WO2022032622A1 - 管道整流装置及管道 - Google Patents

管道整流装置及管道 Download PDF

Info

Publication number
WO2022032622A1
WO2022032622A1 PCT/CN2020/109118 CN2020109118W WO2022032622A1 WO 2022032622 A1 WO2022032622 A1 WO 2022032622A1 CN 2020109118 W CN2020109118 W CN 2020109118W WO 2022032622 A1 WO2022032622 A1 WO 2022032622A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
fluid
rectification
rectifying
area
Prior art date
Application number
PCT/CN2020/109118
Other languages
English (en)
French (fr)
Inventor
聂泳忠
许辉煌
陈文堤
Original Assignee
西人马联合测控(泉州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西人马联合测控(泉州)科技有限公司 filed Critical 西人马联合测控(泉州)科技有限公司
Priority to PCT/CN2020/109118 priority Critical patent/WO2022032622A1/zh
Publication of WO2022032622A1 publication Critical patent/WO2022032622A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/027Throttle passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids

Definitions

  • the present application relates to the field of fluid technology, and in particular, to a pipeline rectifying device and a pipeline.
  • the fluid in the pipeline especially the fluid in the large-flow pipeline, will have severe turbulence inside when flowing in the pipeline, which will affect the shape of the fluid and make the fluid chaotic in the pipeline. If you need to measure the flow rate of the fluid or monitor whether the fluid contains particulate matter, it is very disadvantageous, which may cause inaccurate measurement results or reduce measurement accuracy.
  • the purpose of the present application is to provide a pipeline rectifying device and a pipeline, the pipeline rectifying device can rectify the fluid in the pipeline into a laminar flow fluid close to an ideal fluid.
  • the present application provides a pipeline rectification device, the pipeline rectification device and the axial direction of the pipeline are arranged in the pipeline at a predetermined angle, the pipeline rectification device includes a base plate, the base plate includes a rectification area, and the rectification area is provided with a plurality of penetrating substrates.
  • the rectification holes are arranged to extend along the flow direction of the fluid.
  • the plurality of rectification holes are arranged in an array in the rectification region.
  • the plurality of rectifying holes are aligned in the row direction and/or the column direction.
  • the plurality of rectifying holes are staggered in the row direction and/or the column direction.
  • the shape of the rectification hole is any one of a circle, a rectangle, an ellipse, and a polygon.
  • the center-to-center distance between adjacent rectification holes is L1
  • the shape of the rectification region is the same as the cross-sectional shape of the pipe; and/or the area of the rectification region is less than or equal to the cross-sectional area of the pipe.
  • the sum of the cross-sectional areas of the plurality of rectification holes is S1, and the area of the rectification region is S0, then S1/S0 ⁇ 90%.
  • the thickness of the substrate is less than or equal to 3 mm.
  • the substrate is arranged perpendicular to the flow direction of the fluid.
  • the present application also provides a pipeline, comprising: a first pipe section; a second pipe section; the above-mentioned pipeline rectifying device is arranged between the first pipe section and the second pipe section, and the fluid in the first pipe section After flowing through the rectification area of the substrate, the fluid enters the second pipe section in laminar flow.
  • the fluid in the pipeline can be rectified into a laminar flow fluid close to the ideal fluid, which is convenient for subsequent accurate Measure the relevant parameters of the fluid in the pipeline.
  • FIG. 1 is a schematic structural diagram of a pipeline rectifying device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another pipeline rectifying device provided by an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram of a pipeline provided in an embodiment of the present application.
  • FIG. 4 is a partial enlarged structural schematic diagram of the area A shown in FIG. 3 .
  • 1-pipe rectifying device 2-first pipe section; 21-first flange; 3-second pipe section; 31-second flange;
  • FIG. 1 is a schematic structural diagram of a pipeline rectifying device provided by an embodiment of the present application
  • FIG. 2 is a structural schematic diagram of another pipeline rectifying device provided by an embodiment of the present application.
  • An embodiment of the present application provides a pipeline rectifying device 1 , which is disposed in the pipeline at a predetermined angle to the axial direction of the pipeline.
  • the pipeline rectifying device 1 includes a base plate 11 , the base plate 11 includes a rectifying area 111 , and the rectifying area 111 is provided with a plurality of rectifying holes 12 penetrating the substrate 11 , and the rectifying holes 12 extend along the flow direction of the fluid.
  • the shape of the base plate 11 is a circle, an ellipse, a polygon, or an irregular shape, etc., depending on the cross-sectional shape of the pipe.
  • the material of the substrate 11 is metal, such as titanium alloy or stainless steel, to meet the impact strength requirement when the fluid flows through the substrate 11 .
  • the pipeline rectifying device 1 is arranged at a predetermined angle with the axial direction of the pipeline, that is, the base plate 11 is arranged at a predetermined angle with the axial direction of the pipeline.
  • the rectification holes 12 on the base plate 11 extend along the flow direction of the fluid, so as to reduce the pressure loss when the fluid flows through the rectification holes 12 of the base plate 11 .
  • the fluid in the pipeline such as turbulent flow
  • the fluid will be divided into multiple smaller fluids by the plurality of fairing holes 12 on the substrate 11 , which flow through the fairing holes 12 and then join together. Since the turbulent fluid in the original pipeline is cut and destroyed, the small vortices inside the fluid are scattered, and after passing through the substrate 11, each small fluid will flow out in a direction approximately parallel to the axial direction of the pipeline. In this way, the turbulent flow phenomenon of the fluid is greatly reduced, and the fluid is rectified to the maximum extent into a laminar flow fluid close to the ideal fluid, which facilitates accurate measurement of the fluid flow rate, or monitoring of relevant parameters such as particulate matter and the content of particulate matter in the fluid.
  • the fluid in the pipeline can be rectified into a laminar flow fluid close to the ideal fluid, which is convenient for subsequent Accurately measure the relevant parameters of the fluid in the pipeline.
  • the predetermined angle between the pipeline rectifying device 1 provided in the embodiment of the present application and the axial direction of the pipeline may be 90°, that is, the base plate 11 is arranged perpendicular to the axial direction of the pipeline, or in other words, the base plate 11 is perpendicular to the flow direction of the fluid
  • the rectification holes 12 are arranged so that the rectification holes 12 penetrate the substrate 11 at a vertical angle, so that the rectification holes 12 extend along the flow direction of the fluid, which reduces the difficulty of manufacturing the rectification holes 12 on the substrate 11 .
  • the plurality of rectification holes 12 provided in the rectification region 111 of the substrate 11 are arranged in an array in the rectification region 111 .
  • the shape of the rectification region 111 may be similar to the shape of the substrate 11 , such as a circle, an ellipse, a polygon, or an irregular shape, etc., so as to increase the rectification area of the fluid.
  • the plurality of rectifying holes 12 may be aligned in the row direction, may also be aligned in the column direction, or may be aligned in the row direction and the column direction. Therefore, when the turbulent fluid in the pipeline passes through the plurality of rectification holes 12 on the base plate 11, it will be uniformly cut into a plurality of parallel small streams.
  • the plurality of rectifying holes 12 may be staggered in the row direction, may also be staggered in the column direction, and may also be staggered in the row direction and the column direction. Therefore, when the turbulent fluid in the pipeline passes through the plurality of rectification holes 12 on the base plate 11, it will be uniformly cut into more trivial parallel small streams.
  • the shape of the rectification hole 12 is any of a circle, a rectangle, an ellipse, and a polygon.
  • the shape of the rectification hole 12 shown in FIG. 1 is a rectangle
  • the shape of the rectification hole 12 shown in FIG. 2 is a circle.
  • the center distance between the adjacent rectification holes 12 is L1
  • the shape of the rectification holes 12 is square, the side length is 2mm, the center distance between two adjacent rectification holes 12 is 2.4mm, that is, the distance between the adjacent edges of two adjacent rectification holes 12 is 0.4mm , which not only ensures that the substrate 11 provides sufficient structural strength to resist the impact force of the fluid, but also maximizes the cutting rate of the fluid.
  • the shape of the straightening area 111 is the same as the cross-sectional shape of the pipeline, which facilitates the smooth transition of the fluid between the pipeline and the pipeline fairing device 1.
  • the rectification area 111 is circular, as shown by the dotted circles in FIG. 1 and FIG. 2 .
  • the rectifying area 111 is rectangular.
  • the area of the rectifying area 111 is smaller than or equal to the cross-sectional area of the pipeline.
  • the flow rate of the fluid is reduced.
  • the sum of the cross-sectional areas of the plurality of rectification holes 12 is S1
  • the area of the rectification region 111 is S0, then S1/S0 ⁇ 90%.
  • the thickness of the base plate 11 is less than or equal to 3 mm.
  • the base plate 11 further includes a fixing area 112 surrounding the rectifying area 111 , and the pipeline rectifying device 1 is fixed in the pipeline through the fixing area 112 , and has a simple structure, convenient installation and low cost.
  • FIG. 3 is a schematic cross-sectional structural diagram of a pipeline provided by an embodiment of the present application
  • FIG. 4 is a partially enlarged structural schematic diagram of the area A shown in FIG. 3 .
  • an embodiment of the present application further provides a pipeline, including a first pipe section 2 , a second pipe section 3 and the aforementioned pipeline rectifying device 1 .
  • the pipeline rectification device 1 is arranged between the first pipe section 2 and the second pipe section 3 .
  • the fluid in the first pipe section 2 flows through the rectification area 111 of the substrate 11 and then enters the second pipe section 3 as a laminar fluid.
  • first pipe section 2 has a first flange 21 at one end along its own axial direction
  • second pipe section 3 has a second flange 31 at one end along its own axial direction.
  • the first pipe section 2 and the second pipe section 3 pass through the first method.
  • the flange 21 and the second flange 31 are connected to each other, and the pipeline rectifying device 1 is fixed between the first flange 21 and the second flange 31 through the fixing area 112 of the base plate 11 .
  • either the first flange 21 or the second flange 31 is provided with a first groove C1 for accommodating the fixing area 112 of the substrate 11 , and the depth of the first groove C1 is The dimension is smaller than or equal to the thickness dimension of the base plate 11 , so as to fasten the fixing area 112 of the base plate 11 between the first flange 21 and the second flange 31 .
  • the second flange 31 is provided with a first groove C1 for accommodating the fixing area 112 of the substrate 11
  • the first flange 21 is covered with the first groove C1 to press the substrate 11 together. in the first groove C1.
  • either the first flange 21 or the second flange 31 is further provided with a second groove C2 for accommodating the other, so as to accommodate the first flange 21 in the second flange.
  • the second flange 31 is accommodated in the second groove C2 of the first flange 21 .
  • the second flange 31 is further provided with a second groove C2 for accommodating the first flange 21 , and the bottom surface of the second groove C2 is in contact with the first flange 21 .
  • first flange 21 and the second flange 31 are connected as a whole by welding, so as to connect the first pipe section 2 and the second pipe section 3 into a pipeline, wherein the bottom surface of the second groove C2 for the welding surface.
  • neither the first flange 21 nor the second flange 31 is provided with the second groove C2, and the first flange 21 and the second flange 31 are directly welded into one. Pipes will do.
  • first flange 21 and the second flange 31 are welded into a whole pipeline by metal solder. If the material of the pipe is plastic, the first flange 21 and the second flange 31 are welded into an integral pipe by hot riveting.
  • the base plate 11 of the pipeline fairing device 1 is press-fitted into the first groove C1 of either the first flange 21 or the second flange 31 , and is firmly fixed.
  • the pipeline rectifying device 1 can screen out the particulate matter in the fluid to obtain the content of the particulate matter; by measuring the velocity of any fine laminar fluid, the velocity of all fluids in the pipeline can be obtained, which improves the measurement accuracy.

Abstract

一种管道整流装置(1)及管道。该管道整流装置与管道的轴向呈预定角度设置于管道中。管道整流装置包括基板(11),基板包括整流区(111),整流区设置有贯穿基板的多个整流孔(12),整流孔沿流体的流动方向延伸设置。提供的管道整流装置,可以将管道中的流体整流为接近理想流体的层流流体,便于后续精准测量管道中流体的相关参数。

Description

管道整流装置及管道 技术领域
本申请涉及流体技术领域,特别是涉及一种管道整流装置及管道。
背景技术
管道中的流体,特别是大流量管道中的流体,在管道中流动时内部会发生严重的湍流,影响流体的形态,使流体在管道内变得混乱。如果需要测量流体的流速或者监测流体中是否含有颗粒物质是非常不利的,可能引起测量结果不准确,或者测量精度降低。
发明内容
本申请的目的是提供一种管道整流装置及管道,该管道整流装置可以将管道中的流体整流为接近理想流体的层流流体。
一方面,本申请提供了一种管道整流装置,该管道整流装置与管道的轴向呈预定角度设置于管道中,管道整流装置包括基板,基板包括整流区,整流区设置有贯穿基板的多个整流孔,整流孔沿流体的流动方向延伸设置。
根据本申请的一个方面,多个整流孔在整流区呈阵列排布。
根据本申请的一个方面,多个整流孔在行方向和/或列方向上对齐排布。
根据本申请的一个方面,多个整流孔在行方向和/或列方向上交错排布。
根据本申请的一个方面,整流孔的形状呈圆形、矩形、椭圆形、多边形中的任一者。
根据本申请的一个方面,相邻的整流孔之间的中心距为L1,整流孔的最大外径尺寸为L2,则L1/L2=1.1~1.5。
根据本申请的一个方面,整流区的形状与管道的横截面形状相同;和/或,整流区的面积小于或者等于管道的横截面面积。
根据本申请的一个方面,多个整流孔的横截面面积之和为S1,整流区 的面积为S0,则S1/S0≥90%。
根据本申请的一个方面,基板的厚度小于或者等于3mm。
根据本申请的一个方面,基板垂直于流体的流动方向设置。
另一方面,本申请还提供了一种管道,包括:第一管段;第二管段;如前所述的管道整流装置,设置于第一管段与第二管段之间,第一管段内的流体流经基板的整流区后,以层流流体进入第二管段。
本申请提供的一种管道整流装置及管道,通过在管道整流装置的基板的整流区设置贯穿基板的多个整流孔,可以将管道中的流体整流为接近理想流体的层流流体,便于后续精准测量管道中流体的相关参数。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中,通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,相同或相似的附图标记表示相同或相似的特征。
图1是本申请实施例提供的一种管道整流装置的结构示意图;
图2是本申请实施例提供的另一种管道整流装置的结构示意图;
图3是本申请实施例提供的一种管道的剖面结构示意图;
图4是图3所示的区域A的局部放大结构示意图。
附图标记说明:
1-管道整流装置;2-第一管段;21-第一法兰盘;3-第二管段;31-第二法兰盘;
11-基板;111-整流区;112-固定区;12-整流孔。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。下面的详细描述中公开了许多具体细节,以便全面理解本申请。但是,对于本领域技术人员来说,很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示 例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
为了更好地理解本申请,下面结合图1至图4对本申请实施例提供的管道整流装置及管道进行详细描述。
图1是本申请实施例提供的一种管道整流装置的结构示意图,图2是本申请实施例提供的另一种管道整流装置的结构示意图。
请一并参阅图1和图2,本申请实施例提供了一种管道整流装置1,与管道的轴向呈预定角度设置于管道中。管道整流装置1包括基板11,基板11包括整流区111,整流区111设置有贯穿基板11的多个整流孔12,整流孔12沿流体的流动方向延伸。
可选地,基板11的形状为圆形、椭圆形、多边形或者不规则形状等,根据管道的横截面形状而定。基板11的材料为金属,例如钛合金或者不锈钢等,以满足流体流经基板11时的冲击强度要求。
管道整流装置1与管道的轴向呈预定角度设置,即基板11与管道的轴向呈预定角度设置。基板11上的整流孔12沿流体的流动方向延伸,以减小流体流经基板11的整流孔12时的压力损失。
当管道中的流体例如湍流经过管道整流装置1时,流体会被基板11上的多个整流孔12分成多股较小的流体,流经各个整流孔12后再汇合到一起。由于原来管道内的湍流流体被切割破坏,流体内部的小旋涡被打散,通过基板11后,各细小流体将以近似平行于管道的轴向方向流出。这样,大幅降低流体的湍流现象,将流体最大限度地整流为接近理想流体的层流流体,便于准确地测量流体流速,或者监测流体中是否有颗粒物质及颗粒物质的含量等相关参数。
本申请实施例提供的一种管道整流装置1,通过在基板11的整流区111设置贯穿基板11的多个整流孔12,可以将管道中的流体整流为接近理想流体的层流流体,便于后续精准测量管道中流体的相关参数。
进一步地,本申请实施例提供的管道整流装置1与管道的轴向之间的 预定角度可以为90°,即基板11垂直于管道的轴向设置,或者说,基板11垂直于流体的流动方向设置,使得整流孔12以垂直角度贯穿基板11,以使整流孔12沿流体的流动方向延伸,降低了基板11上的整流孔12的工艺制作难度。
进一步地,基板11的整流区111设置的多个整流孔12在整流区111呈阵列排布。整流区111的形状可以与基板11的形状类似,例如圆形、椭圆形、多边形或者不规则形状等,以提高流体的整流面积。
可选地,如图1所示,多个整流孔12可以在行方向对齐排布,也可以在列方向上对齐排布,还可以在行方向和列方向上对齐排布。由此管道中的湍流流体经过基板11上的多个整流孔12时,将被均匀切割为多条平行的小细流。
可选地,如图2所示,多个整流孔12可以在行方向交错排布,也可以在列方向上交错排布,还可以在行方向和列方向上交错排布。由此管道中的湍流流体经过基板11上的多个整流孔12时,将被均匀切割为更加琐碎的多条平行的小细流。
另外,整流孔12的形状呈圆形、矩形、椭圆形、多边形中的任一者。例如,图1所示的整流孔12的形状为矩形,图2所示的整流孔12的形状为圆形。
流体流经基板11时,为了提高流体的切割率,整流孔12的数量越多越好,相应地,相邻的整流孔12之间的中心距越小越好。但同时,基板11的结构强度需要能够抵抗流体的冲击力,故相邻的整流孔12之间的中心距需要提供足够的结构强度。为了平衡结构强度与切割率,相邻的整流孔12之间的中心距为L1,整流孔12的最大外径尺寸为L2,则L1/L2=1.1~1.5。
可选地,相邻的整流孔12之间的中心距为L1与整流孔12的最大外径尺寸为L2的比值为:L1/L2=1.2。例如整流孔12的形状为正方形,边长为2mm,相邻的两个整流孔12之间的中心距为2.4mm,即相邻的两个整流孔12邻近的边缘之间的距离为0.4mm,既能保证提高基板11提供足够的抵抗流体冲击力的结构强度,又能最大限度地提高流体的切割率。
另外,整流区111的形状与管道的横截面形状相同,便于流体在管道 与管道整流装置1之间顺利过渡。例如,管道的横截面为圆形,则整流区111呈圆形,如图1、图2中的圆形虚线所示。如管道的横截面为矩形,则整流区111呈矩形。
进一步地,为了最大限度地利用管道整流装置1的切割流体的功能,整流区111的面积小于或者等于管道的横截面面积。
由于流体流过管道整流装置1时会有压力损失,降低了流体的流动速率。为了使压力损失尽可能地小,例如小于5%,可选地,多个整流孔12的横截面面积之和为S1,整流区111的面积为S0,则S1/S0≥90%。
为了进一步降低流体流过管道整流装置1时的压力损失,基板11的厚度小于或者等于3mm。
另外,基板11还包括围绕整流区111的固定区112,管道整流装置1通过固定区112固定于管道中,结构简单、安装方便、成本低。
图3是本申请实施例提供的一种管道的剖面结构示意图,图4是图3所示的区域A的局部放大结构示意图。
请一并参阅图3和图4,本申请实施例还提供了一种管道,包括第一管段2、第二管段3和如前所述的管道整流装置1。
管道整流装置1设置于第一管段2与第二管段3之间,第一管段2内的流体流经基板11的整流区111后,以层流流体进入第二管段3。
进一步地,第一管段2沿自身轴向一端具有第一法兰盘21,第二管段3沿自身轴向一端具有第二法兰盘31,第一管段2和第二管段3通过第一法兰盘21与第二法兰盘31的配合相互连接,管道整流装置1通过基板11的固定区112固定于第一法兰盘21与第二法兰盘31之间。
参阅图4,可选地,第一法兰盘21或者第二法兰盘31中的任一者设置有容纳基板11的固定区112的第一凹槽C1,且第一凹槽C1的深度尺寸小于或者等于基板11的厚度尺寸,以便于将基板11的固定区112紧固于第一法兰盘21与第二法兰盘31之间。如图4所示,第二法兰盘31上设置有容纳基板11的固定区112的第一凹槽C1,第一法兰盘21盖合于第一凹槽C1,以将基板11压合于第一凹槽C1。
可选地,第一法兰盘21或者第二法兰盘31中的任一者还设置有容纳 另一者的第二凹槽C2,以便于将第一法兰盘21容纳于第二法兰盘31的第二凹槽C2中,或者将第二法兰盘31容纳于第一法兰盘21的第二凹槽C2中。如图4所示,第二法兰盘31上还设置有容纳第一法兰盘21的第二凹槽C2,第二凹槽C2的底面与第一法兰盘21接触。
可选地,第一法兰盘21与第二法兰盘31之间通过焊接连接为一体,以将第一管段2和第二管段3连接为一体的管道,其中第二凹槽C2的底面为焊接面。
可选地,第一法兰盘21或者第二法兰盘31中的任一者均不设置第二凹槽C2,直接将第一法兰盘21与第二法兰盘31焊接为一体的管道即可。
如果管道的材质为金属,则第一法兰盘21与第二法兰盘31之间通过金属焊料焊接为一个整体的管道。如果管道的材质为塑料,则第一法兰盘21与第二法兰盘31之间通过热铆焊接为一个整体的管道。管道整流装置1的基板11被压装于第一法兰盘21或者第二法兰盘31中的任一者的第一凹槽C1内,固定牢靠。
由此,第一管段2内原本杂乱无章的湍流流体被管道整流装置1的整流区111整流后,分为多个细小地平行的层流流体流入第二管段3内,从而可以更精准地测量管道中流体的相关参数。例如,管道整流装置1可以筛选出流体中的颗粒物质,从而获得颗粒物质的含量;通过测量任一个细小的层流流体的速率可以获得管道中所有流体的速率,提高了测量精度。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;物品没有使用数量词修饰时旨在包括一个/种或多个/种物品,并可以与“一个/种或多个/种物品”互换使用”;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出 现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (10)

  1. 一种管道整流装置,与管道的轴向呈预定角度设置于所述管道中,所述管道整流装置包括基板,所述基板包括整流区,所述整流区设置有贯穿所述基板的多个整流孔,所述整流孔沿流体的流动方向延伸设置。
  2. 根据权利要求1所述的管道整流装置,其中,多个所述整流孔在所述整流区呈阵列排布。
  3. 根据权利要求2所述的管道整流装置,其中,多个所述整流孔在行方向和/或列方向上对齐排布;或者,多个所述整流孔在行方向和/或列方向上交错排布。
  4. 根据权利要求1所述的管道整流装置,其中,所述整流孔的形状呈圆形、矩形、椭圆形、多边形中的任一者。
  5. 根据权利要求1所述的管道整流装置,其中,相邻的所述整流孔之间的中心距为L1,所述整流孔的最大外径尺寸为L2,则L1/L2=1.1~1.5。
  6. 根据权利要求1所述的管道整流装置,其中,所述整流区的形状与所述管道的横截面形状相同;和/或,所述整流区的面积小于或者等于所述管道的横截面面积。
  7. 根据权利要求1所述的管道整流装置,其中,多个所述整流孔的横截面面积之和为S1,所述整流区的面积为S0,则S1/S0≥90%。
  8. 根据权利要求1所述的管道整流装置,其中,所述基板的厚度小于或者等于3mm。
  9. 根据权利要求1所述的管道整流装置,其中,所述基板垂直于流体的流动方向设置。
  10. 一种管道,包括:
    第一管段;
    第二管段;
    如权利要求1至9任一项所述的管道整流装置,设置于所述第一管段与所述第二管段之间,所述第一管段内的流体流经所述基板的整流区后,以层流流体进入所述第二管段。
PCT/CN2020/109118 2020-08-14 2020-08-14 管道整流装置及管道 WO2022032622A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109118 WO2022032622A1 (zh) 2020-08-14 2020-08-14 管道整流装置及管道

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109118 WO2022032622A1 (zh) 2020-08-14 2020-08-14 管道整流装置及管道

Publications (1)

Publication Number Publication Date
WO2022032622A1 true WO2022032622A1 (zh) 2022-02-17

Family

ID=80246789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109118 WO2022032622A1 (zh) 2020-08-14 2020-08-14 管道整流装置及管道

Country Status (1)

Country Link
WO (1) WO2022032622A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840051A (en) * 1971-03-11 1974-10-08 Mitsubishi Heavy Ind Ltd Straightener
CN2583642Y (zh) * 2002-12-06 2003-10-29 上海航天动力机械有限公司 一种气体流量测量装置的流动调整器
CN201340281Y (zh) * 2008-12-30 2009-11-04 金湖县恒达自动化仪表厂 智能力电式流量计
CN202141476U (zh) * 2011-05-04 2012-02-08 中国航空工业集团公司西安飞机设计研究所 一种带有过滤整流装置的一体式测量文氏管
US20120247223A1 (en) * 2011-03-30 2012-10-04 Canada Pipeline Accessories, Co. Ltd. Electroless Plated Fluid Flow Conditioner and Pipe Assembly
CN207379563U (zh) * 2017-10-23 2018-05-18 西南石油大学 一种气体流量测量装置
CN208348016U (zh) * 2018-06-07 2019-01-08 江苏昆仲机械有限公司 压缩机出口稳流装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840051A (en) * 1971-03-11 1974-10-08 Mitsubishi Heavy Ind Ltd Straightener
CN2583642Y (zh) * 2002-12-06 2003-10-29 上海航天动力机械有限公司 一种气体流量测量装置的流动调整器
CN201340281Y (zh) * 2008-12-30 2009-11-04 金湖县恒达自动化仪表厂 智能力电式流量计
US20120247223A1 (en) * 2011-03-30 2012-10-04 Canada Pipeline Accessories, Co. Ltd. Electroless Plated Fluid Flow Conditioner and Pipe Assembly
CN202141476U (zh) * 2011-05-04 2012-02-08 中国航空工业集团公司西安飞机设计研究所 一种带有过滤整流装置的一体式测量文氏管
CN207379563U (zh) * 2017-10-23 2018-05-18 西南石油大学 一种气体流量测量装置
CN208348016U (zh) * 2018-06-07 2019-01-08 江苏昆仲机械有限公司 压缩机出口稳流装置

Similar Documents

Publication Publication Date Title
Geers et al. Experimental investigation of impinging jet arrays
US8322381B1 (en) Static fluid flow conditioner
EP2962073B1 (en) Ultrasonic flow metering with laminar to turbulent transition flow control
El Hassan et al. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet
US10309432B2 (en) Flow conditioner
US20110174408A1 (en) Flow mixer and conditioner
CA2787659A1 (en) Static flow mixing and conditioning device and manufacturing method
EP1882911A3 (en) Thermal type flow sensor
CN1646885A (zh) 平均孔板基本流量元件
CN112097002A (zh) 管道整流装置及管道
WO2022032622A1 (zh) 管道整流装置及管道
JP2002168669A (ja) 熱式流量計
CN212672693U (zh) 管道整流装置及管道
JP6351028B2 (ja) 整流装置用多孔板、整流装置および流量計測装置
JP2004093170A (ja) 整流装置
JP2001133307A (ja) 流入・流出対称型流量計
US5109705A (en) Turbine rate-of-flow transducer
US7111519B2 (en) Tube assembly and method
JP4178207B2 (ja) 整流ユニット
Zarić Wall turbulence studies
JPS6312947A (ja) 熱伝導検出器
JP2009186429A (ja) ガスメータ
AU2010362293B2 (en) Wafer-type venturi cone meter
CN220794348U (zh) 一种超声波燃气表流道
Sultan et al. Experimental time-resolved study of the interaction between a pulsating injectant and a steady cross-flow: aerodynamics of film cooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949120

Country of ref document: EP

Kind code of ref document: A1