WO2022034272A1 - Aeronef a decollage et a atterrissage vertical - Google Patents

Aeronef a decollage et a atterrissage vertical Download PDF

Info

Publication number
WO2022034272A1
WO2022034272A1 PCT/FR2021/051040 FR2021051040W WO2022034272A1 WO 2022034272 A1 WO2022034272 A1 WO 2022034272A1 FR 2021051040 W FR2021051040 W FR 2021051040W WO 2022034272 A1 WO2022034272 A1 WO 2022034272A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
planes
wind
aircraft
wings
Prior art date
Application number
PCT/FR2021/051040
Other languages
English (en)
Inventor
Arnaud De Ponnat
Mischa MASSON
Original Assignee
Fleasy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fleasy filed Critical Fleasy
Publication of WO2022034272A1 publication Critical patent/WO2022034272A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders

Definitions

  • the present invention relates to a vertical take-off and landing aircraft equipped with a device allowing it to take off and land vertically (VTOL - anglo-saxon acronym for "Vertical Take-Off and Landing”), including under conditions of Strong wind.
  • VTOL anglo-saxon acronym for "Vertical Take-Off and Landing”
  • Aircraft known by the Anglo-Saxon expression “tailsitters”, i.e. aircraft likely to land on the rear part of their fuselage, and whose entire structure tilts to fly in cruise
  • Tilt-wing aircraft known by the English expression “tilt wings”, have the plane of their wings which is vertical in the take-off, climb, descent and landing flight phases.
  • the wings In the event of significant wind, if it is taken from the front by the aircraft (that is to say if the direction of the wind is perpendicular to the plane of the wings), the wings then constitute a significant wind resistance surface. which complicate or even make impossible the control and the maneuvers in case of strong wind or gusts of wind.
  • the pitch inclination of the wings With significant wind levels, for the aircraft to maintain a fixed position with respect to the ground, the pitch inclination of the wings is likely to reach an angle of attack corresponding to stall (or "hang-up" when the we come from a situation where the wings are stalled to reach a situation where they generate lift as in cruise). This generates instabilities and non-linear behaviors in this stall / re-hook inclination zone and maintaining a fixed position relative to the ground is therefore dangerous.
  • the difficulty which then arises is that the position of stability of the aircraft in rotation with respect to the vertical axis is the wings position facing the wind (that is to say when the axis of the wind is perpendicular to the plane wings). Due to the aerodynamic forces exerted on the wings and the resulting torque when the aircraft maintains a fixed position relative to the ground in strong winds in the "crosswind” position, the aircraft has a natural tendency to turn a "crosswind” position to a "headwind” position, so that the difficulties mentioned above arise again.
  • various devices can make it possible to increase the yaw authority of the aircraft in the vertical take-off, climb, descent and landing phases.
  • These devices can, for example, consist of the blowing of the ailerons by the flow of the propellers, or even in the permanent inclination by design of the axis of rotation of the propellers with respect to the vertical.
  • these devices have a yaw efficiency limit that does not allow the aircraft to maintain a "crosswind" position in strong winds.
  • the aircraft of the invention is provided with a device enabling it to be kept in flight in a position where the direction of the wind is close to parallel to the longitudinal axis of the wings, that is to say in the position " crosswind”.
  • This device consists of two planes or surfaces with an aerodynamic function located at each end of the wings.
  • each of the planes or surfaces is linked to the wing by a pivot-type link, the axis of which is situated in the vicinity of the end of the wing and is included in the plane of the wing. in the "neutral" position, these two planes are in the same plane as that of the wing.
  • the planes or surfaces with aerodynamic function are inclined by a certain angle, relative to the plane of the wing , this inclination being able to occur in the direction of the intrados or the extrados of the said wing, thanks to the pivot connections and, for example, servomotors or actuators, so that the two ends of these planes or surfaces are oriented from the side where the wind is coming from.
  • the aerodynamic action generated by the inclination of these two planes or surfaces will make it possible to bring the aircraft back to the “crosswind” position.
  • an automaton equipped with an inertial unit and / or a compass and / or a GPS can for example make it possible to evaluate the deviation from the target "crosswind” position and control the movements. of the two planes to ensure maintenance as close as possible to the "crosswind” position.
  • the two surfaces or planes can be inclined at a non-zero angle with respect to that of the wings in cruise and the surfaces and the wings are therefore no longer coplanar, i.e.:
  • the wings are, by design, located at the rear of the aircraft, relatively far from the center of gravity of the latter, the two surfaces or planes can be inclined at a significant angle with respect to that of the wings in cruise to constitute rear vertical planes also called "fins";
  • the aircraft has, by design, two airfoils (biplane) along the longitudinal axis of the aircraft, the two surfaces or planes of the lower airfoil may include an arrow and rise upwards, and the two surfaces or planes of the upper airfoil may have an arrow and slope downwards so that the outer edge of the surfaces or planes of the lower airfoil comes into contact along its entire length with the outer edge of the surfaces or planes respectively of the upper wing.
  • the assembly constituted by the airfoils and the surfaces or planes then forms an annular wing or wing in a rectangular ring, which has the known beneficial effect of reducing the aerodynamic drag and the wake turbulence by reducing the marginal vortices;
  • the pivot link can be located inside the aerodynamic device of the invention; in this configuration, said planes or surfaces are connected to the wing by one or more arms integrated within them, one of the ends of said arms being itself secured to a pivot connection also integrated within said planes or surfaces, so that when an angle is imposed between the wing and the aerodynamic device, the wing and said device no longer have a common edge and are linked to each other only by said arms.
  • the right arrow represents the wind direction.
  • the curved arrow represents the torque and rotation induced by the effect of the wind on the devices.
  • FIG. 4 represents a schematic view of the operation of the surfaces or planes with an aerodynamic function, in plan view.
  • the right arrow represents the wind direction.
  • the curved arrow represents the torque and rotation induced by the effect of the wind on the devices.
  • FIG. 5 represents a view of the operation of the surfaces or planes with an aerodynamic function in isometric perspective.
  • the right arrow represents the direction of the wind.
  • the Z axis represents the vertical axis.
  • the right arrow represents the direction of flight.
  • the right arrow represents the direction of flight.
  • FIG. 8 represents in schematic isometric perspective the case of a biplane aircraft for which the geometry of the surfaces or planes with aerodynamic function makes it possible, during their inclination in cruise mode, to generate a closed circuit or annular wing or rectangular ring wing favorable to a improved aerodynamic efficiency.
  • the low wing is, in this example, by design, located at the rear of the aircraft to illustrate the fact of generating rear vertical planes also called fins.
  • FIG. 9 represents in front view the mode of connection between the aerodynamic device of the invention (2) and the wing (1) by means of two arms (6), respectively in operational position, that is to say say deployed, and in a non-operational position, that is to say when said device is coplanar with the wing in question.
  • Figure 10A represents for the fixed angle strategy a schematic top view of the wing for an angle of 5° between the direction of the wind and the wings.
  • the large arrow represents the direction of the wind.
  • the curved arrow represents the induced effect of torque and rotation by the effect of the wind on the planes or surfaces with aerodynamic function.
  • the front device (side where the wind is coming from) forms an angle of 75° with the wing.
  • the rear device (side opposite to the direction of the wind) forms an angle of 30° with the wing.
  • FIG. 10B represents for the fixed angle strategy a schematic top view of the wing for an angle of 30° between the direction of the wind and the wings.
  • the big arrow represents the direction of the wind.
  • the curved arrow represents the induced effect of torque and rotation by the effect of the wind on the planes or surfaces with aerodynamic function.
  • the front device (side where the wind is coming from) forms an angle of 75° with the wing.
  • the rear device (side opposite to the direction of the wind) forms an angle of 30° with the wing.
  • Figure 10C represents for the fixed angle strategy a schematic top view of the wing for an angle of 60° between the direction of the wind and the wings.
  • This 60° angle is the critical angle where the effect of the wind on the wing to move it away from the "crosswind" position is the most important and it is therefore the position where the maximum effect is sought. planes or surfaces with an aerodynamic function.
  • the large arrow represents the direction of the wind.
  • the curved arrow represents the induced effect of torque and rotation by the effect of the wind on the devices.
  • the front device (side where the wind is coming from) forms an angle of 75° with the wing.
  • the rear device (side opposite to the direction of the wind) forms an angle of 30° with the wing.
  • the rear device forms an angle of 90° with the wind and the drag effect (dotted arrow starting from the rear device) of the rear device is also close to its maximum.
  • Figure 10D represents for the fixed angle strategy a schematic top view of the wing for an angle of 90° between the direction of the wind and the wings.
  • the large arrow represents the direction of the wind.
  • the curved arrow represents the induced effect of torque and rotation by the effect of the wind on the planes or surfaces with aerodynamic function.
  • the front device (side where the wind is coming from at the top in this diagram) forms an angle of 75° with the wing.
  • the rear device (side opposite to the direction of the wind: bottom in this diagram) forms an angle of 30° with the wing.
  • Figure H represents for the variable angle strategy a schematic top view of the wing for an angle of 40° between the direction of the wind and the wings.
  • the big arrow represents the direction of the wind.
  • the curved arrow represents the induced effect of torque and rotation by the effect of the wind on the planes or surfaces with aerodynamic function.
  • the front device (side where the wind is coming from) forms an angle of 55° with the wing and therefore -15° with respect to the wind, which allows it to have a downforce (in the horizontal plane) relative to the near wind of the max.
  • the rear device (side opposite to the direction of the wind) forms an angle of 50° with the wing and therefore 90° with the wind, which allows it to have a drag relative to the wind close to the maximum.
  • Figure 11B represents for the variable angle strategy a schematic top view of the wing for an angle of 60° between the direction of the wind and the wings.
  • the large arrow represents the direction of the wind.
  • the curved arrow represents the induced effect of torque and rotation by the effect of the wind on the planes or surfaces with aerodynamic function.
  • the front device (side where the wind is coming from) forms an angle of 75° with the wing and therefore -15° with the wind, which allows it to have a downforce (in the horizontal plane) relative to the wind close to the maximum.
  • the rear device (side opposite to the direction of the wind) forms an angle of 30° with the wing and therefore 90° with the wind, which allows it to have a drag relative to the wind close to the maximum.
  • Figure 11C represents for the variable angle strategy a schematic top view of the wing for an angle of 70° between the direction of the wind and the wings.
  • the large arrow represents the direction of the wind.
  • the curved arrow represents the induced effect of torque and rotation by the wind on the planes or surfaces with aerodynamic function.
  • the front device (side where the wind is coming from) forms an angle of 85° with respect to the wing and therefore -15° with the wind, which allows it to have a downforce (in the horizontal plane) relative to the wind close to the maximum.
  • the rear device (side opposite to the direction of the wind) forms an angle of 20° with the wing and therefore of 90° with the wind, which allows it to have a drag relative to the wind close to the maximum.
  • the device comprises: one or more (monoplane, biplane or multiplane aircraft) pairs of wings distributed on either side of the plane of symmetry of the aircraft, and similar to planes in a simplified manner ( 1); two planes or surfaces possibly profiled with a shape of aerodynamic profile (2), located at each end of the wings, constituting the aerodynamically active part of the device of the invention and are movable in rotation around a pivot axis (3) by relative to the wings (1); in the vicinity of each wing tip: a pivot axis (3) connects the wing (1) to the plane or to the surface (2), this pivot axis being located in the plane of the wing at the tip of the wing or inside the device of the invention (FIG.
  • a servomotor (4) or any other device makes it possible to modify the angle between the wing (1) and the plane or the surface (2) by rotation of the said plane or of the said surface (2) around the axis of the pivot ( 3);
  • an automaton (5) equipped with an inertial unit, a compass or any other device makes it possible to estimate the position of the aircraft in space and the origin of the wind by calculation. This automaton evaluates the angular difference between the desired "crosswind" position and the current position of the aircraft and controls the movements of the two planes or surfaces (2) to ensure that the aircraft is maintained as close as possible to the position "crosswind".
  • the planes or end surfaces (2) are inclined by a certain angle with respect to to the plane of the wing thanks to the pivot links (3) and to the servomotor (4) so that the two planes or surfaces (2) are oriented on the side from which the wind comes.
  • the aerodynamic action generated by the inclination of these two planes or surfaces (2) with respect to the wing (1) makes it possible to generate a torque which brings the aircraft back to the “crosswind” position.
  • each device width or "chord” of the device (2) multiplied by the length of the device (2) in the direction of the span of the wing
  • the efficiency at all angles between the wings and the source of the wind is correct from 25% between the surface of the device of the invention and that of the wing.
  • There is no upper limit of this surface because the more the device has a large surface, the more effective it is. Nevertheless for the overall optimization of the aircraft (constraints of mass, structure, aerodynamics), it is preferable that the surface does not exceed 40% of the surface of the wing considered.
  • angles of the devices with respect to the wing in question are described so that the said devices are oriented towards the direction from which the wind is blowing (more or less pronounced depending on the angle) so that the devices are effective in bringing the aircraft back to a position parallel to the wind by the shortest route (smallest angle to cover between the current position of the wings and the direction of the wind).
  • A. Fixed angle strategy for this strategy, we choose to have a fixed angle between the plane of the device and the wing for the front plane (plane which is on the side where the wind is coming from) and for the rear plane (plane which is opposite to the direction of the wind) whatever the angle between the wing and the direction of the wind between 0 and 90° (the direction of the wind being considered always coming from the same side with respect to the Of course, if the wind is coming from the other side, the angles will be reversed so that the devices face the direction the wind is coming from):
  • an effective solution consists in having a fixed angle between the plane of the device and the wing of 75° for the front plane (plane which is on the side where the wind is coming from) and 30° for the rear plane (plane which is opposite to the wind coming from).
  • the larger the surface of the device the larger the tolerances on the applicable angles will be.
  • the tolerance concerning the angles between the plane of the device and the wing can be +/- 20° for the device front and +/- 40° for the rear device. This corresponds to the simplest effective strategy and is illustrated by Figures 10A to 10D.
  • variable angle strategy It is chosen to have a variable angle between the plane of the device of the invention and the wing for the front plane (plane which is on the side from which the wind is coming) and for the rear plane (plane which is opposite the direction of the wind).
  • angles of the wings with respect to the source of the wind comprised between 0 and 30°: the angle between the plane of the device of the invention and the wing can have values comprised between -130° and +130° for the front plane (plane which is on the side where the wind is coming from) and the rear plane (plane which is on the opposite side of the wind coming from) and remain effective over certain ranges of wing angles with respect to the wind coming from.
  • the value of the angle between the wing and the front device is equal to the angle between the wings and the direction of the wind +15° (+5°/- 15°), without exceeding 110°: this makes it possible to maintain the front device at an angle of -15° in relation to the direction of the wind, and therefore to have a deporting action (the fact of being deporting being understood in the horizontal plane and in relation to the direction of the wind and not as usual in the vertical plane) maximum and consequently a maximum torque action to bring the assembly back into the crosswind position.
  • the value of the angle between the wing and the rear device is equal to 90° minus the angle between the wings and the direction of the wind (+/-10 0 ): this makes it possible to maintain the rear device at an angle of 90° in relation to the source of the wind and therefore to have a drag action maximum and consequently a maximum torque action to bring the assembly back into the crosswind position.
  • variable angle strategies which are more complex than the fixed angle strategy presented above, are nevertheless effective and applicable and are illustrated by FIGS. HA to 11C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

Aéronef pouvant décoller et atterrir verticalement dans des conditions de vent fort. L'invention concerne un dispositif permettant à un aéronef en vol pouvant décoller et atterrir verticalement VTOL et dont les ailes sont orientées verticalement lors de ces phases (par exemple aéronef « tail sitter » ou « tilt wing ») de réaliser des décollages et atterrissage dans des conditions de vent fort. Le dispositif est constitué d'ailes (1), de plans liés aux ailes (2) par une liaison de type pivot (3), d'un servo moteur ou actionneur (4) permettant de modifier l'angle entre l'aile (1) et le plan (2), d'un automate ou calculateur (5). L'ensemble permet de maintenir l'aéronef VTOL en position « vent de travers » lors des phases de décollage, montée, descente et atterrissage.

Description

AERONEF A DECOLLAGE ET A ATTERRISSAGE VERTICAL
DOMAINE TECHNIQUE
La présente invention concerne un aéronef à décollage et à atterrissage vertical muni d’un dispositif lui permettant de décoller et d’atterrir verticalement (VTOL - acronyme anglo-saxon pour « Vertical Take-Off and Landing »), y compris dans des conditions de vent fort.
ETAT DE LA TECHNIQUE
Les aéronefs, connus sous l’expression anglo-saxonne « tailsitters », c’est-à-dire les aéronefs susceptibles d’atterrir sur la partie arrière de leur fuselage, et dont la globalité de la structure bascule pour voler en croisière, et les aéronefs à voilure basculante, connus sous l’expression anglo-saxonne « tilt wings » ont le plan de leurs ailes qui est à la verticale dans les phases de vol de décollage, montée, descente et atterrissage.
En cas de vent significatif, si celui-ci est pris de face par l’aéronef (c’est-à-dire si la direction du vent est perpendiculaire au plan des ailes), les ailes constituent alors une surface de prise au vent significative qui compliquent voire rendent impossible le contrôle et les manœuvres en cas de vent fort ou de rafales de vent. Avec des niveaux de vent significatifs, pour que l’aéronef maintienne une position fixe par rapport au sol, l’inclinaison en tangage des ailes est susceptible d’atteindre un angle d’attaque correspondant au décrochage (ou au « raccrochage » lorsque l’on vient d’une situation où les ailes sont en régime décroché pour atteindre une situation où elles génèrent de la portance comme en croisière). Cela génère des instabilités et des comportements non linéaires dans cette zone d’inclinaison de décrochage / raccrochage et le maintien d’une position fixe par rapport au sol s’avère par conséquent périlleux.
Par ailleurs, dans des conditions d’atterrissage par fort vent de face, au moment de l’atterrissage, un aéronef « tailsitter » doit passer d’une inclinaison en tangage forte vers l’avant par rapport à la verticale à une inclinaison nulle par rapport à la verticale au moment où il est au sol en un très court laps de temps. Il s’agit là aussi d’une manœuvre d’autant plus périlleuse qu’elle doit se faire très vite et à proximité du sol. Une alternative pour éviter ces manœuvres périlleuses consiste à envisager les phases de décollage, montée et descente et atterrissage par « vent de travers », c’est-à-dire que la direction du vent est parallèle à l’axe longitudinal des ailes. La difficulté qui se pose alors est que la position de stabilité de l’aéronef en rotation par rapport à l’axe vertical est la position ailes face au vent (c’est-à-dire lorsque l’axe du vent est perpendiculaire au plan des ailes). Du fait des efforts aérodynamiques qui s’exercent sur les ailes et du couple résultant lorsque l’aéronef maintient une position fixe par rapport au sol par vent fort en position « vent de travers », l’aéronef a une tendance naturelle à tourner d’une position « vent de travers » vers une position « vent de face », de sorte que les difficultés évoquées précédemment viennent à nouveau se poser.
Afin de contrer cette tendance naturelle, différents dispositifs peuvent permettre d’augmenter l’autorité en lacet de l’aéronef dans les phases de décollage, montée, descente et atterrissage à la verticale. Ces dispositifs peuvent par exemple consister dans le soufflage des ailerons par le flux des hélices, ou encore dans l’inclinaison permanente par conception de l’axe de rotation des hélices par rapport à la verticale. Néanmoins ces dispositifs ont une limite d’efficacité en lacet qui ne permet pas à l’aéronef de maintenir une position « vent de travers » par vent fort.
L’invention présentée par la suite permet de remédier à ces limites.
EXPOSE DE L’INVENTION
L’aéronef de l’invention est muni d’un dispositif lui permettant de le maintenir en vol dans une position où la direction du vent est proche de la parallèle à l’axe longitudinal des ailes c’est-à-dire en position « vent de travers ».
Ce dispositif se compose de deux plans ou surfaces à fonction aérodynamique situés à chaque extrémité des ailes. chacun des plans ou surfaces est lié à l’aile par une liaison de type pivot dont l’axe se situe au voisinage de l’extrémité de l’aile et est inclus dans le plan de l’aile. dans la position « neutre », ces deux plans sont dans le même plan que celui de l’aile. lorsque, suite à une perturbation, l’axe du vent n’est plus parallèle à l’axe longitudinal de l’aile, on incline les plans ou surfaces à fonction aérodynamique d’un certain angle, par rapport au plan de l’aile, cette inclinaison pouvant intervenir en direction de l’intrados ou de l’extrados de ladite aile, grâce aux liaisons pivot et, par exemple, des servomoteurs ou actuateurs, de manière à ce que les deux extrémités de ces plans ou surfaces soient orientées du côté d’où vient le vent. L’action aérodynamique générée par l’inclinaison de ces deux plans ou surfaces va permettre de ramener l’aéronef en position « vent de travers ».
Avantageusement, un automate équipé d’une centrale inertielle et / ou d’un compas et/ou d’un GPS, pourra par exemple permettre d’évaluer l’écart par rapport à la position « vent de travers » visée et contrôler les mouvements des deux plans pour assurer le maintien au plus près de la position « vent de travers ».
Selon des modes particuliers de réalisation : les deux surfaces ou plans peuvent être inclinés avec un angle non nul par rapport à celui des ailes en croisière et les surfaces et les ailes ne sont donc plus coplanaires, soit :
■ cas d’un angle faible par rapport à l’aile : génère du dièdre facteur de stabilité en roulis.
■ cas d’un angle fort par rapport à l’aile pouvant aller jusqu’à 90°: diminue les effets de tourbillons de bout d’aile ce qui permet d’améliorer l’efficacité de l’aile. si les ailes sont, par conception, situées à l’arrière de l’aéronef, relativement loin du centre de gravité de ce dernier, les deux surfaces ou plans peuvent être inclinés avec un angle important par rapport à celui des ailes en croisière pour constituer des plans verticaux arrière aussi appelé « dérives » ; si l’aéronef comporte, par conception, deux voilures (biplan) selon l’axe longitudinal de l’aéronef , les deux surfaces ou plans de la voilure inférieure peuvent comporter une flèche et se relever vers le haut, et les deux surfaces ou plans de la voilure supérieure peuvent comporter une flèche et s’incliner vers le bas de telle sorte que l’arête externe des surfaces ou plans de la voilure inférieure vient en contact sur toute sa longueur avec l’arête externe des surfaces ou plans respectifs de la voilure supérieure. L'ensemble constitué par les voilures et les surfaces ou plans forme alors une aile annulaire ou aile en anneau rectangulaire, qui a pour effet bénéfique connu de réduire la traînée aérodynamique et les turbulences de sillage en réduisant les tourbillons marginaux ; la liaison pivot peut être située à l’intérieur du dispositif aérodynamique de l’invention ; dans cette configuration, lesdits plans ou surfaces sont reliés à l’aile par un ou plusieurs bras intégrés en leur sein, l’une des extrémités desdits bras étant elle-même solidarisée à une liaison pivot également intégrée au sein desdits plans ou surfaces , de sorte que lorsqu’un angle est imposé entre l’aile et le dispositif aérodynamique, l’aile et ledit dispositif n’ont plus d’arête commune et ne sont liés l’un à l’autre que par lesdits bras.
BREVE PRESENTATION DES FIGURES
La figure 1 représente une perspective isométrique d’un aéronef « tailsitter » en phase de décollage, montée, descente ou atterrissage par vent de face, (axe Z = axe vertical). La flèche droite représente la direction du vent.
La figure 2 représente une perspective isométrique d’un aéronef « tailsitter » en phase de décollage, montée, descente ou atterrissage par vent de travers, (axe Z = axe vertical). La flèche droite représente la direction du vent.
La figure 3 représente une vue du fonctionnement des surfaces ou plans à fonction aérodynamique en vue de dessus, (axe Z = axe vertical). La flèche droite représente la direction du vent. La flèche courbe représente le couple et la rotation induits par l’effet du vent sur les dispositifs.
La figure 4 représente une vue schématique du fonctionnement des surfaces ou plans à fonction aérodynamique, en vue de dessus. La flèche droite représente la direction du vent. La flèche courbe représente le couple et la rotation induits par l’effet du vent sur les dispositifs.
La figure 5 représente une vue du fonctionnement des surfaces ou plans à fonction aérodynamique en perspective isométrique. La flèche droite représente la direction du vent. L’axe Z représente l’axe vertical.
La figure 6 représente une faible inclinaison des surfaces ou plans à fonction aérodynamique en mode croisière en perspective isométrique pour illustrer le fait de générer du dièdre en bout d’aile, (axe Z = axe vertical). La flèche droite représente la direction du vol.
La figure 7 représente une forte inclinaison des surfaces ou plans à fonction aérodynamique en mode croisière en perspective isométrique pour illustrer le fait de diminuer les effets de tourbillons de bout d’aile et améliorer ainsi la portance, (axe Z = axe vertical). La flèche droite représente la direction du vol.
La figure 8 représente en perspective isométrique schématique le cas d’un aéronef biplan pour lequel la géométrie des surfaces ou plans à fonction aérodynamique permet lors de leur inclinaison en mode croisière de générer un circuit fermé ou aile annulaire ou aile en anneau rectangulaire favorable à une amélioration de l’efficacité aérodynamique. L’aile basse est, dans cet exemple, par conception, située à l’arrière de l’aéronef pour illustrer le fait de générer des plans verticaux arrière aussi appelée dérives.
La figure 9 représente en vue de face le mode de liaison entre le dispositif aérodynamique de l’invention (2) et l’aile (1) au moyens de deux bras (6), respectivement en position opérationnelle, c’est-à-dire déployée, et en position non opérationnelle, c’est-à-dire lorsque ledit dispositif est coplanaire avec l’aile considérée.
La figure 10A représente pour la stratégie angle fixe une vue schématique de dessus de l’aile pour un angle de 5° entre la direction du vent et les ailes. La grande flèche représente la direction du vent. La flèche courbe représente l’effet induit de couple et de rotation par l’effet du vent sur les plans ou surfaces à fonction aérodynamique. Le dispositif avant (côté de la provenance du vent) forme un angle de 75° avec l’aile.
Le dispositif arrière (côté opposé à la provenance du vent) forme un angle de 30° avec l’aile.
La figure 10B représente pour la stratégie angle fixe une vue schématique de dessus de l’aile pour un angle de 30° entre la direction du vent et les ailes. La grande flèche représente la direction du vent. La flèche courbe représente l’effet induit de couple et de rotation par l’effet du vent sur les plans ou surfaces à fonction aérodynamique. Le dispositif avant (côté de la provenance du vent) forme un angle de 75° avec l’aile.
Le dispositif arrière (côté opposé à la provenance du vent) forme un angle de 30° avec l’aile.
La figure 10C représente pour la stratégie angle fixe une vue schématique de dessus de l’aile pour un angle de 60° entre la direction du vent et les ailes.
Cet angle de 60° est l’angle critique où l’effet du vent sur l’aile pour l’éloigner de la position « vent de travers » est le plus important et c’est donc la position où on recherche l’effet maximum des plans ou surfaces à fonction aérodynamique.
La grande flèche représente la direction du vent. La flèche courbe représente l’effet induit de couple et de rotation par l’effet du vent sur les dispositifs. Le dispositif avant (côté de la provenance du vent) forme un angle de 75° avec l’aile.
Le dispositif arrière (côté opposé à la provenance du vent) forme un angle de 30° avec l’aile.
Avec cet angle de 75° par rapport à l’aile et -15° par rapport au vent, l’effet de déportance par rapport au vent (flèche pointillée partant du dispositif avant) du dispositif avant est proche de son maximum
Le dispositif arrière forme un angle de 90° avec le vent et l’effet de trainée (flèche pointillée partant du dispositif arrière) du dispositif arrière est proche de son maximum aussi.
La figure 10D représente pour la stratégie angle fixe une vue schématique de dessus de l’aile pour un angle de 90° entre la direction du vent et les ailes. La grande flèche représente la direction du vent. La flèche courbe représente l’effet induit de couple et de rotation par l’effet du vent sur les plans ou surfaces à fonction aérodynamique. Le dispositif avant (côté de la provenance du vent en haut sur ce schéma) forme un angle de 75° avec l’aile.
Le dispositif arrière (côté opposé à la provenance du vent : en bas sur ce schéma) forme un angle de 30° avec l’aile.
La figure HAreprésente pour la stratégie angle variable une vue schématique de dessus de l’aile pour un angle de 40° entre la direction du vent et les ailes. La grande flèche représente la direction du vent. La flèche courbe représente l’effet induit de couple et de rotation par l’effet du vent sur les plans ou surfaces à fonction aérodynamique. Le dispositif avant (côté de la provenance du vent) forme un angle de 55° avec l’aile et donc de -15° par rapport au vent ce qui lui permet d’avoir une déportance (dans le plan horizontal) relative au vent proche du maximum.
Le dispositif arrière (côté opposé à la provenance du vent) forme un angle de 50° avec l’aile et donc de 90° avec le vent ce qui lui permet d’avoir une trainée relative au vent proche du maximum.
La figure 11B représente pour la stratégie angle variable une vue schématique de dessus de l’aile pour un angle de 60° entre la direction du vent et les ailes. La grande flèche représente la direction du vent. La flèche courbe représente l’effet induit de couple et de rotation par l’effet du vent sur les plans ou surfaces à fonction aérodynamique. Le dispositif avant (côté de la provenance du vent) forme un angle de 75° avec l’aile et donc de -15° avec le vent ce qui lui permet d’avoir une déportance (dans le plan horizontal) relative au vent proche du maximum.
Le dispositif arrière (côté opposé à la provenance du vent) forme un angle de 30° avec l’aile et donc de 90° avec le vent ce qui lui permet d’avoir une trainée relative au vent proche du maximum.
La figure 11C représente pour la stratégie angle variable une vue schématique de dessus de l’aile pour un angle de 70° entre la direction du vent et les ailes. La grande flèche représente la direction du vent. La flèche courbe représente l’effet induit de couple et de rotation par le vent sur les plans ou surfaces à fonction aérodynamique. Le dispositif avant (côté de la provenance du vent) forme un angle de 85° avec rapport à l’aile et donc de -15° avec le vent ce qui lui permet d’avoir une déportance (dans le plan horizontal) relative au vent proche du maximum.
Le dispositif arrière (côté opposé à la provenance du vent) forme un angle de 20° avec l’aile et donc de 90° avec le vent ce qui lui permet d’avoir une trainée relative au vent proche du maximum. EXPOSE DÉTAILLÉ
En référence à ces figures, le dispositif comporte : une ou plusieurs (avions monoplan, biplan ou multiplan) paires d’ailes réparties de part et d’autre du plan de symétrie de l’aéronef, et assimilables à des plans de manière simplifiée (1) ; deux plans ou surfaces éventuellement profilés avec une forme de profil aérodynamique (2), situés à chaque extrémité des ailes, constituant la partie aérodynamiquement active du dispositif de l’invention et sont mobiles en rotation autour d’un axe de pivot (3) par rapport aux ailes (1) ; au voisinage de chaque extrémité d’aile : un axe de pivot (3) lie l’aile (1) au plan ou à la surface (2), cet axe de pivot étant situé dans le plan de l’aile à l’extrémité de l’aile ou à l’intérieur du dispositif de l’invention (figure 9) en étant dans ce cas lié au dispositif par au moins un bras (6) de sorte qu’en position neutre le plan ou surface (2) est situé dans le plan de l’aile (1) ; un servomoteur (4) ou tout autre dispositif permet de modifier l’angle entre l’aile (1) et le plan ou la surface (2) par rotation dudit plan ou de ladite surface (2) autour de l’axe du pivot (3) ; un automate (5) équipé d’une centrale inertielle, d’un compas ou de tout autre dispositif permet d’estimer la position de l’aéronef dans l’espace et la provenance du vent par calcul. Cet automate évalue l’écart angulaire entre la position « vent de travers » recherchée et la position actuelle de l’aéronef et contrôle les mouvements des deux plans ou surfaces (2) pour assurer le maintien de l’aéronef au plus près de la position « vent de travers ».
Lorsque, à la suite d’une perturbation, l’axe du vent n’est plus parallèle à l’axe longitudinal des ailes (1), on incline les plans ou surfaces d’extrémité (2) d’un certain angle par rapport au plan de l’aile grâce aux liaisons pivot (3) et au servomoteur (4) de manière à ce que les deux plans ou surfaces (2) soient orientées du côté d’où vient le vent. L’action aérodynamique générée par l’inclinaison de ces deux plans ou surfaces (2) par rapport à l’aile (1) permet de générer un couple qui ramène l’aéronef vers la position « vent de travers ». Exemples de choix numériques pour la mise en œuvre du dispositif :
La surface de chaque dispositif (largeur ou « corde » du dispositif (2) multipliée par la longueur du dispositif (2) dans le sens de l’envergure de l’aile) est de 10% minimum de la surface de l’aile auquel il est lié pour être un minimum efficace. L’efficacité à tous les angles entre les ailes et la provenance du vent est correcte à partir de 25% entre la surface du dispositif de l’invention et celle de l’aile. Il n’y a pas de limite haute de cette surface car plus le dispositif a une surface importante, plus il est efficace. Néanmoins pour l’optimisation globale de l’aéronef (contraintes de masse, de structure, d’aérodynamisme), il est préférable que la surface ne dépasse pas 40% de la surface de l’aile considérée.
Dans tous les cas, les angles des dispositifs par rapport à l’aile considérée sont décrits pour que lesdits dispositifs soient orientés vers la direction dont vient le vent (de façon plus ou moins prononcée en fonction de l’angle) pour que les dispositifs soient efficaces pour ramener l’aéronef en position parallèle au vent par le chemin le plus court (angle à couvrir le plus faible entre la position courante des ailes et la provenance du vent).
A. Stratégie angle fixe : pour cette stratégie, on choisit d’avoir un angle fixe entre le plan du dispositif et l’aile pour le plan avant (plan qui est du côté de la provenance du vent) et pour le plan arrière (plan qui est à l’opposé de la provenance du vent) quel que soit l’angle entre l’aile et la provenance du vent compris entre 0 et 90° (la provenance du vent étant considéré venant toujours du même côté par rapport à l’aile. Bien entendu, si le vent vient par l’autre côté, les angles seront inversés pour que les dispositifs soient orientés vers la direction dont vient le vent) :
Si la surface des dispositifs est d’au moins 25% par rapport à celle de l’aile, une solution efficace consiste à avoir un angle fixe entre le plan du dispositif et l’aile de 75° pour le plan avant (plan qui est du côté de la provenance du vent) et 30° pour le plan arrière (plan qui est à l’opposé de la provenance du vent). Plus la surface du dispositif est grande, plus les tolérances sur les angles applicables le seront aussi. Par exemple, pour une surface des dispositifs de 40% de celle de l’aile au lieu des 25% évoqués précédemment, la tolérance concernant les angles entre le plan du dispositif et l’aile peut être de +/- 20° pour le dispositif avant et +/- 40° pour le dispositif arrière. Cela correspond à la stratégie efficace la plus simple et elle est illustrée par les figures lOA à 10D.
B. Stratégie angle variable : On choisit d’avoir un angle variable entre le plan du dispositif de l’invention et l’aile pour le plan avant (plan qui est du côté de la provenance du vent) et pour le plan arrière (plan qui est à l’opposé de la provenance du vent). angles des ailes par rapport à la provenance du vent compris entre 0 à 30° : l’angle entre le plan du dispositif de l’invention et l’aile peut avoir des valeurs comprises entre -130° et +130° pour le plan avant (plan qui est du côté de la provenance du vent) et le plan arrière (plan qui est à l’opposé de la provenance du vent) et rester efficace sur certaines plages d’angles des ailes par rapport à la provenance du vent. Les bornes dépendent notamment de la taille relative des dispositifs par rapport aux ailes et de la valeur de l’angle entre les ailes et la provenance du vent, la valeur des angles à donner aux dispositifs pouvant être variable et calculée par l’automate (5) et transmises aux servos ou actionneurs (4) à intervalles réguliers et rapprochés. angles des ailes par rapport à la provenance du vent compris entre 30 et 90° :
■ la valeur de l’angle entre l’aile et le dispositif avant est égale à l’angle entre les ailes et la provenance du vent +15° (+5°/- 15°), sans dépasser 110° : cela permet de maintenir le dispositif avant avec un angle de -15° par rapport à la provenance du vent, et donc d’avoir une action déportante (le fait d’être déportant s’entendant dans le plan horizontal et par rapport à la provenance du vent et non comme à l’accoutumée dans le plan vertical) maximum et par voie de conséquence une action de couple maximum pour ramener l’ensemble en position vent de travers.
■ la valeur de l’angle entre l’aile et le dispositif arrière est égale à 90° moins l’angle entre les ailes et la provenance du vent (+/-100) : cela permet de maintenir le dispositif arrière avec un angle de 90° par rapport à la provenance du vent et donc d’avoir une action de trainée maximum et par voie de conséquence une action de couple maximum pour ramener l’ensemble en position vent de travers.
Ces stratégies à angle variable plus complexes que la stratégie à angle fixe présentée précédemment sont néanmoins efficaces et applicables et sont illustrées par les figures HA à 11C.
Bien entendu, on pourra panacher les stratégies à angle fixe et à angle variable décrites ci-dessus, c’est-à-dire qu’on pourra utiliser une stratégie à angle fixe pour certaines plages d’angle entre les ailes et la provenance du vent, et une stratégie à angle variable pour d’autres plages d’angle entre les ailes et la provenance du vent.

Claims

REVENDICATIONS ) Aéronef à décollage et à atterrissage vertical de type à atterrissage sur la partie arrière du fuselage ou du type à voilure basculante, ledit aéronef comportant au moins une paire d’ailes (1), caractérisé en ce que ledit aéronef comporte un dispositif aérodynamique destiné à le maintenir en position vent de travers lors des phases de décollage, de montée, de descente et d’atterrissage, ledit dispositif comprenant:
• au moins deux plans ou surfaces (2), respectivement un plan ou surface pour chacune desdites au moins deux ailes (1), chaque plan étant articulé au niveau de l’extrémité de l’aile considérée, lesdits plans ou lesdites surfaces (2) étant susceptibles d’être déplacés entre une position neutre, dans laquelle lesdits plans ou lesdites surfaces sont coplanaires avec l’aile sur laquelle ils (elles) sont articulé(e)s, et une position maximum, dans laquelle les plans ou surfaces forment un angle par rapport au plan dans lequel ladite aile s’inscrit, cette inclinaison pouvant intervenir en direction de l’intrados ou de l’extrados de ladite aile ; et
• des moyens (4) aptes à déplacer les plans ou surfaces selon l’inclinaison souhaitée par rapport à l’aile considérée. ) Aéronef selon la revendication 1, caractérisé en ce que les plans ou surfaces (2) sont articulés au niveau du voisinage de l’extrémité des ailes au moyen d’une liaison pivot (3). ) Aéronef selon la revendication 1, caractérisé en ce que les plans ou surfaces (2) sont articulés au niveau de l’extrémité des ailes au moyen d’au moins un bras (6), intégré(s) au sein desdits plans ou surfaces (2), l’une des extrémités du dudit ou desdits bras étant elle-même solidarisée à une liaison pivot également intégrée au sein desdits plans ou surfaces (2). ) Aéronef selon l’une des revendications 1 à 3, caractérisé en ce que les plans ou surfaces (2) forment avec l’aile (1) un angle compris entre -130° et +130° en ayant leur extrémité orientée du côté d’où vient le vent. ) Aéronef selon la revendication 4, caractérisé en ce que les plans ou surfaces (2) forment un angle avec l’aile (1) de +75° ou -75° pour le dispositif avant, qui est le dispositif qui est du côté duquel vient le vent, et de +30°ou -30° pour le dispositif arrière, qui est le dispositif qui est du côté opposé à la provenance du vent, en ayant, pour le dispositif avant et le dispositif arrière, leur extrémité orientée du côté d’où vient le vent. ) Aéronef selon l’une des revendications 1 à 5, caractérisé en ce que le dispositif aérodynamique comprend en outre des moyens aptes à déterminer la position de l’aéronef dans l’espace et la provenance du vent, à évaluer l’orientation de l’axe longitudinal de l’aéronef par rapport à la direction du vent, et à induire l’actionnement des moyens (4) afin de positionner l’aéronef au plus près de la direction en « vent de travers ». ) Aéronef selon la revendication 6, caractérisé en ce que lesdits moyens sont constitués d’un automate (5) équipé d’une centrale inertielle, d’un compas et/ou d’un GPS. ) Aéronef selon l’une des revendications 1 à 7, caractérisé en ce que les moyens (4) aptes à déplacer les plans ou surfaces (2) sont constitués d’un servomoteur ou d’un actuateur. ) Aéronef selon l’une des revendications 1 à 8, comportant deux paires d’ailes, constituant respectivement une voilure inférieure et une voilure supérieure, caractérisé en ce que chacune desdites voilures est munie dudit dispositif aérodynamique, et dans lequel les plans ou surfaces (2) de la voilure inférieure sont susceptibles de s’incliner en direction de la voilure supérieure, et dans lequel les plans ou surfaces (2) de la voilure supérieure sont susceptibles de s’incliner en direction de la voilure inférieure. 0) Aéronef selon la revendication 9, dans lequel l’inclinaison des plans ou surfaces (2) est suffisante pour que le bord libre ou arête des plans ou surfaces (2) d’un même côté de l’aéronef sont en contact l’un avec l’autre, définissant de la sorte une aile fermée, circulaire ou rectangulaire.
PCT/FR2021/051040 2020-08-13 2021-06-10 Aeronef a decollage et a atterrissage vertical WO2022034272A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008477 2020-08-13
FR2008477A FR3113399B1 (fr) 2020-08-13 2020-08-13 Dispositif aérodynamique pour aéronef et aéronef muni d’un tel dispositif

Publications (1)

Publication Number Publication Date
WO2022034272A1 true WO2022034272A1 (fr) 2022-02-17

Family

ID=74183221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051040 WO2022034272A1 (fr) 2020-08-13 2021-06-10 Aeronef a decollage et a atterrissage vertical

Country Status (2)

Country Link
FR (1) FR3113399B1 (fr)
WO (1) WO2022034272A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130206921A1 (en) * 2012-02-15 2013-08-15 Aurora Flight Sciences Corporation System, apparatus and method for long endurance vertical takeoff and landing vehicle
US20170283052A1 (en) * 2016-04-05 2017-10-05 Swift Engineering, Inc. Rotating wing assemblies for tailsitter aircraft
CN108502183A (zh) * 2017-02-25 2018-09-07 原熙 折叠翼直升飞机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130206921A1 (en) * 2012-02-15 2013-08-15 Aurora Flight Sciences Corporation System, apparatus and method for long endurance vertical takeoff and landing vehicle
US20170283052A1 (en) * 2016-04-05 2017-10-05 Swift Engineering, Inc. Rotating wing assemblies for tailsitter aircraft
CN108502183A (zh) * 2017-02-25 2018-09-07 原熙 折叠翼直升飞机

Also Published As

Publication number Publication date
FR3113399A1 (fr) 2022-02-18
FR3113399B1 (fr) 2023-03-31

Similar Documents

Publication Publication Date Title
EP3615424B1 (fr) Aéronef à voilure rhomboédrique à décollage et/ou atterrissage vertical
EP3118112B1 (fr) Aeronef combine muni d'un dispositif anticouple complementaire
WO2017021918A1 (fr) Aéronef convertible pourvu de deux rotors carénés en bout d'aile et d'un fan horizontal dans le fuselage
EP0254605B1 (fr) Dispositif directionnel et stabilisateur à rotor anti-couple caréné et incliné et à empennage en "V" dissymétrique, et hélicoptère équipé d'un tel dispositif
EP3002209B1 (fr) Giravion muni d'un dispositif stabilisateur
FR2798359A1 (fr) Perfectionnements aux aeronefs convertibles a rotors basculants
WO2017168088A1 (fr) Dispositif propulsif a portance active
EP4077128B1 (fr) Aéronef à propulsion électrique comportant une aile centrale et deux ailes latérales mobiles en rotation
EP3154856B1 (fr) Vehicule aerien avec des ailes polygonals
EP3765365B1 (fr) Aerodyne hybride de type vtol ou stol
WO2022034272A1 (fr) Aeronef a decollage et a atterrissage vertical
FR2582615A1 (fr) Helicoptere a partie arriere de fuselage et a poutre de queue de section ogivale
EP3365226B1 (fr) Aeronef a voilure fixe et a stabilite statique accrue
WO2009133268A1 (fr) Procédé pour la réduction exceptionnelle de la course d'envol d'un aéronef
EP3581484B1 (fr) Profils aerodynamiques a efficacite stabilisatrice amelioree pour empennages et derives
WO2019155171A1 (fr) Aeronef multi-rotor
EP3765362B1 (fr) Aerodyne hybride de type vtol ou stol (calage rotor)
FR3054822B1 (fr) Aeronef dont le fuselage comporte une excroissance en amont de la derive
FR3020039A1 (fr) Aerodyne
FR2552395A1 (fr) Perfectionnements apportes aux helices sustentatrices pour aeronefs
FR3084053A1 (fr) Planeur ayant les dimensions d'un avion de ligne et ses dispositifs de securites applicable sur un avion
FR3057851A1 (fr) Dispositif propulsif a portance active a manoeuvrabilite amelioree
BE381823A (fr)
BE481205A (fr)
BE384647A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21736636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21736636

Country of ref document: EP

Kind code of ref document: A1