WO2022033979A1 - Filter element for energy stores - Google Patents

Filter element for energy stores Download PDF

Info

Publication number
WO2022033979A1
WO2022033979A1 PCT/EP2021/072022 EP2021072022W WO2022033979A1 WO 2022033979 A1 WO2022033979 A1 WO 2022033979A1 EP 2021072022 W EP2021072022 W EP 2021072022W WO 2022033979 A1 WO2022033979 A1 WO 2022033979A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing substance
energy
filter element
fluid
hydroxide
Prior art date
Application number
PCT/EP2021/072022
Other languages
German (de)
French (fr)
Inventor
Peter Kritzer
Ulrich Stahl
Michael Roth
Original Assignee
Carl Freudenberg Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg Kg filed Critical Carl Freudenberg Kg
Publication of WO2022033979A1 publication Critical patent/WO2022033979A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/197Separation; Purification by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/02Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/12Preparation of carbonates from bicarbonates or bicarbonate-containing product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a filter element for filtering a fluid, a corresponding textile fabric, their respective use for filtering a fluid emitted by an energy store, and their use in a corresponding method.
  • Rechargeable energy stores for electrical energy are so-called secondary cells, which are also referred to as accumulators. When charging such an accumulator, electrical energy is converted into chemical energy and, conversely, when discharging an accumulator, chemical energy is converted into electrical energy.
  • Lithium-ion accumulators are of great practical importance. Such a lithium-ion accumulator has two electrodes, via which an electrical charging or discharging of the accumulator is possible. These electrodes are separated from each other by a separator to prevent a short circuit inside the battery. At the same time, when the lithium-ion battery is being charged or discharged, lithium ions must be able to freely migrate between the two electrodes through an electrolyte located between them.
  • the electrolyte regularly contains fluorinated conducting salts such as lithium hexafluorophosphate (LiPFe) or lithium tetrafluoroborate (UBF4).
  • the electrolyte regularly contains fluorinated binders such as polyvinylidene fluoride (PVDF) or polyvinylidene fluoride-hexafluoropropene (PVDF-HFP).
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropene
  • the separator can be damaged in various ways. For example, the separator can tear due to external mechanical stress. Further If the battery is excessively charged or discharged, dendritic structures may grow inside the battery. Such dendritic structures can cut through the separator. In addition, the separator can be damaged if the battery overheats. Each of these types of damage to the separator can lead to a short circuit inside the battery.
  • a short circuit within the accumulator can in turn lead to a so-called thermal runaway, which is often manifested by the development of smoke, fire and/or an explosion.
  • thermal runaway can produce hydrogen fluoride (HF) or hydrofluoric acid are released.
  • HF hydrogen fluoride
  • hydrofluoric acid A typical HF-forming reaction is the following:
  • HF is a thermodynamically very stable compound. A release of HF from the fluorinated materials contained in the accumulator is therefore thermodynamically preferred to the release of other fluorine compounds.
  • HF or hydrofluoric acid has a corrosive effect and is extremely harmful to human health.
  • the United States Environmental Protection Agency's lethal concentration for 10 minutes exposure for HF is only 139 mg/m 3 (see 'Acute Exposure Guideline Levels for Airborne Chemicals', AEGL-3).
  • the IDLH level is only 25 mg/m 3 .
  • a typical automobile battery has, for example, an accumulator with a capacity of 50 kWh. With a complete thermal runaway of such a battery, up to 10 kg of HF can be released. This means that the IDLH level is reached in a room with a size of 400,000 m 3 . Such RF exposure is particularly critical in confined spaces. In electric cars, ships, etc., lithium-ion accumulators are also frequently used, in which nickel-manganese-cobalt oxide (NMC) is used as the cathode material. A cell of such an accumulator typically has a charge of 100 ampere hours (Ah). It is estimated that a 100 Ah (0.36 kWh) cell emits around 70 g of HF.
  • NMC nickel-manganese-cobalt oxide
  • a thermal runaway of an accumulator leads at the same time to a problematic release of HF and large amounts of energy. This results in health hazards and fire hazards in particular.
  • DE 102008 001 707 A1 describes an energy converter or energy storage unit which is surrounded by a casing.
  • the casing includes a fluorine absorber. In the event of a fire or overheating of the energy converter or energy storage unit, this is intended to prevent the emission of fluorine-containing compounds such as HF.
  • fluorine-containing compounds such as HF.
  • the amounts of energy potentially released in the event of fire or overheating are not addressed, nor are the amounts of gas potentially released.
  • DE 102014211 043 A1 describes a lithium cell which comprises a lithium cell coil, a foil packaging, a hard-shell housing and a fluorine absorber.
  • the fluorine absorber is arranged in particular within the film packaging and/or the hard-shell housing. A thermal runaway of such a lithium cell is mentioned, but not the amount of energy released. Large amounts of gas released are also not a problem.
  • DE 102011 084 745 A1 describes a degassing system for a battery, which comprises a cavity with an inert agent bound in solid or liquid form.
  • DE 102015002 319 A1 describes an accumulator which has a filter material which removes hydrogen fluoride.
  • DE 20 2020 100 241 U1 describes an energy store in which a fire protection element is arranged between adjacent individual cells.
  • DE 10 2014 215 012 A1 describes a gas cleaning unit for a battery system, which comprises a separating means and a surface increasing structure. The state of the art is still partially in need of improvement. This applies in particular with regard to an absorption of HF and of large amounts of energy and a possible discharge of large amounts of gas, all of which are emitted essentially simultaneously and in particular by an energy store such as a lithium-ion battery.
  • the object of the invention is to provide a filter element which at least partially and if possible completely overcomes the disadvantages of the prior art.
  • a further object of the invention is to provide an energy storage device which at least partially and if possible completely overcomes the disadvantages of the prior art.
  • the invention relates to a filter element for filtering a fluid, comprising: a collecting unit, an inlet through which fluid can be supplied to the collecting unit, an outlet through which fluid can be discharged from the collecting unit, the collecting unit comprising: an energy an absorbing substance capable of endothermally releasing water and an HF absorbing substance capable of forming a fluoride with HF, wherein the energy absorbing substance and the HF absorbing substance are different from each other.
  • the filter element does not or not only serves to filter solids from a fluid. Rather, the filter element is adapted to change the chemical composition of a fluid fed to the collection unit. That is, the fluid fed to the collection unit has a different chemical composition than the corresponding fluid discharged from the collection unit. In particular, at least one component of the supplied fluid is filtered out of it by the filter element.
  • the term "fluid” encompasses gases, liquids and mixtures of gases and liquids.
  • the filter element is accordingly adapted to filter out gaseous components, liquid components or both gaseous and liquid components from the fluid.
  • the inlet, the subsequent collection unit and the outlet subsequent to the collection unit define the flow path of a fluid through the filter element according to the invention.
  • the filter element can thus process large amounts of gas, which are discharged in particular from an energy store such as a lithium-ion battery.
  • the inlet is preferably designed in such a way that it can be brought into fluid connection with an energy store, in particular a lithium-ion battery.
  • the energy-absorbing substance can endothermally release water (H2O). That is, energy must be supplied for water to be released from the energy-absorbing substance. Accordingly, the enthalpy difference AH of the release of the water is positive.
  • the energy-absorbing substance is therefore in particular a thermal energy-absorbing substance.
  • the energy-absorbing substance is not water per se.
  • the filter element can absorb large amounts of energy via the energy-absorbing substance, which is released in particular by an energy store such as a lithium-ion battery. Released water also has a flame retardant effect and reduces the risk of fire.
  • the HF absorbing substance can absorb hydrogen fluoride by forming a fluoride with HF.
  • a fluoride at least one fluoride (F) atom is ionically or covalently bonded to at least one non-fluoride (non-F) atom.
  • the HF absorbing substance is not water per se.
  • the filter element can use the HF-absorbing substance to filter or absorb harmful HF, which is emitted in particular by an energy store such as a lithium-ion battery, from a supplied fluid.
  • the energy absorbing substance and the RF absorbing substance are different from each other. In particular, they do not form an aqueous solution together.
  • the RF absorbing substance is not a substance, especially a salt, dissolved in water as an energy absorbing substance. Since both the energy-absorbing substance and the HF-absorbing substance are included in the collecting unit, the filter element can simultaneously absorb large amounts of energy and harmful HF, which are emitted in particular by an energy store such as a lithium-ion battery.
  • the energy-absorbing substance releases water. The released water can facilitate the absorption of HF by the HF absorbing substance.
  • the Energy-absorbing substance and the HF-absorbing substance can thus have a synergistic effect.
  • the filter element according to the invention can, in particular, absorb large amounts of energy and released HF released from an energy store and, if appropriate, also discharge large amounts of gas that have also been released.
  • the filter element according to the invention can also reduce or even eliminate associated fire hazards, health hazards and possibly explosion hazards.
  • the filter element according to the invention can do this together or simultaneously, and can use synergies between energy-absorbing substance and HF-absorbing substance.
  • a valve is generally a device that can control a flow of fluid.
  • a valve can allow the flow path of the fluid through the filter element according to the invention to be opened and closed.
  • An energy store such as a lithium-ion battery is often surrounded by a casing, for example a foil bag or a dimensionally stable housing. During regular operation of an energy store, pressure fluctuations regularly occur within the casing. Small amounts of HF can already be released during regular operation, for example through the decomposition of fluorinated materials. In addition, small amounts of other gases such as CO, ether and organic carbonates can form. This can lead to an increase in pressure within the casing.
  • a valve fitted at the inlet and/or at the outlet of the filter element can enable controlled venting of the casing and thus a reduction in pressure within the casing.
  • a valve fitted to the inlet and/or outlet of the filter element can in this way help prevent the shroud from bursting or bursting. If the inlet of the filter element is equipped with a valve, the valve can be integrated into the shell of the energy storage device. In this way, the valve can be of particularly simple design.
  • the valve can protect the collection unit and thus both the energy absorbing substance and the RF absorbing substance from environmental influences. In this way, the valve can extend the life of the filter element.
  • the valve automatically triggers venting (emergency degassing) of the casing in the event of a thermal runaway of the energy store.
  • venting emergency degassing
  • the valve automatically closes again after the casing has been vented, in particular after an overpressure above the pressure in the regular operation of the energy store has been reduced. In this way, the valve can protect the energy store from environmental influences.
  • the valve has a pressure-compensating effect.
  • the valve preferably has porous sections, through which small pressure differences can be compensated.
  • small exchange volumes can be guided out of or into the casing of the energy store in a targeted manner through such porous sections. In this way, the valve can compensate for operational pressure differences.
  • the collecting unit comprises a first section on the inlet side, which contains the energy-absorbing substance, and then downstream a second section, which contains the HF-absorbing substance.
  • the energy-absorbing substance releases water when absorbing energy. Water can aid in the absorption of HF by the HF absorbing substance.
  • the supporting effect of the water can be enhanced by the arrangement of the energy-absorbing substance on the inlet side and the subsequent arrangement of the HF-absorbing substance.
  • the synergistic effect of energy-absorbing substance and HF-absorbing substance can thus be even more pronounced.
  • the energy absorbing substance is a hydroxide or a hydrate, more preferably a hydroxide.
  • a hydroxide is an inorganic substance that includes hydroxide ions (OH' ions). Hydroxides are regularly readily available and give off water easily. A hydroxide can thus contribute to an inexpensive and efficient filter element.
  • the hydroxide is amorphous or crystalline, more preferably crystalline.
  • Amorphous means in particular X-ray amorphous, i.e. no reflections which can be assigned to a crystal structure of the hydroxide are observed in a powder X-ray diffraction diagram of the hydroxide.
  • Crystalline means, in particular, that reflections which can be assigned to a crystal II structure of the hydroxide are observed in a powder X-ray diffraction diagram of the hydroxide.
  • Amorphous hydroxides can be produced less expensively. Crystalline hydroxides can contribute to easier introduction into the collection unit, for example by pouring or trickling.
  • the energy absorbing substance is an alkali metal hydroxide, an alkaline earth metal hydroxide, aluminum hydroxide or a mixture thereof.
  • These hydroxides can absorb a lot of energy during endothermic water release, thereby lowering the temperature of the fluid and reducing the risk of fire.
  • the energy-absorbing substance is magnesium hydroxide (Mg(OH) 2 ), aluminum hydroxide (Al(OH)s) or a mixture thereof.
  • Magnesium hydroxide and aluminum hydroxide can absorb a particularly large amount of energy.
  • Magnesium hydroxide can absorb approximately 1200 kJ/kg of energy in a temperature range of 300 to 500°C.
  • Aluminum hydroxide can absorb about 1100 kJ/kg of energy in a temperature range of 200 to 400°C.
  • Aluminum hydroxide is particularly preferred here, since this already releases water at temperatures above 200.degree.
  • a hydrate is a substance that contains water. According to the invention, it is preferred that the hydrate is a crystalline inorganic substance with embedded crystal water or a is organic hydrate, more preferably a crystalline inorganic substance with incorporated water of crystallization. Examples of inorganic hydrates are hemihydrates such as
  • Calcium sulfate hemihydrate monohydrate such as sodium hydrogen sulfate monohydrate and cesium thiosulfate monohydrate, sesquihydrate such as potassium carbonate sesquihydrate, dihydrate such as calcium sulfate dihydrate and calcium chloride dihydrate, trihydrate such as
  • Tetrahydrate such as copper sulfate pentahydrate, hexahydrate such as
  • octahydrates such as praseodymium sulfate octahydrate, nonahydrates such as chromium nitrate nonahydrate,
  • Decahydrates such as sodium sulfate decahydrate (Glauber's salt) and sodium carbonate
  • decahydrate, and dodecahydrates such as sodium phosphate dodecahydrate.
  • organic hydrates are geminal diols and aldehyde hydrates such as choral hydrate and formalin, and (R)-cysteine hydrochloride monohydrate. Hydrates can endothermally release comparatively large amounts of water and thus have a particularly fire-retardant effect.
  • the HF absorbing substance is a salt of an alkali or alkaline earth metal, the salt preferably being a hydroxide, an oxide, a carbonate, a bicarbonate, a hydroxycarbonate or an oxycarbonate, more preferably an alkali metal bicarbonate or an alkaline earth metal bicarbonate , especially sodium bicarbonate.
  • a salt of an alkali or alkaline earth metal can bind HF in an acid-base reaction to form a metal fluoride.
  • the resulting alkali or alkaline earth metal fluorides are usually thermodynamically very stable and non-toxic, so they can be safely disposed of.
  • the HF-absorbing substance is calcium carbonate (CaCOs), calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or a mixture thereof.
  • CaCOs calcium carbonate
  • Ca(OH) 2 calcium hydroxide
  • CaO calcium oxide
  • aF2 calcium fluoride
  • CaF2 fluorspar
  • Calcium hydroxide is particularly preferred because, in addition to CaF2, it also leads to further water being released according to the following reaction, which has a flame-retardant effect:
  • the HF-absorbing substance is an alkali metal hydrogen carbonate or an alkaline earth metal hydrogen carbonate.
  • An alkali metal bicarbonate or an alkaline earth metal bicarbonate can additionally release flame-retardant water and/or flame-retardant carbon dioxide (CO 2 ).
  • CO 2 flame-retardant water and/or flame-retardant carbon dioxide
  • Such a release of water and/or carbon dioxide can already take place at low temperatures of, for example, ⁇ 200.degree.
  • Such a release of water and/or carbon dioxide can also take place with short residence times of, for example, ⁇ 3 seconds.
  • An alkali metal bicarbonate or an alkaline earth metal bicarbonate can be converted to a carbonate with a greatly increased surface area or grain boundary. Such an enhanced surface area carbonate may exhibit increased reactivity toward HF, particularly when the carbonate is amorphous.
  • the HF absorbing substance is sodium bicarbonate (NaHCO 3 ).
  • NaHCO 3 sodium bicarbonate
  • Sodium hydrogen carbonate is particularly preferred because, in addition to NaF, it also leads to further released water and released carbon dioxide (CO 2 ) according to the following reaction, both of which have a flame-retardant effect:
  • Sodium hydrogen carbonate can be particularly suitable for use at high temperatures, in particular at temperatures between 160 and 250°C. At higher temperatures, sodium hydrogen carbonate can be converted into sodium carbonate with a greatly increased surface area or grain boundary, eg with a surface area increased by a factor of up to 1000. Such an increased surface area sodium carbonate may exhibit increased reactivity toward HF.
  • a sodium carbonate is preferably amorphous, ie it preferably does not have an ordered crystal lattice. Such amorphous sodium carbonate can lead to an immediate Lead reaction with an HF-containing fluid. A reactivity of >90% can be achieved at a temperature of >150°C.
  • the energy-absorbing substance is magnesium hydroxide, aluminum hydroxide or a mixture thereof, and at the same time that the HF-absorbing substance is calcium carbonate, calcium hydroxide, calcium oxide, sodium bicarbonate or a mixture thereof.
  • the energy absorbing substance is magnesium hydroxide, aluminum hydroxide or a mixture thereof, and that the RF absorbing substance comprises sodium hydrogen carbonate.
  • the release of water from the magnesium hydroxide, the aluminum hydroxide, or the mixture thereof can increase the reactivity of the RF absorbing substance.
  • the release of water from the magnesium hydroxide, the aluminum hydroxide or the mixture thereof can in particular increase the reactivity of the calcium carbonate, the calcium hydroxide and/or the calcium oxide and particularly markedly the reactivity of the sodium bicarbonate.
  • the absorption of HF by calcium carbonate, calcium hydroxide and/or calcium oxide can take place at relatively low temperatures.
  • the absorption of HF by sodium bicarbonate can occur at relatively high temperatures. As a result, the filter element can be effective over a wide temperature range.
  • the filter element can be used in a variety of ways, both in the home and in automotive applications.
  • particularly preferred pairs of energy absorbers and RF absorbers are as follows: Al(OH) 3 /CaCO 3 ; Al(OH) 3 /Ca(OH) 2 ; Al(OH) 3 /NaHCO 3 ; and Al(OH) 3 /[Ca(OH) 2 +NaHCO 3 ], especially Al(OH) 3 /NaHCO 3 .
  • the preferred pairs are salt pairs.
  • the combination of energy-absorbing substance and HF-absorbing substance is therefore sometimes also referred to herein as Roth's salt, and their joint reactions together as rotting.
  • the RF absorbing substance consists of particles having a BET specific surface area of 1 to 70 m 2 /g, more preferably 5 to 65 m 2 /g, still more preferably 10 to 60 m 2 /g , more preferably 15 to 55 m 2 /g, and particularly preferably 20 to 50 m 2 /g, measured according to DIN ISO 9277:2014-01.
  • the HF-absorbing substance consists of particles that have an average particle diameter (d50) of ⁇ 60 ⁇ m, more preferably ⁇ 40 ⁇ m, even more preferably ⁇ 20 ⁇ m, more preferably ⁇ 10 ⁇ m, and particularly preferably ⁇ 3 pm, measured according to ISO 13320:2020-01.
  • the HF-absorbing substance consists of particles that have an average particle diameter (d50) of up to 7 mm, more preferably 0.1 to 7 mm, even more preferably 1 to 7 mm, more preferably 3 to 7 mm, and particularly preferably 5 to 7 mm, measured according to ISO 13320:2020-01.
  • the HF absorbing substance consists of particles having a BET specific surface area of 1 to 70 m 2 /g, the HF absorption can proceed faster and more completely. If the HF absorbing substance consists of particles with an average particle diameter (d50) of ⁇ 60 ⁇ m, the HF absorption can also proceed more quickly and completely. Accordingly, it is particularly advantageous and preferred if the HF-absorbing substance consists of particles with a BET specific surface area of 1 to 70 m 2 /g and with an average particle diameter (d50) of ⁇ 25 ⁇ m.
  • the RF absorbing substance consists of particles having an average particle diameter (d50) of up to 7 mm, the air permeability of the collecting unit can be improved. As a result, the filter element can lead to a lower pressure loss, in particular if these particles are applied to or embedded in a textile fabric such as in particular a nonwoven fabric.
  • the HF absorbing substance is a carbonate, preferably calcium carbonate, and consists of particles with a BET specific surface area of 1 to 10 m 2 /g.
  • Such an HF absorbing substance can quickly and efficiently absorb HF from a fluid.
  • An example of such a substance is REASORB TAV (BET specific surface area: 5 to 6 m 2 /g).
  • the HF absorbing substance is a hydroxide, preferably calcium hydroxide (potassium hydrate), and consists of particles with an average Particle diameter (d50) of ⁇ 20 pm and/or a BET specific surface area of 10 to 50 m 2 /g.
  • d50 average Particle diameter
  • BET specific surface area 10 to 50 m 2 /g.
  • Standard Hydrated Lime BET specific surface area: 16 to 22 m 2 /g
  • SuperHydrate BET specific surface area: 35 to 42 m 2 /g
  • porous highly reactive hydrated lime particles with pores inside BET specific surface area >40 m 2 /g, eg available under the trade names Sorbacal A or SP, very high HF separation of 66% for Sorbacal A and >90% for Sorbacal SP).
  • the HF absorbing substance is a hydrogen carbonate, preferably sodium hydrogen carbonate, and consists of particles with an average particle diameter (d50) of 10 to 50 ⁇ m and more preferably 10 to 45 ⁇ m.
  • d50 average particle diameter
  • Such an HF absorbing substance can quickly and efficiently absorb HF from a fluid.
  • the collecting unit comprises a substance that absorbs organic pollutants, which differs from both the energy-absorbing substance and the HF-absorbing substance, and which is preferably an ether and/or organic carbonate-absorbing substance.
  • the conducting salt is often dissolved in ethers and/or organic carbonates, for example in ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate. In the event of a thermal runaway, these can be emitted as noxious gases.
  • An additional substance in the collection unit that can absorb organic contaminants can help filter out other harmful gases, particularly ethers and organic carbonates, from the fluid fed to the filter element.
  • the substance absorbing organic pollutants is activated carbon. Activated carbon can filter ether and organic carbonates out of a fluid particularly efficiently.
  • a particularly preferred article provided by the invention is a filter element in which the inlet and/or the outlet is equipped with a valve, the collection unit comprises a first section on the inlet side, which contains the energy-absorbing substance, and then downstream a second section, which contains the HF-absorbing substance, the energy-absorbing substance is selected is selected from alkali metal hydroxide, alkaline earth metal hydroxide and aluminum hydroxide, and the HF absorbing substance is selected from sodium hydroxide, sodium hydrogen carbonate, magnesium hydroxide, magnesium carbonate, calcium hydroxide and calcium carbonate.
  • Such a particularly preferred filter element can particularly effectively absorb large amounts of energy released from an energy storage device and released HF and, if necessary, also particularly effectively remove large amounts of gas that have also been released.
  • the collecting unit comprises a housing into which both the energy-absorbing substance and the HF-absorbing substance are introduced, in particular in solid form.
  • the energy-absorbing substance and/or the HF-absorbing substance can be introduced into the housing as a bulk or in a sandwich form between two carriers. In this way, the production of the collecting unit with the two absorbent substances can be simplified.
  • the fluid fed to the collection unit can have a temperature of 400 to 1000°C.
  • the housing is therefore preferably robust against such temperatures. More preferably, the housing does not lose its shape (is dimensionally stable) at temperatures up to 500°C.
  • the energy-absorbing substance and/or the HF-absorbing substance can also be applied to a textile fabric, which in turn is introduced into the housing.
  • the collection unit comprises a textile fabric to which the energy-absorbing substance and/or the HF-absorbing substance are applied.
  • a textile fabric with energy-absorbing substance and/or HF-absorbing substance applied thereto can easily incorporate these substances into differently shaped and/or allow differently dimensioned collection units.
  • the textile fabric is a non-woven fabric.
  • a non-woven fabric can be a particularly versatile and cost-effective textile fabric for filter purposes.
  • the invention also relates to a textile fabric to which an energy-absorbing substance capable of endothermically releasing water and an HF-absorbing substance capable of forming a fluoride with HF are applied, the energy-absorbing substance and the HF -absorbing substance are different from each other.
  • Such a textile fabric can easily be introduced into differently shaped and/or differently dimensioned collecting units of filter elements.
  • Correspondingly equipped filter elements can be used in particular to filter a fluid that is emitted by an energy store, in particular a lithium-ion battery.
  • an energy-absorbing substance and an HF-absorbing substance on the textile fabric according to the invention, the same advantages can be achieved analogously as have been described above for the filter element according to the invention.
  • the preferred configurations of the filter element according to the invention are also preferred for the textile fabric according to the invention.
  • the textile fabric is a non-woven fabric.
  • a non-woven fabric can be a particularly versatile and cost-effective textile fabric for filter purposes.
  • the textile fabric preferably comprised by the collecting unit according to the invention and the textile fabric according to the invention per se, which are both preferably a nonwoven fabric, are described together in more detail.
  • the textile fabric and in particular the non-woven fabric is made from fibers formed from polyester, in particular polyethylene terephthalate, copolyester, polyolefin, in particular polyethylene or polypropylene, polyamide or cellulose.
  • Such textile fabrics can be particularly inexpensive.
  • the textile fabric and in particular the non-woven fabric is made from temperature-stable fibers which are formed in particular from polyphenylene sulphide, polyethylene naphthalate or aramid.
  • the textile fabric and in particular the non-woven fabric is made of glass fibers. Glass fibers can help filter HF from the fluid due to their reactivity to HF.
  • the textile fabric and in particular the non-woven fabric has pores or cavities which contain the energy-absorbing substance and/or the HF-absorbing substance in solid form. It is also preferred according to the invention that the textile fabric and in particular the non-woven fabric are impregnated with solutions, in particular aqueous solutions, of the energy-absorbing substance and/or the HF-absorbing substance.
  • the textile fabric is part of a starting film or completely forms a starting film that can be processed into film bags which in turn are intended to serve as a casing for energy stores such as lithium-ion batteries. In this way, there is no need to subsequently equip such an energy store with an additional filter for fluid that occurs.
  • the filter element according to the invention and the textile fabric according to the invention can be used in energy stores and in particular lithium-ion batteries for electric vehicles, power tools, electric bicycles, photovoltaic systems and in energy stores in industrial plants.
  • Electric vehicles are often parked in garages or multi-storey car parks.
  • Li-ion accumulators of power tools and especially electric bicycles are often charged in homes.
  • Li-ion accumulators for photovoltaic systems are often located in building basements. Storage systems in industrial plants are often housed in buildings or workshops.
  • the subject matter of the invention is also an energy storage device which comprises a lithium ion battery and a filter element according to the invention or a textile fabric according to the invention.
  • a lithium ion battery and a filter element according to the invention or a textile fabric according to the invention.
  • the same advantages can be achieved analogously as have been described above for the filter element according to the invention.
  • the preferred configurations of the filter element according to the invention are also preferred for the energy storage device according to the invention.
  • the invention also relates to the use of a filter element according to the invention or a textile fabric according to the invention for filtering a fluid which is emitted by an energy store, preferably a lithium-ion battery.
  • an energy store preferably a lithium-ion battery.
  • the preferred configurations of the filter element according to the invention or of the textile fabric according to the invention are also preferred for the use according to the invention.
  • the invention also relates to a method for filtering a fluid emitted by an energy store, preferably a lithium-ion battery, in which the fluid is conducted through a filter element according to the invention or through a textile fabric according to the invention.
  • an energy store preferably a lithium-ion battery
  • the same advantages can be achieved analogously as have been described above for the filter element according to the invention.
  • the preferred configurations of the filter element according to the invention or of the textile fabric according to the invention are also preferred for the method according to the invention.
  • FIG. 1 shows an energy store with a filter element arranged outside of it.
  • FIG. 2 shows an energy store with a filter element arranged adjacent to it.
  • 3 shows an energy store with a filter element arranged inside it.
  • FIG. 4 shows an energy store with a filter element, the outlet of which is equipped with a valve.
  • FIG. 5 shows an energy store with a filter element, the inlet of which is equipped with a valve.
  • FIG. 6 shows an energy storage device with a filter element that includes two separate sections.
  • FIG. 7 shows an energy store with a filter element, which comprises three separate sections.
  • Figure 8 shows a lithium ion cell in which the outlet of the filter element comprises a best disc.
  • FIG. 9 shows a lithium-ion cell with a filter element arranged thereon, the outlet of which comprises a Best disk.
  • FIG. 10 shows an arrangement of lithium-ion cells with a filter element arranged thereon, which includes a bursting disc as the outlet.
  • FIG. 11 shows an arrangement of lithium-ion cells with a textile fabric arranged thereon.
  • FIG. 12 shows an energy storage device which comprises a housing with a textile fabric embedded therein.
  • FIG. 13 shows an energy storage device that includes a housing with a textile fabric arranged therein.
  • an energy store can be connected to a filter element 1 according to the invention in such a way that the filter element 1 is arranged outside the energy store or its housing 10 .
  • the filter element 1 arranged at a distance from the housing 10 has a collection unit 2 , an inlet 3 and an outlet 4 .
  • the collecting unit 2 comprises an energy absorbing substance capable of endothermally releasing water and a different HF absorbing substance capable of forming a fluoride with HF.
  • the energy store is a lithium-ion battery with a plurality of lithium-ion cells 9. In particular, if one or more of these lithium-ion cells 9 thermally run away, the resulting fluid is via a connecting line to the inlet 3 and fed through this to the collection unit 2.
  • the fluid is filtered in the collecting unit 2 . After the filtering process, the filtered fluid is discharged from the collecting unit 2 through the outlet 4 .
  • the filter element can be arranged adjacent to the energy store.
  • the inlet 3 (not shown) is part of the filter element 1 and at the same time at least partially part of the housing 10.
  • the filter element can be arranged within the energy store or its housing 10 .
  • the outlet 4 can be part of the filter element 1 and at the same time at least partially part of the housing 10, or the outlet 4 is connected to the housing 10 via a connecting line.
  • a valve 5 is provided on the outlet side, the outlet 4 is therefore equipped with a valve 5 .
  • the valve 5 protects the collection unit 2 and in particular the energy and HF-absorbing substances contained therein from environmental influences. That is, no foreign substances can penetrate through the outlet 4 into the collection unit 2, which could possibly impair the absorption capacity and/or the service life of the substances contained in the collection unit 2.
  • This protection of the collecting unit 2 is provided both before the valve 5 opens and after the valve 5 has been closed again, as soon as a pressure drop through an open valve 5 has ended.
  • the protection of the collection unit 2 also extends to the housing 10 on the inlet side.
  • a valve 5 is provided on the inlet side, ie the inlet 3 is equipped with a valve 5 .
  • a pressure change in particular a pressure increase, in the housing 10 can be reacted to quickly and directly. This applies in particular to a pressure increase caused by a thermal runaway of one or more of the lithium-ion cells 9 .
  • the filter element 1 is arranged outside of the energy store or its housing 10 .
  • the filter element 1 can be attached to the energy store analogously to FIG. 2 or analogously to FIG be arranged within the energy store or its housing 10 .
  • the valve 5 can be arranged directly at the inlet 3 and/or outlet 4, or the valve 5 is connected to the inlet 3 and/or the outlet 4 via a connecting line.
  • the collecting unit 2 has a first section e and a second section ? includes. That is, the collecting unit 2 is designed as a two-stage collecting unit 2 .
  • the energy-absorbing substance which can release water endothermally, is advantageously contained in the first section 6 .
  • the energy-absorbing substance is, for example, Al(OH)s, Mg(OH)2 or a mixture thereof. With this arrangement, released water can support or accelerate the subsequent HF filtering and the fluoride formation required for this.
  • the RF absorbing substance is, for example, calcium carbonate. The formation of fluoride then takes place according to this reaction equation: CaCCh + 2 HF CaF2 + H2O + CO2. According to another preferred example, the RF absorbing substance is sodium bicarbonate.
  • the HF absorbing substance capable of forming a fluoride with HF is contained in the second section 7 .
  • a reverse arrangement with the HF-absorbing substance in section e and the energy-absorbing substance in section 7 is also possible and particularly advantageous if both substances are in the form of a bed and the HF-absorbing substance has a greater density than the energy-absorbing one has substance.
  • FIG. 7 shows an embodiment in which the collection unit 2 comprises a further third section in addition to a first section 6 and a second section 7 . That is, the collecting unit 2 is configured as a three-stage collecting unit 2.
  • the third section can be arranged in front of the first section 6, between the first section 6 and the second section 7 or behind the second section 7.
  • the third section contains a substance that absorbs organic pollutants, especially activated carbon. As a result, organic pollutants such as ether, carbonates and/or carbon monoxide (CO) can also be filtered out of the fluid before the fluid leaves the collecting unit 2 .
  • organic pollutants such as ether, carbonates and/or carbon monoxide (CO) can also be filtered out of the fluid before the fluid leaves the collecting unit 2 .
  • CO carbon monoxide
  • the energy store provided with a filter element 1 according to the invention is a single lithium ion cell 9 (sometimes also referred to as a prismatic cell).
  • the filter element 1 is arranged within the lithium-ion cell 9 .
  • the outlet 4 here includes a bursting disc.
  • the fluid causing the pressure increase is filtered in the filter element 1. Thereafter, the filtered fluid is discharged through the rupture disk to the atmosphere as shown by fluid stream 12 .
  • the filter element 1 is arranged within the lithium-ion cell 9 .
  • Both the inlet 3 (not shown) and the outlet 4 here comprise a rupture disc.
  • a first bursting disk (for example arranged as in FIG. 8; not shown in FIG. 9) bursts first.
  • the fluid causing the pressure increase passes through this into the collecting unit 2 (not shown) of the filter element 1 and is filtered there. Thereafter, the filtered fluid is discharged through the second rupture disc to atmosphere as shown by fluid stream 12 .
  • FIG. 10 is based on the embodiment of FIG.
  • more than one lithium-ion cell 9, eg 2, 3 or more lithium-ion cells 9, approximately 14 lithium-ion cells 9 of a module have one filter element 1 in common.
  • the inlet 3 comprises more than one rupture disk, preferably one rupture disk per lithium-ion cell 9. If the pressure rises excessively in at least one of the lithium-ion cells 9, in particular if it thermally runs away, a first rupture disk of this at least one lithium ruptures -ion cell 9 (arranged, for example, as in Fig. 8; not shown in Fig. 10). The fluid causing the pressure increase passes through this into the collecting unit 2 (not shown) of the filter element 1 and is filtered there.
  • the filtered fluid is released to the environment through a further bursting disk comprised by the outlet 4, as shown by the fluid stream 12.
  • a further bursting disk comprised by the outlet 4, as shown by the fluid stream 12.
  • Applied to the fabric 8 are an energy-absorbing substance capable of endothermally releasing water and a different HF-absorbing substance capable of forming a fluoride with HF.
  • the same filter effect as with the filter element 1 can thus be achieved with the textile fabric 8 .
  • FIG. 12 shows an embodiment in which the textile fabric 8 (with energy and HF-absorbing substance) is let into the housing 10 of an energy store.
  • the textile fabric 8 can be part of the casing of an energy store. This can be particularly advantageous when the energy store is surrounded by a film bag.
  • the textile fabric 8 can be part of a starting film that is still to be processed into a film bag, or can completely form such a starting film.
  • the textile fabric 8 (with energy and HF-absorbing substance) is arranged above the lithium-ion cell 9 .
  • This textile fabric 8 is particularly temperature-stable, in particular due to the energy-absorbing substance it contains, and keeps thermal energy away from the housing cover 11 arranged above it.
  • materials such as plastic or aluminum are used for the housing cover 11 .
  • such materials cannot withstand the temperatures that are regularly generated when lithium-ion cells 9 thermally run away (typically >700° C.).
  • the textile fabric 8 also acts as a heat absorber or heat protector, and the housing cover 11 arranged above it is thermally better protected as a result.
  • the housing cover 11 it is therefore advantageously possible for the housing cover 11 to be made of plastic or aluminum.
  • a filter element according to the invention and a textile fabric according to the invention can advantageously absorb released HF and released large amounts of energy, in particular simultaneously. In addition to the HF and the large amounts of energy, they can also advantageously remove large amounts of gas from the site of the release.
  • the filter element according to the invention and the textile fabric according to the invention are therefore particularly useful for use to protect against emissions, in particular sudden undesired emissions emitted by energy stores such as lithium-ion batteries. The same applies analogously to the uses and methods according to the invention, which can also offer such protection against harmful emissions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The invention relates to a filter element for filtering a fluid which comprises a catch unit, an inlet through which fluid can be supplied to the catch unit, and an outlet through which fluid can be discharged from the catch unit, wherein the catch unit comprises an energy-absorbing substance which can endothermically release water and an HF-absorbing substance which can form a fluoride together with HF, wherein the energy-absorbing substance and the HF-absorbing substance are different from each other.

Description

Filterelement für Energiespeicher Filter element for energy storage
Die Erfindung betrifft ein Filterelement zum Filtern eines Fluids, ein entsprechendes textiles Flächengebilde, deren jeweilige Verwendung zum Filtern eines von einem Energiespeicher emittierten Fluids sowie deren Einsatz in einem entsprechenden Verfahren. The invention relates to a filter element for filtering a fluid, a corresponding textile fabric, their respective use for filtering a fluid emitted by an energy store, and their use in a corresponding method.
Stand der Technik State of the art
Energiespeicher für elektrische Energie geben im Bedarfsfall darin gespeicherte elektrische Energie ab. Solche Energiespeicher sollten möglichst wiederaufladbar sein. Wiederaufladbare Energiespeicher für elektrische Energie sind sogenannte Sekundärzellen, die auch als Akkumulatoren bezeichnet werden. Beim Aufladen eines solchen Akkumulators wird elektrische Energie in chemische Energie umgewandelt, und beim Entladen eines Akkumulators wird umgekehrt chemische Energie in elektrische Energie umgewandelt. Energy stores for electrical energy release electrical energy stored therein when required. Such energy stores should be rechargeable if possible. Rechargeable energy stores for electrical energy are so-called secondary cells, which are also referred to as accumulators. When charging such an accumulator, electrical energy is converted into chemical energy and, conversely, when discharging an accumulator, chemical energy is converted into electrical energy.
Von hoher praktischer Bedeutung sind dabei Lithium-Ionen-Akkumulatoren. Ein solcher Lithium-Ionen-Akkumulator weist zwei Elektroden auf, über die ein elektrisches Auf- bzw. Entladen des Akkumulators möglich ist. Diese Elektroden sind durch einen Separator voneinander getrennt, um einen Kurzschluss innerhalb des Akkumulators zu verhindern. Gleichzeitig müssen beim Auf- bzw. Entladen des Lithium-Ionen-Akkumulators Lithium- Ionen zwischen den zwei Elektroden durch einen sich dazwischen befindlichen Elektrolyten frei hindurchwandern können. In dem Elektrolyten sind dazu regelmäßig fluorierte Leitsalze wie Lithiumhexafluorophosphat (LiPFe) oder Lithiumtetrafluorborat (UBF4) enthalten. Außerdem enthält der Elektrolyt regelmäßig fluorierte Bindemittel wie Polyvinylidenfluorid (PVDF) oder Polyvinylidenfluorid-Hexafluorpropen (PVDF-HFP). Der Einsatz derartiger fluorierter Materialien ist aufgrund ihrer chemischen und elektrochemischen Beständigkeit technisch grundsätzlich sinnvoll. Lithium-ion accumulators are of great practical importance. Such a lithium-ion accumulator has two electrodes, via which an electrical charging or discharging of the accumulator is possible. These electrodes are separated from each other by a separator to prevent a short circuit inside the battery. At the same time, when the lithium-ion battery is being charged or discharged, lithium ions must be able to freely migrate between the two electrodes through an electrolyte located between them. For this purpose, the electrolyte regularly contains fluorinated conducting salts such as lithium hexafluorophosphate (LiPFe) or lithium tetrafluoroborate (UBF4). In addition, the electrolyte regularly contains fluorinated binders such as polyvinylidene fluoride (PVDF) or polyvinylidene fluoride-hexafluoropropene (PVDF-HFP). In principle, the use of such fluorinated materials makes technical sense due to their chemical and electrochemical resistance.
Allerdings kann es auf verschiedene Weise zu einer Schädigung des Separators kommen. So kann der Separator durch äußere mechanische Belastung zerreißen. Ferner kann es durch übermäßige Ladung oder Entladung des Akkumulators zu einem Wachstum dendritischer Strukturen im Inneren des Akkumulators kommen. Solche dendritischen Strukturen können den Separator durchtrennen. Zudem kann der Separator bei einem Überhitzen des Akkumulators beschädigt werden. Jede dieser Schädigungen des Separators kann zu einem Kurzschluss innerhalb des Akkumulators führen. However, the separator can be damaged in various ways. For example, the separator can tear due to external mechanical stress. Further If the battery is excessively charged or discharged, dendritic structures may grow inside the battery. Such dendritic structures can cut through the separator. In addition, the separator can be damaged if the battery overheats. Each of these types of damage to the separator can lead to a short circuit inside the battery.
Ein Kurzschluss innerhalb des Akkumulators wiederum kann zu einem sogenannten thermischen Durchgehen (engl. „thermal runaway") führen, welches sich oftmals durch Rauchentwicklung, Feuerentwicklung und/oder Explosion äußert. Bei einem solchen thermischen Durchgehen kann aus den im Akkumulator enthaltenen fluorierten Materialien Fluorwasserstoff (HF) bzw. Flusssäure freigesetzt werden. Eine typische, HF-bildende Reaktion ist dabei die folgende: A short circuit within the accumulator can in turn lead to a so-called thermal runaway, which is often manifested by the development of smoke, fire and/or an explosion. Such a thermal runaway can produce hydrogen fluoride ( HF) or hydrofluoric acid are released. A typical HF-forming reaction is the following:
LiPF6 + H2O LiF + POF3 + 2HF LiPF 6 + H 2 O LiF + POF 3 + 2HF
Das HF ist eine thermodynamisch sehr stabile Verbindung. Eine Freisetzung von HF aus den im Akkumulator enthaltenen fluorierten Materialien ist daher thermodynamisch gegenüber der Freisetzung anderer Fluorverbindungen bevorzugt. HF is a thermodynamically very stable compound. A release of HF from the fluorinated materials contained in the accumulator is therefore thermodynamically preferred to the release of other fluorine compounds.
HF bzw. Flusssäure wirkt ätzend und ist für Menschen schwer gesundheitsschädlich. So beträgt der von der United States Environmental Protection Agency festgelegte Wert für eine tödlichen Konzentration bei einer Expositionszeit von 10 Minuten für HF nur 139 mg/m3 (siehe Acute Exposure Guideline Levels for Airborne Chemicals', AEGL-3). Darüber hinaus beträgt das IDLH-Niveau (Immediately Dangerous to Life or Health, 30 min) lediglich 25 mg/m3. HF or hydrofluoric acid has a corrosive effect and is extremely harmful to human health. For example, the United States Environmental Protection Agency's lethal concentration for 10 minutes exposure for HF is only 139 mg/m 3 (see 'Acute Exposure Guideline Levels for Airborne Chemicals', AEGL-3). In addition, the IDLH level (Immediately Dangerous to Life or Health, 30 min) is only 25 mg/m 3 .
Fachkundigen Abschätzungen zufolge können pro Wattstunde (Wh) Kapazität eines Akkumulators 20 bis 200 mg HF freigesetzt werden, siehe hierzu zum Beispiel https://ec.europa.eu/jrc/sites/jrcsh/files/thermal-propagation-in-lithium-ionbatteries.pdf.According to expert estimates, 20 to 200 mg HF can be released per watt hour (Wh) capacity of a battery, see for example https://ec.europa.eu/jrc/sites/jrcsh/files/thermal-propagation-in-lithium- ionbatteries.pdf.
Eine typische Automobil-Batterie weist beispielsweise einen Akkumulator mit einer Kapazität von 50 kWh auf. Bei einem vollständigen thermischen Durchgehen eines solchen Akkumulators können damit bis zu 10 kg HF freigesetzt werden. Damit wird das IDLH-Niveau in einem Raum mit einer Größe von 400.000 m3 erreicht. Eine derartige HF-Freisetzung ist in geschlossenen Räumen besonders kritisch. In Elektroautos, Schiffen usw. werden ferner häufig Lithium-Ionen-Akkumulatoren eingesetzt, in denen als Kathodenmaterial Nickel-Mangan-Kobalt Oxid (NMC) eingesetzt wird. Eine Zelle eines solche Akkumulators weist typischerweise eine Ladung von 100 Amperestunden (Ah) auf. Abgeschätzt werden von einer 100 Ah (0,36 kWh) großen Zelle ca. 70 g HF emittiert. A typical automobile battery has, for example, an accumulator with a capacity of 50 kWh. With a complete thermal runaway of such a battery, up to 10 kg of HF can be released. This means that the IDLH level is reached in a room with a size of 400,000 m 3 . Such RF exposure is particularly critical in confined spaces. In electric cars, ships, etc., lithium-ion accumulators are also frequently used, in which nickel-manganese-cobalt oxide (NMC) is used as the cathode material. A cell of such an accumulator typically has a charge of 100 ampere hours (Ah). It is estimated that a 100 Ah (0.36 kWh) cell emits around 70 g of HF.
Neben der Freisetzung von HF sind bei einem thermischen Durchgehen eines solchen Akkumulators auch die freigesetzten Energie- und Gasmengen problematisch. So werden für ein automobiltaugliches Speichersystem z.B. 14 Zellen zu einem Modul verbaut, und 18 Module zu dem vollständigen Speichersystem. Die Tabelle 1 fasst Abschätzungen der in solchen Bauteilen gespeicherten Energien sowie der bei einem thermischen Durchgehen von diesen freigesetzten Energie- und Gasmengen zusammen: In addition to the release of HF, the amounts of energy and gas released in the event of a thermal runaway of such an accumulator are also problematic. For example, 14 cells are built into a module for a storage system suitable for automobiles, and 18 modules into the complete storage system. Table 1 summarizes estimates of the energies stored in such components and the amounts of energy and gas released from them in the event of a thermal runaway:
Tabelle 1 :
Figure imgf000005_0001
Table 1 :
Figure imgf000005_0001
Ein thermisches Durchgehen eines Akkumulators führt damit gleichzeitig zu einer problematischen Freisetzung von HF und von großen Energiemengen. Daraus resultieren insbesondere Gesundheitsgefahren und Brandgefahren. A thermal runaway of an accumulator leads at the same time to a problematic release of HF and large amounts of energy. This results in health hazards and fire hazards in particular.
Außerdem werden wie aus Tabelle 1 ersichtlich große Gasmengen freigesetzt. Aus einer Zelle mit einer Ladung von 100 Ah können bei einem thermischen Durchgehen ca. 2 m3 schädliches Gas freigesetzt werden. Demgegenüber betragen typische Abmessungen einer solchen 100 Ah Zelle nur 23 cm x 10 cm x 2,5 cm. Dies ergibt ein Zellvolumen von nur 0,000575 m3. Die Vervielfachung des Volumens bei thermischem Durchgehen des Akkumulators auf ca. 2 m3 kann damit leicht zu einer Explosion führen. Neben den erwähnten Gesundheitsgefahren und Brandgefahren ergeben sich damit ggf. zusätzlich noch Explosionsgefahren. Diese Gefahren werden im Stand der Technik nicht gemeinsam angesprochen. In addition, as can be seen from Table 1, large amounts of gas are released. In the event of a thermal runaway, a cell with a charge of 100 Ah can release around 2 m 3 of harmful gas. In contrast, the typical dimensions of such a 100 Ah cell are only 23 cm x 10 cm x 2.5 cm. This results in a cell volume of only 0.000575 m 3 . The multiplication of the volume in the event of a thermal runaway of the accumulator to approx. 2 m 3 can easily lead to an explosion. Next to the The health hazards and fire hazards mentioned above may also result in additional explosion hazards. These dangers are not addressed collectively in the prior art.
So beschreibt DE 10 2008 025 422 A1 eine Energiespeicherzelle mit einer Sicherheits- Berstmembran. Dabei kann oberhalb der Sicherheits-Berstmembran ein HF-Absorber vorgesehen sein, z.B. in Form einer Trockentablette. Zu den bei einem thermischen Durchgehen der Energiespeicherzelle freigesetzten Energiemengen oder Gasmengen wird nichts ausgeführt. DE 10 2008 025 422 A1 describes an energy storage cell with a safety bursting membrane. An HF absorber can be provided above the safety bursting membrane, e.g. in the form of a dry tablet. Nothing is said about the amounts of energy or gas released in the event of a thermal runaway of the energy storage cell.
In DE 102008 001 707 A1 wird eine Energiewandler- bzw. Energiespeichereinheit beschrieben, die von einer Ummantelung umgeben ist. Die Ummantelung umfasst dabei einen Fluorabsorber. Bei Brand oder Überhitzung der Energiewandler- bzw. Energiespeichereinheit soll damit eine Emission von fluorhaltigen Verbindungen wie HF vermieden werden. Die bei Brand oder Überhitzung potentiell freigesetzten Energiemengen werden nicht angesprochen, ebenso wenig dabei potentiell freigesetzte Gasmengen. DE 102008 001 707 A1 describes an energy converter or energy storage unit which is surrounded by a casing. The casing includes a fluorine absorber. In the event of a fire or overheating of the energy converter or energy storage unit, this is intended to prevent the emission of fluorine-containing compounds such as HF. The amounts of energy potentially released in the event of fire or overheating are not addressed, nor are the amounts of gas potentially released.
DE 102014211 043 A1 beschreibt eine Lithium-Zelle, die einen Lithium-Zellwickel, eine Folienverpackung, ein Hartschalengehäuse und einen Fluorabsorber umfasst. Der Fluorabsorber ist dabei insbesondere innerhalb der Folienverpackung und/oder des Hartschalengehäuses angeordnet. Ein thermisches Durchgehen einer solchen Lithium- Zelle wird erwähnt, nicht jedoch dabei freigesetzte Energiemengen. Große freigesetzte Gasmengen werden ebenfalls nicht problematisiert. DE 102014211 043 A1 describes a lithium cell which comprises a lithium cell coil, a foil packaging, a hard-shell housing and a fluorine absorber. In this case, the fluorine absorber is arranged in particular within the film packaging and/or the hard-shell housing. A thermal runaway of such a lithium cell is mentioned, but not the amount of energy released. Large amounts of gas released are also not a problem.
In DE 102011 084 745 A1 wird ein Entgasungssystem für eine Batterie beschrieben, welches einen Hohlraum mit einem in fester oder flüssiger Form gebundenen Inertmittel umfasst. DE 102015002 319 A1 beschreibt einen Akkumulator, der einen Fluorwasserstoff entfernenden Filterstoff aufweist. DE 20 2020 100 241 U1 beschreibt einen Energiespeicher, bei dem zwischen benachbarten Einzelzellen ein Brandschutzelement angeordnet ist. DE 10 2014 215 012 A1 beschreibt eine Gasreinigungseinheit für ein Batteriesystem, welche ein Abscheidemittel und eine Oberflächenvergrößerungsstruktur umfasst. Der Stand der Technik ist teilweise noch verbesserungswürdig. Dies gilt insbesondere im Hinblick auf eine Absorption von HF und von großen Energiemengen sowie eines eventuellen Abführens großer Gasmengen, die alle im Wesentlichen gleichzeitig und insbesondere von einem Energiespeicher wie etwa einem Lithium-Ionen-Akkumulator emittiert werden.
Figure imgf000007_0001
DE 102011 084 745 A1 describes a degassing system for a battery, which comprises a cavity with an inert agent bound in solid or liquid form. DE 102015002 319 A1 describes an accumulator which has a filter material which removes hydrogen fluoride. DE 20 2020 100 241 U1 describes an energy store in which a fire protection element is arranged between adjacent individual cells. DE 10 2014 215 012 A1 describes a gas cleaning unit for a battery system, which comprises a separating means and a surface increasing structure. The state of the art is still partially in need of improvement. This applies in particular with regard to an absorption of HF and of large amounts of energy and a possible discharge of large amounts of gas, all of which are emitted essentially simultaneously and in particular by an energy store such as a lithium-ion battery.
Figure imgf000007_0001
Der Erfindung liegt als Aufgabe zugrunde, ein Filterelement bereitzustellen, welches Nachteile des Stands der Technik zumindest teilweise und möglichst ganz überwindet. The object of the invention is to provide a filter element which at least partially and if possible completely overcomes the disadvantages of the prior art.
Es ist dabei eine besondere Aufgabe der Erfindung, ein Filterelement bereitzustellen, welches freigesetztes HF und freigesetzte große Energiemengen absorbieren sowie ggf. freigesetzte große Gasmengen abführen kann. It is a particular object of the invention to provide a filter element that can absorb released HF and released large amounts of energy and, if necessary, discharge released large amounts of gas.
Es ist dabei auch eine Aufgabe der Erfindung, ein Filterelement bereitzustellen, welches bei einem thermischen Durchgehen eines Energiespeichers, insbesondere eines Lithium- lonen-Akkumulators, daraus resultierende Gesundheitsgefahren, Brandgefahren und ggf. Explosionsgefahren verringern und möglichst ganz beseitigen kann. It is also an object of the invention to provide a filter element which, in the event of a thermal runaway of an energy store, in particular a lithium ion battery, can reduce and if possible completely eliminate the resulting health hazards, fire hazards and possibly explosion hazards.
Es ist daneben eine Aufgabe der Erfindung, ein textiles Flächengebilde bereitzustellen, welches Nachteile des Stands der Technik zumindest teilweise und möglichst ganz überwindet. It is also an object of the invention to provide a textile fabric which at least partially and if possible completely overcomes the disadvantages of the prior art.
Es ist eine weitere Aufgabe der Erfindung, eine Energiespeichervorrichtung bereitzustellen, welche Nachteile des Stands der Technik zumindest teilweise und möglichst ganz überwindet. A further object of the invention is to provide an energy storage device which at least partially and if possible completely overcomes the disadvantages of the prior art.
Es ist auch eine Aufgabe der Erfindung, eine Verwendung eines Filterelements oder eines textilen Flächengebildes bereitzustellen, welche Nachteile des Stands der Technik zumindest teilweise und möglichst ganz überwindet. Es ist zudem eine Aufgabe der Erfindung, ein Verfahren zum Filtern eines Fluids bereitzustellen, das Nachteile des Stands der Technik zumindest teilweise und möglichst ganz überwindet.
Figure imgf000008_0001
It is also an object of the invention to provide a use of a filter element or a textile fabric which at least partially and if possible completely overcomes the disadvantages of the prior art. It is also an object of the invention to provide a method for filtering a fluid which at least partially and if possible completely overcomes the disadvantages of the prior art.
Figure imgf000008_0001
Überraschenderweise wird die der Erfindung zugrunde liegende Aufgabe durch Produkte, Verwendungen und Verfahren gemäß den Patentansprüchen gelöst. Surprisingly, the object on which the invention is based is achieved by products, uses and methods according to the patent claims.
Gegenstand der Erfindung ist ein Filterelement zum Filtern eines Fluids, umfassend: eine Auffangeinheit, einen Einlass, durch den Fluid zu der Auffangeinheit zugeführt werden kann, einen Auslass, durch den Fluid von der Auffangeinheit abgeführt werden kann, wobei die Auffangeinheit umfasst: eine Energie-absorbierende Substanz, die endotherm Wasser freisetzen kann, und eine HF-absorbierende Substanz, die mit HF ein Fluorid bilden kann, wobei die Energie-absorbierende Substanz und die HF-absorbierende Substanz voneinander verschieden sind. The invention relates to a filter element for filtering a fluid, comprising: a collecting unit, an inlet through which fluid can be supplied to the collecting unit, an outlet through which fluid can be discharged from the collecting unit, the collecting unit comprising: an energy an absorbing substance capable of endothermally releasing water and an HF absorbing substance capable of forming a fluoride with HF, wherein the energy absorbing substance and the HF absorbing substance are different from each other.
Das Filterelement dient nicht bzw. nicht nur dazu, Feststoffe aus einem Fluid zu filtern. Vielmehr ist das Filterelement dazu angepasst, die chemische Zusammensetzung eines zu der Auffangeinheit zugeführten Fluids zu verändern. D.h., das zu der Auffangeinheit zugeführte Fluid weist eine andere chemische Zusammensetzung auf als das entsprechende, von der Auffangeinheit abgeführte Fluid. Insbesondere wird mindestens ein Bestandteil des zugeführten Fluids aus diesem durch das Filterelement herausgefiltert. Wie hier verwendet erfasst der Begriff „Fluid' Gase, Flüssigkeiten und Gemische aus Gasen und Flüssigkeiten. Das Filterelement ist dementsprechend dazu angepasst, gasförmige Bestandteile, flüssige Bestandteile oder sowohl gasförmige als auch flüssige Bestandteile aus dem Fluid herauszufiltern. The filter element does not or not only serves to filter solids from a fluid. Rather, the filter element is adapted to change the chemical composition of a fluid fed to the collection unit. That is, the fluid fed to the collection unit has a different chemical composition than the corresponding fluid discharged from the collection unit. In particular, at least one component of the supplied fluid is filtered out of it by the filter element. As used herein, the term "fluid" encompasses gases, liquids and mixtures of gases and liquids. The filter element is accordingly adapted to filter out gaseous components, liquid components or both gaseous and liquid components from the fluid.
Der Einlass, die sich daran anschließende Auffangeinheit und der sich an die Auffangeinheit anschließende Auslass definieren den Strömungsweg eines Fluids durch das erfindungsgemäße Filterelement. Das Filterelement kann damit große Gasmengen, die insbesondere von einem Energiespeicher wie etwa einem Lithium-Ionen-Akkumulator abgegeben werden, abführen. Der Einlass ist dazu bevorzugt derart ausgestaltet, dass er mit einem Energiespeicher, insbesondere einen Lithium-Ionen-Akkumulator, in Fluidverbindung gebracht werden kann. The inlet, the subsequent collection unit and the outlet subsequent to the collection unit define the flow path of a fluid through the filter element according to the invention. The filter element can thus process large amounts of gas, which are discharged in particular from an energy store such as a lithium-ion battery. For this purpose, the inlet is preferably designed in such a way that it can be brought into fluid connection with an energy store, in particular a lithium-ion battery.
Die Energie-absorbierende Substanz kann endotherm Wasser (H2O) freisetzen. D.h., für eine Freisetzung von Wasser aus der Energie-absorbierenden Substanz muss Energie zugeführt werden. Entsprechend ist die Enthalpiedifferenz AH der Freisetzung des Wassers positiv. Die Energie-absorbierende Substanz ist daher insbesondere eine Wärmeenergie-absorbierende Substanz. Die Energie-absorbierende Substanz ist dabei nicht Wasser an sich. Über die Energie-absorbierende Substanz kann das Filterelement große Energiemengen absorbieren, die insbesondere von einem Energiespeicher wie etwa einem Lithium-Ionen-Akkumulator abgegeben werden. Freigesetztes Wasser wirkt zudem flammhemmend und verringert eine Brandgefahr. The energy-absorbing substance can endothermally release water (H2O). That is, energy must be supplied for water to be released from the energy-absorbing substance. Accordingly, the enthalpy difference AH of the release of the water is positive. The energy-absorbing substance is therefore in particular a thermal energy-absorbing substance. The energy-absorbing substance is not water per se. The filter element can absorb large amounts of energy via the energy-absorbing substance, which is released in particular by an energy store such as a lithium-ion battery. Released water also has a flame retardant effect and reduces the risk of fire.
Die HF-absorbierende Substanz kann Fluorwasserstoff absorbieren, indem die Substanz mit HF ein Fluorid bildet. In einem Fluorid ist mindestens ein Fluorid-Atom (F-Atom) ionisch oder kovalent an mindestens ein Nicht-Fluorid-Atom (kein F-Atom) gebunden. Die HF-absorbierende Substanz ist dabei nicht Wasser an sich. Über die HF-absorbierende Substanz kann das Filterelement gesundheitsschädliches HF, das insbesondere von einem Energiespeicher wie etwa einem Lithium-Ionen-Akkumulator abgegeben wird, aus einem zugeführten Fluid filtern bzw. absorbieren. The HF absorbing substance can absorb hydrogen fluoride by forming a fluoride with HF. In a fluoride, at least one fluoride (F) atom is ionically or covalently bonded to at least one non-fluoride (non-F) atom. The HF absorbing substance is not water per se. The filter element can use the HF-absorbing substance to filter or absorb harmful HF, which is emitted in particular by an energy store such as a lithium-ion battery, from a supplied fluid.
Die Energie-absorbierende Substanz und die HF-absorbierende Substanz sind voneinander verschieden. Sie bilden insbesondere nicht zusammen eine wässrige Lösung. Die HF-absorbierende Substanz ist keine Substanz, insbesondere kein Salz, das in Wasser als Energie-absorbierender Substanz gelöst ist. Indem sowohl die Energie- absorbierende Substanz als auch die HF-absorbierende Substanz von der Auffangeinheit umfasst sind, kann das Filterelement gleichzeitig große Energiemengen und gesundheitsschädliches HF absorbieren, die insbesondere von einem Energiespeicher wie etwa einem Lithium-Ionen-Akkumulator abgegeben werden. Die Energie-absorbierende Substanz setzt dabei Wasser frei. Das freigesetzte Wasser kann die Absorption von HF durch die HF-absorbierende Substanz erleichtern. Die Energie-absorbierende Substanz und die HF-absorbierende Substanz können damit eine synergistische Wirkung haben. The energy absorbing substance and the RF absorbing substance are different from each other. In particular, they do not form an aqueous solution together. The RF absorbing substance is not a substance, especially a salt, dissolved in water as an energy absorbing substance. Since both the energy-absorbing substance and the HF-absorbing substance are included in the collecting unit, the filter element can simultaneously absorb large amounts of energy and harmful HF, which are emitted in particular by an energy store such as a lithium-ion battery. The energy-absorbing substance releases water. The released water can facilitate the absorption of HF by the HF absorbing substance. the Energy-absorbing substance and the HF-absorbing substance can thus have a synergistic effect.
Insgesamt kann das erfindungsgemäße Filterelement insbesondere aus einem Energiespeicher freigesetzte große Energiemengen und freigesetztes HF absorbieren sowie ggf. ebenfalls freigesetzte große Gasmengen abführen. Das erfindungsgemäße Filterelement kann ferner damit verbundene Brandgefahren, Gesundheitsgefahren und ggf. Explosionsgefahren verringern oder sogar beseitigen. Das erfindungsgemäße Filterelement kann dies gemeinsam bzw. gleichzeitig bewerkstelligen, und kann dabei Synergien zwischen Energie-absorbierender Substanz und HF-absorbierender Substanz nutzen. Overall, the filter element according to the invention can, in particular, absorb large amounts of energy and released HF released from an energy store and, if appropriate, also discharge large amounts of gas that have also been released. The filter element according to the invention can also reduce or even eliminate associated fire hazards, health hazards and possibly explosion hazards. The filter element according to the invention can do this together or simultaneously, and can use synergies between energy-absorbing substance and HF-absorbing substance.
Erfindungsgemäß ist es bevorzugt, dass bei dem Filterelement der Einlass und/oder der Auslass mit einem Ventil ausgestattet sind. Ein Ventil ist allgemein eine Einrichtung, mit der ein Strom des Fluids gesteuert werden kann. Ein Ventil kann ein Öffnen und ein Schließen des Strömungswegs des Fluids durch das erfindungsgemäße Filterelement ermöglichen. Ein Energiespeicher wie etwa ein Lithium-Ionen-Akkumulator ist oftmals von einer Ummantelung umgeben, beispielsweise einem Folienbeutel oder einem formstabilen Gehäuse. Innerhalb der Ummantelung kommt es beim Regelbetrieb eines Energiespeichers regelmäßig zu Druckschwankungen. Bereits im Regelbetrieb können z.B. durch Zersetzung von fluorierten Materialien geringe Mengen an HF freigesetzt werden. Zudem können geringe Mengen anderer Gase wie CO, Ether und organische Carbonate entstehen. Dies kann zu einer Druckerhöhung innerhalb der Ummantelung führen. Bei einem thermischen Durchgehen des Energiespeichers kann die Druckerhöhung durch die entstehenden Gase, wiederum insbesondere CO, Ether und organische Carbonate, deutlich größer ausfallen. Mit einer Druckerhöhung geht die Gefahr eines Platzens oder Zerberstens der Ummantelung einher. Sowohl im Regelbetrieb als auch bei einem thermischen Durchgehen kann ein am Einlass und/oder am Auslass des Filterelements angebrachtes Ventil eine gesteuerte Entlüftung der Ummantelung und damit eine Druckerniedrigung innerhalb der Ummantelung ermöglichen. Ein am Einlass und/oder am Auslass des Filterelements angebrachtes Ventil kann auf diese Weise dazu beitragen, ein Platzen oder Zerbersten der Ummantelung zu verhindern. Wenn der Einlass des Filterelements mit einem Ventil ausgestattet ist, kann das Ventil in die Ummantelung des Energiespeichers integriert sein. Auf diese Weise kann das Ventil konstruktiv besonders einfach ausgestaltet sein. According to the invention, it is preferred that the inlet and/or the outlet of the filter element are equipped with a valve. A valve is generally a device that can control a flow of fluid. A valve can allow the flow path of the fluid through the filter element according to the invention to be opened and closed. An energy store such as a lithium-ion battery is often surrounded by a casing, for example a foil bag or a dimensionally stable housing. During regular operation of an energy store, pressure fluctuations regularly occur within the casing. Small amounts of HF can already be released during regular operation, for example through the decomposition of fluorinated materials. In addition, small amounts of other gases such as CO, ether and organic carbonates can form. This can lead to an increase in pressure within the casing. In the event of a thermal runaway of the energy store, the pressure increase due to the gases produced, again in particular CO, ether and organic carbonates, can turn out to be significantly greater. With an increase in pressure there is a risk of the casing bursting or bursting. Both in regular operation and in the event of a thermal runaway, a valve fitted at the inlet and/or at the outlet of the filter element can enable controlled venting of the casing and thus a reduction in pressure within the casing. A valve fitted to the inlet and/or outlet of the filter element can in this way help prevent the shroud from bursting or bursting. If the inlet of the filter element is equipped with a valve, the valve can be integrated into the shell of the energy storage device. In this way, the valve can be of particularly simple design.
Wenn der Auslass des Filterelements mit einem Ventil ausgestattet ist, kann das Ventil die Auffangeinheit und damit sowohl die Energie-absorbierende Substanz als auch die HF-absorbierende Substanz vor Umwelteinflüssen schützen. Auf diese Weise kann das Ventil die Lebensdauer des Filterelements verlängern. If the outlet of the filter element is equipped with a valve, the valve can protect the collection unit and thus both the energy absorbing substance and the RF absorbing substance from environmental influences. In this way, the valve can extend the life of the filter element.
Erfindungsgemäß ist es bevorzugt, dass das Ventil bei einem thermischen Durchgehen des Energiespeichers automatisch eine Entlüftung (Notentgasung) der Ummantelung auslöst. Erfindungsgemäß ist es bevorzugt, dass das Ventil nach einer Entlüftung der Ummantelung, insbesondere nach Abbau eines Überdrucks oberhalb des Drucks im Regelbetrieb des Energiespeichers, automatisch wieder schließt. Auf diese Weise kann das Ventil den Energiespeicher vor Umwelteinflüssen schützen. According to the invention, it is preferred that the valve automatically triggers venting (emergency degassing) of the casing in the event of a thermal runaway of the energy store. According to the invention, it is preferred that the valve automatically closes again after the casing has been vented, in particular after an overpressure above the pressure in the regular operation of the energy store has been reduced. In this way, the valve can protect the energy store from environmental influences.
Erfindungsgemäß ist es bevorzugt, dass das Ventil druckausgleichend wirkt. Dazu weist das Ventil bevorzugt poröse Abschnitte auf, durch die geringe Druckdifferenzen ausgeglichen werden können. Insbesondere können durch solche porösen Abschnitte geringe Austauschvolumina gezielt aus bzw. in die Ummantelung des Energiespeichers geführt werden. Auf diese Weise kann das Ventil betriebsbedingte Druckdifferenzen kompensieren. According to the invention, it is preferred that the valve has a pressure-compensating effect. For this purpose, the valve preferably has porous sections, through which small pressure differences can be compensated. In particular, small exchange volumes can be guided out of or into the casing of the energy store in a targeted manner through such porous sections. In this way, the valve can compensate for operational pressure differences.
Erfindungsgemäß ist es bevorzugt, dass die Auffangeinheit einlassseitig einen ersten Abschnitt umfasst, welcher die Energie-absorbierende Substanz enthält, und daran anschließend stromabwärts einen zweiten Abschnitt umfasst, welcher die HF-absorbierende Substanz enthält. Die Energie-absorbierende Substanz setzt bei Energieaufnahme Wasser frei. Wasser kann die Absorption von HF durch die HF-absorbierende Substanz unterstützen. Durch die einlassseitige Anordnung der Energie-absorbierenden Substanz und die sich daran anschließende Anordnung der HF-absorbierenden Substanz kann die Unterstützungswirkung des Wassers verstärkt werden. Damit kann die synergistische Wirkung von Energie-absorbierender Substanz und HF-absorbierender Substanz noch ausgeprägter sein. Erfindungsgemäß ist es bevorzugt, dass die Energie-absorbierende Substanz ein Hydroxid oder ein Hydrat ist, mehr bevorzugt ein Hydroxid. Ein Hydroxid ist ein anorganischer Stoff, der Hydroxidionen (OH'-Ionen) umfasst. Hydroxide sind regelmäßig gut verfügbar und geben leicht Wasser ab. Ein Hydroxid kann damit zu einem kostengünstigen und effizienten Filterelement beitragen. According to the invention, it is preferred that the collecting unit comprises a first section on the inlet side, which contains the energy-absorbing substance, and then downstream a second section, which contains the HF-absorbing substance. The energy-absorbing substance releases water when absorbing energy. Water can aid in the absorption of HF by the HF absorbing substance. The supporting effect of the water can be enhanced by the arrangement of the energy-absorbing substance on the inlet side and the subsequent arrangement of the HF-absorbing substance. The synergistic effect of energy-absorbing substance and HF-absorbing substance can thus be even more pronounced. According to the invention, it is preferred that the energy absorbing substance is a hydroxide or a hydrate, more preferably a hydroxide. A hydroxide is an inorganic substance that includes hydroxide ions (OH' ions). Hydroxides are regularly readily available and give off water easily. A hydroxide can thus contribute to an inexpensive and efficient filter element.
Erfindungsgemäß ist es bevorzugt, dass das Hydroxid amorph oder kristallin ist, mehr bevorzugt kristallin. Amorph bedeutet insbesondere Röntgen-amorph, d.h. in einem Pulverröntgenbeugungsdiagramm des Hydroxids werden keine Reflexe beobachtet, die einer Kristallstruktur des Hydroxids zugeordnet werden können. Kristallin bedeutet insbesondere, dass in einem Pulverröntgenbeugungsdiagramm des Hydroxids Reflexe beobachtet werden, die einer Krista II Struktur des Hydroxids zugeordnet werden können. Amorphe Hydroxide können weniger aufwendig herstellbar sein. Kristalline Hydroxide können zu einem leichteren Einbringen in die Auffangeinheit, beispielsweise durch Schütten oder Rieseln, beitragen. According to the invention it is preferred that the hydroxide is amorphous or crystalline, more preferably crystalline. Amorphous means in particular X-ray amorphous, i.e. no reflections which can be assigned to a crystal structure of the hydroxide are observed in a powder X-ray diffraction diagram of the hydroxide. Crystalline means, in particular, that reflections which can be assigned to a crystal II structure of the hydroxide are observed in a powder X-ray diffraction diagram of the hydroxide. Amorphous hydroxides can be produced less expensively. Crystalline hydroxides can contribute to easier introduction into the collection unit, for example by pouring or trickling.
Erfindungsgemäß ist es besonders bevorzugt, dass die Energie-absorbierende Substanz ein Alkalimetallhydroxid, ein Erdalkalimetallhydroxid, Aluminiumhydroxid oder eine Mischung davon ist. Diese Hydroxide können bei endothermer Wasserfreisetzung viel Energie aufnehmen und dadurch die Temperatur des Fluids senken und die Brandgefahr verringern. According to the invention, it is particularly preferred that the energy absorbing substance is an alkali metal hydroxide, an alkaline earth metal hydroxide, aluminum hydroxide or a mixture thereof. These hydroxides can absorb a lot of energy during endothermic water release, thereby lowering the temperature of the fluid and reducing the risk of fire.
Erfindungsgemäß ist es dabei insbesondere bevorzugt, dass die Energie-absorbierende Substanz Magnesiumhydroxid (Mg(OH)2), Aluminiumhydroxid (AI(OH)s) oder eine Mischung davon ist. Magnesiumhydroxid und Aluminiumhydroxid können besonders viel Energie absorbieren. Magnesiumhydroxid kann in einem Temperaturbereich von 300 bis 500°C ca. 1200 kJ/kg Energie absorbieren. Aluminiumhydroxid kann in einem Temperaturbereich von 200 bis 400°C ca. 1100 kJ/kg Energie absorbieren. Aluminiumhydroxid ist dabei besonders bevorzugt, da dieses bereits bei Temperaturen ab 200°C Wasser freisetzt. According to the invention, it is particularly preferred that the energy-absorbing substance is magnesium hydroxide (Mg(OH) 2 ), aluminum hydroxide (Al(OH)s) or a mixture thereof. Magnesium hydroxide and aluminum hydroxide can absorb a particularly large amount of energy. Magnesium hydroxide can absorb approximately 1200 kJ/kg of energy in a temperature range of 300 to 500°C. Aluminum hydroxide can absorb about 1100 kJ/kg of energy in a temperature range of 200 to 400°C. Aluminum hydroxide is particularly preferred here, since this already releases water at temperatures above 200.degree.
Ein Hydrat ist ein Stoff, der Wasser enthält. Erfindungsgemäß ist es bevorzugt, dass das Hydrat ein kristalliner anorganischer Stoff mit eingelagertem Kristallwasser oder ein organisches Hydrat ist, mehr bevorzugt ein kristalliner anorganischer Stoff mit eingelagertem Kristallwasser. Beispiele für anorganische Hydrate sind Hemihydrate wieA hydrate is a substance that contains water. According to the invention, it is preferred that the hydrate is a crystalline inorganic substance with embedded crystal water or a is organic hydrate, more preferably a crystalline inorganic substance with incorporated water of crystallization. Examples of inorganic hydrates are hemihydrates such as
Calciumsulfat-Hemihydrat, Monohydrate wie Natriumhydrogensulfat-Monohydrat und Caesiumthiosulfat-Monohydrat, Sesquihydrate wie Kaliumcarbonat-Sesquihydrat, Dihydrate wie Calciumsulfat-Dihydrat und Calciumchlorid-Dihydrat, Trihydrate wieCalcium sulfate hemihydrate, monohydrate such as sodium hydrogen sulfate monohydrate and cesium thiosulfate monohydrate, sesquihydrate such as potassium carbonate sesquihydrate, dihydrate such as calcium sulfate dihydrate and calcium chloride dihydrate, trihydrate such as
Natriumacetat-Trihydrat und Bleiacetat-Trihydrat, Tetrahydrate wie Kaliumnatriumtartrat-Sodium acetate trihydrate and lead acetate trihydrate, tetrahydrates such as potassium sodium tartrate
Tetrahydrat, Pentahydrate wie Kupfersulfat-Pentahydrat, Hexahydrate wieTetrahydrate, pentahydrate such as copper sulfate pentahydrate, hexahydrate such as
Aluminiumchlorid-Hexahydrat und Cobaltchlorid-Hexahydrat, Heptahydrate wiealuminum chloride hexahydrate and cobalt chloride hexahydrate, heptahydrates such as
Magnesiumsulfat-Heptahydrat, Eisensulfat-Heptahydrat und Zi n ks u If at- H e pta hy d rat ,magnesium sulphate heptahydrate, iron sulphate heptahydrate and zinc sulphate ifate heptahydrate,
Octahydrate wie Praseodymsulfat-Octahydrat, Nonahydrate wie Chromnitrat-Nonahydrat,octahydrates such as praseodymium sulfate octahydrate, nonahydrates such as chromium nitrate nonahydrate,
Decahydrate wie Natriumsulfat-Decahydrat (Glaubersalz) und Natriumcarbonat¬Decahydrates such as sodium sulfate decahydrate (Glauber's salt) and sodium carbonate
Decahydrat, und Dodecahydrate wie Natriumphosphat-Dodecahydrat. Beispiele für organische Hydrate sind geminale Diole und Aldehydhydrate, wie etwa Choralhydrat und Formalin, und (R)-Cystein-Hydrochlorid-Monohydrat. Hydrate können endotherm vergleichsweise große Wassermengen freisetzen und dadurch besonders brandhemmend wirken. decahydrate, and dodecahydrates such as sodium phosphate dodecahydrate. Examples of organic hydrates are geminal diols and aldehyde hydrates such as choral hydrate and formalin, and (R)-cysteine hydrochloride monohydrate. Hydrates can endothermally release comparatively large amounts of water and thus have a particularly fire-retardant effect.
Erfindungsgemäß ist es bevorzugt, dass die HF-absorbierende Substanz ein Salz eines Alkali- oder Erdalkalimetalls ist, wobei das Salz vorzugsweise ein Hydroxid, ein Oxid, ein Carbonat, ein Hydrogencarbonat, ein Hydroxycarbonat oder ein Oxycarbonat ist, mehr bevorzugt ein Alkalimetallhydrogencarbonat oder ein Erdalkalimetallhydrogencarbonat, insbesondere Natriumhydrogencarbonat. Ein Salz eines Alkali- oder Erdalkalimetalls kann HF in einer Säure-Base-Reaktion unter Bildung eines Metallfluorids binden. Die resultierenden Alkali- oder Erdalkalimetallfluoride sind regelmäßig thermodynamisch sehr stabil und nicht-toxisch, sodass sie sicher entsorgt werden können. According to the invention it is preferred that the HF absorbing substance is a salt of an alkali or alkaline earth metal, the salt preferably being a hydroxide, an oxide, a carbonate, a bicarbonate, a hydroxycarbonate or an oxycarbonate, more preferably an alkali metal bicarbonate or an alkaline earth metal bicarbonate , especially sodium bicarbonate. A salt of an alkali or alkaline earth metal can bind HF in an acid-base reaction to form a metal fluoride. The resulting alkali or alkaline earth metal fluorides are usually thermodynamically very stable and non-toxic, so they can be safely disposed of.
Erfindungsgemäß ist es dabei besonders bevorzugt, dass die HF-absorbierende Substanz Calciumcarbonat (CaCOs), Calciumhydroxid (Ca(OH)2), Calciumoxid (CaO) oder eine Mischung davon ist. Durch Absorption von HF wird aus diesen Calciumfluorid (CaF2; Flussspat) gebildet, welches thermodynamisch besonders stabil und nicht-toxisch ist. CaF2 kann dadurch sicher entsorgt werden. Calciumhydroxid ist besonders bevorzugt, weil es neben CaF2 gemäß nachfolgender Reaktion auch noch zu weiterem freigesetzten Wasser führt, welches flammhemmend wirkt:
Figure imgf000014_0001
According to the invention, it is particularly preferred that the HF-absorbing substance is calcium carbonate (CaCOs), calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or a mixture thereof. By absorbing HF, calcium fluoride (CaF2; fluorspar) is formed from these, which is thermodynamically particularly stable and non-toxic. CaF2 can thus be safely disposed of. Calcium hydroxide is particularly preferred because, in addition to CaF2, it also leads to further water being released according to the following reaction, which has a flame-retardant effect:
Figure imgf000014_0001
Erfindungsgemäß ist es zudem besonders bevorzugt, dass die HF-absorbierende Substanz ein Alkalimetallhydrogencarbonat oder ein Erdalkalimetallhydrogencarbonat ist. Ein Alkalimetallhydrogencarbonat bzw. ein Erdalkalimetallhydrogencarbonat kann zusätzlich flammhemmendes Wasser und/oder flammhemmendes Kohlendioxid (CO2) freisetzen. Eine solche Freisetzung von Wasser und/oder Kohlendioxid kann bereits bei niedrigen Temperaturen von zum Beispiel < 200°C erfolgen. Eine solche Freisetzung von Wasser und/oder Kohlendioxid kann außerdem bereits bei kurzen Verweilzeiten von zum Beispiel < 3 Sekunden erfolgen. Ein Alkalimetallhydrogencarbonat bzw. ein Erdalkalimetallhydrogencarbonat kann zu einem Carbonat mit einer stark vergrößerten Oberfläche bzw. Korngrenze umwandelt werden. Ein solches Carbonat mit vergrößerter Oberfläche kann eine erhöhte Reaktivität gegenüber HF aufweisen, insbesondere wenn das Carbonat amorph ist. According to the invention, it is also particularly preferred that the HF-absorbing substance is an alkali metal hydrogen carbonate or an alkaline earth metal hydrogen carbonate. An alkali metal bicarbonate or an alkaline earth metal bicarbonate can additionally release flame-retardant water and/or flame-retardant carbon dioxide (CO 2 ). Such a release of water and/or carbon dioxide can already take place at low temperatures of, for example, <200.degree. Such a release of water and/or carbon dioxide can also take place with short residence times of, for example, <3 seconds. An alkali metal bicarbonate or an alkaline earth metal bicarbonate can be converted to a carbonate with a greatly increased surface area or grain boundary. Such an enhanced surface area carbonate may exhibit increased reactivity toward HF, particularly when the carbonate is amorphous.
Erfindungsgemäß ist es auch besonders bevorzugt, dass die HF-absorbierende Substanz Natriumhydrogencarbonat (NaHCO3) ist. Natriumhydrogencarbonat ist besonders bevorzugt, weil es neben NaF gemäß nachfolgender Reaktion auch noch zu weiterem freigesetzten Wasser und sowie freigesetztem Kohlendioxid (CO2) führt, welche beide flammhemmend wirken:
Figure imgf000014_0002
According to the invention, it is also particularly preferred that the HF absorbing substance is sodium bicarbonate (NaHCO 3 ). Sodium hydrogen carbonate is particularly preferred because, in addition to NaF, it also leads to further released water and released carbon dioxide (CO 2 ) according to the following reaction, both of which have a flame-retardant effect:
Figure imgf000014_0002
Diese Reaktion erfolgt bereits ab Temperaturen von ca. 50°C, und läuft üblicherweise bei Temperaturen um 180°C und bereits bei Verweilzeiten von weniger als 2 Sekunden ab. Natriumhydrogencarbonat kann insbesondere für den Einsatz bei hohen Temperaturen geeignet sein, insbesondere bei Temperaturen zwischen 160 und 250°C. Natriumhydrogencarbonat kann sich bei höheren Temperaturen in Natriumcarbonat mit einer stark vergrößerten Oberfläche bzw. Korngrenze umwandeln, z.B. mit einer um einen Faktor von bis zu 1000 vergrößerten Oberfläche. Ein solches Natriumcarbonat mit vergrößerter Oberfläche kann eine erhöhte Reaktivität gegenüber HF aufweisen. Ein solches Natriumcarbonat ist bevorzugt amorph, d.h. es weist bevorzugt kein geordnetes Kristallgitter auf. Ein solches amorphes Natriumcarbonat kann zu einer sofortigen Umsetzung mit einem HF-haltigen Fluid führen. Dabei kann eine Reaktivität von > 90% bei einer Temperatur von > 150°C erreicht werden. This reaction takes place at temperatures as low as approx. 50°C and usually takes place at temperatures of around 180°C and with residence times of less than 2 seconds. Sodium hydrogen carbonate can be particularly suitable for use at high temperatures, in particular at temperatures between 160 and 250°C. At higher temperatures, sodium hydrogen carbonate can be converted into sodium carbonate with a greatly increased surface area or grain boundary, eg with a surface area increased by a factor of up to 1000. Such an increased surface area sodium carbonate may exhibit increased reactivity toward HF. Such a sodium carbonate is preferably amorphous, ie it preferably does not have an ordered crystal lattice. Such amorphous sodium carbonate can lead to an immediate Lead reaction with an HF-containing fluid. A reactivity of >90% can be achieved at a temperature of >150°C.
Erfindungsgemäß ist es besonders bevorzugt, dass die Energie-absorbierende Substanz Magnesiumhydroxid, Aluminiumhydroxid oder eine Mischung davon ist, und dass gleichzeitig die HF-absorbierende Substanz Calciumcarbonat, Calciumhydroxid, Calciumoxid, Natriumhydrogencarbonat oder eine Mischung davon ist. Erfindungsgemäß ist es insbesondere bevorzugt, dass die Energie-absorbierende Substanz Magnesiumhydroxid, Aluminiumhydroxid oder eine Mischung davon ist, und dass die HF-absorbierende Substanz Natriumhydrogencarbonat umfasst. According to the invention, it is particularly preferred that the energy-absorbing substance is magnesium hydroxide, aluminum hydroxide or a mixture thereof, and at the same time that the HF-absorbing substance is calcium carbonate, calcium hydroxide, calcium oxide, sodium bicarbonate or a mixture thereof. According to the invention, it is particularly preferred that the energy absorbing substance is magnesium hydroxide, aluminum hydroxide or a mixture thereof, and that the RF absorbing substance comprises sodium hydrogen carbonate.
Die Freisetzung von Waser aus dem Magnesiumhydroxid, dem Aluminiumhydroxid oder der Mischung davon kann die Reaktivität der HF-absorbierenden Substanz erhöhen. Die Freisetzung von Waser aus dem Magnesiumhydroxid, dem Aluminiumhydroxid oder der Mischung davon kann insbesondere die Reaktivität des Calciumcarbonats, des Calciumhydroxids und/oder des Calciumoxids und besonders ausgeprägt die Reaktivität des Natriumhydrogencarbonats erhöhen. Gleichzeitig kann die Absorption von HF durch Calciumcarbonat, Calciumhydroxid und/oder Calciumoxid bei relativ niedrigen Temperaturen erfolgen. Andererseits kann die Absorption von HF durch Natriumhydrogencarbonat bei relativ hohen Temperaturen erfolgen. Dadurch kann das Filterelement über einen breiten Temperaturbereich wirksam sein. Das Filterelement kann dadurch vielseitig anwendbar sein, sowohl im Heimbereich wie auch in Automobil- Anwendungen. Diesbezüglich sind besonderes bevorzugte Paare von Energieabsorbierenden Substanzen und HF-absorbierenden Substanzen folgende: AI(OH)3/CaCO3; AI(OH)3/Ca(OH)2; AI(OH)3/NaHCO3; und AI(OH)3/[Ca(OH)2+NaHCO3], insbesondere AI(OH)3/NaHCO3. Die bevorzugten Paare sind Salzpaare. Die Kombination aus Energie-absorbierender Substanz und HF-absorbierender Substanz wird daher hierin teilweise auch als Roth'sches Salz bezeichnet, ihre gemeinsamen Reaktionen zusammen als Verrothung. The release of water from the magnesium hydroxide, the aluminum hydroxide, or the mixture thereof can increase the reactivity of the RF absorbing substance. The release of water from the magnesium hydroxide, the aluminum hydroxide or the mixture thereof can in particular increase the reactivity of the calcium carbonate, the calcium hydroxide and/or the calcium oxide and particularly markedly the reactivity of the sodium bicarbonate. At the same time, the absorption of HF by calcium carbonate, calcium hydroxide and/or calcium oxide can take place at relatively low temperatures. On the other hand, the absorption of HF by sodium bicarbonate can occur at relatively high temperatures. As a result, the filter element can be effective over a wide temperature range. As a result, the filter element can be used in a variety of ways, both in the home and in automotive applications. In this regard, particularly preferred pairs of energy absorbers and RF absorbers are as follows: Al(OH) 3 /CaCO 3 ; Al(OH) 3 /Ca(OH) 2 ; Al(OH) 3 /NaHCO 3 ; and Al(OH) 3 /[Ca(OH) 2 +NaHCO 3 ], especially Al(OH) 3 /NaHCO 3 . The preferred pairs are salt pairs. The combination of energy-absorbing substance and HF-absorbing substance is therefore sometimes also referred to herein as Roth's salt, and their joint reactions together as rotting.
Erfindungsgemäß ist es bevorzugt, dass die HF-absorbierende Substanz aus Teilchen besteht, die eine spezifische BET-Oberfläche von 1 bis 70 m2/g, mehr bevorzugt 5 bis 65 m2/g, noch mehr bevorzugt 10 bis 60 m2/g, weiter bevorzugt 15 bis 55 m2/g, und insbesondere bevorzugt 20 bis 50 m2/g, gemessen nach DIN ISO 9277:2014-01, aufweisen. In the present invention, it is preferred that the RF absorbing substance consists of particles having a BET specific surface area of 1 to 70 m 2 /g, more preferably 5 to 65 m 2 /g, still more preferably 10 to 60 m 2 /g , more preferably 15 to 55 m 2 /g, and particularly preferably 20 to 50 m 2 /g, measured according to DIN ISO 9277:2014-01.
Erfindungsgemäß ist es daneben bevorzugt, dass die HF-absorbierende Substanz aus Teilchen besteht, die einen mittleren Teilchendurchmesser (d50) von < 60 pm, mehr bevorzugt < 40 pm, noch mehr bevorzugt < 20 pm, weiter bevorzugt < 10 pm, und insbesondere bevorzugt < 3 pm, gemessen nach ISO 13320:2020-01, aufweisen. Erfindungsgemäß ist es alternativ bevorzugt, dass die HF-absorbierende Substanz aus Teilchen besteht, die einen mittleren Teilchendurchmesser (d50) von bis zu 7 mm, mehr bevorzugt 0,1 bis 7 mm, noch mehr bevorzugt von 1 bis 7 mm, weiter bevorzugt 3 bis 7 mm, und insbesondere bevorzugt 5 bis 7 mm, gemessen nach ISO 13320:2020-01 , aufweisen. According to the invention, it is also preferred that the HF-absorbing substance consists of particles that have an average particle diameter (d50) of <60 μm, more preferably <40 μm, even more preferably <20 μm, more preferably <10 μm, and particularly preferably < 3 pm, measured according to ISO 13320:2020-01. According to the invention, it is alternatively preferred that the HF-absorbing substance consists of particles that have an average particle diameter (d50) of up to 7 mm, more preferably 0.1 to 7 mm, even more preferably 1 to 7 mm, more preferably 3 to 7 mm, and particularly preferably 5 to 7 mm, measured according to ISO 13320:2020-01.
Wenn die HF-absorbierende Substanz aus Teilchen mit einer spezifischen BET-Oberfläche von 1 bis 70 m2/g besteht, kann die HF-Absorption schneller und vollständiger ablaufen. Wenn die HF-absorbierende Substanz aus Teilchen mit einem mittleren Teilchendurchmesser (d50) von < 60 pm besteht, kann die HF-Absorption ebenfalls schneller und vollständiger ablaufen. Entsprechend ist es besonders vorteilhaft und bevorzugt, wenn die HF-absorbierende Substanz aus Teilchen mit einer spezifischen BET-Oberfläche von 1 bis 70 m2/g und mit einem mittleren Teilchendurchmesser (d50) von < 25 pm besteht. Wenn die HF-absorbierende Substanz aus Teilchen mit einem mittleren Teilchendurchmesser (d50) von bis zu 7 mm besteht, kann die Luftdurchlässigkeit der Auffangeinheit verbessert sein. Dadurch kann das Filterelement zu einem geringeren Druckverlust führen, insbesondere wenn diese Teilchen auf ein textiles Flächengebilde wie insbesondere einen Vliesstoff aufgebracht bzw. darin einbettet sind. If the HF absorbing substance consists of particles having a BET specific surface area of 1 to 70 m 2 /g, the HF absorption can proceed faster and more completely. If the HF absorbing substance consists of particles with an average particle diameter (d50) of <60 μm, the HF absorption can also proceed more quickly and completely. Accordingly, it is particularly advantageous and preferred if the HF-absorbing substance consists of particles with a BET specific surface area of 1 to 70 m 2 /g and with an average particle diameter (d50) of <25 μm. When the RF absorbing substance consists of particles having an average particle diameter (d50) of up to 7 mm, the air permeability of the collecting unit can be improved. As a result, the filter element can lead to a lower pressure loss, in particular if these particles are applied to or embedded in a textile fabric such as in particular a nonwoven fabric.
Erfindungsgemäß ist es bevorzugt, dass die HF-absorbierende Substanz ein Carbonat, bevorzugt Calciumcarbonat, ist und aus Teilchen mit einer spezifischen BET-Oberfläche von 1 bis 10 m2/g besteht. Eine solche HF-absorbierende Substanz kann schnell und effizient HF aus einem Fluid absorbieren. Ein Beispiel für eine solche Substanz ist REASORB TAV (spezifische BET-Oberfläche: 5 bis 6 m2/g). According to the invention, it is preferred that the HF absorbing substance is a carbonate, preferably calcium carbonate, and consists of particles with a BET specific surface area of 1 to 10 m 2 /g. Such an HF absorbing substance can quickly and efficiently absorb HF from a fluid. An example of such a substance is REASORB TAV (BET specific surface area: 5 to 6 m 2 /g).
Erfindungsgemäß ist es auch bevorzugt, dass die HF-absorbierende Substanz ein Hydroxid, bevorzugt Calciumhydroxid (Kaihydrat), ist und aus Teilchen mit einem mittleren Teilchendurchmesser (d50) von < 20 pm und/oder einer spezifischen BET-Oberfläche von 10 bis 50 m2/g besteht. Eine solche HF-absorbierende Substanz kann schnell und effizient HF aus einem Fluid absorbieren. Beispiele für solche Substanzen sind Standard- Kalkhydrat (spezifische BET-Oberfläche: 16 bis 22 m2/g), SuperHydrat (spezifische BET-Oberfläche: 35 bis 42 m2/g), und poröse hochreaktive Kalkhydrate aus Teilchen mit Poren im Inneren (spezifische BET-Oberfläche > 40 m2/g; z.B. erhältlich unter den Handelsnamen Sorbacal A oder SP, sehr hohe HF Abscheidung von 66% für Sorbacal A, und > 90% für Sorbacal SP). According to the invention it is also preferred that the HF absorbing substance is a hydroxide, preferably calcium hydroxide (potassium hydrate), and consists of particles with an average Particle diameter (d50) of <20 pm and/or a BET specific surface area of 10 to 50 m 2 /g. Such an HF absorbing substance can quickly and efficiently absorb HF from a fluid. Examples of such substances are Standard Hydrated Lime (BET specific surface area: 16 to 22 m 2 /g), SuperHydrate (BET specific surface area: 35 to 42 m 2 /g), and porous highly reactive hydrated lime particles with pores inside ( BET specific surface area >40 m 2 /g, eg available under the trade names Sorbacal A or SP, very high HF separation of 66% for Sorbacal A and >90% for Sorbacal SP).
Erfindungsgemäß ist es zudem bevorzugt, dass die HF-absorbierende Substanz ein Hydrogencarbonat, bevorzugt Natriumhydrogencarbonat, ist und aus Teilchen mit einem mittleren Teilchendurchmesser (d50) von 10 bis 50 pm und mehr bevorzugt 10 bis 45 pm besteht. Eine solche HF-absorbierende Substanz kann schnell und effizient HF aus einem Fluid absorbieren. According to the invention, it is also preferred that the HF absorbing substance is a hydrogen carbonate, preferably sodium hydrogen carbonate, and consists of particles with an average particle diameter (d50) of 10 to 50 μm and more preferably 10 to 45 μm. Such an HF absorbing substance can quickly and efficiently absorb HF from a fluid.
Erfindungsgemäß ist es bevorzugt, dass die Auffangeinheit eine organische Schadstoffe absorbierende Substanz umfasst, die sowohl von der Energie-absorbierenden Substanz als auch von der HF-absorbierenden Substanz verschieden ist, und die vorzugsweise eine Ether und/oder organische Carbonate absorbierende Substanz ist. Insbesondere in Lithium-Ionen-Akkumulatoren ist das Leitsalz oftmals in Ethern und/oder organischen Carbonaten gelöst, beispielsweise in Ethylencarbonat, Propylencarbonat, Dimethylcarbonat, Diethylcarbonat oder Ethylmethylcarbonat. Bei einem thermischen Durchgehen können diese als schädliche Gase emittiert werden. Eine zusätzliche Substanz in der Auffangeinheit, die organische Schadstoffe absorbieren kann (die „organische Schadstoffe absorbierende Substanz“), kann dazu beitragen, weitere schädliche Gase wie insbesondere Ether und organische Carbonate aus dem zu dem Filterelement zugeführten Fluid herauszufiltern. Erfindungsgemäß ist es dabei besonders bevorzugt, dass die organische Schadstoffe absorbierende Substanz Aktivkohle ist. Aktivkohle kann Ether und organische Carbonate besonders effizient aus einem Fluid herausfiltern. According to the invention, it is preferred that the collecting unit comprises a substance that absorbs organic pollutants, which differs from both the energy-absorbing substance and the HF-absorbing substance, and which is preferably an ether and/or organic carbonate-absorbing substance. In lithium-ion accumulators in particular, the conducting salt is often dissolved in ethers and/or organic carbonates, for example in ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate. In the event of a thermal runaway, these can be emitted as noxious gases. An additional substance in the collection unit that can absorb organic contaminants (the “Organic Contaminant Absorbing Substance”) can help filter out other harmful gases, particularly ethers and organic carbonates, from the fluid fed to the filter element. According to the invention, it is particularly preferred that the substance absorbing organic pollutants is activated carbon. Activated carbon can filter ether and organic carbonates out of a fluid particularly efficiently.
Aufgrund der vorstehend aufgeführten Vorteile der einzelnen Bestandteile ist ein von der Erfindung bereitgestellter und besonders bevorzugter Gegenstand ein Filterelement, bei dem der Einlass und/oder der Auslass mit einem Ventil ausgestattet ist, die Auffangeinheit einlassseitig einen ersten Abschnitt umfasst, welcher die Energieabsorbierende Substanz enthält, und daran anschließend stromabwärts einen zweiten Abschnitt umfasst, welcher die HF-absorbierende Substanz enthält, die Energie-absorbierende Substanz ausgewählt ist aus Alkalimetallhydroxid, Erdalkalimetallhydroxid und Aluminiumhydroxid, und die HF-absorbierende Substanz ausgewählt ist aus Natriumhydroxid, Natriumhydrogencarbonat, Magnesiumhydroxid, Magnesiumcarbonat, Calciumhydroxid und Calciumcarbonat. Because of the advantages of the individual components outlined above, a particularly preferred article provided by the invention is a filter element in which the inlet and/or the outlet is equipped with a valve, the collection unit comprises a first section on the inlet side, which contains the energy-absorbing substance, and then downstream a second section, which contains the HF-absorbing substance, the energy-absorbing substance is selected is selected from alkali metal hydroxide, alkaline earth metal hydroxide and aluminum hydroxide, and the HF absorbing substance is selected from sodium hydroxide, sodium hydrogen carbonate, magnesium hydroxide, magnesium carbonate, calcium hydroxide and calcium carbonate.
Ein solches besonders bevorzugtes Filterelement kann aus einem Energiespeicher freigesetzte große Energiemengen und freigesetztes HF besonders wirksam absorbieren sowie ggf. ebenfalls freigesetzte große Gasmengen besonders effektiv abführen. Such a particularly preferred filter element can particularly effectively absorb large amounts of energy released from an energy storage device and released HF and, if necessary, also particularly effectively remove large amounts of gas that have also been released.
Erfindungsgemäß ist es bevorzugt, dass die Auffangeinheit ein Gehäuse umfasst, in das sowohl die Energie-absorbierende Substanz als auch die HF-absorbierende Substanz eingebracht sind, insbesondere in fester Form eingebracht sind. Z.B. können die Energie- absorbierende Substanz und/oder die HF-absorbierende Substanz in das Gehäuse als Schüttung oder in einer Sandwichform zwischen zwei Trägern eingebracht sein. Auf diese Weise kann die Herstellung der Auffangeinheit mit den zwei absorbierenden Substanzen vereinfacht sein. According to the invention, it is preferred that the collecting unit comprises a housing into which both the energy-absorbing substance and the HF-absorbing substance are introduced, in particular in solid form. For example, the energy-absorbing substance and/or the HF-absorbing substance can be introduced into the housing as a bulk or in a sandwich form between two carriers. In this way, the production of the collecting unit with the two absorbent substances can be simplified.
Je nach Platzierung des Filterelementes kann das zu der Auffangeinheit zugeführte Fluid eine Temperatur von 400 bis zu 1000°C haben. Das Gehäuse ist daher bevorzugt robust gegenüber solchen Temperaturen. Mehr bevorzugt verliert das Gehäuse bei Temperaturen bis zu 500°C seine Form nicht (ist formstabil). Depending on the placement of the filter element, the fluid fed to the collection unit can have a temperature of 400 to 1000°C. The housing is therefore preferably robust against such temperatures. More preferably, the housing does not lose its shape (is dimensionally stable) at temperatures up to 500°C.
Die Energie-absorbierende Substanz und/oder die HF-absorbierende Substanz können auch auf ein textiles Flächengebilde aufgebracht sein, das seinerseits in das Gehäuse eingebracht ist. Anders gesagt ist es erfindungsgemäß bevorzugt, dass die Auffangeinheit ein textiles Flächengebilde umfasst, auf welches die Energie-absorbierende Substanz und/oder die HF-absorbierende Substanz aufgebracht sind. Ein textiles Flächengebilde mit darauf aufgebrachter Energie-absorbierender Substanz und/oder HF-absorbierender Substanz kann ein einfaches Einbringen dieser Substanzen in unterschiedlich geformte und/oder unterschiedlich dimensionierte Auffangeinheiten ermöglichen. Dabei ist es besonders bevorzugt, dass das textile Flächengebilde ein Vliesstoff ist. Ein Vliesstoff kann ein für Filterzwecke besonders vielseitiges und kostengünstiges textiles Flächengebilde sein. The energy-absorbing substance and/or the HF-absorbing substance can also be applied to a textile fabric, which in turn is introduced into the housing. In other words, it is preferred according to the invention that the collection unit comprises a textile fabric to which the energy-absorbing substance and/or the HF-absorbing substance are applied. A textile fabric with energy-absorbing substance and/or HF-absorbing substance applied thereto can easily incorporate these substances into differently shaped and/or allow differently dimensioned collection units. It is particularly preferred that the textile fabric is a non-woven fabric. A non-woven fabric can be a particularly versatile and cost-effective textile fabric for filter purposes.
Gegenstand der Erfindung ist auch ein textiles Flächengebilde, auf das eine Energie-absorbierende Substanz, die endotherm Wasser freisetzen kann, und eine HF-absorbierende Substanz, die mit HF ein Fluorid bilden kann, aufgebracht sind, wobei die Energie-absorbierende Substanz und die HF-absorbierende Substanz voneinander verschieden sind. The invention also relates to a textile fabric to which an energy-absorbing substance capable of endothermically releasing water and an HF-absorbing substance capable of forming a fluoride with HF are applied, the energy-absorbing substance and the HF -absorbing substance are different from each other.
Ein solches textiles Flächengebilde kann auf einfache Weise in unterschiedlich geformte und/oder unterschiedlich dimensionierte Auffangeinheiten von Filterelementen eingebracht werden. Entsprechend ausgerüstete Filterelemente können insbesondere zum Filtern eines Fluid dienen, das von einem Energiespeicher, insbesondere einem Lithium-Ionen-Akkumulator, emittiert wird. Mit dem gleichzeitigen Einsatz einer Energie-absorbierenden Substanz und einer HF-absorbierenden Substanz auf dem erfindungsgemäßen textilen Flächengebilde lassen sich analog dieselben Vorteile erzielen, wie sie vorstehend für das erfindungsgemäße Filterelement beschrieben worden sind. Die bevorzugten Ausgestaltungen des erfindungsgemäßen Filterelements sind analog auch für das erfindungsgemäße textile Flächengebilde bevorzugt. Such a textile fabric can easily be introduced into differently shaped and/or differently dimensioned collecting units of filter elements. Correspondingly equipped filter elements can be used in particular to filter a fluid that is emitted by an energy store, in particular a lithium-ion battery. With the simultaneous use of an energy-absorbing substance and an HF-absorbing substance on the textile fabric according to the invention, the same advantages can be achieved analogously as have been described above for the filter element according to the invention. The preferred configurations of the filter element according to the invention are also preferred for the textile fabric according to the invention.
Dabei ist es besonders bevorzugt, dass das textile Flächengebilde ein Vliesstoff ist. Ein Vliesstoff kann ein für Filterzwecke besonders vielseitiges und kostengünstiges textiles Flächengebilde sein. It is particularly preferred that the textile fabric is a non-woven fabric. A non-woven fabric can be a particularly versatile and cost-effective textile fabric for filter purposes.
Im Folgenden werden das von der erfindungsgemäßen Auffangeinheit bevorzugt umfasste textile Flächengebilde und das erfindungsgemäße textile Flächengebilde an sich, welche beide jeweils bevorzugt ein Vliesstoff sind, gemeinsam weitergehend beschrieben. Es ist erfindungsgemäß bevorzugt, dass das textile Flächengebilde und insbesondere der Vliesstoff aus Fasern hergestellt ist, die aus Polyester, insbesondere Polyethylenterephthalat, Copolyester, Polyolefin, insbesondere Polyethylen oder Polypropylen, Polyamid oder Cellulose gebildet sind. Solche textilen Flächengebilde können besonders kostengünstig sein. Es ist erfindungsgemäß daneben bevorzugt, dass das textile Flächengebilde und insbesondere der Vliesstoff aus temperaturstabilen Fasern hergestellt ist, die insbesondere aus Polyphenylensulfid, Polyethylennaphthalat oder Aramid gebildet sind. Im Betrieb kann ein Aufschmelzen derartiger Fasern durch Energieeinwirkung verringert sein, wodurch die Formstabilität verbessert sein kann. Es ist erfindungsgemäß auch bevorzugt, dass das textile Flächengebilde und insbesondere der Vliesstoff aus Glasfasern hergestellt ist. Glasfasern können aufgrund ihrer Reaktivität gegenüber HF zu dem Herausfiltern von HF aus dem Fluid beitragen. In the following, the textile fabric preferably comprised by the collecting unit according to the invention and the textile fabric according to the invention per se, which are both preferably a nonwoven fabric, are described together in more detail. It is preferred according to the invention that the textile fabric and in particular the non-woven fabric is made from fibers formed from polyester, in particular polyethylene terephthalate, copolyester, polyolefin, in particular polyethylene or polypropylene, polyamide or cellulose. Such textile fabrics can be particularly inexpensive. It is also preferred according to the invention that the textile fabric and in particular the non-woven fabric is made from temperature-stable fibers which are formed in particular from polyphenylene sulphide, polyethylene naphthalate or aramid. During operation, a melting of such fibers due to the action of energy can be reduced, as a result of which the dimensional stability can be improved. It is also preferred according to the invention that the textile fabric and in particular the non-woven fabric is made of glass fibers. Glass fibers can help filter HF from the fluid due to their reactivity to HF.
Es ist erfindungsgemäß bevorzugt, dass das textile Flächengebilde und insbesondere der Vliesstoff Poren bzw. Hohlräume aufweist, welche die Energie-absorbierende Substanz und/oder die HF-absorbierende Substanz in fester Form enthalten. Es ist erfindungsgemäß auch bevorzugt, dass das textile Flächengebilde und insbesondere der Vliesstoff mit Lösungen, insbesondere wässrigen Lösungen, der Energie-absorbierenden Substanz und/oder der HF-absorbierende Substanz imprägniert sind. It is preferred according to the invention that the textile fabric and in particular the non-woven fabric has pores or cavities which contain the energy-absorbing substance and/or the HF-absorbing substance in solid form. It is also preferred according to the invention that the textile fabric and in particular the non-woven fabric are impregnated with solutions, in particular aqueous solutions, of the energy-absorbing substance and/or the HF-absorbing substance.
Es ist erfindungsgemäß bevorzugt, dass das textile Flächengebilde Teil einer Ausgangsfolie ist, oder vollständig eine Ausgangsfolie bildet, die zu Folienbeuteln verarbeitet werden kann, die ihrerseits als Ummantelung für Energiespeicher wie Lithium- lonen-Akkumulatoren dienen sollen. Auf diese Weise entfällt ein nachträgliches Ausrüsten eines solchen Energiespeichers mit einem zusätzlichen Filter für auftretendes Fluid. It is preferred according to the invention that the textile fabric is part of a starting film or completely forms a starting film that can be processed into film bags which in turn are intended to serve as a casing for energy stores such as lithium-ion batteries. In this way, there is no need to subsequently equip such an energy store with an additional filter for fluid that occurs.
Das erfindungsgemäße Filterelement und das erfindungsgemäße textile Flächengebilde können bei Energiespeichern und insbesondere Li-Ionen-Akkumulatoren für Elektrofahrzeuge, Elektrowerkzeuge, Elektrofahrräder, Photovoltaik-Anlagen und bei Energiespeichern in Industrieanlagen Anwendung finden. Elektrofahrzeuge stehen häufig in Garagen oder Parkhäusern. Li-Ionen-Akkumulatoren von Elektrowerkzeugen und insbesondere Elektrofahrrädern werden häufig in Wohnungen geladen. Li-Ionen- Akkumulatoren für Photovoltaik-Anlagen (sogenannte „Heimspeicher“) sind häufig in Gebäudekellern angeordnet. Speicher in Industrieanlagen sind häufig in Gebäuden oder Werkshallen untergebracht. Diese Energiespeicher befinden sich demnach regelmäßig in geschlossen bzw. teilgeschlossenen Räumen, sodass bei einem thermischen Durchgehen der Energiespeicher eine gleichzeitige Freisetzung von HF, großen Energiemengen und großen Gasmengen zu schwerwiegenden Problemen wie insbesondere Gesundheitsgefährdung, Brandgefahr und Explosionsgefahr führen kann. Das erfindungsgemäße Filterelement und das erfindungsgemäße textile Flächengebilde können derartige Probleme wirksam lösen. The filter element according to the invention and the textile fabric according to the invention can be used in energy stores and in particular lithium-ion batteries for electric vehicles, power tools, electric bicycles, photovoltaic systems and in energy stores in industrial plants. Electric vehicles are often parked in garages or multi-storey car parks. Li-ion accumulators of power tools and especially electric bicycles are often charged in homes. Li-ion accumulators for photovoltaic systems (so-called "home storage") are often located in building basements. Storage systems in industrial plants are often housed in buildings or workshops. These energy stores are therefore regularly located in closed or partially closed rooms, so that in the event of a thermal runaway of the energy stores, a simultaneous release of HF, large amounts of energy and large amounts of gas can lead to serious problems such as health hazards, fire hazards and explosion hazards. The filter element and fabric of the present invention can effectively solve such problems.
Gegenstand der Erfindung ist auch eine Energiespeichervorrichtung, die einen Lithium- lonen-Akkumulator und ein erfindungsgemäßes Filterelement oder ein erfindungsgemäßes textiles Flächengebilde umfasst. Mit einer solchen Energiespeichervorrichtung lassen sich analog dieselben Vorteile erzielen, wie sie vorstehend für das erfindungsgemäße Filterelement beschrieben worden sind. Die bevorzugten Ausgestaltungen des erfindungsgemäßen Filterelements sind analog auch für die erfindungsgemäße Energiespeichervorrichtung bevorzugt. The subject matter of the invention is also an energy storage device which comprises a lithium ion battery and a filter element according to the invention or a textile fabric according to the invention. With such an energy storage device, the same advantages can be achieved analogously as have been described above for the filter element according to the invention. The preferred configurations of the filter element according to the invention are also preferred for the energy storage device according to the invention.
Gegenstand der Erfindung ist auch eine Verwendung eines erfindungsgemäßen Filterelements oder eines erfindungsgemäßen textilen Flächengebildes zum Filtern eines Fluids, das von einem Energiespeicher, vorzugsweise einem Lithium-Ionen-Akkumulator, emittiert wird. Mit einer solchen Verwendung lassen sich analog dieselben Vorteile erzielen, wie sie vorstehend für das erfindungsgemäße Filterelement beschrieben worden sind. Die bevorzugten Ausgestaltungen des erfindungsgemäßen Filterelements bzw. des erfindungsgemäßen textilen Flächengebildes sind analog auch für die erfindungsgemäße Verwendung bevorzugt. The invention also relates to the use of a filter element according to the invention or a textile fabric according to the invention for filtering a fluid which is emitted by an energy store, preferably a lithium-ion battery. With such a use, the same advantages can be achieved analogously as have been described above for the filter element according to the invention. The preferred configurations of the filter element according to the invention or of the textile fabric according to the invention are also preferred for the use according to the invention.
Gegenstand der Erfindung ist auch ein Verfahren zum Filtern eines von einem Energiespeicher, vorzugsweise einem Lithium-Ionen-Akkumulator, emittierten Fluids, bei dem das Fluid durch ein erfindungsgemäßes Filterelement oder durch ein erfindungsgemäßes textiles Flächengebilde geleitet wird. Mit einem solchen Verfahren lassen sich analog dieselben Vorteile erzielen, wie sie vorstehend für das erfindungsgemäße Filterelement beschrieben worden sind. Die bevorzugten Ausgestaltungen des erfindungsgemäßen Filterelements bzw. des erfindungsgemäßen textilen Flächengebildes sind analog auch für das erfindungsgemäße Verfahren bevorzugt.
Figure imgf000021_0001
The invention also relates to a method for filtering a fluid emitted by an energy store, preferably a lithium-ion battery, in which the fluid is conducted through a filter element according to the invention or through a textile fabric according to the invention. With such a method, the same advantages can be achieved analogously as have been described above for the filter element according to the invention. The preferred configurations of the filter element according to the invention or of the textile fabric according to the invention are also preferred for the method according to the invention.
Figure imgf000021_0001
Fig. 1 zeigt einen Energiespeicher mit außerhalb davon angeordnetem Filterelement.1 shows an energy store with a filter element arranged outside of it.
Fig. 2 zeigt einen Energiespeicher mit daran anliegend angeordnetem Filterelement. Fig. 3 zeigt einen Energiespeicher mit innerhalb davon angeordnetem Filterelement. 2 shows an energy store with a filter element arranged adjacent to it. 3 shows an energy store with a filter element arranged inside it.
Fig. 4 zeigt einen Energiespeicher mit Filterelement, dessen Auslass mit einem Ventil ausgestattet ist. 4 shows an energy store with a filter element, the outlet of which is equipped with a valve.
Fig. 5 zeigt einen Energiespeicher mit Filterelement, dessen Einlass mit einem Ventil ausgestattet ist. 5 shows an energy store with a filter element, the inlet of which is equipped with a valve.
Fig. 6 zeigt einen Energiespeicher mit Filterelement, das zwei getrennte Abschnitte umfasst. 6 shows an energy storage device with a filter element that includes two separate sections.
Fig. 7 zeigt einen Energiespeicher mit Filterelement, das drei getrennte Abschnitte umfasst. 7 shows an energy store with a filter element, which comprises three separate sections.
Fig. 8 zeigt eine Lithium-Ionen-Zelle, bei welcher der Auslass des Filterelements eine Bestscheibe umfasst. Figure 8 shows a lithium ion cell in which the outlet of the filter element comprises a best disc.
Fig. 9 zeigt eine Lithium-Ionen-Zelle mit darauf angeordnetem Filterelement, dessen Auslass eine Bestscheibe umfasst. FIG. 9 shows a lithium-ion cell with a filter element arranged thereon, the outlet of which comprises a Best disk.
Fig. 10 zeigt eine Anordnung von Lithium-Ionen-Zellen mit darauf angeordnetem Filterelement, das eine Berstscheibe als Auslass umfasst. 10 shows an arrangement of lithium-ion cells with a filter element arranged thereon, which includes a bursting disc as the outlet.
Fig. 11 zeigt eine Anordnung von Lithium-Ionen-Zellen mit darauf angeordnetem textilen Flächengebilde. 11 shows an arrangement of lithium-ion cells with a textile fabric arranged thereon.
Fig. 12 zeigt einen Energiespeicher, der ein Gehäuse mit darin eingelassenem textilen Flächengebilde umfasst. 12 shows an energy storage device which comprises a housing with a textile fabric embedded therein.
Fig. 13 zeigt einen Energiespeicher, der ein Gehäuse mit einem darin angeordneten textilen Flächengebilde umfasst.
Figure imgf000022_0001
13 shows an energy storage device that includes a housing with a textile fabric arranged therein.
Figure imgf000022_0001
Wie in Fig. 1 gezeigt ist, kann ein Energiespeicher mit einem erfindungsgemäßen Filterelement 1 derart verbunden sein, dass das Filterelement 1 außerhalb des Energiespeichers bzw. seines Gehäuses 10 angeordnet ist. Das vom Gehäuse 10 beabstandet angeordnete Filterelement 1 weist eine Auffangeinheit 2, einen Einlass 3 sowie einen Auslass 4 auf. Die Auffangeinheit 2 umfasst eine Energie-absorbierende Substanz, die endotherm Wasser freisetzen kann, sowie eine davon verschiedene HF-absorbierende Substanz, die mit HF ein Fluorid bilden kann. In der Fig. 1 ist der Energiespeicher ein Lithium-Ionen-Akkumulator mit mehreren Lithium-Ionen-Zellen 9. Insbesondere wenn eine oder mehrere dieser Lithium-Ionen-Zellen 9 thermisch durchgehen, wird entstehendes Fluid über eine Verbindungsleitung zum Einlass 3 und durch diesen zur Auffangeinheit 2 zugeführt. In der Auffangeinheit 2 wird das Fluid gefiltert. Nach dem Filtervorgang wird das gefilterte Fluid durch den Auslass 4 von der Auffangeinheit 2 abgeführt. As shown in FIG. 1, an energy store can be connected to a filter element 1 according to the invention in such a way that the filter element 1 is arranged outside the energy store or its housing 10 . The filter element 1 arranged at a distance from the housing 10 has a collection unit 2 , an inlet 3 and an outlet 4 . The collecting unit 2 comprises an energy absorbing substance capable of endothermally releasing water and a different HF absorbing substance capable of forming a fluoride with HF. In Fig. 1, the energy store is a lithium-ion battery with a plurality of lithium-ion cells 9. In particular, if one or more of these lithium-ion cells 9 thermally run away, the resulting fluid is via a connecting line to the inlet 3 and fed through this to the collection unit 2. The fluid is filtered in the collecting unit 2 . After the filtering process, the filtered fluid is discharged from the collecting unit 2 through the outlet 4 .
Wie in Fig. 2 gezeigt ist, kann das Filterelement anliegend an den Energiespeicher angeordnet sein. Der Einlass 3 (nicht gezeigt) ist dabei Bestandteil des Filterelements 1 und gleichzeitig zumindest teilweise auch Bestandteil des Gehäuses 10. As shown in FIG. 2, the filter element can be arranged adjacent to the energy store. The inlet 3 (not shown) is part of the filter element 1 and at the same time at least partially part of the housing 10.
Wie in Fig. 3 gezeigt ist, kann das Filterelement innerhalb des Energiespeichers bzw. seines Gehäuses 10 angeordnet sein. Der Auslass 4 kann dabei Bestandteil des Filterelements 1 und gleichzeitig zumindest teilweise auch Bestandteil des Gehäuses 10 sein, oder der Auslass 4 ist über eine Verbindungsleitung mit dem Gehäuse 10 verbunden. As shown in FIG. 3, the filter element can be arranged within the energy store or its housing 10 . The outlet 4 can be part of the filter element 1 and at the same time at least partially part of the housing 10, or the outlet 4 is connected to the housing 10 via a connecting line.
Gemäß der in Fig. 4 gezeigten Ausführungsform ist auslassseitig ein Ventil 5 vorgesehen, der Auslass 4 ist also mit einem Ventil 5 ausgestattet. Durch das Ventil 5 sind die Auffangeinheit 2 und insbesondere die darin enthaltenden Energie- und HF-absorbierenden Substanzen vor Umwelteinflüssen geschützt. D.h., durch den Auslass 4 können keine Fremdsubstanzen in die Auffangeinheit 2 eindringen, die ggf. das Absorptionsvermögen und/oder die Lebensdauer der in der Auffangeinheit 2 enthaltenen Substanzen beeinträchtigen könnten. Dieser Schutz der Auffangeinheit 2 ist sowohl vor einem Öffnen des Ventils 5 gegeben, als auch nach erneutem Schließen des Ventils 5, sobald eine Druckabsenkung durch ein geöffnetes Ventil 5 beendet ist. Der Schutz der Auffangeinheit 2 erstreckt sich auch auf das einlassseitig liegende Gehäuse 10. According to the embodiment shown in FIG. 4 a valve 5 is provided on the outlet side, the outlet 4 is therefore equipped with a valve 5 . The valve 5 protects the collection unit 2 and in particular the energy and HF-absorbing substances contained therein from environmental influences. That is, no foreign substances can penetrate through the outlet 4 into the collection unit 2, which could possibly impair the absorption capacity and/or the service life of the substances contained in the collection unit 2. This protection of the collecting unit 2 is provided both before the valve 5 opens and after the valve 5 has been closed again, as soon as a pressure drop through an open valve 5 has ended. The protection of the collection unit 2 also extends to the housing 10 on the inlet side.
Gemäß der in Fig. 5 gezeigten Ausführungsform ist einlassseitig ein Ventil 5 vorgesehen, der Einlass 3 ist also mit einem Ventil 5 ausgestattet. Mit dieser Anordnung kann schnell und direkt auf eine Druckänderung, insbesondere einen Druckanstieg, im Gehäuse 10 reagiert werden. Dies gilt besonders für einen Druckanstieg, der durch ein thermisches Durchgehen einer oder mehrerer der Lithium-Ionen-Zellen 9 verursacht wird. According to the embodiment shown in FIG. 5 , a valve 5 is provided on the inlet side, ie the inlet 3 is equipped with a valve 5 . With this arrangement, a pressure change, in particular a pressure increase, in the housing 10 can be reacted to quickly and directly. This applies in particular to a pressure increase caused by a thermal runaway of one or more of the lithium-ion cells 9 .
Bei den in den Fig. 4 und 5 gezeigten Ausführungsformen ist das Filterelement 1 außerhalb des Energiespeichers bzw. seines Gehäuses 10 angeordnet. Ebenso kann das Filterelement 1 analog zu Fig. 2 anliegend an den Energiespeicher oder analog zu Fig. 3 innerhalb des Energiespeichers bzw. seines Gehäuses 10 angeordnet sein. Zudem kann in allen Fällen das Ventil 5 direkt am Einlass 3 und/oder Auslass 4 angeordnet sein, oder das Ventil 5 ist mit dem Einlass 3 und/oder dem Auslass 4 über eine Verbindungsleitung verbunden. In the embodiments shown in FIGS. 4 and 5, the filter element 1 is arranged outside of the energy store or its housing 10 . Likewise, the filter element 1 can be attached to the energy store analogously to FIG. 2 or analogously to FIG be arranged within the energy store or its housing 10 . In addition, in all cases the valve 5 can be arranged directly at the inlet 3 and/or outlet 4, or the valve 5 is connected to the inlet 3 and/or the outlet 4 via a connecting line.
In der Fig. 6 ist eine Ausführungsform gezeigt, bei der die Auffangeinheit 2 einen ersten Abschnitt e und einen zweiten Abschnitt ? umfasst. D.h., die Auffangeinheit 2 ist als zweistufige Auffangeinheit 2 ausgestaltet. Die Energie-absorbierende Substanz, die endotherm Wasser freisetzen kann, ist dabei vorteilhafter Weise im ersten Abschnitt 6 enthalten. Die Energie-absorbierende Substanz ist beispielsweise AI(OH)s, Mg(OH)2 oder eine Mischung davon. Bei dieser Anordnung kann freigesetztes Wasser die nachfolgende HF-Filterung und die dazu erforderliche Fluoridbildung unterstützen bzw. beschleunigen. Die HF-absorbierende Substanz ist zum Beispiel Calciumcarbonat. Die Fluoridbildung erfolgt dann nach dieser Reaktionsgleichung: CaCCh + 2 HF
Figure imgf000024_0001
CaF2 + H2O + CO2. Gemäß einem weiteren bevorzugten Beispiel ist die HF-absorbierende Substanz Natriumhydrogencarbonat. Entsprechend ist die HF-absorbierende Substanz, die mit HF ein Fluorid bilden kann, im zweiten Abschnitt 7 enthalten. Eine umgekehrte Anordnung mit der HF-absorbierenden Substanz in Abschnitt e und der Energie-absorbierenden Substanz im Abschnitt 7 ist auch möglich und insbesondere vorteilhaft, wenn beide Substanzen in Form einer Schüttung vorliegen und die HF-absorbierende Substanz eine größere Dichte als die Energie-absorbierende Substanz aufweist.
6 shows an embodiment in which the collecting unit 2 has a first section e and a second section ? includes. That is, the collecting unit 2 is designed as a two-stage collecting unit 2 . The energy-absorbing substance, which can release water endothermally, is advantageously contained in the first section 6 . The energy-absorbing substance is, for example, Al(OH)s, Mg(OH)2 or a mixture thereof. With this arrangement, released water can support or accelerate the subsequent HF filtering and the fluoride formation required for this. The RF absorbing substance is, for example, calcium carbonate. The formation of fluoride then takes place according to this reaction equation: CaCCh + 2 HF
Figure imgf000024_0001
CaF2 + H2O + CO2. According to another preferred example, the RF absorbing substance is sodium bicarbonate. Accordingly, the HF absorbing substance capable of forming a fluoride with HF is contained in the second section 7 . A reverse arrangement with the HF-absorbing substance in section e and the energy-absorbing substance in section 7 is also possible and particularly advantageous if both substances are in the form of a bed and the HF-absorbing substance has a greater density than the energy-absorbing one has substance.
In der Fig. 7 ist eine Ausführungsform gezeigt, bei der die Auffangeinheit 2 neben einem ersten Abschnitt 6 und einem zweiten Abschnitt 7 noch einen weiteren dritten Abschnitt umfasst. D.h., die Auffangeinheit 2 ist als dreistufige Auffangeinheit 2 ausgestaltet. Der dritte Abschnitt kann dabei vor dem ersten Abschnitt 6, zwischen dem ersten Abschnitt 6 und dem zweiten Abschnitt 7 oder hinter dem zweiten Abschnitt 7 angeordnet sein. Der dritte Abschnitt enthält eine Substanz, die organische Schadstoffe absorbiert, insbesondere Aktivkohle. Dadurch können aus dem Fluid zusätzlich organische Schadstoffe wie Ether, Carbonate und/oder Kohlenmonoxid (CO) herausgefiltert werden, bevor das Fluid die Auffangeinheit 2 verlässt. FIG. 7 shows an embodiment in which the collection unit 2 comprises a further third section in addition to a first section 6 and a second section 7 . That is, the collecting unit 2 is configured as a three-stage collecting unit 2. The third section can be arranged in front of the first section 6, between the first section 6 and the second section 7 or behind the second section 7. The third section contains a substance that absorbs organic pollutants, especially activated carbon. As a result, organic pollutants such as ether, carbonates and/or carbon monoxide (CO) can also be filtered out of the fluid before the fluid leaves the collecting unit 2 .
Bei den in den Fig. 8 und 9 gezeigten Ausführungsformen ist der mit einem erfindungsgemäßen Filterelement 1 versehene Energiespeicher eine einzelne Lithium- lonen-Zelle 9 (zum Teil auch als prismatische Zelle bezeichnet). Im Falle der Fig. 8 ist das Filterelement 1 innerhalb der Lithium-Ionen-Zelle 9 angeordnet. Der Auslass 4 umfasst hier eine Berstscheibe. Bei übermäßigem Druckanstieg in der Lithium-Ionen-Zelle 9, insbesondere wenn diese thermisch durchgeht, wird das den Druckanstieg verursachende Fluid in dem Filterelement 1 gefiltert. Danach wird das gefilterte Fluid durch die Berstscheibe an die Umgebung abgegeben, wie dies durch den Fluidstrom 12 gezeigt ist. In the embodiments shown in FIGS. 8 and 9, the energy store provided with a filter element 1 according to the invention is a single lithium ion cell 9 (sometimes also referred to as a prismatic cell). In the case of FIG. 8 , the filter element 1 is arranged within the lithium-ion cell 9 . The outlet 4 here includes a bursting disc. In the event of an excessive increase in pressure in the lithium-ion cell 9, in particular if it thermally runs away, the fluid causing the pressure increase is filtered in the filter element 1. Thereafter, the filtered fluid is discharged through the rupture disk to the atmosphere as shown by fluid stream 12 .
Im Falle der Fig. 9 ist das Filterelement 1 innerhalb der Lithium-Ionen-Zelle 9 angeordnet. Sowohl der Einlass 3 (nicht gezeigt) als auch der Auslass 4 umfassen hier eine Berstscheibe. Bei übermäßigem Druckanstieg in der Lithium-Ionen-Zelle 9, insbesondere wenn diese thermisch durchgeht, birst zunächst eine erste Berstscheibe (beispielsweise angeordnet wie in Fig. 8; in Fig. 9 nicht gezeigt). Durch diese gelangt das den Druckanstieg verursachende Fluid in die Auffangeinheit 2 (nicht gezeigt) des Filterelements 1 und wird dort gefiltert. Danach wird das gefilterte Fluid durch die zweite Berstscheibe an die Umgebung abgegeben, wie dies durch den Fluidstrom 12 gezeigt ist. In the case of FIG. 9 , the filter element 1 is arranged within the lithium-ion cell 9 . Both the inlet 3 (not shown) and the outlet 4 here comprise a rupture disc. In the event of an excessive increase in pressure in the lithium-ion cell 9, in particular if it thermally runs away, a first bursting disk (for example arranged as in FIG. 8; not shown in FIG. 9) bursts first. The fluid causing the pressure increase passes through this into the collecting unit 2 (not shown) of the filter element 1 and is filtered there. Thereafter, the filtered fluid is discharged through the second rupture disc to atmosphere as shown by fluid stream 12 .
Die Ausführungsform der Fig. 10 baut auf die Ausführungsform der Fig. 9 auf. Bei der Ausführungsform der Fig. 10 haben mehr als eine Lithium-Ionen-Zelle 9, z.B. 2, 3 oder mehr Lithium-Ionen-Zellen 9, etwa 14 Lithium-Ionen-Zellen 9 eines Moduls, ein Filterelement 1 gemeinsam. Entsprechend umfasst der Einlass 3 mehr als eine Bestscheibe, bevorzugt eine Berstscheibe pro Lithium-Ionen-Zelle 9. Bei übermäßigem Druckanstieg in mindestens einer der Lithium-Ionen-Zellen 9, insbesondere wenn diese thermisch durchgeht, birst zunächst eine erste Berstscheibe dieser mindestens einen Lithium-Ionen-Zelle 9 (beispielsweise angeordnet wie in Fig. 8; in Fig. 10 nicht gezeigt). Durch diese gelangt das den Druckanstieg verursachende Fluid in die Auffangeinheit 2 (nicht gezeigt) des Filterelements 1 und wird dort gefiltert. Danach wird das gefilterte Fluid durch eine weitere, vom Auslass 4 umfasste Berstscheibe an die Umgebung abgegeben, wie dies durch den Fluidstrom 12 gezeigt ist. Auf diese Weise kann es auch möglich sein, einen sogenannten thermischen Übersprung (engl. „thermal propagation“) von der mindestens einen Lithium-Ionen-Zelle 9 auf benachbarte Lithium-Ionen-Zellen 9 zu verhindern. Bei der Ausführungsform der Fig. 11 sind mehr als eine Lithium-Ionen-Zelle 9, z.B. 2, 3 oder mehr Lithium-Ionen-Zellen 9, etwa 14 Lithium-Ionen-Zellen 9 eines Moduls, zusammen angeordnet. Im Unterschied zur Ausführungsform der Fig. 11 haben diese aber kein Filtereiement i, sondern ein textiles Flächengebilde 8 gemeinsam. Auf das textile Flächengebilde 8 sind eine Energie-absorbierende Substanz, die endotherm Wasser freisetzen kann, und eine davon verschiedene, HF-absorbierende Substanz, die mit HF ein Fluorid bilden kann, aufgebracht. Mit dem textilen Flächengebilde 8 kann somit grundsätzlich dieselbe Filterwirkung wie mit dem Filterelement 1 erzielt werden. The embodiment of FIG. 10 is based on the embodiment of FIG. In the embodiment of FIG. 10, more than one lithium-ion cell 9, eg 2, 3 or more lithium-ion cells 9, approximately 14 lithium-ion cells 9 of a module, have one filter element 1 in common. Correspondingly, the inlet 3 comprises more than one rupture disk, preferably one rupture disk per lithium-ion cell 9. If the pressure rises excessively in at least one of the lithium-ion cells 9, in particular if it thermally runs away, a first rupture disk of this at least one lithium ruptures -ion cell 9 (arranged, for example, as in Fig. 8; not shown in Fig. 10). The fluid causing the pressure increase passes through this into the collecting unit 2 (not shown) of the filter element 1 and is filtered there. Thereafter, the filtered fluid is released to the environment through a further bursting disk comprised by the outlet 4, as shown by the fluid stream 12. In this way, it can also be possible to prevent what is known as thermal propagation from the at least one lithium-ion cell 9 to neighboring lithium-ion cells 9 . In the embodiment of FIG. 11, more than one lithium-ion cell 9, for example 2, 3 or more lithium-ion cells 9, approximately 14 lithium-ion cells 9 of a module, are arranged together. In contrast to the embodiment of FIG. 11, however, these do not have a filter element i in common, but rather a textile fabric 8 in common. Applied to the fabric 8 are an energy-absorbing substance capable of endothermally releasing water and a different HF-absorbing substance capable of forming a fluoride with HF. In principle, the same filter effect as with the filter element 1 can thus be achieved with the textile fabric 8 .
In der Fig. 12 ist eine Ausführungsform gezeigt, bei der das textile Flächengebilde 8 (mit Energie- und HF-absorbierender Substanz) in das Gehäuse 10 eines Energiespeichers eingelassen ist. Damit wird das Prinzip veranschaulicht, dass das textile Flächengebilde 8 Teil der Ummantelung eines Energiespeichers sein kann. Dies kann insbesondere dann vorteilhaft sein, wenn der Energiespeicher von einem Folienbeutel umgeben ist. In diesem Fall kann das textiles Flächengebilde 8 Teil einer noch zu einem Folienbeutel zu verarbeitenden Ausgangsfolie sein oder solch eine Ausgangsfolie vollständig bilden. FIG. 12 shows an embodiment in which the textile fabric 8 (with energy and HF-absorbing substance) is let into the housing 10 of an energy store. This illustrates the principle that the textile fabric 8 can be part of the casing of an energy store. This can be particularly advantageous when the energy store is surrounded by a film bag. In this case, the textile fabric 8 can be part of a starting film that is still to be processed into a film bag, or can completely form such a starting film.
Bei der in Fig. 12 gezeigten Ausführungsform tritt Fluid aus einer Lithium-Ionen-Zelle 9 aus, wie dies durch den Fluidstrom 12 gezeigt ist. Oberhalb der Lithium-Ionen-Zelle 9 ist das textile Flächengebilde 8 (mit Energie- und HF-absorbierender Substanz) angeordnet. Dieses textile Flächengebilde 8 ist insbesondere durch die darin enthaltende Energie-absorbierende Substanz besonders temperaturstabil und hält Wärmeenergie von dem darüber angeordneten Gehäusedeckel 11 ab. Für eine einfache Herstellbarkeit und/oder Kosteneffizienz von diesem kann es vorteilhaft sein, dass für den Gehäusedeckel 11 Materialien wie Kunststoff oder Aluminium zum Einsatz kommen. Allerdings halten derartige Materialien die bei einem thermischen Durchgehen von Lithium-Ionen-Zellen 9 regelmäßig erzeugten Temperaturen nicht aus (typischer Weise > 700°C). Bei der Ausführungsform der Fig. 13 wirkt das textile Flächengebilde 8 jedoch ergänzend als Hitzeabsorber bzw. Hitzeschutz, und der darüber angeordnete Gehäusedeckel 11 ist dadurch thermisch besser geschützt. Bei der Ausführungsform der Fig. 13 ist es daher vorteilhafter Weise möglich, dass der Gehäusedeckel 11 aus Kunststoff oder aus Aluminium besteht. Insgesamt wird ersichtlich, dass ein erfindungsgemäßes Filterelement und ein erfindungsgemäßes textiles Flächengebilde freigesetztes HF und freigesetzte große Energiemengen vorteilhaft absorbieren können, und zwar insbesondere gleichzeitig. Zudem können sie neben dem HF und den großen Energiemengen zusätzlich freigesetzte große Gasmengen vorteilhaft vom Ort der Freisetzung abführen. Das erfindungsgemäße Filterelement und das erfindungsgemäße textile Flächengebilde sind damit besonders nützlich für einen Einsatz zum Schutz vor Emissionen, insbesondere plötzlichen unerwünschten Emission, die von Energiespeichern wie Lithium-Ionen-Akkumulatoren abgegeben werden. Gleiches gilt analog für die erfindungsgemäßen Verwendungen und Verfahren, die ebenso einen derartigen Schutz vor schädlichen Emissionen bieten können.
Figure imgf000027_0001
In the embodiment shown in FIG. 12, fluid exits a lithium-ion cell 9 as shown by fluid flow 12. In the embodiment shown in FIG. The textile fabric 8 (with energy and HF-absorbing substance) is arranged above the lithium-ion cell 9 . This textile fabric 8 is particularly temperature-stable, in particular due to the energy-absorbing substance it contains, and keeps thermal energy away from the housing cover 11 arranged above it. For ease of manufacture and/or cost-efficiency of this, it can be advantageous that materials such as plastic or aluminum are used for the housing cover 11 . However, such materials cannot withstand the temperatures that are regularly generated when lithium-ion cells 9 thermally run away (typically >700° C.). In the embodiment of FIG. 13, however, the textile fabric 8 also acts as a heat absorber or heat protector, and the housing cover 11 arranged above it is thermally better protected as a result. In the embodiment of FIG. 13, it is therefore advantageously possible for the housing cover 11 to be made of plastic or aluminum. Overall, it can be seen that a filter element according to the invention and a textile fabric according to the invention can advantageously absorb released HF and released large amounts of energy, in particular simultaneously. In addition to the HF and the large amounts of energy, they can also advantageously remove large amounts of gas from the site of the release. The filter element according to the invention and the textile fabric according to the invention are therefore particularly useful for use to protect against emissions, in particular sudden undesired emissions emitted by energy stores such as lithium-ion batteries. The same applies analogously to the uses and methods according to the invention, which can also offer such protection against harmful emissions.
Figure imgf000027_0001
1: Filterelement 1: filter element
2: Auffangeinheit 2: collection unit
3: Einlass 3: inlet
4: Auslass 4: outlet
5: Ventil 5: valve
6: erster Abschnitt 6: first section
7: zweiter Abschnitt 7: second section
8: textiles Flächengebilde 8: textile fabric
9: Lithium-Ionen-Zelle 9: Lithium-ion cell
10: Gehäuse 10: housing
11 : Gehäusedeckel 11 : Housing cover
12: Fluidstrom 12: fluid flow

Claims

PATENTANSPRÜCHE Filterelement (1) zum Filtern eines Fluids, umfassend: eine Auffangeinheit (2), einen Einlass (3), durch den Fluid zu der Auffangeinheit (2) zugeführt werden kann, einen Auslass (4), durch den Fluid von der Auffangeinheit (2) abgeführt werden kann, wobei die Auffangeinheit (2) umfasst: eine Energie-absorbierende Substanz, die endotherm Wasser freisetzen kann, und eine HF-absorbierende Substanz, die mit HF ein Fluorid bilden kann, wobei die Energie-absorbierende Substanz und die HF-absorbierende Substanz voneinander verschieden sind. Filterelement (1) gemäß Anspruch 1 , wobei der Einlass (3) und/oder der Auslass (4) mit einem Ventil (5) ausgestattet sind. Filterelement (1) gemäß Anspruch 1 oder 2, wobei die Auffangeinheit (2) einlassseitig einen ersten Abschnitt (6) umfasst, welcher die Energie-absorbierende Substanz enthält, und daran anschließend stromabwärts einen zweiten Abschnitt (7) umfasst, welcher die HF-absorbierende Substanz enthält. Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 3, wobei die Energie-absorbierende Substanz ein Hydroxid oder ein Hydrat ist, und vorzugsweise ein Alkalimetallhydroxid, ein Erdalkalimetallhydroxid, Aluminiumhydroxid oder eine Mischung davon ist. Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 4, wobei die HF-absorbierende Substanz ein Salz eines Alkali- oder Erdalkalimetalls ist, wobei das Salz vorzugsweise ein Hydroxid, ein Oxid, ein Carbonat, ein Hydrogencarbonat, ein Hydroxycarbonat oder ein Oxycarbonat ist, mehr bevorzugt ein CLAIMS A filter element (1) for filtering a fluid, comprising: a collection unit (2), an inlet (3) through which fluid can be supplied to the collection unit (2), an outlet (4) through which fluid from the collection unit ( 2) can be discharged, wherein the collecting unit (2) comprises: an energy-absorbing substance capable of endothermically releasing water, and an HF-absorbing substance capable of forming a fluoride with HF, the energy-absorbing substance and the HF -absorbing substance are different from each other. Filter element (1) according to claim 1, wherein the inlet (3) and / or the outlet (4) are equipped with a valve (5). Filter element (1) according to claim 1 or 2, wherein the collection unit (2) comprises a first section (6) on the inlet side, which contains the energy-absorbing substance, and then downstream a second section (7) which contains the HF-absorbing substance contains. A filter element (1) according to any one of claims 1 to 3, wherein the energy absorbing substance is a hydroxide or a hydrate, and is preferably an alkali metal hydroxide, an alkaline earth metal hydroxide, aluminum hydroxide or a mixture thereof. Filter element (1) according to any one of claims 1 to 4, wherein the HF absorbing substance is a salt of an alkali or alkaline earth metal, the salt preferably being a hydroxide, an oxide, a carbonate, a bicarbonate, a hydroxycarbonate or an oxycarbonate , more preferred one
- 26 - Alkalimetallhydrogencarbonat oder ein Erdalkalimetallhydrogencarbonat, insbesondere Natriumhydrogencarbonat. Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 5, wobei die HF-absorbierende Substanz aus Teilchen besteht, die eine spezifische BET-Oberfläche von 1 bis 70 m2/g aufweisen, gemessen nach DIN ISO 9277:2014-01. Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 6, wobei- 26 - Alkali metal bicarbonate or an alkaline earth metal bicarbonate, especially sodium bicarbonate. Filter element (1) according to at least one of claims 1 to 5, wherein the HF-absorbing substance consists of particles which have a specific BET surface area of 1 to 70 m 2 /g, measured according to DIN ISO 9277:2014-01. Filter element (1) according to at least one of claims 1 to 6, wherein
HF-absorbierende Substanz aus Teilchen besteht, die einen mittlerenHF-absorbing substance consists of particles that have an average
Teilchendurchmesser (d50) von < 60 pm aufweisen, gemessen nachHave particle diameter (d50) of <60 pm, measured by
ISO 13320:2020-01. Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 7, wobei die Auffangeinheit (2) eine organische Schadstoffe absorbierende Substanz umfasst, die sowohl von der Energie-absorbierenden Substanz als auch von der HF-absorbierenden Substanz verschieden ist, und die vorzugsweise eine Ether und/oder organische Carbonate absorbierende Substanz ist, insbesondere Aktivkohle. Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 8, wobei der Einlass (3) und/oder der Auslass (4) mit einem Ventil (5) ausgestattet ist, die Auffangeinheit (2) einlassseitig einen ersten Abschnitt (6) umfasst, welcher die Energie-absorbierende Substanz enthält, und daran anschließend stromabwärts einen zweiten Abschnitt (7) umfasst, welcher die HF-absorbierende Substanz enthält, die Energie-absorbierende Substanz ausgewählt ist aus Alkalimetallhydroxid, Erdalkalimetallhydroxid und Aluminiumhydroxid, und die HF-absorbierende Substanz ausgewählt ist aus Natriumhydroxid, Natriumhydrogencarbonat, Magnesiumhydroxid, Magnesiumcarbonat, Calciumhydroxid und Calciumcarbonat. Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 9, wobei die Auffangeinheit ein textiles Flächengebilde umfasst, auf welches die Energie-absorbierende Substanz und/oder die HF-absorbierende Substanz aufgebracht sind. Textiles Flächengebilde (8), auf das eine Energie-absorbierende Substanz, die endotherm Wasser freisetzen kann, und eine HF-absorbierende Substanz, die mit HF ein Fluorid bilden kann, aufgebracht sind, wobei die Energie-absorbierende Substanz und die HF-absorbierende Substanz voneinander verschieden sind. Filterelement (1) gemäß Anspruch 10, oder textiles Flächengebilde (8) gemäß Anspruch 11, wobei das textile Flächengebilde ein Vliesstoff ist. Energiespeichervorrichtung, umfassend einen Lithium-Ionen-Akkumulator, und ein Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 10 oder 12, oder ein textiles Flächengebilde (8) gemäß Anspruch 11 oder 12. Verwendung eines Filterelements (1) gemäß mindestens einem der Ansprüche 1 bis 10 oder 12, oder eines textilen Flächengebildes (8) gemäß Anspruch 11 oder 12, zum Filtern eines Fluids, das von einem Energiespeicher, vorzugsweise einem Lithium-Ionen-Akkumulator, emittiert wird. Verfahren zum Filtern eines von einem Energiespeicher, vorzugsweise einem Lithium-Ionen-Akkumulator, emittierten Fluids, bei dem das Fluid durch ein Filterelement (1) gemäß mindestens einem der Ansprüche 1 bis 10 oder 12, oder durch ein textiles Flächengebilde (8) gemäß Anspruch 11 oder 12 geleitet wird. ISO 13320:2020-01. Filter element (1) according to at least one of claims 1 to 7, wherein the collecting unit (2) comprises an organic pollutant-absorbing substance which is different from both the energy-absorbing substance and the HF-absorbing substance, and which is preferably an ether and/or organic carbonate absorbing substance, in particular activated carbon. Filter element (1) according to at least one of claims 1 to 8, wherein the inlet (3) and/or the outlet (4) is equipped with a valve (5), the collecting unit (2) comprises a first section (6) on the inlet side, containing the energy absorbing substance, and downstream therefrom a second section (7) containing the HF absorbing substance, the energy absorbing substance is selected from alkali metal hydroxide, alkaline earth metal hydroxide and aluminum hydroxide, and the HF absorbing substance is selected from sodium hydroxide, sodium hydrogen carbonate, magnesium hydroxide, magnesium carbonate, calcium hydroxide and calcium carbonate. Filter element (1) according to at least one of claims 1 to 9, wherein the collecting unit comprises a textile fabric on which the Energy-absorbing substance and / or the HF-absorbing substance are applied. Textile fabric (8) to which an energy-absorbing substance capable of endothermally releasing water and an HF-absorbing substance capable of forming a fluoride with HF are applied, the energy-absorbing substance and the HF-absorbing substance are different from each other. Filter element (1) according to claim 10, or textile fabric (8) according to claim 11, wherein the textile fabric is a non-woven fabric. Energy storage device, comprising a lithium-ion battery, and a filter element (1) according to at least one of claims 1 to 10 or 12, or a textile fabric (8) according to claim 11 or 12. Use of a filter element (1) according to at least one of Claims 1 to 10 or 12, or a textile fabric (8) according to claim 11 or 12, for filtering a fluid which is emitted by an energy store, preferably a lithium-ion battery. Method for filtering a fluid emitted by an energy store, preferably a lithium-ion accumulator, in which the fluid passes through a filter element (1) according to at least one of claims 1 to 10 or 12, or through a textile fabric (8) according to claim 11 or 12 is conducted.
PCT/EP2021/072022 2020-08-10 2021-08-06 Filter element for energy stores WO2022033979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020121010.8 2020-08-10
DE102020121010.8A DE102020121010A1 (en) 2020-08-10 2020-08-10 Filter element for energy storage

Publications (1)

Publication Number Publication Date
WO2022033979A1 true WO2022033979A1 (en) 2022-02-17

Family

ID=77627085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/072022 WO2022033979A1 (en) 2020-08-10 2021-08-06 Filter element for energy stores

Country Status (2)

Country Link
DE (1) DE102020121010A1 (en)
WO (1) WO2022033979A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022118984A1 (en) 2022-07-28 2024-02-08 Man Truck & Bus Se Electrical energy storage with battery cells protected by a cover film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213932A1 (en) * 1995-09-07 2003-11-20 Hayes Claude Q.C. Heat absorbing temperature control devices and method
JP2006271966A (en) * 2005-03-29 2006-10-12 Kocat Inc Chemical filter using metal compounds and manufacturing method thereof
DE102008001707A1 (en) 2008-05-09 2009-11-12 Robert Bosch Gmbh Energy converter or energy storage device comprises one or multiple energy converters or energy storage units for example, fuel cell or battery unit
DE102008025422A1 (en) 2008-05-27 2009-12-03 Temic Automotive Electric Motors Gmbh Power storage cells, useful for the application in a power storage of a hybrid- and/or electric vehicle, comprise a safety-frangible membrane and an absorber that is attached to the safety-frangible membrane
EP2328203A1 (en) * 2008-09-05 2011-06-01 Panasonic Corporation Battery pack
DE102011084745A1 (en) 2011-10-19 2013-04-25 Sb Limotive Company Ltd. Degassing system of battery, has releasable solid or liquid form bound in inert agent which is thermally induced into cavity
DE102014211043A1 (en) 2014-06-10 2015-12-17 Robert Bosch Gmbh Lithium cell with fluorine absorber
DE102014215012A1 (en) 2014-07-30 2016-02-04 Robert Bosch Gmbh Gas cleaning unit for a battery system
DE102015002319A1 (en) 2015-02-25 2016-08-25 Stöbich Technology Gmbh accumulator
DE202020100241U1 (en) 2020-01-17 2020-01-28 Intilion Gmbh Electrical energy storage

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213932A1 (en) * 1995-09-07 2003-11-20 Hayes Claude Q.C. Heat absorbing temperature control devices and method
JP2006271966A (en) * 2005-03-29 2006-10-12 Kocat Inc Chemical filter using metal compounds and manufacturing method thereof
DE102008001707A1 (en) 2008-05-09 2009-11-12 Robert Bosch Gmbh Energy converter or energy storage device comprises one or multiple energy converters or energy storage units for example, fuel cell or battery unit
DE102008025422A1 (en) 2008-05-27 2009-12-03 Temic Automotive Electric Motors Gmbh Power storage cells, useful for the application in a power storage of a hybrid- and/or electric vehicle, comprise a safety-frangible membrane and an absorber that is attached to the safety-frangible membrane
EP2328203A1 (en) * 2008-09-05 2011-06-01 Panasonic Corporation Battery pack
DE102011084745A1 (en) 2011-10-19 2013-04-25 Sb Limotive Company Ltd. Degassing system of battery, has releasable solid or liquid form bound in inert agent which is thermally induced into cavity
DE102014211043A1 (en) 2014-06-10 2015-12-17 Robert Bosch Gmbh Lithium cell with fluorine absorber
DE102014215012A1 (en) 2014-07-30 2016-02-04 Robert Bosch Gmbh Gas cleaning unit for a battery system
DE102015002319A1 (en) 2015-02-25 2016-08-25 Stöbich Technology Gmbh accumulator
DE202020100241U1 (en) 2020-01-17 2020-01-28 Intilion Gmbh Electrical energy storage

Also Published As

Publication number Publication date
DE102020121010A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
DE102018121011B4 (en) Process for producing lithium-ion battery cells
DE10157272C2 (en) Lithium or lithium-ion battery
KR102256769B1 (en) Electrode precursor, electrode, and battery
EP2461872B1 (en) Method for fighting and/or preventing fires in lithium ion cells and lithium ion polymer cells
DE69907446T2 (en) Lithium-containing material containing oxygen, sulfur and transition metal, this material-containing electrode and manufacturing process for this, as well as secondary lithium battery
DE69736370T2 (en) Method and device for component recovery of sealed battery
EP2446497B1 (en) Method for safely comminuting lithium-ion batteries
EP3861575A1 (en) Fire protection device with a composite system, composite system and battery pack with a fire protection device
DE102008001707A1 (en) Energy converter or energy storage device comprises one or multiple energy converters or energy storage units for example, fuel cell or battery unit
DE102021111880A1 (en) LITHIUM BATTERY WITH FLAME RETARDANT COMPOSITE PARTICLES
DE102012212956A1 (en) Battery packaging and battery fire-inhibition device e.g. battery hard shell housing used for e.g. battery for motor car and mobile telephone, have galvanic cell comprising phosphate-containing compound(s) and organic electrolyte
DE60305203T2 (en) BORON CONTAINING LITHIUM INTERCALATION COMPOUNDS FOR USE AS ACTIVE MATERIALS FOR ELECTRODES, STORAGE MEDIA AND ELECTROCHROMICAL DEVICES
DE102013012250A1 (en) High-performance or high-energy storage with operating room for electrical systems with degassing-free batteries and method for handling an arranged in an operating room electrochemical device
WO2014012654A2 (en) Method for producing a secondary battery, housing assembly for said secondary battery, secondary battery having the housing assembly, method for producing the housing assembly, method for operating the secondary battery
DE102011082187B4 (en) Method and device for comminuting batteries containing lithium hexafluorophosphate (LiPF6)
WO2022033979A1 (en) Filter element for energy stores
WO2015140256A1 (en) Apparatus and method for transporting electrochemical cells
DE102012215929B4 (en) Metal-oxygen battery
DE202013010308U1 (en) Arrangement for safer batteries in transportation and application
DE202014007301U1 (en) Device for the safe control of a fire or material leakage and the reduction of its spread and effects
DE102013215544A1 (en) Cleaning agents and / or packaging materials
DE102015002319A1 (en) accumulator
DE202013006632U1 (en) High performance or Hockenergiespeicher with operating room 1 for electrical systems with degassing-free batteries and method for handling an arranged in an operating room electrochemical device
WO2014040790A1 (en) Lithium-ion cell with inorganic ion exchanger
DE102022120229A1 (en) THERMAL BARRIER COMPONENT TO LIMIT THERMAL RUNAWAY IN ACCUMULATORS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765569

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21765569

Country of ref document: EP

Kind code of ref document: A1