WO2022033439A1 - 基于单抱闸接触器的控制电路及电梯抱闸系统 - Google Patents

基于单抱闸接触器的控制电路及电梯抱闸系统 Download PDF

Info

Publication number
WO2022033439A1
WO2022033439A1 PCT/CN2021/111583 CN2021111583W WO2022033439A1 WO 2022033439 A1 WO2022033439 A1 WO 2022033439A1 CN 2021111583 W CN2021111583 W CN 2021111583W WO 2022033439 A1 WO2022033439 A1 WO 2022033439A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
contactor
circuit
elevator
holding
Prior art date
Application number
PCT/CN2021/111583
Other languages
English (en)
French (fr)
Inventor
郝欢
李学锋
钱建新
金立伟
Original Assignee
苏州汇川技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川技术有限公司 filed Critical 苏州汇川技术有限公司
Publication of WO2022033439A1 publication Critical patent/WO2022033439A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • the application relates to the technical field of elevator holding brakes, and in particular, to a control circuit based on a single holding brake contactor and an elevator holding brake system.
  • the brake contactor is one of the devices with high failure rate. This is because the traditional brake system places the brake contactor on the DC side, which cannot avoid damage to the contactor due to arcing of the brake contactor; and in order to achieve single-arm braking force detection, each brake needs to be matched with A brake contactor, in order to prevent the brake contactor from arcing, also adds a step-down circuit and an absorption circuit, which increases the cost of the elevator brake system.
  • the main purpose of this application is to propose a control circuit and an elevator brake system based on a single brake contactor, aiming to improve the reliability of the elevator brake system and reduce the cost of the elevator brake system.
  • control circuit based on the single-brake contactor proposed in the present application includes a main circuit consisting of a holding-brake contactor, a rectifier bridge and a holding-brake circuit connected in sequence;
  • the brake contactor is used to control the on-off of the brake circuit
  • the rectifier bridge is used for rectifying the AC power supply voltage input through the brake contactor, so as to output the DC power supply voltage to the holding brake circuit;
  • the holding brake circuit is used to control the running state of the elevator.
  • the holding brake circuit includes a switching device and a holding brake, and the switching device and the holding brake are connected in series;
  • the switch device is used to control the operating state of the holding brake.
  • the switching device is a MOS transistor, a thyristor or an insulated gate bipolar transistor.
  • control circuit based on the single-brake contactor further comprises a running contactor, the running contactor is connected between the holding-brake contactor and the rectifier bridge;
  • the operating contactor is used to control the operating state of the main circuit.
  • control circuit based on the single-brake contactor further includes an AC power terminal, and the AC power terminal is connected to the input terminal of the brake contactor;
  • the AC power supply terminal is used for inputting the power supply voltage to supply power for the holding brake circuit.
  • the power supply voltage input to the AC power supply terminal is an AC power supply voltage of 110V and/or an AC power supply voltage of 220V.
  • the number of the brake circuits is one group or two groups.
  • the present application also proposes an elevator holding brake system, which includes a holding brake circuit, a holding brake contactor, a running contactor, and the above-mentioned control circuit based on a single holding brake contactor.
  • the control circuit of the brake contactor includes the main circuit composed of the brake contactor, the rectifier bridge and the brake circuit connected in sequence;
  • the brake contactor is used to control the on-off of the brake circuit
  • the rectifier bridge is used for rectifying the AC power supply voltage input through the brake contactor, so as to output the DC power supply voltage to the holding brake circuit;
  • the holding brake circuit is used to control the running state of the elevator.
  • the elevator brake system further includes a controller, and the controller is respectively connected with the brake contactor, the brake circuit and the running contactor of the control circuit based on the single brake contactor;
  • the controller is used for controlling the running contactor, the holding brake contactor and the holding brake circuit to open in sequence when the elevator is running.
  • the controller is further configured to control the brake circuit, the brake contactor and the running contactor to be disconnected in sequence when the elevator stops.
  • the control circuit based on a single brake contactor includes a brake contactor, a rectifier bridge and a brake circuit connected in sequence, and the brake contactor, the rectifier bridge and the brake circuit constitute an elevator brake system.
  • the main circuit of the main circuit; the brake contactor in the main circuit is connected to the AC side before the rectifier bridge, and the rectifier bridge rectifies the AC power supply voltage input through the brake contactor, and outputs the DC power supply voltage to the brake circuit to control the brake circuit. operation of the gate circuit. That is, it solves the problem that the brake contactor is set in the brake circuit on the DC side of the rectifier bridge.
  • FIG. 1 is a schematic diagram of a control structure of an embodiment of a double-brake contactor in the prior art
  • FIG. 2 is a schematic diagram of a control sequence of an embodiment of a double-brake contactor in the prior art
  • FIG. 3 is a schematic diagram of a control structure of an embodiment of a control circuit based on a single-brake contactor of the present application;
  • FIG. 4 is a schematic diagram of a control sequence of an embodiment of a control circuit based on a single-brake contactor of the present application.
  • label name label name 10 Brake Contactor 50 AC power terminal 20 Rectifier bridge 31 switching device 30 Brake circuit 32 Brake 40 run contactor
  • the present application proposes a control circuit based on a single brake contactor, which is applied to an elevator brake system.
  • it is an elevator brake contactor circuit with two brakes.
  • each brake needs to be connected with a brake contactor, as shown in Figure 1
  • the elevator brake contactor circuit of 1 has two brake contactors, so as to realize the braking force detection of each brake, but the cost of the elevator brake system using two brakes will be higher.
  • the brake contactor is connected in series with the brake, that is, the brake contactor is set on the DC side of the elevator brake contactor circuit.
  • the control sequence of the brake system of this solution is shown in Figure 2.
  • the switch control sequence in the circuit is to close the running contactor first, and then close the brake contactor.
  • the brake contactor is pulled in, a sudden change of current will occur, which will affect the life of the brake contactor.
  • the switch control sequence in the loop is to first disconnect the brake contactor, and then disconnect the running contactor. Since the brake contactor is closed, the DC current on the DC side of the rectifier bridge will be cut off, which will lead to The brake contactor is arced, which damages the brake contactor and reduces the reliability of the elevator brake system.
  • the control circuit based on a single brake contactor includes a brake contactor 10 , a rectifier bridge 20 and a brake circuit 30 that are connected in sequence. the main circuit;
  • the brake contactor 10 is used to control the on-off of the brake circuit 30;
  • the rectifier bridge 20 is used to rectify the AC power supply voltage input through the brake contactor 10, so as to output the DC power supply voltage to the brake circuit 30;
  • the holding brake circuit 30 is used to control the running state of the elevator.
  • the brake contactor 10 , the rectifier bridge 20 and the brake circuit 30 are connected in sequence to form the main circuit of the single brake contactor 10 circuit.
  • the brake contactor 10 is arranged in the rectifier
  • the front-stage circuit of the bridge 20, that is, the brake contactor 10 is connected to the AC side. Since the AC power has a zero-crossing point, it will not cause the problem of arcing when the brake contactor 10 is disconnected. The re-brake contactor 10 is damaged during operation, which improves the reliability of the elevator brake system.
  • the brake contactor 10 is directly connected to the AC power supply side of the main circuit, there is no need to connect a brake contactor 10 in series on each branch of the brake, and there is no need to solve the problem of arcing of the brake contactor 10.
  • the problem is to set up an absorption circuit, which reduces the cost of the elevator brake system.
  • the number of the holding brake circuits 30 is one group or two groups. That is, the brake circuit 30 of the elevator brake system can be one group or two groups, which can be set according to the actual application.
  • the brake contactor 10 can be connected to the AC side of the main circuit, so as to realize the control of the brake circuit 30, and it is not necessary to set a brake contactor 10 for each group of the brake circuits 30, reducing the cost of the elevator brake system.
  • the circuit of the single-brake contactor 10 further includes an AC power terminal 50, and the AC power terminal 50 is connected to the input terminal of the brake contactor 10, and is used for inputting the power supply voltage, so as to form the brake circuit. 30 powered. That is, the brake contactor 10 is connected to the AC side of the main circuit of the single-brake contactor 10 circuit in the elevator brake system.
  • the power supply voltage input by the AC power supply terminal 50 is an AC power supply voltage of 110V and/or an AC power supply voltage of 220V. That is, in the circuit of the single-brake contactor 10, the power supply voltage of the holding brake is specified 110V, and the power supply can be supplied through the 110V of the AC power supply terminal 50; It can be powered by the 220V of the AC power supply terminal 50.
  • the circuit of the single brake contactor 10 includes the brake contactor 10, the rectifier bridge 20 and the brake circuit 30 connected in sequence, and the brake contactor 10, the rectifier bridge 20 and the brake circuit 30 constitute an elevator The main circuit in the brake system; the brake contactor 10 in the main circuit is connected to the AC side before the rectifier bridge 20, and the rectifier bridge 20 rectifies the AC power supply voltage input through the brake contactor 10, and outputs DC power The voltage is supplied to the brake circuit 30 to control the operation of the brake circuit 30 . That is to solve the problem that the brake contactor 10 is arranged in the brake circuit 30 on the DC side of the rectifier bridge 20.
  • the brake circuit 30 includes a switch device 31 and a brake, and the switch device 31 and the brake 32 are connected in series;
  • the switching device 31 is used to control the operating state of the holding brake 32 .
  • the braking force detection of the holding brake 32 in the holding brake circuit 30 is realized through the switching device 31 connected in series with the holding brake 32, and at the same time, since the switching device 31 has a lower cost relative to the holding brake contactor 10, this The solution reduces the cost of the elevator brake system.
  • the switching device 31 can be, but is not limited to, a MOS transistor, a thyristor or an insulated gate bipolar transistor, which can be selected according to actual conditions.
  • the circuit of the single-brake contactor 10 further includes a running contactor 40 , and the running contactor 40 is connected to the holding-brake contactor 10 and the rectifier bridge 20 . between;
  • the operating contactor 40 is used to control the operating state of the main circuit.
  • the contactor 40 by operating the contactor 40 , the main circuit operation state of the circuit of the single-brake contactor 10 can be realized, that is, the on-off of the circuit of the single-brake contactor 10 is controlled.
  • the application also proposes an elevator brake system, the elevator brake system includes a brake circuit 30, a brake contactor 10, a running contactor 40 and the above-mentioned single brake contactor 10 circuit, the single brake contactor 10 circuit.
  • the circuit of the brake contactor 10 includes a main circuit composed of the brake contactor 10, the rectifier bridge 20 and the brake circuit 30 connected in sequence;
  • the brake contactor 10 is used to control the on-off of the brake circuit 30;
  • the rectifier bridge 20 is used to rectify the AC power supply voltage input through the brake contactor 10, so as to output the DC power supply voltage to the brake circuit 30;
  • the holding brake circuit 30 is used to control the running state of the elevator.
  • the elevator brake system further includes a controller, and the controller is respectively connected to the brake contactor 10, the brake circuit 30 and the running contactor 40 of the single brake contactor 10 circuit;
  • the controller is used to control the running contactor 40, the brake contactor 10 and the brake circuit 30 to open in sequence when the elevator is running; the controller is also used to control the elevator when the elevator stops.
  • the brake circuit 30 , the brake contactor 10 and the running contactor 40 are disconnected in sequence.
  • the specific structure of the circuit of the single-brake contactor 10 refers to the above embodiments. Since the elevator brake system adopts all the technical solutions of the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments. I won't go into details here.

Landscapes

  • Elevator Control (AREA)

Abstract

一种基于单抱闸接触器的控制电路及电梯抱闸系统,该基于单抱闸接触器的控制电路包括依次顺序连接的抱闸接触器(10)、整流桥(20)和抱闸电路(30)构成的主回路;抱闸接触器(10),用于控制抱闸电路(30)的通断;整流桥(20),用于对经抱闸接触器(10)输入的交流电源电压进行整流处理,以输出直流电源电压至抱闸电路(30);抱闸电路(30),用于控制电梯的运行状态。

Description

基于单抱闸接触器的控制电路及电梯抱闸系统
本申请要求2020年8月11日申请的,申请号为202021662761.0,名称为“基于单抱闸接触器的控制电路及电梯抱闸系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电梯抱闸技术领域,特别涉及一种基于单抱闸接触器的控制电路及电梯抱闸系统。
背景技术
随着经济的发展,电梯已成为生活中重要的组成部分。电梯的安全性也成为人民关注的重点。抱闸的是电梯安全的重要保障。抱闸控制系统中抱闸接触器是失效率较高的器件之一。这是由于传统抱闸系统都将抱闸接触器放在直流侧,这样无法避免因为抱闸接触器拉弧而导致接触器损坏;并且为实现单臂制动力检测,需要每个抱闸都搭配一个抱闸接触器,为防止抱闸接触器拉弧,还增加了降压电路和吸收回路,增加了电梯抱闸系统的成本。
技术问题
本申请的主要目的是提出一种基于单抱闸接触器的控制电路及电梯抱闸系统,旨在提升电梯抱闸系统可靠性,同时降低电梯抱闸系统的成本。
技术解决方案
为实现上述目的,本申请提出的基于单抱闸接触器的控制电路包括依次顺序连接的抱闸接触器、整流桥和抱闸电路构成的主回路;
所述抱闸接触器,用于控制所述抱闸电路的通断;
所述整流桥,用于对经所述抱闸接触器输入的交流电源电压进行整流处理,以输出直流电源电压至所述抱闸电路;
所述抱闸电路,用于控制电梯的运行状态。
在一实施例中,所述抱闸电路包括开关器件和抱闸,所述开关器件和所述抱闸串联连接;
所述开关器件,用于控制所述抱闸的运行状态。
在一实施例中,所述开关器件为MOS管、晶闸管或者绝缘栅双极晶体管。
在一实施例中,所述基于单抱闸接触器的控制电路还包括运行接触器,所述运行接触器连接于所述抱闸接触器和所述整流桥之间;
所述运行接触器,用于控制所述主回路的运行状态。
在一实施例中,所述基于单抱闸接触器的控制电路还包括交流电源端,所述交流电源端与所述抱闸接触器的输入端连接;
所述交流电源端,用于输入电源电压,以为所述抱闸电路供电。
在一实施例中,所述交流电源端输入的电源电压为110V的交流电源电压和/或220V的交流电源电压。
在一实施例中,所述抱闸电路的数量为1组或者2组。
本申请还提出一种电梯抱闸系统,所述电梯抱闸系统包括抱闸电路、抱闸接触器、运行接触器及如上所述的基于单抱闸接触器的控制电路,所述基于单抱闸接触器的控制电路包括依次顺序连接的抱闸接触器、整流桥和抱闸电路构成的主回路;
所述抱闸接触器,用于控制所述抱闸电路的通断;
所述整流桥,用于对经所述抱闸接触器输入的交流电源电压进行整流处理,以输出直流电源电压至所述抱闸电路;
所述抱闸电路,用于控制电梯的运行状态。
在一实施例中,所述电梯抱闸系统还包括控制器,所述控制器分别与所述基于单抱闸接触器的控制电路的抱闸接触器、抱闸电路和运行接触器连接;
所述控制器,用于在电梯运行时,控制所述运行接触器、所述抱闸接触器和所述抱闸电路依次打开。
在一实施例中,所述控制器还用于在电梯停止时,控制所述抱闸电路、所述抱闸接触器和所述运行接触器依次断开。
有益效果
本申请技术方案中通过基于单抱闸接触器的控制电路包括依次顺序连接的抱闸接触器、整流桥和抱闸电路,且抱闸接触器、整流桥和抱闸电路构成电梯抱闸系统中的主回路;主回路中抱闸接触器连接在整流桥之前的交流侧,整流桥对经抱闸接触器的输入的交流电源电压进行整流处理,并输出直流电源电压至抱闸电路,控制抱闸电路的运行。即是解决了抱闸接触器设置在整流桥直流侧的抱闸电路中,在电梯停梯关闭时,抱闸接触器断开以切断直流电流,发生拉弧损坏抱闸接触器的问题,提升了电梯抱闸系统的可靠性;同时解决了每一抱闸电路中需要设置一抱闸接触器,还需设置吸收电路解决抱闸接触器发生拉弧,导致电梯抱闸系统成本较高的问题,本方案降低了电梯抱闸系统的成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为现有技术中双抱闸接触器一实施例的控制结构示意图;
图2为现有技术中双抱闸接触器一实施例的控制时序示意图;
图3为本申请基于单抱闸接触器的控制电路一实施例的控制结构示意图;
图4为本申请基于单抱闸接触器的控制电路一实施例的控制时序示意图。
附图标号说明:
标号 名称 标号 名称
10 抱闸接触器 50 交流电源端
20 整流桥 31 开关器件
30 抱闸电路 32 抱闸
40 运行接触器    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,若全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种基于单抱闸接触器的控制电路,应用于电梯抱闸系统。在相关技术中,参照如图1所示,是具有两个抱闸的电梯抱闸接触器电路,在此电路中,每一抱闸需要一个抱闸接触器连接,即是如图1所示的电梯抱闸接触器电路具有两个抱闸接触器,以此实现每个抱闸的制动力检测,然而采用两个抱闸的电梯抱闸系统的成本就会较高。此外,由于抱闸接触器是与抱闸串联连接,即是抱闸接触器是设置于电梯抱闸接触器电路的直流侧,进一步地,此方案的抱闸系统的控制时序参照如图2所示,电梯在运行打开时,回路中的开关控制顺序是先闭合运行接触器,再闭合抱闸接触器,而抱闸接触器在吸合时,会发生电流突变,影响抱闸接触器的寿命;电梯在停梯关闭时,回路中的开关控制顺序是先断开抱闸接触器,再断开运行接触器,由于抱闸接触器关闭时要切断整流桥直流侧的直流电流,会导致抱闸接触器发生拉弧,损坏抱闸接触器,降低电梯抱闸系统的可靠性;另外为了解决回路中抱闸接触器拉弧的问题,就需要对每个抱闸并联上吸收电路,也增加了抱闸电梯抱闸系统的成本。
为了解决上述问题,在本申请一实施例中,参照如图3所示,该基于单抱闸接触器的控制电路包括依次顺序连接的抱闸接触器10、整流桥20和抱闸电路30构成的主回路;
所述抱闸接触器10,用于控制所述抱闸电路30的通断;
所述整流桥20,用于对经所述抱闸接触器10输入的交流电源电压进行整流处理,以输出直流电源电压至所述抱闸电路30;
所述抱闸电路30,用于控制电梯的运行状态。
本实施例中,抱闸接触器10、整流桥20和抱闸电路30依次顺序连接,以构成单抱闸接触器10电路的主回路,在此主回路中,抱闸接触器10设置于整流桥20的前级电路,即是抱闸接触器10连接于交流侧,由于交流电源存在过零点,不会导致抱闸接触器10在断开时,发生拉弧的问题,以此就不会再抱闸接触器10工作时被损坏,提升了电梯抱闸系统的可靠性。此外,由于抱闸接触器10直接连接在主回路的交流电源侧,就不需要在每一抱闸的支路上串联连接一个抱闸接触器10,同时也不需要解决抱闸接触器10拉弧问题设置吸收回路,降低了电梯抱闸系统的成本。
进一步地,所述抱闸电路30的数量为1组或者2组。也即是电梯抱闸系统的抱闸电路30可以是1组,也可以是2组,根据实际应用情况设置。在本方案中,均可以将抱闸接触器10连接于主回路的交流侧,以此实现对抱闸电路30的控制,而不需要每组抱闸电路30设置一个抱闸接触器10,降低了电梯抱闸系统的成本。
可以理解的是,单抱闸接触器10电路还包括交流电源端50,所述交流电源端50与所述抱闸接触器10的输入端连接,用于输入电源电压,以为所述抱闸电路30供电。即是抱闸接触器10连接于电梯抱闸系统中单抱闸接触器10电路的主回路交流侧。
需要说明的是,所述交流电源端50输入的电源电压为110V的交流电源电压和/或220V的交流电源电压。即是在单抱闸接触器10电路中抱闸的电源电压是规定110V,即可通过交流电源端50的110V供电;在单抱闸接触器10电路中抱闸的电源电压是规定220V,即可通过交流电源端50的220V供电。
本申请技术方案中通过单抱闸接触器10电路包括依次顺序连接的抱闸接触器10、整流桥20和抱闸电路30,且抱闸接触器10、整流桥20和抱闸电路30构成电梯抱闸系统中的主回路;主回路中抱闸接触器10连接在整流桥20之前的交流侧,整流桥20对经抱闸接触器10的输入的交流电源电压进行整流处理,并输出直流电源电压至抱闸电路30,控制抱闸电路30的运行。即是解决了抱闸接触器10设置在整流桥20直流侧的抱闸电路30中,在电梯停梯关闭时,抱闸接触器10断开以切断直流电流,发生拉弧损坏抱闸接触器10的问题,提升了电梯抱闸系统的可靠性;同时解决了每一抱闸电路30中需要设置一抱闸接触器10,还需设置吸收电路解决抱闸接触器10发生拉弧,导致电梯抱闸系统成本较高的问题,本方案降低了电梯抱闸系统的成本。
在一实施例中,参照如图3所示,所述抱闸电路30包括开关器件31和抱闸,所述开关器件31和所述抱闸32串联连接;
所述开关器件31,用于控制所述抱闸32的运行状态。
可以理解的是,通过与抱闸32串联连接的开关器件31,以此实现抱闸电路30中抱闸32的制动力检测,同时由于开关器件31相对于抱闸接触器10成本更低,本方案降低了电梯抱闸系统的成本。
进一步地,所述开关器件31可以但不限定为MOS管、晶闸管或者绝缘栅双极晶体管,可以根据实际情况选择。
在一实施例中,参照如图3所示,所述单抱闸接触器10电路还包括运行接触器40,所述运行接触器40连接于所述抱闸接触器10和所述整流桥20之间;
所述运行接触器40,用于控制所述主回路的运行状态。
可以理解的是,通过运行接触器40即可实现单抱闸接触器10电路的主回路运行状态,即是控制单抱闸接触器10电路的通断。
本申请还提出一种电梯抱闸系统,所述电梯抱闸系统包括抱闸电路30、抱闸接触器10、运行接触器40及如上所述的单抱闸接触器10电路,所述单抱闸接触器10电路包括依次顺序连接的抱闸接触器10、整流桥20和抱闸电路30构成的主回路;
所述抱闸接触器10,用于控制所述抱闸电路30的通断;
所述整流桥20,用于对经所述抱闸接触器10输入的交流电源电压进行整流处理,以输出直流电源电压至所述抱闸电路30;
所述抱闸电路30,用于控制电梯的运行状态。
本实施例中,所述电梯抱闸系统还包括控制器,所述控制器分别与所述单抱闸接触器10电路的抱闸接触器10、抱闸电路30和运行接触器40连接;
所述控制器,用于在电梯运行时,控制所述运行接触器40、所述抱闸接触器10和所述抱闸电路30依次打开;所述控制器还用于在电梯停止时,控制所述抱闸电路30、所述抱闸接触器10和所述运行接触器40依次断开。
需要说明的是,参照如图4所示,电梯运行打开抱闸时,先闭合运行接触器40,再闭合抱闸接触器10,最后再闭合抱闸电路30中的开关器件31,这样抱闸接触器10触点吸合时不会发生电流突变。电梯停梯关闭抱闸时,先断开抱闸电路30中的开关器件31,再断开抱闸接触器10,最后断开运行接触器40,可以使得抱闸接触器10没有切断直流电流,不会产生拉弧情况。本方案避免了抱闸接触器10出现拉弧,提高了抱闸接触器10的使用寿命。
该单抱闸接触器10电路的具体结构参照上述实施例,由于本电梯抱闸系统采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的方案构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种基于单抱闸接触器的控制电路,应用于电梯抱闸系统,其中,所述基于单抱闸接触器的控制电路包括依次顺序连接的抱闸接触器、整流桥和抱闸电路构成的主回路;
    所述抱闸接触器,用于控制所述抱闸电路的通断;
    所述整流桥,用于对经所述抱闸接触器输入的交流电源电压进行整流处理,以输出直流电源电压至所述抱闸电路;
    所述抱闸电路,用于控制电梯的运行状态。
  2. 如权利要求1所述的基于单抱闸接触器的控制电路,其中,所述抱闸电路包括开关器件和抱闸,所述开关器件和所述抱闸串联连接;
    所述开关器件,用于控制所述抱闸的运行状态。
  3. 如权利要求2所述的基于单抱闸接触器的控制电路,其中,所述开关器件为MOS管、晶闸管或者绝缘栅双极晶体管。
  4. 如权利要求1所述的基于单抱闸接触器的控制电路,其中,所述基于单抱闸接触器的控制电路还包括运行接触器,所述运行接触器连接于所述抱闸接触器和所述整流桥之间;
    所述运行接触器,用于控制所述主回路的运行状态。
  5. 如权利要求1所述的基于单抱闸接触器的控制电路,其中,所述基于单抱闸接触器的控制电路还包括交流电源端,所述交流电源端与所述抱闸接触器的输入端连接;
    所述交流电源端,用于输入电源电压,以为所述抱闸电路供电。
  6. 如权利要求5所述的基于单抱闸接触器的控制电路,其中,所述交流电源端输入的电源电压为110V的交流电源电压和/或220V的交流电源电压。
  7. 如权利要求1至6任意一项所述的基于单抱闸接触器的控制电路,其中,所述抱闸电路的数量为1组或者2组。
  8. 一种电梯抱闸系统,其中,所述电梯抱闸系统包括抱闸电路、抱闸接触器、运行接触器及如权利要求1至7任意一项所述的基于单抱闸接触器的控制电路。
  9. 如权利要求8所述的电梯抱闸系统,其中,所述电梯抱闸系统还包括控制器,所述控制器分别与所述基于单抱闸接触器的控制电路的抱闸接触器、抱闸电路和运行接触器连接;
    所述控制器,用于在电梯运行时,控制所述运行接触器、所述抱闸接触器和所述抱闸电路依次打开。
  10. 如权利要求9所述的电梯抱闸系统,其中,所述控制器还用于在电梯停止时,控制所述抱闸电路、所述抱闸接触器和所述运行接触器依次断开。
PCT/CN2021/111583 2020-08-11 2021-08-09 基于单抱闸接触器的控制电路及电梯抱闸系统 WO2022033439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021662761.0 2020-08-11
CN202021662761.0U CN212832230U (zh) 2020-08-11 2020-08-11 基于单抱闸接触器的控制电路及电梯抱闸系统

Publications (1)

Publication Number Publication Date
WO2022033439A1 true WO2022033439A1 (zh) 2022-02-17

Family

ID=75132661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111583 WO2022033439A1 (zh) 2020-08-11 2021-08-09 基于单抱闸接触器的控制电路及电梯抱闸系统

Country Status (2)

Country Link
CN (1) CN212832230U (zh)
WO (1) WO2022033439A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906765A (zh) * 2022-06-16 2022-08-16 苏州汇川控制技术有限公司 电梯抱闸控制方法、装置、设备及存储介质
CN115321293A (zh) * 2022-08-04 2022-11-11 浙江梅轮电梯股份有限公司 一种电梯单边制停测试装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212832230U (zh) * 2020-08-11 2021-03-30 苏州汇川技术有限公司 基于单抱闸接触器的控制电路及电梯抱闸系统
CN217498548U (zh) * 2022-06-16 2022-09-27 苏州汇川控制技术有限公司 电梯非隔离安全抱闸电源及电梯设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019051A (ja) * 2006-07-13 2008-01-31 Meidensha Corp 電磁ブレーキ搭載のモータによる昇降式装置の安全回路
CN102674194A (zh) * 2012-05-23 2012-09-19 佛山市顺德区金泰德胜电机有限公司 一种电梯制动器的控制电路
CN104210982A (zh) * 2014-08-22 2014-12-17 上海吉亿电机有限公司 一种电梯抱闸控制系统及控制方法
CN106865371A (zh) * 2017-03-01 2017-06-20 广州日滨科技发展有限公司 电梯制动器及其控制方法
CN206328017U (zh) * 2016-11-03 2017-07-14 广东卓梅尼技术股份有限公司 电梯抱闸控制系统
CN206447440U (zh) * 2016-12-19 2017-08-29 广州日滨科技发展有限公司 电梯抱闸控制装置
CN210286369U (zh) * 2019-08-16 2020-04-10 重庆玖玖新能源有限公司 一种抱闸设备供电装置
CN111453637A (zh) * 2020-03-31 2020-07-28 苏州汇川技术有限公司 电梯抱闸控制方法、系统、设备及计算机可读存储介质
CN212832230U (zh) * 2020-08-11 2021-03-30 苏州汇川技术有限公司 基于单抱闸接触器的控制电路及电梯抱闸系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019051A (ja) * 2006-07-13 2008-01-31 Meidensha Corp 電磁ブレーキ搭載のモータによる昇降式装置の安全回路
CN102674194A (zh) * 2012-05-23 2012-09-19 佛山市顺德区金泰德胜电机有限公司 一种电梯制动器的控制电路
CN104210982A (zh) * 2014-08-22 2014-12-17 上海吉亿电机有限公司 一种电梯抱闸控制系统及控制方法
CN206328017U (zh) * 2016-11-03 2017-07-14 广东卓梅尼技术股份有限公司 电梯抱闸控制系统
CN206447440U (zh) * 2016-12-19 2017-08-29 广州日滨科技发展有限公司 电梯抱闸控制装置
CN106865371A (zh) * 2017-03-01 2017-06-20 广州日滨科技发展有限公司 电梯制动器及其控制方法
CN210286369U (zh) * 2019-08-16 2020-04-10 重庆玖玖新能源有限公司 一种抱闸设备供电装置
CN111453637A (zh) * 2020-03-31 2020-07-28 苏州汇川技术有限公司 电梯抱闸控制方法、系统、设备及计算机可读存储介质
CN212832230U (zh) * 2020-08-11 2021-03-30 苏州汇川技术有限公司 基于单抱闸接触器的控制电路及电梯抱闸系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906765A (zh) * 2022-06-16 2022-08-16 苏州汇川控制技术有限公司 电梯抱闸控制方法、装置、设备及存储介质
CN114906765B (zh) * 2022-06-16 2023-11-21 苏州汇川控制技术有限公司 电梯抱闸控制方法、装置、设备及存储介质
CN115321293A (zh) * 2022-08-04 2022-11-11 浙江梅轮电梯股份有限公司 一种电梯单边制停测试装置
CN115321293B (zh) * 2022-08-04 2023-09-26 浙江梅轮电梯股份有限公司 一种电梯单边制停测试装置

Also Published As

Publication number Publication date
CN212832230U (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2022033439A1 (zh) 基于单抱闸接触器的控制电路及电梯抱闸系统
US8820484B2 (en) Circuits and methods for controlling elevator braking system
US20170179946A1 (en) Solid state power control
CA2918912C (en) Direct current power system
CN102262977B (zh) 交流接触器的驱动电路
CN103944436B (zh) 一种三相容错逆变电路及其控制方法
CN106395541B (zh) 电梯抱闸控制系统
WO2023241329A1 (zh) 电梯非隔离安全抱闸电源及电梯设备
CN109074980A (zh) 双向换向促进器
WO2023241424A1 (zh) 电梯抱闸控制电路及电梯
US12015266B2 (en) DC distribution panel
TW201701559A (zh) 太陽能逆變器並網系統及三相並網方法
CN110944430B (zh) 供电电路
CN208299712U (zh) 一种伺服控制器以及伺服控制系统
CN106793270A (zh) 一种led照明控制系统
CN206328017U (zh) 电梯抱闸控制系统
CN107482760A (zh) 开关装置
TWI597920B (zh) 開關裝置
TWI754909B (zh) 具有自動切換開關之電源供電系統
US20230402926A1 (en) Power supply topology, motor drive controller, and vehicle
US20220200464A1 (en) Converter System for Transferring Power
WO2024002358A1 (zh) 一种基于固态开关的双电源转换开关
CN218403207U (zh) 一种单组制动器失效测试装置
CN209389688U (zh) 短路保护装置及变换装置
CN212572454U (zh) 变频器切换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855491

Country of ref document: EP

Kind code of ref document: A1