WO2022033473A1 - 数据传输方法、装置及通信设备 - Google Patents

数据传输方法、装置及通信设备 Download PDF

Info

Publication number
WO2022033473A1
WO2022033473A1 PCT/CN2021/111775 CN2021111775W WO2022033473A1 WO 2022033473 A1 WO2022033473 A1 WO 2022033473A1 CN 2021111775 W CN2021111775 W CN 2021111775W WO 2022033473 A1 WO2022033473 A1 WO 2022033473A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission mode
data
service data
target
terminal
Prior art date
Application number
PCT/CN2021/111775
Other languages
English (en)
French (fr)
Inventor
刘佳敏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022033473A1 publication Critical patent/WO2022033473A1/zh
Priority to US18/107,978 priority Critical patent/US20230199805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/60Business processes related to postal services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/239Interfacing the upstream path of the transmission network, e.g. prioritizing client content requests
    • H04N21/2393Interfacing the upstream path of the transmission network, e.g. prioritizing client content requests involving handling client requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/414Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance
    • H04N21/41407Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance embedded in a portable device, e.g. video client on a mobile phone, PDA, laptop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6131Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving transmission via a mobile phone network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a data transmission method, an apparatus, and a communication device.
  • LTE Long Term Evolution
  • MMSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • SC-PTM Single Cell Point to Multipoint
  • the transmission mode of the broadcast service is the PTM mode on the Uu interface.
  • the network side can dynamically select the point-to-point (PTP) and point-to-multipoint (PTM) mode conversion to maximize the efficient use of system resources .
  • PTP point-to-point
  • PTM point-to-multipoint
  • the UE has the problems of discontinuous service reception and impaired data quality.
  • the purpose of the embodiments of the present application is to provide a data transmission method, apparatus, and communication device, which can solve the problems of discontinuous terminal service reception and impaired data quality in the existing mode switching process.
  • a data transmission method applied to a terminal, including:
  • Continuous reception of service data is performed based on the configuration information of the target transmission mode.
  • a data transmission method applied to a network side device, including:
  • the configuration information is used to instruct the terminal to continuously receive service data based on the target transmission mode.
  • a data transmission device applied to a terminal, including:
  • a first receiving module configured to receive configuration information of the target transmission mode of the multicast service
  • the second receiving module is configured to continuously receive service data based on the configuration information of the target transmission mode.
  • a data transmission device which is applied to a network side device, including:
  • a sending module configured to send the configuration information of the target transmission mode of the multicast service to the terminal
  • the configuration information is used to instruct the terminal to continuously receive service data based on the target transmission mode.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being implemented when executed by the processor.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the data transmission method described in the first aspect are implemented, or The steps of implementing the data transmission method according to the second aspect.
  • a chip in a seventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network-side device program or instruction, implementing the method as described in the first aspect. the method described, or implement the method described in the second aspect.
  • a computer program product is provided, the program product is stored in a non-volatile storage medium, the program product is executed by at least one processor to implement the method according to the first aspect, or A method as described in the second aspect is implemented.
  • the terminal can determine the target transmission mode based on the configuration information, and then perform continuous reception of multicast service data based on the target transmission mode, so as to ensure the continuity of service data reception by the terminal in the target transmission mode, and avoid service
  • the data quality is damaged due to discontinuous data reception, which also facilitates the network-side equipment to transmit MBS services in a more efficient manner, thereby improving the data transmission efficiency of the communication system.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 2 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 4 is a structural diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of another data transmission device provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation , 6G) communication system.
  • 6th generation 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 is a flowchart of a data transmission method provided by an embodiment of the present application, where the data transmission method is applied to a terminal.
  • the data transmission method includes the following steps:
  • Step 201 Receive the configuration information of the target transmission mode of the multicast service.
  • the target transmission mode may include a point-to-point (Point-to-Point, PTP) transmission mode and a point-to-multipoint (Point to Multipoint, PTM) transmission mode.
  • PTP Point-to-Point
  • PTM Point to Multipoint
  • the configuration information may be a scenario for reconfiguration of the transmission mode caused by cell handover, for example, it may be the target of instructing the terminal to switch from the source transmission mode of the source cell to the target cell when the terminal performs cell handover. transmission mode; or, it may also indicate that the terminal is in the same cell, and the current cell switches from the source transmission mode to the target transmission mode.
  • the source transmission mode may also include a PTP transmission mode and a PTM transmission mode.
  • Transmission mode switching may include the following scenarios: switching from PTP transmission mode to PTM transmission mode, switching from PTM transmission mode to PTM transmission mode, switching from PTP transmission mode to PTP transmission mode, and switching from PTM transmission mode to PTM transmission mode.
  • the transmission mode switching may occur between different cells, or between different base stations, or within the same cell.
  • the terminal when the terminal switches from the source cell to the target cell and the terminal accesses the target cell, the terminal may switch from the PTP transmission mode of the source cell to the PTM transmission mode of the target cell.
  • the source cell and the target cell may refer to the same cell, and the switching of the cell transmission mode also occurs in the same cell.
  • the configuration information may be sent by the network side device to the terminal.
  • the configuration information may be a system information block (System Information Block, SIB) sent by a network side device, or a dedicated signaling, to instruct the terminal to perform continuous reception of multicast service data in a target transmission mode.
  • SIB System Information Block
  • Step 202 Continuously receive service data based on the configuration information of the target transmission mode.
  • the terminal performs continuous reception of service data based on the target transmission mode.
  • the terminal can determine the target transmission mode based on the configuration information, and then perform continuous reception of multicast service data based on the target transmission mode, so as to ensure the continuity of service data reception by the terminal in the target transmission mode, and avoid service data
  • the data quality is damaged due to discontinuous reception, which improves the data transmission quality between the network-side device and the terminal.
  • the target transmission mode is the PTP transmission mode or the PTM transmission mode
  • the source transmission mode can also be the PTP transmission mode or the PTM transmission mode.
  • the terminal can achieve continuous reception of service data through different means.
  • the continuous reception of service data includes any of the following:
  • auxiliary information sent by the network side device based on the control plane CP or the user plane UP, and receive and reorder service data based on the first auxiliary information, where the auxiliary information is used to indicate the source transmission mode SN and destination Correspondence between transmission modes SN;
  • An accompanying unicast bearer is established, and continuous reception of service data is performed based on the accompanying unicast bearer.
  • the corresponding source transmission mode may be a PTM transmission mode or a PTP transmission mode, and the above four embodiments will be described in detail below.
  • the terminal receives the information sent by the network side device based on the CP or UP to indicate the deviation
  • the first auxiliary information and then the service data can be received and reordered based on the first auxiliary information, so as to realize the continuous reception of service data.
  • GTP Tunnel Protocol
  • PDCP Packet Data Convergence Protocol SN
  • the interface between the two cells informs each other of the L2 SN allocation method, and calculates the deviation.
  • the UE can be informed by dedicated signaling or System Information Block (SIB) that the target cell
  • SIB System Information Block
  • the deviation from the L2 SN of the source cell is 400 (assuming the defined gap is source cell SN-target cell SN), or the deviation can be notified to be -400 (assuming the defined gap is target cell SN-source cell SN).
  • the first auxiliary information is carried in the layer 2 control protocol data unit L2 control PDU or in the L2 PDU header, such as PDCP PDU or PDCP control PDU .
  • the terminal may obtain explicit or implicit first indication information, the first indication information is used to notify the terminal to establish a multicast bearer from the SN initialization state based on the first indication information to perform service data continuous reception.
  • the network side device continues to send the next data packet, but the The L2 SN of the next data packet is numbered from 0 again, and the subsequently received data packets are numbered sequentially.
  • the terminal may also establish an accompanying unicast bearer, and continuously receive service data based on the accompanying unicast bearer. Understandably, since the target transmission mode is the PTM transmission mode, and service data is sent to multiple UEs, when a new UE joins in, re-adjusting the transmission mode will affect other UEs, and then an accompanying unicast bearer can be established. In order to transmit the service data for the newly joined UE.
  • the establishment of the accompanying unicast bearer may include:
  • a companion unicast bearer is established based on third indication information, where the third indication information is used to indicate that the target service for which the unicast companion bearer needs to be established.
  • the accompanying unicast bearer is established based on the third indication information, and the third indication information may be the network It is sent by the side device to indicate that the unicast accompanying bearer service needs to be established.
  • the cell corresponding to the source transmission mode may carry the services and reception conditions that the UE is interested in in the interface switching request message, such as the TMGI list of interest, and the cell corresponding to the target transmission mode receives the interface
  • the handover request information according to the TMGI list of interest, you can select the services that need to be guaranteed lossless, and establish an accompanying unicast bearer for the UE. For example, there are 5 services of interest, but only 2 of them have lossless requirements.
  • the service is also the target service, and the accompanying unicast bearer can be established for these two services, such as data resource bearer (Data Radio Bearer, DRB)
  • DRB x corresponds to the lossless demand TMGI1
  • DRB y corresponds to the lossless demand TMGI2
  • the handover command is returned to the cell corresponding to the source transmission mode, and the base station of the cell may send second indication information to the UE to instruct the UE to establish the accompanying unicast bearers DRB x and DRB y.
  • the terminal may also establish the accompanying unicast bearer when the transmission of the source transmission mode and the target transmission mode are not synchronized.
  • the accompanying unicast bearer may be established to perform data compensating transmission; or it may be in the transmission mode in the source transmission mode that is faster than the transmission in the target transmission mode.
  • the accompanying unicast bearer is established for the interaction of the UP facing the SN receiving state, so that the UE can repeatedly detect the received service data. For example, the data packets received by the UE based on the target When the received data packets have the same condition, the same data packets received in the target transmission mode may be deleted.
  • the continuous reception of service data based on the accompanying unicast bearer includes at least one of the following:
  • Target SN mapping relationship sent by the cell corresponding to the target transmission mode, and receive and reorder service data based on the target SN mapping relationship, where the target SN mapping relationship is the mapping between the source transmission mode SN and the target transmission mode SN relation.
  • the cell corresponding to the source transmission mode may carry the service and reception information that the UE is interested in in the interface switching request message, such as the TMGI list of interest, and the cell corresponding to the target transmission mode receives the interface After the handover request information, according to the TMGI list of interest, you can select the services that need lossless protection, and establish an accompanying unicast bearer for the UE.
  • DRB Data Radio Bearer
  • Step 2 The cell corresponding to the source transmission mode sends a handover command to the UE.
  • Step3 The UE accesses the cell corresponding to the target transmission mode and establishes the accompanying unicast bearers DRB x and DRB y based on the handover command, where DRB x corresponds to the lossless requirement TMGI1, and DRB y corresponds to the lossless requirement TMGI2.
  • DRB x sends the reception status information of TMGI1
  • the status information is sent to the cell corresponding to the target transmission mode.
  • Step 5 The cell corresponding to the target transmission mode receives the state information, and performs data compensation transmission according to the reception state of the UE.
  • Step1 The UE establishes a companion unicast bearer when the transmission in the source transmission mode is slower than the transmission in the target transmission mode, or it can also establish a companion unicast bearer when the transmission in the source transmission mode is faster than the transmission in the target transmission mode.
  • DRB x sends the reception status information of TMGI1
  • Step 3 The cell corresponding to the target transmission mode receives the state information, and performs data compensation transmission according to the reception state of the UE.
  • the SN mapping information may also be carried through dedicated signaling to implement continuous reception of terminal service data.
  • Step1 For a UE that switches the transmission mode, after the cell corresponding to the target transmission mode receives the interface switching request information, it can carry the mapping relationship between the source transmission mode SN and the target transmission mode SN in the switching command and return it to the source transmission mode corresponding 's district.
  • Step 2 The cell corresponding to the source transmission mode sends a handover command to the UE.
  • Step3 The UE obtains the mapping relationship between the source transmission mode SN and the target transmission mode SN based on the handover command, establishes the association between the source transmission mode and the target transmission mode, and then compares the data received based on the target transmission mode with the source transmission mode-based data. The received data is reordered and delivered in order.
  • the continuous reception of service data when the target transmission mode is the PTM transmission mode and the source transmission mode is also the PTM transmission mode, the continuous reception of service data further includes:
  • the SN state of the source transmission mode is the same as the SN state of the target transmission mode
  • a multicast bearer is established based on the target transmission mode
  • the SN state of the target transmission mode is kept the same as the SN state of the source transmission mode, and the service is performed. Continuous reception of data.
  • the terminal when the terminal switches from the PTM transmission mode to the PTM transmission mode, if the SN of the source transmission mode is the same as the SN of the target transmission mode, a multicast bearer is established in the target cell, and the network side device sends configuration information to the terminal , the SN state of the indicated or default target transmission mode remains the same as the SN state of the source transmission mode, and the terminal can determine the SN state of the target transmission mode based on the configuration information to maintain the SN state of the source transmission mode, and then to realize the service data continuous reception.
  • the multicast channel from the core network to the base station is completely consistent for each cell, that is to say, the data from the core network to each base station uses the same interface SN identifier for the same service data packet, such as Xn
  • the foregoing cell 1 may refer to the source cell, and the cell 2 may refer to the target cell.
  • TMGI Temporal Mobile Group Identity
  • the network side device may also set a certain period for different cells, such as a service period or is the business change cycle.
  • the target transmission mode may also be a PTP transmission mode
  • the source transmission mode may be a PTP transmission mode or a PTM transmission mode.
  • the target transmission mode can be the PTP transmission mode and the source transmission mode is the PTM transmission mode
  • the continuous reception of service data includes:
  • An initialized unicast bearer is established, and multicast service data is received based on the initialized unicast bearer, wherein the SN of the service data received based on the target transmission mode is the initialized SN.
  • the terminal establishes a unicast bearer, and maintains continuous reception of multicast service data based on the unicast bearer.
  • the UE establishes an initialized unicast bearer, and receives multicast service data based on the initialized unicast bearer.
  • the method further includes:
  • the SN status information of the service data received based on the unicast bearer is reported; wherein, the SN status information includes at least one of the service data that is successfully received by the unicast bearer and the service data that is unsuccessfully received.
  • the service data received by the terminal may be successfully received, or there may be unsuccessful reception.
  • the terminal may report the SN status information of the received service data to the network side, so that the network side can know which service data sent by the terminal has been successfully received by the terminal, and which ones have not been successfully received, and then the network side can detect the services that have not been successfully received. data is retransmitted.
  • the method further includes:
  • the network side device can also retransmit the service data that was unsuccessfully received by the terminal, ensuring that the terminal can continuously receive service data and avoid loss of service data.
  • the method further includes:
  • the target data retransmitted by the network side device may not necessarily be sent in sequence, and the terminal reorders the received target data and the received service data.
  • the received data packets are reordered with the received data packets to ensure the continuity of terminal data reception.
  • the terminal can determine the target transmission mode based on the configuration information, and then perform continuous reception of multicast service data based on the target transmission mode, so as to ensure the continuity of service data reception by the terminal in the target transmission mode and avoid the The data quality is damaged due to discontinuous reception of service data, which also facilitates network-side equipment to transmit MBS services in a more efficient manner, thereby improving the data transmission efficiency of the communication system.
  • FIG. 3 is a flowchart of another data transmission method provided by an embodiment of the present application, where the data transmission method is applied to a network side device.
  • the data transmission method includes the following steps:
  • Step 301 Send configuration information of a multicast service target transmission mode to a terminal; the configuration information is used to instruct the terminal to continuously receive service data based on the target transmission mode.
  • the target transmission mode may include a point-to-point (Point-to-Point, PTP) transmission mode and a point-to-multipoint (Point to Multipoint, PTM) transmission mode.
  • PTP Point-to-Point
  • PTM Point to Multipoint
  • the transmission mode switching may occur between different cells, or between different base stations, or within the same cell.
  • the configuration information is used to indicate that the terminal is currently switched to the target transmission mode, for example, in the case that the terminal performs cell handover, instructing to switch from the source transmission mode of the source cell to the target transmission mode of the target cell; or, it can also be an indication The terminal switches from the source transmission mode to the target transmission mode in the same cell.
  • the source transmission mode may also include a PTP transmission mode and a PTM transmission mode.
  • Transmission mode switching may include the following scenarios: switching from PTP transmission mode to PTM transmission mode, switching from PTM transmission mode to PTM transmission mode, switching from PTP transmission mode to PTP transmission mode, and switching from PTM transmission mode to PTM transmission mode.
  • the network side device sends the configuration information of the target transmission mode of the multicast service to the terminal, so that the terminal can determine the target transmission mode based on the configuration information, so as to continuously receive the multicast service data based on the target transmission mode, so as to ensure The continuity of service data reception by the terminal in the target transmission mode avoids data quality damage caused by discontinuous service data reception, and improves the data transmission quality between the network-side device and the terminal.
  • the method further includes any one of the following:
  • Send third indication information where the third indication information is used to instruct the terminal to establish a companion unicast bearer.
  • the corresponding source transmission mode may be the PTM transmission mode or the PTP transmission mode.
  • the network side device sends first auxiliary information to the terminal, so that the terminal can learn the correspondence between the sequence number SN of the source transmission mode and the SN of the target transmission mode based on the first auxiliary information relationship, so as to ensure that in the case of switching to the target transmission mode, the terminal can sort the received service data based on the corresponding relationship, so as to realize the continuity of service data reception.
  • the first auxiliary information when the first auxiliary information is sent based on UP, the first auxiliary information is carried in the layer 2 control protocol data unit L2 control PDU or in the L2 PDU header.
  • SIB System Information Block
  • the deviation from the L2SN of the source cell is 400 (assuming that the defined gap is source cell SN-target cell SN), or the deviation can be notified to be -400 (assuming that the defined gap is target cell SN-source cell SN). After the UE obtains the deviation information, it can continuously receive and reorder data.
  • SIB System Information Block
  • the network side device if the network side device neither configures the configuration information of whether the source transmission mode SN state and the target transmission mode SN state are maintained, nor configures the corresponding relationship between the source transmission mode SN and the target transmission mode SN first auxiliary information, the network side device sends explicit or implicit first indication information, the first indication information is used to notify the terminal that neither the above configuration information nor the first auxiliary information is configured, and then the terminal is based on the first auxiliary information.
  • the indication information establishes a multicast bearer from the SN initialization state for continuous reception of service data.
  • the network side device continues to send the next data packet and the data packet L2
  • the SN starts numbering from 0 again, and sequentially numbers the subsequently received data packets.
  • the network side device may also instruct the terminal to establish a companion unicast bearer. Understandably, since the target transmission mode is the PTM transmission mode, service data is sent to multiple UEs. When a new UE joins, readjusting the transmission mode will affect other UEs, and then the terminal can be notified to establish a companion unicast.
  • the bearer is used to transmit service data for the newly added UE.
  • the third indication information includes at least one of the following:
  • the cell corresponding to the source transmission mode may carry the services and reception conditions that the UE is interested in in the interface switching request message, such as the TMGI list of interest, and the cell corresponding to the target transmission mode receives the interface
  • the TMGI list of interest you can select the services that need to be guaranteed lossless, and establish an accompanying unicast bearer for the UE. For example, there are 5 services of interest, but only 2 of them have lossless requirements. These 2 The service is the target service, and an accompanying unicast bearer can be established for the two services.
  • the third indication information sent by the network side device may also carry the SN difference between the service data SN of the source transmission mode and the service data SN of the target transmission mode, so that the terminal can determine the received service data based on the SN difference. Sort the business data with the source transmission mode and deliver it to the upper layer in order.
  • the third indication information further includes configuration information accompanying the unicast bearer
  • the configuration information may be information that carries the "on" instruction configured by the network side device, that is, instructing the terminal to establish the accompanying unicast bearer, or also It may be information carrying an "off" instruction, that is, indicating that the terminal does not need to establish an accompanying unicast bearer.
  • the establishment of the accompanying unicast bearer by the terminal may also be a protocol specification.
  • the network side device may further include at least one of the following:
  • the terminal sends first target data, where the first target data is multicast service data that the terminal fails to receive.
  • the receiving status information is used to indicate that the terminal receives successful data and data that fails to receive, and the network side device may retransmit the data that fails to receive to the terminal based on the receiving status information, so as to ensure that the terminal is not aware of the service data. Continuous reception to avoid data loss.
  • the method when the source transmission mode is the PTM transmission mode, the method further includes at least one of the following:
  • the service period or service change period of the cell wherein, in the same service period or service change period, the service data sent by the cell corresponding to the source transmission mode and the cell corresponding to the target transmission mode are the same, and/or, the cell corresponding to the source transmission mode and The target transmission mode corresponds to the same data packet in the cell carrying the same L2 SN.
  • mapping relationship between the L2 SN of the service data and the core network data SN is determined by at least one of the following:
  • a centralized control network node where the centralized control network node is configured to distribute data to other network nodes accessing the centralized control network node.
  • mapping relationship between the L2 SN of the service data and the SN of the core network data in the source transmission mode can be determined by the negotiation of the interface between the two cell network nodes, or directly stipulated by the protocol, or can also be determined by a centralized control network nodes to determine.
  • both the source transmission mode and the target transmission mode are the PTM transmission mode
  • both the source cell and the target cell use the PTM transmission mode to send service data, if they are not synchronized, it will cause repeated reception or reception.
  • the simplest way to improve user service continuity and reduce data loss reception is to try to keep the relatively synchronous transmission of services in adjacent cells/cells with more handovers.
  • the network-side device may maintain relatively synchronous transmission of services in the following manner: receiving the mapping relationship between the L2 SN of the service data in the source transmission mode and the core network data SN sent by the source node, and/or, Determine the service period or service change period of the cell.
  • the synchronous transmission of the service will be specifically described as an example.
  • the network side device can transmit the information on the interface of adjacent cells.
  • the network-side device may transmit service SN information (ie, the mapping relationship between the SN of the XG interface and the SN of the air interface) on the interface, such as the multicast channel from the core network to the base station.
  • service SN information ie, the mapping relationship between the SN of the XG interface and the SN of the air interface
  • the interface SN identifier used by the same service data packet is the same, for example, the GTP-U SN of the GTP-U tunnel of the Xn interface is sent.
  • cell 1 sends the SN mapping information through Xn
  • the interface between the two cells informs each other of the L2SN allocation method, and calculates the deviation.
  • a certain period such as a service period or a service change period, can be set for different cells to ensure that the data packets sent by different cells in this period are the same, regardless of their scheduling methods and L2 numbers.
  • the period of a TMGI service is 20ms
  • the data sent by the neighboring cells in each 20ms must be synchronized, and the 20ms may be aligned or there may be a certain deviation.
  • the start time of the first cell cycle transmission is 0 , 20ms, 40ms...
  • the start time of the second cell cycle transmission is 1ms, 21ms, 41ms...
  • the UE has received the data of the first 20ms cycle (0-19ms) in the first cell, and moves to The second cell starts to receive the second cycle (21-40ms), and the data of these two cycles can be sequenced continuously, which is sequential and lossless.
  • the interface between cells also needs to be set for a synchronization period.
  • the service can have certain extended transmission or retransmission within 20ms, but it is necessary to ensure that the content transmitted by different cells within 80ms is It is the same, UE moves from one cell to another cell, and can perform continuous and lossless reception with 80ms as the boundary.
  • the method when the target transmission mode is a point-to-point PTP transmission mode, the method further includes at least one of the following:
  • the terminal receiving the SN status information of the received service data reported by the terminal; wherein the SN status information includes at least one of successfully received service data and unsuccessfully received service data;
  • the network-side device may be based on the SN status information reported by the terminal to know which data the terminal has not successfully received, and the network-side device can retransmit the successful data of the receiving part to the terminal to ensure that the terminal receives the service data. continuous to avoid data loss.
  • the network side device may also send second target data to the terminal without receiving the SN status information fed back by the terminal, where the second target data may include unicast service data that the terminal fails to receive, or
  • the first target data may also include data that the terminal fails to receive, or may also include data that the terminal fails to receive.
  • the method before the receiving the configuration information of the multicast service target transmission mode, the method further includes:
  • the terminal when switching to the PTP transmission mode, may receive multicast service data based on the initialized unicast bearer, and the network-side device may include the following process based on CP:
  • the second auxiliary information may be notified to the UE to switch to the PTP transmission mode through a dedicated RRC signaling (dedicated RRC signal);
  • a certain overlapping area can be reserved for the service data transmitted in the source transmission mode and the service data transmitted in the target transmission mode, which is convenient for the UE to continuously receive, for example, when the service data transmission in the source transmission mode is used.
  • the transmission mode is switched.
  • unicast and multicast can be reserved for a certain period of time to ensure the continuity of service data.
  • the UE can receive at the same time, and perform duplicate detection and reordering.
  • the terminal when switching to the PTP transmission mode, may receive multicast service data based on the initialized unicast bearer, and the network side device may include the following process based on UP:
  • the second auxiliary information may be notified to the UE to switch to the PTP transmission mode through a dedicated RRC signaling;
  • certain indication information can be carried, such as a special flag, indicating that the target TMGI service needs to support continuous reception, or support the lossless transmission of the target TMGI service; the UE establishes a new single signal according to the indication information of the dedicated RRC signaling.
  • broadcast PTP bearer
  • the network side establishes the corresponding relationship between the source transmission mode bearer and the new PTP bearer in the UP PDU or UP control PDU carried by the PTP, such as PDCP PDU or PDCP control PDU, for example, on the basis of carrying the new PTP bearer SN, adding source transmission
  • a certain overlapping area can be reserved for the service data transmitted in the source transmission mode and the service data transmitted in the target transmission mode, which is convenient for the UE to continuously receive, for example, when the service data transmission in the source transmission mode is used.
  • the transmission mode is switched.
  • unicast and multicast can be reserved for a certain period of time to ensure the continuity of service data.
  • the UE can receive at the same time, and perform duplicate detection and reordering.
  • the network side equipment based on the CP can include the following process:
  • the second auxiliary information may be notified to the UE to switch to the PTP transmission mode through a dedicated RRC signaling (dedicated RRC signal);
  • the UE receives the dedicated RRC signaling, and sets the initial variable value of the PTP bearer L2 entity in the target transmission mode according to the status information of the service data in the source transmission mode, for example, the initial value of the L2 SN is 258;
  • a certain overlapping area can be reserved for the service data transmitted in the source transmission mode and the service data transmitted in the target transmission mode, which is convenient for the UE to continuously receive, for example, when the service data transmission in the source transmission mode is used.
  • the transmission mode is switched.
  • unicast and multicast can be reserved for a certain period of time to ensure the continuity of service data.
  • the network side device sends a dedicated repeat Configure signaling and convert to PTP transmission mode to send service data.
  • the L2 SN can remain the same as the source transmission mode L2 SN.
  • PTP transmission mode sends
  • the network side device based on the UP can include the following processes:
  • the second auxiliary information may be notified to the UE to switch to the PTP transmission mode through a dedicated RRC signaling (dedicated RRC signal);
  • certain indication information can be carried, such as a flag for lossless operation, indicating that the target TMGI service needs to support lossless transmission; the UE performs special operations according to the new PTP bearer of the dedicated RRC signaling and the flag of lossless operation.
  • a certain overlapping area can be reserved for the service data transmitted in the source transmission mode and the service data transmitted in the PTP transmission mode, which is convenient for the UE to continuously receive, for example, when the service data transmission in the source transmission mode is used.
  • the transmission mode is switched.
  • unicast and multicast can be reserved for a certain period of time to ensure the continuity of service data.
  • the network side device sends a dedicated repeat Configure signaling and convert to PTP transmission mode to send service data.
  • the L2 SN can remain the same as the source transmission mode L2 SN.
  • PTP transmission mode sends
  • the switching between the target transmission mode and the source transmission mode may also occur between network nodes.
  • the method further includes at least one of the following items:
  • the SN is at least one of the L2 SN and the core network SN;
  • the SN is at least one of the L2 SN and the core network SN;
  • the target node is used as a network side device to implement the above solution.
  • the target node may send SN status transfer indication information to the source node, so as to instruct the source node to transfer the SN status of the service data.
  • the source node can send the SN status transfer suggestion information to the target node, which is used to advise the target node to decide whether to maintain the SN status for the terminal.
  • the source node sends SN status transfer indication information.
  • the target node may also send a data forwarding request to the source node to instruct the source node to perform data forwarding.
  • the source node may also actively perform data forwarding without receiving the data forwarding request sent by the target node, and may send the service data for data forwarding to the target node.
  • the service data forwarded by the source node data also includes at least one of the L2 SN and the core network SN carried by each forwarding data packet.
  • the forwarding data packet carries the PDCP SN, which means that the SN status of the UE service data is maintained
  • the target node sends the service data corresponding to the forwarding data packet using the carried PDCP SN to the UE, so that the UE can perform services. Data detection and reordering.
  • the SN status transfer indication may be based on a specific TMGI.
  • the upper limit of the SN value of a service data that has been sent by the source node is received, and the target node may be an SN based on the service data.
  • the target node can also be the corresponding relationship between the L2 SN and the core network SN that receives the service data of the source node, and then the target node can be based on the corresponding relationship between the L2 SN and the core network SN of the service data of the source node.
  • the received service data is in continuous state.
  • the upper limit of the SN value is determined by any of the following:
  • the SN value of any data packet sent by the source node on the TMGI is the SN value of any data packet sent by the source node on the TMGI.
  • the method further includes any one of the following:
  • the service data is sent to the terminal based on the SN value of the last data packet sent by the source node, and the CN SN value of the first data packet of the service data is the same as the CN SN value of the last data packet sent by the source node. value is continuous;
  • the L2 SN of the service data is continuous with the L2 SN of the service data sent by the source node;
  • the L2 SN can be the PDCP SN, or the SN of other L2 protocol layers, such as Radio Link Control (RLC), Backhaul Adaptation Protocol (BAP) or Service Data Adaptation Protocol (Service Data Adaptation Protocol, SDAP), etc.
  • the core network (Core Network, CN) SN may be a data pipeline from CN to a radio access network (Radio Access Network, RAN), the pipeline SN of this TMGI, such as a GTP-US SN.
  • Step1 When the source node sends the handover request message to the target node, it carries the UE's interest/reception information about the MBS service, such as TMGI information, and even detailed quality of service (Quality of Service, QoS) information, and can also include the corresponding information of the UE.
  • the sending situation of the service of interest such as PTP/PTM transmission mode, sending information (such as the XG interface SN, based on a certain period or time), or, the sending situation of the service of interest can also be notified by changes between interfaces. without per UE notification. In this way, it is convenient for the target node to make configuration decisions based on the content carried in the handover request message.
  • Step2 When the target node receives the handover request information from the source node and accepts the UE, it not only needs to accept the unicast service, but also needs to accept the MBS service, such as which transmission mode (PTP/PTM) to adopt, the bearer configuration, optional initial state of the L2 entity, etc.
  • PTP/PTM transmission mode
  • the target node When the target node decides to use the PTP transmission mode to carry a certain MBS service of interest to the UE, it can also decide whether to maintain the state for the UE according to the block error rate/delay/lossless requirements of the service.
  • the handover command carries the SN state transfer indication, and in the handover request response message returned to the source node, the source node is required to transfer the SN state.
  • the target node when the target node is in the sending state from the source node and one of its own MBS services (for example, there is missing data in the middle, or the target node belongs to the multicast group that has just joined, and there is no previous data), and the block error rate/ To meet the requirements of delay/lossless, and eventually data forwarding of the multicast service is required, a forwarding channel is established for the TMGI, and the forwarding channel information is returned to the source base station.
  • MBS services for example, there is missing data in the middle, or the target node belongs to the multicast group that has just joined, and there is no previous data
  • Step3 The source node receives the handover request response message of the target node, and sends the handover command to the UE.
  • the source node performs SN status transfer, which may include the following methods:
  • the upper limit of the SN value of a service that has been sent by the receiving source node such as the GTP-USN uniformly identified in the core network multicast channel
  • the GTP-USN is the source node and the target node.
  • the same SN must correspond to the same data packet.
  • the determination of the upper limit of the SN value can be determined by any of the following:
  • the source node arbitrarily selects the SN value of a data packet recently sent on this TMGI according to the implementation.
  • TMGI For service data corresponding to a TMGI, not only the CN SN of a service that has been sent by the source node, but also the air interface transmission L2 SN corresponding to the data is required.
  • service data corresponding to a TMGI send an upper limit of the SN value of the multicast channel of the service that has been sent by the source node, such as the XG interface GTP-US SN value, and accompanied by the L2 SN transmitted by the data packet on the air interface, such as PDCP SN , which means that the data content identifier of the last multicast service data sent by the source node and the SN identifier sent by the air interface are convenient for the target to continue sending, and the status is continuous.
  • the GTP-U SN+Uu L2 SN of the last data packet can also include the feedback (HARQ feedback or RLC feedback) of the UE, what data is there before the last data packet If the reception is not successful, list its list. For example, the last PDCP SN sent is 100, and it is not successful to carry 98 and 96 at the same time.
  • the source node can also establish a forwarding channel according to the data forwarding request of the target node and the data forwarding channel information, and transmit the corresponding data to the target base station on the forwarding channel, which specifically includes at least one of the following:
  • the forwarding channel needs to be identified by per TMGI.
  • Each TMGI occupies a forwarding channel independently. For example, there is an independent tunnel endpoint ID (Tunnel Endpoint ID, TEID).
  • Multiple TMGI services can also multiplex a forwarding channel. Distinguish different TMGI services in the data packet, such as display carrying TMGI field;
  • Each forwarding data packet can carry the original GTP-US SN value on the XG interface of the multicast core network channel, so that the target can identify the data sequence; corresponding to mode 1, before the data after the last SN sent from the source starts Turn;
  • Each forwarding data packet can also carry the L2 SN allocated when it is sent on the Uu air interface, such as PDCP SN, so that the target side can continue to use the PDCP state; corresponding to Mode 2, the data after the last SN sent from the source carries GTP -US SN+PDCP SN start forwarding;
  • Data forwarding needs to be performed on the data packets in the order from old to new, such as GTP-USN ascending order;
  • the data that contains the incorrectly received data plus the data after the last SN sent from the source carries the GTP-U SN+PDCP SN for forwarding; the data forwarding is not necessarily completely continuous, and the forwarding of the SN state is different.
  • the forwarding content and sequence are: 96, 98, 101, 102, 103... .
  • Step4 The target node receives the SN status information and/or data forwarding information of the source node, and takes the following processing:
  • each cell can buffer a certain multicast data to meet the purpose of providing continuous transmission for the UE.
  • the source node transmits the upper limit of the GTP-US SN sent by itself to the target node, and the target node continuously provides multicast data for the UE after the SN, which can ensure continuity.
  • the above operations can also be performed.
  • the transmission can be started from the required SN position to ensure service continuity.
  • the L2 SN is also carried.
  • the UE-specific bearer can completely provide continuous multicast data transmission for the UE according to the connected L2 SN.
  • the UE only needs to maintain the original L2 In the SN Context state, gap filling and repeated detection can be performed continuously and non-destructively.
  • mode 3 in addition to the GTP-US SN and the corresponding L2 SN, it also carries the unsuccessful SN identifier.
  • PTM transmission mode for one UE, changing the L2 SN of the entire PTM is costly and affects other UEs.
  • a certain selective retransmission can be performed, so that the UE can use the SN mapping information of the source transmission mode and the target transmission mode to perform gap filling and repetition detection.
  • the dedicated bearer for the UE can provide continuous multicast data transmission for the UE according to the connected L2 SN, and accurately retransmit only the data packets that the UE has not successfully received, which improves the retransmission efficiency. Keep the original L2 SN Context state, and perform gap filling and repeated detection, which can be continuous and lossless.
  • the target node When the target node receives the forwarding data, it identifies the data according to the GTP-US SN of the forwarding data, and arranges sequential transmission for the UE. It needs to use the carried PDCP SN to send to the UE for easy detection and reordering.
  • the network side device sends the configuration information of the target transmission mode of the multicast service to the terminal, so that the terminal can determine the target transmission mode based on the configuration information, so that the continuity of the multicast service data can be performed based on the target transmission mode.
  • Receive ensure the continuity of service data reception by the terminal in the target transmission mode, avoid data quality damage caused by discontinuous service data reception, and network side equipment can transmit MBS services in a more efficient way, improving the communication system. data transmission efficiency.
  • the execution body may be a data transmission device, or a control module in the data transmission device for executing the data transmission method.
  • the data transmission device provided by the embodiment of the present application is described by taking the data transmission method performed by the data transmission device as an example.
  • FIG. 4 is a structural diagram of a data transmission apparatus provided by an embodiment of the present application, where the data transmission apparatus is applied to a terminal.
  • the data transmission device 400 includes:
  • a first receiving module 401 configured to receive configuration information of a multicast service target transmission mode
  • the second receiving module 402 is configured to continuously receive service data based on the configuration information of the target transmission mode.
  • the second receiving module 402 is further configured to perform at least one of the following:
  • An accompanying unicast bearer is established, and continuous reception of service data is performed based on the accompanying unicast bearer.
  • the first auxiliary information is carried in the layer 2 control protocol data unit L2 control PDU or in the L2 PDU header.
  • the second receiving module 402 is further configured to:
  • a multicast bearer is established based on the target transmission mode, the SN state of the target transmission mode is kept the same as the SN state of the source transmission mode, and continuous reception of service data is performed.
  • the second receiving module 402 is further configured to:
  • the accompanying unicast bearer is established based on the third indication information, where the third indication information is used to indicate that the target service accompanying the unicast bearer needs to be established.
  • the second receiving module 402 is further configured to perform at least one of the following:
  • the target SN corresponding relationship is the corresponding relationship between the source transmission mode SN and the target transmission mode SN.
  • the second receiving module 402 is further configured to:
  • An initialized unicast bearer is established, and multicast service data is received based on the initialized unicast bearer, wherein the SN of the service data received based on the target transmission mode is the initialized SN.
  • the device when the target transmission mode is the PTP transmission mode, and the SN state of the service data received in the target transmission mode is maintained based on the SN state of the service data received in the source transmission mode, the device further includes:
  • the reporting module is used to report the SN status information of the received service data
  • the SN status information includes at least one of successfully received service data and unsuccessfully received service data.
  • the data transmission device can determine the target transmission mode based on the configuration information, and then perform continuous reception of multicast service data based on the target transmission mode, so as to ensure the continuity of service data reception of the data transmission device in the target transmission mode, This avoids data quality damage caused by discontinuous service data reception, facilitates network-side equipment to transmit MBS services in a more efficient manner, and improves data transmission efficiency of the communication system.
  • the data transmission device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the data transmission device in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the data transmission device provided in the embodiment of the present application can implement the various processes implemented by the data transmission method embodiment shown in FIG. 2 , and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • FIG. 5 is a structural diagram of a data transmission apparatus provided by an embodiment of the present application, where the data transmission apparatus is applied to a terminal.
  • the data transmission apparatus 500 includes:
  • a sending module 501 configured to send configuration information of a multicast service target transmission mode to a terminal
  • the configuration information is used to instruct the terminal to continuously receive service data based on the target transmission mode.
  • the sending module 501 is further configured to perform any one of the following:
  • Send third indication information where the third indication information is used to instruct the terminal to establish a companion unicast bearer.
  • the first auxiliary information is carried in the layer 2 control protocol data unit L2 control PDU or in the L2 PDU header.
  • the third indication information includes at least one of the following:
  • the device further includes:
  • a first receiving module configured to receive reception status information of multicast service data from the terminal;
  • the sending module 501 is further configured to send first target data to the terminal, where the first target data is multicast service data that the terminal fails to receive.
  • the device also includes a determining module for performing at least one of the following:
  • mapping relationship between the L2 SN of the service data and the core network data SN is determined by at least one of the following:
  • a centralized control network node where the centralized control network node is configured to distribute data to other network nodes accessing the centralized control network node.
  • the apparatus when the target transmission mode is a point-to-point PTP transmission mode, the apparatus further includes:
  • a second receiving module configured to receive the SN status information of the received service data reported by the terminal; wherein the SN status information includes at least one of successfully received service data and unsuccessfully received service data; and /or,
  • the sending module 501 is further configured to send second target data to the terminal, where the second target data includes unicast service data that the terminal fails to receive.
  • the apparatus when the target node corresponding to the target transmission mode is different from the source node corresponding to the source transmission mode, the apparatus further includes a processing module configured to perform at least one of the following:
  • the SN is at least one of the L2 SN and the core network SN;
  • the SN is at least one of the L2 SN and the core network SN;
  • the upper limit of the SN value is determined by any of the following:
  • the SN value of any data packet sent by the source node on the TMGI is the SN value of any data packet sent by the source node on the TMGI.
  • the sending module 501 is further configured to perform any one of the following:
  • the service data is sent to the terminal based on the SN value of the last data packet sent by the source node, and the CN SN value of the first data packet of the service data is the same as the CN SN value of the last data packet sent by the source node. value is continuous;
  • the L2 SN of the service data is continuous with the L2 SN of the service data sent by the source node;
  • the service data forwarded by the source node data further includes at least one of the L2 SN and the core network SN carried in each forwarding data packet.
  • the data transmission device sends the configuration information of the target transmission mode of the multicast service to the terminal, so that the terminal can determine the target transmission mode based on the configuration information, so as to continuously receive the multicast service data based on the target transmission mode, so as to ensure
  • the continuity of service data reception by the terminal in the target transmission mode avoids data quality damage caused by discontinuous service data reception, and network-side equipment can transmit MBS services in a more efficient manner, improving the data transmission of the communication system. effectiveness.
  • the data transmission device in this embodiment of the present application may be a device with an operating system.
  • the data transmission apparatus provided in the embodiment of the present application can implement each process implemented by the data transmission method embodiment shown in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the data transmission method embodiment described above in FIG. 2 can be implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, each process of the data transmission method embodiment shown in FIG. 3 is implemented, and the same technical effect can be achieved. Repeat.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710 and other components .
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or less components than those shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network side device, and then processes it to the processor 710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.
  • radio frequency unit 701 is used for:
  • Continuous reception of service data is performed based on the configuration information of the target transmission mode.
  • the radio frequency unit 701 is further configured to implement at least one of the following:
  • An accompanying unicast bearer is established, and continuous reception of service data is performed based on the accompanying unicast bearer.
  • the first auxiliary information is carried in the layer 2 control protocol data unit L2 control PDU or in the L2 PDU header.
  • the radio frequency unit 701 is further configured to:
  • a multicast bearer is established based on the target transmission mode, the SN state of the target transmission mode is kept the same as the SN state of the source transmission mode, and continuous reception of service data is performed.
  • processor 710 is further configured to:
  • the accompanying unicast bearer is established based on the third indication information, where the third indication information is used to indicate that the target service accompanying the unicast bearer needs to be established.
  • the radio frequency unit 701 is further configured to implement at least one of the following:
  • the target SN correspondence sent by the network side device is received, and service data is received and reordered based on the target SN correspondence, where the target SN correspondence is the correspondence between the source transmission mode SN and the target transmission mode SN.
  • the radio frequency unit 701 is further configured to:
  • An initialized unicast bearer is established, and multicast service data is received based on the initialized unicast bearer, wherein the SN of the service data received based on the target transmission mode is the initialized SN.
  • the radio frequency unit 701 when the target transmission mode is the PTP transmission mode, and the SN state of the service data received in the target transmission mode is maintained based on the SN state of the service data received in the source transmission mode, the radio frequency unit 701, further: Used for:
  • the SN status information includes at least one of successfully received service data and unsuccessfully received service data.
  • the terminal can determine the target transmission mode based on the configuration information, and then perform continuous reception of multicast service data based on the target transmission mode, so as to ensure the continuity of service data reception by the terminal in the target transmission mode, and avoid the The data quality is damaged due to discontinuous data reception, which also facilitates the network-side equipment to transmit MBS services in a more efficient manner, thereby improving the data transmission efficiency of the communication system.
  • the network device 800 includes: an antenna 81 , a radio frequency device 82 , and a baseband device 83 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81, and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82
  • the radio frequency device 82 processes the received information and sends it out through the antenna 81 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 83 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 83 .
  • the baseband apparatus 83 includes a processor 84 and a memory 85 .
  • the baseband device 83 may include, for example, at least one baseband board on which a plurality of chips are arranged. As shown in FIG. 8 , one of the chips is, for example, the processor 84 and is connected to the memory 85 to call the program in the memory 85 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 83 may further include a network interface 86 for exchanging information with the radio frequency device 82, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored on the memory 85 and executable on the processor 84, and the processor 84 invokes the instructions or programs in the memory 85 to execute the modules shown in FIG. 5 .
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the data transmission method embodiment shown in FIG. 2 above is implemented, Alternatively, each process of the embodiment of the data transmission method shown in FIG. 3 can be implemented, and the same technical effect can be achieved. In order to avoid repetition, details are not described here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-On18 Memor8, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 2
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 2
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法、装置及通信设备,属于通信技术领域。其中,在所述数据传输方法应用于终端时,包括:接收多播业务目标传输模式的配置信息;基于所述目标传输模式的配置信息进行业务数据的连续性接收。本申请实施例提供的技术方案能够解决现有的模式切换过程中,终端业务接收不连续、数据质量受损的问题。

Description

数据传输方法、装置及通信设备
相关申请的交叉引用
本申请主张在2020年8月14日在中国提交的中国专利申请No.202010820552.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种数据传输方法、装置及通信设备。
背景技术
目前,长期演进(Long Term Evolution,LTE)标准化了多播单频网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)和单小区点到多点(Single cell Point to Multipoint,SC-PTM)两种多播业务传输方式,这两种传输方式在Uu接口都是PTM的模式。
根据终端(User Equipment,UE)不同的情况,网络侧可以动态的选择点对点(Point-to-Point,PTP)和点对多点(Point to Multipoint,PTM)模式转换,以最大效率地利用系统资源。但是,在现有PTP和PTM的模式切换过程中,UE存在业务接收不连续、数据质量受损的问题。
发明内容
本申请实施例的目的是提供一种数据传输方法、装置及通信设备,能够解决现有的模式切换过程中,终端业务接收不连续、数据质量受损的问题。
第一方面,提供了一种数据传输方法,应用于终端,包括:
接收多播业务目标传输模式的配置信息;
基于所述目标传输模式的配置信息进行业务数据的连续性接收。
第二方面,提供了一种数据传输方法,应用于网络侧设备,包括:
向终端发送多播业务目标传输模式的配置信息;
所述配置信息用于指示所述终端基于所述目标传输模式进行业务数据的 连续性接收。
第三方面,提供了一种数据传输装置,应用于终端,包括:
第一接收模块,用于接收多播业务目标传输模式的配置信息;
第二接收模块,用于基于所述目标传输模式的配置信息进行业务数据的连续性接收。
第四方面,提供了一种数据传输装置,应用于网络侧设备,包括:
发送模块,用于向终端发送多播业务目标传输模式的配置信息;
所述配置信息用于指示所述终端基于所述目标传输模式进行业务数据的连续性接收。
第五方面,提供了一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的数据传输方法的步骤,或者实现如第二方面所述的数据传输方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的数据传输方法的步骤,或者实现如第二方面所述的数据传输方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第八方面,提供了一种算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,终端能够基于配置信息确定目标传输模式,进而基于目标传输模式进行多播业务数据的连续性接收,以确保终端在目标传输模式下业务数据接收的连续性,避免因业务数据接收的不连续而造成的数据质量受损,也便于网络侧设备能够以更高效的方式进行MBS业务传输,提升了通信系统的数据传输效率。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种数据传输方法的流程图;
图3是本申请实施例提供的另一种数据传输方法的流程图;
图4是本申请实施例提供的一种数据传输装置的结构图;
图5是本申请实施例提供的另一种数据传输装置的结构图;
图6是本申请实施例提供的一种通信设备的结构图;
图7是本申请实施例提供的一种终端的结构图;
图8是本申请实施例提供的一种网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和 无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的数据传输方法进行详细地说明。
请参照图2,图2是本申请实施例提供的一种数据传输方法的流程图,所述数据传输方法应用于终端。如图2所示,所述数据传输方法包括以下步骤:
步骤201、接收多播业务目标传输模式的配置信息。
本申请实施例中,所述目标传输模式可以是包括点对点(Point-to-Point,PTP)传输模式和点对多点(Point to Multipoint,PTM)传输模式。
可选的,所述配置信息可以是用于小区切换引起的传输模式重配置的场景,例如可以是在终端进行小区切换的情况下,指示终端从源小区的源传输模式切换到目标小区的目标传输模式;或者,也可以是指示终端在同一个小区内,当前小区从源传输模式切换到目标传输模式。
需要说明的是,所述源传输模式同样可以是包括PTP传输模式和PTM传输模式。传输模式切换可以包括以下几种场景:PTP传输模式切换到PTM传输模式、PTM传输模式切换到PTM传输模式、PTP传输模式切换到PTP传输模式和PTM传输模式切换到PTM传输模式。
可选的,传输模式切换可以是发生在不同的小区之间,或者不同的基站之间,或者是同一个小区内。例如,当终端从源小区切换到目标小区,终端在接入到目标小区时,终端可以是从源小区的PTP传输模式切换到目标小区的PTM传输模式。或者,源小区和目标小区可以是指同一个小区,则小区传输模式的切换也就是发生在同一个小区内。
本申请实施例中,所述配置信息可以是网络侧设备发送给终端。例如,所述配置信息可以是网络侧设备发送的系统信息块(System Information Block,SIB),或者专用信令,以指示终端以目标传输模式进行多播业务数据的连续性接收。
步骤202、基于所述目标传输模式的配置信息进行业务数据的连续性接收。
可以理解地,终端在接收到所述配置信息的情况下,基于所述目标传输模式进行业务数据的连续性接收。
本申请实施例中,终端能够基于配置信息确定目标传输模式,进而基于目标传输模式进行多播业务数据的连续性接收,以确保终端在目标传输模式下业务数据接收的连续性,避免因业务数据接收的不连续而造成的数据质量受损,提升了网络侧设备与终端之间的数据传输质量。
可以理解地,目标传输模式为PTP传输模式或PTM传输模式,源传输模式也可以是PTP传输模式或PTM传输模式,本申请实施例中,源传输模式切换到目标传输模式也就可以包括四种不同的切换场景,在不同的切换场景中,终端可以是通过不同的手段来实现业务数据的连续性接收。
在目标传输模式为点对多点PTM传输模式的情况下,所述进行业务数据的连续性接收,包括如下任意一项:
接收网络侧设备基于控制面CP或用户面UP发送的第一辅助信息,基于所述第一辅助信息进行业务数据的接收和重排序,所述辅助信息用于指示所述源传输模式SN与目标传输模式SN之间的对应关系;
获取显式或隐式的第一指示信息,基于所述第一指示信息从SN初始化状态建立多播承载进行业务数据的连续性接收;
获取显式或隐式的第二指示信息,基于所述第二指示信息从保持SN状态建立多播承载进行业务数据的连续性接收;
建立伴随单播承载,基于所述伴随单播承载进行业务数据的连续性接收。
上述四种实施方式,对应的源传输模式可以是PTM传输模式,也可以是PTP传输模式,以下将对上述四种实施方式进行具体说明。
在第一种实施方式中,源传输模式的SN与目标传输模式的SN可以是存在特定的对应关系,在这种情况下,终端接收网络侧设备基于CP或UP发送的用于指示所述偏差的第一辅助信息,进而也就能够基于所述第一辅助信息进行业务数据的接收和重排序,以实现业务数据的连续性接收。
可以理解地,由于严格同步是有一定限制的(即要求相邻小区一定对同一个数据包分配的空口L2 SN是相同的),例如小区1先加入了多播组,对GPRS隧道协议(GPRS Tunnel Protocol,GTP),例如GTP-U SN=100的数据包分配了分组汇聚数据协(Packet Data Convergence Protocol SN,PDCP)序列号,例如PDCP SN=0,而小区2后加入了多播组,对GTP-U SN=500的数据包分配了PDCP SN=0,那么这两个小区之间对同一个数据包的L2 SN分配是有偏差的,可以将这个偏差通知给UE,便于UE进行重排序。当然前提还是两个小区之间接口通知彼此L2 SN的分配方式,并计算出偏差,例如接口收到源小区信息,源小区对特定TMGI的业务分配方式是GTP-U SN=500的数据包分配了PDCP SN=400,而目标小区对GTP-U SN=500的数据包分配了PDCP SN=0,则可以通过专用信令或者系统信息块(System Information Block,SIB)的方式告知UE,目标小区和源小区的L2 SN的偏差是400(假设定义差距为源小区SN-目标小区SN),或者也可以通知偏差是- 400(假设定义差距为目标小区SN-源小区SN)。UE获得该偏差信息,就可以进行数据的连续接收和重排序,例如UE在源小区接收到L2 SN=8的数据包,而切换或者重选到目标小区之后,得知SN偏差是400,则接收到目标小区的L2 SN=407,408,409……,可以知道前两个是重复包,可以删除并重排序,进而以确保业务数据接收的连续性。
需要说明的是,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中,例如PDCP PDU或者PDCP control PDU。
在第二种实施方式中,若网络侧设备既未配置源传输模式SN状态与目标传输模式SN状态是否保持的配置信息,也未配置源传输模式SN与目标传输模式SN之间的偏差的第一辅助信息,则终端可以是获取显式或隐式的第一指示信息,所述第一指示信息用于通知终端基于所述第一指示信息从SN初始化状态建立多播承载,以进行业务数据的连续性接收。例如,UE在切换到PTM传输模式前,源传输模式已经发送到L2 SN=89的数据包,UE在切换到目标传输模式后,网络侧设备继续发送接续的下一个数据包,但对所述下一个数据包的L2 SN重新从0开始编号,并对后续接收的数据包依次编号。
在第三种实施方式中,终端还可以是基于接收的第二指示信息从SN保持状态建立多播承载,以进行业务数据的连续性接收。例如,UE在切换到PTM传输模式之前,源传输模式已经发送到L2 SN=89的数据包,UE在切换到目标传输模式后,基站继续发送L2 SN=90的数据包,终端保持该数据包的SN状态不变,也即该数据包仍然对应L2 SN=90,同样后续接收的数据包的SN状态保持。
在第四种实施方式中,终端还可以是建立伴随单播承载,基于所述伴随单播承载进行业务数据的连续性接收。可以理解地,由于目标传输模式是PTM传输模式,业务数据是向多个UE发送的,当有新加入进来的UE时,重新调整传输模式会影响其他UE,进而可以建立一个伴随单播承载,以针对新加入的UE进行业务数据的传输。
其中,所述建立伴随单播承载可以是包括:
在从源传输模式切换到目标传输模式切换的情况下,基于第三指示信息 建立伴随单播承载,所述第三指示信息用于指示需要建立单播伴随承载的目标业务。
例如,可以是在终端从PTM传输模式切换到PTM传输模式,或者是PTP传输模式切换到PTM传输模式的情况下,基于第三指示信息建立伴随单播承载,所述第三指示信息可以是网络侧设备发送,用于指示需要建立单播伴随承载的业务。例如,对于一个切换传输模式的UE,源传输模式对应的小区可以是在接口切换请求消息中携带这个UE感兴趣的业务和接收情况,比如感兴趣TMGI list,目标传输模式对应的小区接收到接口切换请求信息之后,根据感兴趣的TMGI list,可以挑选其中需要进行无损保障的业务,为该UE建立伴随单播承载,例如感兴趣5个业务,但其中只有2个有无损需求,这2个业务也就是目标业务,则可以为这两个业务建立伴随单播承载,例如数据资源承载(Data Radio Bearer,DRB)DRB x对应无损需求TMGI1,DRB y对应无损需求TMGI2,然后将这些信息携带在切换命令里返回给源传输模式对应的小区,该小区基站可以是向UE发送第二指示信息,以指示UE建立伴随单播承载DRB x和DRB y。
或者,终端也可以是在源传输模式与目标传输模式发送不同步的情况下,建立伴随单播承载。例如,可以是在源传输模式的发送慢于目标传输模式的发送的情况下建立伴随单播承载,以进行数据的补偿发送;或者也可以是在源传输模式的发送快于目标传输模式的发送的情况下建立伴随单播承载,用于对UP面对SN接收状态的交互,以便于UE对接收的业务数据进行重复检测,例如UE基于目标传输模式接收到的数据包,与基于源传输模式接收到的数据包存在相同的情况时,可以是将目标传输模式接收到的相同的数据包删除。
进一步地,所述基于所述伴随单播承载进行业务数据的连续性接收,包括如下至少一项:
通过所述伴随单播承载向所述目标传输模式对应的小区发送业务接收状态信息;
接收所述目标传输模式对应的小区发送的目标数据,对所述目标数据与已接收数据进行重排序;
接收所述目标传输模式对应的小区发送的目标SN映射关系,基于所述目标SN映射关系进行业务数据的接收和重排序,所述目标SN映射关系为源传输模式SN与目标传输模式SN的映射关系。
为更好地理解如何建立伴随单播承载,并基于所述伴随单播承载进行业务数据的连续性接收的方案,以下将通过几个具体的实施例进行举例说明。
实施例:
step1:对于一个切换传输模式的UE,源传输模式对应的小区可以是在接口切换请求消息中携带这个UE感兴趣的业务和接收情况,比如感兴趣TMGI list,目标传输模式对应的小区接收到接口切换请求信息之后,根据感兴趣的TMGI list,可以挑选其中需要进行无损保障的业务,为该UE建立伴随单播承载,例如感兴趣5个业务,但其中只有2个有无损需求,则可以为这两个业务建立伴随单播承载,例如数据资源承载(Data Radio Bearer,DRB)DRB x对应无损需求TMGI1,DRB y对应无损需求TMGI2,然后将这些信息携带在切换命令里返回给源传输模式对应的小区。
Step2:源传输模式对应的小区将切换命令发送给UE。
Step3:UE接入目标传输模式对应的小区并基于所述切换命令建立伴随单播承载DRB x和DRB y,其中DRB x对应无损需求TMGI1,DRB y对应无损需求TMGI2。
Step4:UE使用伴随单播承载发送对应多播业务的接收状态信息,例如DRB x发送TMGI1的接收状态信息,DRB x中发送TMGI 1中已经接收到GTP-U SN=100的数据,或者已经接收到PDCP SN=10的数据,状态信息发送给目标传输模式对应的小区。
Step5:目标传输模式对应的小区接收所述状态信息,根据UE的接收状态,进行数据的补偿发送。例如,所述状态信息指示UE基于源传输模式已经接收到GTP-U SN=100的数据,在UE进行模式切换时,GTP-U SN=100、101的数据并未接收成功,则切换到目标传输模式后,对应小区可以是对GTP-U SN=100、101的数据进行补偿发送。
实施例2
Step1:UE在源传输模式的发送慢于目标传输模式的发送的情况下建立 伴随单播承载,或者也可以是在源传输模式的发送快于目标传输模式的发送的情况下建立伴随单播承载。
Step2:UE使用建立的伴随单播承载发送对应多播业务的接收状态信息,例如DRB x发送TMGI1的接收状态信息,DRB x中发送TMGI 1中已经接收到GTP-U SN=100的数据,或者已经接收到PDCP SN=10的数据,状态信息发送给目标传输模式对应的小区。
Step3:目标传输模式对应的小区接收所述状态信息,根据UE的接收状态,进行数据的补偿发送。
可选的,还可以是通过专用信令携带SN映射信息,来实现终端业务数据的连续性接收。
实施例3
Step1:对于一个切换传输模式的UE,目标传输模式对应的小区接收到接口切换请求信息之后,可以是将源传输模式SN与目标传输模式SN的映射关系携带在切换命令里返回给源传输模式对应的小区。
Step2:源传输模式对应的小区将切换命令发送给UE。
Step3:UE基于所述切换命令获取源传输模式SN与目标传输模式SN的映射关系,并建立源传输模式和目标传输模式的关联关系,进而将基于目标传输模式接收到的数据与基于源传输模式接收到的数据进行重排序,按序递交。
本申请实施例中,在目标传输模式为PTM传输模式,源传输模式也为PTM传输模式的情况下,所述进行业务数据的连续性接收,还包括:
在所述源传输模式的SN状态与所述目标传输模式的SN状态相同的情况下,基于目标传输模式建立多播承载,保持目标传输模式的SN状态与源传输模式的SN状态相同,进行业务数据的连续性接收。
在该实施方式中,当终端从PTM传输模式切换到PTM传输模式,若源传输模式的SN与目标传输模式的SN相同,则在目标小区建立多播承载,且网络侧设备向终端发送配置信息,以指示或者默认目标传输模式的SN状态保持与源传输模式的SN状态相同,终端基于所述配置信息也就能够确定目标传输模式的SN状态保持源传输模式的SN状态,进而以实现业务数据的连 续性接收。
可以理解地,从核心网到基站的多播信道,对每个小区是完全一致的,也就是说核心网的数据到每个基站,相同业务数据包使用的接口SN标识是一样的,例如Xn接口的GTP-U的序列号GTP-U SN,发给小区1的GTP-U SN=100的数据包与发给小区2的GTP-U SN=100的数据包内容完全一样。这样,如果小区1对GTP-U SN=100的数据包分配分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)序列号PDCP SN=0进行空口多播发送,小区1将SN的映射mapping信息通过Xn接口发送给小区2,小区2在空口多播发送时也对GTP-U SN=100的相同数据包分配相同的PDCP SN=0,这样相邻小区的数据包标号是一致的,进而大大提升了UE接收连续性和lossless的概率。上述小区1可以是指源小区,小区2可以是指目标小区。例如UE在源小区接收到一个临时移动组标识(Temporary Mobile Group Identity,TMGI)对应的数据PDCP SN=100,切换或者移动到目标小区时,继续接收这个TMGI的数据,PDCP SN=99,100,101,102……,UE就可以知道99和100是重复数据,可以删除,这样也就保持了业务数据的连续性接收。
另外需要说明的是,为确保终端业务数据的连续性接收,UE传输模式的切换发生在不同小区之间的情况下,网络侧设备还可以是为不同小区设定一定的周期,例如业务周期或者是业务变更周期。
本申请实施例中,所述目标传输模式还可以是PTP传输模式,源传输模式可以是PTP传输模式,或者是PTM传输模式。在目标传输模式可以是PTP传输模式,源传输模式是PTM传输模式的情况下,所述进行业务数据的连续性接收,包括:
建立单播承载,基于所述单播承载进行多播业务数据的接收,其中,所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持;或者,
建立初始化单播承载,基于所述初始化单播承载进行多播业务数据的接收,其中,基于所述目标传输模式接收的业务数据的SN为初始化SN。
可以理解地,从PTM传输模式切换到PTP传输模式,也就是从多播传输切换到了单播传输。在第一种实施方式中,终端建立单播承载,并基于所 述单播承载保持多播业务数据的连续性接收。例如,UE在切换到PTP传输模式之前,源传输模式已经发送到L2 SN=89的数据包,UE在切换到PTP传输模式后,基站继续在PTP承载上发送L2 SN=90的数据包,终端保持现有数据包的SN状态不变,也即终端接收到该数据包后,对SN=89和SN=90的数据包顺序排序,同样后续接收的数据包也按照SN进行排序。
或者,在第二种实施方式中,UE建立初始化单播承载,基于所述初始化单播承载进行多播业务数据的接收,该实施方式中,UE基于PTP传输模式接收的业务数据的SN为初始化SN。例如,UE在切换到PTP传输模式前,源传输模式已经发送到L2 SN=89的数据包,UE在切换到PTP传输模式后,基站继续发送接下来的数据包,但目标节点对L2 SN从零开始,也就是对接收的新数据包的L2 SN重新开始排序,那么终端基于源传输模式接收的L2 SN=90的数据包与在目标传输模式下接收的L2 SN=0的数据包其实是一致的。
可选的,在所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持的情况下,所述方法还包括:
上报基于所述单播承载接收的业务数据的SN状态信息;其中,所述SN状态信息包括所述单播承载接收成功的业务数据和接收不成功的业务数据中的至少一者。
可以理解地,在SN状态保持的情况下,终端接收的业务数据可能是成功接收的,也可能存在接收不成功的。终端可以是将接收的业务数据的SN状态信息上报给网络侧,进而网络侧也就能够知道那些发送的业务数据被终端成功接收了,哪些没有接收成功,进而网络侧能够对没有接收成功的业务数据进行重传。
进一步地,在所述SN状态信息包括所述单播承载接收不成功的业务数据的情况下,所述方法还包括:
接收网络侧设备响应于所述SN状态信息发送的第二目标数据,所述第二目标数据为所述单播承载接收不成功的单播业务数据。
可以理解地,网络侧设备在接收到终端上报的SN状态信息后,也就能够对终端接收不成功的业务数据进行重传,已确保终端能够实现业务数据的连 续接收,避免业务数据的丢失。
可选的,所述接收网络侧设备响应于所述SN状态信息发送的目标数据之后,所述方法还包括:
对接收到的目标数据与已接收的业务数据进行重排序。
可以理解地,网络侧设备重传的所述目标数据,可能不一定是按顺序发送的,则终端对接收到的目标数据与已接收的业务数据进行重排序。例如,终端接收到的业务数据包括L2 SN=88、90、91、92的数据包,则L2 SN=89的数据包也就接收不成功,终端可以是向网络侧设备上报业务数据接收不成功的SN状态信息,网络侧设备将L2 SN=89的数据包进行重传,终端此时已经接收了L2 SN=88、90、91、92的数据包,则终端对接收到的L2 SN=89的数据包与已经接收的数据包进行重排序,以确保终端数据接收的连续性。
需要说明的是,在终端未上报SN状态信息的情况下,网络侧设备也可以向终端进行数据的重传。例如,当基于源传输模式已经发送到L2 SN=258的数据包时,切换到PTP传输模式,为了确保最后几个数据包也能够被接收可以将L2 SN=256、257、258的数据包重新基于PTP传输模式进行重传,如果UE之前256和257没有接收成功,则可以进行接收gap的补偿,如果UE之前256和257接收成功,则直接当成重复数据进行删除即可。这样,也就更好地保障了终端能够进行数据的连续接收,避免数据丢失,保障数据的无损。
本申请实施例提供的方案,终端能够基于配置信息确定目标传输模式,进而基于目标传输模式进行多播业务数据的连续性接收,以确保终端在目标传输模式下业务数据接收的连续性,避免因业务数据接收的不连续而造成的数据质量受损,也便于网络侧设备能够以更高效的方式进行MBS业务传输,提升了通信系统的数据传输效率。
请参照图3,图3是本申请实施例提供的另一种数据传输方法的流程图,所述数据传输方法应用于网络侧设备。如图3所示,所述数据传输方法包括以下步骤:
步骤301、向终端发送多播业务目标传输模式的配置信息;所述配置信息 用于指示所述终端基于所述目标传输模式进行业务数据的连续性接收。
本申请实施例中,所述目标传输模式可以是包括点对点(Point-to-Point,PTP)传输模式和点对多点(Point to Multipoint,PTM)传输模式。
可选的,传输模式切换可以是发生在不同的小区之间,或者不同的基站之间,或者是同一个小区内。所述配置信息用于指示终端当前切换到了目标传输模式,例如可以是在终端进行小区切换的情况下,指示从源小区的源传输模式切换到目标小区的目标传输模式;或者,也可以是指示终端在同一个小区内,从源传输模式切换到目标传输模式。
需要说明的是,所述源传输模式同样可以是包括PTP传输模式和PTM传输模式。传输模式切换可以包括以下几种场景:PTP传输模式切换到PTM传输模式、PTM传输模式切换到PTM传输模式、PTP传输模式切换到PTP传输模式和PTM传输模式切换到PTM传输模式。
本申请实施例中,网络侧设备向终端发送多播业务目标传输模式的配置信息,进而使得终端能够基于配置信息确定目标传输模式,以基于目标传输模式进行多播业务数据的连续性接收,确保终端在目标传输模式下业务数据接收的连续性,避免因业务数据接收的不连续而造成的数据质量受损,提升了网络侧设备与终端之间的数据传输质量。
可选的,在所述目标传输模式为点对多点PTM传输模式的情况下,所述方法还包括如下任意一项:
基于控制面CP或用户面UP向所述终端发送第一辅助信息,所述第一辅助信息用于指示所述源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系;
发送显式的或隐式的第一指示信息,所述第一指示信息用于指示终端从SN初始化状态建立多播承载以进行业务数据的连续性接收;
发送显式的或隐式的第二指示信息,所述第二指示信息用于指示终端从SN保持状态建立多播承载以进行业务数据的连续性接收;
发送第三指示信息,所述第三指示信息用于指示终端建立伴随单播承载。
需要说明的是,上述四种实施方式,对应的源传输模式可以是PTM传输模式,也可以是PTP传输模式。
在第一种实施方式中,网络侧设备向终端发送第一辅助信息,进而使得终端基于所述第一辅助信息能够获知源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系,以进行确保在切换到目标传输模式的情况下,终端能够基于所述对应关系对接收的业务数据进行排序,实现业务数据接收的连续性。
其中,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中。
可以理解地,由于严格同步是有一定限制的(即要求相邻小区一定对同一个数据包分配的空口L2 SN是相同的),例如小区1先加入了多播组,对GTP-U SN=100的数据包分配了PDCP SN=0,而小区2后加入了多播组,对GTP-U SN=500的数据包分配了PDCP SN=0,那么这两个小区之间对同一个数据包的L2 SN分配是有偏差的,可以将这个偏差通知给UE,便于UE进行重排序。当然前提还是两个小区之间接口通知彼此L2 SN的分配方式,并计算出偏差,例如接口收到源小区信息,源小区对特定TMGI的业务分配方式是GTP-U SN=500的数据包分配了PDCP SN=400,而目标小区对GTP-U SN=500的数据包分配了PDCP SN=0,则可以通过专用信令或者系统信息块(System Information Block,SIB)的方式告知UE,目标小区和源小区的L2SN的偏差是400(假设定义差距为源小区SN-目标小区SN),或者也可以通知偏差是-400(假设定义差距为目标小区SN-源小区SN)。UE获得该偏差信息,就可以进行数据的连续接收和重排序,例如UE在源小区接收到L2 SN=8的数据包,而切换或者重选到目标小区之后,得知SN偏差是400,则接收到目标小区的L2 SN=407,408,409……,可以知道前两个是重复包,可以删除并重排序,进而以确保业务数据接收的连续性。
在第二种实施方式中,若网络侧设备既未配置源传输模式SN状态与目标传输模式SN状态是否保持的配置信息,也未配置源传输模式SN与目标传输模式SN之间的对应关系的第一辅助信息,则网络侧设备发送显式或隐式的第一指示信息,所述第一指示信息用于通知终端上述配置信息和第一辅助信息都没有配置,进而终端基于所述第一指示信息从SN初始化状态建立多播承载,以进行业务数据的连续性接收。例如,UE在切换到PTM传输模式 前,源传输模式已经发送到L2 SN=89的数据包,UE在切换到目标传输模式后,网络侧设备继续发送接下来的数据包并对该数据包L2 SN重新从0开始编号,并对后续接收的数据包依次编号。
在第三种实施方式中,终端还可以是基于接收的第二指示信息从SN保持状态建立多播承载,以进行业务数据的连续性接收。例如,UE在切换到PTM传输模式之前,源传输模式已经发送到L2 SN=89的数据包,UE在切换到目标传输模式后,网络侧设备继续发送L2 SN=90的数据包,终端保持该数据包的SN状态不变,也即该数据包仍然对应L2 SN=90,同样后续接收的数据包的SN状态保持。
在第四种实施方式中,网络侧设备还可以是指示终端建立伴随单播承载。可以理解地,由于目标传输模式是PTM传输模式,业务数据是向多个UE发送的,当有新加入进来的UE时,重新调整传输模式会影响其他UE,进而可以通知终端建立一个伴随单播承载,以针对新加入的UE进行业务数据的传输。
其中,所述第三指示信息包括如下至少一项:
需要建立伴随单播承载的目标业务;
源传输模式的业务数据SN与目标传输模式的业务数据SN之间的SN差值;
伴随单播承载的配置信息。
例如,对于一个切换传输模式的UE,源传输模式对应的小区可以是在接口切换请求消息中携带这个UE感兴趣的业务和接收情况,比如感兴趣TMGI list,目标传输模式对应的小区接收到接口切换请求信息之后,根据感兴趣的TMGI list,可以挑选其中需要进行无损保障的业务,为该UE建立伴随单播承载,例如感兴趣5个业务,但其中只有2个有无损需求,这2个业务也就是目标业务,则可以为这两个业务建立伴随单播承载。
或者,网络侧设备发送的第三指示信息还可以携带源传输模式的业务数据SN与目标传输模式的业务数据SN之间的SN差值,进而终端能够基于所述SN差值对接收的业务数据与源传输模式的业务数据进行排序,按序递交高层。
或者,所述第三指示信息还包括伴随单播承载的配置信息,例如所述配置信息可以是网络侧设备配置的携带“on”指令的信息,也就是指示终端建立伴随单播承载,或者也可以是携带“off”指令的信息,也就指示终端不需要建立伴随单播承载。或者,终端建立伴随单播承载也可以是协议规定。
需要说明的是,网络侧设备指示终端建立伴随单播承载以及终端建立伴随单播承载的具体实现过程可以是参照上述图2所述实施例中的具体描述,本实施例不再赘述。
进一步地,网络侧设备在发送所述第三指示信息之后,还可以包括如下至少一项:
接收来自所述终端的多播业务数据的接收状态信息;
所述终端发送第一目标数据,所述第一目标数据为所述终端接收不成功的多播业务数据。
其中,所述接收状态信息用于指示终端接收成功的数据和接收失败的数据,网络侧设备可以是基于所述接收状态信息,将接收失败的数据对终端进行重传,以确保终端对业务数据接收的连续,避免数据丢失。
或者,网络侧设备也可以是在没有接收到终端反馈的接收状态信息的情况下,向终端发送第一目标数据,所述第一目标数据可以是终端接收不成功的业务数据,或者所述第一目标数据还可以是包括终端接收成功的数据,例如网络侧设备可以是将源传输模式的最后几个数据包发送给终端。例如,当源传输模式发到L2 SN=258的数据包时进行传输模式的切换,为了确保最后几个数据包也能够被接收,可以将L2 SN=256,257,258进行重传,以确保终端对业务数据的连续性接收,避免数据丢失。
本申请实施例中,在源传输模式为PTM传输模式的情况下,所述方法还包括如下至少一项:
接收源节点发送的源传输模式下业务数据的L2 SN与核心网数据SN之间的映射关系,基于所述映射关系确定所述目标传输模式下业务数据的L2 SN,其中,所述目标传输模式下业务数据的L2 SN与源传输模式下业务数据的L2 SN相同;
确定小区的业务周期或业务变更周期,其中,在同一个业务周期或业务 变更周期内,源传输模式对应小区与目标传输模式对应小区发送的业务数据相同,和/或,源传输模式对应小区与目标传输模式对应小区相同数据包携带相同的L2 SN。
其中,所述业务数据的L2 SN与核心网数据SN之间的映射关系,通过如下至少一项确定:
网络节点间接口的协商;
协议规定;
集中控制网络节点,所述集中控制网络节点用于对接入所述集中控制网络节点的其他网络节点进行数据分发。
也就是说,源传输模式下业务数据的L2 SN与核心网数据SN之间的映射关系可以是两个小区网络节点间接口的协商确定,或者直接是协议规定,或者还可以是通过一个集中控制网络节点来确定。
本申请实施例中,在源传输模式和目标传输模式都为PTM传输模式的情况下,由于源小区和目标小区都采用PTM传输模式发送业务数据,如果不同步的话,会造成接收的重复或者接收gap(例如源小区接收到SN=10,而在目标小区才发送到SN=8,就会造成重复,反之会有gap),对用户的体验造成影响。因此最简单的提高用户业务连续性和减少数据丢失接收的方式,就是在相邻小区/较多发生切换的小区中尽量保持业务的相对同步发送。本申请实施例中,网络侧设备可以是通过以下方式保持业务的相对同步发送:接收源节点发送的源传输模式下业务数据的L2 SN与核心网数据SN之间的映射关系,和/或,确定小区的业务周期或业务变更周期。以下,将对业务的同步发送进行具体举例说明。
例如,多播业务大多是周期业务,有一定的pattern,例如周期长度DRX cycle和突发时长,例如对应于On Duration和/或Inactivity Timer长度,甚至是周期开始的offset也可以考虑交互,那么两个相邻的小区,网络侧设备可以在接口上传递这些信息,以确保相邻小区的配置基本一致或协调。
另外,对于业务数据的SN标识进行一定的同步,网络侧设备可以是在接口上传递业务SN信息(即XG接口的SN和空口SN的映射mapping关系),例如从核心网到基站的多播信道,对每个小区是完全一致的,也就是说核心 网的数据到每个基站,相同业务数据包使用的接口SN标识是一样的,例如Xn接口的GTP-U隧道的GTP-U SN,发给小区1的GTP-U SN=100的数据包与发给小区2的GTP-U SN=100的数据包内容完全一样。这样,如果小区1对GTP-U SN=100的数据包分配PDCP SN=0(PDCP SN是用于举例,不排除其它的L2 SN)进行空口多播发送,小区1将SN的mapping信息通过Xn接口发送给小区2,小区2在空口多播发送时也对GTP-U SN=100的相同数据包分配相同的PDCP SN=0,这样相邻小区的数据包标号是一致的,大大提升了UE接收连续性和lossless的概率,例如UE在源小区1接收到一个TMGI对应的数据PDCP SN=100,切换或者移动的小区2时,继续接收这个TMGI的数据,PDCP SN=99,100,101,102……,UE就可以知道99和100是重复数据,可以删除。
或者,在上述第二种方式的基础上,由于严格同步是有一定限制的(即要求相邻小区一定对同一个数据包分配的空口L2 SN是相同的),例如小区1先加入了多播组,对GTP-U SN=100的数据包分配了PDCP SN=0,而小区2后加入了多播组,对GTP-U SN=500的数据包分配了PDCP SN=0,那么这两个小区之间对同一个数据包的L2 SN分配是有偏差的,可以将这个偏差通知给UE,便于UE进行重排序。当然前提还是两个小区之间接口通知彼此L2SN的分配方式,并计算出偏差,例如接口收到邻小区信息,邻小区对特定TMGI的业务分配方式是GTP-U SN=500的数据包分配了PDCP SN=400,而本小区对GTP-U SN=500的数据包分配了PDCP SN=0,则可以通过专用信令或者SIB的方式告知UE,本小区和邻小区1的L2 SN的差距是+400(假设定义差距为邻小区SN-本小区SN),或者也可以通知差距是-400(假设定义差距为本小区SN-邻小区SN)。UE拿到该差距信息,就可以进行数据的连续接收和重排序,例如UE在本小区接收到L2 SN=8的数据包,而切换或者重选到邻小区1之后,得知SN差距是400,则接收到新小区1的L2 SN=407,408,409……,可以知道前两个是重复包,可以删除,并排序之后按序递交。
再或者,可以是为不同小区设定一定的周期,例如业务周期或者业务变更周期,确保不同小区在这个周期中发送的数据包都是一样,无论它的调度 方式和L2编号具体多少。例如一个TMGI业务的周期为20ms,则周围邻小区在每个20ms中发送的数据一定是同步的,其中20ms有可能对齐,也有可能是有一定偏差,例如第一个cell周期发送开始时刻为0,20ms,40ms……,第二个cell周期发送开始时刻为1ms,21ms,41ms……等,这样UE在第一个小区中接收完了第一个20ms周期的数据(0-19ms),移动到第二个小区,开始接收第二个周期(21-40ms),这两个周期的数据可以连续排序,是顺序且无损的。为了达到这样的效果,小区之间接口也需要同步周期设置。
另外,以业务变更周期来举例,当业务周期为20ms时,设置业务变更周期为80ms,则业务具体在20ms内可以有一定的扩展传输或者重传,但需要保障80ms内不同小区传输的内容都是相同的,UE从一个小区移动到另一个小区,可以以80ms为界限,进行连续和无损的接收。
本申请实施例中,在所述目标传输模式为点对点PTP传输模式的情况下,所述方法还包括如下至少一项:
接收所述终端上报的已接收的业务数据的SN状态信息;其中,所述SN状态信息包括接收成功的业务数据和接收不成功的业务数据中的至少一者;
向所述终端发送第二目标数据,所述第二目标数据包括所述终端接收不成功的单播业务数据。
例如,网络侧设备可以是基于终端上报的SN状态信息,以获知终端对哪些数据没有接收成功,则网络侧设备能够将接收部成功的数据对终端进行重传,以确保终端对业务数据接收的连续,避免数据丢失。
或者,网络侧设备也可以是在没有接收到终端反馈的SN状态信息的情况下,向终端发送第二目标数据,所述第二目标数据可以是包括终端接收不成功的单播业务数据,或者所述第一目标数据还可以是包括终端接收不成功的数据,或者也可以是包括终端接收不成功的数据。例如,当源传输模式发到L2 SN=258的数据包时进行传输模式的切换,为了确保最后几个数据包也能够被接收,可以将L2 SN=256,257,258进行重传,以确保终端对业务数据的连续性接收,避免数据丢失。
本申请实施例中,在所述接收多播业务目标传输模式的配置信息之前,所述方法还包括:
接收网络侧设备基于CP发送的第二辅助信息,所述第二辅助信息用于指示所述目标传输模式为PTP传输模式。
为更好地理解本方案,以下将结合上述PTP传输模式下业务数据的传输分别对CP的流程和UP的流程进行具体说明。
可选的,在切换到PTP传输模式下,终端可以是基于初始化单播承载进行多播业务数据的接收,网络侧设备基于CP可以包括如下流程:
由于目标传输模式为PTP传输模式,所述第二辅助信息可以是通过一个dedicated RRC signaling(专用RRC信号)通知UE转为PTP传输模式;
在这个dedicated RRC signaling中,可以携带源传输模式和目标传输模式的业务数据的对应关系,例如源传输模式中L2 SN=256和目标传输模式中L2 SN=0是一致的;
进一步地,为了尽量保障数据接收的无损,可以将源传输模式传输的业务数据和目标传输模式传输的业务数据留有一定的重叠区域,便于UE进行连续接收,例如当源传输模式的业务数据传输到L2 SN=258的数据包时,传输模式进行切换,为了确保最后几个数据包也能够被接收可以将L2 SN=256,257,258的数据包重新在PTP传输模式下进行重传,而PTP传输模式下,终端可以是对接收的数据包的SN初始化,也就是对接收的L2 SN=256,257,258的数据包的L2 SN重新从0开始编号,新L2 SN分别为0,1,2;
另外,当模式切换发生在同一个小区时,还可以保留单播和多播同时存在一定的时间,以确保业务数据的连续,例如PTM传输模式发送到L2 SN=256,网络侧设备发送dedicated重配置信令,转换为PTP传输模式发送业务数据,目标传输模式下L2 SN=0的数据包(对应PTM传输模式下L2 SN=256的数据包),则PTP传输模式发送L2 SN=0,1,2,3……PTM传输模式还可以继续发送L2 SN=257(对应PTP传输模式下L2 SN=1),258(对应PTP传输模式下L2 SN=2),259(对应PTP传输模式下L2 SN=3),260(对应PTP传输模式下L2 SN=4)……UE可以同时接收,并进行重复检测和重排序。
可选的,在切换到PTP传输模式下,终端可以是基于初始化单播承载进行多播业务数据的接收,网络侧设备基于UP可以包括如下流程:
由于目标传输模式为PTP传输模式,所述第二辅助信息可以是通过一个dedicated RRC signaling通知UE转为PTP传输模式;
在这个dedicated RRC signaling中,可以携带一定的指示信息,例如特殊标记,指示目标TMGI业务需要支持连续性接收,或者说支持目标TMGI业务的无损传输;UE根据dedicated RRC signaling的指示信息建立新的单播PTP承载;
网络侧在PTP承载的UP PDU中或者UP control PDU,例如PDCP PDU或者PDCP control PDU,建立源传输模式承载和新的PTP承载的对应关系,例如在携带新PTP承载SN的基础上,增加源传输模式对应数据包的SN值,表明对等关系,例如源传输模式中L2 SN=256的数据包和PTP传输模式中L2 SN=0的数据包是一致的;
进一步地,为了尽量保障数据接收的无损,可以将源传输模式传输的业务数据和目标传输模式传输的业务数据留有一定的重叠区域,便于UE进行连续接收,例如当源传输模式的业务数据传输到L2 SN=258的数据包时,传输模式进行切换,为了确保最后几个数据包也能够被接收可以将L2 SN=256,257,258的数据包重新在PTP传输模式下进行重传,而PTP传输模式下,终端可以是对接收的数据包的SN初始化,也就是对接收的L2 SN=256,257,258的数据包的L2 SN重新从0开始编号,新L2 SN分别为0,1,2;
另外,当模式切换发生在同一个小区时,还可以保留单播和多播同时存在一定的时间,以确保业务数据的连续,例如PTM传输模式发送到L2 SN=256,网络侧设备发送dedicated重配置信令,转换为PTP传输模式发送业务数据,目标传输模式下L2 SN=0的数据包(对应PTM传输模式下L2 SN=256的数据包),则PTP传输模式发送L2 SN=0,1,2,3……PTM传输模式还可以继续发送L2 SN=257(对应PTP传输模式下L2 SN=1),258(对应PTP传输模式下L2 SN=2),259(对应PTP传输模式下L2 SN=3),260(对应PTP传输模式下L2 SN=4)……UE可以同时接收,并进行重复检测和重排序。
可选的,在切换到PTP传输模式下,PTP传输模式业务数据的SN状态可以是基于源传输模式业务数据的SN状态保持,这种情况下表,网络侧设 备基于CP可以包括如下流程:
由于目标传输模式为PTP传输模式,所述第二辅助信息可以是通过一个dedicated RRC signaling(专用RRC信号)通知UE转为PTP传输模式;
在这个dedicated RRC signaling中,可以携带源传输模式业务数据的状态信息,例如源传输模式发送到L2 SN=258的数据包;
UE接收到dedicated RRC signaling,按照源传输模式业务数据的状态信息,设置目标传输模式下PTP bearer L2实体的初始变量值,例如L2 SN初始值为258;
进一步地,为了尽量保障数据接收的无损,可以将源传输模式传输的业务数据和目标传输模式传输的业务数据留有一定的重叠区域,便于UE进行连续接收,例如当源传输模式的业务数据传输到L2 SN=258的数据包时,传输模式进行切换,为了确保最后几个数据包也能够被接收,可以将L2 SN=256,257,258的数据包重新在PTP传输模式下进行重传,如果UE之前对256和257的数据包没有接收成功,则可以进行接收缺口gap的补偿,如果UE之前对256和257的数据包接收成功,则直接当成重复数据进行删除即可,这样也就能够实现终端对业务数据的连续性接收,避免数据丢失;
另外,当模式切换发生在同一个小区时,还可以保留单播和多播同时存在一定的时间,以确保业务数据的连续,例如PTM传输模式发送到L2 SN=256,网络侧设备发送dedicated重配置信令,转换为PTP传输模式发送业务数据,目标传输模式下L2 SN可以保持与源传输模式L2 SN一样,例如源传输模式发送L2 SN=256,257,258的数据包,PTP传输模式发送的也是L2 SN=256,257,258的数据包,UE可以同时接收,并进行重复检测和重排序,这样也进一步避免数据丢失,确保终端实现数据的连续性接收。
可选的,在切换到PTP传输模式下,PTP传输模式业务数据的SN状态可以是基于源传输模式业务数据的SN状态保持,这种情况下表,网络侧设备基于UP可以包括如下流程:
由于目标传输模式为PTP传输模式,所述第二辅助信息可以是通过一个dedicated RRC signaling(专用RRC信号)通知UE转为PTP传输模式;
在这个dedicated RRC signaling中,可以携带一定的指示信息,例如进行 无损操作的标记,指示目标TMGI业务需要支持无损传输;UE根据dedicated RRC signaling的新的PTP承载,并根据无损操作的标记,执行特殊的处理,所述特殊的处理可以是指,将源传输模式业务数据的状态和PTP传输模式业务数据的状态进行延续,例如在源传输模式下接收L2 SN=256的数据包,在PTP传输模式下接收到L2 SN=257的数据包,可以认为这两者是连续的,进行排序递交;
进一步地,为了尽量保障数据接收的无损,可以将源传输模式传输的业务数据和PTP传输模式传输的业务数据留有一定的重叠区域,便于UE进行连续接收,例如当源传输模式的业务数据传输到L2 SN=258的数据包时,传输模式进行切换,为了确保最后几个数据包也能够被接收,可以将L2 SN=256,257,258的数据包重新在PTP传输模式下进行重传,如果UE之前对256和257的数据包没有接收成功,则可以进行接收缺口gap的补偿,如果UE之前对256和257的数据包接收成功,则直接当成重复数据进行删除即可,这样也就能够实现终端对业务数据的连续性接收,避免数据丢失;
另外,当模式切换发生在同一个小区时,还可以保留单播和多播同时存在一定的时间,以确保业务数据的连续,例如PTM传输模式发送到L2 SN=256,网络侧设备发送dedicated重配置信令,转换为PTP传输模式发送业务数据,目标传输模式下L2 SN可以保持与源传输模式L2 SN一样,例如源传输模式发送L2 SN=256,257,258的数据包,PTP传输模式发送的是L2 SN=257,258,259的数据包,与源传输模式业务数据的SN可以直接排序,进而UE可以同时接收,并进行重复检测和重排序,这样也进一步避免数据丢失,确保终端实现数据的连续性接收。
本申请实施例中,所述目标传输模式和源传输模式的切换还可以是发生在网络节点之间。具体地,在所述目标传输模式对应的目标节点与源传输模式对应的源节点不同的情况下,所述方法还包括如下至少一项:
向所述源节点发送SN状态传递指示信息,所述SN状态传递指示信息用于指示源节点进行业务数据的SN状态传递;
向所述源节点发送数据前转请求,所述数据前转请求用于指示所述源节点进行数据前转;
接收所述源节点进行数据前转的业务数据;
针对临时移动组标识TMGI对应的业务数据,接收所述源节点已经发送的业务数据的SN值的上限;所述SN为L2 SN和核心网SN中的至少一个;
接收所述源节点的未发送成功的业务数据SN信息;所述SN为L2 SN和核心网SN中的至少一个;
接收所述源节点的业务数据的L2 SN和核心网SN的对应关系。
需要说明的是,本申请实施例中以目标节点作为网络侧设备,来执行上述方案。
例如,目标节点可以是向源节点发送SN状态传递指示信息,以指示源节点进行业务数据的SN状态传递。可选的,目标节点在发送SN状态传递指示信息之前,源节点可以向目标节点发送SN状态传递建议信息,用于建议目标节点决定是否需要为终端进行SN状态保持,若需要,则目标节点向源节点发送SN状态传递指示信息。
或者,目标节点也可以向所述源节点发送数据前转请求,以指示所述源节点进行数据前转。可选的,源节点也可以在没有接收到目标节点发送的数据前转请求的情况下,主动进行数据前转,并可以将进行数据前转的业务数据发送给目标节点。
需要说明的是,在所述源节点进行数据前转的情况下,所述源节点数据前转的业务数据还包括每个前转数据包携带的L2 SN与核心网SN中的至少一项。例如,前转数据包携带了PDCP SN,也就意味着UE业务数据SN状态保持,则目标节点将对应于该前转数据包的业务数据使用携带的PDCP SN发送给UE,以便于UE进行业务数据检测和重排序。
或者,所述SN状态传递指示可以是基于特定的TMGI进行指示,针对TMGI对应的业务数据,接收源节点已经发送的一个业务数据的SN值的上限,目标节点可以是基于所述业务数据的SN值的上限进行业务数据的接续发送,状态保持等。例如,源节点已经发送到L2 SN=256的数据包,源节点将业务数据的L2 SN的上限为256发送给目标节点,则目标节点可以是接着发送L2 SN=257的数据包。
或者,目标节点也可以是接收所述源节点的未发送成功的业务数据SN信 息,目标节点能够对未发送成功的业务数据进行继续发送。例如,在切换到目标节点时,源节点已经发送到L2 SN=256的数据包,源节点未发送成功的业务数据L2 SN=255,256的SN信息发送给目标节点,则目标节点可以是再次发送L2 SN=255,256的数据包。
再或者,目标节点也可以是接收所述源节点的业务数据的L2 SN和核心网SN的对应关系,进而目标节点能够对基于源节点的业务数据的L2 SN和核心网SN的对应关系,对接收的业务数据进行状态连续。
可选的,所述SN值的上限通过如下任意一项确定:
所述源节点在向终端发送模式切换请求命令前,在所述TMGI上发送的最后一个数据包的SN值;
所述源节点在所述TMGI上发送的最后一个数据包的SN值;
所述源节点在向终端发送模式切换请求命令且接收到肯定确认ACK之前,在所述TMGI上发送的最后一个数据包的SN值;
所述源节点在进行SN状态传递之前,在所述TMGI上发送的最后一个数据包的SN值;
所述源节点在所述TMGI上发送的任意一个数据包的SN值。
本申请实施例中,在所述SN状态传递包括SN值的上限,所述目标传输模式为PTP传输模式的情况下,所述方法还包括如下任意一项:
向所述终端发送第一目标数据,所述第一目标数据为所述终端接收不成功的业务数据;
基于所述源节点发送的最后一个数据包的SN值向所述终端发送业务数据,所述业务数据的第一个数据包的CN SN值与所述源节点发送的最后一个数据包的CN SN值连续;
基于所述L2 SN向所述终端发送业务数据,所述业务数据的L2 SN与源节点发送的业务数据的L2 SN连续;
基于所述L2 SN向所述终端发送业务数据,所述业务数据的L2 SN为初始化SN。
需要说明的是,需要说明的是,L2 SN可以是PDCP SN,或者是其他L2协议层的SN,例如无线链路控制(Radio Link Control,RLC)、回程适应协 议(Backhaul Adaptation Protocol,BAP)或服务数据适应协议(Service Data Adaptation Protocol,SDAP)等。所述核心网(Core Network,CN)SN可以是CN到无线接入网络(Radio Access Network,RAN)的数据管道中,关于这个TMGI的管道SN,例如GTP-U SN。
为更好地理解上述方案,以下将通过具体的实施例对上述方案进行说明。
Step1:源节点向目标节点发送切换请求消息时,携带UE关于MBS业务感兴趣/接收信息,例如TMGI信息,甚至是详细的服务质量(Quality of Service,QoS)信息,也可以包含该UE的对应感兴趣业务的发送情况,例如PTP/PTM传输模式、发送信息(例如XG接口SN,基于一定的周期或者时刻),或者,感兴趣业务的发送情况也可以由接口之间变化即通知的方式,而不需要per UE通知。这样,也就便于目标节点基于切换请求消息携带的内容进行配置决策。
Step2:当目标节点接收到源节点的切换请求信息,对该UE进行接纳,不仅要进行单播业务的接纳,还需要对MBS业务进行接纳,例如采取哪种传输模式(PTP/PTM),承载的配置,可选的L2实体的初始状态等。
当目标节点决定用PTP传输模式对UE的某个感兴趣MBS业务进行承载时,还可以根据业务的误块率/时延/无损的要求,决定是否为该UE进行状态维持,如果需要,在切换命令里携带SN状态传递指示,并且在返回给源节点的切换请求响应消息中,要求源节点进行SN状态传递。
另外,当目标节点从源节点和自己的某一个MBS业务发送状态上(例如中间有缺失数据,或者目标节点属于刚加入多播组,前面少量数据没有),以及可以根据业务的误块率/时延/无损的要求,最终需要进行多播业务的数据前转,则为该TMGI建立前转通道,并将前转通道信息返回给源基站。
Step3:源节点接收到目标节点的切换请求响应消息,将切换命令发送给UE。根据目标节点的SN状态传递指示,源节点进行SN状态传递,具体可以包括如下方式:
方式1
对于一个TMGI对应的业务数据,接收源节点已经发送的一个业务的SN值的上限,例如核心网多播通道中统一标识的GTP-U SN,所述GTP-U SN在 源节点和目标节点是统一标号的,一样的SN一定对应一样的数据包。其中,所述SN值的上限的确定可以通过如下任意一项确定:
源节点发送给UE切换命令时刻之前,在这个TMGI上发送的最后一个数据包的SN值;
源节点在这个TMGI上发送给UE的最后一个数据包的SN值;
源节点发送给UE切换命令得到请求答应(Acknowledgement,ACK)之前,在这个TMGI上发送的最后一个数据包的SN值;所述ACK为混合自动重传请求确认(Hybrid automatic repeat request acknowledgement,HARQ ACK)或者无线链路控制确认(Radio Link Control acknowledgement,RLC ACK);
源节点进行SN状态传递之前,在这个TMGI上发送的最后一个数据包的SN值;
源节点根据实现任意选择一个近期这个TMGI上发送的一个数据包的SN值。
方式2
对于一个TMGI对应的业务数据,不仅需要源节点已经发送的一个业务的CN SN,还需要这个数据对应的空口传输L2 SN。对于一个TMGI对应的业务数据,发送一个在源节点已经发送的业务的多播通道SN值的上限,例如XG接口GTP-U SN值,同时伴随这个数据包在空口传输的L2 SN,例如PDCP SN,其含义是在源节点发送的最后一个多播业务数据的数据内容标识和空口发送SN标识,便于目标进行接续发送,状态连续等;决定SN上限的方式与上述类似,不再赘述。
方式3
除了如方式2所述,发送最后一个数据包的GTP-U SN+Uu L2 SN之外,还可以包含根据这个UE的反馈(HARQ feedback或者RLC feedback),在最后一个数据包之前,有哪些数据没有接收成功,列出其list,例如最后一个发送的PDCP SN为100,同时携带98和96是没有接收成功的。
另外,源节点还可以根据目标节点的数据前转请求,以及数据前转通道信息,建立前转通道,将相应数据在前转通道上传递给目标基站,具体包括如下至少一项:
前转通道需要是per TMGI进行标识,每个TMGI独立占用一个前转通道,例如有独立的隧道端点标识(Tunnel Endpoint ID,TEID),也可以多个TMGI业务复用一个前转通道,但是在数据包中区分不同的TMGI业务,例如显示携带TMGI field;
每个前转数据包可以携带原始的多播核心网信道XG接口上的GTP-U SN值,以使目标可以识别数据顺序;与方式1对应,从源发送的最后一个SN之后的数据开始前转;
每个前转数据包也可以携带在Uu空口上发送时分配的L2 SN,例如PDCP SN,从而目标侧可以继续使用PDCP状态;与方式2对应,从源发送的最后一个SN之后的数据携带GTP-U SN+PDCP SN开始前转;
数据前转需要对数据包按照从老到新的顺序进行,例如GTP-U SN升序;
与上述方式3对应,包含未正确接收的数据加上从源发送的最后一个SN之后的数据携带GTP-U SN+PDCP SN进行前转;数据前转不一定完全连续,与SN状态前转的方式3对应,当最后一个发送的PDCP SN为100时,且前面还有98和96没有接收成功,则前转内容和顺序为:96,98,101,102,103……。
Step4:目标节点接收到源节点的SN状态信息和/或数据前转信息,采取如下处理:
针对方式1,由于目标侧也具有相同的多播数据,而且为了支持从发送较慢的源小区切换过来的UE,每个小区都可以buffer一定的多播数据,满足为UE提供接续传输的目的,方式1中,源节点向目标节点传递了自己发送的GTP-U SN的上限,在目标节点,从该SN之后开始连续为该UE提供多播数据,即可保障连续。
对于PTM传输模式,也可以进行上述操作,例如源节点发到SN=100的数据包,目标节点已经发送到SN=102的数据包,则可以为切换UE做一下PTM重传SN=102的数据包。
对于PTP传输模式,由于是UE专用承载,则可以从需要的SN位置开始传输,保障业务连续。
针对方式2中,除了GTP-U SN还携带了L2 SN,对于PTP传输模式, UE专用承载,完全可以按照接续的L2 SN为UE提供连续的多播数据传输,UE只需要保持原有的L2 SN Context状态,进行gap填补和重复检测,即可连续和无损。
针对方式3中,除了GTP-U SN和对应的L2 SN,还携带了未成功的SN标识,对于PTM传输模式,为了一个UE,更改整个PTM的L2 SN代价较大,对其他UE有影响,但可以在保持PTM SN的前提下,进行一定的选择性重传,使UE能利用源传输模式和目标传输模式的SN mapping信息,进行gap填补和重复检测。
对于PTP方式,UE专用承载,完全可以按照接续的L2 SN为UE提供连续的多播数据传输,并且精准的只重传UE反馈未成功接收的数据包,提升了重传效率,对UE只需要保持原有的L2 SN Context状态,进行gap填补和重复检测,即可连续和无损。
当目标节点接收到前转数据,根据前转数据的GTP-U SN对数据进行识别,并安排针对UE的按序传输,如果还携带了PDCP SN,则意味着UE状态保持,对应的数据包需要使用携带的PDCP SN发送给UE,便于检测和重排序。
本申请实施例提供的技术方案,网络侧设备向终端发送多播业务目标传输模式的配置信息,进而使得终端能够基于配置信息确定目标传输模式,以基于目标传输模式进行多播业务数据的连续性接收,确保终端在目标传输模式下业务数据接收的连续性,避免因业务数据接收的不连续而造成的数据质量受损,网络侧设备能够以更高效的方式进行MBS业务传输,提升了通信系统的数据传输效率。
需要说明的是,本申请实施例提供的数据传输方法,执行主体可以为数据传输装置,或者,该数据传输装置中的用于执行数据传输方法的控制模块。本申请实施例中以数据传输装置执行数据传输方法为例,说明本申请实施例提供的数据传输装置。
请参照图4,图4是本申请实施例提供的一种数据传输装置的结构图,所述数据传输装置应用于终端。如图4所示,所述数据传输装置400包括:
第一接收模块401,用于接收多播业务目标传输模式的配置信息;
第二接收模块402,用于基于所述目标传输模式的配置信息进行业务数据的连续性接收。
可选的,在目标传输模式为点对多点PTM传输模式的情况下,所述第二接收模块402还用于执行如下至少一项:
接收网络侧设备基于控制面CP或用户面UP发送的第一辅助信息,基于所述第一辅助信息进行业务数据的接收和重排序,所述第一辅助信息用于指示所述源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系;
获取显式或隐式的第一指示信息,基于所述第一指示信息从SN初始化状态建立多播承载进行业务数据的连续性接收;
获取显式或隐式的第二指示信息,基于所述第二指示信息从SN保持状态建立多播承载进行业务数据的连续性接收;
建立伴随单播承载,基于所述伴随单播承载进行业务数据的连续性接收。
可选的,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中。
可选的,在源传输模式为PTM传输模式的情况下,所述第二接收模块402还用于:
基于目标传输模式建立多播承载,保持目标传输模式的SN状态与源传输模式的SN状态相同,进行业务数据的连续性接收。
可选的,所述第二接收模块402还用于:
在从源传输模式切换到目标传输模式的情况下,基于第三指示信息建立伴随单播承载,所述第三指示信息用于指示需要建立伴随单播承载的目标业务。
可选的,在建立伴随单播承载的情况下,所述第二接收模块402还用于执行如下至少一项:
通过所述伴随单播承载向网络侧设备发送业务接收状态信息;
接收网络侧设备发送的第一目标数据,对所述第一目标数据与已接收数据进行重排序;
接收网络侧设备发送的目标SN对应关系,基于所述目标SN对应关系进行业务数据的接收和重排序,所述目标SN对应关系为源传输模式SN与目标 传输模式SN的对应关系。
可选的,在目标传输模式为PTP传输模式的情况下,所述第二接收模块402还用于:
建立单播承载,基于所述单播承载进行多播业务数据的接收,其中,所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持;或者,
建立初始化单播承载,基于所述初始化单播承载进行多播业务数据的接收,其中,基于所述目标传输模式接收的业务数据的SN为初始化SN。
可选的,在所述目标传输模式为PTP传输模式,所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持的情况下,所述装置还包括:
上报模块,用于上报已接收的业务数据的SN状态信息;
其中,所述SN状态信息包括接收成功的业务数据和接收不成功的业务数据中的至少一者。
本申请实施例中,数据传输装置能够基于配置信息确定目标传输模式,进而基于目标传输模式进行多播业务数据的连续性接收,以确保数据传输装置在目标传输模式下业务数据接收的连续性,避免因业务数据接收的不连续而造成的数据质量受损,也便于网络侧设备能够以更高效的方式进行MBS业务传输,提升了通信系统的数据传输效率。
本申请实施例中的数据传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的数据传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的数据传输装置能够实现图2所述数据传输方法实施 例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参照图5,图5是本申请实施例提供的一种数据传输装置的结构图,所述数据传输装置应用于终端。如图5所示,所述数据传输装置500包括:
发送模块501,用于向终端发送多播业务目标传输模式的配置信息;
所述配置信息用于指示所述终端基于所述目标传输模式进行业务数据的连续性接收。
可选的,在所述目标传输模式为点对多点PTM传输模式的情况下,所述发送模块501还用于执行如下任意一项:
基于控制面CP或用户面UP向所述终端发送第一辅助信息,所述第一辅助信息用于指示所述源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系;
发送显式的或隐式的第一指示信息,所述第一指示信息用于指示终端从SN初始化状态建立多播承载以进行业务数据的连续性接收;
发送显式的或隐式的第二指示信息,所述第二指示信息用于指示终端从SN保持状态建立多播承载以进行业务数据的连续性接收;
发送第三指示信息,所述第三指示信息用于指示终端建立伴随单播承载。
可选的,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中。
可选的,所述第三指示信息包括如下至少一项:
需要建立伴随单播承载的目标业务;
源传输模式的业务数据SN与目标传输模式的业务数据SN之间的SN差值;
伴随单播承载的配置信息。
可选的,所述装置还包括:
第一接收模块,用于接收来自所述终端的多播业务数据的接收状态信息;和/或,
所述发送模块501还用于,向所述终端发送第一目标数据,所述第一目标数据为所述终端接收不成功的多播业务数据。
可选的,在源传输模式为PTM传输模式的情况下,所述装置还包括确定 模块,用于执行如下至少一项:
接收源节点发送的源传输模式下业务数据的L2 SN与核心网数据SN之间的映射关系,基于所述映射关系确定所述目标传输模式下业务数据的L2 SN,其中,所述目标传输模式下业务数据的L2 SN与源传输模式下业务数据的L2 SN相同;
确定小区的业务周期或业务变更周期,其中,在同一个业务周期或业务变更周期内,源传输模式对应小区与目标传输模式对应小区发送的业务数据相同,和/或相同数据包携带相同的L2 SN。
可选的,所述业务数据的L2 SN与核心网数据SN之间的映射关系,通过如下至少一项确定:
网络节点间接口的协商;
协议规定;
集中控制网络节点,所述集中控制网络节点用于对接入所述集中控制网络节点的其他网络节点进行数据分发。
可选的,在所述目标传输模式为点对点PTP传输模式的情况下,所述装置还包括:
第二接收模块,用于接收所述终端上报的已接收的业务数据的SN状态信息;其中,所述SN状态信息包括接收成功的业务数据和接收不成功的业务数据中的至少一者;和/或,
所述发送模块501还用于,向所述终端发送第二目标数据,所述第二目标数据包括所述终端接收不成功的单播业务数据。
可选的,在所述目标传输模式对应的目标节点与源传输模式对应的源节点不同的情况下,所述装置还包括处理模块,所述处理模块用于执行如下至少一项:
向所述源节点发送SN状态传递指示信息,所述SN状态传递指示信息用于指示源节点进行业务数据的SN状态传递;向所述源节点发送数据前转请求,所述数据前转请求用于指示所述源节点进行数据前转;
接收所述源节点进行数据前转的业务数据;
针对临时移动组标识TMGI对应的业务数据,接收所述源节点已经发送 的业务数据的SN值的上限;所述SN为L2 SN和核心网SN中的至少一个;
接收所述源节点的未发送成功的业务数据SN信息;所述SN为L2 SN和核心网SN中的至少一个;
接收所述源节点的业务数据的L2 SN和核心网SN的对应关系。
可选的,所述SN值的上限通过如下任意一项确定:
所述源节点在向终端发送模式切换请求命令前,在所述TMGI上发送的最后一个数据包的SN值;
所述源节点在所述TMGI上发送的最后一个数据包的SN值;
所述源节点在向终端发送模式切换请求命令且接收到肯定确认ACK之前,在所述TMGI上发送的最后一个数据包的SN值;
所述源节点在进行SN状态传递之前,在所述TMGI上发送的最后一个数据包的SN值;
所述源节点在所述TMGI上发送的任意一个数据包的SN值。
可选的,在所述SN状态传递包括SN值的上限,所述目标传输模式为PTP传输模式的情况下,所述发送模块501还用于执行如下任意一项:
向所述终端发送第一目标数据,所述第一目标数据为所述终端接收不成功的业务数据;
基于所述源节点发送的最后一个数据包的SN值向所述终端发送业务数据,所述业务数据的第一个数据包的CN SN值与所述源节点发送的最后一个数据包的CN SN值连续;
基于所述L2 SN向所述终端发送业务数据,所述业务数据的L2 SN与源节点发送的业务数据的L2 SN连续;
基于所述L2 SN向所述终端发送业务数据,所述业务数据的L2 SN为初始化SN。
可选的,在所述源节点进行数据前转的情况下,所述源节点数据前转的业务数据还包括每个前转数据包携带的L2 SN与核心网SN中的至少之一。
本申请实施例中,数据传输装置向终端发送多播业务目标传输模式的配置信息,进而使得终端能够基于配置信息确定目标传输模式,以基于目标传输模式进行多播业务数据的连续性接收,确保终端在目标传输模式下业务数 据接收的连续性,避免因业务数据接收的不连续而造成的数据质量受损,网络侧设备能够以更高效的方式进行MBS业务传输,提升了通信系统的数据传输效率。
本申请实施例中的数据传输装置可以为具有操作系统的装置。
本申请实施例提供的数据传输装置能够实现图3所述数据传输方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述图2所述数据传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述图3所述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图 7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输 入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于:
接收多播业务目标传输模式的配置信息;
基于所述目标传输模式的配置信息进行业务数据的连续性接收。
可选的,在目标传输模式为点对多点PTM传输模式的情况下,射频单元701,还用于实现如下至少一项:
接收网络侧设备基于控制面CP或用户面UP发送的第一辅助信息,基于所述第一辅助信息进行业务数据的接收和重排序,所述第一辅助信息用于指示所述源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系;
获取显式或隐式的第一指示信息,基于所述第一指示信息从SN初始化状态建立多播承载进行业务数据的连续性接收;
获取显式或隐式的第二指示信息,基于所述第二指示信息从SN保持状态建立多播承载进行业务数据的连续性接收;
建立伴随单播承载,基于所述伴随单播承载进行业务数据的连续性接收。
可选的,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中。
可选的,在源传输模式为PTM传输模式的情况下,射频单元701,还用于:
基于目标传输模式建立多播承载,保持目标传输模式的SN状态与源传输模式的SN状态相同,进行业务数据的连续性接收。
可选的,处理器710还用于:
在从源传输模式切换到目标传输模式的情况下,基于第三指示信息建立伴随单播承载,所述第三指示信息用于指示需要建立伴随单播承载的目标业务。
可选的,在建立伴随单播承载的情况下,射频单元701,还用于实现如下至少一项:
通过所述伴随单播承载向网络侧设备发送业务接收状态信息;
接收网络侧设备发送的第一目标数据,对所述第一目标数据与已接收数据进行重排序;
接收网络侧设备发送的目标SN对应关系,基于所述目标SN对应关系进行业务数据的接收和重排序,所述目标SN对应关系为源传输模式SN与目标传输模式SN的对应关系。
可选的,在目标传输模式为PTP传输模式的情况下,射频单元701,还用于:
建立单播承载,基于所述单播承载进行多播业务数据的接收,其中,所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持;或者,
建立初始化单播承载,基于所述初始化单播承载进行多播业务数据的接收,其中,基于所述目标传输模式接收的业务数据的SN为初始化SN。
可选的,在所述目标传输模式为PTP传输模式,所述目标传输模式接收 的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持的情况下,所述射频单元701,还用于:
上报已接收的业务数据的SN状态信息;
其中,所述SN状态信息包括接收成功的业务数据和接收不成功的业务数据中的至少一者。
在本申请实施例中,终端能够基于配置信息确定目标传输模式,进而基于目标传输模式进行多播业务数据的连续性接收,以确保终端在目标传输模式下业务数据接收的连续性,避免因业务数据接收的不连续而造成的数据质量受损,也便于网络侧设备能够以更高效的方式进行MBS业务传输,提升了通信系统的数据传输效率。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络设备800包括:天线81、射频装置82、基带装置83。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
上述频带处理装置可以位于基带装置83中,以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括处理器84和存储器85。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器84,与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置83还可以包括网络接口86,用于与射频装置82交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程 序或指令,该程序或指令被处理器执行时实现上述图2所述数据传输方法实施例的各个过程,或者实现上述图3所述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Onl8 Memor8,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述图2所述数据传输方法实施例的各个过程,或者实现上述图3所述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光 盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (44)

  1. 一种数据传输方法,应用于终端,包括:
    接收多播业务目标传输模式的配置信息;
    基于所述目标传输模式的配置信息进行业务数据的连续性接收。
  2. 根据权利要求1所述的方法,其中,在目标传输模式为点对多点PTM传输模式的情况下,所述进行业务数据的连续性接收,包括如下至少一项:
    接收网络侧设备基于控制面CP或用户面UP发送的第一辅助信息,基于所述第一辅助信息进行业务数据的接收和重排序,所述第一辅助信息用于指示源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系;
    获取显式或隐式的第一指示信息,基于所述第一指示信息从SN初始化状态建立多播承载进行业务数据的连续性接收;
    获取显式或隐式的第二指示信息,基于所述第二指示信息从SN保持状态建立多播承载进行业务数据的连续性接收;
    建立伴随单播承载,基于所述伴随单播承载进行业务数据的连续性接收。
  3. 根据权利要求2所述的方法,其中,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中。
  4. 根据权利要求1或2所述的方法,其中,在源传输模式为PTM传输模式的情况下,所述进行业务数据的连续性接收,还包括:
    基于目标传输模式建立多播承载,保持目标传输模式的SN状态与源传输模式的SN状态相同,进行业务数据的连续性接收。
  5. 根据权利要求2所述的方法,其中,所述建立伴随单播承载,包括:
    在从源传输模式切换到目标传输模式的情况下,基于第三指示信息建立伴随单播承载,所述第三指示信息用于指示需要建立伴随单播承载的目标业务。
  6. 根据权利要求1或2所述的方法,其中,在建立伴随单播承载的情况下,所述进行业务数据的连续性接收,包括如下至少一项:
    通过所述伴随单播承载向网络侧设备发送业务接收状态信息;
    接收网络侧设备发送的第一目标数据,对所述第一目标数据与已接收数据进行重排序;
    接收网络侧设备发送的目标SN对应关系,基于所述目标SN对应关系进行业务数据的接收和重排序,所述目标SN对应关系为源传输模式SN与目标传输模式SN的对应关系。
  7. 根据权利要求1所述的方法,其中,在目标传输模式为PTP传输模式的情况下,所述进行业务数据的连续性接收,包括:
    建立单播承载,基于所述单播承载进行多播业务数据的接收,其中,所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持;或者,
    建立初始化单播承载,基于所述初始化单播承载进行多播业务数据的接收,其中,基于所述目标传输模式接收的业务数据的SN为初始化SN。
  8. 根据权利要求1所述的方法,其中,在所述目标传输模式为PTP传输模式,所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持的情况下,所述方法还包括:
    上报已接收的业务数据的SN状态信息;
    其中,所述SN状态信息包括接收成功的业务数据和接收不成功的业务数据中的至少一者。
  9. 一种数据传输方法,应用于网络侧设备,包括:
    向终端发送多播业务目标传输模式的配置信息;
    所述配置信息用于指示所述终端基于所述目标传输模式进行业务数据的连续性接收。
  10. 根据权利要求9所述的方法,其中,在所述目标传输模式为点对多点PTM传输模式的情况下,所述方法还包括如下任意一项:
    基于控制面CP或用户面UP向所述终端发送第一辅助信息,所述第一辅助信息用于指示源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系;
    发送显式的或隐式的第一指示信息,所述第一指示信息用于指示终端从SN初始化状态建立多播承载以进行业务数据的连续性接收;
    发送显式的或隐式的第二指示信息,所述第二指示信息用于指示终端从SN保持状态建立多播承载以进行业务数据的连续性接收;
    发送第三指示信息,所述第三指示信息用于指示终端建立伴随单播承载。
  11. 根据权利要求10所述的方法,其中,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中。
  12. 根据权利要求10所述的方法,其中,所述第三指示信息包括如下至少一项:
    需要建立伴随单播承载的目标业务;
    源传输模式的业务数据SN与目标传输模式的业务数据SN之间的SN差值;
    伴随单播承载的配置信息。
  13. 根据权利要求10所述的方法,其中,所述发送第三指示信息之后,所述方法还包括如下至少一项:
    接收来自所述终端的多播业务数据的接收状态信息;
    向所述终端发送第一目标数据,所述第一目标数据为所述终端接收不成功的多播业务数据。
  14. 根据权利要求10所述的方法,其中,在源传输模式为PTM传输模式的情况下,所述方法还包括如下至少一项:
    接收源节点发送的源传输模式下业务数据的L2 SN与核心网数据SN之间的映射关系,基于所述映射关系确定所述目标传输模式下业务数据的L2 SN,其中,所述目标传输模式下业务数据的L2 SN与源传输模式下业务数据的L2 SN相同;
    确定小区的业务周期或业务变更周期,其中,在同一个业务周期或业务变更周期内,源传输模式对应小区与目标传输模式对应小区发送的业务数据相同,和/或相同数据包携带相同的L2 SN。
  15. 根据权利要求14所述的方法,其中,所述业务数据的L2 SN与核心网数据SN之间的映射关系,通过如下至少一项确定:
    网络节点间接口的协商;
    协议规定;
    集中控制网络节点,所述集中控制网络节点用于对接入所述集中控制网络节点的其他网络节点进行数据分发。
  16. 根据权利要求9所述的方法,其中,在所述目标传输模式为点对点PTP传输模式的情况下,所述方法还包括如下至少一项:
    接收所述终端上报的已接收的业务数据的SN状态信息;其中,所述SN状态信息包括接收成功的业务数据和接收不成功的业务数据中的至少一者;
    向所述终端发送第二目标数据,所述第二目标数据包括所述终端接收不成功的单播业务数据。
  17. 根据权利要求9所述的方法,其中,在所述目标传输模式对应的目标节点与源传输模式对应的源节点不同的情况下,所述方法还包括如下至少一项:
    向所述源节点发送SN状态传递指示信息,所述SN状态传递指示信息用于指示源节点进行业务数据的SN状态传递;向所述源节点发送数据前转请求,所述数据前转请求用于指示所述源节点进行数据前转;
    接收所述源节点进行数据前转的业务数据;
    针对临时移动组标识TMGI对应的业务数据,接收所述源节点已经发送的业务数据的SN值的上限;所述SN为L2 SN和核心网SN中的至少一个;
    接收所述源节点的未发送成功的业务数据SN信息;所述SN为L2 SN和核心网SN中的至少一个;
    接收所述源节点的业务数据的L2 SN和核心网SN的对应关系。
  18. 根据权利要求17所述的方法,其中,所述SN值的上限通过如下任意一项确定:
    所述源节点在向终端发送模式切换请求命令前,在所述TMGI上发送的最后一个数据包的SN值;
    所述源节点在所述TMGI上发送的最后一个数据包的SN值;
    所述源节点在向终端发送模式切换请求命令且接收到肯定确认ACK之前,在所述TMGI上发送的最后一个数据包的SN值;
    所述源节点在进行SN状态传递之前,在所述TMGI上发送的最后一个 数据包的SN值;
    所述源节点在所述TMGI上发送的任意一个数据包的SN值。
  19. 根据权利要求17所述的方法,其中,在所述SN状态传递包括SN值的上限,所述目标传输模式为PTP传输模式的情况下,所述方法还包括如下任意一项:
    向所述终端发送第一目标数据,所述第一目标数据为所述终端接收不成功的业务数据;
    基于所述源节点发送的最后一个数据包的SN值向所述终端发送业务数据,所述业务数据的第一个数据包的CN SN值与所述源节点发送的最后一个数据包的CN SN值连续;
    基于所述L2 SN向所述终端发送业务数据,所述业务数据的L2 SN与源节点发送的业务数据的L2 SN连续;
    基于所述L2 SN向所述终端发送业务数据,所述业务数据的L2 SN为初始化SN。
  20. 根据权利要求17所述的方法,其中,在所述源节点进行数据前转的情况下,所述源节点数据前转的业务数据还包括每个前转数据包携带的L2 SN与核心网SN中的至少之一。
  21. 一种数据传输装置,应用于终端,包括:
    第一接收模块,用于接收多播业务目标传输模式的配置信息;
    第二接收模块,用于基于所述目标传输模式的配置信息进行业务数据的连续性接收。
  22. 根据权利要求21所述的装置,其中,在目标传输模式为点对多点PTM传输模式的情况下,所述第二接收模块还用于执行如下至少一项:
    接收网络侧设备基于控制面CP或用户面UP发送的第一辅助信息,基于所述第一辅助信息进行业务数据的接收和重排序,所述第一辅助信息用于指示源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系;
    获取显式或隐式的第一指示信息,基于所述第一指示信息从SN初始化状态建立多播承载进行业务数据的连续性接收;
    获取显式或隐式的第二指示信息,基于所述第二指示信息从SN保持状 态建立多播承载进行业务数据的连续性接收;
    建立伴随单播承载,基于所述伴随单播承载进行业务数据的连续性接收。
  23. 根据权利要求22所述的装置,其中,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中。
  24. 根据权利要求21或22所述的装置,其中,在源传输模式为PTM传输模式的情况下,所述第二接收模块还用于:
    基于目标传输模式建立多播承载,保持目标传输模式的SN状态与源传输模式的SN状态相同,进行业务数据的连续性接收。
  25. 根据权利要求22所述的装置,其中,所述第二接收模块还用于:
    在从源传输模式切换到目标传输模式的情况下,基于第三指示信息建立伴随单播承载,所述第三指示信息用于指示需要建立伴随单播承载的目标业务。
  26. 根据权利要求21或22所述的装置,其中,在建立伴随单播承载的情况下,所述第二接收模块还用于执行如下至少一项:
    通过所述伴随单播承载向网络侧设备发送业务接收状态信息;
    接收网络侧设备发送的第一目标数据,对所述第一目标数据与已接收数据进行重排序;
    接收网络侧设备发送的目标SN对应关系,基于所述目标SN对应关系进行业务数据的接收和重排序,所述目标SN对应关系为源传输模式SN与目标传输模式SN的对应关系。
  27. 根据权利要求21所述的装置,其中,在目标传输模式为PTP传输模式的情况下,所述第二接收模块还用于:
    建立单播承载,基于所述单播承载进行多播业务数据的接收,其中,所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持;或者,
    建立初始化单播承载,基于所述初始化单播承载进行多播业务数据的接收,其中,基于所述目标传输模式接收的业务数据的SN为初始化SN。
  28. 根据权利要求21所述的装置,其中,在所述目标传输模式为PTP传 输模式,所述目标传输模式接收的业务数据的SN状态基于源传输模式接收的业务数据的SN状态保持的情况下,所述装置还包括:
    上报模块,用于上报已接收的业务数据的SN状态信息;
    其中,所述SN状态信息包括接收成功的业务数据和接收不成功的业务数据中的至少一者。
  29. 一种数据传输装置,应用于网络侧设备,包括:
    发送模块,用于向终端发送多播业务目标传输模式的配置信息;
    所述配置信息用于指示所述终端基于所述目标传输模式进行业务数据的连续性接收。
  30. 根据权利要求29所述的装置,其中,在所述目标传输模式为点对多点PTM传输模式的情况下,所述发送模块还用于执行如下任意一项:
    基于控制面CP或用户面UP向所述终端发送第一辅助信息,所述第一辅助信息用于指示源传输模式的序列号SN与所述目标传输模式的SN之间的对应关系;
    发送显式的或隐式的第一指示信息,所述第一指示信息用于指示终端从SN初始化状态建立多播承载以进行业务数据的连续性接收;
    发送显式的或隐式的第二指示信息,所述第二指示信息用于指示终端从SN保持状态建立多播承载以进行业务数据的连续性接收;
    发送第三指示信息,所述第三指示信息用于指示终端建立伴随单播承载。
  31. 根据权利要求30所述的装置,其中,在所述第一辅助信息基于UP发送的情况下,所述第一辅助信息携带于层2控制协议数据单元L2 control PDU中或者L2 PDU header中。
  32. 根据权利要求30所述的装置,其中,所述第三指示信息包括如下至少一项:
    需要建立伴随单播承载的目标业务;
    源传输模式的业务数据SN与目标传输模式的业务数据SN之间的SN差值;
    伴随单播承载的配置信息。
  33. 根据权利要求30所述的装置,其中,所述装置还包括:
    第一接收模块,用于接收来自所述终端的多播业务数据的接收状态信息;和/或,
    所述发送模块还用于,向所述终端发送第一目标数据,所述第一目标数据为所述终端接收不成功的多播业务数据。
  34. 根据权利要求30所述的装置,其中,在源传输模式为PTM传输模式的情况下,所述装置还包括确定模块,用于执行如下至少一项:
    接收源节点发送的源传输模式下业务数据的L2 SN与核心网数据SN之间的映射关系,基于所述映射关系确定所述目标传输模式下业务数据的L2 SN,其中,所述目标传输模式下业务数据的L2 SN与源传输模式下业务数据的L2SN相同;
    确定小区的业务周期或业务变更周期,其中,在同一个业务周期或业务变更周期内,源传输模式对应小区与目标传输模式对应小区发送的业务数据相同,和/或相同数据包携带相同的L2 SN。
  35. 根据权利要求34所述的装置,其中,所述业务数据的L2 SN与核心网数据SN之间的映射关系,通过如下至少一项确定:
    网络节点间接口的协商;
    协议规定;
    集中控制网络节点,所述集中控制网络节点用于对接入所述集中控制网络节点的其他网络节点进行数据分发。
  36. 根据权利要求29所述的装置,其中,在所述目标传输模式为点对点PTP传输模式的情况下,所述装置还包括:
    第二接收模块,用于接收所述终端上报的已接收的业务数据的SN状态信息;其中,所述SN状态信息包括接收成功的业务数据和接收不成功的业务数据中的至少一者;和/或,
    所述发送模块还用于,向所述终端发送第二目标数据,所述第二目标数据包括所述终端接收不成功的单播业务数据。
  37. 根据权利要求29所述的装置,其中,在所述目标传输模式对应的目标节点与源传输模式对应的源节点不同的情况下,所述装置还包括处理模块,所述处理模块用于执行如下至少一项:
    向所述源节点发送SN状态传递指示信息,所述SN状态传递指示信息用于指示源节点进行业务数据的SN状态传递;向所述源节点发送数据前转请求,所述数据前转请求用于指示所述源节点进行数据前转;
    接收所述源节点进行数据前转的业务数据;
    针对临时移动组标识TMGI对应的业务数据,接收所述源节点已经发送的业务数据的SN值的上限;所述SN为L2 SN和核心网SN中的至少一个;
    接收所述源节点的未发送成功的业务数据SN信息;所述SN为L2 SN和核心网SN中的至少一个;
    接收所述源节点的业务数据的L2 SN和核心网SN的对应关系。
  38. 根据权利要求37所述的装置,其中,所述SN值的上限通过如下任意一项确定:
    所述源节点在向终端发送模式切换请求命令前,在所述TMGI上发送的最后一个数据包的SN值;
    所述源节点在所述TMGI上发送的最后一个数据包的SN值;
    所述源节点在向终端发送模式切换请求命令且接收到肯定确认ACK之前,在所述TMGI上发送的最后一个数据包的SN值;
    所述源节点在进行SN状态传递之前,在所述TMGI上发送的最后一个数据包的SN值;
    所述源节点在所述TMGI上发送的任意一个数据包的SN值。
  39. 根据权利要求37所述的装置,其中,在所述SN状态传递包括SN值的上限,所述目标传输模式为PTP传输模式的情况下,所述发送模块还用于执行如下任意一项:
    向所述终端发送第一目标数据,所述第一目标数据为所述终端接收不成功的业务数据;
    基于所述源节点发送的最后一个数据包的SN值向所述终端发送业务数据,所述业务数据的第一个数据包的CN SN值与所述源节点发送的最后一个数据包的CN SN值连续;
    基于所述L2 SN向所述终端发送业务数据,所述业务数据的L2 SN与源节点发送的业务数据的L2 SN连续;
    基于所述L2 SN向所述终端发送业务数据,所述业务数据的L2 SN为初始化SN。
  40. 根据权利要求37所述的装置,其中,在所述源节点进行数据前转的情况下,所述源节点数据前转的业务数据还包括每个前转数据包携带的L2 SN与核心网SN中的至少之一。
  41. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1-8中任一项所述的数据传输方法的步骤,或者实现如权利要求9-20中任一项所述的数据传输方法的步骤。
  42. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1-8中任一项所述的数据传输方法的步骤,或者实现如权利要求9-20中任一项所述的数据传输方法的步骤。
  43. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-8中任一项所述的数据传输方法的步骤,或者实现如权利要求9-20中任一项所述的数据传输方法的步骤。
  44. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1-8中任一项所述的数据传输方法的步骤,或者实现如权利要求9-20中任一项所述的数据传输方法的步骤。
PCT/CN2021/111775 2020-08-14 2021-08-10 数据传输方法、装置及通信设备 WO2022033473A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/107,978 US20230199805A1 (en) 2020-08-14 2023-02-09 Data transmission method and apparatus, and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010820552.2 2020-08-14
CN202010820552.2A CN114079878B (zh) 2020-08-14 2020-08-14 数据传输方法、装置及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/107,978 Continuation US20230199805A1 (en) 2020-08-14 2023-02-09 Data transmission method and apparatus, and communications device

Publications (1)

Publication Number Publication Date
WO2022033473A1 true WO2022033473A1 (zh) 2022-02-17

Family

ID=80246932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111775 WO2022033473A1 (zh) 2020-08-14 2021-08-10 数据传输方法、装置及通信设备

Country Status (3)

Country Link
US (1) US20230199805A1 (zh)
CN (1) CN114079878B (zh)
WO (1) WO2022033473A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206505A1 (zh) * 2021-03-30 2022-10-06 维沃移动通信有限公司 业务数据处理方法、装置及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184510A1 (en) * 2022-04-01 2023-10-05 Lenovo (Beijing) Limited Methods and apparatuses of multicast service

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163324A (zh) * 2006-10-12 2008-04-16 华为技术有限公司 多播广播业务的播送模式转换方法、终端切换方法及基站
EP3182760A1 (en) * 2004-05-07 2017-06-21 NEC Corporation Mobile communication system and mbms service relevant information transfer method for use therewith
CN109041078A (zh) * 2017-06-09 2018-12-18 华为技术有限公司 一种业务数据传输方法及装置
CN110324884A (zh) * 2018-03-30 2019-10-11 维沃移动通信有限公司 传输模式确定方法及设备
CN111246311A (zh) * 2019-12-31 2020-06-05 深圳前海达闼云端智能科技有限公司 数据传输的方法、装置、存储介质及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3182760A1 (en) * 2004-05-07 2017-06-21 NEC Corporation Mobile communication system and mbms service relevant information transfer method for use therewith
CN101163324A (zh) * 2006-10-12 2008-04-16 华为技术有限公司 多播广播业务的播送模式转换方法、终端切换方法及基站
CN109041078A (zh) * 2017-06-09 2018-12-18 华为技术有限公司 一种业务数据传输方法及装置
CN110324884A (zh) * 2018-03-30 2019-10-11 维沃移动通信有限公司 传输模式确定方法及设备
CN111246311A (zh) * 2019-12-31 2020-06-05 深圳前海达闼云端智能科技有限公司 数据传输的方法、装置、存储介质及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206505A1 (zh) * 2021-03-30 2022-10-06 维沃移动通信有限公司 业务数据处理方法、装置及设备

Also Published As

Publication number Publication date
CN114079878A (zh) 2022-02-22
CN114079878B (zh) 2023-05-23
US20230199805A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
CN111771422B (zh) 用于无线网络的多播业务区域管理和移动性
EP3675579B1 (en) Data scheduling methods, apparatus and computer-readable mediums
US20200178271A1 (en) Data transmission method and device
US20230199805A1 (en) Data transmission method and apparatus, and communications device
US20200068452A1 (en) Data transmission method, and related device and system
KR20230015321A (ko) 멀티캐스트/브로드캐스트 세션을 위한 액세스 네트워크 시그널링 및 리소스 할당
US20230262533A1 (en) Communication control method
US20230422346A1 (en) Multicast service receiving method, multicast service configuration method, terminal, and network side device
US20230179963A1 (en) Communication control method, base station, and user equipment
CN112312575A (zh) 一种通信方法及装置
TW202224454A (zh) 用於mbs的無線通信的裝置和方法
CN116391412A (zh) 用于mbs传输的harq操作方法与设备
US20230254749A1 (en) Multicast service transmission method and apparatus, and communications device
WO2022242390A1 (zh) 传输方法、装置、设备及可读存储介质
US20230091236A1 (en) Communication control method and user equipment
WO2022121876A1 (zh) 多播业务的确认模式传输方法、装置、设备及存储介质
WO2022028463A1 (zh) 多播业务的接收方法、配置方法、终端及网络侧设备
WO2021018213A1 (zh) 一种通信方法及装置
WO2021155547A1 (zh) 数据接收方法、装置、设备及存储介质
WO2022206505A1 (zh) 业务数据处理方法、装置及设备
WO2009132255A2 (en) Method and system for resolving inter-mbs-zone performance issues using mbs service groups
US20230188950A1 (en) Communication control method
US20230254668A1 (en) Communication control method
WO2023001146A1 (zh) 多播广播业务的接收方法、发送方法、装置及设备
WO2022141548A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855525

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21855525

Country of ref document: EP

Kind code of ref document: A1