which is an energy spectrum based on the ⁇ -ray energy detected in the above or another energy, with a standard spectrum, and the identification step specified in the nuclide identification step.
  • a radionuclide analysis method comprising a distribution acquisition step of obtaining a distribution of a nuclide in the sample.
  • the measurement spectrum includes at least a measurement spectrum of the spectrum group, which includes an energy range of radiation emitted by each of the plurality of radioactive nuclei species and a spectrum group indicating the amount of radioactivity according to the energy range.
  • the amount of radioactivity is specified from the measurement spectrum containing the higher energy of the measurement spectra having the overlapping energy ranges and removed from the spectrum group.
  • the radioactive nuclei species analysis method according to (10) wherein the amount of radioactivity in the measurement spectrum corresponding to the energy range containing the next highest energy is specified.
  • the energy of the radionuclide is divided into a plurality of groups according to the energy range emitted by the radionuclide, and the detection position is within the same predetermined position range and The radionuclide analysis method according to (12) or (13), wherein the radionuclide having a different group is classified into one of the groups according to the abundance ratio of the radionuclide in the position range.
  • the measurement spectrum is scanned in order from the high energy side to the low energy side of the energy range emitted by the radionuclide, and the energy corresponding to at least the maximum point of the energy of the ⁇ ray is obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)

Abstract

放射性核種分析装置(1)は、試料において放射性核種から放出されるα線のエネルギーと、このα線のエネルギーと異なる他の放射性核種から放出される別エネルギーと、を検出する放射線データ検出部(15)と、放射線データ検出部(15)によって検出されたα線のエネルギーまたは別エネルギーに基づくエネルギースペクトルである測定スペクトルSaを標準スペクトルSsaと比較して放射線を放出した放射性核種を特定する核種特定部(22)と、核種特定部によって特定された特定核種の試料における分布を求める分布取得部(23)とを有する。

Description

放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラム
 本発明は、放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラムに関する。
 放射性核種の生体内における挙動を調査することが種々の目的により行われている。例えば、特許文献1には、β線を放射する放射性核種をマーカーとして利用し、二つ以上の目標生物学的分子を分離して定量化することが記載されている。特許文献1には、当該発明が、β線を放射する放射性核種を使って化合物にマーキングし、DNA小配列を推論することに適すると記載されている。
 また、非特許文献1には、α線を放出する放射性核種で標識した放射性薬剤を投与した生体から臓器を摘出し、摘出した臓器を薄切することで生体内又は臓器内の放射性核種の分布を評価した例が報告されている。
特表2004-523233号公報
Journal of Nuclear Medicine vol.51, page.1616-1623(2010)
 放射性核種そのもの、又は化合物を放射性核種で標識したものが試料のどこにどのように分布しているかを調査する目的で、放射性核種から放出される放射線を検出することが行われている。しかしながら、放射線のうちでもα線は飛程が短く透過性が低いため一定の距離以上離れた位置からの検出は困難である。また放射性核種には、安定同位体に達するまで複数回の壊変を段階的に経るものが存在する。このため、放射性核種が分布した試料に検出器を近づけて放射線を検出しようとした場合に、親核種とその壊変によって生じた子孫核種が試料上の同じ位置に存在し、異なる放射性核種から放出される放射線のエネルギーが混在して検出されることや、同一の放射性核種であっても異なる複数のエネルギーの放射線を放出することに起因して、これらが混在して検出されることがある。
 このような点により、α線を放出する放射性核種が分布した試料を分析する場合、複数の放射線のエネルギーを互いに分別して目的の核種の放射能量や試料上の分布を正確に検出することは困難であった。
 本発明は、このような点に鑑みてなされたものであり、複数のエネルギーの放射線を放出する放射性核種が分布した試料から特定核種のエネルギー分布または試料における位置分布を高い精度で分析することができる、放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラムに関する。
 本発明の放射性核種分析装置は、試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーと異なる他の放射線のエネルギーである別エネルギーと、を検出する放射線検出部と、前記放射線検出部によって検出された前記α線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定部と、前記核種特定部によって特定された特定核種のエネルギー分布または前記試料における位置分布を求める分布取得部と、を有する。
 本発明の放射性核種分析プログラムは、コンピュータに、試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーとは異なる他の放射線のエネルギーである別エネルギーとの検出結果を示す情報の入力を受け付ける入力機能と、入力された前記α線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定機能と、前記核種特定機能により特定された特定核種の前記試料における分布を求める分布取得機能と、を実現させる。
 本発明の放射性核種分析方法は、試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーとは異なる他の放射線のエネルギーである別エネルギーと、を検出する放射線検出工程と、前記放射線検出工程で検出されたα線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定工程と、前記核種特定工程において特定された特定核種の前記試料における分布を求める分布取得工程と、を含む。
 本発明によれば、各々異なるエネルギーの放射線を放出する放射性核種が分布した試料から特定核種のエネルギー分布または試料における位置分布を高い精度で分析することができる、放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラムを提供することができる。
図1(a)は、本発明の一実施形態のリストデータを示す図、図1(b)はリストデータから作成されるエネルギー分布と放射性核種の位置分布を説明するための図である。図1(c)は位置分布のバリエーションを説明するための図である。 本発明の一実施形態の放射性核種分析装置を説明するための図である。 図2に示す分析処理装置によって行われる放射性核種分析方法を説明するためのフローチャートである。 図4(a)は本装置で測定される理想的なエネルギースペクトルを示し、図4(b)は重なって表れた測定スペクトルの例を示している。 図5(a)及び図5(b)は測定スペクトルと標準スペクトルとを比較することを説明するための図である。 本発明の一実施形態の処理の効果を説明するための図である。 図1(a)に示したリストデータを検出時刻と無関係にエネルギーの大きいものから順に並べ替えたリストデータを示す図である。 図8(a)は図3のステップS105の他の処理について示した図である。図8(b)はデータが除去された後のリソートデータを示す図である。 図9(a)は測定スペクトル群を示す図である。図9(b)は図9(a)に示す測定スペクトルの標準スペクトルを示している。図9(c)は図9(b)に示す標準スペクトルのエネルギーごとのカウント数を示している。図9(d)は補正スペクトルを示している。図9(e)は図9(d)に示す補正スペクトルのエネルギーごとのカウント数を示している。 図10(a)は複数の放射性核種の位置分布を示す図である。図10(b)はデータの位置情報を画像化して示す図であって、他の放射性核種を含む例を示している。図10(c)はデータの位置情報を画像化して示す図であって、他の放射性核種を含まない例を示している。
[概要]
 以下、本発明の実施形態の具体的な説明に先立って、発明の概要を説明する。
 図1(a)、図1(b)、図1(c)は、本発明の放射性核種の分析の概念を説明するための図である。本発明は、放射性核種で標識した化合物を含む薬剤を投与した生体の切片を切り出して試料を作成し、試料から放出されるα線のエネルギーと、このα線のエネルギーとは異なる他の放射線のエネルギー(以下、「別エネルギー」と記す)とを放射線の検出器で検出する。図1(a)は、検出された放射線のエネルギー、検出位置、検出タイミングを対応つけたデータ(リストデータ)を示し、図1(b)はリストデータから作成されるエネルギースペクトル(エネルギー分布)と放射性核種の位置分布を説明するための図である。図1(c)は、位置分布のバリエーションを説明するための図である。
 リストデータは、入力されてくる放射線のエネルギー及びその検出位置(以下、両者を総称して放射線データとも記す)を入力タイミング(時刻)に応じて順次記録したデータである。図1(b)は、図1(a)に示した運動エネルギー(以下、単に「エネルギー」と記し、単位をkeVとする)を横軸に、このエネルギーの放射線が検出された回数を縦軸に示して作成されたエネルギースペクトルS1、S2、S3と、エネルギースペクトルS1、S2、S3から作成された放射性核種の分布画像Fを示す図である。エネルギースペクトルS1、S2、S3において、縦軸のカウント数は、このエネルギーを持つ放射線の量(count)を表すものとする。図1(b)に示すように、エネルギースペクトルS1の高エネルギー側の部分と、エネルギースペクトルS2の低エネルギー側の部分とは、同一のエネルギーの範囲に表れている(エネルギースペクトルが重なっているとも記す)。
 一方、エネルギースペクトルS2の高エネルギー側の部分と、エネルギースペクトルS3の低エネルギー側の部分との間はカウント数が零または計測誤差レベル以下である。すなわち、後述する図4(a)で示すエネルギースペクトルSAからエネルギースペクトルSDのように、互いに隣接するスペクトル同士の間のカウント数が計測誤差レベルの低い値である場合、当該エネルギースペクトル同士は重なっていないと呼称する。
 分布画像Fは、放射線の検出の対象となっている試料の画像中に放射性核種の位置分布の状態を示した模式図であり、網掛けの相違によって区別されるそれぞれの放射性核種が、画像の濃淡が濃いほど高い濃度で存在していることを示している。なお、分布画像Fは、エネルギースペクトルS1、S2、S3に対応する放射性核種の分布を重ね合わせて示している。
 図1(b)に示すエネルギースペクトルS1、S2、S3は、そのピークを持つエネルギーが放射線を放出した放射性核種に対応している。このことから、既知の放射性核種から放出された放射線のエネルギースペクトルを標準スペクトルとして保存しておき、測定された測定スペクトルと比較することによって測定スペクトルによって表されるエネルギーの放射線を生じた放射性核種を特定することができる。
 エネルギースペクトルS1、S2、S3のピーク形状(ピーク高さ及びピーク面積)は放射性核種の量を示すことから、本発明は、図1(b)に示すように、試料中に存在する各放射性核種のエネルギー分布を得ることができる。また、このようなデータを放射線の検出位置と対応つけることにより、本発明は、放射性核種の位置分布(分布画像F)を得ることができる。
 上記処理に際し、エネルギースペクトルS1、S2が重なっていると、重なっている部分の放射性核種の量を正確に判定することができないという不具合がある。つまり、エネルギースペクトルS1、S2の重複領域においては、検出された放射線がエネルギースペクトルS1に対応する核種のものか、エネルギースペクトルS2に対応する核種のものかを判別することができない。
 本発明は、このような場合において、エネルギースペクトルの重複領域において、放射線を放出した放射性核種を切り分けて、各々の放射性核種のエネルギー分布や位置分布を正確に判定するものである。
 位置分布を得る処理によれば、図1(c)に示すように、試料中の特定の範囲Zについてのみ位置分布を示す分布画像F1を作成することができる。また、特定の放射性核種についてのみの分布を示す分布画像F2を作成することができる。さらに、上記処理は、時間間隔をおいて複数回同一の検出範囲における放射性核種の分布画像F3-1、F3-2、F3-3を作成することによって放射性核種の経時的な種類や濃度の変化の状態を検出することができる。なお、分布画像F、F-1、F-2、F3-1からF3-3において示す網掛けの相違は放射性核種の違いを、画像の濃淡は放射能の濃度の違いを模式的に示している。
 以上のように、混在する複数の放射性核種の位置分布を正確に検出することにより、本発明は、高い精度で分布画像F1、F2、F3-1、F3-2、F3-3を作成し、それぞれの放射性核種の生体内における挙動と生成した子孫核種の種類や濃度の変化を把握することができる。
 放射性核種は、それぞれ固有の半減期に応じて壊変し、放射性薬剤は、このとき放出される放射線を活用している。放射性核種には安定同位体に達するまで複数回の懐変を段階的に経るものも存在し、親核種については薬剤の目的とする臓器に集まりやすい化合物に標識して挙動を制御することができるが、壊変した後の核種の挙動を正確に予測することが難しい。したがって、本発明は、放射性薬剤に関する開発や実験に特に適したものといえる。なお、本発明は、放射性核種のエネルギー分布についても特定の放射性核種について抽出すること、及び/又はその経時的な変化を検出することが可能である。
[放射性核種分析装置]
 図2は、本実施形態の放射性核種分析装置1を説明するための図である。放射性核種分析装置1は、試料に含まれる放射性核種から放出されるα線のエネルギーと、別エネルギーとを検出する放射線検出部を有している。なお、図2の放射性核種分析装置1は、放射線検出部と共に放射線検出部によってエネルギーが検出された放射線の検出位置を取得する検出位置取得部を有している。図2に示す構成では、放射線データ検出部15が、放射線検出部及び検出位置取得部として機能する。
 本実施形態では、例えば、放射線データ検出部15に小型の演算処理装置が設けられていて、放射線データ検出部15においてエネルギーと検出位置とを対応つけたリストデータが作成されるものとする。放射線データ検出部15で作成されるリストデータは、図1(a)に示すように、検出タイミングの順にエネルギーと検出位置とを対応つけて記録する。また、本実施形態では、放射線データ検出部15が同一のエネルギーを持つ放射線につき、検出回数をカウントしてカウント数を求めている。
 ここで、放射線データ検出部15は、試料に含まれる放射性核種から放出されるα線のエネルギーを検出する。また、放射線データ検出部15は、別エネルギー、即ちこのα線を放出した放射性核種と種類の異なる他の種類の放射性核種が放出したα線、またはγ線やβ線といったα線以外の放射線をも検出するものである。本明細書においては、以降α線と他の放射線とを包含して単に放射線とも記す場合もある。
 また、放射性核種分析装置1は、分析処理装置10を備えている。分析処理装置10は、演算処理部11を有し、演算処理部11は、検出されたα線のエネルギーまたは別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して、このエネルギーの放射線を放出した放射性核種を特定する核種特定部22と、特定された核種(以降「特定核種」とも記す)のエネルギー分布及び試料における位置分布を求める分布取得部23と、を有している。また、分析処理装置10は、放射性核種の特定に使用される標準スペクトルのデータ(標準スペクトルデータ)12を保存するメモリを内蔵している。
 さらに、演算処理部11は、取得された分布に基づいて、この分布を表す画像を生成する画像生成部24を備えている。
 分析処理装置10は、公知のコンピュータ装置によって構成され、そのCPU(Central Processing Unit)やメモリ、入出力のインターフェース、さらにはディスプレイ画面といったハードウェアと、ハードウェアを動作させるプログラムとによって構成されている。標準スペクトルデータ12は、分析処理装置10に内蔵されるメモリに格納されるものであってもよいし、外付けのメモリに格納されるものであってもよい。さらにはネットワーク回線を通じて取得されるものであってもよい。
 放射線データ検出部15としては、ストリップ検出器を含むものを用いることができる。ストリップ検出器のうち、両面ストリップ式半導体検出器(Double-sided semiconductor strip detector; DSSD)は、平板の片面にx軸、他方の面にy軸に相当するストリップ電極が直交するように設けられ、荷電粒子は検出器内でエネルギーに応じた電子・正孔対を発生させ、電極がこれを検出し、ストリップ電極の間を通る荷電粒子に反応して荷電粒子の通過箇所の電極が信号を出力する。このような構成によれば、荷電粒子が通過したことを示す信号を出力した座標を特定し、放射線の検出位置を特定することができる。なお、検出の空間分解能は、ストリップ電極の間隔が狭くなるほど高くなる。
 なお、放射線データ検出部15は、ストリップ検出器を用いる構成に限定されるものではない。例えば、本実施形態は、検出位置を取得する必要がない場合、例えば、α線スペクトロメーター等のα線検出器を用いることができる。放射線データ検出部15にα線検出器を用いる場合には、さらにβ線やγ線を検出できるものを組み合わせてもよい。
 放射線データ検出部15によって検出された放射線データは、核種特定部22に入力される。核種特定部22は、放射線のエネルギーとその検出回数から測定された放射線のエネルギースペクトルである測定スペクトルを作成する。そして、測定スペクトルを標準スペクトルデータ12に含まれる標準スペクトルと比較して測定スペクトルを示す放射性核種を特定する。
 分布取得部23は、作成された測定スペクトルに対応する標準スペクトルを補正して得られたスペクトルを適当なエネルギー範囲で積分し、測定スペクトルの放射能の量を定量することによって放射性核種のエネルギー分布を取得する。
 上記の標準スペクトルは、放射性核種が特定されていない測定スペクトルと対照して放射性核種が特定可能なものであればよく、予め測定されてデータ化されているものであってもよい。また、標準スペクトルは、測定に使用された放射性核種分析装置1で測定されたものであってもよい。標準スペクトルと測定スペクトルとを同一の放射性核種分析装置1で測定すれば、測定スペクトルと標準スペクトルとの測定環境による差異を抑えて測定精度を高めることができる。また、当然のことながら、標準スペクトルは、立ち上がりからピークトップ、立下りに至るまでのプロファイル(ピーク形状)が明確であることが好ましい。
 さらに、分布取得部23は、測定スペクトルのエネルギー分布ばかりでなく、試料の少なくとも一部における放射性核種の位置分布を求めることができる。本実施形態の試料は平面状をなしていて、本実施形態では、例えば、生体組織をスライスしたものである。このとき、分布取得部23は、放射性核種の任意のエネルギー範囲にある放射線が検出された検出位置から検出範囲を設定する。さらに、この範囲の放射線の検出回数から放射性核種の試料の面内の位置分布を取得する。画像生成部24は、分布取得部23が取得した放射性核種の分布状態にしたがって画像に着色し、画像における放射性核種の濃度や広がりを可視化する。
(放射性核種分析方法)
 図3は、図2に示す分析処理装置10によって行われる放射性核種分析方法を説明するためのフローチャートである。なお、このフローチャートは、コンピュータとして構成される分析処理装置10のハードウェアとソフトウェアとによって実現する各機能によって実行される。即ち、当該放射性核種分析方法は、分析処理装置10においてメモリに格納されるコンピュータプログラムがCPUで実行されることにより実現される。
 図3に示すフローチャートは、α線のエネルギーと、別エネルギーと、を入力する入力工程を含んでいる。本実施形態では、放射線データ検出部15が放射線の検出位置を特定することが可能であるため、放射線のエネルギー検出と同時に放射線の検出位置を入力する。図3において、このような工程はステップS101に相当する。
 また、放射性核種分析方法は、α線のエネルギーまたは別エネルギーに基づく測定スペクトルを標準スペクトルと比較し、このエネルギーを有する放射線を放出した放射性核種を特定する核種特定工程を含んでいる。図3のフローチャートにおいて、核種特定工程は、ステップS102、S103に相当する。また、本実施形態の放射性核種分析方法は、特定核種の試料における分布(エネルギー分布及び位置分布)を求める分布取得工程を含んでいる。図3のフローチャートにおいて、分布取得工程は、ステップS104からステップS110に相当する。さらに、図3のフローチャートは、取得された分布に基づいてエネルギースペクトルや分布画像を作成する画像作成工程を含んでいる(ステップS111)。
(入力工程)
 図2に示す放射線データ検出部15は、図示しない試料から放出される放射線のエネルギー、検出位置、検出タイミング及び検出回数を検出順に出力する。分析処理装置10は、出力されたエネルギー、検出位置、検出タイミング及び検出回数を入力する。このとき、エネルギー、検出位置、検出タイミング及び検出回数のデータは、直接分析処理装置10に入力データとして入力されるものであってもよいし、いったん他の機器に入力、保存された後に分析処理装置10に入力されるものであってもよい。また、他の機器に入力される場合、放射線データが加工されるようにしてもよい。前述のように、本実施形態では、放射線データ検出部15が放射線のエネルギー、検出位置、検出タイミング及び検出回数を出力する。放射線データ検出部15の出力は、演算処理部11に入力されて、次に行われる核種特定工程に送られる。
(核種特定工程)
 図4(a)、図4(b)は、核種特定工程を説明するための図である。図4(a)は、本実施形態の放射性核種分析装置1で得られる理想的なエネルギースペクトルを示し、図4(b)は重なって表れた測定スペクトルの例を示している。図4(a)、図4(b)のいずれにあっても、横軸は放射線のエネルギー(keV)、縦軸は各放射線のエネルギーの検出回数(回)を示している。図4(a)に示すエネルギースペクトルSA、SB、SC、SDは、各々が他のエネルギースペクトルと重なることなく表れている。このようなエネルギースペクトルSA、SB、SC、SDは、プロファイルが明瞭であり、放射性核種及び放射能量を明確に特定することが可能である。
 一方、図4(b)に示す測定スペクトルSa、Sb、Sc、Sdは、いずれも低エネルギーの側の立下りが高エネルギーの側の立ち上がりよりも緩やかになっていて、隣り合うエネルギースペクトルと重なっている。本実施形態では、隣り合うエネルギースペクトルが重なる領域を重複領域Оaとも記す。
 図4(b)に示す重複領域Оaを持った測定スペクトルSa、Sb、Sc、Sdが測定された場合、各エネルギースペクトルのプロファイルが不明瞭になり、このエネルギースペクトルを示す放射性核種の定量が難しくなる。
 以下、核種特定工程による上記の不具合を解消する処理を説明する。
 図4(b)に示す測定スペクトルSa、Sb、Sc、Sdは、それぞれ同一または異なる放射性核種に由来する放射線のエネルギースペクトルである。ここで、測定スペクトルSa、Sb、Sc、Sdは、α線のエネルギーと別エネルギーに基づく測定スペクトルであって、α線のエネルギーと別エネルギーとは、同一又は別の壊変系列に属する放射性核種から放出される。ここで、同一の壊変系列とは、一つの親核種が壊変して順次娘核種、孫娘核種と子孫核種を生じる、一連の核種の変換を系列としてまとめたものをいう。このような例としては、例えば、225Ac(アクチニウム)、221Fr(フランシウム)、217At(アスタチン)、213Bi(ビスマス)、209Pb(鉛)と変化するネプツニウム系列がある。また、壊変系列の他の例としては、例えば、232Th(トリウム)から208Pb(鉛)までの壊変系列であるトリウム系列、238U(ウラン)から206Pb(鉛)までの壊変系列であるウラン系列等がある。
 以降、本実施形態では、測定スペクトルSaが放射性核種Aを示し、測定スペクトルSbが放射性核種B、測定スペクトルScが放射性核種C、測定スペクトルSdが放射性核種Dをそれぞれ示すものとするが、本発明は、測定スペクトルSa、Sb、Sc、Sdが一又は二以上の放射性核種から放出される異なるエネルギーに由来する測定スペクトルであってもよい。
 核種特定部22は、放射線データ検出部15から出力された放射線のエネルギー及び計数値を使って図4(b)に示す測定スペクトルを作成する(ステップS102)。測定スペクトルの作成は、放射線のエネルギーに対応する検出回数をプロットすることによって実現することができる。本実施形態では、複数の測定スペクトルSa、Sb、Sc、Sdを含むスペクトルが作成されており、測定スペクトルが一群のSa、Sb、Sc、Sdのスペクトル群を含んでいる。
 図5(a)、図5(b)は、重複領域を持つ測定スペクトルSa、Sbの放射能の量を補正する処理を説明するための図である。図5(a)は測定スペクトルSaの放射能の量を求める処理を説明するための図であって、図5(b)は測定スペクトルSbの放射能の量を求める処理を説明するための図である。図5(a)に示す複数の測定スペクトルSa、Sb、Sc、Sdのうち最も高エネルギーの測定スペクトルSaに関して、高エネルギー側でカウント数が立ち上がる立ち上がり点をPu、カウント数が最大値をとる極大点をPm、極大点Pmよりも低エネルギー側にあり極大点Pmから単調減少したカウント数が増大に転じる点を転換点Pcとする。
 転換点Pcにおけるカウント数は、計測誤差レベルを超える値であり、測定スペクトルSaとこれに隣接する測定スペクトルSbとは互いに重なっている。しかし以下に説明するように、本実施形態では、隣接する測定スペクトルの影響を好適に取り除いて目的の測定スペクトルにかかる放射能の量を高精度に算出することができる。すなわち、重なり合う測定スペクトルのうちの最も高いエネルギーを有する測定スペクトルSaにおいては、立ち上がり点Puから転換点Pcに至るまでのプロファイルに他の測定スペクトルのカウント数は実質的に影響を与えていない。
 核種特定部22は、重なって表れた測定スペクトルSaから測定スペクトルSdのうち、先ず最も高いエネルギーに現れたSaに対し、エネルギー範囲の高エネルギー側から低エネルギー側に向かって順に走査する。このとき、核種特定部22は、立ち上がり点Puと、極大点Pmと、転換点Pcとを認識し、少なくとも極大点Pmに対応するエネルギーの値により測定スペクトルSaに対応する標準スペクトルを特定する。また、立ち上がり点Puに対応するエネルギーの値及び/又は転換点Pcに対応するエネルギーの値を総合して測定スペクトルSaに対応する標準スペクトルを特定してもよい。そして、少なくとも極大点Pmに対応するエネルギーの値が一致する標準スペクトルを標準スペクトルデータ12から選択する。そして、この標準スペクトルに対応する放射性核種(ここでは放射性核種A)が測定スペクトルSaで表されるエネルギー分布を持つ放射性核種であると特定する。また、同様の走査を繰り返して、放射性核種Bが測定スペクトルSbで表されるエネルギー分布を持つ放射性核種であると特定する(ステップS103)。なお、本実施形態の標準スペクトルデータ12には、投与された放射性核種や、その子孫核種のスペクトルを含むデータが候補として保存されている。
 なお、この際、核種特定部22は、測定スペクトルの状態に応じては測定スペクトルSaを含む複数の測定スペクトルを走査してもよいし、図4(a)、図4(b)の横軸のエネルギーによって複数のエネルギースペクトルの標準スペクトルを特定するものであってもよい。
 なお、放射性核種の特定にあっては、規格化されている標準スペクトルを測定スペクトルSaの極大点Pmに合わせて変形させてもよい。しかし、このような方法は、測定スペクトルの極大点Pmが散乱などの影響により実際のエネルギーの値とわずかに異なる値を示した場合に充分な信頼性を得ることができない。このような場合には極大点Pmに加えて標準スペクトルの立ち上がりを重なり合った測定スペクトルのうちの最も高エネルギーの側にある測定スペクトルSaの立ち上がり点Puに合わせてもよい。このようにすれば、重なり合った他の測定スペクトルの影響や散乱の影響を排除することができる。
(分布取得工程)
  次に、分布取得部23は図3に示すように、高エネルギー側の放射性核種から順に放射能を定量し、この放射性核種のデータをグループ化した後にリストデータから除去する。また、分布取得部23は、さらに低エネルギー側のデータについても同様に処理することでそれぞれの放射性核種について放射能の定量と検出データのグループ化を行う。この処理において、分布取得部23は、図5(a)に示すようにエネルギー範囲が重複する測定スペクトルSa、Sbのうちのより高いエネルギーを含む測定スペクトルSaから放射能の量を定量する(ステップS104)。そして、定量化された放射性核種に由来する検出データをグループ化し(ステップS105)、リストデータから除去する(ステップS106)。続いて残ったリストデータから図5(b)に示すように新たなスペクトル群を作成し(ステップS107)、図5(b)に示すように次に高いエネルギーを含む測定スペクトルSbの放射能の量を定量する(ステップS108)。そして、定量化された放射性核種に由来する検出データをグループ化し(ステップS109)、リストデータから除去する(ステップS110)。
 ここで、本実施形態でいうより高いエネルギーを含む測定スペクトルとは、放射能の定量の対象となる測定スペクトルのうちの最も高いエネルギーを含む測定スペクトルSaである。ただし、本実施形態は、このような例に限定されるものでなく、測定スペクトルのプロファイルの傾向に応じて複数の測定スペクトルのうちの相対的にエネルギーの高いものから放射能を定量するものであればよい。
 このような処理は、重なり合う測定スペクトルのうちの最も高いエネルギーを有する測定スペクトルにおいては、立ち上がり点Puから転換点Pcに至るまでのプロファイルに他の放射性核種に由来する測定スペクトルの放射能が影響していないことによって行われる。すなわち、本実施形態で分析対象となる測定スペクトルSa、Sb、Sc、Sdは、いずれも急峻に立ち上り、立ち下がりにテール同士が重なる重複領域Оa、あるいは重複領域Оb(図5(b))が生じる。このため、本実施形態では、高エネルギー側の測定スペクトルSaには他のスペクトルのテールが含まれず、低エネルギー側の測定スペクトルSbには測定スペクトルSaのテールが含まれる。さらに、測定スペクトルSbの重複領域Оbは、より低エネルギー側の測定スペクトルに影響する。このようなスペクトル群において、本実施形態は、高エネルギー側の測定スペクトルSaを先にスペクトル群から取り除き、低エネルギー側の測定スペクトルSbから測定スペクトルSaの影響を取り除いている。
 より具体的には、分布取得部23は、図5(a)に示すように、エネルギー範囲が重複するスペクトル群から特定された放射性核種Aに対応する標準スペクトルSsa(破線で示す)を選択し、測定スペクトルSaの立ち上がり点Puから転換点Pcに基づいて補正したスペクトルSsa´(図9(d)、以下、「補正スペクトル」と記す)を作成する。そして、補正スペクトルSsa´を0から任意の数値(例えば無限大)の範囲で積分し、積分によって得られた値が放射性核種Aの全放射能の量であると推定する。このようにすれば、測定スペクトルSaの非重複領域ばかりでなく、重複領域Oaをも含めた放射能の量を求めることができる。
 一方、図5(a)において、測定スペクトルSbの立ち上がり点Puから転換点Pcに至るプロファイルは、測定スペクトルSaと重なることによって放射性核種Aの影響を受けている。このため、測定スペクトルSaと重なったままの形状の測定スペクトルSbについて標準スペクトルSsbを補正したスペクトルSsb´を0から無限大の範囲で積分すると、放射能の量は実際の量より大きく定量されることになる。これに対して、本実施形態では、図5(b)に示すように、エネルギー範囲が重複するスペクトル群から、補正スペクトルSsa´を差し引くことで、放射性核種Aに由来する検出が含まれていない、新たなスペクトル群を得ることができる。この新たなスペクトル群に含まれる測定スペクトルSbについても同様に、標準スペクトルデータ12から標準スペクトルSsbを選択して補正し、得られたスペクトルSsb´を0から任意の数値(例えば無限大)の範囲で積分し、放射能の量を求めることができる。
 図6は、上記処理の効果を説明するための模式図であって、図6の棒グラフはそれぞれの項目の領域にある放射能を定量した場合に、放射性核種Aまたは放射性核種Bの本来の放射能に対してどの程度の定量結果になるかを示している。
 上記項目のうち、「Sa/非重複領域」は、図5(a)の測定スペクトルSaに対して立ち上がり点Puから転換点Pcまでの範囲で標準スペクトルSsaを補正し、補正スペクトルSsa´を同一の範囲で定量した結果である。この結果では、測定スペクトルSaのテールが含まれていないため、放射性核種Aの本来の放射能よりも過小評価されている。
 また、「Sa/全領域」は、図5(a)の測定スペクトルSaに対して立ち上がり点Puから転換点Pcまでの範囲で標準スペクトルSsaを補正し、補正スペクトルSsa´を0から無限大の範囲で定量した結果である。この結果では、測定スペクトルSaのテールはエネルギー範囲が重複している領域に含まれているが、放射性核種Aの本来の放射能の量を求めることができている。
 「Saテール含有Sb/全領域」は、図5(a)の測定スペクトルSaと重なったままの形状の測定スペクトルSbに対して立ち上がり点Puから転換点Pcまでの範囲で標準スペクトルSsbを補正し、補正スペクトルSsb´を0から無限大の範囲で定量した結果である。全領域には測定スペクトルSaのテールが含まれているため、結果が放射性核種Bの本来の放射能よりも過大評価されている。また、この結果では、測定スペクトルSaのテールが含まれていることにより測定スペクトルSbの形状がひずみ、標準スペクトルSsbを用いた補正が正しく行われない可能性がある。
 また、「Saテール含有Sb/非重複領域」は、図5(a)の測定スペクトルSaと重なったままの形状の測定スペクトルSbに対して立ち上がり点Puから転換点Pcまでの範囲で標準スペクトルSsbを補正し、補正スペクトルSsb´を同一の範囲で定量した結果である。非重複領域には測定スペクトルSbのテールが含まれていない一方で、測定スペクトルSaのテールが含まれているため、定量結果は放射性核種Bの本来の放射能と異なっている。また、非重複領域には測定スペクトルSaのテールが含まれていることにより測定スペクトルSbの形状がひずみ、標準スペクトルSsbを用いた補正が正しく行われない可能性がある。
 「Saテール非含有Sb/非重複領域」は図5(b)の測定スペクトルSbに対して立ち上がり点Puから転換点Pcまでの範囲で標準スペクトルSsbを補正し、補正スペクトルSsb´を同一の範囲で定量した結果である。測定スペクトルSaのテール部分および測定スペクトルSbのテール部分が含まれていないため、放射性核種Bの本来の放射能よりも過小評価されている。
 「Saテール非含有Sb/全領域」は、図5(b)の測定スペクトルSbに対して立ち上がり点Puから転換点Pcまでの範囲で標準スペクトルSsbを補正し、補正スペクトルSsb´を0から無限大の範囲で定量した結果である。この結果では、エネルギー範囲が重複するスペクトル群から他の放射性核種の影響を除き、放射性核種Bの本来の放射能の量を求めることができている。
 エネルギー範囲が重複するスペクトル群から、高エネルギー側の放射性核種の影響を除去し、より低エネルギー側の測定スペクトルを正確に評価するため、分布取得部23は、図3に示すように、図1(a)に示すリストデータから高エネルギー側の放射性核種の検出データを任意のエネルギー範囲でグループ化し(ステップS105)、リストデータからグループ化されたデータを除去する(ステップS106)。以下、このような処理を具体的に説明する。
 図7は、ステップS105の処理の一部を説明するための図であって、図1(a)に示したリストデータを検出時刻と無関係にエネルギーの大きいものから順に並べ替えたリストデータ(以下、「リソートデータ」とも記す)を示している。また、リソートデータでは、エネルギーに、このエネルギーが検出された検出位置を座標で表して対応付けている。分布取得部23は、検出された放射性核種のエネルギーを、放射性核種ごとのエネルギー範囲に応じて複数のグループに分割する。このとき、本実施形態では、リソートデータに含まれるエネルギーのデータを、図5(a)に示す測定スペクトルSaの立ち上がり点Puから転換点Pcまでに対応するエネルギーで区切ってグループGsaとする。グループGsaには測定スペクトルSaのうち非重複領域を構成するデータが含まれており、放射性核種Aのみに由来する検出データで構成されている。
 図8(a)は、ステップS105の他の処理について示した図である。ステップS105においては、リソートデータ中のグループGsaに含まれなかったデータから、特定のデータ(この場合はd1~d6)が放射性核種Aに由来する検出であると推定される。特定のデータをグループGsaに加えたデータはグループGAとなり、放射性核種Aに由来する検出データ群として他の検出データと区別される。図8(b)は、図7のリソートデータからグループGAに該当する検出データ群を除去したデータを示している。図8(b)に示すリソートデータには放射性核種Aに由来する検出データが含まれていないため、このリソートデータについてエネルギーと検出回数とのヒストグラムを作成すると、図5(b)に示した測定スペクトル群が得られる。本実施形態では、図8(b)に示すリソートデータを用いることで、放射性核種Bについても同様に、測定スペクトルSbを用いたデータの処理を正しく行うことが可能となる。
 同一の放射性核種から放出された放射線は、互いに検出位置が近接していると考えられる。このことから、分布取得部23は、検出位置があらかじめ特定された条件(すなわちグループGsaと同様の位置であること)と同一又は任意の範囲にある検出データのうち、標準スペクトルSsaを測定スペクトルSaに補正して得られた補正スペクトルSsa´から導かれた、任意の幅の任意のエネルギーにおけるカウント数を放射性核種Aの検出に由来するものであると推定して、当該カウント数分の検出データをグループGsaに加えてグループGAとする。このとき、検出位置があらかじめ特定された条件を満たしていながら、任意の幅の任意のエネルギーにおいてカウント数が条件を満たしていないもの、すなわち、カウント数が超過してグループGAに含まれなかった検出データは、放射性核種Aと同じ位置に放射性核種Aよりも低いエネルギーを有する放射性核種が存在することを意味している。
 具体的には、分布取得部23は、図8(a)のリソートデータのうち、グループGsaに含まれず、かつグループGsaに含まれる座標と近接する、または一致する座標に対応するデータd1、d2、d3、d4、d5、d6を選択する。なお、座標の近接は、例えば、グループGsaに含まれる座標の全てを含む最小の範囲を設定し、設定された範囲との位置関係により判定することができる。本実施形態は、例えば、判断の対象となる座標が設定された範囲内にある場合、あるいは範囲と任意に設定した閾値以下の距離にある場合に判断対象の座標がグループGsaに含まれるデータの検出位置に近接していると判断することができる。
 次に、分布取得部23は、補正スペクトルSsa´をもとに、放射性核種Aに由来する検出データのうち任意の幅の任意のエネルギーにおけるカウント数を算出し、「グループGsaに含まれるデータの検出位置に近接している座標に対応するデータ」から任意の幅の任意のエネルギーごとに上記のカウント数分のデータを、放射性核種Aに由来する検出データであると推定して、グループGsaに加えてグループGAとする。グループGAに分別されたデータ群は、放射性核種Aから放出されたエネルギーを示すデータであるとして除去され(ステップS106)、以降のより低いエネルギーの核種の処理では使用されない。
 図9(a)、図9(b)、図9(c)、図9(d)、図9(e)は、任意の幅の任意のエネルギーにおけるカウント数の算出を説明するための模式図である。図9(a)は測定スペクトル群を示している。図9(b)は、図9(a)に示すスペクトル群を構成する測定スペクトルSaについて、規格化されている標準スペクトルSsaを示している。図9(c)は、標準スペクトルSsaにおける任意の幅の任意のエネルギーごとのカウント数Csaを示している。図9(d)は、標準スペクトルSsaを測定スペクトルSaの非重複領域で補正して得られた補正スペクトルSsa´を示している。図9(e)は、補正スペクトルSsa´における任意の幅の任意のエネルギーごとのカウント数Csa´を示している。
 測定スペクトルSaを構成する放射性核種Aに由来するカウント数Csaは、測定スペクトルSaの非重複領域(立ち上がり点Puから転換点Pcまで)を元にして標準スペクトルSsaを補正し、補正スペクトルSsa´を構成するエネルギーの範囲における任意の幅の任意のエネルギーから算出することができる。
 グループGAは、リソートデータのうちグループGsaと同じ検出位置の条件を満たすものから、それぞれの任意の幅の任意のエネルギーについて、カウント数Csaの検出データをグループGsaに加えることによって作成される。このような処理によれば、測定スペクトルSaの非重複領域と同じ位置情報を有するデータを、重複領域も含めて、放射性核種Aの放射能の量に応じたデータ数だけグループ化して分別することが可能となる。
 次に、分布取得部23は、核種特定部22によって作成された測定スペクトルのデータからグループGAのデータを除去したリソートデータ(図3中に「残データ」と記す)からヒストグラム(新スペクトル)を作成する(ステップS107)。新たなリソートデータには放射性核種Aに由来する検出データは含まれていないため、測定スペクトルSaが含まれないスペクトル群、すなわち図5(b)に示す新たなスペクトル群が得られる。
 次に、分布取得部23は、新たなリソートデータのうち、次にエネルギーの高いピークの放射性核種について、放射能の定量(ステップS108)と、検出データのグループ化(ステップS109)及びリソートデータからグループ化したデータ群の除去(ステップS110)を行う。以降、分布取得部23は、核種特定部22によって特定された核種の全て(または任意の核種の全て)がグループ化されるまで一連の処理を繰り返す。
 以上の処理により、ステップS101において入力された放射線の検出データは核種特定部22によって特定された放射性核種のいずれかのグループに分別されることになる(ノイズレベルの検出データは除く)。
 以上の処理の後、画像生成部24は、ステップS104、ステップS108で定量された放射能量およびステップS105、ステップS109で取得された各放射性核種の検出位置情報を使って、グループ化された放射性核種ごとのエネルギースペクトル、あるいは分布画像Fを不図示のディスプレイ等に表示する(ステップS110)。
 図10(a)、図10(b)及び図10(c)は、上記の処理の効果を説明するための図である。図10(a)は、放射性核種A、B、C、Dの位置と量との関係(位置分布)を模式的に示している。本実施形態では、図10(a)に示すように、放射性核種Aが範囲Daに、放射性核種Bが範囲Dbに、放射性核種Cが範囲Dcに、放射性核種Dが範囲Ddにそれぞれ分布しているものとする。図10(a)において、範囲Da~Ddは、それぞれ破線で囲まれた範囲とする。図10(a)では、放射性核種A~Dの放射能の量(Bq)に応じて画像の強度がそれぞれ異なるよう描画している。(なお、図10(b)では範囲Dc、Ddを、図10(c)では範囲Da、Db、Ddを図示していないが、各範囲は(a)と同様の位置にあるとする。)
 図10(b)は、図10(a)のように放射性核種が存在した場合に、図5(a)に示す測定スペクトルSbの立ち上がり点Puから転換点Pcまでのエネルギーの範囲を構成するデータの位置情報を画像化して示したものである。図10(b)においては、放射性核種Aの 量を示す範囲をDa_e、放射性核種Bの量を示す範囲をDb_eで示す。図10(b)に示すエネルギーの範囲には、放射性核種Bの非重複領域だけではなく、放射性核種Aのテーリング部分が含まれている。そのため、図10(b)では、範囲Dbに存在する放射性核種Bのうち、非重複領域を構成するデータ分だけが画像化されるため(すなわちテーリング部分のデータが含まれていないため)、画像濃度が相対的に低くなっている。また、図10(b)では、重複領域に含まれている放射性核種Aのテーリング部分が範囲Daに画像化され、放射性核種Bのみの分布を正確に画像化することができない。
 図10(c)は、リストデータをそれぞれの核種ごとにグループ分けした場合の放射性核種Bのグループを画像化した結果を示している。図10(c)においては、放射性核種Bの量を示す範囲をDb_eで示す。図10(c)では、グループ分けされたデータに含まれる位置情報は非重複領域のものと同様であるから範囲Db_eにある放射性核種B以外は画像化されていない。また、図10(c)には放射性核種Bのテーリング部分のカウント数に応じた検出データが含まれていることから、図10(c)の画像は本来の放射性核種Bの放射能の量に応じた強度で表されている。
 上記実施形態の特に限定されない応用例として、例えば、放射性核種又は放射性核種で標識した化合物を薄層クロマトグラフィー法によって薄層板上に展開した場合に、試料(薄層板)上の特定位置に分布した特定核種のエネルギー分布又は試料における位置分布を求めることで、標識反応の進行率や、製剤の安定性の分析、及び製剤に含まれる放射性不純物の分析に適用することができる。また、他の一例として、放射性核種または放射性核種で標識した化合物を生体に投与し、一定時間経過後に摘出して臓器又は組織を平面上にスライスして調製した試料上における特定位置に分布した特定核種のエネルギー分布又は試料における位置分布を求めることで、親核種またはその壊変によって生じた子孫核種の分布の分析に適用することができる。
 以上説明したように、本実施形態は、放射性核種から放出されるα線のエネルギーと、このエネルギーと異なる他の放射線のエネルギーである別エネルギーとを検出することができる。また、検出したエネルギーに基づいた測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定することにより、エネルギースペクトルの一部が重なっている場合でも重なった部分の放射能の量を標準スペクトルから判定し、重複領域を含む全体の分布を取得することができる。このような本実施形態は、エネルギースペクトルの重なりによらず放射性核種の分布を正確に判定することができるので、異なる核種のそれぞれを抽出してそのエネルギーまたは位置分布を高い精度で分析することができる。
 上記実施形態は、以下の技術思想を包含するものである。
(1)試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーと異なる他の放射線のエネルギーである別エネルギーと、を検出する放射線検出部と、前記放射線検出部によって検出された前記α線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定部と、前記核種特定部によって特定された特定核種のエネルギー分布または前記試料における位置分布を求める分布取得部と、を有する放射性核種分析装置。
(2)前記測定スペクトルは、複数の前記放射性核種がそれぞれ放出する放射線のエネルギー範囲と、当該エネルギー範囲に応じた放射能の量とを示すスペクトル群とを含み、前記スペクトル群の測定スペクトルの少なくとも二つの前記エネルギー範囲が重複する場合、前記分布取得部は、エネルギー範囲が重複する前記測定スペクトルのうちのより高いエネルギーを含む前記測定スペクトルから順に放射能の量を特定して前記スペクトル群から除き、次に高いエネルギーを含むエネルギー範囲に対応する前記測定スペクトルの放射能の量を特定する、(1)の放射性核種分析装置。
(3)前記放射線検出部によって検出された前記放射線のエネルギーの検出位置を取得する検出位置取得部を備え、前記試料は平面状をなし、前記分布取得部は、前記試料の少なくとも一部における前記放射性核種の面内の位置分布を求める、(1)または(2)の放射性核種分析装置。
(4)前記位置分布を表す画像を作成する画像生成部をさらに備える、(3)の放射性核種分析装置。
(5)前記分布取得部は、放射性核種のエネルギーを前記放射性核種が放出するエネルギー範囲に応じて複数のグループに分割し、前記検出位置が予め定められた同一の位置範囲内にあって、かつ前記グループが異なる放射性核種を、当該放射性核種の前記位置範囲における存在割合に応じて前記グループのいずれかに分別する、(3)または(4)の放射性核種分析装置。
(6)前記核種特定部は、前記測定スペクトルを前記放射性核種が放出するエネルギー範囲の高エネルギー側から低エネルギー側に向かって順に走査し、少なくとも前記α線のエネルギーの極大点に対応するエネルギーの値により前記測定スペクトルに合致する前記標準スペクトルを特定する、(1)から(5)のいずれか一つの放射性核種分析装置。
(7)前記α線のエネルギーと前記別エネルギーとは、同一又は別の壊変系列に属する放射性核種から放出される、(1)から(6)のいずれか一つの放射性核種分析装置。
(8)前記放射線検出部は、ストリップ検出器を含む、(1)から(7)のいずれか一つの放射性核種分析装置。
(9)コンピュータに、試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーとは異なる他の放射線のエネルギーである別エネルギーとの検出結果を示す情報の入力を受け付ける入力機能と、入力された前記α線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定機能と、前記核種特定機能により特定された特定核種の前記試料における分布を求める分布取得機能と、を実現させる、放射性核種分析プログラム。
(10)試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーとは異なる他の放射線のエネルギーである別エネルギーと、を検出する放射線検出工程と、前記放射線検出工程で検出されたα線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定工程と、前記核種特定工程において特定された特定核種の前記試料における分布を求める分布取得工程と、を含む、放射性核種分析方法。
(11)前記測定スペクトルは、複数の前記放射性核種がそれぞれ放出する放射線のエネルギー範囲と、当該エネルギー範囲に応じた放射能の量とを示すスペクトル群とを含み、前記スペクトル群の測定スペクトルの少なくとも二つの前記エネルギー範囲が重複する場合、前記分布取得工程では、エネルギー範囲が重複する前記測定スペクトルのうちのより高いエネルギーを含む前記測定スペクトルから順に放射能の量を特定して前記スペクトル群から除き、次に高いエネルギーを含むエネルギー範囲に対応する前記測定スペクトルの放射能の量が特定される、(10)に記載の放射性核種分析方法。
(12)前記放射線検出工程で検出された前記放射線のエネルギーの検出位置を取得する検出位置取得工程を更に含み、前記試料は平面状をなし、前記分布取得工程では、前記試料の少なくとも一部における前記放射性核種の面内の位置分布が求められる、(10)または(11)に記載の放射性核種分析方法。
(13)前記位置分布を表す画像を作成する画像生成工程を更に含む(12)に記載の放射性核種分析方法。
(14)前記分布取得工程では、放射性核種のエネルギーを前記放射性核種が放出するエネルギー範囲に応じて複数のグループに分割し、前記検出位置が予め定められた同一の位置範囲内にあって、かつ前記グループが異なる放射性核種を、当該放射性核種の前記位置範囲における存在割合に応じて前記グループのいずれかに分別する、(12)または(13)に記載の放射性核種分析方法。
(15)前記核種特定工程では、前記測定スペクトルを前記放射性核種が放出するエネルギー範囲の高エネルギー側から低エネルギー側に向かって順に走査し、少なくとも前記α線のエネルギーの極大点に対応するエネルギーの値により前記測定スペクトルに合致する前記標準スペクトルを特定する、(10)から(14)のいずれか一つに記載の放射性核種分析方法。
(16)前記α線のエネルギーと前記別エネルギーとは、同一又は別の壊変系列に属する放射性核種から放出される、(10)から(15)のいずれか一つに記載の放射性核種分析方法。
(17)コンピュータに(10)から(16)のいずれか一つに記載の放射線核種分析方法を実行させるコンピュータプログラム又は該コンピュータプログラムを記録した記録媒体。
 本出願は、2020年8月12日に出願された日本出願(特願2020-136312号)を基礎とする優先権を主張し、その開示のすべてをここに取り込む。

Claims (10)

  1.  試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーと異なる他の放射線のエネルギーである別エネルギーと、を検出する放射線検出部と、
     前記放射線検出部によって検出された前記α線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定部と、
     前記核種特定部によって特定された特定核種のエネルギー分布または前記試料における位置分布を求める分布取得部と、
     を有する放射性核種分析装置。
  2.  前記測定スペクトルは、複数の前記放射性核種がそれぞれ放出する放射線のエネルギー範囲と、当該エネルギー範囲に応じた放射能の量とを示すスペクトル群とを含み、
     前記スペクトル群の測定スペクトルの少なくとも二つの前記エネルギー範囲が重複する場合、前記分布取得部は、エネルギー範囲が重複する前記測定スペクトルのうちのより高いエネルギーを含む前記測定スペクトルから順に放射能の量を特定して前記スペクトル群から除き、次に高いエネルギーを含むエネルギー範囲に対応する前記測定スペクトルの放射能の量を特定する、請求項1に記載の放射性核種分析装置。
  3.  前記放射線検出部によって検出された前記放射線のエネルギーの検出位置を取得する検出位置取得部を備え、
     前記試料は平面状をなし、
     前記分布取得部は、前記試料の少なくとも一部における前記放射性核種の面内の位置分布を求める、請求項1または2に記載の放射性核種分析装置。
  4.  前記位置分布を表す画像を作成する画像生成部をさらに備える、請求項3に記載の放射性核種分析装置。
  5.  前記分布取得部は、放射性核種のエネルギーを前記放射性核種が放出するエネルギー範囲に応じて複数のグループに分割し、前記検出位置が予め定められた同一の位置範囲内にあって、かつ前記グループが異なる放射性核種を、当該放射性核種の前記位置範囲における存在割合に応じて前記グループのいずれかに分別する、請求項3または4に記載の放射性核種分析装置。
  6.  前記核種特定部は、前記測定スペクトルを前記放射性核種が放出するエネルギー範囲の高エネルギー側から低エネルギー側に向かって順に走査し、少なくとも前記α線のエネルギーの極大点に対応するエネルギーの値により前記測定スペクトルに合致する前記標準スペクトルを特定する、請求項1から5のいずれか一項に記載の放射性核種分析装置。
  7.  前記α線のエネルギーと前記別エネルギーとは、同一又は別の壊変系列に属する放射性核種から放出される、請求項1から6のいずれか一項に記載の放射性核種分析装置。
  8.  前記放射線検出部は、ストリップ検出器を含む、請求項1から7のいずれか一項に記載の放射性核種分析装置。
  9.  コンピュータに、
     試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーとは異なる他の放射線のエネルギーである別エネルギーとの検出結果を示す情報の入力を受け付ける入力機能と、
     入力された前記α線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定機能と、
     前記核種特定機能により特定された特定核種の前記試料における分布を求める分布取得機能と、
     を実現させる、放射性核種分析プログラム。
  10.  試料に含まれる放射性核種から放出されるα線のエネルギーと、当該α線のエネルギーとは異なる他の放射線のエネルギーである別エネルギーと、を検出する放射線検出工程と、
     前記放射線検出工程で検出されたα線のエネルギーまたは前記別エネルギーに基づくエネルギースペクトルである測定スペクトルを標準スペクトルと比較して放射線を放出した放射性核種を特定する核種特定工程と、
     前記核種特定工程において特定された特定核種の前記試料における分布を求める分布取得工程と、
     を含む、放射性核種分析方法。
PCT/JP2021/029602 2020-08-12 2021-08-11 放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラム WO2022034895A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022542862A JPWO2022034895A1 (ja) 2020-08-12 2021-08-11
EP21855974.8A EP4198575A4 (en) 2020-08-12 2021-08-11 RADIOACTIVE NUCLEID ANALYSIS DEVICE, RADIOACTIVE NUCLEID ANALYSIS METHOD, AND RADIOACTIVE NUCLEID ANALYSIS PROGRAM
CN202180056762.1A CN116034292A (zh) 2020-08-12 2021-08-11 放射性核素分析装置、放射性核素分析方法及放射性核素分析程序
US18/040,272 US20230288585A1 (en) 2020-08-12 2021-08-11 Radionuclide analysis apparatus, radionuclide analysis method, and radionuclide analysis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-136312 2020-08-12
JP2020136312 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022034895A1 true WO2022034895A1 (ja) 2022-02-17

Family

ID=80247980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029602 WO2022034895A1 (ja) 2020-08-12 2021-08-11 放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラム

Country Status (5)

Country Link
US (1) US20230288585A1 (ja)
EP (1) EP4198575A4 (ja)
JP (1) JPWO2022034895A1 (ja)
CN (1) CN116034292A (ja)
WO (1) WO2022034895A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005504270A (ja) * 2001-07-20 2005-02-10 キャンベラ ハーウェル リミテッド 環境放射能モニタ
JP2016151454A (ja) * 2015-02-17 2016-08-22 国立研究開発法人日本原子力研究開発機構 放射線計測方法及び放射線計測装置
JP2020136312A (ja) 2019-02-13 2020-08-31 株式会社ジャパンディスプレイ 半導体装置および半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005504270A (ja) * 2001-07-20 2005-02-10 キャンベラ ハーウェル リミテッド 環境放射能モニタ
JP2016151454A (ja) * 2015-02-17 2016-08-22 国立研究開発法人日本原子力研究開発機構 放射線計測方法及び放射線計測装置
JP2020136312A (ja) 2019-02-13 2020-08-31 株式会社ジャパンディスプレイ 半導体装置および半導体装置の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF NUCLEAR MEDICINE, vol. 51, 2010, pages 1616 - 1623
See also references of EP4198575A4

Also Published As

Publication number Publication date
CN116034292A (zh) 2023-04-28
JPWO2022034895A1 (ja) 2022-02-17
US20230288585A1 (en) 2023-09-14
EP4198575A1 (en) 2023-06-21
EP4198575A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US10502846B2 (en) Normalization correction for multiple-detection enhanced emission tomography
KR20070062975A (ko) 핵종 식별 시스템
Britton et al. Quantifying radionuclide signatures from a γ–γ coincidence system
Britton et al. Coincidence corrections for a multi-detector gamma spectrometer
EP3264138B1 (en) Labr3 scintillation detector and specific event removal method
CN109975860B (zh) 一种基于极大似然迭代法的量化核素能谱成分识别方法
Koarashi et al. A new digital autoradiographical method for identification of Pu particles using an imaging plate
Pibida et al. Evaluation of handheld radionuclide identifiers
WO2022034895A1 (ja) 放射性核種分析装置、放射性核種分析方法及び放射性核種分析プログラム
Xu et al. Analysis of gamma-ray spectra with spectral unmixing—Part I: Determination of the characteristic limits (decision threshold and statistical uncertainty) for measurements of environmental aerosol filters
KR102249120B1 (ko) 피검자의 체내·외 방사능 오염 분석 프로그램 및 분석 시스템
Korun et al. Calculation of the decision thresholds for radionuclides identified in gamma-ray spectra by post-processing peak analysis results
Britton et al. Incorporating X–ray summing into gamma–gamma signature quantification
Dess et al. Gamma-ray anomaly detector for airborne surveys based on a machine learning methodology
EP2270543A1 (en) Method, device, and program for evaluating particle beam emitted from radiation source, radiation detector evaluation method, calibration method, device, and radiation source
RU2730107C2 (ru) Устройство для in situ анализов радиоактивных отходов, содержащих изотоп хлор-36
JP4406686B2 (ja) 多重ガンマ線測定による3次元キューブを用いた高感度核種分析方法
Hurtado et al. Numerical analysis of alpha spectra using two different codes
Flynn et al. The validation of synthetic spectra used in the performance evaluation of radionuclide identifiers
Karakatsanis et al. Investigation of the minimum detectable activity level of a preclinical LSO PET scanner
JP7378377B2 (ja) 放射線分析装置およびダストモニタ装置
CN110261887B (zh) 一种辐射射线类型的甄别方法、装置和介质
RU2209447C1 (ru) Способ жидкосцинтилляционного альфа-спектрометрического измерения активности радионуклидов
Fan et al. Application of the coincidence summing-in peaks in spectrum analysis of CTBT Proficiency test exercises sample
Sung et al. Accuracy comparison of fitting function applied to air-borne alpha detection spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021855974

Country of ref document: EP

Effective date: 20230313