WO2022033754A1 - Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems - Google Patents

Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems Download PDF

Info

Publication number
WO2022033754A1
WO2022033754A1 PCT/EP2021/067204 EP2021067204W WO2022033754A1 WO 2022033754 A1 WO2022033754 A1 WO 2022033754A1 EP 2021067204 W EP2021067204 W EP 2021067204W WO 2022033754 A1 WO2022033754 A1 WO 2022033754A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
operating
acoustic emission
limit
Prior art date
Application number
PCT/EP2021/067204
Other languages
English (en)
French (fr)
Inventor
Jochen Wessner
Martin Katz
Dierk Staebler
Simon Weissenmayer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022033754A1 publication Critical patent/WO2022033754A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system with a fuel cell module to which compressed air is supplied via an air supply, and with a controller for detecting an operating limit during operation of the fuel cell system, the controller for detecting operating limits including a sensor.
  • the invention also relates to a method for operating such a fuel cell system.
  • a fuel cell system with a fuel cell stack to which air is supplied via an air compressor, and with a controller that includes at least one sensor, which is a pressure converter, a speed sensor or a mass flow meter provide an adjustable compressor map for the air compressor, the compressor map having a surge line and a surge control distance that is a desired difference between a current operating condition of the air compressor and a minimum stable operating condition determined by the surge line.
  • a controller that includes at least one sensor, which is a pressure converter, a speed sensor or a mass flow meter provide an adjustable compressor map for the air compressor, the compressor map having a surge line and a surge control distance that is a desired difference between a current operating condition of the air compressor and a minimum stable operating condition determined by the surge line.
  • the object of the invention is the operating limit detection in the operation of a fuel cell system with a fuel cell module, the compressed air is supplied via an air supply, and with a controller for To improve detection of an operating limit during operation of the fuel cell system.
  • the object is achieved in that the controller for detecting operating limits includes a sensor, in that the controller for detecting operating limits at least includes a continuously operating acoustic emission sensor for continuous detection of the operating limit during operation of the fuel cell system.
  • the continuous detection of the operating limit during operation of the fuel cell system allows it to be operated more efficiently, in particular closer to a surge limit and/or choke limit of a compressor in the air supply.
  • a preferred exemplary embodiment of the fuel cell system is characterized in that the continuously operating acoustic emission sensor is assigned to the air supply for the continuous detection of the operating limit.
  • the air supply includes, for example, an air compressor, which can also be referred to as an air compressor.
  • the continuously operating acoustic emission sensor for the continuous detection of the surge limit and/or choke limit can be assigned to the air compressor.
  • the continuously operating acoustic emission sensor for the continuous detection of the surge limit and/or choke limit can also be arranged in a fluid connection of the air supply between the air compressor and the fuel cell module.
  • a further preferred exemplary embodiment of the fuel cell system is characterized in that the continuously operating acoustic emission sensor for the continuous detection of the operating limit is designed as an ultrasonic sensor. This exploits the fact that smaller pressure fluctuations, such as occur with sound pressure, with a Ultrasonic sensor can be effectively detected. In this way, highly efficient control for operating limit detection is made possible with simple means.
  • a further preferred exemplary embodiment of the fuel cell system is characterized in that the continuously operating acoustic emission sensor for the continuous detection of the operating limit is arranged directly in or on a wall of the air supply that carries an air flow.
  • This can be the wall of a compressor housing. However, this can also be the wall of a connecting line between the air compressor and the fuel cell module.
  • several continuously operating acoustic emission sensors for the continuous detection of the surge limit and/or choke limit can also be arranged at different points, which are evaluated together. Due to the direct arrangement of the continuously operating acoustic emission sensor or the continuously operating acoustic emission sensors on at least one wall of the air supply that guides an air flow, the operating limit detection is effectively improved with simple means.
  • a further preferred exemplary embodiment of the fuel cell system is characterized in that the continuously operating acoustic emission sensor for the continuous detection of the operating limit is arranged directly in an opening in the wall of the air supply which guides the air flow.
  • the opening can be a simple through hole in the wall of the air duct.
  • the continuously working acoustic emission sensor can be positioned in this opening with simple means. This simplifies assembly.
  • a suitable seal such as an O-ring, can be used to seal between the acoustic emission sensor and the wall of the air supply that guides the air flow.
  • a further preferred exemplary embodiment of the fuel cell system is characterized in that a measuring surface of the continuously operating acoustic emission sensor for the continuous detection of the operating limit in the opening is in direct contact with the air flow. This will open simple way to continuously record pressure changes in the air flow.
  • the continuously operating acoustic emission sensor for continuously detecting the operating limit is attached to an air supply line between an air compressor of the air supply and the fuel cell module.
  • the acoustic emission sensor can be installed on the air supply line before it is installed. If required, the acoustic emission sensor can also be mounted on an air supply line that has already been installed.
  • Existing fuel cell systems can also be retrofitted with continuously operating acoustic emission sensors with relatively simple means with regard to the continuous detection of the surge limit and/or choke limit.
  • a further preferred exemplary embodiment of the fuel cell system is characterized in that the continuously operating acoustic emission sensor for continuously detecting the operating limit is a conventional parking sensor.
  • the acoustic emission sensor designed as a parking sensor can be designed in the same way or something similar to the ultrasonic sensor disclosed in European patent specification EP 2 856 206 B1. This provides the advantage that parking sensors that have already been produced in large numbers can be used in the fuel cell system for the continuous detection of the surge limit.
  • the parking sensor is particularly preferably of the same type as a conventional parking sensor installed in a vehicle equipped with the fuel cell system.
  • the continuously operating acoustic emission sensor designed as a parking sensor for the continuous detection of the surge limit and/or choke limit is, according to one exemplary embodiment, connected to a parking sensor controller, which in turn is connected in terms of control to the conventional parking sensors installed in the vehicle.
  • the continuously operating acoustic emission sensor designed as a parking sensor can, however, also be connected to a control unit of the fuel cell system.
  • the above-mentioned object is alternatively or additionally achieved in that acoustic emissions from the air supply of the fuel cell module are continuously monitored with the continuously operating acoustic emission sensor during operation of the fuel cell system in the form of an acoustic emission signal and are compared with a characteristic noise signature in order to detect changes over time. For example, damage and/or signs of aging during operation of the fuel cell system can be detected at an early stage. The information obtained from this can be taken into account promptly in a suitable diagnostic concept during operation of the fuel cell system.
  • the invention may also relate to a computer program product with a computer program that has software means for performing a method described above when the computer program is executed on a computer.
  • the invention may also relate to a controller with such a computer program product.
  • the control is advantageously used to represent an effective control for operating limit detection.
  • the invention also relates to the use of a conventional parking sensor in a fuel cell system described above for the continuous detection of the surge limit and/or choke limit and/or a speed during operation of the fuel cell system. In this way, the efficiency in the operation of the fuel cell system can be significantly improved at low cost.
  • FIG. 1 shows a schematic, perspective illustration of a fuel cell system with a fuel cell module to which compressed air is supplied via an air supply;
  • FIG. 2 shows an enlarged detail from FIG. 1 with an acoustic emission sensor, which is assigned to the air supply, in longitudinal section;
  • Figure 3 is a perspective view of the acoustic emission sensor from Figure 2.
  • a fuel cell system 1 with a fuel cell module 2 and an air supply 3 is shown schematically in perspective.
  • the air supply 3 comprises an air compressor 4. Compressed air is supplied to the fuel cell module 2 via the air compressor 4 on a cathode side.
  • An air supply line 7 extends from the air compressor 4 to the fuel cell module 2 .
  • An acoustic emission sensor 5 is arranged on a wall 6 of the air supply line 7 .
  • the acoustic emission sensor 5 is connected in terms of control to a control 14 of the fuel cell system 1 .
  • the controller 14 is used to control and/or regulate the air compressor 4 when the fuel cell system 1 is in operation.
  • the air compressor 4 is in operation, reaching a surge limit and/or a choke limit is to be avoided.
  • the detection of the surge limit and/or choke limit is simply referred to as operating limit detection.
  • the detection and control of the surge limit and/or choke limit of the air compressor 4 in the fuel cell system 1 is achieved using existing ultrasonic parking sensors or by the optional use of an inexpensive, additional sensor directly in or on the air supply 3 for the cathode side of the fuel cell module 2 continuously during operation of the fuel cell system 1.
  • the air compressor 4 is driven, for example, by an electrical machine, in particular an electric motor.
  • the air compressor 4 can be drivingly connected to a turbine, which is advantageously driven with exhaust gas from the fuel cell module 2 .
  • a section of the air supply line 7 with the wall 6 and the acoustic emission sensor 5 is shown in longitudinal section in FIG.
  • An air flow through the air supply line 7 is indicated by arrows 13 .
  • the wall 6 of the air supply line 7 comprises an opening 8 which is designed, for example, as a through hole.
  • the acoustic emission sensor 5 is arranged in the opening 8 in such a way that a measuring surface 9 of the acoustic emission sensor 5 is in direct contact with the air flow 13 in the air supply line 7 .
  • the acoustic emission sensor 5 is advantageously a parking sensor 10.
  • a sealing element 11 which is designed as an O-ring, for example, serves to seal between the air supply line 7 and the acoustic emission sensor 5.
  • the sealing element 11 extends in the opening 8 around a shoulder on the acoustic emission sensor 5 .
  • the acoustic emission sensor 5 includes a plug 12, which is used for control-related connection to the controller (14 in Figure 1).
  • the acoustic emission sensor 5 with the measuring surface 9 and the plug 12 is shown alone in perspective. It is particularly advantageous for the acoustic emission sensor 5 for detecting the operating limits of the air compressor in the fuel cell system to be a conventional parking sensor 10.
  • the parking sensor 10 is supplied with power and the signal is transmitted via the plug 12.
  • the acoustic emission sensor 5 detects acoustic emissions from the air flow 13 or measured.
  • the measured signal is analyzed and/or compared to a reference.
  • the analysis of the recorded sound signal allows direct conclusions to be drawn about changes in the operating status of the air compressor. This enables highly effective operating limit detection, for example surge limit detection.
  • Safe detection of the surge limit means that safety margins can be dispensed with in the design.
  • working points during operation of the air compressor 4 can be placed closer to its stability limit.
  • the processing of the signal information takes place in the controller 14 or by coupling to the vehicle's built-in ultrasonic parking sensors or their control unit.
  • This type of signal detection with the acoustic emission sensor 5 also enables the detection of other operating states, for example the choke limit, the load and/or a speed during operation of the air compressor.
  • conclusions about defects or signs of aging can advantageously be derived from the signal information from the acoustic emission sensor 5 .
  • a fluid mass flow through the air supply 3 can be measured with the acoustic emission sensor 5 .
  • This measured value can advantageously be used to check a signal from an air mass meter. With sufficient accuracy, the air mass meter can even be omitted.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft ein Brennstoffzellensystem (1) mit einem Brennstoffzellenmodul (2), dem über eine Luftzuführung (3) verdichtete Luft zugeführt wird, und mit einer Steuerung (14) zur Erkennung einer Betriebsgrenze im Betrieb des Brennstoffzellensystems (1), wobei die Steuerung (14) zur Betriebsgrenzerkennung einen Sensor umfasst. Um die Betriebsgrenzerkennung im Betrieb des Brennstoffzellensystems (1) zu verbessern, umfasst die Steuerung (14) zur Betriebsgrenzerkennung mindestens einen kontinuierlich arbeitenden Schallemissionssensor (5) für eine kontinuierliche Erkennung der Betriebsgrenze im Betrieb des Brennstoffzellensystems (1).

Description

Beschreibung
Titel
Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
Die Erfindung betrifft ein Brennstoffzellensystem mit einem Brennstoffzellenmodul, dem über eine Luftzuführung verdichtete Luft zugeführt wird, und mit einer Steuerung zur Erkennung einer Betriebsgrenze im Betrieb des Brennstoffzellensystems, wobei die Steuerung zur Betriebsgrenzerkennung einen Sensor umfasst. Die Erfindung betrifft des Weiteren ein Verfahren zum Betreiben eines derartigen Brennstoffzellensystems.
Stand der Technik
Aus der deutschen Patentschrift DE 10 2009 029 837 B4 ist ein Brennstoffzellensystem mit einem Brennstoffzellenstapel bekannt, dem über einen Luftkompressor Luft zugeführt wird, und mit einem Controller, der mindestens einen Sensor umfasst, der ein Druckwandler, ein Drehzahlsensor oder ein Massenstrommesser ist, um ein anpassbares Kompressorkennfeld für den Luftkompressor bereitzustellen, wobei das Kompressorkennfeld eine Pumpgrenze und eine Pumpsteuerdistanz aufweist, die eine Solldifferenz zwischen einem gegenwärtigen Betriebszustand des Luftkompressors und einem minimalen stabilen Betriebszustand ist, der durch die Pumpgrenze bestimmt ist.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es, die Betriebsgrenzerkennung im Betrieb eines Brennstoffzellensystems mit einem Brennstoffzellenmodul, dem über eine Luftzuführung verdichtete Luft zugeführt wird, und mit einer Steuerung zur Erkennung einer Betriebsgrenze im Betrieb des Brennstoffzellensystems, zu verbessern.
Die Aufgabe ist bei einem Brennstoffzellensystem mit einem Brennstoffzellenmodul, dem über eine Luftzuführung verdichtete Luft zugeführt wird, und mit einer Steuerung zur Erkennung einer Betriebsgrenze im Betrieb des Brennstoffzellensystems, wobei die Steuerung zur Betriebsgrenzerkennung einen Sensor umfasst, dadurch gelöst, dass die Steuerung zur Betriebsgrenzerkennung mindestens einen kontinuierlich arbeitenden Schallemissionssensor für eine kontinuierliche Erkennung der Betriebsgrenze im Betrieb des Brennstoffzellensystems umfasst. Durch die kontinuierliche Erkennung der Betriebsgrenze im Betrieb des Brennstoffzellensystems kann dieses effizienter, insbesondere näher an einer Pumpgrenze und/oder Stopfgrenze eines Verdichters in der Luftzuführung betrieben werden.
Ein bevorzugtes Ausführungsbeispiel des Brennstoffzellensystems ist dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Betriebsgrenze der Luftzuführung zugeordnet ist. Die Luftzuführung umfasst zum Beispiel einen Luftverdichter, der auch als Luftkompressor bezeichnet werden kann. Der kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Pumpgrenze und/oder Stopfgrenze kann dem Luftverdichter zugeordnet werden. Der kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Pumpgrenze und/oder Stopfgrenze kann aber auch in einer Fluidverbindung der Luftzuführung zwischen dem Luftverdichter und dem Brennstoffzellenmodul angeordnet sein. Durch die kontinuierliche Überwachung der Schallemissionen in der Luftzuführung kann die Steuerung zur Betriebsgrenzerkennung wirksam verbessert werden.
Ein weiteres bevorzugtes Ausführungsbeispiel des Brennstoffzellensystems ist dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Betriebsgrenze als Ultraschallsensor ausgeführt ist. Dabei wird ausgenutzt, dass kleinere Druckschwankungen, wie sie beim Schalldruck auftreten, mit einem Ultraschallsensor effektiv erfasst werden können. So wird mit einfachen Mitteln eine hocheffiziente Steuerung zur Betriebsgrenzerkennung ermöglicht.
Ein weiteres bevorzugtes Ausführungsbeispiel des Brennstoffzellensystems ist dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Betriebsgrenze direkt in oder an einer eine Luftströmung führenden Wand der Luftzuführung angeordnet ist. Dabei kann es sich um die Wand eines Verdichtergehäuses handeln. Dabei kann es sich aber auch um die Wand einer Verbindungsleitung zwischen dem Luftverdichter und dem Brennstoffzellenmodul handeln. Je nach Ausführung können auch mehrere kontinuierlich arbeitende Schallemissionssensoren für die kontinuierliche Erkennung der Pumpgrenze und/oder Stopfgrenze an unterschiedlichen Stellen angeordnet sein, die gemeinsam ausgewertet werden. Durch die direkte Anordnung des kontinuierlich arbeitenden Schallemissionssensors beziehungsweise der kontinuierlich arbeitenden Schallemissionssensoren an mindestens einer eine Luftströmung führenden Wand der Luftzuführung wird die Betriebsgrenzerkennung mit einfachen Mitteln wirksam verbessert.
Ein weiteres bevorzugtes Ausführungsbeispiel des Brennstoffzellensystems ist dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Betriebsgrenze direkt in einer Öffnung der die Luftströmung führenden Wand der Luftzuführung angeordnet ist. Bei der Öffnung kann es sich um ein einfaches Durchgangsloch in der Wand der Luftzuführung handeln. Der kontinuierlich arbeitende Schallemissionssensor kann mit einfachen Mitteln in dieser Öffnung positioniert werden. Dadurch wird die Montage vereinfacht. Zur Abdichtung zwischen dem Schallemissionssensor und der die Luftströmung führenden Wand der Luftzuführung kann eine geeignete Dichtung, wie ein O-Ring, verwendet werden.
Ein weiteres bevorzugtes Ausführungsbeispiel des Brennstoffzellensystems ist dadurch gekennzeichnet, dass eine Messfläche des kontinuierlich arbeitenden Schallemissionssensors für die kontinuierliche Erkennung der Betriebsgrenze in der Öffnung unmittelbar Kontakt mit der Luftströmung hat. Dadurch wird auf einfache Art und Weise eine kontinuierliche Erfassung von Druckveränderungen in der Luftströmung ermöglicht.
Ein weiteres bevorzugtes Ausführungsbeispiel des Brennstoffzellensystems ist dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Betriebsgrenze an einer Luftzuführleitung zwischen einem Luftverdichter der Luftzuführung und dem Brennstoffzellenmodul angebracht ist. Je nach Ausführung kann der Schallemissionssensor bereits vor der Montage der Luftzuführleitung an dieser montiert werden. Bei Bedarf kann der Schallemissionssensor aber auch an einer bereits montierten Luftzuführleitung montiert werden. So können auch bereits vorhandene Brennstoffzellensysteme mit relativ einfachen Mitteln im Hinblick auf die kontinuierliche Erkennung der Pumpgrenze und/oder Stopfgrenze mit kontinuierlich arbeitenden Schallemissionssensoren nachgerüstet werden.
Ein weiteres bevorzugtes Ausführungsbeispiel des Brennstoffzellensystems ist dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Betriebsgrenze ein herkömmlicher Parksensor ist. Der als Parksensor ausgeführte Schallemissionssensor kann so oder so ähnlich wie der in der europäischen Patentschrift EP 2 856 206 Bl offenbarte Ultraschallsensor ausgeführt sein. Das liefert den Vorteil, dass bereits in großen Stückzahlen hergestellte Parksensoren in dem Brennstoffzellensystem für die kontinuierliche Erkennung der Pumpgrenze verwendet werden können. Besonders bevorzugt ist der Parksensor vom gleichen Typ wie ein in einem mit dem Brennstoffzellensystem ausgestatteten Fahrzeug verbauter herkömmlicher Parksensor. Der als Parksensor ausgeführte kontinuierlich arbeitende Schallemissionssensor für die kontinuierliche Erkennung der Pumpgrenze und/oder Stopfgrenze ist gemäß einem Ausführungsbeispiel mit einer Parksensorsteuerung verbunden, die wiederum steuerungsmäßig mit den herkömmlichen im Fahrzeug verbauten Parksensoren verbunden ist. Der als Parksensor ausgeführte kontinuierlich arbeitende Schallemissionssensor kann aber auch mit einem Steuergerät des Brennstoffzellensystems verbunden sein. Bei einem Verfahren zum Betreiben eines vorab beschriebenen Brennstoffzellensystems ist die oben angegebene Aufgabe alternativ oder zusätzlich dadurch gelöst, dass Schallemissionen der Luftzuführung des Brennstoffzellenmoduls mit dem kontinuierlich arbeitenden Schallemissionssensor im Betrieb des Brennstoffzellensystems in Form eines Schallemissionssignals kontinuierlich überwacht und mit einer charakteristischen Geräuschsignatur verglichen werden, um Veränderungen über der Zeit zu erkennen. So können zum Beispiel Schäden und/oder Alterungserscheinungen im Betrieb des Brennstoffzellensystems frühzeitig erfasst werden. Die daraus gewonnenen Informationen können in einem geeigneten Diagnosekonzept im Betrieb des Brennstoffzellensystems zeitnah berücksichtigt werden.
Die Erfindung betrifft gegebenenfalls auch ein Computerprogrammprodukt mit einem Computerprogramm, das Softwaremittel zum Durchführen eines vorab beschriebenen Verfahrens aufweist, wenn das Computerprogramm auf einem Computer ausgeführt wird. Die Erfindung betrifft gegebenenfalls auch eine Steuerung mit einem derartigen Computerprogrammprodukt. Die Steuerung dient vorteilhaft zur Darstellung einer effektiven Regelung zur Betriebsgrenzerkennung.
Die Erfindung betrifft darüber hinaus die Verwendung eines herkömmlichen Parksensors in einem vorab beschriebenen Brennstoffzellensystem zur kontinuierlichen Erkennung der Pumpgrenze und/oder Stopfgrenze und/oder einer Drehzahl im Betrieb des Brennstoffzellensystems. So kann die Effizienz im Betrieb des Brennstoffzellensystems mit geringen Kosten deutlich verbessert werden.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung verschiedene Ausführungsbeispiele im Einzelnen beschrieben sind.
Kurze Beschreibung der Zeichnung
Es zeigen: Figur 1 eine schematische, perspektivische Darstellung eines Brennstoffzellensystems mit einem Brennstoffzellenmodul, dem über eine Luftzuführung verdichtete Luft zugeführt wird;
Figur 2 einen vergrößerten Ausschnitt aus Figur 1 mit einem Schallemissionssensor, welcher der Luftzuführung zugeordnet ist, im Längsschnitt; und
Figur 3 eine perspektivische Darstellung des Schallemissionssensors aus Figur 2.
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein Brennstoffzellensystem 1 mit einem Brennstoffzellenmodul 2 und einer Luftzuführung 3 schematisch, perspektivisch dargestellt. Die Luftzuführung 3 umfasst einen Luftverdichter 4. Über den Luftverdichter 4 wird dem Brennstoffzellenmodul 2 auf einer Kathodenseite verdichtete Luft zugeführt.
Von dem Luftverdichter 4 erstreckt sich eine Luftzuführleitung 7 zum Brennstoffzellenmodul 2. An einer Wand 6 der Luftzuführleitung 7 ist ein Schallemissionssensor 5 angeordnet. Der Schallemissionssensor 5 ist steuerungsmäßig mit einer Steuerung 14 des Brennstoffzellensystems 1 verbunden.
Die Steuerung 14 dient zum Steuern und/oder Regeln des Luftverdichters 4 im Betrieb des Brennstoffzellensystems 1. Im Betrieb des Luftverdichters 4 soll das Erreichen einer Pumpgrenze und/oder einer Stopfgrenze vermieden werden. Die Erkennung der Pumpgrenze und/oder Stopfgrenze wird vereinfacht als Betriebsgrenzerkennung bezeichnet.
Gemäß einem Aspekt der Erfindung wird die Erkennung und Regelung der Pumpgrenze und/oder Stopfgrenze des Luftverdichters 4 in dem Brennstoffzellensystem 1 unter Nutzung bereits vorhandener Ultraschall- Parksensoren oder durch den optionalen Einsatz eines kostengünstigen, zusätzlichen Sensors direkt in oder an der Luftzuführung 3 für die Kathodenseite des Brennstoffzellenmoduls 2 kontinuierlich im Betrieb des Brennstoffzellensystems 1 ermöglicht.
Der Luftverdichter 4 ist zum Beispiel durch eine elektrische Maschine, insbesondere einem Elektromotor, angetrieben. Darüber hinaus kann der Luftverdichter 4 antriebsmäßig mit einer Turbine verbunden sein, die vorteilhaft mit Abgas aus dem Brennstoffzellenmodul 2 angetrieben wird.
In Figur 2 ist ein Abschnitt der Luftzuführleitung 7 mit der Wand 6 und dem Schallemissionssensor 5 im Längsschnitt dargestellt. Durch Pfeile 13 ist eine Luftströmung durch die Luftzuführleitung 7 angedeutet. Die Wand 6 der Luftzuführleitung 7 umfasst eine Öffnung 8, die zum Beispiel als Durchgangsloch ausgeführt ist.
In der Öffnung 8 ist der Schallemissionssensor 5 so angeordnet, dass eine Messfläche 9 des Schallemissionssensors 5 direkt Kontakt mit der Luftströmung 13 in der Luftzuführleitung 7 hat. Der Schallemissionssensor 5 ist vorteilhaft ein Parksensor 10.
Zur Abdichtung zwischen der Luftzuführleitung 7 und dem Schallemissionssensor 5 dient ein Dichtelement 11, das zum Beispiel als O-Ring ausgeführt ist. Das Dichtelement 11 erstreckt sich in der Öffnung 8 um einen Absatz an dem Schallemissionssensor 5 herum. Der Schallemissionssensor 5 umfasst einen Stecker 12, der zur steuerungsmäßigen Verbindung mit der Steuerung (14 in Figur 1) dient.
In Figur 3 ist der Schallemissionssensor 5 mit der Messfläche 9 und dem Stecker 12 alleine perspektivisch dargestellt. Besonders vorteilhaft handelt es sich bei dem Schallemissionssensor 5 zur Betriebsgrenzerkennung des Luftverdichters in dem Brennstoffzellensystem um einen herkömmlichen Parksensor 10. Die Versorgung des Parksensors 10 und die Signalübertragung erfolgen über den Stecker 12.
Im Betrieb des Brennstoffzellensystems 1 werden mit dem Schallemissionssensor 5 Schallemissionen der Luftströmung 13 erfasst beziehungsweise gemessen. Das gemessene Signal wird analysiert und/oder mit einer Referenz verglichen. Die Analyse des erfassten Schallsignals lässt direkt auf Veränderungen des Betriebszustands des Luftverdichters schließen. Das ermöglicht eine höchst effektive Betriebsgrenzerkennung, zum Beispiel Pumpgrenzerkennung.
Mittels einer sicheren Erkennung der Pumpgrenze kann auf Sicherheitsmargen bei der Auslegung verzichtet werden. Darüber hinaus können Arbeitspunkte im Betrieb des Luftverdichters 4 näher an dessen Stabilitätsgrenze gelegt werden. Die Aufbereitung der Signalinformation erfolgt in der Steuerung 14 oder durch eine Kopplung mit im Fahrzeug verbauten Ultraschall-Parksensoren beziehungsweise deren Steuergerät.
Diese Art der Signalerfassung mit dem Schallemissionssensor 5 ermöglicht weiterhin die Erkennung von weiteren Betriebszuständen, beispielsweise der Stopfgrenze, der Belastung und/oder einer Drehzahl im Betrieb des Luftverdichters. Darüber hinaus können aus den Signalinformationen des Schallemissionssensors 5 vorteilhaft Rückschlüsse über Defekte oder Alterungserscheinungen abgeleitet werden.
Gemäß einem weiteren Aspekt der Erfindung kann ein Fluidmassenstrom durch die Luftzuführung 3 mit dem Schallemissionssensor 5 gemessen werden. Dieser Messwert kann vorteilhaft zur Kontrolle eines Signals eines Luftmassenmessers verwendet werden. Bei ausreichender Genauigkeit kann der Luftmassenmesser sogar entfallen.

Claims

- 9 - Ansprüche
1. Brennstoffzellensystem (1) mit einem Brennstoffzellenmodul (2), dem über eine Luftzuführung (3) verdichtete Luft zugeführt wird, und mit einer Steuerung (14) zur Erkennung einer Betriebsgrenze im Betrieb des Brennstoffzellensystems (1), wobei die Steuerung (14) zur Betriebsgrenzerkennung einen Sensor umfasst, dadurch gekennzeichnet, dass die Steuerung (14) zur Betriebsgrenzerkennung mindestens einen kontinuierlich arbeitenden Schallemissionssensor (5) für eine kontinuierliche Erkennung der Betriebsgrenze im Betrieb des Brennstoffzellensystems (1) umfasst.
2. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor (5) für die kontinuierliche Erkennung der Betriebsgrenze der Luftzuführung (3) zugeordnet ist.
3. Brennstoffzellensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor (5) für die kontinuierliche Erkennung der Betriebsgrenze als Ultraschallsensor ausgeführt ist.
4. Brennstoffzellensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor (5) für die kontinuierliche Erkennung der Betriebsgrenze direkt in oder an einer eine Luftströmung (13) führenden Wand (6) der Luftzuführung (3) angeordnet ist.
5. Brennstoffzellensystem nach Anspruch 4, dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor (5) für die kontinuierliche Erkennung der Pumpgrenze und/oder Stopfgrenze direkt in einer Öffnung (8) der die Luftströmung (13) führenden Wand (6) der Luftzuführung (3) angeordnet ist.
6. Brennstoffzellensystem nach Anspruch 5, dadurch gekennzeichnet, dass eine Messfläche (9) des kontinuierlich arbeitenden Schallemissionssensors (5) für die kontinuierliche Erkennung der Betriebsgrenze in der Öffnung (8) unmittelbar Kontakt mit der Luftströmung (13) hat.
7. Brennstoffzellensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor (5) für die kontinuierliche Erkennung der Betriebsgrenze an einer Luftzuführleitung (7) zwischen einem Luftverdichter (14) der Luftzuführung (3) und dem Brennstoffzellenmodul (2) angebracht ist.
8. Brennstoffzellensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der kontinuierlich arbeitende Schallemissionssensor (5) für die kontinuierliche Erkennung der Betriebsgrenze ein herkömmlicher Parksensor (10) ist.
9. Verfahren zum Betreiben eines Brennstoffzellensystems (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Schallemissionen der Luftzuführung (3) des Brennstoffzellenmoduls (2) mit dem kontinuierlich arbeitenden Schallemissionssensor (5) im Betrieb des Brennstoffzellensystems (1) in Form eines Schallemissionssignals kontinuierlich überwacht und mit einer charakteristischen Geräuschsignatur verglichen werden, um Veränderungen über der Zeit zu erkennen.
10. Verwendung eines herkömmlichen Parksensors (10) in einem Brennstoffzellensystem (1) nach einem der Ansprüche 1 bis 8 zur kontinuierlichen Erkennung der Betriebsgrenze und/oder einer Drehzahl im Betrieb des Brennstoffzellensystems (1).
PCT/EP2021/067204 2020-08-12 2021-06-23 Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems WO2022033754A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020210227.9A DE102020210227A1 (de) 2020-08-12 2020-08-12 Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102020210227.9 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022033754A1 true WO2022033754A1 (de) 2022-02-17

Family

ID=76708220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/067204 WO2022033754A1 (de) 2020-08-12 2021-06-23 Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems

Country Status (2)

Country Link
DE (1) DE102020210227A1 (de)
WO (1) WO2022033754A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004347A1 (de) * 2007-01-29 2008-07-31 Robert Bosch Gmbh Brennstoffzellensystem mit Sensor zur Erfassung von Druckschwankungen in einem Fluidversorgungsstrang
JP2012084537A (ja) * 2011-12-21 2012-04-26 Nissan Motor Co Ltd 燃料電池システム
DE102009029837B4 (de) 2008-06-25 2015-05-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Brennstoffzellensystem und Verfahren zum Betrieb eines Brennstoffzellensystems mit adaptiver Kompressorpumpsteuerung
EP2856206B1 (de) 2012-05-31 2019-04-03 Robert Bosch GmbH Ultraschallsensor sowie vorrichtung und verfahren zur messung eines abstands zwischen einem fahrzeug und einem hindernis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004347A1 (de) * 2007-01-29 2008-07-31 Robert Bosch Gmbh Brennstoffzellensystem mit Sensor zur Erfassung von Druckschwankungen in einem Fluidversorgungsstrang
DE102009029837B4 (de) 2008-06-25 2015-05-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Brennstoffzellensystem und Verfahren zum Betrieb eines Brennstoffzellensystems mit adaptiver Kompressorpumpsteuerung
JP2012084537A (ja) * 2011-12-21 2012-04-26 Nissan Motor Co Ltd 燃料電池システム
EP2856206B1 (de) 2012-05-31 2019-04-03 Robert Bosch GmbH Ultraschallsensor sowie vorrichtung und verfahren zur messung eines abstands zwischen einem fahrzeug und einem hindernis

Also Published As

Publication number Publication date
DE102020210227A1 (de) 2022-02-17

Similar Documents

Publication Publication Date Title
DE102007059523B4 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
EP2815132B1 (de) Verfahren zum betreiben eines unterdruckerzeugers und unterdruckerzeuger zur durchführung des verfahrens
WO2015062792A1 (de) Tankleckdiagnose mit kraftstofftank als druckspeicher
WO2008119588A1 (de) Verfahren zur diagnose eines absperrventils
DE102012207655B4 (de) Verfahren zur Diagnose eines Ventils einer Fluidzuleitung
EP3230136B1 (de) Verfahren und system zur fehlererkennung in einem druckluftsystem
EP0529302A1 (de) Verfahren und Vorrichtung zur Überwachung der Funktionsfähigkeit einer Sauerstoffmesssonden-Heizung
DE102004016418A1 (de) Fehlerdiagnosevorrichtung für eine Zufuhrvorrichtung für Sekundärluft
WO2008098852A1 (de) Indizieranordnung und verfahren zur bestimmung eines motorkennwertes
WO2007042388A1 (de) Verfahren zur diagnose eines absperrventils
EP0952332A2 (de) Verfahren zur Bestimmung von Leckagen im Kraftstoffversorgungssystem eines Kraftfahrzeuges
DE102005032636A1 (de) Verfahren und Vorrichtung zur Erkennung von Fehlern in einem Kraftstoffversorgungssystem eines Kraftfahrzeugs
WO2022033754A1 (de) Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems
DE19801627C1 (de) Diagnose elektrischer Verbraucher in einem Kraftfahrzeug
DE112008002742B4 (de) Brennstoffzellensystem
WO2019007563A1 (de) Verfahren zum betrieb eines lenksystems und lenksystem
EP1093205A2 (de) Vorrichtung zur Erkennung einer Unterbrechung der Ladeleitung zwischen einem Generator und einer Batterie eines Kraftfahrzeuges
EP1752642B1 (de) Verfahren und Vorrichtung zum Überwachen und Beurteilen der Funktion eines piezoelektrischen Aktors
DE102015210226B4 (de) Verfahren und Vorrichtung zur Erhöhung der Leistung eines Verbrennungsmotors durch Nutzung eines Turboladerdrehzahlmodells und eines Turboladerdrehzahlsensors
DE102008034323B4 (de) Verfahren und Vorrichtung zur Bestimmung des Drucks vor dem Verdichter eines Turboladers zur Ermittlung des Verscchmutzungsgrades eines Luftfilters, der vor dem Verdichter des Turboladers angeordnet ist.
DE102020112038B3 (de) Verfahren zum Durchführen eines Tests eines Thermomanagementsystems und Thermomanagementsystem
DE102010041945A1 (de) Steuersystem für ein Fahrzeug
DE102021201518A1 (de) Diagnoseverfahren, Recheneinheit und maschinenlesbares Speichermedium
DE102015212371B4 (de) Verfahren zur Überwachung des Arbeitsbetriebs eines Piezoinjektors
DE102013226565A1 (de) Verfahren zur Überwachung eines in einem Abgaskanal einer Brennkraftmaschine angeordneten Bauteils, Vorrichtung zur Durchführung des Verfahrens, Computer-Programm und Computer-Programmprodukt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21736286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21736286

Country of ref document: EP

Kind code of ref document: A1