WO2022033348A1 - 车辆热失控处理方法、装置、车辆和计算机可读存储介质 - Google Patents

车辆热失控处理方法、装置、车辆和计算机可读存储介质 Download PDF

Info

Publication number
WO2022033348A1
WO2022033348A1 PCT/CN2021/110086 CN2021110086W WO2022033348A1 WO 2022033348 A1 WO2022033348 A1 WO 2022033348A1 CN 2021110086 W CN2021110086 W CN 2021110086W WO 2022033348 A1 WO2022033348 A1 WO 2022033348A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal runaway
vehicle
risk level
battery
bms
Prior art date
Application number
PCT/CN2021/110086
Other languages
English (en)
French (fr)
Inventor
罗亚红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022033348A1 publication Critical patent/WO2022033348A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiments of the present application relate to, but are not limited to, the technical field of information processing, and in particular, relate to a vehicle thermal runaway processing method, a vehicle thermal runaway processing device, a vehicle, and a computer-readable storage medium.
  • the power battery which is the core component of electric vehicles, is related to the safety of the vehicle.
  • the thermal runaway of the battery is serious, it will cause the battery to spontaneously ignite or explode, posing a serious safety hazard.
  • Embodiments of the present application provide a vehicle thermal runaway processing method, a vehicle thermal runaway processing device, a vehicle, and a computer-readable storage medium.
  • an embodiment of the present application provides a method for handling thermal runaway of a vehicle, including: acquiring thermal runaway alarm information from a BMS (Battery Management System, battery management system); determining a risk level of a battery according to the thermal runaway alarm information , wherein the risk level represents the degree of influence of the battery temperature on the battery; and a preset process corresponding to the risk level is executed according to the risk level.
  • BMS Battery Management System
  • determining a risk level of a battery according to the thermal runaway alarm information wherein the risk level represents the degree of influence of the battery temperature on the battery
  • a preset process corresponding to the risk level is executed according to the risk level.
  • embodiments of the present application further provide a vehicle thermal runaway processing device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor, the processor executing the computer program
  • a vehicle thermal runaway processing device including: a memory, a processor, and a computer program stored in the memory and executable on the processor, the processor executing the computer program
  • an embodiment of the present application further provides a vehicle, including the vehicle thermal runaway processing device as described in the second aspect above.
  • an embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the vehicle thermal runaway processing method described in the first aspect.
  • FIG. 1 is a schematic diagram of a system architecture platform for executing a vehicle thermal runaway processing method provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a vehicle thermal runaway processing device provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a cloud server provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for processing thermal runaway of a vehicle provided by an embodiment of the present application
  • FIG. 5 is a flowchart of a method for processing a thermal runaway of a vehicle for sending second alarm information to a first terminal under a first risk level provided by another embodiment of the present application;
  • FIG. 6 is a flowchart of a method for processing a thermal runaway of a vehicle provided by another embodiment of the present application for sending the second alarm information multiple times under a first risk level;
  • FIG. 7 is a flowchart of a method for processing a thermal runaway of a vehicle under a first risk level provided by another embodiment of the present application.
  • FIG. 8 is a flowchart of a vehicle thermal runaway processing method for controlling a BMS to perform a preset control operation under a second risk level provided by another embodiment of the present application;
  • FIG. 9 is a flowchart of a vehicle thermal runaway processing method for controlling the BMS to improve the heat dissipation efficiency of the battery under the second risk level provided by another embodiment of the present application;
  • FIG. 10 is a flowchart of a vehicle thermal runaway processing method for controlling the BMS to reduce the output power of the battery under the second risk level provided by another embodiment of the present application;
  • FIG. 11 is a flowchart of a vehicle thermal runaway processing method for controlling the BMS to improve the heat dissipation efficiency of the battery and reduce the output power of the battery under the second risk level provided by another embodiment of the present application;
  • FIG. 12 is a flowchart of a method for processing a thermal runaway of a vehicle under a second risk level provided by another embodiment of the present application;
  • FIG. 13 is a flowchart of a vehicle thermal runaway processing method for controlling BCM to open a door lock under a third risk level provided by another embodiment of the present application;
  • FIG. 14 is a flowchart of a vehicle thermal runaway processing method for sending vehicle information and first alarm information to a second terminal under a third risk level provided by another embodiment of the present application;
  • FIG. 15 is an overall flowchart of a method for processing thermal runaway of a vehicle under a third risk level provided by another embodiment of the present application.
  • FIG. 16 is a schematic diagram of a communication manner between a vehicle thermal runaway processing device, a first terminal, and a second terminal provided by an embodiment of the present application.
  • the present application provides a vehicle thermal runaway processing method, a vehicle thermal runaway processing device, a vehicle, and a computer-readable storage medium.
  • the method includes: the vehicle thermal runaway processing device obtains thermal runaway alarm information from a BMS, and then the vehicle thermal runaway processing device According to the thermal runaway alarm information, the risk level of the battery used to characterize the influence of the battery temperature on the battery will be determined.
  • the vehicle thermal runaway processing device learns the risk level of the battery, the vehicle thermal runaway processing device will execute the corresponding risk level according to the risk level. default processing. Therefore, the embodiments of the present application can determine the current risk level of the battery according to the thermal runaway alarm information, and perform corresponding processing according to the current risk level of the battery, so as to improve the safety performance of the vehicle.
  • FIG. 1 is a schematic diagram of a system architecture platform for executing a vehicle thermal runaway processing method provided by an embodiment of the present application.
  • the system architecture platform includes a vehicle thermal runaway processing device 100, a BMS 200, a detection device 300, an IHU (Infotainment Head Unit, infotainment host) 400, a BCM (Body Control Module, body controller) 500, the first A terminal 600, a second terminal 700 and a cloud server 800, wherein the above-mentioned vehicle thermal runaway processing device 100, BMS200, detection device 300, IHU400 and BCM500 can be performed through CAN (Controller Area Network) bus. Connection.
  • the vehicle thermal runaway processing apparatus 100 may be connected to the first terminal 600 , the second terminal 700 and the cloud server 800 through wireless communication.
  • the vehicle thermal runaway processing apparatus 100 is provided with a processor 110 and a memory 120, wherein the processor 110 and the memory 120 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 1 .
  • the vehicle thermal runaway processing device 100 includes but is not limited to MCU (Micro Control Unit, micro control unit) 130, V2X (Vehicle to X, all things connected to vehicles) communication module 140 , positioning module 150 and Modem (modem) 160 .
  • the MCU 130 may include the processor 110 and the memory 120 in the above-mentioned FIG.
  • the MCU 130 may also include a CAN transceiver 131, and the CAN transceiver 131 can obtain the thermal runaway alarm information sent by the BMS200 from the CAN bus; V2X communication
  • the module 140 is set to perform short-range barrier-free communication with other people and vehicles; the positioning module 150 is set to obtain precise information of the current position of the vehicle; the Modem 160 is set to communicate with the cloud server 800 .
  • the main function of BMS200 is to intelligently manage and maintain each battery unit, monitor the status of the battery, effectively detect the thermal runaway event of the battery in real time, and timely and effectively issue the risk level of the battery.
  • the detection device 300 can be various sensors or cameras installed on the vehicle; the IHU400 is mainly used to push text messages or make sounds to the people in the vehicle; the BCM500 is mainly used to control the electrical equipment on the vehicle ;
  • the first terminal 600 is a terminal device carried by the vehicle owner; the second terminal 700 is a terminal device within a certain range around the vehicle.
  • the cloud server 800 includes, but is not limited to, an information analysis center 810 and a plurality of business modules 820.
  • the cloud server 800 is mainly used to receive vehicle thermal runaway processing Various vehicle information, alarm information and request information from the user terminal reported by the device 100 are analyzed by the information analysis center 810 and forwarded to each service module 820 for corresponding processing.
  • the memory 120 can be used to store non-transitory software programs and non-transitory computer-executable programs. Additionally, memory 120 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device. In some embodiments, memory 120 may include memory located remotely from processor 110, which may be connected to the system architecture platform through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the vehicle thermal runaway processing device 100 , the first terminal 600 , the second terminal 700 and the cloud server 800 may utilize a vehicle networking communication system, a 3G communication network system, an LTE communication network system, and a 5G communication network before.
  • the system and the subsequently evolved mobile communication network system and the like perform wireless communication, which is not specifically limited in this embodiment.
  • system architecture platform shown in FIG. 1 does not constitute a limitation on the embodiments of the present application, and may include more or less components than those shown in the figure, or combine some components, or different Component placement.
  • the processor 110 may call the vehicle thermal runaway processing program stored in the memory 120 to execute the vehicle thermal runaway processing method.
  • FIG. 4 is a flowchart of a vehicle thermal runaway processing method provided by an embodiment of the present application. The method includes but is not limited to step S100 , step S200 and step S300 .
  • Step S100 obtaining thermal runaway alarm information from the BMS
  • Step S200 determining the risk level of the battery according to the thermal runaway alarm information, wherein the risk level represents the degree of influence of the battery temperature on the battery;
  • step S300 a preset process corresponding to the risk level is executed according to the risk level.
  • the BMS on the vehicle will monitor the working state of the battery in real time.
  • the BMS will generate thermal runaway alarm information and transmit the thermal runaway alarm information through the CAN bus. It is sent to the vehicle thermal runaway processing device. Therefore, after receiving the thermal runaway alarm information, the vehicle thermal runaway processing device can determine the current risk level of the battery according to the thermal runaway alarm information, and perform corresponding preset processing according to the current risk level of the battery to Improve vehicle safety.
  • vehicle thermal runaway processing device may be a TBOX (Telematics BOX, vehicle telematics processor).
  • the above-mentioned preset processing it may be processing such as pushing a text message, issuing an alarm sound, adjusting the working state of the battery, adjusting the speed of the vehicle, or unlocking the door of the vehicle.
  • the above-mentioned risk level is mainly used to characterize the degree of influence of the battery temperature on the battery, and may include multiple levels.
  • the risk level is divided into three levels according to the severity. They are the first risk level, the second risk level and the third risk level, respectively.
  • the first risk level indicates that the current temperature of the battery is close to the set threshold, and the set threshold is the critical point where the battery temperature will continue to rise and cause damage to the battery;
  • the second risk level indicates that the battery can currently increase the heat dissipation efficiency or reduce the output power, etc.
  • the battery temperature is reduced;
  • the third risk level indicates that the battery is currently in a state where the battery temperature cannot be controlled even if the heat dissipation efficiency is increased and the output power is reduced.
  • the degree of influence represented by the first risk level, the second risk level and the third risk level increases sequentially.
  • FIG. 5 is a flowchart of a method for processing a thermal runaway of a vehicle under a first risk level provided by an embodiment of the present application.
  • the execution of the preset processing corresponding to the risk level according to the risk level in the above step S300 includes, but is not limited to, step S400.
  • Step S400 when the risk level is the first risk level, generate second alarm information according to the thermal runaway alarm information, and send the second alarm information to the first terminal, so that the first terminal pushes the second alarm information to the vehicle owner.
  • the BMS on the vehicle detects that the thermal runaway state of the battery is at the first risk level
  • the BMS when the BMS on the vehicle detects that the thermal runaway state of the battery is at the first risk level, the BMS generates thermal runaway alarm information with the first risk level, and sends the thermal runaway alarm information through the CAN bus.
  • the vehicle thermal runaway processing device After receiving the thermal runaway alarm information, the vehicle thermal runaway processing device can determine that the current risk level of the battery is at the first risk level according to the thermal runaway alarm information, and the vehicle thermal runaway processing device will pass the detection device.
  • the vehicle thermal runaway processing device will send a second alarm message to the first terminal when it is detected that there is no one in the vehicle, where the above-mentioned first terminal is the terminal equipment carried by the vehicle owner.
  • the embodiment of the present application can notify the vehicle owner of the battery status when the risk level of the battery is the first risk level, so as to remind the vehicle owner to reduce the output power of the battery in time and repair the cause of heat generation, thereby improving the safety performance of the vehicle.
  • the BMS sends the thermal runaway alarm information to the vehicle thermal runaway processing device through the CAN bus
  • the CAN network needs to be woken up before the thermal runaway alarm information can be successfully sent to the vehicle through the CAN bus.
  • Vehicle thermal runaway handling device if the BMS sends the thermal runaway alarm information to the vehicle thermal runaway processing device through the CAN bus, if the CAN network has been dormant, the CAN network needs to be woken up before the thermal runaway alarm information can be successfully sent to the vehicle through the CAN bus. Vehicle thermal runaway handling device.
  • the vehicle thermal runaway processing device determines that the risk level of the current battery is at the first risk level according to the thermal runaway alarm information, and if someone is detected in the vehicle, the vehicle thermal runaway processing device can push the first one to the vehicle host IHU.
  • the text prompt of the risk level for example, the above text prompt can be "the current power battery is overheated, there may be a problem with the internal circuit of the battery, please repair it in time"; at the same time, the vehicle thermal runaway processing device can also send a corresponding message to the car host IHU The alarm sound will be heard, so as to inform the personnel in the car, and it is convenient to remind the car owner to reduce the output power of the battery in time and repair the cause of the heat, so as to improve the safety performance of the vehicle.
  • the above-mentioned detection device for detecting the occupancy of the occupants in the vehicle may be a camera, a seat pressure sensor, a seat infrared sensor, or the like.
  • first risk level it means that the current temperature of the battery is close to the set threshold, and the set threshold is the critical point where the battery temperature will continue to rise and will cause damage to the battery; The battery causes damage. Therefore, the embodiment of the present application can timely notify the vehicle owner to reduce the output power of the battery and repair the cause of the heat generation in the case of the first risk level.
  • FIG. 6 is a flowchart of a method for processing a thermal runaway of a vehicle under a first risk level provided by another embodiment of the present application.
  • the vehicle thermal runaway processing method further includes, but is not limited to, step S500.
  • Step S500 when the confirmation information based on the second alarm information from the first terminal is not obtained within the preset time period, the second alarm information is sent to the first terminal at intervals of the preset time period, until the transmission of the second alarm information The number of times is greater than the preset number of times, or until the confirmation information is obtained.
  • the vehicle thermal runaway processing device after the vehicle thermal runaway processing device sends the second alarm information to the first terminal carried by the vehicle owner, the vehicle thermal runaway processing device will start a timer whose first preset period is T1 to detect whether the vehicle owner receives the warning message. If the vehicle thermal runaway processing device receives the confirmation information fed back by the vehicle owner, it will complete and end the alarm process; if the vehicle thermal runaway processing device has not received the confirmation information fed back by the vehicle owner, the first preset period T1 time Then send the second alarm information to the owner again and record the number of sending C1.
  • the vehicle thermal runaway processing device When the number of sending C1 reaches the preset number N and still does not receive the confirmation information fed back by the owner, the vehicle thermal runaway processing device will The thermal runaway event is reported to the cloud server, and the alarm process ends. Therefore, in the embodiment of the present application, the second alarm information can be sent to the first terminal carried by the vehicle owner multiple times, which can improve the probability that the first terminal successfully receives the second alarm information.
  • vehicle thermal runaway processing method further includes, but is not limited to, steps S601, S602, C101, S603, S604, C102, S605, and S606.
  • Step S601 the BMS detects that a thermal runaway event occurs in the battery
  • Step S602 the BMS sends the thermal runaway alarm information to the vehicle thermal runaway processing device through the CAN bus;
  • Step C101 after receiving the thermal runaway alarm information, the vehicle thermal runaway processing device detects whether there is anyone in the vehicle, if there is no one, go to step S603; if there is someone in the vehicle, go to step S604;
  • Step S603 the vehicle thermal runaway processing device sends the second alarm information to the first terminal carried by the vehicle owner, and then proceeds to step C102;
  • Step S604 the vehicle thermal runaway processing device pushes a text prompt of the first risk level to the main engine IHU of the vehicle and emits an alarm sound, and then proceeds to step S606;
  • Step C102 The vehicle thermal runaway processing device starts the timing with the first preset period of T1, and detects whether the confirmation information from the vehicle owner is received. If the confirmation information from the vehicle owner is received, then step S606 is entered; After T1 time, send the second alarm information to the owner again and record the number of sending C1; after sending N times, the confirmation message from the owner is still not received, then go to step S605;
  • Step S605 the vehicle thermal runaway processing device reports the thermal runaway event to the cloud server;
  • FIG. 8 is a flowchart of a method for processing a thermal runaway of a vehicle under a second risk level provided by an embodiment of the present application.
  • the execution of the preset processing corresponding to the risk level according to the risk level in the above step S300 includes, but is not limited to, step S700.
  • Step S700 when the risk level is the second risk level, send a first control instruction to the BMS according to the working state of the battery, so that the BMS performs a preset control operation according to the first control instruction.
  • the BMS on the vehicle detects that the thermal runaway state of the battery increases from the first risk level to the second risk level
  • the BMS when the BMS on the vehicle detects that the thermal runaway state of the battery increases from the first risk level to the second risk level, the BMS generates a thermal runaway alarm message with the second risk level, and reports the thermal runaway.
  • the alarm information is sent to the vehicle thermal runaway processing device through the CAN bus.
  • the vehicle thermal runaway processing device can determine according to the thermal runaway alarm information that the current risk level of the battery is at the second risk level, because the second risk level represents the current risk level.
  • the battery is in a stage where the temperature of the battery can be lowered under the preset control operation.
  • the vehicle thermal runaway processing device will send a first control command to the BMS, and then the BMS will perform the preset control operation according to the first control command, so that the battery temperature is reduced. Therefore, the embodiment of the present application can automatically control the BMS to perform a preset control operation when the risk level of the battery is the second risk level, so that the temperature of the battery can be reduced, and the temperature of the battery can be prevented from continuing to rise, thereby improving the safety of the vehicle. performance.
  • the vehicle thermal runaway processing device After the vehicle thermal runaway processing device receives the thermal runaway alarm information and determines that the risk level of the current battery is at the second risk level according to the thermal runaway alarm information, the vehicle thermal runaway processing device will also obtain the information inside the vehicle through the detection device. When it is detected that there is no one in the vehicle, the vehicle thermal runaway processing device will send alarm information to the first terminal, wherein the above-mentioned first terminal is the terminal equipment carried by the vehicle owner. When it is detected that there is someone in the vehicle, the vehicle thermal runaway processing device may push a text prompt of the second risk level to the IHU of the vehicle host.
  • the vehicle thermal runaway processing device can also send a corresponding alarm sound to the car host IHU, so as to inform the personnel in the car, so as to remind the car owner to increase the heat dissipation in time and stop using and carry out maintenance, so as to improve the safety performance of the vehicle.
  • the above-mentioned detection device for detecting the occupancy of the occupants in the vehicle may be a camera, a seat pressure sensor, a seat infrared sensor, or the like.
  • FIG. 9 is a flowchart of a method for processing a thermal runaway of a vehicle under a second risk level provided by another embodiment of the present application.
  • the sending of the first control command to the BMS according to the working state of the battery in the above step S700, so that the BMS performs the preset control operation according to the first control command includes but is not limited to step S810.
  • Step S810 obtain the heat dissipation efficiency of the battery detected by the BMS at different times, when the heat dissipation efficiency remains unchanged or the heat dissipation efficiency at the next time is lower than the heat dissipation efficiency at the previous time, send a first control command to the BMS, so that the BMS can respond according to the heat dissipation efficiency.
  • the first control instruction improves the heat dissipation efficiency of the battery.
  • the vehicle thermal runaway processing device after the vehicle thermal runaway processing device receives the thermal runaway warning information and determines that the current risk level of the battery is at the second risk level according to the thermal runaway warning information, the vehicle thermal runaway processing device starts the second preset period of The timing of T2 detects whether the heat dissipation power of the battery is increased.
  • the vehicle thermal runaway processing device will not send the first control command; if the heat dissipation efficiency of the battery If the heat dissipation efficiency remains unchanged or the heat dissipation efficiency at the later time is lower than the heat dissipation efficiency at the previous time, the vehicle thermal runaway processing device will send the first control command to the BMS, so that the BMS can improve the heat dissipation efficiency of the battery, so that the heat dissipation efficiency of the battery can be enhanced. .
  • the embodiments of the present application can forcibly control the BMS to increase the heat dissipation efficiency of the battery when the risk level of the battery is the second risk level, so that the temperature of the battery can be reduced, thereby improving the safety performance of the vehicle.
  • FIG. 10 is a flowchart of a method for processing a thermal runaway of a vehicle under a second risk level provided by another embodiment of the present application.
  • the sending of the first control command to the BMS according to the working state of the battery in the above step S700, so that the BMS performs a preset control operation according to the first control command includes but is not limited to step S820.
  • Step S820 Obtain the output power of the battery detected by the BMS at different times.
  • a first control command is sent to the BMS, so that the BMS can respond according to the The first control command controls the battery to reduce output power.
  • the vehicle thermal runaway processing device after the vehicle thermal runaway processing device receives the thermal runaway warning information and determines that the current risk level of the battery is at the second risk level according to the thermal runaway warning information, the vehicle thermal runaway processing device starts the second preset period of The timing of T2 is to detect whether the output power of the battery decreases. If the output power of the battery at the later moment is lower than the output power of the previous moment, the vehicle thermal runaway processing device will not send the first control command; if the output power of the battery remains If the output power remains unchanged or the output power at the later time is greater than the output power at the previous time, the vehicle thermal runaway processing device will send the first control command to the BMS, so that the BMS controls the battery to reduce the output power, forcing the output power of the battery to be reduced. Therefore, the embodiments of the present application can forcibly control the BMS to reduce the output power of the battery when the risk level of the battery is the second risk level, so that the temperature of the battery can be reduced, thereby improving the safety performance of the vehicle.
  • FIG. 11 is a flowchart of a method for processing a thermal runaway of a vehicle under a second risk level provided by another embodiment of the present application.
  • the sending of the first control command to the BMS according to the working state of the battery in the above step S700, so that the BMS performs the preset control operation according to the first control command includes but is not limited to step S830.
  • Step S830 obtain the heat dissipation efficiency and output power of the battery detected by the BMS at different times, when the heat dissipation efficiency remains the same or the heat dissipation efficiency at the next time is less than the heat dissipation efficiency at the previous time and the output power remains unchanged or at the later time.
  • the output power of the battery is greater than the output power of the previous moment, and the first control command is sent to the BMS, so that the BMS can improve the heat dissipation efficiency of the battery and control the battery to reduce the output power according to the first control command.
  • the vehicle thermal runaway processing device after the vehicle thermal runaway processing device receives the thermal runaway warning information and determines that the current risk level of the battery is at the second risk level according to the thermal runaway warning information, the vehicle thermal runaway processing device starts the second preset period of For the timing of T2, check whether the heat dissipation power of the battery increases and whether the output power of the battery decreases.
  • the vehicle thermal runaway processing device will not send the first control command; if the heat dissipation efficiency of the battery remains unchanged or the heat dissipation efficiency at the next moment is smaller than the heat dissipation efficiency at the previous moment and the output power of the battery remains unchanged Or the output power at the later moment is greater than the output power at the previous moment, then the vehicle thermal runaway processing device will send the first control command to the BMS, so that the BMS can improve the heat dissipation efficiency of the battery and make the BMS control the battery to reduce the output power, so that the battery The heat dissipation efficiency of the battery is enhanced and the output power of the battery is reduced.
  • the embodiment of the present application can forcibly control the BMS to increase the heat dissipation efficiency of the battery and forcibly control the BMS to reduce the output power of the battery when the risk level of the battery is the second risk level, so that the temperature of the battery can be reduced, thereby improving the vehicle safety performance.
  • the vehicle thermal runaway processing method further includes, but is not limited to, steps S901 , S902 , C201 , S903 , S904 , C202 , S905 , S906 and S907 .
  • Step S901 the BMS detects that a thermal runaway event occurs in the battery
  • Step S902 the BMS sends the thermal runaway alarm information to the vehicle thermal runaway processing device through the CAN bus;
  • Step C201 the vehicle thermal runaway processing device detects whether there is anyone in the vehicle after receiving the thermal runaway alarm information, if there is no one, go to step S903; if there is someone in the car, go to step S904;
  • Step S903 the vehicle thermal runaway processing device sends alarm information to the first terminal carried by the vehicle owner, and then enters step C202;
  • Step S904 The vehicle thermal runaway processing device pushes a text prompt of the first risk level to the vehicle host IHU and emits an alarm sound, and then proceeds to step C202;
  • Step C202 The vehicle thermal runaway processing device starts the timing with the second preset period of T2, and detects whether the heat dissipation power of the battery increases and the output power of the battery decreases, if so, it goes to step S907; if the time T2 expires, the heat dissipation of the battery is If the power is not increased and the output power of the battery is not decreased, go to step S905;
  • Step S905 the vehicle thermal runaway processing device sends a first control command to the BMS, so that the BMS can improve the heat dissipation efficiency of the battery and control the battery to reduce the output power according to the first control command, and then proceed to step S906;
  • Step S906 the vehicle thermal runaway processing device reports the thermal runaway event to the cloud server;
  • FIG. 13 is a flowchart of a method for processing a thermal runaway of a vehicle under a third risk level provided by an embodiment of the present application.
  • the execution of the preset processing corresponding to the risk level according to the risk level in the above step S300 includes, but is not limited to, step S1000.
  • Step S1000 when the risk level is the third risk level, obtain the current driving speed of the vehicle, and when the driving speed is less than or equal to the preset speed, send a second control command to the BCM, so that the BCM unlocks the door lock; wherein, The degree of influence represented by the third risk level is greater than the degree of influence represented by the second risk level.
  • the BMS on the vehicle detects that the thermal runaway state of the battery is at the third risk level
  • the BMS generates thermal runaway alarm information with the third risk level, and sends the thermal runaway alarm information through the CAN bus.
  • the vehicle thermal runaway processing device can determine that the current risk level of the battery is at the third risk level according to the thermal runaway alarm information, and the vehicle thermal runaway processing device will pass the detection device. According to the occupancy situation, when a person is detected in the car, the vehicle thermal runaway processing device will send a text prompt to the main engine IHU of the car and emit a corresponding alarm sound.
  • the above text prompt can be "The current power battery Out of control, please take fire measures as soon as possible", reminding the occupants of the failure of the battery. Then, the vehicle thermal runaway processing device will obtain the current speed of the vehicle through the detection device, and when the driving speed is less than or equal to the preset speed, it will send a second control command to the BCM to make the BCM unlock the door, so that the people inside the vehicle Escape the malfunctioning vehicle safely. Therefore, the embodiment of the present application can reduce the vehicle speed and open the door lock when the risk level of the battery is the third risk level, so that the personnel in the vehicle can safely evacuate the faulty vehicle, thereby improving the safety performance of the vehicle.
  • the BMS sends the thermal runaway alarm information to the vehicle thermal runaway processing device through the CAN bus
  • the CAN network needs to be woken up before the thermal runaway alarm information can be successfully sent to the vehicle through the CAN bus.
  • Vehicle thermal runaway handling device if the BMS sends the thermal runaway alarm information to the vehicle thermal runaway processing device through the CAN bus, if the CAN network has been dormant, the CAN network needs to be woken up before the thermal runaway alarm information can be successfully sent to the vehicle through the CAN bus. Vehicle thermal runaway handling device.
  • the above-mentioned detection device for detecting the occupancy of the occupants in the vehicle may be a camera, a seat pressure sensor, a seat infrared sensor, or the like.
  • the above-mentioned detection means for detecting the running speed of the vehicle a speed sensor or the like may be used.
  • the third risk level indicates that the current battery is in a stage where the battery temperature cannot be controlled even if the heat dissipation efficiency is increased and the output power is reduced. At the stage when the heat dissipation efficiency and the output power cannot be controlled, it is necessary to prepare for fire protection measures.
  • FIG. 14 is a flowchart of a method for processing a thermal runaway of a vehicle under a third risk level provided by another embodiment of the present application.
  • the vehicle thermal runaway processing method further includes, but is not limited to, steps S1110 , S1120 and S1130 .
  • Step S1110 acquiring vehicle information
  • Step S1120 generating first alarm information according to the thermal runaway alarm information
  • Step S1130 sending the vehicle information and the first alarm information to the second terminal, so that the second terminal pushes the vehicle information and the first alarm information to the non-vehicle owner user.
  • the vehicle thermal runaway processing device when the vehicle thermal runaway processing device receives the thermal runaway warning information and determines that the current risk level of the battery is at the third risk level according to the thermal runaway warning information, the battery is already in the process of increasing the heat dissipation efficiency and shutting down. In the stage where the output power cannot be controlled, the vehicle thermal runaway processing device will share the current vehicle's current vehicle with the second terminal carried by vehicles and pedestrians within the reachable distance of the surrounding DSRC (Dedicated Short Range Communications) through V2X. Vehicle information and alarm information prompt relevant vehicles and pedestrians to avoid or take fire-fighting measures.
  • DSRC Dedicated Short Range Communications
  • the embodiment of the present application can notify the nearby vehicles and pedestrians when the risk level of the battery is the third risk level, and prompt the nearby vehicles and pedestrians to avoid or take fire-fighting measures, so as to ensure the safety of the nearby vehicles and pedestrians, thereby ensuring the safety of the nearby vehicles and pedestrians. It can improve the safety performance of the vehicle.
  • vehicle information includes but is not limited to vehicle positioning information, license plate number information and vehicle color information.
  • vehicle thermal runaway processing method further includes, but is not limited to, steps S1201, S1202, C301, S1203, C302, S1204, S1205, S1206, and S1207.
  • Step S1201 the BMS detects that a thermal runaway event occurs in the battery
  • Step S1202 the BMS sends the thermal runaway alarm information to the vehicle thermal runaway processing device through the CAN bus;
  • Step C301 the vehicle thermal runaway processing device detects whether there is anyone in the vehicle after receiving the thermal runaway alarm information, if there is no one, go to step S1205; if there is someone in the car, go to step S1203;
  • step S1203 the vehicle thermal runaway processing device pushes a text prompt of the third risk level to the main engine IHU of the vehicle and emits an alarm sound, and then proceeds to step C302 and step S1205;
  • Step C302 check whether the current vehicle speed is less than or equal to the preset speed, if so, go to step S1204; if the current vehicle speed is greater than the preset speed, it is always in step C302;
  • Step S1204 the vehicle thermal runaway processing device sends a second control command to the BCM, so that the BCM unlocks the door lock;
  • step S1205 the vehicle thermal runaway processing device shares the vehicle information and alarm information of the current vehicle with the second terminal carried by the surrounding DSRC within the reachable range of the surrounding DSRC and the second terminal carried by the pedestrian through the V2X, prompting the relevant vehicle and pedestrian to avoid or take fire fighting measures, and then Enter step S1206;
  • Step S1206 the vehicle thermal runaway processing device reports the thermal runaway event to the cloud server;
  • the cloud server will process various vehicle information and alarm information reported.
  • the specific fault information is notified to the call center, and then the service center personnel immediately initiate a voice call to the vehicle owner to communicate the current condition of the vehicle.
  • the vehicle thermal runaway processing device may be a terminal device installed on a thermally runaway vehicle
  • the first terminal may be a terminal device carried by the vehicle owner Po or the vehicle owner Po'
  • the second terminal may include pedestrians Pn and surrounding vehicles Vn.
  • the carried terminal equipment may also include the terminal equipment carried by the vehicle owner Po.
  • an embodiment of the present application provides a vehicle thermal runaway processing device, the vehicle thermal runaway processing device comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor and memory may be connected by a bus or otherwise.
  • vehicle thermal runaway processing device in this embodiment may correspond to the vehicle thermal runaway processing device in the system architecture platform in the embodiment shown in FIG. 1 , and can constitute the system in the embodiment shown in FIG. 1 .
  • the two belong to the same inventive concept, so they have the same realization principle and beneficial effects, and will not be described in detail here.
  • the non-transitory software programs and instructions required to implement the vehicle thermal runaway processing method of the above-mentioned embodiment are stored in the memory, and when executed by the processor, execute the vehicle thermal runaway processing method of the above-mentioned embodiment, for example, execute the above-described diagram. 4, the method step S400 in FIG. 5, the method step S500 in FIG. 6, the method step S700 in FIG. 8, the method step S810 in FIG. 9, the method step S820 in FIG. Method step S830 in FIG. 11 , method step S1000 in FIG. 13 , method steps S1110 to S1130 in FIG. 14 .
  • an embodiment of the present application further provides a vehicle, which includes but is not limited to the above-mentioned vehicle thermal runaway processing device.
  • the vehicle in the embodiment of the present application includes the vehicle thermal runaway processing device in the above embodiment, and the vehicle thermal runaway processing device in the above embodiment can execute the vehicle thermal runaway processing method in any one of the above embodiments, the embodiment of the present application
  • the specific implementation of the vehicle and the technical effect brought by it can correspond to the specific implementation of the vehicle thermal runaway processing method and the technical effect brought by any one of the above embodiments.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to execute the above-mentioned vehicle thermal runaway processing method.
  • the vehicle thermal runaway processing apparatus can cause the above-mentioned processor to execute the vehicle thermal runaway processing method in the above-mentioned embodiment, for example, perform the above-described method steps S100 to S300 in FIG. 4 .
  • method step S400 in Fig. 5 method step S500 in Fig. 6, method step S700 in Fig. 8, method step S810 in Fig. 9, method step S820 in Fig. 10, method step S830 in Fig. 11, Fig. Method step S1000 in 13, method steps S1110 to S1130 in FIG. 14 .
  • the embodiments of the present application include: acquiring thermal runaway alarm information from the BMS, and then determining a risk level of the battery according to the thermal runaway alarm information, where the risk level represents the degree of influence of the battery temperature on the battery; and then executing the corresponding risk level according to the risk level. Preset processing.
  • the current risk level of the battery can be determined according to the thermal runaway alarm information, and corresponding processing can be performed according to the current risk level of the battery, so as to improve the safety performance of the vehicle.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically include computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Alarm Systems (AREA)

Abstract

一种车辆热失控处理方法、装置、车辆和计算机可读存储介质,该车辆热失控处理方法包括:获取来自BMS的热失控报警信息(S100),接着根据所述热失控报警信息确定电池的风险等级,其中,所述风险等级表征电池温度对电池的影响程度(S200);然后根据所述风险等级执行与所述风险等级对应的预设处理(S300)。

Description

车辆热失控处理方法、装置、车辆和计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202010793999.5、申请日为2020年08月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于信息处理技术领域,尤其涉及一种车辆热失控处理方法、车辆热失控处理装置、车辆和计算机可读存储介质。
背景技术
近年来,由于环境污染问题,电动汽车再次成为汽车领域研究和发展的热点。其中,作为电动汽车核心部件的动力电池关乎到用车的安全,对于电池来说,电池的热失控严重时会导致电池出现自燃或者爆炸,具有严重的安全隐患。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种车辆热失控处理方法、车辆热失控处理装置、车辆和计算机可读存储介质。
第一方面,本申请实施例提供了一种车辆热失控处理方法,包括:获取来自BMS(Battery Management System,电池管理系统)的热失控报警信息;根据所述热失控报警信息确定电池的风险等级,其中,所述风险等级表征电池温度对电池的影响程度;根据所述风险等级执行与所述风险等级对应的预设处理。
第二方面,本申请实施例还提供了一种车辆热失控处理装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述的车辆热失控处理方法。
第三方面,本申请实施例还提供了一种车辆,包括有如上述第二方面所述的车辆热失控处理装置。
第四方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上述第一方面所述的车辆热失控处理方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请 的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的用于执行车辆热失控处理方法的系统架构平台的示意图;
图2是本申请一个实施例提供的车辆热失控处理装置的结构示意图;
图3是本申请一个实施例提供的云服务器的结构示意图;
图4是本申请一个实施例提供的车辆热失控处理方法的流程图;
图5是本申请另一实施例提供的在第一风险等级下向第一终端发送第二警报信息的车辆热失控处理方法的流程图;
图6是本申请另一实施例提供的在第一风险等级下多次发送第二警报信息的车辆热失控处理方法的流程图;
图7是本申请另一实施例提供的在第一风险等级下的车辆热失控处理方法的流程图;
图8是本申请另一实施例提供的在第二风险等级下控制BMS执行预设控制操作的车辆热失控处理方法的流程图;
图9是本申请另一实施例提供的在第二风险等级下控制BMS提高对电池的散热效率的车辆热失控处理方法的流程图;
图10是本申请另一实施例提供的在第二风险等级下控制BMS降低电池的输出功率的车辆热失控处理方法的流程图;
图11是本申请另一实施例提供的在第二风险等级下控制BMS提高对电池的散热效率以及降低电池的输出功率的车辆热失控处理方法的流程图;
图12是本申请另一实施例提供的在第二风险等级下的车辆热失控处理方法的流程图;
图13是本申请另一实施例提供的在第三风险等级下控制BCM开启车门锁的车辆热失控处理方法的流程图;
图14是本申请另一实施例提供的在第三风险等级下将车辆信息和第一警报信息发送至第二终端的车辆热失控处理方法的流程图;
图15是本申请另一实施例提供的在第三风险等级下的车辆热失控处理方法的总体流程图;
图16是本申请一个实施例提供关于车辆热失控处理装置、第一终端和第二终端之间的通信方式示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种车辆热失控处理方法、车辆热失控处理装置、车辆及计算机可读存储介质,该方法包括:车辆热失控处理装置获取来自BMS的热失控报警信息,然后车辆热 失控处理装置会根据热失控报警信息确定电池的用于表征电池温度对电池的影响程度的风险等级,当车辆热失控处理装置获知电池的风险等级之后,车辆热失控处理装置会根据风险等级执行与风险等级对应的预设处理。因此,本申请实施例能够根据热失控报警信息确定电池当前所处的风险等级,并且根据电池当前所处的风险等级执行对应的处理,以提高车辆的安全性能。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行车辆热失控处理方法的系统架构平台的示意图。
在图1的示例中,该系统架构平台包括车辆热失控处理装置100、BMS200、检测装置300、IHU(Infotainment Head Unit,信息娱乐主机)400、BCM(Body Control Module,车身控制器)500、第一终端600、第二终端700和云服务器800,其中,上述的车辆热失控处理装置100、BMS200、检测装置300、IHU400和BCM500之间可以通过CAN(Controller Area Network,控制器局域网络)总线进行连接,其次,车辆热失控处理装置100可以通过无线通信方式连接至第一终端600、第二终端700和云服务器800。另外,车辆热失控处理装置100设置有处理器110和存储器120,其中,处理器110和存储器120可以通过总线或者其他方式连接,图1中以通过总线连接为例。
需要说明的是,关于上述图1中的车辆热失控处理装置100,具体结构参照图2所示,车辆热失控处理装置100包括但不限于有MCU(Micro Control Unit,微控制单元)130、V2X(Vehicle to X,车联万物)通信模块140、定位模块150和Modem(调制解调器)160。其中,MCU130可以包括有上述图1中的处理器110和存储器120,此外,MCU130还可以包括有CAN收发器131,CAN收发器131可以从CAN总线上获取BMS200发出的热失控报警信息;V2X通信模块140被设置成与其他人、车进行短程无障碍通信;定位模块150被设置成获取车辆当前所处位置的精确信息;Modem160被设置成与云服务器800进行通信。
其次,对于图1中各种模块设备,BMS200主要作用是为了智能化管理及维护各个电池单元,监控电池的状态,实时有效地检测出电池的热失控事件,并及时有效地发出携带有风险等级的热失控报警信息;检测装置300可以为安装在车辆上的各种传感器或者摄像头;IHU400主要用于向车内人员推送文字消息或者发出声音;BCM500主要用于对车辆上的用电设备进行控制;第一终端600为车主所携带的终端设备;第二终端700为车辆周围一定范围内的终端设备。
另外,关于上述图1中的云服务器800,具体结构参照图3所示,云服务器800包括但不限于有信息解析中心810和多个业务模块820,云服务器800主要用于接收车辆热失控处理装置100上报的各种车辆信息、报警信息以及来自用户终端的请求信息,并通过信息解析中心810进行分析以及转发给各业务模块820做出相应处理。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器120可包括相对于处理器110远程设置的存储器,这些远程存储器可以通过网络连接至该系统架构平台。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解的是,车辆热失控处理装置100、第一终端600、第二终端700和云服务器800之前可以利用车联网通信系统、3G通信网络系统、LTE通信网络系统、5G通信网络系统以及后续演进的移动通信网络系统等进行无线通信,本实施例对此并不作具体限定。
本领域技术人员可以理解的是,图1中示出的系统架构平台并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图1所示的系统架构平台中,处理器110可以调用储存在存储器120中的车辆热失控处理程序,从而执行车辆热失控处理方法。
基于上述系统架构平台,下面提出本申请的车辆热失控处理方法的各个实施例。
如图4所示,图4是本申请一个实施例提供的车辆热失控处理方法的流程图,该方法包括但不限于有步骤S100、步骤S200和步骤S300。
步骤S100,获取来自BMS的热失控报警信息;
步骤S200,根据热失控报警信息确定电池的风险等级,其中,风险等级表征电池温度对电池的影响程度;
步骤S300,根据风险等级执行与风险等级对应的预设处理。
在一实施例中,车辆上的BMS会实时监控电池的工作状态,当电池即将发生热失控事件或者已经发生热失控事件时,BMS会生成热失控报警信息,并将热失控报警信息通过CAN总线发送至车辆热失控处理装置,因此,车辆热失控处理装置接收到热失控报警信息之后能够根据热失控报警信息确定电池当前的风险等级,并根据电池当前的风险等级执行对应的预设处理,以提高车辆的安全性能。
可以理解的是,关于上述的车辆热失控处理装置,可以为TBOX(Telematics BOX,车载远程信息处理器)。
需要说明的是,关于上述的预设处理,可以是推送文字消息、发出报警声音、调节电池的工作状态、调节车速或者开启车门锁等等处理。
值得注意的是,关于上述的风险等级,主要用于表征电池温度对电池的影响程度,可以包括有多个等级,示例性地,本申请实施例将风险等级按照严重程度划分为三个等级,分别为第一风险等级、第二风险等级和第三风险等级。其中,第一风险等级表征电池当前的温度接近设定门限,设定门限为电池温度继续升高会造成电池损害的临界;第二风险等级表征电池当前可以通过加大散热效率或者降低输出功率等而使得电池温度降低;第三风险等级表征电池当前处于即使加大散热效率和降低输出功率也仍然无法使得电池温度得以控制的状态。其中,第一风险等级、第二风险等级和第三风险等级所表征的影响程度依次增大。
具体地,基于上述的三个风险等级,下面提出本申请关于不同风险等级的车辆热失控处理方法的各个实施例。
如图5所示,图5是本申请一个实施例提供的在第一风险等级下的车辆热失控处理方法的流程图。在一实施例中,关于上述的步骤S300中的根据风险等级执行与风险等级对应的预设处理,包括但不限于有步骤S400。
步骤S400,当风险等级为第一风险等级,根据热失控报警信息生成第二警报信息,并发送第二警报信息至第一终端,以使第一终端向车主推送第二警报信息。
在一实施例中,当车辆上的BMS监测到电池的热失控状态处于第一风险等级时,BMS会生成带有第一风险等级的热失控报警信息,并将热失控报警信息通过CAN总线发送至车辆热失控处理装置,车辆热失控处理装置接收到热失控报警信息之后能够根据热失控报警信息确定电池当前的风险等级处于第一风险等级,同时车辆热失控处理装置会通过检测装置获取车内的人员乘载情况,当检测到车内无人时,车辆热失控处理装置会发送第二警报信息至第一终端,其中,上述的第一终端为车主所携带的终端设备。因此,本申请实施例能够在电池的风险等级为第一风险等级的情况下将电池状态告知车主,便于提醒车主及时降低电池的输出功率并检修发热原因,从而能够提高车辆的安全性能。
需要说明的是,当BMS将热失控报警信息通过CAN总线发送至车辆热失控处理装置的时候,若CAN网络已休眠,需要先唤醒CAN网络,才可以顺利将热失控报警信息通过CAN总线发送至车辆热失控处理装置。
可以理解的是,当车辆热失控处理装置根据热失控报警信息确定当前电池的风险等级处于第一风险等级之后,若检测到车内有人时,车辆热失控处理装置可以向汽车主机IHU推送第一风险等级的文字提示,示例性地,上述的文字提示可以为“当前动力电池过热,可能电池内部电路有问题,请及时进行检修”;同时,车辆热失控处理装置还可以向汽车主机IHU发出对应的报警声,从而告知车内的人员,便于提醒车主及时降低电池的输出功率并检修发热原因,从而能够提高车辆的安全性能。
另外,关于上述用于检测车内人员乘载情况的检测装置,可以为摄像头、座椅压力传感器或者座椅红外传感器等等。
值得注意的是,关于上述的第一风险等级,是指当前电池的温度接近设定门限,设定门限为电池温度继续升高会造成电池损害的临界;当电池的温度继续升高时会对电池造成损害,因此,本申请实施例能够在第一风险等级的情况下及时告知车主降低电池的输出功率并检修发热原因。
如图6所示,图6是本申请另一个实施例提供的在第一风险等级下的车辆热失控处理方法的流程图。在一实施例中,在执行上述步骤S400之后,该车辆热失控处理方法还包括但不限于有步骤S500。
步骤S500,当在预设时间段内没有获取到来自第一终端的基于第二警报信息的确认信息,间隔预设时间段将第二警报信息发送至第一终端,直至第二警报信息的发送次数大于预设次数,或者直至获取到确认信息。
在一实施例中,当车辆热失控处理装置将第二警报信息发送至车主所携带的第一终端之后,车辆热失控处理装置会启动第一预设周期为T1的计时,检测是否收到车主的确认信息,如果车辆热失控处理装置接收到车主所反馈的确认信息,则完成并结束报警流程;如果车辆热失控处理装置没有接收到车主所反馈的确认信息,在第一预设周期T1时间后再次向车主发送第二警报信息并记录发送次数C1,当发送次数C1达到预设次数N后仍没有收到车主所反馈的确认信息时,那么车辆热失控处理装置则会将本次的电池热失控事件上报至云服务器,并结束报警流程。因此,本申请实施例能够将第二警报信息多次发送至车主所携带的第一终端,能够提高第一终端成功接收第二警报信息的概率。
基于上述在第一风险等级下的车辆热失控处理方法,本申请另一个实施例提供了一种在第一风险等级下的具体的车辆热失控处理方法,如图7所示的流程图,该车辆热失控处 理方法还包括但不限于有步骤S601、步骤S602、步骤C101、步骤S603、步骤S604、步骤C102、步骤S605和步骤S606。
步骤S601,BMS检测到电池发生热失控事件;
步骤S602,BMS将热失控报警信息通过CAN总线发送至车辆热失控处理装置;
步骤C101,车辆热失控处理装置收到热失控报警信息后检测车内是否有人,如果无人,进入步骤S603;如果车内有人,进入步骤S604;
步骤S603,车辆热失控处理装置向车主所携带的第一终端发送第二警报信息,然后进入步骤C102;
步骤S604,车辆热失控处理装置向汽车主机IHU推送第一风险等级的文字提示并发出报警声,然后进入步骤S606;
步骤C102:车辆热失控处理装置启动第一预设周期为T1的计时,检测是否收到车主的确认信息,如果收到车主的确认信息,则进入步骤S606;如果没有收到车主的确认信息,T1时间后再次向车主发送第二警报信息并记录发送次数C1;发送N次后仍没有收到车主的确认信息,则进入步骤S605;
步骤S605,车辆热失控处理装置将热失控事件上报至云服务器;
步骤S606,结束。
值得注意的是,本申请实施例的车辆热失控处理方法的具体实施方式及对应的技术效果,可对应参照上述车辆热失控处理方法的实施例。
如图8所示,图8是本申请一个实施例提供的在第二风险等级下的车辆热失控处理方法的流程图。在一实施例中,关于上述的步骤S300中的根据风险等级执行与风险等级对应的预设处理,包括但不限于有步骤S700。
步骤S700,当风险等级为第二风险等级,根据电池的工作状态发送第一控制指令至BMS,以使BMS根据第一控制指令执行预设控制操作。
在一实施例中,当车辆上的BMS监测到电池的热失控状态由第一风险等级上升为第二风险等级时,BMS会生成带有第二风险等级的热失控报警信息,并将热失控报警信息通过CAN总线发送至车辆热失控处理装置,车辆热失控处理装置接收到热失控报警信息之后能够根据热失控报警信息确定电池当前的风险等级处于第二风险等级,由于第二风险等级表征当前电池处于可以在预设控制操作下能够使得电池温度降低的阶段,因此,车辆热失控处理装置会发送第一控制指令至BMS,然后BMS会根据第一控制指令执行预设控制操作,从而使得电池的温度得以降低。因此,本申请实施例能够在电池的风险等级为第二风险等级的情况下自动控制BMS执行预设控制操作,使得电池的温度得以降低,避免电池的温度继续升高,从而能够提高车辆的安全性能。
可以理解的是,当BMS将热失控报警信息通过CAN总线发送至车辆热失控处理装置的时候,若CAN网络已休眠,需要先唤醒CAN网络,才可以顺利将热失控报警信息通过CAN总线发送至车辆热失控处理装置。
需要说明的是,当车辆热失控处理装置接收到热失控报警信息之后并且根据热失控报警信息确定当前电池的风险等级处于第二风险等级之后,车辆热失控处理装置还会通过检测装置获取车内的人员乘载情况,当检测到车内无人时,车辆热失控处理装置会发送告警信息至第一终端,其中,上述的第一终端为车主所携带的终端设备。当检测到车内有人时, 车辆热失控处理装置可以向汽车主机IHU推送第二风险等级的文字提示,示例性地,上述的文字提示可以为“当前动力电池过高,电池内部已有问题,请尽快加大散热停止使用并进行检修”;同时,车辆热失控处理装置还可以向汽车主机IHU发出对应的报警声,从而告知车内的人员,便于提醒车主及时加大散热并停止使用以及进行检修,从而能够提高车辆的安全性能。
另外,关于上述用于检测车内人员乘载情况的检测装置,可以为摄像头、座椅压力传感器或者座椅红外传感器等等。
如图9所示,图9是本申请另一个实施例提供的在第二风险等级下的车辆热失控处理方法的流程图。在一实施例中,关于上述步骤S700中的根据电池的工作状态发送第一控制指令至BMS,以使BMS根据第一控制指令执行预设控制操作,包括但不限于有步骤S810。
步骤S810,获取由BMS检测到的电池于不同时刻的散热效率,当散热效率保持不变或者后一时刻的散热效率小于前一时刻的散热效率,发送第一控制指令至BMS,以使BMS根据第一控制指令提高对电池的散热效率。
在一实施例中,当车辆热失控处理装置接收到热失控报警信息并且根据热失控报警信息确定电池当前的风险等级处于第二风险等级之后,车辆热失控处理装置会启动第二预设周期为T2的计时,检测电池的散热功率是否加大,如果电池在后一时刻的散热效率高于前一时刻的散热效率,那么车辆热失控处理装置不会发送第一控制指令;如果电池的散热效率保持不变或者后一时刻的散热效率小于前一时刻的散热效率,那么车辆热失控处理装置就会发送第一控制指令至BMS,使得BMS提高对电池的散热效率,使得电池的散热效率得以增强。因此,本申请实施例能够在电池的风险等级为第二风险等级的情况下强制控制BMS增大对电池的散热效率,使得电池的温度得以降低,从而能够提高车辆的安全性能。
如图10所示,图10是本申请另一个实施例提供的在第二风险等级下的车辆热失控处理方法的流程图。在一实施例中,关于上述步骤S700中的根据电池的工作状态发送第一控制指令至BMS,以使BMS根据第一控制指令执行预设控制操作,包括但不限于有步骤S820。
步骤S820,获取由BMS检测到的电池于不同时刻的输出功率,当输出功率保持不变或者后一时刻的输出功率大于前一时刻的输出功率,发送第一控制指令至BMS,以使BMS根据第一控制指令控制电池降低输出功率。
在一实施例中,当车辆热失控处理装置接收到热失控报警信息并且根据热失控报警信息确定电池当前的风险等级处于第二风险等级之后,车辆热失控处理装置会启动第二预设周期为T2的计时,检测电池的输出功率是否降低,如果电池在后一时刻的输出功率低于前一时刻的输出功率,那么车辆热失控处理装置不会发送第一控制指令;如果电池的输出功率保持不变或者后一时刻的输出功率大于前一时刻的输出功率,那么车辆热失控处理装置就会发送第一控制指令至BMS,使得BMS控制电池降低输出功率,强制使得电池的输出功率得以降低。因此,本申请实施例能够在电池的风险等级为第二风险等级的情况下强制控制BMS降低电池的输出功率,使得电池的温度得以降低,从而能够提高车辆的安全性能。
如图11所示,图11是本申请另一个实施例提供的在第二风险等级下的车辆热失控处理方法的流程图。在一实施例中,关于上述步骤S700中的根据电池的工作状态发送第一控制指令至BMS,以使BMS根据第一控制指令执行预设控制操作,包括但不限于有步骤S830。
步骤S830,获取由BMS检测到的电池于不同时刻的散热效率和输出功率,当散热效率 保持不变或者后一时刻的散热效率小于前一时刻的散热效率以及输出功率保持不变或者后一时刻的输出功率大于前一时刻的输出功率,发送第一控制指令至BMS,以使BMS根据第一控制指令提高对电池的散热效率以及控制电池降低输出功率。
在一实施例中,当车辆热失控处理装置接收到热失控报警信息并且根据热失控报警信息确定电池当前的风险等级处于第二风险等级之后,车辆热失控处理装置会启动第二预设周期为T2的计时,检测电池的散热功率是否加大并且检测电池的输出功率是否降低,如果电池在后一时刻的散热效率高于前一时刻的散热效率并且电池在后一时刻的输出功率低于前一时刻的输出功率,那么车辆热失控处理装置不会发送第一控制指令;如果电池的散热效率保持不变或者后一时刻的散热效率小于前一时刻的散热效率并且电池的输出功率保持不变或者后一时刻的输出功率大于前一时刻的输出功率,那么车辆热失控处理装置就会发送第一控制指令至BMS,使得BMS提高对电池的散热效率并且使得BMS控制电池降低输出功率,使得电池的散热效率得以增强并且使得电池的输出功率得以降低。因此,本申请实施例能够在电池的风险等级为第二风险等级的情况下强制控制BMS增大对电池的散热效率以及强制控制BMS降低电池的输出功率,使得电池的温度得以降低,从而能够提高车辆的安全性能。
基于上述在第二风险等级下的车辆热失控处理方法,本申请另一个实施例提供了一种在第二风险等级下的具体的车辆热失控处理方法,如图12所示的流程图,该车辆热失控处理方法还包括但不限于有步骤S901、步骤S902、步骤C201、步骤S903、步骤S904、步骤C202、步骤S905、步骤S906和步骤S907。
步骤S901,BMS检测到电池发生热失控事件;
步骤S902,BMS将热失控报警信息通过CAN总线发送至车辆热失控处理装置;
步骤C201,车辆热失控处理装置收到热失控报警信息后检测车内是否有人,如果无人,进入步骤S903;如果车内有人,进入步骤S904;
步骤S903:车辆热失控处理装置向车主所携带的第一终端发送告警信息,然后进入步骤C202;
步骤S904:车辆热失控处理装置向汽车主机IHU推送第一风险等级的文字提示并发出报警声,然后进入步骤C202;
步骤C202:车辆热失控处理装置启动第二预设周期为T2的计时,检测电池的散热功率是否加大并且电池的输出功率是否降低,如果是则进入步骤S907;如果T2时间到,电池的散热功率没有加大并且电池的输出功率没有降低,则进入步骤S905;
步骤S905,车辆热失控处理装置发送第一控制指令至BMS,以使BMS根据第一控制指令提高对电池的散热效率以及控制电池降低输出功率,然后进入步骤S906;
步骤S906,车辆热失控处理装置将热失控事件上报云服务器;
步骤S907,结束。
值得注意的是,本申请实施例的车辆热失控处理方法的具体实施方式及对应的技术效果,可对应参照上述车辆热失控处理方法的实施例。
如图13所示,图13是本申请一个实施例提供的在第三风险等级下的车辆热失控处理方法的流程图。在一实施例中,关于上述的步骤S300中的根据风险等级执行与风险等级对应的预设处理,包括但不限于有步骤S1000。
步骤S1000,当风险等级为第三风险等级,获取当前车辆的行驶速度,并且在行驶速度小于或等于预设速度的情况下,发送第二控制指令至BCM,以使BCM开启车门锁;其中,第三风险等级所表征的影响程度大于第二风险等级所表征的影响程度。
在一实施例中,当车辆上的BMS监测到电池的热失控状态处于第三风险等级时,BMS会生成带有第三风险等级的热失控报警信息,并将热失控报警信息通过CAN总线发送至车辆热失控处理装置,车辆热失控处理装置接收到热失控报警信息之后能够根据热失控报警信息确定当前电池的风险等级处于第三风险等级,同时车辆热失控处理装置会通过检测装置获取车内的人员乘载情况,当检测到车内有人时,车辆热失控处理装置会发送文字提示至汽车主机IHU并且发出对应的报警声,示例性地,上述的文字提示可以为“当前动力电池已经热失控,请尽快采取消防措施”,提醒车内人员电池的故障状况。然后,车辆热失控处理装置会通过检测装置获取当前车辆的行驶速度,当行驶速度小于或等于预设速度的情况下,发送第二控制指令至BCM以使BCM开启车门锁,从而使得车内人员安全地逃离故障车辆。因此,本申请实施例能够在电池的风险等级为第三风险等级的情况下降低车速并且打开车门锁,使得车内人员安全撤离故障车辆,从而能够提高车辆的安全性能。
需要说明的是,当BMS将热失控报警信息通过CAN总线发送至车辆热失控处理装置的时候,若CAN网络已休眠,需要先唤醒CAN网络,才可以顺利将热失控报警信息通过CAN总线发送至车辆热失控处理装置。
另外,关于上述用于检测车内人员乘载情况的检测装置,可以为摄像头、座椅压力传感器或者座椅红外传感器等等。其次,关于上述用于检测车辆行驶速度的检测装置,可以为速度传感器等等。
值得注意的是,关于上述的第三风险等级,第三风险等级表征当前电池处于即使在加大散热效率和降低输出功率的下仍然无法使得电池温度得以控制的阶段,即此时电池已经处于加大散热效率以及关闭输出功率都不能控制的阶段,需准备进行消防措施。
如图14所示,图14是本申请另一个实施例提供的在第三风险等级下的车辆热失控处理方法的流程图。在一实施例中,当车辆热失控处理装置确定风险等级为第三风险等级之后,该车辆热失控处理方法还包括但不限于有步骤S1110、步骤S1120和步骤S1130。
步骤S1110,获取车辆信息;
步骤S1120,根据热失控报警信息生成第一警报信息;
步骤S1130,将车辆信息和第一警报信息发送至第二终端,以使第二终端向非车主用户推送车辆信息和第一警报信息。
在一实施例中,当车辆热失控处理装置接收到热失控报警信息并且根据热失控报警信息确定电池当前的风险等级处于第三风险等级之后,由于即此时电池已经处于加大散热效率以及关闭输出功率都不能控制的阶段,因此,车辆热失控处理装置会通过V2X向周围DSRC(Dedicated Short Range Communications,专用短程通信)可及范围距离内的车辆、行人所携带的第二终端共享当前车辆的车辆信息以及警报信息提示相关车辆、行人进行避让或采取消防措施。因此,本申请实施例能够在电池的风险等级为第三风险等级的情况下通知附近的车辆和行人,提示附近的车辆和行人避让或采取消防措施,能够保证附近的车辆和行人的安全,从而能够提高车辆的安全性能。
值得注意的是,关于上述的车辆信息,包括但不限于有车辆定位信息、车牌号码信息 和车辆颜色信息。
基于上述在第三风险等级下的车辆热失控处理方法,本申请另一个实施例提供了一种在第三风险等级下的具体的车辆热失控处理方法,如图15所示的流程图,该车辆热失控处理方法还包括但不限于有步骤S1201、步骤S1202、步骤C301、步骤S1203、步骤C302、步骤S1204、步骤S1205、步骤S1206和步骤S1207。
步骤S1201,BMS检测到电池发生热失控事件;
步骤S1202,BMS将热失控报警信息通过CAN总线发送至车辆热失控处理装置;
步骤C301,车辆热失控处理装置收到热失控报警信息后检测车内是否有人,如果无人,进入步骤S1205;如果车内有人,进入步骤S1203;
步骤S1203,车辆热失控处理装置向汽车主机IHU推送第三风险等级的文字提示并发出报警声,然后进入步骤C302和步骤S1205;
步骤C302,检测当前车速是否小于等于预设速度,如果是,进入步骤S1204;如果当前车速大于预设速度,则一直处在步骤C302;
步骤S1204,车辆热失控处理装置发送第二控制指令至BCM,以使BCM开启车门锁;
步骤S1205,车辆热失控处理装置通过V2X向周围DSRC可及范围距离内的车辆、行人所携带的第二终端共享当前车辆的车辆信息以及警报信息提示相关车辆、行人进行避让或采取消防措施,然后进入步骤S1206;
步骤S1206,车辆热失控处理装置将热失控事件上报云服务器;
步骤S1207,结束。
值得注意的是,本申请实施例的车辆热失控处理方法的具体实施方式及对应的技术效果,可对应参照上述车辆热失控处理方法的实施例。
基于上述三种风险等级下的车辆热失控处理方法,云服务器会对上报的各种车辆信息、报警信息等进行处理,发现有热失控报警信息,则立刻将故障车辆的位置、车主信息、车辆具体故障信息通知呼叫中心,然后服务中心人员立刻向车主发起语音呼叫,沟通车辆当前状况。
值得注意的是,关于上述三种风险等级下的车辆热失控处理装置、第一终端和第二终端之间的通信关系,可以参照图16所示。示例性地,车辆热失控处理装置可以为热失控车辆所安装的终端设备,第一终端可以为车主Po或车主Po’所携带的终端设备,第二终端可以包括有行人Pn和周围车辆Vn所携带的终端设备,还可以包括车主Po所携带的终端设备。
基于上述车辆热失控处理方法,下面分别提出本申请的车辆热失控处理装置、车辆和计算机可读存储介质的各个实施例。
另外,本申请的一个实施例提供了一种车辆热失控处理装置,该车辆热失控处理装置包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
需要说明的是,本实施例中的车辆热失控处理装置,可以对应为如图1所示实施例中的系统架构平台中的车辆热失控处理装置,能够构成图1所示实施例中的系统架构平台的一部分,两者属于相同的发明构思,因此两者具有相同的实现原理以及有益效果,此处不再详述。
实现上述实施例的车辆热失控处理方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例的车辆热失控处理方法,例如,执行以上描述的图4中的方法步骤S100至S300、图5中的方法步骤S400、图6中的方法步骤S500、图8中的方法步骤S700、图9中的方法步骤S810、图10中的方法步骤S820、图11中的方法步骤S830、图13中的方法步骤S1000、图14中的方法步骤S1110至S1130。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,本申请的一个实施例还提供了一种车辆,该车辆包括但不限于有上述的车辆热失控处理装置。
由于本申请实施例的车辆包括有上述实施例的车辆热失控处理装置,而上述实施例的车辆热失控处理装置能够执行上述任一项实施例的车辆热失控处理方法,因此,本申请实施例的车辆的具体实施方式和所带来的技术效果,可以对应参照上述任一项实施例的车辆热失控处理方法的具体实施方式和所带来的技术效果。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于执行上述的车辆热失控处理方法。例如,被上述车辆热失控处理装置实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的车辆热失控处理方法,例如,执行以上描述的图4中的方法步骤S100至S300、图5中的方法步骤S400、图6中的方法步骤S500、图8中的方法步骤S700、图9中的方法步骤S810、图10中的方法步骤S820、图11中的方法步骤S830、图13中的方法步骤S1000、图14中的方法步骤S1110至S1130。
本申请实施例包括:获取来自BMS的热失控报警信息,接着根据热失控报警信息确定电池的风险等级,其中,风险等级表征电池温度对电池的影响程度;然后根据风险等级执行与风险等级对应的预设处理。根据本申请实施例的技术方案,能够根据热失控报警信息确定电池当前所处的风险等级,并且能够根据电池当前所处的风险等级执行对应的处理,以提高车辆的安全性能。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种车辆热失控处理方法,包括:
    获取来自电池管理系统BMS的热失控报警信息;
    根据所述热失控报警信息确定电池的风险等级,其中,所述风险等级表征电池温度对电池的影响程度;
    根据所述风险等级执行与所述风险等级对应的预设处理。
  2. 根据权利要求1所述的车辆热失控处理方法,其中,所述根据所述风险等级执行与所述风险等级对应的预设处理,包括:
    当所述风险等级为第二风险等级,根据电池的工作状态发送第一控制指令至BMS,以使BMS根据所述第一控制指令执行预设控制操作。
  3. 根据权利要求2所述的车辆热失控处理方法,其中,所述根据电池的工作状态发送第一控制指令至BMS,以使BMS根据所述第一控制指令执行预设控制操作,包括如下至少之一:
    获取由BMS检测到的电池于不同时刻的散热效率,当所述散热效率保持不变或者后一时刻的散热效率小于前一时刻的散热效率,发送第一控制指令至BMS,以使BMS根据所述第一控制指令提高对电池的散热效率;
    获取由BMS检测到的电池于不同时刻的输出功率,当所述输出功率保持不变或者后一时刻的输出功率大于前一时刻的输出功率,发送第一控制指令至BMS,以使BMS根据所述第一控制指令控制电池降低输出功率。
  4. 根据权利要求2所述的车辆热失控处理方法,其中,所述根据所述风险等级执行与所述风险等级对应的预设处理,包括:
    当所述风险等级为第三风险等级,获取当前车辆的行驶速度,并且在所述行驶速度小于或等于预设速度的情况下,发送第二控制指令至车身控制器BCM,以使BCM开启车门锁;其中,所述第三风险等级所表征的影响程度大于所述第二风险等级所表征的影响程度。
  5. 根据权利要求4所述的车辆热失控处理方法,其中,还包括:
    获取车辆信息;
    根据所述热失控报警信息生成第一警报信息;
    将所述车辆信息和所述第一警报信息发送至第二终端,以使第二终端向非车主用户推送所述车辆信息和所述第一警报信息。
  6. 根据权利要求2所述的车辆热失控处理方法,其中,所述根据所述风险等级执行与所述风险等级对应的预设处理,包括:
    当所述风险等级为第一风险等级,根据所述热失控报警信息生成第二警报信息,并发送所述第二警报信息至第一终端,以使第一终端向车主推送所述第二警报信息;其中,所述第一风险等级所表征的影响程度小于所述第二风险等级所表征的影响程度。
  7. 根据权利要求6所述的车辆热失控处理方法,其中,在所述发送所述第二警报信息至第一终端之后,还包括:
    当在预设时间段内没有获取到来自第一终端的基于所述第二警报信息的确认信息,间隔所述预设时间段将所述第二警报信息发送至第一终端,直至所述第二警报信息的发送次 数大于预设次数,或者直至获取到所述确认信息。
  8. 一种车辆热失控处理装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至7中任意一项所述的车辆热失控处理方法。
  9. 一种车辆,包括有如权利要求8所述的车辆热失控处理装置。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行如权利要求1至7中任意一项所述的车辆热失控处理方法。
PCT/CN2021/110086 2020-08-10 2021-08-02 车辆热失控处理方法、装置、车辆和计算机可读存储介质 WO2022033348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010793999.5 2020-08-10
CN202010793999.5A CN114074550A (zh) 2020-08-10 2020-08-10 车辆热失控处理方法、装置、车辆和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022033348A1 true WO2022033348A1 (zh) 2022-02-17

Family

ID=80247718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110086 WO2022033348A1 (zh) 2020-08-10 2021-08-02 车辆热失控处理方法、装置、车辆和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114074550A (zh)
WO (1) WO2022033348A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939535A (zh) * 2022-11-29 2023-04-07 重庆三峡时代能源科技有限公司 电池热失控抑制方法、装置、设备及存储介质
CN116613431A (zh) * 2023-07-19 2023-08-18 宝德华南(深圳)热能系统有限公司 一种新能源电池的智能散热方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114993486A (zh) * 2022-05-25 2022-09-02 中国第一汽车股份有限公司 一种新能源汽车预警方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108248389A (zh) * 2017-12-18 2018-07-06 清华大学 电动车用动力电池组安全防控方法、系统和计算机可读存储介质
US20190001828A1 (en) * 2017-07-03 2019-01-03 Hyundai Motor Company Battery temperature control system and method
CN109910682A (zh) * 2019-02-22 2019-06-21 华为技术有限公司 一种应用于电池供电系统的温控模块、电动车及系统
CN110861531A (zh) * 2019-11-27 2020-03-06 四川野马汽车股份有限公司 一种动力电池失效预警系统及方法
CN110957542A (zh) * 2019-04-30 2020-04-03 宁德时代新能源科技股份有限公司 电池热失控的检测方法、装置、系统和电池管理单元
CN111055686A (zh) * 2019-12-06 2020-04-24 潍柴动力股份有限公司 车辆安全的监测方法、监测装置及监测系统
WO2020127752A1 (de) * 2018-12-19 2020-06-25 Volkswagen Aktiengesellschaft Verfahren zum überwachen einer batterie
CN112092675A (zh) * 2020-08-31 2020-12-18 长城汽车股份有限公司 一种电池热失控预警方法、系统及服务器
CN112952228A (zh) * 2021-05-13 2021-06-11 国网江苏综合能源服务有限公司 一种用于新能源轨道机车的电池在线预警装置及方法
CN113022310A (zh) * 2021-02-01 2021-06-25 南京维思科汽车科技有限公司 一种车辆动力电池热失控控制方法及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190001828A1 (en) * 2017-07-03 2019-01-03 Hyundai Motor Company Battery temperature control system and method
CN108248389A (zh) * 2017-12-18 2018-07-06 清华大学 电动车用动力电池组安全防控方法、系统和计算机可读存储介质
WO2020127752A1 (de) * 2018-12-19 2020-06-25 Volkswagen Aktiengesellschaft Verfahren zum überwachen einer batterie
CN109910682A (zh) * 2019-02-22 2019-06-21 华为技术有限公司 一种应用于电池供电系统的温控模块、电动车及系统
CN110957542A (zh) * 2019-04-30 2020-04-03 宁德时代新能源科技股份有限公司 电池热失控的检测方法、装置、系统和电池管理单元
CN110861531A (zh) * 2019-11-27 2020-03-06 四川野马汽车股份有限公司 一种动力电池失效预警系统及方法
CN111055686A (zh) * 2019-12-06 2020-04-24 潍柴动力股份有限公司 车辆安全的监测方法、监测装置及监测系统
CN112092675A (zh) * 2020-08-31 2020-12-18 长城汽车股份有限公司 一种电池热失控预警方法、系统及服务器
CN113022310A (zh) * 2021-02-01 2021-06-25 南京维思科汽车科技有限公司 一种车辆动力电池热失控控制方法及装置
CN112952228A (zh) * 2021-05-13 2021-06-11 国网江苏综合能源服务有限公司 一种用于新能源轨道机车的电池在线预警装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939535A (zh) * 2022-11-29 2023-04-07 重庆三峡时代能源科技有限公司 电池热失控抑制方法、装置、设备及存储介质
CN115939535B (zh) * 2022-11-29 2023-11-03 重庆三峡时代能源科技有限公司 电池热失控抑制方法、装置、设备及存储介质
CN116613431A (zh) * 2023-07-19 2023-08-18 宝德华南(深圳)热能系统有限公司 一种新能源电池的智能散热方法
CN116613431B (zh) * 2023-07-19 2024-01-16 宝德华南(深圳)热能系统有限公司 一种新能源电池的智能散热方法

Also Published As

Publication number Publication date
CN114074550A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2022033348A1 (zh) 车辆热失控处理方法、装置、车辆和计算机可读存储介质
CN105761425B (zh) 求救方法、系统及装置
CN105100192B (zh) 用于启动应用的方法和系统
CN105101115B (zh) 用于启动应用的方法和系统
CN109501801A (zh) 计划碰撞避免机动的方法、控制单元、车辆和计算机程序
CN111464974B (zh) 一种车联网数据通讯方法、装置、设备和介质
US11661079B2 (en) Method for reducing the potential hazard in road traffic
US6812832B2 (en) Vehicle communication system with integrated pre-impact sensing
WO2019179373A1 (zh) 信息处理方法、相关设备及计算机存储介质
Fysarakis et al. RtVMF: A secure real-time vehicle management framework
US11627612B2 (en) Method and apparatus for efficient vehicle data reporting
KR20160135264A (ko) 자동차 서비스 시스템
CN108875986A (zh) 用于车辆预订可靠性预测的系统和方法
US20200086891A1 (en) Method for controlling vehicle and intelligent computing device for controlling vehicle
CN116001716A (zh) 机械设备的智能远程管理系统
KR102435157B1 (ko) 머신러닝을 이용한 전기차 충전소의 단속 시스템
US11279319B2 (en) Systems and methods for identifying unauthorized vehicle use
US20230252790A1 (en) Systems and methods for intelligent incident management in transportation environments
CN110059650A (zh) 信息处理方法、装置、计算机存储介质及电子设备
CN112686415B (zh) 一种网约车行为监控方法及装置
CN113895453A (zh) 车辆控制方法、装置、车辆和存储介质
WO2022069025A1 (en) Method & apparatus for generating an accident information graph
CN116257164B (zh) 候车用户焦虑响应方法及系统
CN108446409A (zh) 一种出行管家智能交互系统及方法
CN115158408B (zh) 列车冲突检测方法、列车冲突检测装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855401

Country of ref document: EP

Kind code of ref document: A1