WO2022033074A1 - 适用于近海岛的海洋温差能发电与深层海水利用平台 - Google Patents

适用于近海岛的海洋温差能发电与深层海水利用平台 Download PDF

Info

Publication number
WO2022033074A1
WO2022033074A1 PCT/CN2021/089502 CN2021089502W WO2022033074A1 WO 2022033074 A1 WO2022033074 A1 WO 2022033074A1 CN 2021089502 W CN2021089502 W CN 2021089502W WO 2022033074 A1 WO2022033074 A1 WO 2022033074A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold water
water pipe
deep seawater
pipe
warm water
Prior art date
Application number
PCT/CN2021/089502
Other languages
English (en)
French (fr)
Inventor
郑文慧
张华�
顾学康
陆晔
叶永林
丁军
颜开
吴有生
Original Assignee
中国船舶科学研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶科学研究中心 filed Critical 中国船舶科学研究中心
Publication of WO2022033074A1 publication Critical patent/WO2022033074A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the technical field of seawater power generation, in particular to an ocean thermal difference energy power generation and deep seawater utilization platform suitable for offshore islands.
  • thermoelectric power generation technology In the field of thermoelectric power generation technology, generally in sea areas with a water depth of more than 800 meters, the temperature difference between deep seawater and surface seawater can reach the minimum value of 20°C for power generation, while my country only has good conditions for thermoelectric development in southern deep sea areas. Therefore, the technology of ocean thermoelectric power generation platform is urgently needed. However, in the sea area where the water depth is greater than 800 meters, the cost of the mooring system for platform positioning is high, which will directly affect the economy of the platform.
  • deep seawater refers to seawater with a depth of less than 200, which is not exposed to sunlight and is not affected by the atmosphere. It has the characteristics of low temperature stability, sterile cleanliness, rich ingredients, and easy absorption by the human body. Health, beauty and health care products will bring huge economic benefits.
  • thermoelectric power generation and deep seawater utilization platform suitable for offshore islands.
  • the platform is deployed in the deep sea offshore island area, and has two functions of thermoelectric power generation and deep seawater utilization. This will provide a new idea for the development of ocean thermal energy and the utilization of deep seawater resources in my country.
  • thermoelectric power generation technology In the field of thermoelectric power generation technology, generally in sea areas with a water depth of more than 800 meters, the temperature difference between deep seawater and surface seawater can reach the minimum value of 20°C for power generation, while my country only has good conditions for thermoelectric development in southern deep sea areas. Therefore, the technology of ocean thermoelectric power generation platform is urgently needed. However, in the sea area where the water depth is greater than 800 meters, the cost of the mooring system for platform positioning is high, which will directly affect the economy of the platform.
  • An ocean thermoelectric power generation and deep seawater utilization platform suitable for offshore islands including a floating platform, a thermal circulation system, a cold water system, a warm water system and a deep seawater utilization module, the floating platform floats on the sea surface, and the thermal circulation system is fixed in the floating platform, The deep seawater utilization module is placed on the upper surface of the floating platform.
  • the thermal circulation system includes a working fluid pump, an evaporator, a turbine, a generator and a condenser connected in sequence through pipelines and connected to form a circulation loop; the cold water system includes a cold water pipe and a cold water pump.
  • one end of the cold water pipe is the deep sea water inlet
  • the other end of the cold water pipe is the first water outlet
  • the cold water pump is installed in the pipeline of the cold water pipe
  • the cold water pipe passes through the condenser
  • the branch pipe is arranged on the cold water pipe. It is connected to the deep seawater utilization module. Valves are set on the branch pipes.
  • the cold water pump, condenser and branch pipes are arranged in sequence according to the water flow direction of the cold water pipe.
  • the warm water system includes a warm water pipe and a warm water pump.
  • the other end is the second water outlet
  • a warm water pump is installed in the pipeline of the warm water pipe, the warm water pipe passes through the evaporator, and the warm water pump and the evaporator are arranged in sequence according to the water flow direction of the warm water pipe.
  • the floating platform includes an upper floating body, a column and a lower floating body.
  • the columns are multiple and are vertically fixed between the upper floating body and the lower floating body.
  • the upper floating body floats on the sea surface, and the lower floating body is immersed below the sea surface.
  • the thermal circulation system, the cold water pump and the warm water pump are all installed in the lower floating body.
  • the water inlet end of the cold water pipe is at a water depth of ⁇ 600 meters, and the water outlet end of the cold water pipe is at a water depth of ⁇ 30 meters.
  • the water inlet end of the warm water pipe is at a water depth of ⁇ 10 meters, and the water outlet end of the warm water pipe is at a water depth of ⁇ 30 meters.
  • the application utilizes the temperature difference between deep seawater and surface seawater to generate electricity, utilizes the deep seawater utilization module to utilize the deep seawater, and is arranged in the shallow area of the offshore island, which can reduce the cost of the platform, and can be used for the development of ocean temperature difference energy and deep seawater resources in my country. Use to provide a new idea.
  • Figure 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic structural diagram of the thermodynamic cycle system of the present invention.
  • the ocean thermoelectric power generation and deep seawater utilization platform suitable for offshore islands in this embodiment includes a floating platform 10, a thermal circulation system, a cold water system, a warm water system and a deep seawater utilization module 50.
  • the floating platform 10 floats on the sea surface
  • the thermal cycle system is fixed in the floating platform 10
  • the deep seawater utilization module 50 is placed on the upper surface of the floating platform 10
  • the thermal cycle system includes a working fluid pump 21, an evaporator 22, and a turbine 23 connected in sequence through pipelines , the generator 24 and the condenser 25 are connected to form a circulation loop
  • the cold water system includes a cold water pipe 31 and a cold water pump 32, one end of the cold water pipe 31 is a deep seawater inlet, the other end of the cold water pipe 31 is the first water outlet, and the cold water pipe
  • a cold water pump 32 is installed in the pipeline of 31, the cold water pipe 31 passes through the condenser 25, a branch pipe 60 is arranged on the cold water pipe 31, the branch pipe 60 is connected to
  • the condenser 25 and the branch pipes 60 are arranged in sequence according to the water flow direction of the cold water pipe 31;
  • the warm water system includes a warm water pipe 41 and a warm water pump 42, one end of the warm water pipe 41 is the surface seawater inlet, and the other end of the warm water pipe 41 is the second.
  • a warm water pump 42 is installed in the pipeline of the warm water pipe 41 , and the warm water pipe 41 passes through the evaporator 22 .
  • the floating platform 10 includes an upper floating body 11, a column 12 and a lower floating body 13.
  • the columns 12 are multiple and are vertically fixed between the upper floating body 11 and the lower floating body 13.
  • the upper floating body 11 floats on the sea surface, and the lower floating body 13 is immersed below the sea surface.
  • the deep seawater utilization module 50 is placed on the upper surface of the upper floating body 11 , and the thermal circulation system, the cold water pump 32 and the warm water pump 42 are all installed in the lower floating body 13 .
  • the water inlet end of the cold water pipe 31 is at a water depth of ⁇ 600 meters, and the water outlet end of the cold water pipe 31 is at a water depth of ⁇ 30 meters.
  • the water inlet end of the warm water pipe 41 is at a water depth of ⁇ 10 meters, and the water outlet end of the warm water pipe 41 is at a water depth of ⁇ 30 meters.
  • the application platform When in use, the application platform is placed on the offshore island where the water depth is not too deep (the water depth is about less than 200 meters), and the cold water pump 32 is started.
  • the flow direction of the seawater in the cold water pipe 31 is shown by the arrow), wherein the cold water pipe 31 adopts an oblique way of taking water (that is, the cold water pipe 31 is inclined outward to take the cold seawater in the depth), and the water depth can be taken to more than 600 meters.
  • the shallow water mooring system is more economical than the deep water mooring system, the temperature of the deep sea water is lower, and the water in the cold water pipe 31
  • the deep seawater passes through the condenser 25, and heat exchange occurs between the deep seawater and the liquid working medium in the condenser 25, the temperature of the deep seawater increases, the temperature of the working medium in the condenser 25 decreases, the working medium circulates in the thermal cycle system, and the temperature rises
  • a part of the obtained deep seawater is discharged into the seawater from the first water outlet of the cold water pipe 31, and the deep seawater after the temperature rise can also flow from the branch pipe 60 to the deep seawater utilization module 50 for reuse, and the deep seawater utilization module 50 can also be reused.
  • the warm water pump 42 pumps the surface seawater located at a depth of 10 meters or more into the warm water pipe 41 (the flow direction of the surface seawater in the warm water pipe 41 is shown by the arrow), the temperature of the surface seawater is higher, and the warm water pipe 41
  • the surface seawater passes through the evaporator 22, and the surface seawater with a higher temperature encounters the working medium with a lower temperature in the evaporator 22, so that the liquid working medium is gasified, and the pressure of the gasified working medium increases, so that the turbine 23 rotates and rotates.
  • the generator 24 is driven to generate electricity, and the temperature difference of the seawater can be effectively used to generate electricity, and the surface seawater temperature in the warm water pipe 41 will become lower and be re-discharged into the seawater through the second water outlet of the warm water pipe 41;
  • thermoelectric power generation and deep seawater utilization. It is arranged in the shallow water area of the offshore island, which can reduce the cost of the platform and provide a new idea for the development of ocean thermoelectric energy and the utilization of deep seawater resources in my country. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Sustainable Development (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种适用于近海岛的海洋温差能发电与深层海水利用平台,其中热力循环系统固定在浮台(10)中,深层海水利用模块(50)放置在浮台(10)上表面,热力循环系统包括通过管路依次相连的工质泵(21)、蒸发器(22)、透平(23)、发电机(24)和冷凝器(25);冷水管(31)自冷凝器(25)中穿过,冷水管(31)上设置分支管(60),分支管(60)连通深层海水利用模块(50),温水管(41)自蒸发器(22)中穿过。该平台利用深层海水和表层海水的温差进行发电并对深层海水进行利用。

Description

适用于近海岛的海洋温差能发电与深层海水利用平台 技术领域
本发明涉及海水发电技术领域,尤其是一种适用于近海岛的海洋温差能发电与深层海水利用平台。
背景技术
在温差能发电技术领域,一般在水深超过800米以上的海域,深层海水和表层海水温差才能达到用于发电的最小值20℃,而我国只有在南部深远海地区才具备良好的温差能开发条件,故急需海洋温差能发电平台技术。但在水深大于800米的海域,平台定位用的锚泊系统造价高,将直接影响平台经济性。
除此之外,深层海水是指水深200以下的海水,阳光照射不到,不受大气影响的海水,具有低温稳定、无菌清洁、成分丰富、易被人体吸收等特点,若用以加工成健康、美容、保健品,将带来丰厚的经济收益。
综上,设计一种适用于近海岛的海洋温差能发电与深层海水利用平台,平台布设于深远海近海岛区域,具备温差能发电和深层海水利用两大功能。这将为我国海洋温差能开发和深层海水资源利用提供一个新思路。
技术问题
在温差能发电技术领域,一般在水深超过800米以上的海域,深层海水和表层海水温差才能达到用于发电的最小值20℃,而我国只有在南部深远海地区才具备良好的温差能开发条件,故急需海洋温差能发电平台技术。但在水深大于800米的海域,平台定位用的锚泊系统造价高,将直接影响平台经济性。
技术解决方案
一种适用于近海岛的海洋温差能发电与深层海水利用平台,包括浮台、热力循环系统、冷水系统、温水系统和深层海水利用模块,浮台漂浮在海面,热力循环系统固定在浮台中,深层海水利用模块放置在浮台上表面,热力循环系统包括通过管路依次相连的工质泵、蒸发器、透平、发电机和冷凝器且相连成循环回路;冷水系统包括冷水管和冷水泵,冷水管的一端为深层海水进水口,冷水管的另一端为第一出水口,冷水管的管路中安装冷水泵,冷水管自冷凝器中穿过,冷水管上设置分支管,分支管连通深层海水利用模块,分支管上设置阀门,冷水泵、冷凝器和分支管按照冷水管的水流方向依次设置;温水系统包括温水管和温水泵,温水管的一端为表层海水进水口,温水管的另一端为第二出水口,温水管的管路中安装温水泵,温水管自蒸发器中穿过,温水泵、蒸发器按照温水管的水流方向依次设置。
作为上述技术方案的进一步改进:
所述浮台包括上浮体、立柱和下浮体,立柱为多个且均垂直固定在上浮体和下浮体之间,上浮体漂浮在海面上,下浮体浸入海面以下,深层海水利用模块放置在上浮体的上表面,热力循环系统、冷水泵以及温水泵均安装在下浮体中。
所述冷水管的进水端在水深≥600米处,冷水管的出水端在水深≥30米处。
所述温水管的进水端在水深≤10米处,温水管的出水端在水深≥30米处。
有益效果
本申请利用深层海水和表层海水的温差进行发电,利用深层海水利用模块对深层海水进行利 用,布置在近海岛水深较浅的区域,可降低平台造价,可为我国海洋温差能开发和深层海水资源利用提供一个新思路。
附图说明
图1是本发明的结构示意图。
图2是本发明热力循环系统的结构示意图。
其中:10、浮台;11、上浮体;12、立柱;13、下浮体;21、工质泵;22、蒸发器;23、透平;24、发电机;25、冷凝器;31、冷水管;32、冷水泵;41、温水管;42、温水泵;50、深层海水利用模块;60、分支管;70、阀门。
本发明的实施方式
下面结合附图,说明本发明的具体实施方式。
如图1-2所示,本实施例的适用于近海岛的海洋温差能发电与深层海水利用平台,包括浮台10、热力循环系统、冷水系统、温水系统和深层海水利用模块50,浮台10漂浮在海面,热力循环系统固定在浮台10中,深层海水利用模块50放置在浮台10上表面,热力循环系统包括通过管路依次相连的工质泵21、蒸发器22、透平23、发电机24和冷凝器25且相连成循环回路;冷水系统包括冷水管31和冷水泵32,冷水管31的一端为深层海水进水口,冷水管31的另一端为第一出水口,冷水管31的管路中安装冷水泵32,冷水管31自冷凝器25中穿过,冷水管31上设置分支管60,分支管60连通深层海水利用模块50,分支管60上设置阀门70,冷水泵32、冷凝器25和分支管60按照冷水管31的水流方向依次设置;温水系统包括温水管41和温水泵42,温水管41的一端为表层海水进水口,温水管41的另一端为第二出水口,温水管41的管路中安装温水泵42,温水管41自蒸发器22中穿过,温水泵42、蒸发器22按照温水管41的水流方向依次设置。
浮台10包括上浮体11、立柱12和下浮体13,立柱12为多个且均垂直固定在上浮体11和下浮体13之间,上浮体11漂浮在海面上,下浮体13浸入海面以下,深层海水利用模块50放置在上浮体11的上表面,热力循环系统、冷水泵32以及温水泵42均安装在下浮体13中。
冷水管31的进水端在水深≥600米处,冷水管31的出水端在水深≥30米处。
温水管41的进水端在水深≤10米处,温水管41的出水端在水深≥30米处。
本申请的工作原理为:
使用时,将本申请平台放置在近海岛水深不太深(水深大概小于200米)的位置,启动冷水泵32,冷水泵32将位于水深600米以下的深层海水抽到冷水管31中(深层海水在冷水管31中的流向如箭头所示),其中冷水管31采用斜向取水的方式(即冷水管31向外倾斜而下以便取深处的冷海水),可以取到水深大于600米的冷海水,这样对整个平台的经济性有很大好处,因平台停放在水深较浅区域,浅水锚泊系统相比深水锚泊系统经济性较好,深层海水的温度较低,冷水管31中的深层海水经过冷凝器25,深层海水和冷凝器25中液态工质发生热交换,深层海水的温度升高,冷凝器25中的工质温度降低,工质在热力循环系统中循环,温度升高后的深层海水一部分从冷水管31的第一出水口排出至海水中,温度升高后的深层海水也可以从分支管60中流至深层海水利用模块50中进行重新利用,深层海水利用模块50可以为深层海水浓缩装置、深层海水分离装置等,这两种装置配合使用可以将海水加工出高钙镁矿化液和低硫矿化液等进行使用,有效利用深层海水资源;
启动温水泵42,温水泵42将位于水深10米以上的表层海水抽到温水管41中(表层海水在温水管41中的流向如箭头所示),表层海水的温度较高,温水管41中的表层海水经过蒸发器22,温度较高的表层海水遇到蒸发器22中温度较低的工质,使得液态工质气化,气化后 的工质压力增大,使得透平23旋转并带动发电机24发电,有效利用海水的温差能进行发电,而温水管41中的表层海水温度会变低并经温水管41的第二出水口重新排到海水中;
综上所述,本申请具备温差能发电和深层海水利用两大功能,布置在近海岛水深较浅的区域,可降低平台造价,可为我国海洋温差能开发和深层海水资源利用提供一个新思路。
以上描述是对本发明的解释,不是对发明的限定,本发明所限定的范围参见权利要求,在本发明的保护范围之内,可以作任何形式的修改。

Claims (4)

  1. 一种适用于近海岛的海洋温差能发电与深层海水利用平台,其特征在于:包括浮台(10)、热力循环系统、冷水系统、温水系统和深层海水利用模块(50),浮台(10)漂浮在海面,热力循环系统固定在浮台(10)中,深层海水利用模块(50)放置在浮台(10)上表面,热力循环系统包括通过管路依次相连的工质泵(21)、蒸发器(22)、透平(23)、发电机(24)和冷凝器(25)且相连成循环回路;冷水系统包括冷水管(31)和冷水泵(32),冷水管(31)的一端为深层海水进水口,冷水管(31)的另一端为第一出水口,冷水管(31)的管路中安装冷水泵(32),冷水管(31)自冷凝器(25)中穿过,冷水管(31)上设置分支管(60),分支管(60)连通深层海水利用模块(50),分支管(60)上设置阀门(70),冷水泵(32)、冷凝器(25)和分支管(60)按照冷水管(31)的水流方向依次设置;温水系统包括温水管(41)和温水泵(42),温水管(41)的一端为表层海水进水口,温水管(41)的另一端为第二出水口,温水管(41)的管路中安装温水泵(42),温水管(41)自蒸发器(22)中穿过,温水泵(42)、蒸发器(22)按照温水管(41)的水流方向依次设置。
  2. 如权利要求1所述的适用于近海岛的海洋温差能发电与深层海水利用平台,其特征在于:所述浮台(10)包括上浮体(11)、立柱(12)和下浮体(13),立柱(12)为多个且均垂直固定在上浮体(11)和下浮体(13)之间,上浮体(11)漂浮在海面上,下浮体(13)浸入海面以下,深层海水利用模块(50)放置在上浮体(11)的上表面, 热力循环系统、冷水泵(32)以及温水泵(42)均安装在下浮体(13)中。
  3. 如权利要求1所述的适用于近海岛的海洋温差能发电与深层海水利用平台,其特征在于:所述冷水管(31)的进水端在水深≥600米处,冷水管(31)的出水端在水深≥30米处。
  4. 如权利要求1所述的适用于近海岛的海洋温差能发电与深层海水利用平台,其特征在于:所述温水管(41)的进水端在水深≤10米处,温水管(41)的出水端在水深≥30米处。
PCT/CN2021/089502 2020-08-12 2021-04-25 适用于近海岛的海洋温差能发电与深层海水利用平台 WO2022033074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010807382.4A CN111946568A (zh) 2020-08-12 2020-08-12 适用于近海岛的海洋温差能发电与深层海水利用平台
CN202010807382.4 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022033074A1 true WO2022033074A1 (zh) 2022-02-17

Family

ID=73332345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089502 WO2022033074A1 (zh) 2020-08-12 2021-04-25 适用于近海岛的海洋温差能发电与深层海水利用平台

Country Status (2)

Country Link
CN (1) CN111946568A (zh)
WO (1) WO2022033074A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117605636A (zh) * 2023-11-21 2024-02-27 中海石油(中国)有限公司 一种适用于海上平台低温位热源的温差能发电系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111946568A (zh) * 2020-08-12 2020-11-17 中国船舶科学研究中心 适用于近海岛的海洋温差能发电与深层海水利用平台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395241A2 (en) * 2010-05-03 2011-12-14 Nagan Srinivasan Offshore floating platform with ocean thermal energy conversion system
US20130300127A1 (en) * 2012-05-10 2013-11-14 Arthur Robert DiNicolantonio Geothermal energy recovery from abandoned oil wells
CN103727000A (zh) * 2014-01-06 2014-04-16 李定忠 一种温差发电的方法及实现本方法的深井水温差发电机
CN107201995A (zh) * 2011-08-15 2017-09-26 阿贝尔基金会 海洋热能转换电站冷水管连接
CN109889102A (zh) * 2019-04-19 2019-06-14 上海海洋大学 一种波浪驱动式海洋温差发电综合平台
CN209586604U (zh) * 2018-11-16 2019-11-05 江苏海上龙源风力发电有限公司 一种配置混合循环海洋温差发电系统的海上升压站平台
CN110748466A (zh) * 2019-10-17 2020-02-04 中海石油(中国)有限公司 一种海洋温差能系统透平输出功自适应控制系统及方法
CN111946568A (zh) * 2020-08-12 2020-11-17 中国船舶科学研究中心 适用于近海岛的海洋温差能发电与深层海水利用平台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395241A2 (en) * 2010-05-03 2011-12-14 Nagan Srinivasan Offshore floating platform with ocean thermal energy conversion system
CN107201995A (zh) * 2011-08-15 2017-09-26 阿贝尔基金会 海洋热能转换电站冷水管连接
US20130300127A1 (en) * 2012-05-10 2013-11-14 Arthur Robert DiNicolantonio Geothermal energy recovery from abandoned oil wells
CN103727000A (zh) * 2014-01-06 2014-04-16 李定忠 一种温差发电的方法及实现本方法的深井水温差发电机
CN209586604U (zh) * 2018-11-16 2019-11-05 江苏海上龙源风力发电有限公司 一种配置混合循环海洋温差发电系统的海上升压站平台
CN109889102A (zh) * 2019-04-19 2019-06-14 上海海洋大学 一种波浪驱动式海洋温差发电综合平台
CN110748466A (zh) * 2019-10-17 2020-02-04 中海石油(中国)有限公司 一种海洋温差能系统透平输出功自适应控制系统及方法
CN111946568A (zh) * 2020-08-12 2020-11-17 中国船舶科学研究中心 适用于近海岛的海洋温差能发电与深层海水利用平台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117605636A (zh) * 2023-11-21 2024-02-27 中海石油(中国)有限公司 一种适用于海上平台低温位热源的温差能发电系统

Also Published As

Publication number Publication date
CN111946568A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2022033074A1 (zh) 适用于近海岛的海洋温差能发电与深层海水利用平台
KR101431133B1 (ko) 이젝터가 포함된 해양 온도차 발전사이클장치
WO2017190505A1 (zh) 一种热泵强化的正温差下蒸汽压差能法盐差发电装置
CN108412716A (zh) 一种海洋能温差发电系统
CN101659451A (zh) 一种气提式膜蒸馏高盐水处理方法
CN201634527U (zh) 利用海上核电站废热的吸收式海水淡化装置
JP2010216793A (ja) 吸収冷却器、熱交換器
CN105600855A (zh) 一种利用化学反应形成真空室的海水淡化系统
CN102408139B (zh) 太阳能磁制冷海水淡化装置及其海水淡化方法
CN109028269A (zh) 一种吸收式热泵机组及回收低温水源余热的供热系统
CN108128831A (zh) 太阳能热泵海水淡化装置
CN205346874U (zh) 一种太阳能吸收式海水淡化装置
CN201545714U (zh) 太阳能高温集热淡化水处理系统
Suparta Marine heat as a renewable energy source
CN106401888A (zh) 一种温差发电装置
CN206056383U (zh) 一种热交换器循环水系统
CN209704654U (zh) 一种热盐双差热电联供装置
KR20130122829A (ko) 해상 설비용 해수 태양열 담수화 시스템
CN206290298U (zh) 间接利用风能的低温有机朗肯循环发电系统
CN202493304U (zh) 一种低压低温汽轮机组
KR20110115028A (ko) 해양심층수를 이용한 해양 온도차 발전 및 발전소 냉각 활용시스템
CN204198442U (zh) 太阳能溴化锂海水淡化系统
CN117249060A (zh) 一种温差能发电系统
JPH07317508A (ja) 海水温度差を利用した発電・淡水化装置
JPH0816475B2 (ja) 温度差発電方法およびその装置ならびに温度差発電・海洋生物増養殖複合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855130

Country of ref document: EP

Kind code of ref document: A1